src/cpu/x86/vm/assembler_x86.hpp

Wed, 24 Oct 2012 14:33:22 -0700

author
kvn
date
Wed, 24 Oct 2012 14:33:22 -0700
changeset 4205
a3ecd773a7b9
parent 4159
8e47bac5643a
child 4317
6ab62ad83507
permissions
-rw-r--r--

7184394: add intrinsics to use AES instructions
Summary: Use new x86 AES instructions for AESCrypt.
Reviewed-by: twisti, kvn, roland
Contributed-by: tom.deneau@amd.com

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
    28 class BiasedLockingCounters;
    30 // Contains all the definitions needed for x86 assembly code generation.
    32 // Calling convention
    33 class Argument VALUE_OBJ_CLASS_SPEC {
    34  public:
    35   enum {
    36 #ifdef _LP64
    37 #ifdef _WIN64
    38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    40 #else
    41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    43 #endif // _WIN64
    44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    46 #else
    47     n_register_parameters = 0   // 0 registers used to pass arguments
    48 #endif // _LP64
    49   };
    50 };
    53 #ifdef _LP64
    54 // Symbolically name the register arguments used by the c calling convention.
    55 // Windows is different from linux/solaris. So much for standards...
    57 #ifdef _WIN64
    59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    61 REGISTER_DECLARATION(Register, c_rarg2, r8);
    62 REGISTER_DECLARATION(Register, c_rarg3, r9);
    64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    69 #else
    71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    75 REGISTER_DECLARATION(Register, c_rarg4, r8);
    76 REGISTER_DECLARATION(Register, c_rarg5, r9);
    78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    87 #endif // _WIN64
    89 // Symbolically name the register arguments used by the Java calling convention.
    90 // We have control over the convention for java so we can do what we please.
    91 // What pleases us is to offset the java calling convention so that when
    92 // we call a suitable jni method the arguments are lined up and we don't
    93 // have to do little shuffling. A suitable jni method is non-static and a
    94 // small number of arguments (two fewer args on windows)
    95 //
    96 //        |-------------------------------------------------------|
    97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    98 //        |-------------------------------------------------------|
    99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
   100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
   101 //        |-------------------------------------------------------|
   102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   103 //        |-------------------------------------------------------|
   105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   108 // Windows runs out of register args here
   109 #ifdef _WIN64
   110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   112 #else
   113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   115 #endif /* _WIN64 */
   116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   133 #else
   134 // rscratch1 will apear in 32bit code that is dead but of course must compile
   135 // Using noreg ensures if the dead code is incorrectly live and executed it
   136 // will cause an assertion failure
   137 #define rscratch1 noreg
   138 #define rscratch2 noreg
   140 #endif // _LP64
   142 // JSR 292 fixed register usages:
   143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
   145 // Address is an abstraction used to represent a memory location
   146 // using any of the amd64 addressing modes with one object.
   147 //
   148 // Note: A register location is represented via a Register, not
   149 //       via an address for efficiency & simplicity reasons.
   151 class ArrayAddress;
   153 class Address VALUE_OBJ_CLASS_SPEC {
   154  public:
   155   enum ScaleFactor {
   156     no_scale = -1,
   157     times_1  =  0,
   158     times_2  =  1,
   159     times_4  =  2,
   160     times_8  =  3,
   161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   162   };
   163   static ScaleFactor times(int size) {
   164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
   165     if (size == 8)  return times_8;
   166     if (size == 4)  return times_4;
   167     if (size == 2)  return times_2;
   168     return times_1;
   169   }
   170   static int scale_size(ScaleFactor scale) {
   171     assert(scale != no_scale, "");
   172     assert(((1 << (int)times_1) == 1 &&
   173             (1 << (int)times_2) == 2 &&
   174             (1 << (int)times_4) == 4 &&
   175             (1 << (int)times_8) == 8), "");
   176     return (1 << (int)scale);
   177   }
   179  private:
   180   Register         _base;
   181   Register         _index;
   182   ScaleFactor      _scale;
   183   int              _disp;
   184   RelocationHolder _rspec;
   186   // Easily misused constructors make them private
   187   // %%% can we make these go away?
   188   NOT_LP64(Address(address loc, RelocationHolder spec);)
   189   Address(int disp, address loc, relocInfo::relocType rtype);
   190   Address(int disp, address loc, RelocationHolder spec);
   192  public:
   194  int disp() { return _disp; }
   195   // creation
   196   Address()
   197     : _base(noreg),
   198       _index(noreg),
   199       _scale(no_scale),
   200       _disp(0) {
   201   }
   203   // No default displacement otherwise Register can be implicitly
   204   // converted to 0(Register) which is quite a different animal.
   206   Address(Register base, int disp)
   207     : _base(base),
   208       _index(noreg),
   209       _scale(no_scale),
   210       _disp(disp) {
   211   }
   213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   214     : _base (base),
   215       _index(index),
   216       _scale(scale),
   217       _disp (disp) {
   218     assert(!index->is_valid() == (scale == Address::no_scale),
   219            "inconsistent address");
   220   }
   222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
   223     : _base (base),
   224       _index(index.register_or_noreg()),
   225       _scale(scale),
   226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
   227     if (!index.is_register())  scale = Address::no_scale;
   228     assert(!_index->is_valid() == (scale == Address::no_scale),
   229            "inconsistent address");
   230   }
   232   Address plus_disp(int disp) const {
   233     Address a = (*this);
   234     a._disp += disp;
   235     return a;
   236   }
   237   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
   238     Address a = (*this);
   239     a._disp += disp.constant_or_zero() * scale_size(scale);
   240     if (disp.is_register()) {
   241       assert(!a.index()->is_valid(), "competing indexes");
   242       a._index = disp.as_register();
   243       a._scale = scale;
   244     }
   245     return a;
   246   }
   247   bool is_same_address(Address a) const {
   248     // disregard _rspec
   249     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
   250   }
   252   // The following two overloads are used in connection with the
   253   // ByteSize type (see sizes.hpp).  They simplify the use of
   254   // ByteSize'd arguments in assembly code. Note that their equivalent
   255   // for the optimized build are the member functions with int disp
   256   // argument since ByteSize is mapped to an int type in that case.
   257   //
   258   // Note: DO NOT introduce similar overloaded functions for WordSize
   259   // arguments as in the optimized mode, both ByteSize and WordSize
   260   // are mapped to the same type and thus the compiler cannot make a
   261   // distinction anymore (=> compiler errors).
   263 #ifdef ASSERT
   264   Address(Register base, ByteSize disp)
   265     : _base(base),
   266       _index(noreg),
   267       _scale(no_scale),
   268       _disp(in_bytes(disp)) {
   269   }
   271   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   272     : _base(base),
   273       _index(index),
   274       _scale(scale),
   275       _disp(in_bytes(disp)) {
   276     assert(!index->is_valid() == (scale == Address::no_scale),
   277            "inconsistent address");
   278   }
   280   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
   281     : _base (base),
   282       _index(index.register_or_noreg()),
   283       _scale(scale),
   284       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
   285     if (!index.is_register())  scale = Address::no_scale;
   286     assert(!_index->is_valid() == (scale == Address::no_scale),
   287            "inconsistent address");
   288   }
   290 #endif // ASSERT
   292   // accessors
   293   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   294   Register    base()             const { return _base;  }
   295   Register    index()            const { return _index; }
   296   ScaleFactor scale()            const { return _scale; }
   297   int         disp()             const { return _disp;  }
   299   // Convert the raw encoding form into the form expected by the constructor for
   300   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   301   // that to noreg for the Address constructor.
   302   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
   304   static Address make_array(ArrayAddress);
   306  private:
   307   bool base_needs_rex() const {
   308     return _base != noreg && _base->encoding() >= 8;
   309   }
   311   bool index_needs_rex() const {
   312     return _index != noreg &&_index->encoding() >= 8;
   313   }
   315   relocInfo::relocType reloc() const { return _rspec.type(); }
   317   friend class Assembler;
   318   friend class MacroAssembler;
   319   friend class LIR_Assembler; // base/index/scale/disp
   320 };
   322 //
   323 // AddressLiteral has been split out from Address because operands of this type
   324 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   325 // the few instructions that need to deal with address literals are unique and the
   326 // MacroAssembler does not have to implement every instruction in the Assembler
   327 // in order to search for address literals that may need special handling depending
   328 // on the instruction and the platform. As small step on the way to merging i486/amd64
   329 // directories.
   330 //
   331 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   332   friend class ArrayAddress;
   333   RelocationHolder _rspec;
   334   // Typically we use AddressLiterals we want to use their rval
   335   // However in some situations we want the lval (effect address) of the item.
   336   // We provide a special factory for making those lvals.
   337   bool _is_lval;
   339   // If the target is far we'll need to load the ea of this to
   340   // a register to reach it. Otherwise if near we can do rip
   341   // relative addressing.
   343   address          _target;
   345  protected:
   346   // creation
   347   AddressLiteral()
   348     : _is_lval(false),
   349       _target(NULL)
   350   {}
   352   public:
   355   AddressLiteral(address target, relocInfo::relocType rtype);
   357   AddressLiteral(address target, RelocationHolder const& rspec)
   358     : _rspec(rspec),
   359       _is_lval(false),
   360       _target(target)
   361   {}
   363   AddressLiteral addr() {
   364     AddressLiteral ret = *this;
   365     ret._is_lval = true;
   366     return ret;
   367   }
   370  private:
   372   address target() { return _target; }
   373   bool is_lval() { return _is_lval; }
   375   relocInfo::relocType reloc() const { return _rspec.type(); }
   376   const RelocationHolder& rspec() const { return _rspec; }
   378   friend class Assembler;
   379   friend class MacroAssembler;
   380   friend class Address;
   381   friend class LIR_Assembler;
   382 };
   384 // Convience classes
   385 class RuntimeAddress: public AddressLiteral {
   387   public:
   389   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   391 };
   393 class ExternalAddress: public AddressLiteral {
   394  private:
   395   static relocInfo::relocType reloc_for_target(address target) {
   396     // Sometimes ExternalAddress is used for values which aren't
   397     // exactly addresses, like the card table base.
   398     // external_word_type can't be used for values in the first page
   399     // so just skip the reloc in that case.
   400     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
   401   }
   403  public:
   405   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
   407 };
   409 class InternalAddress: public AddressLiteral {
   411   public:
   413   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   415 };
   417 // x86 can do array addressing as a single operation since disp can be an absolute
   418 // address amd64 can't. We create a class that expresses the concept but does extra
   419 // magic on amd64 to get the final result
   421 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   422   private:
   424   AddressLiteral _base;
   425   Address        _index;
   427   public:
   429   ArrayAddress() {};
   430   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   431   AddressLiteral base() { return _base; }
   432   Address index() { return _index; }
   434 };
   436 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   438 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   439 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   440 // is what you get. The Assembler is generating code into a CodeBuffer.
