src/cpu/x86/vm/assembler_x86.cpp

Wed, 24 Oct 2012 14:33:22 -0700

author
kvn
date
Wed, 24 Oct 2012 14:33:22 -0700
changeset 4205
a3ecd773a7b9
parent 4164
d804e148cff8
child 4317
6ab62ad83507
permissions
-rw-r--r--

7184394: add intrinsics to use AES instructions
Summary: Use new x86 AES instructions for AESCrypt.
Reviewed-by: twisti, kvn, roland
Contributed-by: tom.deneau@amd.com

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 #ifdef PRODUCT
    45 #define BLOCK_COMMENT(str) /* nothing */
    46 #define STOP(error) stop(error)
    47 #else
    48 #define BLOCK_COMMENT(str) block_comment(str)
    49 #define STOP(error) block_comment(error); stop(error)
    50 #endif
    52 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    53 // Implementation of AddressLiteral
    55 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    56   _is_lval = false;
    57   _target = target;
    58   switch (rtype) {
    59   case relocInfo::oop_type:
    60   case relocInfo::metadata_type:
    61     // Oops are a special case. Normally they would be their own section
    62     // but in cases like icBuffer they are literals in the code stream that
    63     // we don't have a section for. We use none so that we get a literal address
    64     // which is always patchable.
    65     break;
    66   case relocInfo::external_word_type:
    67     _rspec = external_word_Relocation::spec(target);
    68     break;
    69   case relocInfo::internal_word_type:
    70     _rspec = internal_word_Relocation::spec(target);
    71     break;
    72   case relocInfo::opt_virtual_call_type:
    73     _rspec = opt_virtual_call_Relocation::spec();
    74     break;
    75   case relocInfo::static_call_type:
    76     _rspec = static_call_Relocation::spec();
    77     break;
    78   case relocInfo::runtime_call_type:
    79     _rspec = runtime_call_Relocation::spec();
    80     break;
    81   case relocInfo::poll_type:
    82   case relocInfo::poll_return_type:
    83     _rspec = Relocation::spec_simple(rtype);
    84     break;
    85   case relocInfo::none:
    86     break;
    87   default:
    88     ShouldNotReachHere();
    89     break;
    90   }
    91 }
    93 // Implementation of Address
    95 #ifdef _LP64
    97 Address Address::make_array(ArrayAddress adr) {
    98   // Not implementable on 64bit machines
    99   // Should have been handled higher up the call chain.
   100   ShouldNotReachHere();
   101   return Address();
   102 }
   104 // exceedingly dangerous constructor
   105 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   106   _base  = noreg;
   107   _index = noreg;
   108   _scale = no_scale;
   109   _disp  = disp;
   110   switch (rtype) {
   111     case relocInfo::external_word_type:
   112       _rspec = external_word_Relocation::spec(loc);
   113       break;
   114     case relocInfo::internal_word_type:
   115       _rspec = internal_word_Relocation::spec(loc);
   116       break;
   117     case relocInfo::runtime_call_type:
   118       // HMM
   119       _rspec = runtime_call_Relocation::spec();
   120       break;
   121     case relocInfo::poll_type:
   122     case relocInfo::poll_return_type:
   123       _rspec = Relocation::spec_simple(rtype);
   124       break;
   125     case relocInfo::none:
   126       break;
   127     default:
   128       ShouldNotReachHere();
   129   }
   130 }
   131 #else // LP64
   133 Address Address::make_array(ArrayAddress adr) {
   134   AddressLiteral base = adr.base();
   135   Address index = adr.index();
   136   assert(index._disp == 0, "must not have disp"); // maybe it can?
   137   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   138   array._rspec = base._rspec;
   139   return array;
   140 }
   142 // exceedingly dangerous constructor
   143 Address::Address(address loc, RelocationHolder spec) {
   144   _base  = noreg;
   145   _index = noreg;
   146   _scale = no_scale;
   147   _disp  = (intptr_t) loc;
   148   _rspec = spec;
   149 }
   151 #endif // _LP64
   155 // Convert the raw encoding form into the form expected by the constructor for
   156 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   157 // that to noreg for the Address constructor.
   158 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   159   RelocationHolder rspec;
   160   if (disp_reloc != relocInfo::none) {
   161     rspec = Relocation::spec_simple(disp_reloc);
   162   }
   163   bool valid_index = index != rsp->encoding();
   164   if (valid_index) {
   165     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   166     madr._rspec = rspec;
   167     return madr;
   168   } else {
   169     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   170     madr._rspec = rspec;
   171     return madr;
   172   }
   173 }
   175 // Implementation of Assembler
   177 int AbstractAssembler::code_fill_byte() {
   178   return (u_char)'\xF4'; // hlt
   179 }
   181 // make this go away someday
   182 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   183   if (rtype == relocInfo::none)
   184         emit_long(data);
   185   else  emit_data(data, Relocation::spec_simple(rtype), format);
   186 }
   188 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   189   assert(imm_operand == 0, "default format must be immediate in this file");
   190   assert(inst_mark() != NULL, "must be inside InstructionMark");
   191   if (rspec.type() !=  relocInfo::none) {
   192     #ifdef ASSERT
   193       check_relocation(rspec, format);
   194     #endif
   195     // Do not use AbstractAssembler::relocate, which is not intended for
   196     // embedded words.  Instead, relocate to the enclosing instruction.
   198     // hack. call32 is too wide for mask so use disp32
   199     if (format == call32_operand)
   200       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   201     else
   202       code_section()->relocate(inst_mark(), rspec, format);
   203   }
   204   emit_long(data);
   205 }
   207 static int encode(Register r) {
   208   int enc = r->encoding();
   209   if (enc >= 8) {
   210     enc -= 8;
   211   }
   212   return enc;
   213 }
   215 static int encode(XMMRegister r) {
   216   int enc = r->encoding();
   217   if (enc >= 8) {
   218     enc -= 8;
   219   }
   220   return enc;
   221 }
   223 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   224   assert(dst->has_byte_register(), "must have byte register");
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert(isByte(imm8), "not a byte");
   227   assert((op1 & 0x01) == 0, "should be 8bit operation");
   228   emit_byte(op1);
   229   emit_byte(op2 | encode(dst));
   230   emit_byte(imm8);
   231 }
   234 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   235   assert(isByte(op1) && isByte(op2), "wrong opcode");
   236   assert((op1 & 0x01) == 1, "should be 32bit operation");
   237   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   238   if (is8bit(imm32)) {
   239     emit_byte(op1 | 0x02); // set sign bit
   240     emit_byte(op2 | encode(dst));
   241     emit_byte(imm32 & 0xFF);
   242   } else {
   243     emit_byte(op1);
   244     emit_byte(op2 | encode(dst));
   245     emit_long(imm32);
   246   }
   247 }
   249 // Force generation of a 4 byte immediate value even if it fits into 8bit
   250 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   251   assert(isByte(op1) && isByte(op2), "wrong opcode");
   252   assert((op1 & 0x01) == 1, "should be 32bit operation");
   253   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   254   emit_byte(op1);
   255   emit_byte(op2 | encode(dst));
   256   emit_long(imm32);
   257 }
   259 // immediate-to-memory forms
   260 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   261   assert((op1 & 0x01) == 1, "should be 32bit operation");
   262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   263   if (is8bit(imm32)) {
   264     emit_byte(op1 | 0x02); // set sign bit
   265     emit_operand(rm, adr, 1);
   266     emit_byte(imm32 & 0xFF);
   267   } else {
   268     emit_byte(op1);
   269     emit_operand(rm, adr, 4);
   270     emit_long(imm32);
   271   }
   272 }
   275 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   276   assert(isByte(op1) && isByte(op2), "wrong opcode");
   277   emit_byte(op1);
   278   emit_byte(op2 | encode(dst) << 3 | encode(src));
   279 }
   282 void Assembler::emit_operand(Register reg, Register base, Register index,
   283                              Address::ScaleFactor scale, int disp,
   284                              RelocationHolder const& rspec,
   285                              int rip_relative_correction) {
   286   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   288   // Encode the registers as needed in the fields they are used in
   290   int regenc = encode(reg) << 3;
   291   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   292   int baseenc = base->is_valid() ? encode(base) : 0;
   294   if (base->is_valid()) {
   295     if (index->is_valid()) {
   296       assert(scale != Address::no_scale, "inconsistent address");
   297       // [base + index*scale + disp]
   298       if (disp == 0 && rtype == relocInfo::none  &&
   299           base != rbp LP64_ONLY(&& base != r13)) {
   300         // [base + index*scale]
   301         // [00 reg 100][ss index base]
   302         assert(index != rsp, "illegal addressing mode");
   303         emit_byte(0x04 | regenc);
   304         emit_byte(scale << 6 | indexenc | baseenc);
   305       } else if (is8bit(disp) && rtype == relocInfo::none) {
   306         // [base + index*scale + imm8]
   307         // [01 reg 100][ss index base] imm8
   308         assert(index != rsp, "illegal addressing mode");
   309         emit_byte(0x44 | regenc);
   310         emit_byte(scale << 6 | indexenc | baseenc);
   311         emit_byte(disp & 0xFF);
   312       } else {
   313         // [base + index*scale + disp32]
   314         // [10 reg 100][ss index base] disp32
   315         assert(index != rsp, "illegal addressing mode");
   316         emit_byte(0x84 | regenc);
   317         emit_byte(scale << 6 | indexenc | baseenc);
   318         emit_data(disp, rspec, disp32_operand);
   319       }
   320     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   321       // [rsp + disp]
   322       if (disp == 0 && rtype == relocInfo::none) {
   323         // [rsp]
   324         // [00 reg 100][00 100 100]
   325         emit_byte(0x04 | regenc);
   326         emit_byte(0x24);
   327       } else if (is8bit(disp) && rtype == relocInfo::none) {
   328         // [rsp + imm8]
   329         // [01 reg 100][00 100 100] disp8
   330         emit_byte(0x44 | regenc);
   331         emit_byte(0x24);
   332         emit_byte(disp & 0xFF);
   333       } else {
   334         // [rsp + imm32]
   335         // [10 reg 100][00 100 100] disp32
   336         emit_byte(0x84 | regenc);
   337         emit_byte(0x24);
   338         emit_data(disp, rspec, disp32_operand);
   339       }
   340     } else {
   341       // [base + disp]
   342       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   343       if (disp == 0 && rtype == relocInfo::none &&
   344           base != rbp LP64_ONLY(&& base != r13)) {
   345         // [base]
   346         // [00 reg base]
   347         emit_byte(0x00 | regenc | baseenc);
   348       } else if (is8bit(disp) && rtype == relocInfo::none) {
   349         // [base + disp8]
   350         // [01 reg base] disp8
   351         emit_byte(0x40 | regenc | baseenc);
   352         emit_byte(disp & 0xFF);
   353       } else {
   354         // [base + disp32]
   355         // [10 reg base] disp32
   356         emit_byte(0x80 | regenc | baseenc);
   357         emit_data(disp, rspec, disp32_operand);
   358       }
   359     }
   360   } else {
   361     if (index->is_valid()) {
   362       assert(scale != Address::no_scale, "inconsistent address");
   363       // [index*scale + disp]
   364       // [00 reg 100][ss index 101] disp32
   365       assert(index != rsp, "illegal addressing mode");
   366       emit_byte(0x04 | regenc);
   367       emit_byte(scale << 6 | indexenc | 0x05);
   368       emit_data(disp, rspec, disp32_operand);
   369     } else if (rtype != relocInfo::none ) {
   370       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   371       // [00 000 101] disp32
   373       emit_byte(0x05 | regenc);
   374       // Note that the RIP-rel. correction applies to the generated
   375       // disp field, but _not_ to the target address in the rspec.
   377       // disp was created by converting the target address minus the pc
   378       // at the start of the instruction. That needs more correction here.
   379       // intptr_t disp = target - next_ip;
   380       assert(inst_mark() != NULL, "must be inside InstructionMark");
   381       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   382       int64_t adjusted = disp;
   383       // Do rip-rel adjustment for 64bit
   384       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   385       assert(is_simm32(adjusted),
   386              "must be 32bit offset (RIP relative address)");
   387       emit_data((int32_t) adjusted, rspec, disp32_operand);
   389     } else {
   390       // 32bit never did this, did everything as the rip-rel/disp code above
   391       // [disp] ABSOLUTE
   392       // [00 reg 100][00 100 101] disp32
   393       emit_byte(0x04 | regenc);
   394       emit_byte(0x25);
   395       emit_data(disp, rspec, disp32_operand);
   396     }
   397   }
   398 }
   400 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   401                              Address::ScaleFactor scale, int disp,
   402                              RelocationHolder const& rspec) {
   403   emit_operand((Register)reg, base, index, scale, disp, rspec);
   404 }
   406 // Secret local extension to Assembler::WhichOperand:
   407 #define end_pc_operand (_WhichOperand_limit)
   409 address Assembler::locate_operand(address inst, WhichOperand which) {
   410   // Decode the given instruction, and return the address of
   411   // an embedded 32-bit operand word.
   413   // If "which" is disp32_operand, selects the displacement portion
   414   // of an effective address specifier.
   415   // If "which" is imm64_operand, selects the trailing immediate constant.
   416   // If "which" is call32_operand, selects the displacement of a call or jump.
   417   // Caller is responsible for ensuring that there is such an operand,
   418   // and that it is 32/64 bits wide.
   420   // If "which" is end_pc_operand, find the end of the instruction.
   422   address ip = inst;
   423   bool is_64bit = false;
   425   debug_only(bool has_disp32 = false);
   426   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   428   again_after_prefix:
   429   switch (0xFF & *ip++) {
   431   // These convenience macros generate groups of "case" labels for the switch.
   432 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   433 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   434              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   435 #define REP16(x) REP8((x)+0): \
   436               case REP8((x)+8)
   438   case CS_segment:
   439   case SS_segment:
   440   case DS_segment:
   441   case ES_segment:
   442   case FS_segment:
   443   case GS_segment:
   444     // Seems dubious
   445     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   446     assert(ip == inst+1, "only one prefix allowed");
   447     goto again_after_prefix;
   449   case 0x67:
   450   case REX:
   451   case REX_B:
   452   case REX_X:
   453   case REX_XB:
   454   case REX_R:
   455   case REX_RB:
   456   case REX_RX:
   457   case REX_RXB:
   458     NOT_LP64(assert(false, "64bit prefixes"));
   459     goto again_after_prefix;
   461   case REX_W:
   462   case REX_WB:
   463   case REX_WX:
   464   case REX_WXB:
   465   case REX_WR:
   466   case REX_WRB:
   467   case REX_WRX:
   468   case REX_WRXB:
   469     NOT_LP64(assert(false, "64bit prefixes"));
   470     is_64bit = true;
   471     goto again_after_prefix;
   473   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   474   case 0x88: // movb a, r
   475   case 0x89: // movl a, r
   476   case 0x8A: // movb r, a
   477   case 0x8B: // movl r, a
   478   case 0x8F: // popl a
   479     debug_only(has_disp32 = true);
   480     break;
   482   case 0x68: // pushq #32
   483     if (which == end_pc_operand) {
   484       return ip + 4;
   485     }
   486     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   487     return ip;                  // not produced by emit_operand
   489   case 0x66: // movw ... (size prefix)
   490     again_after_size_prefix2:
   491     switch (0xFF & *ip++) {
   492     case REX:
   493     case REX_B:
   494     case REX_X:
   495     case REX_XB:
   496     case REX_R:
   497     case REX_RB:
   498     case REX_RX:
   499     case REX_RXB:
   500     case REX_W:
   501     case REX_WB:
   502     case REX_WX:
   503     case REX_WXB:
   504     case REX_WR:
   505     case REX_WRB:
   506     case REX_WRX:
   507     case REX_WRXB:
   508       NOT_LP64(assert(false, "64bit prefix found"));
   509       goto again_after_size_prefix2;
   510     case 0x8B: // movw r, a
   511     case 0x89: // movw a, r
   512       debug_only(has_disp32 = true);
   513       break;
   514     case 0xC7: // movw a, #16
   515       debug_only(has_disp32 = true);
   516       tail_size = 2;  // the imm16
   517       break;
   518     case 0x0F: // several SSE/SSE2 variants
   519       ip--;    // reparse the 0x0F
   520       goto again_after_prefix;
   521     default:
   522       ShouldNotReachHere();
   523     }
   524     break;
   526   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   527     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   528     // these asserts are somewhat nonsensical
   529 #ifndef _LP64
   530     assert(which == imm_operand || which == disp32_operand,
   531            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   532 #else
   533     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   534            which == narrow_oop_operand && !is_64bit,
   535            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   536 #endif // _LP64
   537     return ip;
   539   case 0x69: // imul r, a, #32
   540   case 0xC7: // movl a, #32(oop?)
   541     tail_size = 4;
   542     debug_only(has_disp32 = true); // has both kinds of operands!
   543     break;
   545   case 0x0F: // movx..., etc.
   546     switch (0xFF & *ip++) {
   547     case 0x3A: // pcmpestri
   548       tail_size = 1;
   549     case 0x38: // ptest, pmovzxbw
   550       ip++; // skip opcode
   551       debug_only(has_disp32 = true); // has both kinds of operands!
   552       break;
   554     case 0x70: // pshufd r, r/a, #8
   555       debug_only(has_disp32 = true); // has both kinds of operands!