   442 class Assembler : public AbstractAssembler  {
   443   friend class AbstractAssembler; // for the non-virtual hack
   444   friend class LIR_Assembler; // as_Address()
   445   friend class StubGenerator;
   447  public:
   448   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   449     zero          = 0x4,
   450     notZero       = 0x5,
   451     equal         = 0x4,
   452     notEqual      = 0x5,
   453     less          = 0xc,
   454     lessEqual     = 0xe,
   455     greater       = 0xf,
   456     greaterEqual  = 0xd,
   457     below         = 0x2,
   458     belowEqual    = 0x6,
   459     above         = 0x7,
   460     aboveEqual    = 0x3,
   461     overflow      = 0x0,
   462     noOverflow    = 0x1,
   463     carrySet      = 0x2,
   464     carryClear    = 0x3,
   465     negative      = 0x8,
   466     positive      = 0x9,
   467     parity        = 0xa,
   468     noParity      = 0xb
   469   };
   471   enum Prefix {
   472     // segment overrides
   473     CS_segment = 0x2e,
   474     SS_segment = 0x36,
   475     DS_segment = 0x3e,
   476     ES_segment = 0x26,
   477     FS_segment = 0x64,
   478     GS_segment = 0x65,
   480     REX        = 0x40,
   482     REX_B      = 0x41,
   483     REX_X      = 0x42,
   484     REX_XB     = 0x43,
   485     REX_R      = 0x44,
   486     REX_RB     = 0x45,
   487     REX_RX     = 0x46,
   488     REX_RXB    = 0x47,
   490     REX_W      = 0x48,
   492     REX_WB     = 0x49,
   493     REX_WX     = 0x4A,
   494     REX_WXB    = 0x4B,
   495     REX_WR     = 0x4C,
   496     REX_WRB    = 0x4D,
   497     REX_WRX    = 0x4E,
   498     REX_WRXB   = 0x4F,
   500     VEX_3bytes = 0xC4,
   501     VEX_2bytes = 0xC5
   502   };
   504   enum VexPrefix {
   505     VEX_B = 0x20,
   506     VEX_X = 0x40,
   507     VEX_R = 0x80,
   508     VEX_W = 0x80
   509   };
   511   enum VexSimdPrefix {
   512     VEX_SIMD_NONE = 0x0,
   513     VEX_SIMD_66   = 0x1,
   514     VEX_SIMD_F3   = 0x2,
   515     VEX_SIMD_F2   = 0x3
   516   };
   518   enum VexOpcode {
   519     VEX_OPCODE_NONE  = 0x0,
   520     VEX_OPCODE_0F    = 0x1,
   521     VEX_OPCODE_0F_38 = 0x2,
   522     VEX_OPCODE_0F_3A = 0x3
   523   };
   525   enum WhichOperand {
   526     // input to locate_operand, and format code for relocations
   527     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   528     disp32_operand = 1,          // embedded 32-bit displacement or address
   529     call32_operand = 2,          // embedded 32-bit self-relative displacement
   530 #ifndef _LP64
   531     _WhichOperand_limit = 3
   532 #else
   533      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   534     _WhichOperand_limit = 4
   535 #endif
   536   };
   540   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   541   // of instructions are freely declared without the need for wrapping them an ifdef.
   542   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   543   // In the .cpp file the implementations are wrapped so that they are dropped out
   544   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   545   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   546   //
   547   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   548   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   550 private:
   553   // 64bit prefixes
   554   int prefix_and_encode(int reg_enc, bool byteinst = false);
   555   int prefixq_and_encode(int reg_enc);
   557   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   558   int prefixq_and_encode(int dst_enc, int src_enc);
   560   void prefix(Register reg);
   561   void prefix(Address adr);
   562   void prefixq(Address adr);
   564   void prefix(Address adr, Register reg,  bool byteinst = false);
   565   void prefix(Address adr, XMMRegister reg);
   566   void prefixq(Address adr, Register reg);
   567   void prefixq(Address adr, XMMRegister reg);
   569   void prefetch_prefix(Address src);
   571   void rex_prefix(Address adr, XMMRegister xreg,
   572                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
   573   int  rex_prefix_and_encode(int dst_enc, int src_enc,
   574                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
   576   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
   577                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
   578                   bool vector256);
   580   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
   581                   VexSimdPrefix pre, VexOpcode opc,
   582                   bool vex_w, bool vector256);
   584   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
   585                   VexSimdPrefix pre, bool vector256 = false) {
   586     int dst_enc = dst->encoding();
   587     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
   588     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
   589   }
   591   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
   592                              VexSimdPrefix pre, VexOpcode opc,
   593                              bool vex_w, bool vector256);
   595   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
   596                              VexSimdPrefix pre, bool vector256 = false,
   597                              VexOpcode opc = VEX_OPCODE_0F) {
   598     int src_enc = src->encoding();
   599     int dst_enc = dst->encoding();
   600     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
   601     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
   602   }
   604   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
   605                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
   606                    bool rex_w = false, bool vector256 = false);
   608   void simd_prefix(XMMRegister dst, Address src,
   609                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
   610     simd_prefix(dst, xnoreg, src, pre, opc);
   611   }
   613   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
   614     simd_prefix(src, dst, pre);
   615   }
   616   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
   617                      VexSimdPrefix pre) {
   618     bool rex_w = true;
   619     simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
   620   }
   622   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
   623                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
   624                              bool rex_w = false, bool vector256 = false);
   626   // Move/convert 32-bit integer value.
   627   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
   628                              VexSimdPrefix pre) {
   629     // It is OK to cast from Register to XMMRegister to pass argument here
   630     // since only encoding is used in simd_prefix_and_encode() and number of
   631     // Gen and Xmm registers are the same.
   632     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
   633   }
   634   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
   635     return simd_prefix_and_encode(dst, xnoreg, src, pre);
   636   }
   637   int simd_prefix_and_encode(Register dst, XMMRegister src,
   638                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
   639     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
   640   }
   642   // Move/convert 64-bit integer value.
   643   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
   644                                VexSimdPrefix pre) {
   645     bool rex_w = true;
   646     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
   647   }
   648   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
   649     return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
   650   }
   651   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
   652                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
   653     bool rex_w = true;
   654     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
   655   }
   657   // Helper functions for groups of instructions
   658   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   660   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   661   // Force generation of a 4 byte immediate value even if it fits into 8bit
   662   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
   663   void emit_arith(int op1, int op2, Register dst, Register src);
   665   void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
   666   void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
   667   void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
   668   void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
   669   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
   670                       Address src, VexSimdPrefix pre, bool vector256);
   671   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
   672                       XMMRegister src, VexSimdPrefix pre, bool vector256);
   674   void emit_operand(Register reg,
   675                     Register base, Register index, Address::ScaleFactor scale,
   676                     int disp,
   677                     RelocationHolder const& rspec,
   678                     int rip_relative_correction = 0);
   680   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   682   // operands that only take the original 32bit registers
   683   void emit_operand32(Register reg, Address adr);
   685   void emit_operand(XMMRegister reg,
   686                     Register base, Register index, Address::ScaleFactor scale,
   687                     int disp,
   688                     RelocationHolder const& rspec);
   690   void emit_operand(XMMRegister reg, Address adr);
   692   void emit_operand(MMXRegister reg, Address adr);
   694   // workaround gcc (3.2.1-7) bug
   695   void emit_operand(Address adr, MMXRegister reg);
   698   // Immediate-to-memory forms
   699   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   701   void emit_farith(int b1, int b2, int i);
   704  protected:
   705   #ifdef ASSERT
   706   void check_relocation(RelocationHolder const& rspec, int format);
   707   #endif
   709   inline void emit_long64(jlong x);
   711   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   712   void emit_data(jint data, RelocationHolder const& rspec, int format);
   713   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   714   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   716   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   718   // These are all easily abused and hence protected
   720   // 32BIT ONLY SECTION
   721 #ifndef _LP64
   722   // Make these disappear in 64bit mode since they would never be correct
   723   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   724   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   726   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   727   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   729   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   730 #else
   731   // 64BIT ONLY SECTION
   732   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   734   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
   735   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
   737   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
   738   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
   739 #endif // _LP64
   741   // These are unique in that we are ensured by the caller that the 32bit
   742   // relative in these instructions will always be able to reach the potentially
   743   // 64bit address described by entry. Since they can take a 64bit address they
   744   // don't have the 32 suffix like the other instructions in this class.
   746   void call_literal(address entry, RelocationHolder const& rspec);
   747   void jmp_literal(address entry, RelocationHolder const& rspec);
   749   // Avoid using directly section
   750   // Instructions in this section are actually usable by anyone without danger
   751   // of failure but have performance issues that are addressed my enhanced
   752   // instructions which will do the proper thing base on the particular cpu.
   753   // We protect them because we don't trust you...
   755   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   756   // could cause a partial flag stall since they don't set CF flag.
   757   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   758   // which call inc() & dec() or add() & sub() in accordance with
   759   // the product flag UseIncDec value.
   761   void decl(Register dst);
   762   void decl(Address dst);
   763   void decq(Register dst);
   764   void decq(Address dst);
   766   void incl(Register dst);
   767   void incl(Address dst);
   768   void incq(Register dst);
   769   void incq(Address dst);
   771   // New cpus require use of movsd and movss to avoid partial register stall
   772   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   773   // The selection is done in MacroAssembler::movdbl() and movflt().
   775   // Move Scalar Single-Precision Floating-Point Values
   776   void movss(XMMRegister dst, Address src);
   777   void movss(XMMRegister dst, XMMRegister src);
   778   void movss(Address dst, XMMRegister src);
   780   // Move Scalar Double-Precision Floating-Point Values
   781   void movsd(XMMRegister dst, Address src);
   782   void movsd(XMMRegister dst, XMMRegister src);
   783   void movsd(Address dst, XMMRegister src);
   784   void movlpd(XMMRegister dst, Address src);
   786   // New cpus require use of movaps and movapd to avoid partial register stall
   787   // when moving between registers.