   556     case 0x73: // psrldq r, #8
   557       tail_size = 1;
   558       break;
   560     case 0x12: // movlps
   561     case 0x28: // movaps
   562     case 0x2E: // ucomiss
   563     case 0x2F: // comiss
   564     case 0x54: // andps
   565     case 0x55: // andnps
   566     case 0x56: // orps
   567     case 0x57: // xorps
   568     case 0x6E: // movd
   569     case 0x7E: // movd
   570     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   571       debug_only(has_disp32 = true);
   572       break;
   574     case 0xAD: // shrd r, a, %cl
   575     case 0xAF: // imul r, a
   576     case 0xBE: // movsbl r, a (movsxb)
   577     case 0xBF: // movswl r, a (movsxw)
   578     case 0xB6: // movzbl r, a (movzxb)
   579     case 0xB7: // movzwl r, a (movzxw)
   580     case REP16(0x40): // cmovl cc, r, a
   581     case 0xB0: // cmpxchgb
   582     case 0xB1: // cmpxchg
   583     case 0xC1: // xaddl
   584     case 0xC7: // cmpxchg8
   585     case REP16(0x90): // setcc a
   586       debug_only(has_disp32 = true);
   587       // fall out of the switch to decode the address
   588       break;
   590     case 0xC4: // pinsrw r, a, #8
   591       debug_only(has_disp32 = true);
   592     case 0xC5: // pextrw r, r, #8
   593       tail_size = 1;  // the imm8
   594       break;
   596     case 0xAC: // shrd r, a, #8
   597       debug_only(has_disp32 = true);
   598       tail_size = 1;  // the imm8
   599       break;
   601     case REP16(0x80): // jcc rdisp32
   602       if (which == end_pc_operand)  return ip + 4;
   603       assert(which == call32_operand, "jcc has no disp32 or imm");
   604       return ip;
   605     default:
   606       ShouldNotReachHere();
   607     }
   608     break;
   610   case 0x81: // addl a, #32; addl r, #32
   611     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   612     // on 32bit in the case of cmpl, the imm might be an oop
   613     tail_size = 4;
   614     debug_only(has_disp32 = true); // has both kinds of operands!
   615     break;
   617   case 0x83: // addl a, #8; addl r, #8
   618     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   619     debug_only(has_disp32 = true); // has both kinds of operands!
   620     tail_size = 1;
   621     break;
   623   case 0x9B:
   624     switch (0xFF & *ip++) {
   625     case 0xD9: // fnstcw a
   626       debug_only(has_disp32 = true);
   627       break;
   628     default:
   629       ShouldNotReachHere();
   630     }
   631     break;
   633   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   634   case REP4(0x10): // adc...
   635   case REP4(0x20): // and...
   636   case REP4(0x30): // xor...
   637   case REP4(0x08): // or...
   638   case REP4(0x18): // sbb...
   639   case REP4(0x28): // sub...
   640   case 0xF7: // mull a
   641   case 0x8D: // lea r, a
   642   case 0x87: // xchg r, a
   643   case REP4(0x38): // cmp...
   644   case 0x85: // test r, a
   645     debug_only(has_disp32 = true); // has both kinds of operands!
   646     break;
   648   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   649   case 0xC6: // movb a, #8
   650   case 0x80: // cmpb a, #8
   651   case 0x6B: // imul r, a, #8
   652     debug_only(has_disp32 = true); // has both kinds of operands!
   653     tail_size = 1; // the imm8
   654     break;
   656   case 0xC4: // VEX_3bytes
   657   case 0xC5: // VEX_2bytes
   658     assert((UseAVX > 0), "shouldn't have VEX prefix");
   659     assert(ip == inst+1, "no prefixes allowed");
   660     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   661     // but they have prefix 0x0F and processed when 0x0F processed above.
   662     //
   663     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   664     // instructions (these instructions are not supported in 64-bit mode).
   665     // To distinguish them bits [7:6] are set in the VEX second byte since
   666     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   667     // those VEX bits REX and vvvv bits are inverted.
   668     //
   669     // Fortunately C2 doesn't generate these instructions so we don't need
   670     // to check for them in product version.
   672     // Check second byte
   673     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   675     // First byte
   676     if ((0xFF & *inst) == VEX_3bytes) {
   677       ip++; // third byte
   678       is_64bit = ((VEX_W & *ip) == VEX_W);
   679     }
   680     ip++; // opcode
   681     // To find the end of instruction (which == end_pc_operand).
   682     switch (0xFF & *ip) {
   683     case 0x61: // pcmpestri r, r/a, #8
   684     case 0x70: // pshufd r, r/a, #8
   685     case 0x73: // psrldq r, #8
   686       tail_size = 1;  // the imm8
   687       break;
   688     default:
   689       break;
   690     }
   691     ip++; // skip opcode
   692     debug_only(has_disp32 = true); // has both kinds of operands!
   693     break;
   695   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   696   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   697   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   698   case 0xDD: // fld_d a; fst_d a; fstp_d a
   699   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   700   case 0xDF: // fild_d a; fistp_d a
   701   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   702   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   703   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   704     debug_only(has_disp32 = true);
   705     break;
   707   case 0xE8: // call rdisp32
   708   case 0xE9: // jmp  rdisp32
   709     if (which == end_pc_operand)  return ip + 4;
   710     assert(which == call32_operand, "call has no disp32 or imm");
   711     return ip;
   713   case 0xF0:                    // Lock
   714     assert(os::is_MP(), "only on MP");
   715     goto again_after_prefix;
   717   case 0xF3:                    // For SSE
   718   case 0xF2:                    // For SSE2
   719     switch (0xFF & *ip++) {
   720     case REX:
   721     case REX_B:
   722     case REX_X:
   723     case REX_XB:
   724     case REX_R:
   725     case REX_RB:
   726     case REX_RX:
   727     case REX_RXB:
   728     case REX_W:
   729     case REX_WB:
   730     case REX_WX:
   731     case REX_WXB:
   732     case REX_WR:
   733     case REX_WRB:
   734     case REX_WRX:
   735     case REX_WRXB:
   736       NOT_LP64(assert(false, "found 64bit prefix"));
   737       ip++;
   738     default:
   739       ip++;
   740     }
   741     debug_only(has_disp32 = true); // has both kinds of operands!
   742     break;
   744   default:
   745     ShouldNotReachHere();
   747 #undef REP8
   748 #undef REP16
   749   }
   751   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   752 #ifdef _LP64
   753   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   754 #else
   755   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   756   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   757 #endif // LP64
   758   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   760   // parse the output of emit_operand
   761   int op2 = 0xFF & *ip++;
   762   int base = op2 & 0x07;
   763   int op3 = -1;
   764   const int b100 = 4;
   765   const int b101 = 5;
   766   if (base == b100 && (op2 >> 6) != 3) {
   767     op3 = 0xFF & *ip++;
   768     base = op3 & 0x07;   // refetch the base
   769   }
   770   // now ip points at the disp (if any)
   772   switch (op2 >> 6) {
   773   case 0:
   774     // [00 reg  100][ss index base]
   775     // [00 reg  100][00   100  esp]
   776     // [00 reg base]
   777     // [00 reg  100][ss index  101][disp32]
   778     // [00 reg  101]               [disp32]
   780     if (base == b101) {
   781       if (which == disp32_operand)
   782         return ip;              // caller wants the disp32
   783       ip += 4;                  // skip the disp32
   784     }
   785     break;
   787   case 1:
   788     // [01 reg  100][ss index base][disp8]
   789     // [01 reg  100][00   100  esp][disp8]
   790     // [01 reg base]               [disp8]
   791     ip += 1;                    // skip the disp8
   792     break;
   794   case 2:
   795     // [10 reg  100][ss index base][disp32]
   796     // [10 reg  100][00   100  esp][disp32]
   797     // [10 reg base]               [disp32]
   798     if (which == disp32_operand)
   799       return ip;                // caller wants the disp32
   800     ip += 4;                    // skip the disp32
   801     break;
   803   case 3:
   804     // [11 reg base]  (not a memory addressing mode)
   805     break;
   806   }
   808   if (which == end_pc_operand) {
   809     return ip + tail_size;
   810   }
   812 #ifdef _LP64
   813   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   814 #else
   815   assert(which == imm_operand, "instruction has only an imm field");
   816 #endif // LP64
   817   return ip;
   818 }
   820 address Assembler::locate_next_instruction(address inst) {
   821   // Secretly share code with locate_operand:
   822   return locate_operand(inst, end_pc_operand);
   823 }
   826 #ifdef ASSERT
   827 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   828   address inst = inst_mark();
   829   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   830   address opnd;
   832   Relocation* r = rspec.reloc();
   833   if (r->type() == relocInfo::none) {
   834     return;
   835   } else if (r->is_call() || format == call32_operand) {
   836     // assert(format == imm32_operand, "cannot specify a nonzero format");
   837     opnd = locate_operand(inst, call32_operand);
   838   } else if (r->is_data()) {
   839     assert(format == imm_operand || format == disp32_operand
   840            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   841     opnd = locate_operand(inst, (WhichOperand)format);
   842   } else {
   843     assert(format == imm_operand, "cannot specify a format");
   844     return;
   845   }
   846   assert(opnd == pc(), "must put operand where relocs can find it");
   847 }
   848 #endif // ASSERT
   850 void Assembler::emit_operand32(Register reg, Address adr) {
   851   assert(reg->encoding() < 8, "no extended registers");
   852   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   854                adr._rspec);
   855 }
   857 void Assembler::emit_operand(Register reg, Address adr,
   858                              int rip_relative_correction) {
   859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   860                adr._rspec,
   861                rip_relative_correction);
   862 }
   864 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   865   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   866                adr._rspec);
   867 }
   869 // MMX operations
   870 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   873 }
   875 // work around gcc (3.2.1-7a) bug
   876 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   877   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   878   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   879 }
   882 void Assembler::emit_farith(int b1, int b2, int i) {
   883   assert(isByte(b1) && isByte(b2), "wrong opcode");
   884   assert(0 <= i &&  i < 8, "illegal stack offset");
   885   emit_byte(b1);
   886   emit_byte(b2 + i);
   887 }
   890 // Now the Assembler instructions (identical for 32/64 bits)
   892 void Assembler::adcl(Address dst, int32_t imm32) {
   893   InstructionMark im(this);
   894   prefix(dst);
   895   emit_arith_operand(0x81, rdx, dst, imm32);
   896 }
   898 void Assembler::adcl(Address dst, Register src) {
   899   InstructionMark im(this);
   900   prefix(dst, src);
   901   emit_byte(0x11);
   902   emit_operand(src, dst);
   903 }
   905 void Assembler::adcl(Register dst, int32_t imm32) {
   906   prefix(dst);
   907   emit_arith(0x81, 0xD0, dst, imm32);
   908 }
   910 void Assembler::adcl(Register dst, Address src) {
   911   InstructionMark im(this);
   912   prefix(src, dst);
   913   emit_byte(0x13);
   914   emit_operand(dst, src);
   915 }
   917 void Assembler::adcl(Register dst, Register src) {
   918   (void) prefix_and_encode(dst->encoding(), src->encoding());
   919   emit_arith(0x13, 0xC0, dst, src);
   920 }
   922 void Assembler::addl(Address dst, int32_t imm32) {
   923   InstructionMark im(this);
   924   prefix(dst);
   925   emit_arith_operand(0x81, rax, dst, imm32);
   926 }
   928 void Assembler::addl(Address dst, Register src) {
   929   InstructionMark im(this);
   930   prefix(dst, src);
   931   emit_byte(0x01);
   932   emit_operand(src, dst);
   933 }
   935 void Assembler::addl(Register dst, int32_t imm32) {
   936   prefix(dst);
   937   emit_arith(0x81, 0xC0, dst, imm32);
   938 }
   940 void Assembler::addl(Register dst, Address src) {
   941   InstructionMark im(this);
   942   prefix(src, dst);
   943   emit_byte(0x03);
   944   emit_operand(dst, src);
   945 }
   947 void Assembler::addl(Register dst, Register src) {
   948   (void) prefix_and_encode(dst->encoding(), src->encoding());
   949   emit_arith(0x03, 0xC0, dst, src);
   950 }
   952 void Assembler::addr_nop_4() {
   953   assert(UseAddressNop, "no CPU support");
   954   // 4 bytes: NOP DWORD PTR [EAX+0]
   955   emit_byte(0x0F);
   956   emit_byte(0x1F);
   957   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   958   emit_byte(0);    // 8-bits offset (1 byte)
   959 }
   961 void Assembler::addr_nop_5() {
   962   assert(UseAddressNop, "no CPU support");
   963   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   964   emit_byte(0x0F);
   965   emit_byte(0x1F);
   966   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   967   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   968   emit_byte(0);    // 8-bits offset (1 byte)
   969 }
   971 void Assembler::addr_nop_7() {
   972   assert(UseAddressNop, "no CPU support");
   973   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   974   emit_byte(0x0F);
   975   emit_byte(0x1F);
   976   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   977   emit_long(0);    // 32-bits offset (4 bytes)
   978 }
   980 void Assembler::addr_nop_8() {
   981   assert(UseAddressNop, "no CPU support");
   982   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   983   emit_byte(0x0F);
   984   emit_byte(0x1F);
   985   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   986   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   987   emit_long(0);    // 32-bits offset (4 bytes)
   988 }
   990 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   991   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   992   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   993 }
   995 void Assembler::addsd(XMMRegister dst, Address src) {
   996   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   997   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   998 }
  1000 void Assembler::addss(XMMRegister dst, XMMRegister src) {
  1001   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1002   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1005 void Assembler::addss(XMMRegister dst, Address src) {
  1006   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1007   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1010 void Assembler::aesdec(XMMRegister dst, Address src) {
  1011   assert(VM_Version::supports_aes(), "");
  1012   InstructionMark im(this);
  1013   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1014   emit_byte(0xde);
  1015   emit_operand(dst, src);
  1018 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  1019   assert(VM_Version::supports_aes(), "");
  1020   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1021   emit_byte(0xde);
  1022   emit_byte(0xC0 | encode);
  1025 void Assembler::aesdeclast(XMMRegister dst, Address src) {
  1026   assert(VM_Version::supports_aes(), "");
  1027   InstructionMark im(this);
  1028   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1029   emit_byte(0xdf);
  1030   emit_operand(dst, src);
  1033 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  1034   assert(VM_Version::supports_aes(), "");
  1035   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1036   emit_byte(0xdf);
  1037   emit_byte(0xC0 | encode);
  1040 void Assembler::aesenc(XMMRegister dst, Address src) {
  1041   assert(VM_Version::supports_aes(), "");
  1042   InstructionMark im(this);
  1043   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1044   emit_byte(0xdc);
  1045   emit_operand(dst, src);
  1048 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  1049   assert(VM_Version::supports_aes(), "");
  1050   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1051   emit_byte(0xdc);
  1052   emit_byte(0xC0 | encode);
  1055 void Assembler::aesenclast(XMMRegister dst, Address src) {
  1056   assert(VM_Version::supports_aes(), "");
  1057   InstructionMark im(this);
  1058   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1059   emit_byte(0xdd);
  1060   emit_operand(dst, src);
  1063 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  1064   assert(VM_Version::supports_aes(), "");
  1065   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1066   emit_byte(0xdd);
  1067   emit_byte(0xC0 | encode);
  1071 void Assembler::andl(Address dst, int32_t imm32) {
  1072   InstructionMark im(this);
  1073   prefix(dst);
  1074   emit_byte(0x81);
  1075   emit_operand(rsp, dst, 4);
  1076   emit_long(imm32);
  1079 void Assembler::andl(Register dst, int32_t imm32) {
  1080   prefix(dst);
  1081   emit_arith(0x81, 0xE0, dst, imm32);
  1084 void Assembler::andl(Register dst, Address src) {
  1085   InstructionMark im(this);
  1086   prefix(src, dst);
  1087   emit_byte(0x23);
  1088   emit_operand(dst, src);
  1091 void Assembler::andl(Register dst, Register src) {
  1092   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1093   emit_arith(0x23, 0xC0, dst, src);
  1096 void Assembler::bsfl(Register dst, Register src) {
  1097   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1098   emit_byte(0x0F);
  1099   emit_byte(0xBC);
  1100   emit_byte(0xC0 | encode);
  1103 void Assembler::bsrl(Register dst, Register src) {
  1104   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1105   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1106   emit_byte(0x0F);
  1107   emit_byte(0xBD);
  1108   emit_byte(0xC0 | encode);
  1111 void Assembler::bswapl(Register reg) { // bswap
  1112   int encode = prefix_and_encode(reg->encoding());
  1113   emit_byte(0x0F);
  1114   emit_byte(0xC8 | encode);
  1117 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1118   // suspect disp32 is always good
  1119   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1121   if (L.is_bound()) {
  1122     const int long_size = 5;
  1123     int offs = (int)( target(L) - pc() );
  1124     assert(offs <= 0, "assembler error");
  1125     InstructionMark im(this);
  1126     // 1110 1000 #32-bit disp
  1127     emit_byte(0xE8);
  1128     emit_data(offs - long_size, rtype, operand);
  1129   } else {
  1130     InstructionMark im(this);
  1131     // 1110 1000 #32-bit disp
  1132     L.add_patch_at(code(), locator());
  1134     emit_byte(0xE8);
  1135     emit_data(int(0), rtype, operand);
  1139 void Assembler::call(Register dst) {
  1140   int encode = prefix_and_encode(dst->encoding());
  1141   emit_byte(0xFF);
  1142   emit_byte(0xD0 | encode);
  1146 void Assembler::call(Address adr) {
  1147   InstructionMark im(this);
  1148   prefix(adr);
  1149   emit_byte(0xFF);
  1150   emit_operand(rdx, adr);
  1153 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1154   assert(entry != NULL, "call most probably wrong");
  1155   InstructionMark im(this);
  1156   emit_byte(0xE8);
  1157   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1158   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1159   // Technically, should use call32_operand, but this format is
  1160   // implied by the fact that we're emitting a call instruction.
  1162   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1163   emit_data((int) disp, rspec, operand);
  1166 void Assembler::cdql() {
  1167   emit_byte(0x99);
  1170 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1171   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1172   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1173   emit_byte(0x0F);
  1174   emit_byte(0x40 | cc);
  1175   emit_byte(0xC0 | encode);
  1179 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1180   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1181   prefix(src, dst);
  1182   emit_byte(0x0F);
  1183   emit_byte(0x40 | cc);
  1184   emit_operand(dst, src);
  1187 void Assembler::cmpb(Address dst, int imm8) {
  1188   InstructionMark im(this);
  1189   prefix(dst);
  1190   emit_byte(0x80);
  1191   emit_operand(rdi, dst, 1);
  1192   emit_byte(imm8);
  1195 void Assembler::cmpl(Address dst, int32_t imm32) {
  1196   InstructionMark im(this);
  1197   prefix(dst);
  1198   emit_byte(0x81);
  1199   emit_operand(rdi, dst, 4);
  1200   emit_long(imm32);
  1203 void Assembler::cmpl(Register dst, int32_t imm32) {
  1204   prefix(dst);
  1205   emit_arith(0x81, 0xF8, dst, imm32);
  1208 void Assembler::cmpl(Register dst, Register src) {
  1209   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1210   emit_arith(0x3B, 0xC0, dst, src);
  1214 void Assembler::cmpl(Register dst, Address  src) {
  1215   InstructionMark im(this);
  1216   prefix(src, dst);
  1217   emit_byte(0x3B);
  1218   emit_operand(dst, src);
  1221 void Assembler::cmpw(Address dst, int imm16) {
  1222   InstructionMark im(this);
  1223   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1224   emit_byte(0x66);
  1225   emit_byte(0x81);
  1226   emit_operand(rdi, dst, 2);
  1227   emit_word(imm16);
  1230 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1231 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1232 // The ZF is set if the compared values were equal, and cleared otherwise.
  1233 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1234   InstructionMark im(this);
  1235   prefix(adr, reg);
  1236   emit_byte(0x0F);
  1237   emit_byte(0xB1);
  1238   emit_operand(reg, adr);
  1241 void Assembler::comisd(XMMRegister dst, Address src) {
  1242   // NOTE: dbx seems to decode this as comiss even though the
  1243   // 0x66 is there. Strangly ucomisd comes out correct
  1244   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1245   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1248 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1250   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1253 void Assembler::comiss(XMMRegister dst, Address src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1255   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1258 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1259   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1260   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1263 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1265   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1268 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1270   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1273 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1275   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1278 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1279   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1280   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1283 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1284   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1285   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1286   emit_byte(0x2A);
  1287   emit_byte(0xC0 | encode);
  1290 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1291   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1292   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1295 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1296   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1297   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1298   emit_byte(0x2A);
  1299   emit_byte(0xC0 | encode);
  1302 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1303   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1304   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1307 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1309   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1312 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1313   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1314   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1318 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1320   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1321   emit_byte(0x2C);
  1322   emit_byte(0xC0 | encode);
  1325 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1326   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1327   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1328   emit_byte(0x2C);
  1329   emit_byte(0xC0 | encode);
  1332 void Assembler::decl(Address dst) {
  1333   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1334   InstructionMark im(this);
  1335   prefix(dst);
  1336   emit_byte(0xFF);
  1337   emit_operand(rcx, dst);
  1340 void Assembler::divsd(XMMRegister dst, Address src) {
  1341   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1342   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1345 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1346   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1347   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1350 void Assembler::divss(XMMRegister dst, Address src) {
  1351   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1352   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1355 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1356   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1357   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1360 void Assembler::emms() {
  1361   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1362   emit_byte(0x0F);
  1363   emit_byte(0x77);
  1366 void Assembler::hlt() {
  1367   emit_byte(0xF4);
  1370 void Assembler::idivl(Register src) {
  1371   int encode = prefix_and_encode(src->encoding());
  1372   emit_byte(0xF7);
  1373   emit_byte(0xF8 | encode);
  1376 void Assembler::divl(Register src) { // Unsigned
  1377   int encode = prefix_and_encode(src->encoding());
  1378   emit_byte(0xF7);
  1379   emit_byte(0xF0 | encode);
  1382 void Assembler::imull(Register dst, Register src) {
  1383   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1384   emit_byte(0x0F);
  1385   emit_byte(0xAF);
  1386   emit_byte(0xC0 | encode);
  1390 void Assembler::imull(Register dst, Register src, int value) {
  1391   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1392   if (is8bit(value)) {
  1393     emit_byte(0x6B);
  1394     emit_byte(0xC0 | encode);
  1395     emit_byte(value & 0xFF);
  1396   } else {
  1397     emit_byte(0x69);
  1398     emit_byte(0xC0 | encode);
  1399     emit_long(value);
  1403 void Assembler::incl(Address dst) {
  1404   // Don't use it directly. Use MacroAssembler::increment() instead.
  1405   InstructionMark im(this);
  1406   prefix(dst);
  1407   emit_byte(0xFF);
  1408   emit_operand(rax, dst);
  1411 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1412   InstructionMark im(this);
  1413   assert((0 <= cc) && (cc < 16), "illegal cc");
  1414   if (L.is_bound()) {
  1415     address dst = target(L);
  1416     assert(dst != NULL, "jcc most probably wrong");
  1418     const int short_size = 2;
  1419     const int long_size = 6;
  1420     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1421     if (maybe_short && is8bit(offs - short_size)) {
  1422       // 0111 tttn #8-bit disp
  1423       emit_byte(0x70 | cc);
  1424       emit_byte((offs - short_size) & 0xFF);
  1425     } else {
  1426       // 0000 1111 1000 tttn #32-bit disp
  1427       assert(is_simm32(offs - long_size),
  1428              "must be 32bit offset (call4)");
  1429       emit_byte(0x0F);
  1430       emit_byte(0x80 | cc);
  1431       emit_long(offs - long_size);
  1433   } else {
  1434     // Note: could eliminate cond. jumps to this jump if condition
  1435     //       is the same however, seems to be rather unlikely case.
  1436     // Note: use jccb() if label to be bound is very close to get
  1437     //       an 8-bit displacement
  1438     L.add_patch_at(code(), locator());
  1439     emit_byte(0x0F);
  1440     emit_byte(0x80 | cc);
  1441     emit_long(0);
  1445 void Assembler::jccb(Condition cc, Label& L) {
  1446   if (L.is_bound()) {
  1447     const int short_size = 2;
  1448     address entry = target(L);
  1449 #ifdef ASSERT
  1450     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1451     intptr_t delta = short_branch_delta();
  1452     if (delta != 0) {
  1453       dist += (dist < 0 ? (-delta) :delta);
  1455     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1456 #endif
  1457     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1458     // 0111 tttn #8-bit disp
  1459     emit_byte(0x70 | cc);
  1460     emit_byte((offs - short_size) & 0xFF);
  1461   } else {
  1462     InstructionMark im(this);
  1463     L.add_patch_at(code(), locator());
  1464     emit_byte(0x70 | cc);
  1465     emit_byte(0);
  1469 void Assembler::jmp(Address adr) {
  1470   InstructionMark im(this);
  1471   prefix(adr);
  1472   emit_byte(0xFF);
  1473   emit_operand(rsp, adr);
  1476 void Assembler::jmp(Label& L, bool maybe_short) {
  1477   if (L.is_bound()) {
  1478     address entry = target(L);
  1479     assert(entry != NULL, "jmp most probably wrong");
  1480     InstructionMark im(this);
  1481     const int short_size = 2;
  1482     const int long_size = 5;
  1483     intptr_t offs = entry - _code_pos;
  1484     if (maybe_short && is8bit(offs - short_size)) {
  1485       emit_byte(0xEB);
  1486       emit_byte((offs - short_size) & 0xFF);
  1487     } else {
  1488       emit_byte(0xE9);
  1489       emit_long(offs - long_size);
  1491   } else {
  1492     // By default, forward jumps are always 32-bit displacements, since
  1493     // we can't yet know where the label will be bound.  If you're sure that
  1494     // the forward jump will not run beyond 256 bytes, use jmpb to
  1495     // force an 8-bit displacement.
  1496     InstructionMark im(this);
  1497     L.add_patch_at(code(), locator());
  1498     emit_byte(0xE9);
  1499     emit_long(0);
  1503 void Assembler::jmp(Register entry) {
  1504   int encode = prefix_and_encode(entry->encoding());
  1505   emit_byte(0xFF);
  1506   emit_byte(0xE0 | encode);
  1509 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1510   InstructionMark im(this);
  1511   emit_byte(0xE9);
  1512   assert(dest != NULL, "must have a target");
  1513   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1514   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1515   emit_data(disp, rspec.reloc(), call32_operand);
  1518 void Assembler::jmpb(Label& L) {
  1519   if (L.is_bound()) {
  1520     const int short_size = 2;
  1521     address entry = target(L);
  1522     assert(entry != NULL, "jmp most probably wrong");
  1523 #ifdef ASSERT
  1524     intptr_t dist = (intptr_t)entry - ((intptr_t)_code_pos + short_size);
  1525     intptr_t delta = short_branch_delta();
  1526     if (delta != 0) {
  1527       dist += (dist < 0 ? (-delta) :delta);
  1529     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1530 #endif
  1531     intptr_t offs = entry - _code_pos;
  1532     emit_byte(0xEB);
  1533     emit_byte((offs - short_size) & 0xFF);
  1534   } else {
  1535     InstructionMark im(this);
  1536     L.add_patch_at(code(), locator());
  1537     emit_byte(0xEB);
  1538     emit_byte(0);
  1542 void Assembler::ldmxcsr( Address src) {
  1543   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1544   InstructionMark im(this);
  1545   prefix(src);
  1546   emit_byte(0x0F);
  1547   emit_byte(0xAE);
  1548   emit_operand(as_Register(2), src);
  1551 void Assembler::leal(Register dst, Address src) {
  1552   InstructionMark im(this);
  1553 #ifdef _LP64
  1554   emit_byte(0x67); // addr32
  1555   prefix(src, dst);
  1556 #endif // LP64
  1557   emit_byte(0x8D);
  1558   emit_operand(dst, src);
  1561 void Assembler::lock() {
  1562   emit_byte(0xF0);
  1565 void Assembler::lzcntl(Register dst, Register src) {
  1566   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1567   emit_byte(0xF3);
  1568   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1569   emit_byte(0x0F);
  1570   emit_byte(0xBD);
  1571   emit_byte(0xC0 | encode);
  1574 // Emit mfence instruction
  1575 void Assembler::mfence() {
  1576   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1577   emit_byte( 0x0F );
  1578   emit_byte( 0xAE );
  1579   emit_byte( 0xF0 );
  1582 void Assembler::mov(Register dst, Register src) {
  1583   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1586 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1587   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1588   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1591 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1592   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1593   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1596 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1597   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1598   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1599   emit_byte(0x16);
  1600   emit_byte(0xC0 | encode);
  1603 void Assembler::movb(Register dst, Address src) {
  1604   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1605   InstructionMark im(this);
  1606   prefix(src, dst, true);
  1607   emit_byte(0x8A);
  1608   emit_operand(dst, src);
  1612 void Assembler::movb(Address dst, int imm8) {
  1613   InstructionMark im(this);
  1614    prefix(dst);
  1615   emit_byte(0xC6);
  1616   emit_operand(rax, dst, 1);
  1617   emit_byte(imm8);
  1621 void Assembler::movb(Address dst, Register src) {
  1622   assert(src->has_byte_register(), "must have byte register");
  1623   InstructionMark im(this);
  1624   prefix(dst, src, true);
  1625   emit_byte(0x88);
  1626   emit_operand(src, dst);
  1629 void Assembler::movdl(XMMRegister dst, Register src) {
  1630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1631   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1632   emit_byte(0x6E);
  1633   emit_byte(0xC0 | encode);
  1636 void Assembler::movdl(Register dst, XMMRegister src) {
  1637   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1638   // swap src/dst to get correct prefix
  1639   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1640   emit_byte(0x7E);
  1641   emit_byte(0xC0 | encode);
  1644 void Assembler::movdl(XMMRegister dst, Address src) {
  1645   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1646   InstructionMark im(this);
  1647   simd_prefix(dst, src, VEX_SIMD_66);
  1648   emit_byte(0x6E);
  1649   emit_operand(dst, src);
  1652 void Assembler::movdl(Address dst, XMMRegister src) {
  1653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1654   InstructionMark im(this);
  1655   simd_prefix(dst, src, VEX_SIMD_66);
  1656   emit_byte(0x7E);
  1657   emit_operand(src, dst);
  1660 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1661   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1662   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1665 void Assembler::movdqu(XMMRegister dst, Address src) {
  1666   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1667   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1670 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1671   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1672   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1675 void Assembler::movdqu(Address dst, XMMRegister src) {
  1676   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1677   InstructionMark im(this);
  1678   simd_prefix(dst, src, VEX_SIMD_F3);
  1679   emit_byte(0x7F);
  1680   emit_operand(src, dst);
  1683 // Move Unaligned 256bit Vector
  1684 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1685   assert(UseAVX, "");
  1686   bool vector256 = true;
  1687   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1688   emit_byte(0x6F);
  1689   emit_byte(0xC0 | encode);
  1692 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1693   assert(UseAVX, "");
  1694   InstructionMark im(this);
  1695   bool vector256 = true;
  1696   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1697   emit_byte(0x6F);
  1698   emit_operand(dst, src);
  1701 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1702   assert(UseAVX, "");
  1703   InstructionMark im(this);
  1704   bool vector256 = true;
  1705   // swap src<->dst for encoding
  1706   assert(src != xnoreg, "sanity");
  1707   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1708   emit_byte(0x7F);
  1709   emit_operand(src, dst);
  1712 // Uses zero extension on 64bit
  1714 void Assembler::movl(Register dst, int32_t imm32) {
  1715   int encode = prefix_and_encode(dst->encoding());
  1716   emit_byte(0xB8 | encode);
  1717   emit_long(imm32);
  1720 void Assembler::movl(Register dst, Register src) {
  1721   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1722   emit_byte(0x8B);
  1723   emit_byte(0xC0 | encode);
  1726 void Assembler::movl(Register dst, Address src) {
  1727   InstructionMark im(this);
  1728   prefix(src, dst);
  1729   emit_byte(0x8B);
  1730   emit_operand(dst, src);
  1733 void Assembler::movl(Address dst, int32_t imm32) {
  1734   InstructionMark im(this);
  1735   prefix(dst);
  1736   emit_byte(0xC7);
  1737   emit_operand(rax, dst, 4);
  1738   emit_long(imm32);
  1741 void Assembler::movl(Address dst, Register src) {
  1742   InstructionMark im(this);
  1743   prefix(dst, src);
  1744   emit_byte(0x89);
  1745   emit_operand(src, dst);
  1748 // New cpus require to use movsd and movss to avoid partial register stall
  1749 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1750 // The selection is done in MacroAssembler::movdbl() and movflt().
  1751 void Assembler::movlpd(XMMRegister dst, Address src) {
  1752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1753   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1756 void Assembler::movq( MMXRegister dst, Address src ) {
  1757   assert( VM_Version::supports_mmx(), "" );
  1758   emit_byte(0x0F);
  1759   emit_byte(0x6F);
  1760   emit_operand(dst, src);
  1763 void Assembler::movq( Address dst, MMXRegister src ) {
  1764   assert( VM_Version::supports_mmx(), "" );
  1765   emit_byte(0x0F);
  1766   emit_byte(0x7F);
  1767   // workaround gcc (3.2.1-7a) bug
  1768   // In that version of gcc with only an emit_operand(MMX, Address)
  1769   // gcc will tail jump and try and reverse the parameters completely
  1770   // obliterating dst in the process. By having a version available
  1771   // that doesn't need to swap the args at the tail jump the bug is
  1772   // avoided.