   788   void movaps(XMMRegister dst, XMMRegister src);
   789   void movapd(XMMRegister dst, XMMRegister src);
   791   // End avoid using directly
   794   // Instruction prefixes
   795   void prefix(Prefix p);
   797   public:
   799   // Creation
   800   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   802   // Decoding
   803   static address locate_operand(address inst, WhichOperand which);
   804   static address locate_next_instruction(address inst);
   806   // Utilities
   807   static bool is_polling_page_far() NOT_LP64({ return false;});
   809   // Generic instructions
   810   // Does 32bit or 64bit as needed for the platform. In some sense these
   811   // belong in macro assembler but there is no need for both varieties to exist
   813   void lea(Register dst, Address src);
   815   void mov(Register dst, Register src);
   817   void pusha();
   818   void popa();
   820   void pushf();
   821   void popf();
   823   void push(int32_t imm32);
   825   void push(Register src);
   827   void pop(Register dst);
   829   // These are dummies to prevent surprise implicit conversions to Register
   830   void push(void* v);
   831   void pop(void* v);
   833   // These do register sized moves/scans
   834   void rep_mov();
   835   void rep_set();
   836   void repne_scan();
   837 #ifdef _LP64
   838   void repne_scanl();
   839 #endif
   841   // Vanilla instructions in lexical order
   843   void adcl(Address dst, int32_t imm32);
   844   void adcl(Address dst, Register src);
   845   void adcl(Register dst, int32_t imm32);
   846   void adcl(Register dst, Address src);
   847   void adcl(Register dst, Register src);
   849   void adcq(Register dst, int32_t imm32);
   850   void adcq(Register dst, Address src);
   851   void adcq(Register dst, Register src);
   853   void addl(Address dst, int32_t imm32);
   854   void addl(Address dst, Register src);
   855   void addl(Register dst, int32_t imm32);
   856   void addl(Register dst, Address src);
   857   void addl(Register dst, Register src);
   859   void addq(Address dst, int32_t imm32);
   860   void addq(Address dst, Register src);
   861   void addq(Register dst, int32_t imm32);
   862   void addq(Register dst, Address src);
   863   void addq(Register dst, Register src);
   865   void addr_nop_4();
   866   void addr_nop_5();
   867   void addr_nop_7();
   868   void addr_nop_8();
   870   // Add Scalar Double-Precision Floating-Point Values
   871   void addsd(XMMRegister dst, Address src);
   872   void addsd(XMMRegister dst, XMMRegister src);
   874   // Add Scalar Single-Precision Floating-Point Values
   875   void addss(XMMRegister dst, Address src);
   876   void addss(XMMRegister dst, XMMRegister src);
   878   // AES instructions
   879   void aesdec(XMMRegister dst, Address src);
   880   void aesdec(XMMRegister dst, XMMRegister src);
   881   void aesdeclast(XMMRegister dst, Address src);
   882   void aesdeclast(XMMRegister dst, XMMRegister src);
   883   void aesenc(XMMRegister dst, Address src);
   884   void aesenc(XMMRegister dst, XMMRegister src);
   885   void aesenclast(XMMRegister dst, Address src);
   886   void aesenclast(XMMRegister dst, XMMRegister src);
   889   void andl(Address  dst, int32_t imm32);
   890   void andl(Register dst, int32_t imm32);
   891   void andl(Register dst, Address src);
   892   void andl(Register dst, Register src);
   894   void andq(Address  dst, int32_t imm32);
   895   void andq(Register dst, int32_t imm32);
   896   void andq(Register dst, Address src);
   897   void andq(Register dst, Register src);
   899   void bsfl(Register dst, Register src);
   900   void bsrl(Register dst, Register src);
   902 #ifdef _LP64
   903   void bsfq(Register dst, Register src);
   904   void bsrq(Register dst, Register src);
   905 #endif
   907   void bswapl(Register reg);
   909   void bswapq(Register reg);
   911   void call(Label& L, relocInfo::relocType rtype);
   912   void call(Register reg);  // push pc; pc <- reg
   913   void call(Address adr);   // push pc; pc <- adr
   915   void cdql();
   917   void cdqq();
   919   void cld() { emit_byte(0xfc); }
   921   void clflush(Address adr);
   923   void cmovl(Condition cc, Register dst, Register src);
   924   void cmovl(Condition cc, Register dst, Address src);
   926   void cmovq(Condition cc, Register dst, Register src);
   927   void cmovq(Condition cc, Register dst, Address src);
   930   void cmpb(Address dst, int imm8);
   932   void cmpl(Address dst, int32_t imm32);
   934   void cmpl(Register dst, int32_t imm32);
   935   void cmpl(Register dst, Register src);
   936   void cmpl(Register dst, Address src);
   938   void cmpq(Address dst, int32_t imm32);
   939   void cmpq(Address dst, Register src);
   941   void cmpq(Register dst, int32_t imm32);
   942   void cmpq(Register dst, Register src);
   943   void cmpq(Register dst, Address src);
   945   // these are dummies used to catch attempting to convert NULL to Register
   946   void cmpl(Register dst, void* junk); // dummy
   947   void cmpq(Register dst, void* junk); // dummy
   949   void cmpw(Address dst, int imm16);
   951   void cmpxchg8 (Address adr);
   953   void cmpxchgl(Register reg, Address adr);
   955   void cmpxchgq(Register reg, Address adr);
   957   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   958   void comisd(XMMRegister dst, Address src);
   959   void comisd(XMMRegister dst, XMMRegister src);
   961   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   962   void comiss(XMMRegister dst, Address src);
   963   void comiss(XMMRegister dst, XMMRegister src);
   965   // Identify processor type and features
   966   void cpuid() {
   967     emit_byte(0x0F);
   968     emit_byte(0xA2);
   969   }
   971   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   972   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   973   void cvtsd2ss(XMMRegister dst, Address src);
   975   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   976   void cvtsi2sdl(XMMRegister dst, Register src);
   977   void cvtsi2sdl(XMMRegister dst, Address src);
   978   void cvtsi2sdq(XMMRegister dst, Register src);
   979   void cvtsi2sdq(XMMRegister dst, Address src);
   981   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   982   void cvtsi2ssl(XMMRegister dst, Register src);
   983   void cvtsi2ssl(XMMRegister dst, Address src);
   984   void cvtsi2ssq(XMMRegister dst, Register src);
   985   void cvtsi2ssq(XMMRegister dst, Address src);
   987   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   988   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   990   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   991   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   993   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   994   void cvtss2sd(XMMRegister dst, XMMRegister src);
   995   void cvtss2sd(XMMRegister dst, Address src);
   997   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   998   void cvttsd2sil(Register dst, Address src);
   999   void cvttsd2sil(Register dst, XMMRegister src);
  1000   void cvttsd2siq(Register dst, XMMRegister src);
  1002   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
  1003   void cvttss2sil(Register dst, XMMRegister src);
  1004   void cvttss2siq(Register dst, XMMRegister src);
  1006   // Divide Scalar Double-Precision Floating-Point Values
  1007   void divsd(XMMRegister dst, Address src);
  1008   void divsd(XMMRegister dst, XMMRegister src);
  1010   // Divide Scalar Single-Precision Floating-Point Values
  1011   void divss(XMMRegister dst, Address src);
  1012   void divss(XMMRegister dst, XMMRegister src);
  1014   void emms();
  1016   void fabs();
  1018   void fadd(int i);
  1020   void fadd_d(Address src);
  1021   void fadd_s(Address src);
  1023   // "Alternate" versions of x87 instructions place result down in FPU
  1024   // stack instead of on TOS
  1026   void fadda(int i); // "alternate" fadd
  1027   void faddp(int i = 1);
  1029   void fchs();
  1031   void fcom(int i);
  1033   void fcomp(int i = 1);
  1034   void fcomp_d(Address src);
  1035   void fcomp_s(Address src);
  1037   void fcompp();
  1039   void fcos();
  1041   void fdecstp();
  1043   void fdiv(int i);
  1044   void fdiv_d(Address src);
  1045   void fdivr_s(Address src);
  1046   void fdiva(int i);  // "alternate" fdiv
  1047   void fdivp(int i = 1);
  1049   void fdivr(int i);
  1050   void fdivr_d(Address src);
  1051   void fdiv_s(Address src);
  1053   void fdivra(int i); // "alternate" reversed fdiv
  1055   void fdivrp(int i = 1);
  1057   void ffree(int i = 0);
  1059   void fild_d(Address adr);
  1060   void fild_s(Address adr);
  1062   void fincstp();
  1064   void finit();
  1066   void fist_s (Address adr);
  1067   void fistp_d(Address adr);
  1068   void fistp_s(Address adr);
  1070   void fld1();
  1072   void fld_d(Address adr);
  1073   void fld_s(Address adr);
  1074   void fld_s(int index);
  1075   void fld_x(Address adr);  // extended-precision (80-bit) format
  1077   void fldcw(Address src);
  1079   void fldenv(Address src);
  1081   void fldlg2();
  1083   void fldln2();
  1085   void fldz();
  1087   void flog();
  1088   void flog10();
  1090   void fmul(int i);
  1092   void fmul_d(Address src);
  1093   void fmul_s(Address src);
  1095   void fmula(int i);  // "alternate" fmul
  1097   void fmulp(int i = 1);
  1099   void fnsave(Address dst);
  1101   void fnstcw(Address src);
  1103   void fnstsw_ax();
  1105   void fprem();
  1106   void fprem1();
  1108   void frstor(Address src);
  1110   void fsin();
  1112   void fsqrt();
  1114   void fst_d(Address adr);
  1115   void fst_s(Address adr);
  1117   void fstp_d(Address adr);
  1118   void fstp_d(int index);
  1119   void fstp_s(Address adr);
  1120   void fstp_x(Address adr); // extended-precision (80-bit) format
  1122   void fsub(int i);
  1123   void fsub_d(Address src);
  1124   void fsub_s(Address src);
  1126   void fsuba(int i);  // "alternate" fsub
  1128   void fsubp(int i = 1);
  1130   void fsubr(int i);
  1131   void fsubr_d(Address src);
  1132   void fsubr_s(Address src);
  1134   void fsubra(int i); // "alternate" reversed fsub
  1136   void fsubrp(int i = 1);
  1138   void ftan();
  1140   void ftst();
  1142   void fucomi(int i = 1);
  1143   void fucomip(int i = 1);
  1145   void fwait();
  1147   void fxch(int i = 1);
  1149   void fxrstor(Address src);
  1151   void fxsave(Address dst);
  1153   void fyl2x();
  1154   void frndint();
  1155   void f2xm1();
  1156   void fldl2e();
  1158   void hlt();
  1160   void idivl(Register src);
  1161   void divl(Register src); // Unsigned division
  1163   void idivq(Register src);
  1165   void imull(Register dst, Register src);
  1166   void imull(Register dst, Register src, int value);
  1168   void imulq(Register dst, Register src);
  1169   void imulq(Register dst, Register src, int value);
  1172   // jcc is the generic conditional branch generator to run-
  1173   // time routines, jcc is used for branches to labels. jcc
  1174   // takes a branch opcode (cc) and a label (L) and generates
  1175   // either a backward branch or a forward branch and links it
  1176   // to the label fixup chain. Usage:
  1177   //
  1178   // Label L;      // unbound label
  1179   // jcc(cc, L);   // forward branch to unbound label
  1180   // bind(L);      // bind label to the current pc
  1181   // jcc(cc, L);   // backward branch to bound label
  1182   // bind(L);      // illegal: a label may be bound only once
  1183   //
  1184   // Note: The same Label can be used for forward and backward branches
  1185   // but it may be bound only once.