  1773   emit_operand(dst, src);
  1776 void Assembler::movq(XMMRegister dst, Address src) {
  1777   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1778   InstructionMark im(this);
  1779   simd_prefix(dst, src, VEX_SIMD_F3);
  1780   emit_byte(0x7E);
  1781   emit_operand(dst, src);
  1784 void Assembler::movq(Address dst, XMMRegister src) {
  1785   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1786   InstructionMark im(this);
  1787   simd_prefix(dst, src, VEX_SIMD_66);
  1788   emit_byte(0xD6);
  1789   emit_operand(src, dst);
  1792 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1793   InstructionMark im(this);
  1794   prefix(src, dst);
  1795   emit_byte(0x0F);
  1796   emit_byte(0xBE);
  1797   emit_operand(dst, src);
  1800 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1801   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1802   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1803   emit_byte(0x0F);
  1804   emit_byte(0xBE);
  1805   emit_byte(0xC0 | encode);
  1808 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1809   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1810   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1813 void Assembler::movsd(XMMRegister dst, Address src) {
  1814   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1815   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1818 void Assembler::movsd(Address dst, XMMRegister src) {
  1819   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1820   InstructionMark im(this);
  1821   simd_prefix(dst, src, VEX_SIMD_F2);
  1822   emit_byte(0x11);
  1823   emit_operand(src, dst);
  1826 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1827   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1828   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1831 void Assembler::movss(XMMRegister dst, Address src) {
  1832   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1833   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1836 void Assembler::movss(Address dst, XMMRegister src) {
  1837   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1838   InstructionMark im(this);
  1839   simd_prefix(dst, src, VEX_SIMD_F3);
  1840   emit_byte(0x11);
  1841   emit_operand(src, dst);
  1844 void Assembler::movswl(Register dst, Address src) { // movsxw
  1845   InstructionMark im(this);
  1846   prefix(src, dst);
  1847   emit_byte(0x0F);
  1848   emit_byte(0xBF);
  1849   emit_operand(dst, src);
  1852 void Assembler::movswl(Register dst, Register src) { // movsxw
  1853   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1854   emit_byte(0x0F);
  1855   emit_byte(0xBF);
  1856   emit_byte(0xC0 | encode);
  1859 void Assembler::movw(Address dst, int imm16) {
  1860   InstructionMark im(this);
  1862   emit_byte(0x66); // switch to 16-bit mode
  1863   prefix(dst);
  1864   emit_byte(0xC7);
  1865   emit_operand(rax, dst, 2);
  1866   emit_word(imm16);
  1869 void Assembler::movw(Register dst, Address src) {
  1870   InstructionMark im(this);
  1871   emit_byte(0x66);
  1872   prefix(src, dst);
  1873   emit_byte(0x8B);
  1874   emit_operand(dst, src);
  1877 void Assembler::movw(Address dst, Register src) {
  1878   InstructionMark im(this);
  1879   emit_byte(0x66);
  1880   prefix(dst, src);
  1881   emit_byte(0x89);
  1882   emit_operand(src, dst);
  1885 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1886   InstructionMark im(this);
  1887   prefix(src, dst);
  1888   emit_byte(0x0F);
  1889   emit_byte(0xB6);
  1890   emit_operand(dst, src);
  1893 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1894   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1895   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1896   emit_byte(0x0F);
  1897   emit_byte(0xB6);
  1898   emit_byte(0xC0 | encode);
  1901 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1902   InstructionMark im(this);
  1903   prefix(src, dst);
  1904   emit_byte(0x0F);
  1905   emit_byte(0xB7);
  1906   emit_operand(dst, src);
  1909 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1910   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1911   emit_byte(0x0F);
  1912   emit_byte(0xB7);
  1913   emit_byte(0xC0 | encode);
  1916 void Assembler::mull(Address src) {
  1917   InstructionMark im(this);
  1918   prefix(src);
  1919   emit_byte(0xF7);
  1920   emit_operand(rsp, src);
  1923 void Assembler::mull(Register src) {
  1924   int encode = prefix_and_encode(src->encoding());
  1925   emit_byte(0xF7);
  1926   emit_byte(0xE0 | encode);
  1929 void Assembler::mulsd(XMMRegister dst, Address src) {
  1930   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1931   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1934 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1935   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1936   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1939 void Assembler::mulss(XMMRegister dst, Address src) {
  1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1941   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1944 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1945   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1946   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1949 void Assembler::negl(Register dst) {
  1950   int encode = prefix_and_encode(dst->encoding());
  1951   emit_byte(0xF7);
  1952   emit_byte(0xD8 | encode);
  1955 void Assembler::nop(int i) {
  1956 #ifdef ASSERT
  1957   assert(i > 0, " ");
  1958   // The fancy nops aren't currently recognized by debuggers making it a
  1959   // pain to disassemble code while debugging. If asserts are on clearly
  1960   // speed is not an issue so simply use the single byte traditional nop
  1961   // to do alignment.
  1963   for (; i > 0 ; i--) emit_byte(0x90);
  1964   return;
  1966 #endif // ASSERT
  1968   if (UseAddressNop && VM_Version::is_intel()) {
  1969     //
  1970     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1971     //  1: 0x90
  1972     //  2: 0x66 0x90
  1973     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1974     //  4: 0x0F 0x1F 0x40 0x00
  1975     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1976     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1977     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1978     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1979     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1980     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1981     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1983     // The rest coding is Intel specific - don't use consecutive address nops
  1985     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1986     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1987     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1988     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1990     while(i >= 15) {
  1991       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1992       i -= 15;
  1993       emit_byte(0x66);   // size prefix
  1994       emit_byte(0x66);   // size prefix
  1995       emit_byte(0x66);   // size prefix
  1996       addr_nop_8();
  1997       emit_byte(0x66);   // size prefix
  1998       emit_byte(0x66);   // size prefix
  1999       emit_byte(0x66);   // size prefix
  2000       emit_byte(0x90);   // nop
  2002     switch (i) {
  2003       case 14:
  2004         emit_byte(0x66); // size prefix
  2005       case 13:
  2006         emit_byte(0x66); // size prefix
  2007       case 12:
  2008         addr_nop_8();
  2009         emit_byte(0x66); // size prefix
  2010         emit_byte(0x66); // size prefix
  2011         emit_byte(0x66); // size prefix
  2012         emit_byte(0x90); // nop
  2013         break;
  2014       case 11:
  2015         emit_byte(0x66); // size prefix
  2016       case 10:
  2017         emit_byte(0x66); // size prefix
  2018       case 9:
  2019         emit_byte(0x66); // size prefix
  2020       case 8:
  2021         addr_nop_8();
  2022         break;
  2023       case 7:
  2024         addr_nop_7();
  2025         break;
  2026       case 6:
  2027         emit_byte(0x66); // size prefix
  2028       case 5:
  2029         addr_nop_5();
  2030         break;
  2031       case 4:
  2032         addr_nop_4();
  2033         break;
  2034       case 3:
  2035         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2036         emit_byte(0x66); // size prefix
  2037       case 2:
  2038         emit_byte(0x66); // size prefix
  2039       case 1:
  2040         emit_byte(0x90); // nop
  2041         break;
  2042       default:
  2043         assert(i == 0, " ");
  2045     return;
  2047   if (UseAddressNop && VM_Version::is_amd()) {
  2048     //
  2049     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2050     //  1: 0x90
  2051     //  2: 0x66 0x90
  2052     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2053     //  4: 0x0F 0x1F 0x40 0x00
  2054     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2055     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2056     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2057     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2058     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2059     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2060     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2062     // The rest coding is AMD specific - use consecutive address nops
  2064     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2065     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2066     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2067     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2068     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2069     //     Size prefixes (0x66) are added for larger sizes
  2071     while(i >= 22) {
  2072       i -= 11;
  2073       emit_byte(0x66); // size prefix
  2074       emit_byte(0x66); // size prefix
  2075       emit_byte(0x66); // size prefix
  2076       addr_nop_8();
  2078     // Generate first nop for size between 21-12
  2079     switch (i) {
  2080       case 21:
  2081         i -= 1;
  2082         emit_byte(0x66); // size prefix
  2083       case 20:
  2084       case 19:
  2085         i -= 1;
  2086         emit_byte(0x66); // size prefix
  2087       case 18:
  2088       case 17:
  2089         i -= 1;
  2090         emit_byte(0x66); // size prefix
  2091       case 16:
  2092       case 15:
  2093         i -= 8;
  2094         addr_nop_8();
  2095         break;
  2096       case 14:
  2097       case 13:
  2098         i -= 7;
  2099         addr_nop_7();
  2100         break;
  2101       case 12:
  2102         i -= 6;
  2103         emit_byte(0x66); // size prefix
  2104         addr_nop_5();
  2105         break;
  2106       default:
  2107         assert(i < 12, " ");
  2110     // Generate second nop for size between 11-1
  2111     switch (i) {
  2112       case 11:
  2113         emit_byte(0x66); // size prefix
  2114       case 10:
  2115         emit_byte(0x66); // size prefix
  2116       case 9:
  2117         emit_byte(0x66); // size prefix
  2118       case 8:
  2119         addr_nop_8();
  2120         break;
  2121       case 7:
  2122         addr_nop_7();
  2123         break;
  2124       case 6:
  2125         emit_byte(0x66); // size prefix
  2126       case 5:
  2127         addr_nop_5();
  2128         break;
  2129       case 4:
  2130         addr_nop_4();
  2131         break;
  2132       case 3:
  2133         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2134         emit_byte(0x66); // size prefix
  2135       case 2:
  2136         emit_byte(0x66); // size prefix
  2137       case 1:
  2138         emit_byte(0x90); // nop
  2139         break;
  2140       default:
  2141         assert(i == 0, " ");
  2143     return;
  2146   // Using nops with size prefixes "0x66 0x90".
  2147   // From AMD Optimization Guide:
  2148   //  1: 0x90
  2149   //  2: 0x66 0x90
  2150   //  3: 0x66 0x66 0x90
  2151   //  4: 0x66 0x66 0x66 0x90
  2152   //  5: 0x66 0x66 0x90 0x66 0x90
  2153   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2154   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2155   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2156   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2157   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2158   //
  2159   while(i > 12) {
  2160     i -= 4;
  2161     emit_byte(0x66); // size prefix
  2162     emit_byte(0x66);
  2163     emit_byte(0x66);
  2164     emit_byte(0x90); // nop
  2166   // 1 - 12 nops
  2167   if(i > 8) {
  2168     if(i > 9) {
  2169       i -= 1;
  2170       emit_byte(0x66);
  2172     i -= 3;
  2173     emit_byte(0x66);
  2174     emit_byte(0x66);
  2175     emit_byte(0x90);
  2177   // 1 - 8 nops
  2178   if(i > 4) {
  2179     if(i > 6) {
  2180       i -= 1;
  2181       emit_byte(0x66);
  2183     i -= 3;
  2184     emit_byte(0x66);
  2185     emit_byte(0x66);
  2186     emit_byte(0x90);
  2188   switch (i) {
  2189     case 4:
  2190       emit_byte(0x66);
  2191     case 3:
  2192       emit_byte(0x66);
  2193     case 2:
  2194       emit_byte(0x66);
  2195     case 1:
  2196       emit_byte(0x90);
  2197       break;
  2198     default:
  2199       assert(i == 0, " ");
  2203 void Assembler::notl(Register dst) {
  2204   int encode = prefix_and_encode(dst->encoding());
  2205   emit_byte(0xF7);
  2206   emit_byte(0xD0 | encode );
  2209 void Assembler::orl(Address dst, int32_t imm32) {
  2210   InstructionMark im(this);
  2211   prefix(dst);
  2212   emit_arith_operand(0x81, rcx, dst, imm32);
  2215 void Assembler::orl(Register dst, int32_t imm32) {
  2216   prefix(dst);
  2217   emit_arith(0x81, 0xC8, dst, imm32);
  2220 void Assembler::orl(Register dst, Address src) {
  2221   InstructionMark im(this);
  2222   prefix(src, dst);
  2223   emit_byte(0x0B);
  2224   emit_operand(dst, src);
  2227 void Assembler::orl(Register dst, Register src) {
  2228   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2229   emit_arith(0x0B, 0xC0, dst, src);
  2232 void Assembler::packuswb(XMMRegister dst, Address src) {
  2233   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2234   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2235   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2238 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2240   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2243 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2244   assert(VM_Version::supports_sse4_2(), "");
  2245   InstructionMark im(this);
  2246   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2247   emit_byte(0x61);
  2248   emit_operand(dst, src);
  2249   emit_byte(imm8);
  2252 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2253   assert(VM_Version::supports_sse4_2(), "");
  2254   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2255   emit_byte(0x61);
  2256   emit_byte(0xC0 | encode);
  2257   emit_byte(imm8);
  2260 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2261   assert(VM_Version::supports_sse4_1(), "");
  2262   InstructionMark im(this);
  2263   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2264   emit_byte(0x30);
  2265   emit_operand(dst, src);
  2268 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2269   assert(VM_Version::supports_sse4_1(), "");
  2270   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2271   emit_byte(0x30);
  2272   emit_byte(0xC0 | encode);
  2275 // generic
  2276 void Assembler::pop(Register dst) {
  2277   int encode = prefix_and_encode(dst->encoding());
  2278   emit_byte(0x58 | encode);
  2281 void Assembler::popcntl(Register dst, Address src) {
  2282   assert(VM_Version::supports_popcnt(), "must support");
  2283   InstructionMark im(this);
  2284   emit_byte(0xF3);
  2285   prefix(src, dst);
  2286   emit_byte(0x0F);
  2287   emit_byte(0xB8);
  2288   emit_operand(dst, src);
  2291 void Assembler::popcntl(Register dst, Register src) {
  2292   assert(VM_Version::supports_popcnt(), "must support");
  2293   emit_byte(0xF3);
  2294   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2295   emit_byte(0x0F);
  2296   emit_byte(0xB8);
  2297   emit_byte(0xC0 | encode);
  2300 void Assembler::popf() {
  2301   emit_byte(0x9D);
  2304 #ifndef _LP64 // no 32bit push/pop on amd64
  2305 void Assembler::popl(Address dst) {
  2306   // NOTE: this will adjust stack by 8byte on 64bits
  2307   InstructionMark im(this);
  2308   prefix(dst);
  2309   emit_byte(0x8F);
  2310   emit_operand(rax, dst);
  2312 #endif
  2314 void Assembler::prefetch_prefix(Address src) {
  2315   prefix(src);
  2316   emit_byte(0x0F);
  2319 void Assembler::prefetchnta(Address src) {
  2320   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2321   InstructionMark im(this);
  2322   prefetch_prefix(src);
  2323   emit_byte(0x18);
  2324   emit_operand(rax, src); // 0, src
  2327 void Assembler::prefetchr(Address src) {
  2328   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2329   InstructionMark im(this);
  2330   prefetch_prefix(src);
  2331   emit_byte(0x0D);
  2332   emit_operand(rax, src); // 0, src
  2335 void Assembler::prefetcht0(Address src) {
  2336   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2337   InstructionMark im(this);
  2338   prefetch_prefix(src);
  2339   emit_byte(0x18);
  2340   emit_operand(rcx, src); // 1, src
  2343 void Assembler::prefetcht1(Address src) {
  2344   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2345   InstructionMark im(this);
  2346   prefetch_prefix(src);
  2347   emit_byte(0x18);
  2348   emit_operand(rdx, src); // 2, src
  2351 void Assembler::prefetcht2(Address src) {
  2352   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2353   InstructionMark im(this);
  2354   prefetch_prefix(src);
  2355   emit_byte(0x18);
  2356   emit_operand(rbx, src); // 3, src
  2359 void Assembler::prefetchw(Address src) {
  2360   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2361   InstructionMark im(this);
  2362   prefetch_prefix(src);
  2363   emit_byte(0x0D);
  2364   emit_operand(rcx, src); // 1, src
  2367 void Assembler::prefix(Prefix p) {
  2368   a_byte(p);
  2371 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  2372   assert(VM_Version::supports_ssse3(), "");
  2373   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2374   emit_byte(0x00);
  2375   emit_byte(0xC0 | encode);
  2378 void Assembler::pshufb(XMMRegister dst, Address src) {
  2379   assert(VM_Version::supports_ssse3(), "");
  2380   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2381   InstructionMark im(this);
  2382   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2383   emit_byte(0x00);
  2384   emit_operand(dst, src);
  2387 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2388   assert(isByte(mode), "invalid value");
  2389   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2390   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2391   emit_byte(mode & 0xFF);
  2395 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2396   assert(isByte(mode), "invalid value");
  2397   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2398   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2399   InstructionMark im(this);
  2400   simd_prefix(dst, src, VEX_SIMD_66);
  2401   emit_byte(0x70);
  2402   emit_operand(dst, src);
  2403   emit_byte(mode & 0xFF);
  2406 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2407   assert(isByte(mode), "invalid value");
  2408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2409   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2410   emit_byte(mode & 0xFF);
  2413 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2414   assert(isByte(mode), "invalid value");
  2415   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2416   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2417   InstructionMark im(this);
  2418   simd_prefix(dst, src, VEX_SIMD_F2);
  2419   emit_byte(0x70);
  2420   emit_operand(dst, src);
  2421   emit_byte(mode & 0xFF);
  2424 void Assembler::psrldq(XMMRegister dst, int shift) {
  2425   // Shift 128 bit value in xmm register by number of bytes.
  2426   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2427   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2428   emit_byte(0x73);
  2429   emit_byte(0xC0 | encode);
  2430   emit_byte(shift);
  2433 void Assembler::ptest(XMMRegister dst, Address src) {
  2434   assert(VM_Version::supports_sse4_1(), "");
  2435   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2436   InstructionMark im(this);
  2437   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2438   emit_byte(0x17);
  2439   emit_operand(dst, src);
  2442 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2443   assert(VM_Version::supports_sse4_1(), "");
  2444   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2445   emit_byte(0x17);
  2446   emit_byte(0xC0 | encode);
  2449 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2450   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2451   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2452   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2455 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2456   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2457   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2460 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2461   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2462   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2463   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2466 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2467   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2468   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2471 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2472   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2473   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2476 void Assembler::push(int32_t imm32) {
  2477   // in 64bits we push 64bits onto the stack but only
  2478   // take a 32bit immediate
  2479   emit_byte(0x68);
  2480   emit_long(imm32);
  2483 void Assembler::push(Register src) {
  2484   int encode = prefix_and_encode(src->encoding());
  2486   emit_byte(0x50 | encode);
  2489 void Assembler::pushf() {
  2490   emit_byte(0x9C);
  2493 #ifndef _LP64 // no 32bit push/pop on amd64
  2494 void Assembler::pushl(Address src) {
  2495   // Note this will push 64bit on 64bit
  2496   InstructionMark im(this);
  2497   prefix(src);
  2498   emit_byte(0xFF);
  2499   emit_operand(rsi, src);
  2501 #endif
  2503 void Assembler::rcll(Register dst, int imm8) {
  2504   assert(isShiftCount(imm8), "illegal shift count");
  2505   int encode = prefix_and_encode(dst->encoding());
  2506   if (imm8 == 1) {
  2507     emit_byte(0xD1);
  2508     emit_byte(0xD0 | encode);
  2509   } else {
  2510     emit_byte(0xC1);
  2511     emit_byte(0xD0 | encode);
  2512     emit_byte(imm8);
  2516 // copies data from [esi] to [edi] using rcx pointer sized words
  2517 // generic
  2518 void Assembler::rep_mov() {
  2519   emit_byte(0xF3);
  2520   // MOVSQ
  2521   LP64_ONLY(prefix(REX_W));
  2522   emit_byte(0xA5);
  2525 // sets rcx pointer sized words with rax, value at [edi]
  2526 // generic
  2527 void Assembler::rep_set() { // rep_set
  2528   emit_byte(0xF3);
  2529   // STOSQ
  2530   LP64_ONLY(prefix(REX_W));
  2531   emit_byte(0xAB);
  2534 // scans rcx pointer sized words at [edi] for occurance of rax,
  2535 // generic
  2536 void Assembler::repne_scan() { // repne_scan
  2537   emit_byte(0xF2);
  2538   // SCASQ
  2539   LP64_ONLY(prefix(REX_W));
  2540   emit_byte(0xAF);
  2543 #ifdef _LP64
  2544 // scans rcx 4 byte words at [edi] for occurance of rax,
  2545 // generic
  2546 void Assembler::repne_scanl() { // repne_scan
  2547   emit_byte(0xF2);
  2548   // SCASL
  2549   emit_byte(0xAF);
  2551 #endif
  2553 void Assembler::ret(int imm16) {
  2554   if (imm16 == 0) {
  2555     emit_byte(0xC3);
  2556   } else {
  2557     emit_byte(0xC2);
  2558     emit_word(imm16);
  2562 void Assembler::sahf() {
  2563 #ifdef _LP64
  2564   // Not supported in 64bit mode
  2565   ShouldNotReachHere();
  2566 #endif
  2567   emit_byte(0x9E);
  2570 void Assembler::sarl(Register dst, int imm8) {
  2571   int encode = prefix_and_encode(dst->encoding());
  2572   assert(isShiftCount(imm8), "illegal shift count");
  2573   if (imm8 == 1) {
  2574     emit_byte(0xD1);
  2575     emit_byte(0xF8 | encode);
  2576   } else {
  2577     emit_byte(0xC1);
  2578     emit_byte(0xF8 | encode);
  2579     emit_byte(imm8);
  2583 void Assembler::sarl(Register dst) {
  2584   int encode = prefix_and_encode(dst->encoding());
  2585   emit_byte(0xD3);
  2586   emit_byte(0xF8 | encode);
  2589 void Assembler::sbbl(Address dst, int32_t imm32) {
  2590   InstructionMark im(this);
  2591   prefix(dst);
  2592   emit_arith_operand(0x81, rbx, dst, imm32);
  2595 void Assembler::sbbl(Register dst, int32_t imm32) {
  2596   prefix(dst);
  2597   emit_arith(0x81, 0xD8, dst, imm32);
  2601 void Assembler::sbbl(Register dst, Address src) {
  2602   InstructionMark im(this);
  2603   prefix(src, dst);
  2604   emit_byte(0x1B);
  2605   emit_operand(dst, src);
  2608 void Assembler::sbbl(Register dst, Register src) {
  2609   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2610   emit_arith(0x1B, 0xC0, dst, src);
  2613 void Assembler::setb(Condition cc, Register dst) {
  2614   assert(0 <= cc && cc < 16, "illegal cc");
  2615   int encode = prefix_and_encode(dst->encoding(), true);
  2616   emit_byte(0x0F);
  2617   emit_byte(0x90 | cc);
  2618   emit_byte(0xC0 | encode);
  2621 void Assembler::shll(Register dst, int imm8) {
  2622   assert(isShiftCount(imm8), "illegal shift count");
  2623   int encode = prefix_and_encode(dst->encoding());
  2624   if (imm8 == 1 ) {
  2625     emit_byte(0xD1);
  2626     emit_byte(0xE0 | encode);
  2627   } else {
  2628     emit_byte(0xC1);
  2629     emit_byte(0xE0 | encode);
  2630     emit_byte(imm8);
  2634 void Assembler::shll(Register dst) {
  2635   int encode = prefix_and_encode(dst->encoding());
  2636   emit_byte(0xD3);
  2637   emit_byte(0xE0 | encode);
  2640 void Assembler::shrl(Register dst, int imm8) {
  2641   assert(isShiftCount(imm8), "illegal shift count");
  2642   int encode = prefix_and_encode(dst->encoding());
  2643   emit_byte(0xC1);
  2644   emit_byte(0xE8 | encode);
  2645   emit_byte(imm8);
  2648 void Assembler::shrl(Register dst) {
  2649   int encode = prefix_and_encode(dst->encoding());
  2650   emit_byte(0xD3);
  2651   emit_byte(0xE8 | encode);
  2654 // copies a single word from [esi] to [edi]
  2655 void Assembler::smovl() {
  2656   emit_byte(0xA5);
  2659 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2660   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2661   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2664 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2666   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2669 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2670   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2671   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2674 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2675   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2676   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2679 void Assembler::stmxcsr( Address dst) {
  2680   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2681   InstructionMark im(this);
  2682   prefix(dst);
  2683   emit_byte(0x0F);
  2684   emit_byte(0xAE);
  2685   emit_operand(as_Register(3), dst);
  2688 void Assembler::subl(Address dst, int32_t imm32) {
  2689   InstructionMark im(this);
  2690   prefix(dst);
  2691   emit_arith_operand(0x81, rbp, dst, imm32);
  2694 void Assembler::subl(Address dst, Register src) {
  2695   InstructionMark im(this);
  2696   prefix(dst, src);
  2697   emit_byte(0x29);
  2698   emit_operand(src, dst);
  2701 void Assembler::subl(Register dst, int32_t imm32) {
  2702   prefix(dst);
  2703   emit_arith(0x81, 0xE8, dst, imm32);
  2706 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2707 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2708   prefix(dst);
  2709   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2712 void Assembler::subl(Register dst, Address src) {
  2713   InstructionMark im(this);
  2714   prefix(src, dst);
  2715   emit_byte(0x2B);
  2716   emit_operand(dst, src);
  2719 void Assembler::subl(Register dst, Register src) {
  2720   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2721   emit_arith(0x2B, 0xC0, dst, src);
  2724 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2725   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2726   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2729 void Assembler::subsd(XMMRegister dst, Address src) {
  2730   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2731   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2734 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2735   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2736   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2739 void Assembler::subss(XMMRegister dst, Address src) {
  2740   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2741   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2744 void Assembler::testb(Register dst, int imm8) {
  2745   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2746   (void) prefix_and_encode(dst->encoding(), true);
  2747   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2750 void Assembler::testl(Register dst, int32_t imm32) {
  2751   // not using emit_arith because test
  2752   // doesn't support sign-extension of
  2753   // 8bit operands
  2754   int encode = dst->encoding();
  2755   if (encode == 0) {
  2756     emit_byte(0xA9);
  2757   } else {
  2758     encode = prefix_and_encode(encode);
  2759     emit_byte(0xF7);
  2760     emit_byte(0xC0 | encode);
  2762   emit_long(imm32);
  2765 void Assembler::testl(Register dst, Register src) {
  2766   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2767   emit_arith(0x85, 0xC0, dst, src);
  2770 void Assembler::testl(Register dst, Address  src) {
  2771   InstructionMark im(this);
  2772   prefix(src, dst);
  2773   emit_byte(0x85);
  2774   emit_operand(dst, src);
  2777 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2778   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2779   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2782 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2783   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2784   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2787 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2788   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2789   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2792 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2793   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2794   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2798 void Assembler::xaddl(Address dst, Register src) {
  2799   InstructionMark im(this);
  2800   prefix(dst, src);
  2801   emit_byte(0x0F);
  2802   emit_byte(0xC1);
  2803   emit_operand(src, dst);
  2806 void Assembler::xchgl(Register dst, Address src) { // xchg
  2807   InstructionMark im(this);
  2808   prefix(src, dst);
  2809   emit_byte(0x87);
  2810   emit_operand(dst, src);
  2813 void Assembler::xchgl(Register dst, Register src) {
  2814   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2815   emit_byte(0x87);
  2816   emit_byte(0xc0 | encode);
  2819 void Assembler::xorl(Register dst, int32_t imm32) {
  2820   prefix(dst);
  2821   emit_arith(0x81, 0xF0, dst, imm32);
  2824 void Assembler::xorl(Register dst, Address src) {
  2825   InstructionMark im(this);
  2826   prefix(src, dst);
  2827   emit_byte(0x33);
  2828   emit_operand(dst, src);
  2831 void Assembler::xorl(Register dst, Register src) {
  2832   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2833   emit_arith(0x33, 0xC0, dst, src);
  2837 // AVX 3-operands scalar float-point arithmetic instructions
  2839 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2840   assert(VM_Version::supports_avx(), "");
  2841   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2844 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2845   assert(VM_Version::supports_avx(), "");
  2846   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2849 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2850   assert(VM_Version::supports_avx(), "");
  2851   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2854 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2855   assert(VM_Version::supports_avx(), "");
  2856   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2859 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2860   assert(VM_Version::supports_avx(), "");
  2861   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2864 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2865   assert(VM_Version::supports_avx(), "");
  2866   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2869 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  2870   assert(VM_Version::supports_avx(), "");
  2871   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2874 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2875   assert(VM_Version::supports_avx(), "");
  2876   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2879 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  2880   assert(VM_Version::supports_avx(), "");
  2881   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2884 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2885   assert(VM_Version::supports_avx(), "");
  2886   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2889 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  2890   assert(VM_Version::supports_avx(), "");
  2891   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2894 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2895   assert(VM_Version::supports_avx(), "");
  2896   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2899 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  2900   assert(VM_Version::supports_avx(), "");
  2901   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2904 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2905   assert(VM_Version::supports_avx(), "");
  2906   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2909 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  2910   assert(VM_Version::supports_avx(), "");
  2911   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2914 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2915   assert(VM_Version::supports_avx(), "");
  2916   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2919 //====================VECTOR ARITHMETIC=====================================
  2921 // Float-point vector arithmetic
  2923 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  2924   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2925   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  2928 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  2929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2930   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  2933 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2934   assert(VM_Version::supports_avx(), "");
  2935   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2938 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2939   assert(VM_Version::supports_avx(), "");
  2940   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2943 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2944   assert(VM_Version::supports_avx(), "");
  2945   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  2948 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2949   assert(VM_Version::supports_avx(), "");
  2950   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  2953 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  2954   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2955   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  2958 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  2959   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2960   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  2963 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2964   assert(VM_Version::supports_avx(), "");
  2965   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2968 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2969   assert(VM_Version::supports_avx(), "");
  2970   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2973 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2974   assert(VM_Version::supports_avx(), "");
  2975   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  2978 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2979   assert(VM_Version::supports_avx(), "");
  2980   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  2983 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  2984   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2985   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  2988 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  2989   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2990   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  2993 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2994   assert(VM_Version::supports_avx(), "");
  2995   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  2998 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2999   assert(VM_Version::supports_avx(), "");
  3000   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3003 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3004   assert(VM_Version::supports_avx(), "");
  3005   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3008 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3009   assert(VM_Version::supports_avx(), "");
  3010   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3013 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  3014   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3015   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  3018 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  3019   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3020   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  3023 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3024   assert(VM_Version::supports_avx(), "");
  3025   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3028 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3029   assert(VM_Version::supports_avx(), "");
  3030   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3033 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3034   assert(VM_Version::supports_avx(), "");
  3035   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3038 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3039   assert(VM_Version::supports_avx(), "");
  3040   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3043 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  3044   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3045   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3048 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3049   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3050   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3053 void Assembler::andps(XMMRegister dst, Address src) {
  3054   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3055   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3058 void Assembler::andpd(XMMRegister dst, Address src) {
  3059   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3060   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3063 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3064   assert(VM_Version::supports_avx(), "");
  3065   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3068 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3069   assert(VM_Version::supports_avx(), "");
  3070   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3073 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3074   assert(VM_Version::supports_avx(), "");
  3075   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3078 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3079   assert(VM_Version::supports_avx(), "");
  3080   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3083 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3085   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3088 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3089   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3090   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3093 void Assembler::xorpd(XMMRegister dst, Address src) {
  3094   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3095   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3098 void Assembler::xorps(XMMRegister dst, Address src) {
  3099   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3100   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3103 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3104   assert(VM_Version::supports_avx(), "");
  3105   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3108 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3109   assert(VM_Version::supports_avx(), "");
  3110   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3113 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3114   assert(VM_Version::supports_avx(), "");
  3115   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3118 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3119   assert(VM_Version::supports_avx(), "");
  3120   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3124 // Integer vector arithmetic
  3125 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3126   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3127   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3130 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3131   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3132   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3135 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3136   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3137   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3140 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3141   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3142   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3145 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3146   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3147   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3150 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3151   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3152   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3155 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3156   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3157   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3160 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3161   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3162   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3165 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3166   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3167   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3170 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3171   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3172   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3175 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3176   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3177   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3180 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3181   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3182   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3185 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3186   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3187   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3190 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3191   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3192   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3195 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3196   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3197   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3200 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3201   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3202   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3205 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3206   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3207   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3210 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3211   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3212   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3215 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3216   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3217   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3220 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3221   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3222   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3225 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3226   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3227   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3230 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3231   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3232   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3235 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3236   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3237   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3240 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3241   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3242   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3245 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3246   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3247   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3250 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3251   assert(VM_Version::supports_sse4_1(), "");
  3252   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3253   emit_byte(0x40);
  3254   emit_byte(0xC0 | encode);
  3257 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3258   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3259   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3262 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3263   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3264   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3265   emit_byte(0x40);
  3266   emit_byte(0xC0 | encode);
  3269 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3270   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3271   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3274 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3275   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3276   InstructionMark im(this);
  3277   int dst_enc = dst->encoding();
  3278   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3279   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3280   emit_byte(0x40);
  3281   emit_operand(dst, src);
  3284 // Shift packed integers left by specified number of bits.
  3285 void Assembler::psllw(XMMRegister dst, int shift) {
  3286   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3287   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3288   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3289   emit_byte(0x71);
  3290   emit_byte(0xC0 | encode);
  3291   emit_byte(shift & 0xFF);
  3294 void Assembler::pslld(XMMRegister dst, int shift) {
  3295   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3296   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3297   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3298   emit_byte(0x72);
  3299   emit_byte(0xC0 | encode);
  3300   emit_byte(shift & 0xFF);
  3303 void Assembler::psllq(XMMRegister dst, int shift) {
  3304   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3305   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3306   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3307   emit_byte(0x73);
  3308   emit_byte(0xC0 | encode);
  3309   emit_byte(shift & 0xFF);
  3312 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3313   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3314   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3317 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3319   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3322 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3324   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3327 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3328   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3329   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3330   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3331   emit_byte(shift & 0xFF);
  3334 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3335   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3336   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3337   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3338   emit_byte(shift & 0xFF);
  3341 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3342   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3343   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3344   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3345   emit_byte(shift & 0xFF);
  3348 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3349   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3350   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3353 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3354   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3355   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3358 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3359   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3360   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3363 // Shift packed integers logically right by specified number of bits.
  3364 void Assembler::psrlw(XMMRegister dst, int shift) {
  3365   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3366   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3367   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3368   emit_byte(0x71);
  3369   emit_byte(0xC0 | encode);
  3370   emit_byte(shift & 0xFF);
  3373 void Assembler::psrld(XMMRegister dst, int shift) {
  3374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3375   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3376   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3377   emit_byte(0x72);
  3378   emit_byte(0xC0 | encode);
  3379   emit_byte(shift & 0xFF);
  3382 void Assembler::psrlq(XMMRegister dst, int shift) {
  3383   // Do not confuse it with psrldq SSE2 instruction which
  3384   // shifts 128 bit value in xmm register by number of bytes.
  3385   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3386   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3387   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3388   emit_byte(0x73);
  3389   emit_byte(0xC0 | encode);
  3390   emit_byte(shift & 0xFF);
  3393 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3394   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3395   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3398 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3400   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3403 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3404   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3405   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3408 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3409   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3410   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3411   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3412   emit_byte(shift & 0xFF);
  3415 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3416   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3417   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3418   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3419   emit_byte(shift & 0xFF);
  3422 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3423   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3424   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3425   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3426   emit_byte(shift & 0xFF);
  3429 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3430   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3431   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3434 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3435   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3436   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3439 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3440   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3441   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3444 // Shift packed integers arithmetically right by specified number of bits.