  1187   void jcc(Condition cc, Label& L, bool maybe_short = true);
  1189   // Conditional jump to a 8-bit offset to L.
  1190   // WARNING: be very careful using this for forward jumps.  If the label is
  1191   // not bound within an 8-bit offset of this instruction, a run-time error
  1192   // will occur.
  1193   void jccb(Condition cc, Label& L);
  1195   void jmp(Address entry);    // pc <- entry
  1197   // Label operations & relative jumps (PPUM Appendix D)
  1198   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
  1200   void jmp(Register entry); // pc <- entry
  1202   // Unconditional 8-bit offset jump to L.
  1203   // WARNING: be very careful using this for forward jumps.  If the label is
  1204   // not bound within an 8-bit offset of this instruction, a run-time error
  1205   // will occur.
  1206   void jmpb(Label& L);
  1208   void ldmxcsr( Address src );
  1210   void leal(Register dst, Address src);
  1212   void leaq(Register dst, Address src);
  1214   void lfence() {
  1215     emit_byte(0x0F);
  1216     emit_byte(0xAE);
  1217     emit_byte(0xE8);
  1220   void lock();
  1222   void lzcntl(Register dst, Register src);
  1224 #ifdef _LP64
  1225   void lzcntq(Register dst, Register src);
  1226 #endif
  1228   enum Membar_mask_bits {
  1229     StoreStore = 1 << 3,
  1230     LoadStore  = 1 << 2,
  1231     StoreLoad  = 1 << 1,
  1232     LoadLoad   = 1 << 0
  1233   };
  1235   // Serializes memory and blows flags
  1236   void membar(Membar_mask_bits order_constraint) {
  1237     if (os::is_MP()) {
  1238       // We only have to handle StoreLoad
  1239       if (order_constraint & StoreLoad) {
  1240         // All usable chips support "locked" instructions which suffice
  1241         // as barriers, and are much faster than the alternative of
  1242         // using cpuid instruction. We use here a locked add [esp],0.
  1243         // This is conveniently otherwise a no-op except for blowing
  1244         // flags.
  1245         // Any change to this code may need to revisit other places in
  1246         // the code where this idiom is used, in particular the
  1247         // orderAccess code.
  1248         lock();
  1249         addl(Address(rsp, 0), 0);// Assert the lock# signal here
  1254   void mfence();
  1256   // Moves
  1258   void mov64(Register dst, int64_t imm64);
  1260   void movb(Address dst, Register src);
  1261   void movb(Address dst, int imm8);
  1262   void movb(Register dst, Address src);
  1264   void movdl(XMMRegister dst, Register src);
  1265   void movdl(Register dst, XMMRegister src);
  1266   void movdl(XMMRegister dst, Address src);
  1267   void movdl(Address dst, XMMRegister src);
  1269   // Move Double Quadword
  1270   void movdq(XMMRegister dst, Register src);
  1271   void movdq(Register dst, XMMRegister src);
  1273   // Move Aligned Double Quadword
  1274   void movdqa(XMMRegister dst, XMMRegister src);
  1276   // Move Unaligned Double Quadword
  1277   void movdqu(Address     dst, XMMRegister src);
  1278   void movdqu(XMMRegister dst, Address src);
  1279   void movdqu(XMMRegister dst, XMMRegister src);
  1281   // Move Unaligned 256bit Vector
  1282   void vmovdqu(Address dst, XMMRegister src);
  1283   void vmovdqu(XMMRegister dst, Address src);
  1284   void vmovdqu(XMMRegister dst, XMMRegister src);
  1286   // Move lower 64bit to high 64bit in 128bit register
  1287   void movlhps(XMMRegister dst, XMMRegister src);
  1289   void movl(Register dst, int32_t imm32);
  1290   void movl(Address dst, int32_t imm32);
  1291   void movl(Register dst, Register src);
  1292   void movl(Register dst, Address src);
  1293   void movl(Address dst, Register src);
  1295   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1296   // by giving the compiler two choices it can't resolve
  1298   void movl(Address  dst, void* junk);
  1299   void movl(Register dst, void* junk);
  1301 #ifdef _LP64
  1302   void movq(Register dst, Register src);
  1303   void movq(Register dst, Address src);
  1304   void movq(Address  dst, Register src);
  1305 #endif
  1307   void movq(Address     dst, MMXRegister src );
  1308   void movq(MMXRegister dst, Address src );
  1310 #ifdef _LP64
  1311   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1312   // by giving the compiler two choices it can't resolve
  1314   void movq(Address  dst, void* dummy);
  1315   void movq(Register dst, void* dummy);
  1316 #endif
  1318   // Move Quadword
  1319   void movq(Address     dst, XMMRegister src);
  1320   void movq(XMMRegister dst, Address src);
  1322   void movsbl(Register dst, Address src);
  1323   void movsbl(Register dst, Register src);
  1325 #ifdef _LP64
  1326   void movsbq(Register dst, Address src);
  1327   void movsbq(Register dst, Register src);
  1329   // Move signed 32bit immediate to 64bit extending sign
  1330   void movslq(Address  dst, int32_t imm64);
  1331   void movslq(Register dst, int32_t imm64);
  1333   void movslq(Register dst, Address src);
  1334   void movslq(Register dst, Register src);
  1335   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1336 #endif
  1338   void movswl(Register dst, Address src);
  1339   void movswl(Register dst, Register src);
  1341 #ifdef _LP64
  1342   void movswq(Register dst, Address src);
  1343   void movswq(Register dst, Register src);
  1344 #endif
  1346   void movw(Address dst, int imm16);
  1347   void movw(Register dst, Address src);
  1348   void movw(Address dst, Register src);
  1350   void movzbl(Register dst, Address src);
  1351   void movzbl(Register dst, Register src);
  1353 #ifdef _LP64
  1354   void movzbq(Register dst, Address src);
  1355   void movzbq(Register dst, Register src);
  1356 #endif
  1358   void movzwl(Register dst, Address src);
  1359   void movzwl(Register dst, Register src);
  1361 #ifdef _LP64
  1362   void movzwq(Register dst, Address src);
  1363   void movzwq(Register dst, Register src);
  1364 #endif
  1366   void mull(Address src);
  1367   void mull(Register src);
  1369   // Multiply Scalar Double-Precision Floating-Point Values
  1370   void mulsd(XMMRegister dst, Address src);
  1371   void mulsd(XMMRegister dst, XMMRegister src);
  1373   // Multiply Scalar Single-Precision Floating-Point Values
  1374   void mulss(XMMRegister dst, Address src);
  1375   void mulss(XMMRegister dst, XMMRegister src);
  1377   void negl(Register dst);
  1379 #ifdef _LP64
  1380   void negq(Register dst);
  1381 #endif
  1383   void nop(int i = 1);
  1385   void notl(Register dst);
  1387 #ifdef _LP64
  1388   void notq(Register dst);
  1389 #endif
  1391   void orl(Address dst, int32_t imm32);
  1392   void orl(Register dst, int32_t imm32);
  1393   void orl(Register dst, Address src);
  1394   void orl(Register dst, Register src);
  1396   void orq(Address dst, int32_t imm32);
  1397   void orq(Register dst, int32_t imm32);
  1398   void orq(Register dst, Address src);
  1399   void orq(Register dst, Register src);
  1401   // Pack with unsigned saturation
  1402   void packuswb(XMMRegister dst, XMMRegister src);
  1403   void packuswb(XMMRegister dst, Address src);
  1405   // SSE4.2 string instructions
  1406   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  1407   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
  1409   // SSE4.1 packed move
  1410   void pmovzxbw(XMMRegister dst, XMMRegister src);
  1411   void pmovzxbw(XMMRegister dst, Address src);
  1413 #ifndef _LP64 // no 32bit push/pop on amd64
  1414   void popl(Address dst);
  1415 #endif
  1417 #ifdef _LP64
  1418   void popq(Address dst);
  1419 #endif
  1421   void popcntl(Register dst, Address src);
  1422   void popcntl(Register dst, Register src);
  1424 #ifdef _LP64
  1425   void popcntq(Register dst, Address src);
  1426   void popcntq(Register dst, Register src);
  1427 #endif
  1429   // Prefetches (SSE, SSE2, 3DNOW only)
  1431   void prefetchnta(Address src);
  1432   void prefetchr(Address src);
  1433   void prefetcht0(Address src);
  1434   void prefetcht1(Address src);
  1435   void prefetcht2(Address src);
  1436   void prefetchw(Address src);
  1438   // Shuffle Bytes
  1439   void pshufb(XMMRegister dst, XMMRegister src);
  1440   void pshufb(XMMRegister dst, Address src);
  1442   // Shuffle Packed Doublewords
  1443   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1444   void pshufd(XMMRegister dst, Address src,     int mode);
  1446   // Shuffle Packed Low Words
  1447   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1448   void pshuflw(XMMRegister dst, Address src,     int mode);
  1450   // Shift Right by bytes Logical DoubleQuadword Immediate
  1451   void psrldq(XMMRegister dst, int shift);
  1453   // Logical Compare Double Quadword
  1454   void ptest(XMMRegister dst, XMMRegister src);
  1455   void ptest(XMMRegister dst, Address src);
  1457   // Interleave Low Bytes
  1458   void punpcklbw(XMMRegister dst, XMMRegister src);
  1459   void punpcklbw(XMMRegister dst, Address src);
  1461   // Interleave Low Doublewords
  1462   void punpckldq(XMMRegister dst, XMMRegister src);
  1463   void punpckldq(XMMRegister dst, Address src);
  1465   // Interleave Low Quadwords
  1466   void punpcklqdq(XMMRegister dst, XMMRegister src);
  1468 #ifndef _LP64 // no 32bit push/pop on amd64
  1469   void pushl(Address src);
  1470 #endif
  1472   void pushq(Address src);
  1474   void rcll(Register dst, int imm8);
  1476   void rclq(Register dst, int imm8);
  1478   void ret(int imm16);
  1480   void sahf();
  1482   void sarl(Register dst, int imm8);
  1483   void sarl(Register dst);
  1485   void sarq(Register dst, int imm8);
  1486   void sarq(Register dst);
  1488   void sbbl(Address dst, int32_t imm32);
  1489   void sbbl(Register dst, int32_t imm32);
  1490   void sbbl(Register dst, Address src);
  1491   void sbbl(Register dst, Register src);
  1493   void sbbq(Address dst, int32_t imm32);
  1494   void sbbq(Register dst, int32_t imm32);
  1495   void sbbq(Register dst, Address src);
  1496   void sbbq(Register dst, Register src);
  1498   void setb(Condition cc, Register dst);
  1500   void shldl(Register dst, Register src);
  1502   void shll(Register dst, int imm8);
  1503   void shll(Register dst);
  1505   void shlq(Register dst, int imm8);
  1506   void shlq(Register dst);
  1508   void shrdl(Register dst, Register src);
  1510   void shrl(Register dst, int imm8);
  1511   void shrl(Register dst);
  1513   void shrq(Register dst, int imm8);
  1514   void shrq(Register dst);
  1516   void smovl(); // QQQ generic?