  3445 void Assembler::psraw(XMMRegister dst, int shift) {
  3446   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3447   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3448   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3449   emit_byte(0x71);
  3450   emit_byte(0xC0 | encode);
  3451   emit_byte(shift & 0xFF);
  3454 void Assembler::psrad(XMMRegister dst, int shift) {
  3455   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3456   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3457   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3458   emit_byte(0x72);
  3459   emit_byte(0xC0 | encode);
  3460   emit_byte(shift & 0xFF);
  3463 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3464   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3465   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3468 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3469   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3470   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3473 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3474   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3475   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3476   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3477   emit_byte(shift & 0xFF);
  3480 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3481   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3482   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3483   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3484   emit_byte(shift & 0xFF);
  3487 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3488   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3489   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3492 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3493   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3494   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3498 // AND packed integers
  3499 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3500   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3501   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3504 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3505   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3506   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3509 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3510   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3511   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3514 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3515   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3516   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3519 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3520   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3521   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3524 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3525   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3526   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3529 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3530   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3531   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3534 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3535   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3536   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3539 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3540   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3541   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3545 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3546   assert(VM_Version::supports_avx(), "");
  3547   bool vector256 = true;
  3548   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3549   emit_byte(0x18);
  3550   emit_byte(0xC0 | encode);
  3551   // 0x00 - insert into lower 128 bits
  3552   // 0x01 - insert into upper 128 bits
  3553   emit_byte(0x01);
  3556 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3557   assert(VM_Version::supports_avx(), "");
  3558   InstructionMark im(this);
  3559   bool vector256 = true;
  3560   assert(dst != xnoreg, "sanity");
  3561   int dst_enc = dst->encoding();
  3562   // swap src<->dst for encoding
  3563   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3564   emit_byte(0x18);
  3565   emit_operand(dst, src);
  3566   // 0x01 - insert into upper 128 bits
  3567   emit_byte(0x01);
  3570 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3571   assert(VM_Version::supports_avx(), "");
  3572   InstructionMark im(this);
  3573   bool vector256 = true;
  3574   assert(src != xnoreg, "sanity");
  3575   int src_enc = src->encoding();
  3576   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3577   emit_byte(0x19);
  3578   emit_operand(src, dst);
  3579   // 0x01 - extract from upper 128 bits
  3580   emit_byte(0x01);
  3583 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3584   assert(VM_Version::supports_avx2(), "");
  3585   bool vector256 = true;
  3586   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3587   emit_byte(0x38);
  3588   emit_byte(0xC0 | encode);
  3589   // 0x00 - insert into lower 128 bits
  3590   // 0x01 - insert into upper 128 bits
  3591   emit_byte(0x01);
  3594 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3595   assert(VM_Version::supports_avx2(), "");
  3596   InstructionMark im(this);
  3597   bool vector256 = true;
  3598   assert(dst != xnoreg, "sanity");
  3599   int dst_enc = dst->encoding();
  3600   // swap src<->dst for encoding
  3601   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3602   emit_byte(0x38);
  3603   emit_operand(dst, src);
  3604   // 0x01 - insert into upper 128 bits
  3605   emit_byte(0x01);
  3608 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3609   assert(VM_Version::supports_avx2(), "");
  3610   InstructionMark im(this);
  3611   bool vector256 = true;
  3612   assert(src != xnoreg, "sanity");
  3613   int src_enc = src->encoding();
  3614   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3615   emit_byte(0x39);
  3616   emit_operand(src, dst);
  3617   // 0x01 - extract from upper 128 bits
  3618   emit_byte(0x01);
  3621 void Assembler::vzeroupper() {
  3622   assert(VM_Version::supports_avx(), "");
  3623   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3624   emit_byte(0x77);
  3628 #ifndef _LP64
  3629 // 32bit only pieces of the assembler
  3631 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3632   // NO PREFIX AS NEVER 64BIT
  3633   InstructionMark im(this);
  3634   emit_byte(0x81);
  3635   emit_byte(0xF8 | src1->encoding());
  3636   emit_data(imm32, rspec, 0);
  3639 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3640   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3641   InstructionMark im(this);
  3642   emit_byte(0x81);
  3643   emit_operand(rdi, src1);
  3644   emit_data(imm32, rspec, 0);
  3647 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3648 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3649 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3650 void Assembler::cmpxchg8(Address adr) {
  3651   InstructionMark im(this);
  3652   emit_byte(0x0F);
  3653   emit_byte(0xc7);
  3654   emit_operand(rcx, adr);
  3657 void Assembler::decl(Register dst) {
  3658   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3659  emit_byte(0x48 | dst->encoding());
  3662 #endif // _LP64
  3664 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3666 void Assembler::fabs() {
  3667   emit_byte(0xD9);
  3668   emit_byte(0xE1);
  3671 void Assembler::fadd(int i) {
  3672   emit_farith(0xD8, 0xC0, i);
  3675 void Assembler::fadd_d(Address src) {
  3676   InstructionMark im(this);
  3677   emit_byte(0xDC);
  3678   emit_operand32(rax, src);
  3681 void Assembler::fadd_s(Address src) {
  3682   InstructionMark im(this);
  3683   emit_byte(0xD8);
  3684   emit_operand32(rax, src);
  3687 void Assembler::fadda(int i) {
  3688   emit_farith(0xDC, 0xC0, i);
  3691 void Assembler::faddp(int i) {
  3692   emit_farith(0xDE, 0xC0, i);
  3695 void Assembler::fchs() {
  3696   emit_byte(0xD9);
  3697   emit_byte(0xE0);
  3700 void Assembler::fcom(int i) {
  3701   emit_farith(0xD8, 0xD0, i);
  3704 void Assembler::fcomp(int i) {
  3705   emit_farith(0xD8, 0xD8, i);
  3708 void Assembler::fcomp_d(Address src) {
  3709   InstructionMark im(this);
  3710   emit_byte(0xDC);
  3711   emit_operand32(rbx, src);
  3714 void Assembler::fcomp_s(Address src) {
  3715   InstructionMark im(this);
  3716   emit_byte(0xD8);
  3717   emit_operand32(rbx, src);
  3720 void Assembler::fcompp() {
  3721   emit_byte(0xDE);
  3722   emit_byte(0xD9);
  3725 void Assembler::fcos() {
  3726   emit_byte(0xD9);
  3727   emit_byte(0xFF);
  3730 void Assembler::fdecstp() {
  3731   emit_byte(0xD9);
  3732   emit_byte(0xF6);
  3735 void Assembler::fdiv(int i) {
  3736   emit_farith(0xD8, 0xF0, i);
  3739 void Assembler::fdiv_d(Address src) {
  3740   InstructionMark im(this);
  3741   emit_byte(0xDC);
  3742   emit_operand32(rsi, src);
  3745 void Assembler::fdiv_s(Address src) {
  3746   InstructionMark im(this);
  3747   emit_byte(0xD8);
  3748   emit_operand32(rsi, src);
  3751 void Assembler::fdiva(int i) {
  3752   emit_farith(0xDC, 0xF8, i);
  3755 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3756 //       is erroneous for some of the floating-point instructions below.
  3758 void Assembler::fdivp(int i) {
  3759   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3762 void Assembler::fdivr(int i) {
  3763   emit_farith(0xD8, 0xF8, i);
  3766 void Assembler::fdivr_d(Address src) {
  3767   InstructionMark im(this);
  3768   emit_byte(0xDC);
  3769   emit_operand32(rdi, src);
  3772 void Assembler::fdivr_s(Address src) {
  3773   InstructionMark im(this);
  3774   emit_byte(0xD8);
  3775   emit_operand32(rdi, src);
  3778 void Assembler::fdivra(int i) {
  3779   emit_farith(0xDC, 0xF0, i);
  3782 void Assembler::fdivrp(int i) {
  3783   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3786 void Assembler::ffree(int i) {
  3787   emit_farith(0xDD, 0xC0, i);
  3790 void Assembler::fild_d(Address adr) {
  3791   InstructionMark im(this);
  3792   emit_byte(0xDF);
  3793   emit_operand32(rbp, adr);
  3796 void Assembler::fild_s(Address adr) {
  3797   InstructionMark im(this);
  3798   emit_byte(0xDB);
  3799   emit_operand32(rax, adr);
  3802 void Assembler::fincstp() {
  3803   emit_byte(0xD9);
  3804   emit_byte(0xF7);
  3807 void Assembler::finit() {
  3808   emit_byte(0x9B);
  3809   emit_byte(0xDB);
  3810   emit_byte(0xE3);
  3813 void Assembler::fist_s(Address adr) {
  3814   InstructionMark im(this);
  3815   emit_byte(0xDB);
  3816   emit_operand32(rdx, adr);
  3819 void Assembler::fistp_d(Address adr) {
  3820   InstructionMark im(this);
  3821   emit_byte(0xDF);
  3822   emit_operand32(rdi, adr);
  3825 void Assembler::fistp_s(Address adr) {
  3826   InstructionMark im(this);
  3827   emit_byte(0xDB);
  3828   emit_operand32(rbx, adr);
  3831 void Assembler::fld1() {
  3832   emit_byte(0xD9);
  3833   emit_byte(0xE8);
  3836 void Assembler::fld_d(Address adr) {
  3837   InstructionMark im(this);
  3838   emit_byte(0xDD);
  3839   emit_operand32(rax, adr);
  3842 void Assembler::fld_s(Address adr) {
  3843   InstructionMark im(this);
  3844   emit_byte(0xD9);
  3845   emit_operand32(rax, adr);
  3849 void Assembler::fld_s(int index) {
  3850   emit_farith(0xD9, 0xC0, index);
  3853 void Assembler::fld_x(Address adr) {
  3854   InstructionMark im(this);
  3855   emit_byte(0xDB);
  3856   emit_operand32(rbp, adr);
  3859 void Assembler::fldcw(Address src) {
  3860   InstructionMark im(this);
  3861   emit_byte(0xd9);
  3862   emit_operand32(rbp, src);
  3865 void Assembler::fldenv(Address src) {
  3866   InstructionMark im(this);
  3867   emit_byte(0xD9);
  3868   emit_operand32(rsp, src);
  3871 void Assembler::fldlg2() {
  3872   emit_byte(0xD9);
  3873   emit_byte(0xEC);
  3876 void Assembler::fldln2() {
  3877   emit_byte(0xD9);
  3878   emit_byte(0xED);
  3881 void Assembler::fldz() {
  3882   emit_byte(0xD9);
  3883   emit_byte(0xEE);
  3886 void Assembler::flog() {
  3887   fldln2();
  3888   fxch();
  3889   fyl2x();
  3892 void Assembler::flog10() {
  3893   fldlg2();
  3894   fxch();
  3895   fyl2x();
  3898 void Assembler::fmul(int i) {
  3899   emit_farith(0xD8, 0xC8, i);
  3902 void Assembler::fmul_d(Address src) {
  3903   InstructionMark im(this);
  3904   emit_byte(0xDC);
  3905   emit_operand32(rcx, src);
  3908 void Assembler::fmul_s(Address src) {
  3909   InstructionMark im(this);
  3910   emit_byte(0xD8);
  3911   emit_operand32(rcx, src);
  3914 void Assembler::fmula(int i) {
  3915   emit_farith(0xDC, 0xC8, i);
  3918 void Assembler::fmulp(int i) {
  3919   emit_farith(0xDE, 0xC8, i);
  3922 void Assembler::fnsave(Address dst) {
  3923   InstructionMark im(this);
  3924   emit_byte(0xDD);
  3925   emit_operand32(rsi, dst);
  3928 void Assembler::fnstcw(Address src) {
  3929   InstructionMark im(this);
  3930   emit_byte(0x9B);
  3931   emit_byte(0xD9);
  3932   emit_operand32(rdi, src);
  3935 void Assembler::fnstsw_ax() {
  3936   emit_byte(0xdF);
  3937   emit_byte(0xE0);
  3940 void Assembler::fprem() {
  3941   emit_byte(0xD9);
  3942   emit_byte(0xF8);
  3945 void Assembler::fprem1() {
  3946   emit_byte(0xD9);
  3947   emit_byte(0xF5);
  3950 void Assembler::frstor(Address src) {
  3951   InstructionMark im(this);
  3952   emit_byte(0xDD);
  3953   emit_operand32(rsp, src);
  3956 void Assembler::fsin() {
  3957   emit_byte(0xD9);
  3958   emit_byte(0xFE);
  3961 void Assembler::fsqrt() {
  3962   emit_byte(0xD9);
  3963   emit_byte(0xFA);
  3966 void Assembler::fst_d(Address adr) {
  3967   InstructionMark im(this);
  3968   emit_byte(0xDD);
  3969   emit_operand32(rdx, adr);
  3972 void Assembler::fst_s(Address adr) {
  3973   InstructionMark im(this);
  3974   emit_byte(0xD9);
  3975   emit_operand32(rdx, adr);
  3978 void Assembler::fstp_d(Address adr) {
  3979   InstructionMark im(this);
  3980   emit_byte(0xDD);
  3981   emit_operand32(rbx, adr);
  3984 void Assembler::fstp_d(int index) {
  3985   emit_farith(0xDD, 0xD8, index);
  3988 void Assembler::fstp_s(Address adr) {
  3989   InstructionMark im(this);
  3990   emit_byte(0xD9);
  3991   emit_operand32(rbx, adr);
  3994 void Assembler::fstp_x(Address adr) {
  3995   InstructionMark im(this);
  3996   emit_byte(0xDB);
  3997   emit_operand32(rdi, adr);
  4000 void Assembler::fsub(int i) {
  4001   emit_farith(0xD8, 0xE0, i);
  4004 void Assembler::fsub_d(Address src) {
  4005   InstructionMark im(this);
  4006   emit_byte(0xDC);
  4007   emit_operand32(rsp, src);
  4010 void Assembler::fsub_s(Address src) {
  4011   InstructionMark im(this);
  4012   emit_byte(0xD8);
  4013   emit_operand32(rsp, src);
  4016 void Assembler::fsuba(int i) {
  4017   emit_farith(0xDC, 0xE8, i);
  4020 void Assembler::fsubp(int i) {
  4021   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  4024 void Assembler::fsubr(int i) {
  4025   emit_farith(0xD8, 0xE8, i);
  4028 void Assembler::fsubr_d(Address src) {
  4029   InstructionMark im(this);
  4030   emit_byte(0xDC);
  4031   emit_operand32(rbp, src);
  4034 void Assembler::fsubr_s(Address src) {
  4035   InstructionMark im(this);
  4036   emit_byte(0xD8);
  4037   emit_operand32(rbp, src);
  4040 void Assembler::fsubra(int i) {
  4041   emit_farith(0xDC, 0xE0, i);
  4044 void Assembler::fsubrp(int i) {
  4045   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  4048 void Assembler::ftan() {
  4049   emit_byte(0xD9);
  4050   emit_byte(0xF2);
  4051   emit_byte(0xDD);
  4052   emit_byte(0xD8);
  4055 void Assembler::ftst() {
  4056   emit_byte(0xD9);
  4057   emit_byte(0xE4);
  4060 void Assembler::fucomi(int i) {
  4061   // make sure the instruction is supported (introduced for P6, together with cmov)
  4062   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4063   emit_farith(0xDB, 0xE8, i);
  4066 void Assembler::fucomip(int i) {
  4067   // make sure the instruction is supported (introduced for P6, together with cmov)
  4068   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4069   emit_farith(0xDF, 0xE8, i);
  4072 void Assembler::fwait() {
  4073   emit_byte(0x9B);
  4076 void Assembler::fxch(int i) {
  4077   emit_farith(0xD9, 0xC8, i);
  4080 void Assembler::fyl2x() {
  4081   emit_byte(0xD9);
  4082   emit_byte(0xF1);
  4085 void Assembler::frndint() {
  4086   emit_byte(0xD9);
  4087   emit_byte(0xFC);
  4090 void Assembler::f2xm1() {
  4091   emit_byte(0xD9);
  4092   emit_byte(0xF0);
  4095 void Assembler::fldl2e() {
  4096   emit_byte(0xD9);
  4097   emit_byte(0xEA);
  4100 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4101 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4102 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4103 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4105 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4106 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4107   if (pre > 0) {
  4108     emit_byte(simd_pre[pre]);
  4110   if (rex_w) {
  4111     prefixq(adr, xreg);
  4112   } else {
  4113     prefix(adr, xreg);
  4115   if (opc > 0) {
  4116     emit_byte(0x0F);
  4117     int opc2 = simd_opc[opc];
  4118     if (opc2 > 0) {
  4119       emit_byte(opc2);
  4124 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4125   if (pre > 0) {
  4126     emit_byte(simd_pre[pre]);
  4128   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4129                           prefix_and_encode(dst_enc, src_enc);
  4130   if (opc > 0) {
  4131     emit_byte(0x0F);
  4132     int opc2 = simd_opc[opc];
  4133     if (opc2 > 0) {
  4134       emit_byte(opc2);
  4137   return encode;
  4141 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4142   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4143     prefix(VEX_3bytes);
  4145     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4146     byte1 = (~byte1) & 0xE0;
  4147     byte1 |= opc;
  4148     a_byte(byte1);
  4150     int byte2 = ((~nds_enc) & 0xf) << 3;
  4151     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4152     emit_byte(byte2);
  4153   } else {
  4154     prefix(VEX_2bytes);
  4156     int byte1 = vex_r ? VEX_R : 0;
  4157     byte1 = (~byte1) & 0x80;
  4158     byte1 |= ((~nds_enc) & 0xf) << 3;
  4159     byte1 |= (vector256 ? 4 : 0) | pre;
  4160     emit_byte(byte1);
  4164 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4165   bool vex_r = (xreg_enc >= 8);
  4166   bool vex_b = adr.base_needs_rex();
  4167   bool vex_x = adr.index_needs_rex();
  4168   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4171 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4172   bool vex_r = (dst_enc >= 8);
  4173   bool vex_b = (src_enc >= 8);
  4174   bool vex_x = false;
  4175   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4176   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4180 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4181   if (UseAVX > 0) {
  4182     int xreg_enc = xreg->encoding();
  4183     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4184     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4185   } else {
  4186     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4187     rex_prefix(adr, xreg, pre, opc, rex_w);
  4191 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4192   int dst_enc = dst->encoding();
  4193   int src_enc = src->encoding();
  4194   if (UseAVX > 0) {
  4195     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4196     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4197   } else {
  4198     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4199     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4203 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4204   InstructionMark im(this);
  4205   simd_prefix(dst, dst, src, pre);
  4206   emit_byte(opcode);
  4207   emit_operand(dst, src);
  4210 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4211   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4212   emit_byte(opcode);
  4213   emit_byte(0xC0 | encode);
  4216 // Versions with no second source register (non-destructive source).