  1518   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1519   void sqrtsd(XMMRegister dst, Address src);
  1520   void sqrtsd(XMMRegister dst, XMMRegister src);
  1522   // Compute Square Root of Scalar Single-Precision Floating-Point Value
  1523   void sqrtss(XMMRegister dst, Address src);
  1524   void sqrtss(XMMRegister dst, XMMRegister src);
  1526   void std() { emit_byte(0xfd); }
  1528   void stmxcsr( Address dst );
  1530   void subl(Address dst, int32_t imm32);
  1531   void subl(Address dst, Register src);
  1532   void subl(Register dst, int32_t imm32);
  1533   void subl(Register dst, Address src);
  1534   void subl(Register dst, Register src);
  1536   void subq(Address dst, int32_t imm32);
  1537   void subq(Address dst, Register src);
  1538   void subq(Register dst, int32_t imm32);
  1539   void subq(Register dst, Address src);
  1540   void subq(Register dst, Register src);
  1542   // Force generation of a 4 byte immediate value even if it fits into 8bit
  1543   void subl_imm32(Register dst, int32_t imm32);
  1544   void subq_imm32(Register dst, int32_t imm32);
  1546   // Subtract Scalar Double-Precision Floating-Point Values
  1547   void subsd(XMMRegister dst, Address src);
  1548   void subsd(XMMRegister dst, XMMRegister src);
  1550   // Subtract Scalar Single-Precision Floating-Point Values
  1551   void subss(XMMRegister dst, Address src);
  1552   void subss(XMMRegister dst, XMMRegister src);
  1554   void testb(Register dst, int imm8);
  1556   void testl(Register dst, int32_t imm32);
  1557   void testl(Register dst, Register src);
  1558   void testl(Register dst, Address src);
  1560   void testq(Register dst, int32_t imm32);
  1561   void testq(Register dst, Register src);
  1564   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1565   void ucomisd(XMMRegister dst, Address src);
  1566   void ucomisd(XMMRegister dst, XMMRegister src);
  1568   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1569   void ucomiss(XMMRegister dst, Address src);
  1570   void ucomiss(XMMRegister dst, XMMRegister src);
  1572   void xaddl(Address dst, Register src);
  1574   void xaddq(Address dst, Register src);
  1576   void xchgl(Register reg, Address adr);
  1577   void xchgl(Register dst, Register src);
  1579   void xchgq(Register reg, Address adr);
  1580   void xchgq(Register dst, Register src);
  1582   // Get Value of Extended Control Register
  1583   void xgetbv() {
  1584     emit_byte(0x0F);
  1585     emit_byte(0x01);
  1586     emit_byte(0xD0);
  1589   void xorl(Register dst, int32_t imm32);
  1590   void xorl(Register dst, Address src);
  1591   void xorl(Register dst, Register src);
  1593   void xorq(Register dst, Address src);
  1594   void xorq(Register dst, Register src);
  1596   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1598   // AVX 3-operands scalar instructions (encoded with VEX prefix)
  1600   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
  1601   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1602   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
  1603   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1604   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
  1605   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1606   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
  1607   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1608   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
  1609   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1610   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
  1611   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1612   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
  1613   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1614   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
  1615   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1618   //====================VECTOR ARITHMETIC=====================================
  1620   // Add Packed Floating-Point Values
  1621   void addpd(XMMRegister dst, XMMRegister src);
  1622   void addps(XMMRegister dst, XMMRegister src);
  1623   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1624   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1625   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1626   void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1628   // Subtract Packed Floating-Point Values
  1629   void subpd(XMMRegister dst, XMMRegister src);
  1630   void subps(XMMRegister dst, XMMRegister src);
  1631   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1632   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1633   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1634   void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1636   // Multiply Packed Floating-Point Values
  1637   void mulpd(XMMRegister dst, XMMRegister src);
  1638   void mulps(XMMRegister dst, XMMRegister src);
  1639   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1640   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1641   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1642   void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1644   // Divide Packed Floating-Point Values
  1645   void divpd(XMMRegister dst, XMMRegister src);
  1646   void divps(XMMRegister dst, XMMRegister src);
  1647   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1648   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1649   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1650   void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1652   // Bitwise Logical AND of Packed Floating-Point Values
  1653   void andpd(XMMRegister dst, XMMRegister src);
  1654   void andps(XMMRegister dst, XMMRegister src);
  1655   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1656   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1657   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1658   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1660   // Bitwise Logical XOR of Packed Floating-Point Values
  1661   void xorpd(XMMRegister dst, XMMRegister src);
  1662   void xorps(XMMRegister dst, XMMRegister src);
  1663   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1664   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1665   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1666   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1668   // Add packed integers
  1669   void paddb(XMMRegister dst, XMMRegister src);
  1670   void paddw(XMMRegister dst, XMMRegister src);
  1671   void paddd(XMMRegister dst, XMMRegister src);
  1672   void paddq(XMMRegister dst, XMMRegister src);
  1673   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1674   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1675   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1676   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1677   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1678   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1679   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1680   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1682   // Sub packed integers
  1683   void psubb(XMMRegister dst, XMMRegister src);
  1684   void psubw(XMMRegister dst, XMMRegister src);
  1685   void psubd(XMMRegister dst, XMMRegister src);
  1686   void psubq(XMMRegister dst, XMMRegister src);
  1687   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1688   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1689   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1690   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1691   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1692   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1693   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1694   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1696   // Multiply packed integers (only shorts and ints)
  1697   void pmullw(XMMRegister dst, XMMRegister src);
  1698   void pmulld(XMMRegister dst, XMMRegister src);
  1699   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1700   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1701   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1702   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1704   // Shift left packed integers
  1705   void psllw(XMMRegister dst, int shift);
  1706   void pslld(XMMRegister dst, int shift);
  1707   void psllq(XMMRegister dst, int shift);
  1708   void psllw(XMMRegister dst, XMMRegister shift);
  1709   void pslld(XMMRegister dst, XMMRegister shift);
  1710   void psllq(XMMRegister dst, XMMRegister shift);
  1711   void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1712   void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1713   void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1714   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1715   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1716   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1718   // Logical shift right packed integers
  1719   void psrlw(XMMRegister dst, int shift);
  1720   void psrld(XMMRegister dst, int shift);
  1721   void psrlq(XMMRegister dst, int shift);
  1722   void psrlw(XMMRegister dst, XMMRegister shift);
  1723   void psrld(XMMRegister dst, XMMRegister shift);
  1724   void psrlq(XMMRegister dst, XMMRegister shift);
  1725   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1726   void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1727   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1728   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1729   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1730   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1732   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
  1733   void psraw(XMMRegister dst, int shift);
  1734   void psrad(XMMRegister dst, int shift);
  1735   void psraw(XMMRegister dst, XMMRegister shift);
  1736   void psrad(XMMRegister dst, XMMRegister shift);
  1737   void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1738   void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1739   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1740   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1742   // And packed integers
  1743   void pand(XMMRegister dst, XMMRegister src);
  1744   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1745   void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1747   // Or packed integers
  1748   void por(XMMRegister dst, XMMRegister src);
  1749   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1750   void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1752   // Xor packed integers
  1753   void pxor(XMMRegister dst, XMMRegister src);
  1754   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1755   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1757   // Copy low 128bit into high 128bit of YMM registers.
  1758   void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1759   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1761   // Load/store high 128bit of YMM registers which does not destroy other half.
  1762   void vinsertf128h(XMMRegister dst, Address src);
  1763   void vinserti128h(XMMRegister dst, Address src);
  1764   void vextractf128h(Address dst, XMMRegister src);
  1765   void vextracti128h(Address dst, XMMRegister src);
  1767   // AVX instruction which is used to clear upper 128 bits of YMM registers and
  1768   // to avoid transaction penalty between AVX and SSE states. There is no
  1769   // penalty if legacy SSE instructions are encoded using VEX prefix because
  1770   // they always clear upper 128 bits. It should be used before calling
  1771   // runtime code and native libraries.
  1772   void vzeroupper();
  1774  protected:
  1775   // Next instructions require address alignment 16 bytes SSE mode.
  1776   // They should be called only from corresponding MacroAssembler instructions.
  1777   void andpd(XMMRegister dst, Address src);
  1778   void andps(XMMRegister dst, Address src);
  1779   void xorpd(XMMRegister dst, Address src);
  1780   void xorps(XMMRegister dst, Address src);
  1782 };
  1785 // MacroAssembler extends Assembler by frequently used macros.
  1786 //
  1787 // Instructions for which a 'better' code sequence exists depending
  1788 // on arguments should also go in here.
  1790 class MacroAssembler: public Assembler {
  1791   friend class LIR_Assembler;
  1792   friend class Runtime1;      // as_Address()
  1794  protected:
  1796   Address as_Address(AddressLiteral adr);
  1797   Address as_Address(ArrayAddress adr);
  1799   // Support for VM calls
  1800   //
  1801   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1802   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1803   // additional registers when doing a VM call).
  1804 #ifdef CC_INTERP
  1805   // c++ interpreter never wants to use interp_masm version of call_VM
  1806   #define VIRTUAL
  1807 #else
  1808   #define VIRTUAL virtual
  1809 #endif
  1811   VIRTUAL void call_VM_leaf_base(
  1812     address entry_point,               // the entry point
  1813     int     number_of_arguments        // the number of arguments to pop after the call
  1814   );
  1816   // This is the base routine called by the different versions of call_VM. The interpreter
  1817   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1818   // additional registers when doing a VM call).
  1819   //
  1820   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1821   // returns the register which contains the thread upon return. If a thread register has been
  1822   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1823   // (noreg) than rsp will be used instead.
  1824   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1825     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1826     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1827     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1828     address  entry_point,              // the entry point
  1829     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1830     bool     check_exceptions          // whether to check for pending exceptions after return
  1831   );
  1833   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1834   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1835   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1836   virtual void check_and_handle_popframe(Register java_thread);
  1837   virtual void check_and_handle_earlyret(Register java_thread);
  1839   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1841   // helpers for FPU flag access
  1842   // tmp is a temporary register, if none is available use noreg
  1843   void save_rax   (Register tmp);
  1844   void restore_rax(Register tmp);
  1846  public:
  1847   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1849   // Support for NULL-checks
  1850   //
  1851   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1852   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1853   // offset. No explicit code generation is needed if the offset is within a certain
  1854   // range (0 <= offset <= page_size).
  1856   void null_check(Register reg, int offset = -1);
  1857   static bool needs_explicit_null_check(intptr_t offset);
  1859   // Required platform-specific helpers for Label::patch_instructions.
  1860   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1861   void pd_patch_instruction(address branch, address target);
  1862 #ifndef PRODUCT
  1863   static void pd_print_patched_instruction(address branch);
  1864 #endif
  1866   // The following 4 methods return the offset of the appropriate move instruction
  1868   // Support for fast byte/short loading with zero extension (depending on particular CPU)
  1869   int load_unsigned_byte(Register dst, Address src);
  1870   int load_unsigned_short(Register dst, Address src);
  1872   // Support for fast byte/short loading with sign extension (depending on particular CPU)
  1873   int load_signed_byte(Register dst, Address src);
  1874   int load_signed_short(Register dst, Address src);
  1876   // Support for sign-extension (hi:lo = extend_sign(lo))
  1877   void extend_sign(Register hi, Register lo);
  1879   // Load and store values by size and signed-ness
  1880   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
  1881   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
  1883   // Support for inc/dec with optimal instruction selection depending on value
  1885   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1886   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1888   void decrementl(Address dst, int value = 1);
  1889   void decrementl(Register reg, int value = 1);
  1891   void decrementq(Register reg, int value = 1);
  1892   void decrementq(Address dst, int value = 1);
  1894   void incrementl(Address dst, int value = 1);
  1895   void incrementl(Register reg, int value = 1);
  1897   void incrementq(Register reg, int value = 1);
  1898   void incrementq(Address dst, int value = 1);
  1901   // Support optimal SSE move instructions.
  1902   void movflt(XMMRegister dst, XMMRegister src) {
  1903     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1904     else                       { movss (dst, src); return; }
  1906   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1907   void movflt(XMMRegister dst, AddressLiteral src);
  1908   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1910   void movdbl(XMMRegister dst, XMMRegister src) {
  1911     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1912     else                       { movsd (dst, src); return; }
  1915   void movdbl(XMMRegister dst, AddressLiteral src);
  1917   void movdbl(XMMRegister dst, Address src) {
  1918     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1919     else                         { movlpd(dst, src); return; }
  1921   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1923   void incrementl(AddressLiteral dst);
  1924   void incrementl(ArrayAddress dst);
  1926   // Alignment
  1927   void align(int modulus);
  1929   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  1930   void fat_nop();
  1932   // Stack frame creation/removal
  1933   void enter();
  1934   void leave();
  1936   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1937   // The pointer will be loaded into the thread register.
  1938   void get_thread(Register thread);
  1941   // Support for VM calls
  1942   //
  1943   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1944   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1945   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1948   void call_VM(Register oop_result,
  1949                address entry_point,
  1950                bool check_exceptions = true);
  1951   void call_VM(Register oop_result,
  1952                address entry_point,
  1953                Register arg_1,
  1954                bool check_exceptions = true);
  1955   void call_VM(Register oop_result,
  1956                address entry_point,
  1957                Register arg_1, Register arg_2,
  1958                bool check_exceptions = true);
  1959   void call_VM(Register oop_result,
  1960                address entry_point,
  1961                Register arg_1, Register arg_2, Register arg_3,
  1962                bool check_exceptions = true);
  1964   // Overloadings with last_Java_sp
  1965   void call_VM(Register oop_result,
  1966                Register last_java_sp,
  1967                address entry_point,
  1968                int number_of_arguments = 0,
  1969                bool check_exceptions = true);
  1970   void call_VM(Register oop_result,
  1971                Register last_java_sp,
  1972                address entry_point,
  1973                Register arg_1, bool
  1974                check_exceptions = true);
  1975   void call_VM(Register oop_result,
  1976                Register last_java_sp,
  1977                address entry_point,
  1978                Register arg_1, Register arg_2,
  1979                bool check_exceptions = true);
  1980   void call_VM(Register oop_result,
  1981                Register last_java_sp,
  1982                address entry_point,
  1983                Register arg_1, Register arg_2, Register arg_3,
  1984                bool check_exceptions = true);
  1986   void get_vm_result  (Register oop_result, Register thread);
  1987   void get_vm_result_2(Register metadata_result, Register thread);
  1989   // These always tightly bind to MacroAssembler::call_VM_base
  1990   // bypassing the virtual implementation
  1991   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  1992   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  1993   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  1994   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  1995   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
  1997   void call_VM_leaf(address entry_point,
  1998                     int number_of_arguments = 0);
  1999   void call_VM_leaf(address entry_point,
  2000                     Register arg_1);
  2001   void call_VM_leaf(address entry_point,
  2002                     Register arg_1, Register arg_2);
  2003   void call_VM_leaf(address entry_point,
  2004                     Register arg_1, Register arg_2, Register arg_3);
  2006   // These always tightly bind to MacroAssembler::call_VM_leaf_base
  2007   // bypassing the virtual implementation
  2008   void super_call_VM_leaf(address entry_point);
  2009   void super_call_VM_leaf(address entry_point, Register arg_1);
  2010   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
  2011   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
  2012   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
  2014   // last Java Frame (fills frame anchor)
  2015   void set_last_Java_frame(Register thread,
  2016                            Register last_java_sp,
  2017                            Register last_java_fp,
  2018                            address last_java_pc);
  2020   // thread in the default location (r15_thread on 64bit)
  2021   void set_last_Java_frame(Register last_java_sp,
  2022                            Register last_java_fp,
  2023                            address last_java_pc);
  2025   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  2027   // thread in the default location (r15_thread on 64bit)
  2028   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  2030   // Stores
  2031   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  2032   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  2034 #ifndef SERIALGC
  2036   void g1_write_barrier_pre(Register obj,
  2037                             Register pre_val,
  2038                             Register thread,
  2039                             Register tmp,
  2040                             bool tosca_live,
  2041                             bool expand_call);
  2043   void g1_write_barrier_post(Register store_addr,
  2044                              Register new_val,
  2045                              Register thread,
  2046                              Register tmp,
  2047                              Register tmp2);
  2049 #endif // SERIALGC
  2051   // split store_check(Register obj) to enhance instruction interleaving
  2052   void store_check_part_1(Register obj);
  2053   void store_check_part_2(Register obj);
  2055   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  2056   void c2bool(Register x);
  2058   // C++ bool manipulation
  2060   void movbool(Register dst, Address src);
  2061   void movbool(Address dst, bool boolconst);
  2062   void movbool(Address dst, Register src);
  2063   void testbool(Register dst);
  2065   // oop manipulations
  2066   void load_klass(Register dst, Register src);
  2067   void store_klass(Register dst, Register src);
  2069   void load_heap_oop(Register dst, Address src);
  2070   void load_heap_oop_not_null(Register dst, Address src);
  2071   void store_heap_oop(Address dst, Register src);
  2072   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
  2074   // Used for storing NULL. All other oop constants should be
  2075   // stored using routines that take a jobject.
  2076   void store_heap_oop_null(Address dst);
  2078   void load_prototype_header(Register dst, Register src);
  2080 #ifdef _LP64
  2081   void store_klass_gap(Register dst, Register src);
  2083   // This dummy is to prevent a call to store_heap_oop from
  2084   // converting a zero (like NULL) into a Register by giving
  2085   // the compiler two choices it can't resolve
  2087   void store_heap_oop(Address dst, void* dummy);
  2089   void encode_heap_oop(Register r);
  2090   void decode_heap_oop(Register r);
  2091   void encode_heap_oop_not_null(Register r);
  2092   void decode_heap_oop_not_null(Register r);
  2093   void encode_heap_oop_not_null(Register dst, Register src);
  2094   void decode_heap_oop_not_null(Register dst, Register src);
  2096   void set_narrow_oop(Register dst, jobject obj);
  2097   void set_narrow_oop(Address dst, jobject obj);
  2098   void cmp_narrow_oop(Register dst, jobject obj);
  2099   void cmp_narrow_oop(Address dst, jobject obj);
  2101   void encode_klass_not_null(Register r);
  2102   void decode_klass_not_null(Register r);
  2103   void encode_klass_not_null(Register dst, Register src);
  2104   void decode_klass_not_null(Register dst, Register src);
  2105   void set_narrow_klass(Register dst, Klass* k);
  2106   void set_narrow_klass(Address dst, Klass* k);
  2107   void cmp_narrow_klass(Register dst, Klass* k);
  2108   void cmp_narrow_klass(Address dst, Klass* k);
  2110   // if heap base register is used - reinit it with the correct value
  2111   void reinit_heapbase();
  2113   DEBUG_ONLY(void verify_heapbase(const char* msg);)
  2115 #endif // _LP64
  2117   // Int division/remainder for Java
  2118   // (as idivl, but checks for special case as described in JVM spec.)
  2119   // returns idivl instruction offset for implicit exception handling
  2120   int corrected_idivl(Register reg);
  2122   // Long division/remainder for Java
  2123   // (as idivq, but checks for special case as described in JVM spec.)
  2124   // returns idivq instruction offset for implicit exception handling
  2125   int corrected_idivq(Register reg);
  2127   void int3();
  2129   // Long operation macros for a 32bit cpu
  2130   // Long negation for Java
  2131   void lneg(Register hi, Register lo);
  2133   // Long multiplication for Java
  2134   // (destroys contents of eax, ebx, ecx and edx)
  2135   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  2137   // Long shifts for Java
  2138   // (semantics as described in JVM spec.)
  2139   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  2140   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  2142   // Long compare for Java
  2143   // (semantics as described in JVM spec.)