  4217 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4218   InstructionMark im(this);
  4219   simd_prefix(dst, xnoreg, src, pre);
  4220   emit_byte(opcode);
  4221   emit_operand(dst, src);
  4224 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4225   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4226   emit_byte(opcode);
  4227   emit_byte(0xC0 | encode);
  4230 // 3-operands AVX instructions
  4231 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4232                                Address src, VexSimdPrefix pre, bool vector256) {
  4233   InstructionMark im(this);
  4234   vex_prefix(dst, nds, src, pre, vector256);
  4235   emit_byte(opcode);
  4236   emit_operand(dst, src);
  4239 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4240                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4241   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4242   emit_byte(opcode);
  4243   emit_byte(0xC0 | encode);
  4246 #ifndef _LP64
  4248 void Assembler::incl(Register dst) {
  4249   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4250   emit_byte(0x40 | dst->encoding());
  4253 void Assembler::lea(Register dst, Address src) {
  4254   leal(dst, src);
  4257 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4258   InstructionMark im(this);
  4259   emit_byte(0xC7);
  4260   emit_operand(rax, dst);
  4261   emit_data((int)imm32, rspec, 0);
  4264 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4265   InstructionMark im(this);
  4266   int encode = prefix_and_encode(dst->encoding());
  4267   emit_byte(0xB8 | encode);
  4268   emit_data((int)imm32, rspec, 0);
  4271 void Assembler::popa() { // 32bit
  4272   emit_byte(0x61);
  4275 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4276   InstructionMark im(this);
  4277   emit_byte(0x68);
  4278   emit_data(imm32, rspec, 0);
  4281 void Assembler::pusha() { // 32bit
  4282   emit_byte(0x60);
  4285 void Assembler::set_byte_if_not_zero(Register dst) {
  4286   emit_byte(0x0F);
  4287   emit_byte(0x95);
  4288   emit_byte(0xE0 | dst->encoding());
  4291 void Assembler::shldl(Register dst, Register src) {
  4292   emit_byte(0x0F);
  4293   emit_byte(0xA5);
  4294   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4297 void Assembler::shrdl(Register dst, Register src) {
  4298   emit_byte(0x0F);
  4299   emit_byte(0xAD);
  4300   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  4303 #else // LP64
  4305 void Assembler::set_byte_if_not_zero(Register dst) {
  4306   int enc = prefix_and_encode(dst->encoding(), true);
  4307   emit_byte(0x0F);
  4308   emit_byte(0x95);
  4309   emit_byte(0xE0 | enc);
  4312 // 64bit only pieces of the assembler
  4313 // This should only be used by 64bit instructions that can use rip-relative
  4314 // it cannot be used by instructions that want an immediate value.
  4316 bool Assembler::reachable(AddressLiteral adr) {
  4317   int64_t disp;
  4318   // None will force a 64bit literal to the code stream. Likely a placeholder
  4319   // for something that will be patched later and we need to certain it will
  4320   // always be reachable.
  4321   if (adr.reloc() == relocInfo::none) {
  4322     return false;
  4324   if (adr.reloc() == relocInfo::internal_word_type) {
  4325     // This should be rip relative and easily reachable.
  4326     return true;
  4328   if (adr.reloc() == relocInfo::virtual_call_type ||
  4329       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4330       adr.reloc() == relocInfo::static_call_type ||
  4331       adr.reloc() == relocInfo::static_stub_type ) {
  4332     // This should be rip relative within the code cache and easily
  4333     // reachable until we get huge code caches. (At which point
  4334     // ic code is going to have issues).
  4335     return true;
  4337   if (adr.reloc() != relocInfo::external_word_type &&
  4338       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4339       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4340       adr.reloc() != relocInfo::runtime_call_type ) {
  4341     return false;
  4344   // Stress the correction code
  4345   if (ForceUnreachable) {
  4346     // Must be runtimecall reloc, see if it is in the codecache
  4347     // Flipping stuff in the codecache to be unreachable causes issues
  4348     // with things like inline caches where the additional instructions
  4349     // are not handled.
  4350     if (CodeCache::find_blob(adr._target) == NULL) {
  4351       return false;
  4354   // For external_word_type/runtime_call_type if it is reachable from where we
  4355   // are now (possibly a temp buffer) and where we might end up
  4356   // anywhere in the codeCache then we are always reachable.
  4357   // This would have to change if we ever save/restore shared code
  4358   // to be more pessimistic.
  4359   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4360   if (!is_simm32(disp)) return false;
  4361   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4362   if (!is_simm32(disp)) return false;
  4364   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  4366   // Because rip relative is a disp + address_of_next_instruction and we
  4367   // don't know the value of address_of_next_instruction we apply a fudge factor
  4368   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4369   // We don't have to fudge the checks above here because they are already worst case.
  4371   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4372   // + 4 because better safe than sorry.
  4373   const int fudge = 12 + 4;
  4374   if (disp < 0) {
  4375     disp -= fudge;
  4376   } else {
  4377     disp += fudge;
  4379   return is_simm32(disp);
  4382 // Check if the polling page is not reachable from the code cache using rip-relative
  4383 // addressing.
  4384 bool Assembler::is_polling_page_far() {
  4385   intptr_t addr = (intptr_t)os::get_polling_page();
  4386   return ForceUnreachable ||
  4387          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4388          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4391 void Assembler::emit_data64(jlong data,
  4392                             relocInfo::relocType rtype,
  4393                             int format) {
  4394   if (rtype == relocInfo::none) {
  4395     emit_long64(data);
  4396   } else {
  4397     emit_data64(data, Relocation::spec_simple(rtype), format);
  4401 void Assembler::emit_data64(jlong data,
  4402                             RelocationHolder const& rspec,
  4403                             int format) {
  4404   assert(imm_operand == 0, "default format must be immediate in this file");
  4405   assert(imm_operand == format, "must be immediate");
  4406   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4407   // Do not use AbstractAssembler::relocate, which is not intended for
  4408   // embedded words.  Instead, relocate to the enclosing instruction.
  4409   code_section()->relocate(inst_mark(), rspec, format);
  4410 #ifdef ASSERT
  4411   check_relocation(rspec, format);
  4412 #endif
  4413   emit_long64(data);
  4416 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4417   if (reg_enc >= 8) {
  4418     prefix(REX_B);
  4419     reg_enc -= 8;
  4420   } else if (byteinst && reg_enc >= 4) {
  4421     prefix(REX);
  4423   return reg_enc;
  4426 int Assembler::prefixq_and_encode(int reg_enc) {
  4427   if (reg_enc < 8) {
  4428     prefix(REX_W);
  4429   } else {
  4430     prefix(REX_WB);
  4431     reg_enc -= 8;
  4433   return reg_enc;
  4436 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4437   if (dst_enc < 8) {
  4438     if (src_enc >= 8) {
  4439       prefix(REX_B);
  4440       src_enc -= 8;
  4441     } else if (byteinst && src_enc >= 4) {
  4442       prefix(REX);
  4444   } else {
  4445     if (src_enc < 8) {
  4446       prefix(REX_R);
  4447     } else {
  4448       prefix(REX_RB);
  4449       src_enc -= 8;
  4451     dst_enc -= 8;
  4453   return dst_enc << 3 | src_enc;
  4456 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4457   if (dst_enc < 8) {
  4458     if (src_enc < 8) {
  4459       prefix(REX_W);
  4460     } else {
  4461       prefix(REX_WB);
  4462       src_enc -= 8;
  4464   } else {
  4465     if (src_enc < 8) {
  4466       prefix(REX_WR);
  4467     } else {
  4468       prefix(REX_WRB);
  4469       src_enc -= 8;
  4471     dst_enc -= 8;
  4473   return dst_enc << 3 | src_enc;
  4476 void Assembler::prefix(Register reg) {
  4477   if (reg->encoding() >= 8) {
  4478     prefix(REX_B);
  4482 void Assembler::prefix(Address adr) {
  4483   if (adr.base_needs_rex()) {
  4484     if (adr.index_needs_rex()) {
  4485       prefix(REX_XB);
  4486     } else {
  4487       prefix(REX_B);
  4489   } else {
  4490     if (adr.index_needs_rex()) {
  4491       prefix(REX_X);
  4496 void Assembler::prefixq(Address adr) {
  4497   if (adr.base_needs_rex()) {
  4498     if (adr.index_needs_rex()) {
  4499       prefix(REX_WXB);
  4500     } else {
  4501       prefix(REX_WB);
  4503   } else {
  4504     if (adr.index_needs_rex()) {
  4505       prefix(REX_WX);
  4506     } else {
  4507       prefix(REX_W);
  4513 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4514   if (reg->encoding() < 8) {
  4515     if (adr.base_needs_rex()) {
  4516       if (adr.index_needs_rex()) {
  4517         prefix(REX_XB);
  4518       } else {
  4519         prefix(REX_B);
  4521     } else {
  4522       if (adr.index_needs_rex()) {
  4523         prefix(REX_X);
  4524       } else if (byteinst && reg->encoding() >= 4 ) {
  4525         prefix(REX);
  4528   } else {
  4529     if (adr.base_needs_rex()) {
  4530       if (adr.index_needs_rex()) {
  4531         prefix(REX_RXB);
  4532       } else {
  4533         prefix(REX_RB);
  4535     } else {
  4536       if (adr.index_needs_rex()) {
  4537         prefix(REX_RX);
  4538       } else {
  4539         prefix(REX_R);
  4545 void Assembler::prefixq(Address adr, Register src) {
  4546   if (src->encoding() < 8) {
  4547     if (adr.base_needs_rex()) {
  4548       if (adr.index_needs_rex()) {
  4549         prefix(REX_WXB);
  4550       } else {
  4551         prefix(REX_WB);
  4553     } else {
  4554       if (adr.index_needs_rex()) {
  4555         prefix(REX_WX);
  4556       } else {
  4557         prefix(REX_W);
  4560   } else {
  4561     if (adr.base_needs_rex()) {
  4562       if (adr.index_needs_rex()) {
  4563         prefix(REX_WRXB);
  4564       } else {
  4565         prefix(REX_WRB);
  4567     } else {
  4568       if (adr.index_needs_rex()) {
  4569         prefix(REX_WRX);
  4570       } else {
  4571         prefix(REX_WR);
  4577 void Assembler::prefix(Address adr, XMMRegister reg) {
  4578   if (reg->encoding() < 8) {
  4579     if (adr.base_needs_rex()) {
  4580       if (adr.index_needs_rex()) {
  4581         prefix(REX_XB);
  4582       } else {
  4583         prefix(REX_B);
  4585     } else {
  4586       if (adr.index_needs_rex()) {
  4587         prefix(REX_X);
  4590   } else {
  4591     if (adr.base_needs_rex()) {
  4592       if (adr.index_needs_rex()) {
  4593         prefix(REX_RXB);
  4594       } else {
  4595         prefix(REX_RB);
  4597     } else {
  4598       if (adr.index_needs_rex()) {
  4599         prefix(REX_RX);
  4600       } else {
  4601         prefix(REX_R);
  4607 void Assembler::prefixq(Address adr, XMMRegister src) {
  4608   if (src->encoding() < 8) {
  4609     if (adr.base_needs_rex()) {
  4610       if (adr.index_needs_rex()) {
  4611         prefix(REX_WXB);
  4612       } else {
  4613         prefix(REX_WB);
  4615     } else {
  4616       if (adr.index_needs_rex()) {
  4617         prefix(REX_WX);
  4618       } else {
  4619         prefix(REX_W);
  4622   } else {
  4623     if (adr.base_needs_rex()) {
  4624       if (adr.index_needs_rex()) {
  4625         prefix(REX_WRXB);
  4626       } else {
  4627         prefix(REX_WRB);
  4629     } else {
  4630       if (adr.index_needs_rex()) {
  4631         prefix(REX_WRX);
  4632       } else {
  4633         prefix(REX_WR);
  4639 void Assembler::adcq(Register dst, int32_t imm32) {
  4640   (void) prefixq_and_encode(dst->encoding());
  4641   emit_arith(0x81, 0xD0, dst, imm32);
  4644 void Assembler::adcq(Register dst, Address src) {
  4645   InstructionMark im(this);
  4646   prefixq(src, dst);
  4647   emit_byte(0x13);
  4648   emit_operand(dst, src);
  4651 void Assembler::adcq(Register dst, Register src) {
  4652   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4653   emit_arith(0x13, 0xC0, dst, src);
  4656 void Assembler::addq(Address dst, int32_t imm32) {
  4657   InstructionMark im(this);
  4658   prefixq(dst);
  4659   emit_arith_operand(0x81, rax, dst,imm32);
  4662 void Assembler::addq(Address dst, Register src) {
  4663   InstructionMark im(this);
  4664   prefixq(dst, src);
  4665   emit_byte(0x01);
  4666   emit_operand(src, dst);
  4669 void Assembler::addq(Register dst, int32_t imm32) {
  4670   (void) prefixq_and_encode(dst->encoding());
  4671   emit_arith(0x81, 0xC0, dst, imm32);
  4674 void Assembler::addq(Register dst, Address src) {
  4675   InstructionMark im(this);
  4676   prefixq(src, dst);
  4677   emit_byte(0x03);
  4678   emit_operand(dst, src);
  4681 void Assembler::addq(Register dst, Register src) {
  4682   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4683   emit_arith(0x03, 0xC0, dst, src);
  4686 void Assembler::andq(Address dst, int32_t imm32) {
  4687   InstructionMark im(this);
  4688   prefixq(dst);
  4689   emit_byte(0x81);
  4690   emit_operand(rsp, dst, 4);
  4691   emit_long(imm32);
  4694 void Assembler::andq(Register dst, int32_t imm32) {
  4695   (void) prefixq_and_encode(dst->encoding());
  4696   emit_arith(0x81, 0xE0, dst, imm32);
  4699 void Assembler::andq(Register dst, Address src) {
  4700   InstructionMark im(this);
  4701   prefixq(src, dst);
  4702   emit_byte(0x23);
  4703   emit_operand(dst, src);
  4706 void Assembler::andq(Register dst, Register src) {
  4707   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  4708   emit_arith(0x23, 0xC0, dst, src);
  4711 void Assembler::bsfq(Register dst, Register src) {
  4712   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4713   emit_byte(0x0F);
  4714   emit_byte(0xBC);
  4715   emit_byte(0xC0 | encode);
  4718 void Assembler::bsrq(Register dst, Register src) {
  4719   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4720   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4721   emit_byte(0x0F);
  4722   emit_byte(0xBD);
  4723   emit_byte(0xC0 | encode);
  4726 void Assembler::bswapq(Register reg) {
  4727   int encode = prefixq_and_encode(reg->encoding());
  4728   emit_byte(0x0F);
  4729   emit_byte(0xC8 | encode);
  4732 void Assembler::cdqq() {
  4733   prefix(REX_W);
  4734   emit_byte(0x99);
  4737 void Assembler::clflush(Address adr) {
  4738   prefix(adr);
  4739   emit_byte(0x0F);
  4740   emit_byte(0xAE);
  4741   emit_operand(rdi, adr);
  4744 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4745   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4746   emit_byte(0x0F);
  4747   emit_byte(0x40 | cc);
  4748   emit_byte(0xC0 | encode);
  4751 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4752   InstructionMark im(this);
  4753   prefixq(src, dst);
  4754   emit_byte(0x0F);
  4755   emit_byte(0x40 | cc);
  4756   emit_operand(dst, src);
  4759 void Assembler::cmpq(Address dst, int32_t imm32) {
  4760   InstructionMark im(this);
  4761   prefixq(dst);
  4762   emit_byte(0x81);
  4763   emit_operand(rdi, dst, 4);
  4764   emit_long(imm32);
  4767 void Assembler::cmpq(Register dst, int32_t imm32) {
  4768   (void) prefixq_and_encode(dst->encoding());
  4769   emit_arith(0x81, 0xF8, dst, imm32);
  4772 void Assembler::cmpq(Address dst, Register src) {
  4773   InstructionMark im(this);
  4774   prefixq(dst, src);
  4775   emit_byte(0x3B);
  4776   emit_operand(src, dst);
  4779 void Assembler::cmpq(Register dst, Register src) {
  4780   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4781   emit_arith(0x3B, 0xC0, dst, src);
  4784 void Assembler::cmpq(Register dst, Address  src) {
  4785   InstructionMark im(this);
  4786   prefixq(src, dst);
  4787   emit_byte(0x3B);
  4788   emit_operand(dst, src);
  4791 void Assembler::cmpxchgq(Register reg, Address adr) {
  4792   InstructionMark im(this);
  4793   prefixq(adr, reg);
  4794   emit_byte(0x0F);
  4795   emit_byte(0xB1);
  4796   emit_operand(reg, adr);
  4799 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4801   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4802   emit_byte(0x2A);
  4803   emit_byte(0xC0 | encode);
  4806 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4807   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4808   InstructionMark im(this);
  4809   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4810   emit_byte(0x2A);
  4811   emit_operand(dst, src);
  4814 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4815   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4816   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4817   emit_byte(0x2A);
  4818   emit_byte(0xC0 | encode);
  4821 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4822   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4823   InstructionMark im(this);
  4824   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4825   emit_byte(0x2A);
  4826   emit_operand(dst, src);
  4829 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4830   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4831   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4832   emit_byte(0x2C);
  4833   emit_byte(0xC0 | encode);
  4836 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4837   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4838   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4839   emit_byte(0x2C);
  4840   emit_byte(0xC0 | encode);
  4843 void Assembler::decl(Register dst) {
  4844   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4845   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4846   int encode = prefix_and_encode(dst->encoding());
  4847   emit_byte(0xFF);
  4848   emit_byte(0xC8 | encode);
  4851 void Assembler::decq(Register dst) {
  4852   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4853   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4854   int encode = prefixq_and_encode(dst->encoding());
  4855   emit_byte(0xFF);
  4856   emit_byte(0xC8 | encode);
  4859 void Assembler::decq(Address dst) {
  4860   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4861   InstructionMark im(this);
  4862   prefixq(dst);
  4863   emit_byte(0xFF);
  4864   emit_operand(rcx, dst);
  4867 void Assembler::fxrstor(Address src) {
  4868   prefixq(src);
  4869   emit_byte(0x0F);
  4870   emit_byte(0xAE);
  4871   emit_operand(as_Register(1), src);
  4874 void Assembler::fxsave(Address dst) {
  4875   prefixq(dst);
  4876   emit_byte(0x0F);
  4877   emit_byte(0xAE);
  4878   emit_operand(as_Register(0), dst);
  4881 void Assembler::idivq(Register src) {
  4882   int encode = prefixq_and_encode(src->encoding());
  4883   emit_byte(0xF7);
  4884   emit_byte(0xF8 | encode);
  4887 void Assembler::imulq(Register dst, Register src) {
  4888   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4889   emit_byte(0x0F);
  4890   emit_byte(0xAF);
  4891   emit_byte(0xC0 | encode);
  4894 void Assembler::imulq(Register dst, Register src, int value) {
  4895   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4896   if (is8bit(value)) {
  4897     emit_byte(0x6B);
  4898     emit_byte(0xC0 | encode);
  4899     emit_byte(value & 0xFF);
  4900   } else {
  4901     emit_byte(0x69);
  4902     emit_byte(0xC0 | encode);
  4903     emit_long(value);
  4907 void Assembler::incl(Register dst) {
  4908   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4909   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4910   int encode = prefix_and_encode(dst->encoding());
  4911   emit_byte(0xFF);
  4912   emit_byte(0xC0 | encode);
  4915 void Assembler::incq(Register dst) {
  4916   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4917   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4918   int encode = prefixq_and_encode(dst->encoding());
  4919   emit_byte(0xFF);
  4920   emit_byte(0xC0 | encode);
  4923 void Assembler::incq(Address dst) {
  4924   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4925   InstructionMark im(this);
  4926   prefixq(dst);
  4927   emit_byte(0xFF);
  4928   emit_operand(rax, dst);
  4931 void Assembler::lea(Register dst, Address src) {
  4932   leaq(dst, src);
  4935 void Assembler::leaq(Register dst, Address src) {
  4936   InstructionMark im(this);
  4937   prefixq(src, dst);
  4938   emit_byte(0x8D);
  4939   emit_operand(dst, src);
  4942 void Assembler::mov64(Register dst, int64_t imm64) {
  4943   InstructionMark im(this);
  4944   int encode = prefixq_and_encode(dst->encoding());
  4945   emit_byte(0xB8 | encode);
  4946   emit_long64(imm64);
  4949 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4950   InstructionMark im(this);
  4951   int encode = prefixq_and_encode(dst->encoding());
  4952   emit_byte(0xB8 | encode);
  4953   emit_data64(imm64, rspec);
  4956 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4957   InstructionMark im(this);
  4958   int encode = prefix_and_encode(dst->encoding());
  4959   emit_byte(0xB8 | encode);
  4960   emit_data((int)imm32, rspec, narrow_oop_operand);
  4963 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4964   InstructionMark im(this);
  4965   prefix(dst);
  4966   emit_byte(0xC7);
  4967   emit_operand(rax, dst, 4);
  4968   emit_data((int)imm32, rspec, narrow_oop_operand);
  4971 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4972   InstructionMark im(this);
  4973   int encode = prefix_and_encode(src1->encoding());
  4974   emit_byte(0x81);
  4975   emit_byte(0xF8 | encode);
  4976   emit_data((int)imm32, rspec, narrow_oop_operand);
  4979 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4980   InstructionMark im(this);
  4981   prefix(src1);
  4982   emit_byte(0x81);
  4983   emit_operand(rax, src1, 4);
  4984   emit_data((int)imm32, rspec, narrow_oop_operand);
  4987 void Assembler::lzcntq(Register dst, Register src) {
  4988   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4989   emit_byte(0xF3);
  4990   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4991   emit_byte(0x0F);
  4992   emit_byte(0xBD);
  4993   emit_byte(0xC0 | encode);
  4996 void Assembler::movdq(XMMRegister dst, Register src) {
  4997   // table D-1 says MMX/SSE2
  4998   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4999   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  5000   emit_byte(0x6E);
  5001   emit_byte(0xC0 | encode);
  5004 void Assembler::movdq(Register dst, XMMRegister src) {
  5005   // table D-1 says MMX/SSE2
  5006   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5007   // swap src/dst to get correct prefix
  5008   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  5009   emit_byte(0x7E);
  5010   emit_byte(0xC0 | encode);
  5013 void Assembler::movq(Register dst, Register src) {
  5014   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5015   emit_byte(0x8B);
  5016   emit_byte(0xC0 | encode);
  5019 void Assembler::movq(Register dst, Address src) {
  5020   InstructionMark im(this);
  5021   prefixq(src, dst);
  5022   emit_byte(0x8B);
  5023   emit_operand(dst, src);
  5026 void Assembler::movq(Address dst, Register src) {
  5027   InstructionMark im(this);
  5028   prefixq(dst, src);
  5029   emit_byte(0x89);
  5030   emit_operand(src, dst);
  5033 void Assembler::movsbq(Register dst, Address src) {
  5034   InstructionMark im(this);
  5035   prefixq(src, dst);
  5036   emit_byte(0x0F);
  5037   emit_byte(0xBE);
  5038   emit_operand(dst, src);
  5041 void Assembler::movsbq(Register dst, Register src) {
  5042   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5043   emit_byte(0x0F);
  5044   emit_byte(0xBE);
  5045   emit_byte(0xC0 | encode);
  5048 void Assembler::movslq(Register dst, int32_t imm32) {
  5049   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  5050   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  5051   // as a result we shouldn't use until tested at runtime...
  5052   ShouldNotReachHere();
  5053   InstructionMark im(this);
  5054   int encode = prefixq_and_encode(dst->encoding());
  5055   emit_byte(0xC7 | encode);
  5056   emit_long(imm32);
  5059 void Assembler::movslq(Address dst, int32_t imm32) {
  5060   assert(is_simm32(imm32), "lost bits");
  5061   InstructionMark im(this);
  5062   prefixq(dst);
  5063   emit_byte(0xC7);
  5064   emit_operand(rax, dst, 4);
  5065   emit_long(imm32);
  5068 void Assembler::movslq(Register dst, Address src) {
  5069   InstructionMark im(this);
  5070   prefixq(src, dst);
  5071   emit_byte(0x63);
  5072   emit_operand(dst, src);
  5075 void Assembler::movslq(Register dst, Register src) {
  5076   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5077   emit_byte(0x63);
  5078   emit_byte(0xC0 | encode);
  5081 void Assembler::movswq(Register dst, Address src) {
  5082   InstructionMark im(this);
  5083   prefixq(src, dst);
  5084   emit_byte(0x0F);
  5085   emit_byte(0xBF);
  5086   emit_operand(dst, src);
  5089 void Assembler::movswq(Register dst, Register src) {
  5090   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5091   emit_byte(0x0F);
  5092   emit_byte(0xBF);
  5093   emit_byte(0xC0 | encode);
  5096 void Assembler::movzbq(Register dst, Address src) {
  5097   InstructionMark im(this);
  5098   prefixq(src, dst);
  5099   emit_byte(0x0F);
  5100   emit_byte(0xB6);
  5101   emit_operand(dst, src);
  5104 void Assembler::movzbq(Register dst, Register src) {
  5105   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5106   emit_byte(0x0F);
  5107   emit_byte(0xB6);
  5108   emit_byte(0xC0 | encode);
  5111 void Assembler::movzwq(Register dst, Address src) {
  5112   InstructionMark im(this);
  5113   prefixq(src, dst);
  5114   emit_byte(0x0F);
  5115   emit_byte(0xB7);
  5116   emit_operand(dst, src);
  5119 void Assembler::movzwq(Register dst, Register src) {
  5120   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5121   emit_byte(0x0F);
  5122   emit_byte(0xB7);
  5123   emit_byte(0xC0 | encode);
  5126 void Assembler::negq(Register dst) {
  5127   int encode = prefixq_and_encode(dst->encoding());
  5128   emit_byte(0xF7);
  5129   emit_byte(0xD8 | encode);
  5132 void Assembler::notq(Register dst) {
  5133   int encode = prefixq_and_encode(dst->encoding());
  5134   emit_byte(0xF7);
  5135   emit_byte(0xD0 | encode);
  5138 void Assembler::orq(Address dst, int32_t imm32) {
  5139   InstructionMark im(this);
  5140   prefixq(dst);
  5141   emit_byte(0x81);
  5142   emit_operand(rcx, dst, 4);
  5143   emit_long(imm32);
  5146 void Assembler::orq(Register dst, int32_t imm32) {
  5147   (void) prefixq_and_encode(dst->encoding());
  5148   emit_arith(0x81, 0xC8, dst, imm32);
  5151 void Assembler::orq(Register dst, Address src) {
  5152   InstructionMark im(this);
  5153   prefixq(src, dst);
  5154   emit_byte(0x0B);
  5155   emit_operand(dst, src);
  5158 void Assembler::orq(Register dst, Register src) {
  5159   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5160   emit_arith(0x0B, 0xC0, dst, src);
  5163 void Assembler::popa() { // 64bit
  5164   movq(r15, Address(rsp, 0));
  5165   movq(r14, Address(rsp, wordSize));
  5166   movq(r13, Address(rsp, 2 * wordSize));
  5167   movq(r12, Address(rsp, 3 * wordSize));
  5168   movq(r11, Address(rsp, 4 * wordSize));
  5169   movq(r10, Address(rsp, 5 * wordSize));
  5170   movq(r9,  Address(rsp, 6 * wordSize));
  5171   movq(r8,  Address(rsp, 7 * wordSize));
  5172   movq(rdi, Address(rsp, 8 * wordSize));
  5173   movq(rsi, Address(rsp, 9 * wordSize));
  5174   movq(rbp, Address(rsp, 10 * wordSize));
  5175   // skip rsp
  5176   movq(rbx, Address(rsp, 12 * wordSize));
  5177   movq(rdx, Address(rsp, 13 * wordSize));
  5178   movq(rcx, Address(rsp, 14 * wordSize));
  5179   movq(rax, Address(rsp, 15 * wordSize));
  5181   addq(rsp, 16 * wordSize);
  5184 void Assembler::popcntq(Register dst, Address src) {
  5185   assert(VM_Version::supports_popcnt(), "must support");
  5186   InstructionMark im(this);
  5187   emit_byte(0xF3);
  5188   prefixq(src, dst);
  5189   emit_byte(0x0F);
  5190   emit_byte(0xB8);
  5191   emit_operand(dst, src);
  5194 void Assembler::popcntq(Register dst, Register src) {
  5195   assert(VM_Version::supports_popcnt(), "must support");
  5196   emit_byte(0xF3);
  5197   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5198   emit_byte(0x0F);
  5199   emit_byte(0xB8);
  5200   emit_byte(0xC0 | encode);
  5203 void Assembler::popq(Address dst) {
  5204   InstructionMark im(this);
  5205   prefixq(dst);
  5206   emit_byte(0x8F);
  5207   emit_operand(rax, dst);
  5210 void Assembler::pusha() { // 64bit
  5211   // we have to store original rsp.  ABI says that 128 bytes
  5212   // below rsp are local scratch.
  5213   movq(Address(rsp, -5 * wordSize), rsp);
  5215   subq(rsp, 16 * wordSize);
  5217   movq(Address(rsp, 15 * wordSize), rax);
  5218   movq(Address(rsp, 14 * wordSize), rcx);
  5219   movq(Address(rsp, 13 * wordSize), rdx);
  5220   movq(Address(rsp, 12 * wordSize), rbx);
  5221   // skip rsp
  5222   movq(Address(rsp, 10 * wordSize), rbp);
  5223   movq(Address(rsp, 9 * wordSize), rsi);
  5224   movq(Address(rsp, 8 * wordSize), rdi);
  5225   movq(Address(rsp, 7 * wordSize), r8);
  5226   movq(Address(rsp, 6 * wordSize), r9);
  5227   movq(Address(rsp, 5 * wordSize), r10);
  5228   movq(Address(rsp, 4 * wordSize), r11);
  5229   movq(Address(rsp, 3 * wordSize), r12);
  5230   movq(Address(rsp, 2 * wordSize), r13);
  5231   movq(Address(rsp, wordSize), r14);
  5232   movq(Address(rsp, 0), r15);
  5235 void Assembler::pushq(Address src) {
  5236   InstructionMark im(this);
  5237   prefixq(src);
  5238   emit_byte(0xFF);
  5239   emit_operand(rsi, src);
  5242 void Assembler::rclq(Register dst, int imm8) {
  5243   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5244   int encode = prefixq_and_encode(dst->encoding());
  5245   if (imm8 == 1) {
  5246     emit_byte(0xD1);
  5247     emit_byte(0xD0 | encode);
  5248   } else {
  5249     emit_byte(0xC1);
  5250     emit_byte(0xD0 | encode);
  5251     emit_byte(imm8);
  5254 void Assembler::sarq(Register dst, int imm8) {
  5255   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5256   int encode = prefixq_and_encode(dst->encoding());
  5257   if (imm8 == 1) {
  5258     emit_byte(0xD1);
  5259     emit_byte(0xF8 | encode);
  5260   } else {
  5261     emit_byte(0xC1);
  5262     emit_byte(0xF8 | encode);
  5263     emit_byte(imm8);
  5267 void Assembler::sarq(Register dst) {
  5268   int encode = prefixq_and_encode(dst->encoding());
  5269   emit_byte(0xD3);
  5270   emit_byte(0xF8 | encode);
  5273 void Assembler::sbbq(Address dst, int32_t imm32) {
  5274   InstructionMark im(this);
  5275   prefixq(dst);
  5276   emit_arith_operand(0x81, rbx, dst, imm32);
  5279 void Assembler::sbbq(Register dst, int32_t imm32) {
  5280   (void) prefixq_and_encode(dst->encoding());
  5281   emit_arith(0x81, 0xD8, dst, imm32);
  5284 void Assembler::sbbq(Register dst, Address src) {
  5285   InstructionMark im(this);
  5286   prefixq(src, dst);
  5287   emit_byte(0x1B);
  5288   emit_operand(dst, src);
  5291 void Assembler::sbbq(Register dst, Register src) {
  5292   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5293   emit_arith(0x1B, 0xC0, dst, src);
  5296 void Assembler::shlq(Register dst, int imm8) {
  5297   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5298   int encode = prefixq_and_encode(dst->encoding());
  5299   if (imm8 == 1) {
  5300     emit_byte(0xD1);
  5301     emit_byte(0xE0 | encode);
  5302   } else {
  5303     emit_byte(0xC1);
  5304     emit_byte(0xE0 | encode);
  5305     emit_byte(imm8);
  5309 void Assembler::shlq(Register dst) {
  5310   int encode = prefixq_and_encode(dst->encoding());
  5311   emit_byte(0xD3);
  5312   emit_byte(0xE0 | encode);
  5315 void Assembler::shrq(Register dst, int imm8) {
  5316   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5317   int encode = prefixq_and_encode(dst->encoding());
  5318   emit_byte(0xC1);
  5319   emit_byte(0xE8 | encode);
  5320   emit_byte(imm8);
  5323 void Assembler::shrq(Register dst) {
  5324   int encode = prefixq_and_encode(dst->encoding());
  5325   emit_byte(0xD3);
  5326   emit_byte(0xE8 | encode);
  5329 void Assembler::subq(Address dst, int32_t imm32) {
  5330   InstructionMark im(this);
  5331   prefixq(dst);
  5332   emit_arith_operand(0x81, rbp, dst, imm32);
  5335 void Assembler::subq(Address dst, Register src) {
  5336   InstructionMark im(this);
  5337   prefixq(dst, src);
  5338   emit_byte(0x29);
  5339   emit_operand(src, dst);
  5342 void Assembler::subq(Register dst, int32_t imm32) {
  5343   (void) prefixq_and_encode(dst->encoding());
  5344   emit_arith(0x81, 0xE8, dst, imm32);
  5347 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5348 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5349   (void) prefixq_and_encode(dst->encoding());
  5350   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5353 void Assembler::subq(Register dst, Address src) {
  5354   InstructionMark im(this);
  5355   prefixq(src, dst);
  5356   emit_byte(0x2B);
  5357   emit_operand(dst, src);
  5360 void Assembler::subq(Register dst, Register src) {
  5361   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5362   emit_arith(0x2B, 0xC0, dst, src);
  5365 void Assembler::testq(Register dst, int32_t imm32) {
  5366   // not using emit_arith because test
  5367   // doesn't support sign-extension of
  5368   // 8bit operands
  5369   int encode = dst->encoding();
  5370   if (encode == 0) {
  5371     prefix(REX_W);
  5372     emit_byte(0xA9);
  5373   } else {
  5374     encode = prefixq_and_encode(encode);
  5375     emit_byte(0xF7);
  5376     emit_byte(0xC0 | encode);
  5378   emit_long(imm32);
  5381 void Assembler::testq(Register dst, Register src) {
  5382   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5383   emit_arith(0x85, 0xC0, dst, src);
  5386 void Assembler::xaddq(Address dst, Register src) {
  5387   InstructionMark im(this);
  5388   prefixq(dst, src);
  5389   emit_byte(0x0F);
  5390   emit_byte(0xC1);
  5391   emit_operand(src, dst);
  5394 void Assembler::xchgq(Register dst, Address src) {
  5395   InstructionMark im(this);
  5396   prefixq(src, dst);
  5397   emit_byte(0x87);
  5398   emit_operand(dst, src);
  5401 void Assembler::xchgq(Register dst, Register src) {
  5402   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5403   emit_byte(0x87);
  5404   emit_byte(0xc0 | encode);
  5407 