  2144   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  2147   // misc
  2149   // Sign extension
  2150   void sign_extend_short(Register reg);
  2151   void sign_extend_byte(Register reg);
  2153   // Division by power of 2, rounding towards 0
  2154   void division_with_shift(Register reg, int shift_value);
  2156   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  2157   //
  2158   // CF (corresponds to C0) if x < y
  2159   // PF (corresponds to C2) if unordered
  2160   // ZF (corresponds to C3) if x = y
  2161   //
  2162   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  2163   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  2164   void fcmp(Register tmp);
  2165   // Variant of the above which allows y to be further down the stack
  2166   // and which only pops x and y if specified. If pop_right is
  2167   // specified then pop_left must also be specified.
  2168   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  2170   // Floating-point comparison for Java
  2171   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  2172   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  2173   // (semantics as described in JVM spec.)
  2174   void fcmp2int(Register dst, bool unordered_is_less);
  2175   // Variant of the above which allows y to be further down the stack
  2176   // and which only pops x and y if specified. If pop_right is
  2177   // specified then pop_left must also be specified.
  2178   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  2180   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  2181   // tmp is a temporary register, if none is available use noreg
  2182   void fremr(Register tmp);
  2185   // same as fcmp2int, but using SSE2
  2186   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  2187   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  2189   // Inlined sin/cos generator for Java; must not use CPU instruction
  2190   // directly on Intel as it does not have high enough precision
  2191   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  2192   // number of FPU stack slots in use; all but the topmost will
  2193   // require saving if a slow case is necessary. Assumes argument is
  2194   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  2195   // this code.
  2196   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  2198   // branch to L if FPU flag C2 is set/not set
  2199   // tmp is a temporary register, if none is available use noreg
  2200   void jC2 (Register tmp, Label& L);
  2201   void jnC2(Register tmp, Label& L);
  2203   // Pop ST (ffree & fincstp combined)
  2204   void fpop();
  2206   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  2207   void push_fTOS();
  2209   // pops double TOS element from CPU stack and pushes on FPU stack
  2210   void pop_fTOS();
  2212   void empty_FPU_stack();
  2214   void push_IU_state();
  2215   void pop_IU_state();
  2217   void push_FPU_state();
  2218   void pop_FPU_state();
  2220   void push_CPU_state();
  2221   void pop_CPU_state();
  2223   // Round up to a power of two
  2224   void round_to(Register reg, int modulus);
  2226   // Callee saved registers handling
  2227   void push_callee_saved_registers();
  2228   void pop_callee_saved_registers();
  2230   // allocation
  2231   void eden_allocate(
  2232     Register obj,                      // result: pointer to object after successful allocation
  2233     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2234     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2235     Register t1,                       // temp register
  2236     Label&   slow_case                 // continuation point if fast allocation fails
  2237   );
  2238   void tlab_allocate(
  2239     Register obj,                      // result: pointer to object after successful allocation
  2240     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2241     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2242     Register t1,                       // temp register
  2243     Register t2,                       // temp register
  2244     Label&   slow_case                 // continuation point if fast allocation fails
  2245   );
  2246   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
  2247   void incr_allocated_bytes(Register thread,
  2248                             Register var_size_in_bytes, int con_size_in_bytes,
  2249                             Register t1 = noreg);
  2251   // interface method calling
  2252   void lookup_interface_method(Register recv_klass,
  2253                                Register intf_klass,
  2254                                RegisterOrConstant itable_index,
  2255                                Register method_result,
  2256                                Register scan_temp,
  2257                                Label& no_such_interface);
  2259   // virtual method calling
  2260   void lookup_virtual_method(Register recv_klass,
  2261                              RegisterOrConstant vtable_index,
  2262                              Register method_result);
  2264   // Test sub_klass against super_klass, with fast and slow paths.
  2266   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  2267   // One of the three labels can be NULL, meaning take the fall-through.
  2268   // If super_check_offset is -1, the value is loaded up from super_klass.
  2269   // No registers are killed, except temp_reg.
  2270   void check_klass_subtype_fast_path(Register sub_klass,
  2271                                      Register super_klass,
  2272                                      Register temp_reg,
  2273                                      Label* L_success,
  2274                                      Label* L_failure,
  2275                                      Label* L_slow_path,
  2276                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  2278   // The rest of the type check; must be wired to a corresponding fast path.
  2279   // It does not repeat the fast path logic, so don't use it standalone.
  2280   // The temp_reg and temp2_reg can be noreg, if no temps are available.
  2281   // Updates the sub's secondary super cache as necessary.
  2282   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  2283   void check_klass_subtype_slow_path(Register sub_klass,
  2284                                      Register super_klass,
  2285                                      Register temp_reg,
  2286                                      Register temp2_reg,
  2287                                      Label* L_success,
  2288                                      Label* L_failure,
  2289                                      bool set_cond_codes = false);
  2291   // Simplified, combined version, good for typical uses.
  2292   // Falls through on failure.
  2293   void check_klass_subtype(Register sub_klass,
  2294                            Register super_klass,
  2295                            Register temp_reg,
  2296                            Label& L_success);
  2298   // method handles (JSR 292)
  2299   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
  2301   //----
  2302   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  2304   // Debugging
  2306   // only if +VerifyOops
  2307   // TODO: Make these macros with file and line like sparc version!
  2308   void verify_oop(Register reg, const char* s = "broken oop");
  2309   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  2311   // TODO: verify method and klass metadata (compare against vptr?)
  2312   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
  2313   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
  2315 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
  2316 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
  2318   // only if +VerifyFPU
  2319   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  2321   // prints msg, dumps registers and stops execution
  2322   void stop(const char* msg);
  2324   // prints msg and continues
  2325   void warn(const char* msg);
  2327   // dumps registers and other state
  2328   void print_state();
  2330   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  2331   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  2332   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
  2333   static void print_state64(int64_t pc, int64_t regs[]);
  2335   void os_breakpoint();
  2337   void untested()                                { stop("untested"); }
  2339   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
  2341   void should_not_reach_here()                   { stop("should not reach here"); }
  2343   void print_CPU_state();
  2345   // Stack overflow checking
  2346   void bang_stack_with_offset(int offset) {
  2347     // stack grows down, caller passes positive offset
  2348     assert(offset > 0, "must bang with negative offset");
  2349     movl(Address(rsp, (-offset)), rax);
  2352   // Writes to stack successive pages until offset reached to check for
  2353   // stack overflow + shadow pages.  Also, clobbers tmp
  2354   void bang_stack_size(Register size, Register tmp);
  2356   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
  2357                                                 Register tmp,
  2358                                                 int offset);
  2360   // Support for serializing memory accesses between threads
  2361   void serialize_memory(Register thread, Register tmp);
  2363   void verify_tlab();
  2365   // Biased locking support
  2366   // lock_reg and obj_reg must be loaded up with the appropriate values.
  2367   // swap_reg must be rax, and is killed.
  2368   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  2369   // be killed; if not supplied, push/pop will be used internally to
  2370   // allocate a temporary (inefficient, avoid if possible).
  2371   // Optional slow case is for implementations (interpreter and C1) which branch to
  2372   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  2373   // Returns offset of first potentially-faulting instruction for null
  2374   // check info (currently consumed only by C1). If
  2375   // swap_reg_contains_mark is true then returns -1 as it is assumed
  2376   // the calling code has already passed any potential faults.
  2377   int biased_locking_enter(Register lock_reg, Register obj_reg,
  2378                            Register swap_reg, Register tmp_reg,
  2379                            bool swap_reg_contains_mark,
  2380                            Label& done, Label* slow_case = NULL,
  2381                            BiasedLockingCounters* counters = NULL);
  2382   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  2385   Condition negate_condition(Condition cond);
  2387   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  2388   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  2389   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  2390   // here in MacroAssembler. The major exception to this rule is call
  2392   // Arithmetics
  2395   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  2396   void addptr(Address dst, Register src);
  2398   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  2399   void addptr(Register dst, int32_t src);
  2400   void addptr(Register dst, Register src);
  2401   void addptr(Register dst, RegisterOrConstant src) {
  2402     if (src.is_constant()) addptr(dst, (int) src.as_constant());
  2403     else                   addptr(dst,       src.as_register());
  2406   void andptr(Register dst, int32_t src);
  2407   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  2409   void cmp8(AddressLiteral src1, int imm);
  2411   // renamed to drag out the casting of address to int32_t/intptr_t
  2412   void cmp32(Register src1, int32_t imm);
  2414   void cmp32(AddressLiteral src1, int32_t imm);
  2415   // compare reg - mem, or reg - &mem
  2416   void cmp32(Register src1, AddressLiteral src2);
  2418   void cmp32(Register src1, Address src2);
  2420 #ifndef _LP64
  2421   void cmpklass(Address dst, Metadata* obj);
  2422   void cmpklass(Register dst, Metadata* obj);
  2423   void cmpoop(Address dst, jobject obj);
  2424   void cmpoop(Register dst, jobject obj);
  2425 #endif // _LP64
  2427   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  2428   void cmpptr(Address src1, AddressLiteral src2);
  2430   void cmpptr(Register src1, AddressLiteral src2);
  2432   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2433   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2434   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2436   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2437   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2439   // cmp64 to avoild hiding cmpq
  2440   void cmp64(Register src1, AddressLiteral src);
  2442   void cmpxchgptr(Register reg, Address adr);
  2444   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  2447   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  2450   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  2452   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  2454   void shlptr(Register dst, int32_t shift);
  2455   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  2457   void shrptr(Register dst, int32_t shift);
  2458   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  2460   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  2461   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  2463   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2465   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2466   void subptr(Register dst, int32_t src);
  2467   // Force generation of a 4 byte immediate value even if it fits into 8bit
  2468   void subptr_imm32(Register dst, int32_t src);
  2469   void subptr(Register dst, Register src);
  2470   void subptr(Register dst, RegisterOrConstant src) {
  2471     if (src.is_constant()) subptr(dst, (int) src.as_constant());
  2472     else                   subptr(dst,       src.as_register());
  2475   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2476   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2478   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2479   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2481   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  2485   // Helper functions for statistics gathering.
  2486   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  2487   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  2488   // Unconditional atomic increment.
  2489   void atomic_incl(AddressLiteral counter_addr);
  2491   void lea(Register dst, AddressLiteral adr);
  2492   void lea(Address dst, AddressLiteral adr);
  2493   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  2495   void leal32(Register dst, Address src) { leal(dst, src); }
  2497   // Import other testl() methods from the parent class or else
  2498   // they will be hidden by the following overriding declaration.
  2499   using Assembler::testl;
  2500   void testl(Register dst, AddressLiteral src);
  2502   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2503   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2504   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2506   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  2507   void testptr(Register src1, Register src2);
  2509   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2510   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2512   // Calls
  2514   void call(Label& L, relocInfo::relocType rtype);
  2515   void call(Register entry);
  2517   // NOTE: this call tranfers to the effective address of entry NOT
  2518   // the address contained by entry. This is because this is more natural
  2519   // for jumps/calls.
  2520   void call(AddressLiteral entry);
  2522   // Emit the CompiledIC call idiom
  2523   void ic_call(address entry);
  2525   // Jumps
  2527   // NOTE: these jumps tranfer to the effective address of dst NOT
  2528   // the address contained by dst. This is because this is more natural
  2529   // for jumps/calls.
  2530   void jump(AddressLiteral dst);
  2531   void jump_cc(Condition cc, AddressLiteral dst);
  2533   // 32bit can do a case table jump in one instruction but we no longer allow the base
  2534   // to be installed in the Address class. This jump will tranfers to the address
  2535   // contained in the location described by entry (not the address of entry)
  2536   void jump(ArrayAddress entry);
  2538   // Floating
  2540   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  2541   void andpd(XMMRegister dst, AddressLiteral src);
  2543   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
  2544   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
  2545   void andps(XMMRegister dst, AddressLiteral src);
  2547   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
  2548   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  2549   void comiss(XMMRegister dst, AddressLiteral src);
  2551   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
  2552   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  2553   void comisd(XMMRegister dst, AddressLiteral src);
  2555   void fadd_s(Address src)        { Assembler::fadd_s(src); }
  2556   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
  2558   void fldcw(Address src) { Assembler::fldcw(src); }
  2559   void fldcw(AddressLiteral src);
  2561   void fld_s(int index)   { Assembler::fld_s(index); }
  2562   void fld_s(Address src) { Assembler::fld_s(src); }
  2563   void fld_s(AddressLiteral src);
  2565   void fld_d(Address src) { Assembler::fld_d(src); }
  2566   void fld_d(AddressLiteral src);
  2568   void fld_x(Address src) { Assembler::fld_x(src); }
  2569   void fld_x(AddressLiteral src);
  2571   void fmul_s(Address src)        { Assembler::fmul_s(src); }
  2572   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
  2574   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  2575   void ldmxcsr(AddressLiteral src);
  2577   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
  2578   // all corner cases and may result in NaN and require fallback to a
  2579   // runtime call.
  2580   void fast_pow();
  2581   void fast_exp();
  2582   void increase_precision();
  2583   void restore_precision();
  2585   // computes exp(x). Fallback to runtime call included.
  2586   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
  2587   // computes pow(x,y). Fallback to runtime call included.
  2588   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
  2590 private:
  2592   // call runtime as a fallback for trig functions and pow/exp.
  2593   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
  2595   // computes 2^(Ylog2X); Ylog2X in ST(0)
  2596   void pow_exp_core_encoding();
  2598   // computes pow(x,y) or exp(x). Fallback to runtime call included.
  2599   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
  2601   // these are private because users should be doing movflt/movdbl
  2603   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  2604   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  2605   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  2606   void movss(XMMRegister dst, AddressLiteral src);
  2608   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
  2609   void movlpd(XMMRegister dst, AddressLiteral src);
  2611 public:
  2613   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
  2614   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
  2615   void addsd(XMMRegister dst, AddressLiteral src);
  2617   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
  2618   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
  2619   void addss(XMMRegister dst, AddressLiteral src);
  2621   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
  2622   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
  2623   void divsd(XMMRegister dst, AddressLiteral src);
  2625   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
  2626   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
  2627   void divss(XMMRegister dst, AddressLiteral src);
  2629   // Move Unaligned Double Quadword
  2630   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
  2631   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
  2632   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
  2633   void movdqu(XMMRegister dst, AddressLiteral src);
  2635   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  2636   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  2637   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  2638   void movsd(XMMRegister dst, AddressLiteral src);
  2640   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
  2641   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
  2642   void mulsd(XMMRegister dst, AddressLiteral src);
  2644   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
  2645   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
  2646   void mulss(XMMRegister dst, AddressLiteral src);
  2648   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
  2649   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
  2650   void sqrtsd(XMMRegister dst, AddressLiteral src);
  2652   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
  2653   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
  2654   void sqrtss(XMMRegister dst, AddressLiteral src);
  2656   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
  2657   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
  2658   void subsd(XMMRegister dst, AddressLiteral src);
  2660   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
  2661   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
  2662   void subss(XMMRegister dst, AddressLiteral src);
  2664   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  2665   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
  2666   void ucomiss(XMMRegister dst, AddressLiteral src);
  2668   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  2669   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
  2670   void ucomisd(XMMRegister dst, AddressLiteral src);
  2672   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  2673   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  2674   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  2675   void xorpd(XMMRegister dst, AddressLiteral src);
  2677   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  2678   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  2679   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  2680   void xorps(XMMRegister dst, AddressLiteral src);
  2682   // Shuffle Bytes
  2683   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
  2684   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
  2685   void pshufb(XMMRegister dst, AddressLiteral src);
  2686   // AVX 3-operands instructions
  2688   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
  2689   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
  2690   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2692   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
  2693   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
  2694   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2696   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
  2697   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
  2698   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  2700   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
  2701   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
  2702   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  2704   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
  2705   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
  2706   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2708   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
  2709   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
  2710   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2712   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
  2713   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
  2714   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2716   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
  2717   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
  2718   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2720   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
  2721   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
  2722   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2724   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
  2725   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
  2726   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2728   // AVX Vector instructions
  2730   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  2731   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  2732   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  2734   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  2735   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  2736   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  2738   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2739     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  2740       Assembler::vpxor(dst, nds, src, vector256);
  2741     else
  2742       Assembler::vxorpd(dst, nds, src, vector256);
  2744   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2745     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  2746       Assembler::vpxor(dst, nds, src, vector256);
  2747     else
  2748       Assembler::vxorpd(dst, nds, src, vector256);
  2751   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  2752   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2753     if (UseAVX > 1) // vinserti128h is available only in AVX2
  2754       Assembler::vinserti128h(dst, nds, src);
  2755     else
  2756       Assembler::vinsertf128h(dst, nds, src);
  2759   // Data
  2761   void cmov32( Condition cc, Register dst, Address  src);
  2762   void cmov32( Condition cc, Register dst, Register src);
  2764   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
  2766   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  2767   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  2769   void movoop(Register dst, jobject obj);
  2770   void movoop(Address dst, jobject obj);
  2772   void mov_metadata(Register dst, Metadata* obj);
  2773   void mov_metadata(Address dst, Metadata* obj);
  2775   void movptr(ArrayAddress dst, Register src);
  2776   // can this do an lea?
  2777   void movptr(Register dst, ArrayAddress src);
  2779   void movptr(Register dst, Address src);
  2781   void movptr(Register dst, AddressLiteral src);
  2783   void movptr(Register dst, intptr_t src);
  2784   void movptr(Register dst, Register src);
  2785   void movptr(Address dst, intptr_t src);
  2787   void movptr(Address dst, Register src);
  2789   void movptr(Register dst, RegisterOrConstant src) {
  2790     if (src.is_constant()) movptr(dst, src.as_constant());
  2791     else                   movptr(dst, src.as_register());
  2794 #ifdef _LP64
  2795   // Generally the next two are only used for moving NULL
  2796   // Although there are situations in initializing the mark word where
  2797   // they could be used. They are dangerous.
  2799   // They only exist on LP64 so that int32_t and intptr_t are not the same
  2800   // and we have ambiguous declarations.
  2802   void movptr(Address dst, int32_t imm32);
  2803   void movptr(Register dst, int32_t imm32);
  2804 #endif // _LP64
  2806   // to avoid hiding movl
  2807   void mov32(AddressLiteral dst, Register src);
  2808   void mov32(Register dst, AddressLiteral src);
  2810   // to avoid hiding movb
  2811   void movbyte(ArrayAddress dst, int src);
  2813   // Import other mov() methods from the parent class or else
  2814   // they will be hidden by the following overriding declaration.
  2815   using Assembler::movdl;
  2816   using Assembler::movq;
  2817   void movdl(XMMRegister dst, AddressLiteral src);
  2818   void movq(XMMRegister dst, AddressLiteral src);
  2820   // Can push value or effective address
  2821   void pushptr(AddressLiteral src);
  2823   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2824   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2826   void pushoop(jobject obj);
  2827   void pushklass(Metadata* obj);
  2829   // sign extend as need a l to ptr sized element
  2830   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2831   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2833   // C2 compiled method's prolog code.
  2834   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
  2836   // IndexOf strings.
  2837   // Small strings are loaded through stack if they cross page boundary.
  2838   void string_indexof(Register str1, Register str2,
  2839                       Register cnt1, Register cnt2,
  2840                       int int_cnt2,  Register result,
  2841                       XMMRegister vec, Register tmp);
  2843   // IndexOf for constant substrings with size >= 8 elements
  2844   // which don't need to be loaded through stack.
  2845   void string_indexofC8(Register str1, Register str2,
  2846                       Register cnt1, Register cnt2,
  2847                       int int_cnt2,  Register result,
  2848                       XMMRegister vec, Register tmp);
  2850     // Smallest code: we don't need to load through stack,
  2851     // check string tail.
  2853   // Compare strings.
  2854   void string_compare(Register str1, Register str2,
  2855                       Register cnt1, Register cnt2, Register result,
  2856                       XMMRegister vec1);
  2858   // Compare char[] arrays.
  2859   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  2860                           Register limit, Register result, Register chr,
  2861                           XMMRegister vec1, XMMRegister vec2);
  2863   // Fill primitive arrays
  2864   void generate_fill(BasicType t, bool aligned,
  2865                      Register to, Register value, Register count,
  2866                      Register rtmp, XMMRegister xtmp);
  2868 #undef VIRTUAL
  2870 };
  2872 /**
  2873  * class SkipIfEqual:
  2875  * Instantiating this class will result in assembly code being output that will
  2876  * jump around any code emitted between the creation of the instance and it's
  2877  * automatic destruction at the end of a scope block, depending on the value of
  2878  * the flag passed to the constructor, which will be checked at run-time.
  2879  */
  2880 class SkipIfEqual {
  2881  private:
  2882   MacroAssembler* _masm;
  2883   Label _label;
  2885  public:
  2886    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2887    ~SkipIfEqual();
  2888 };
  2890 #ifdef ASSERT
  2891 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2892 #endif
  2894 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial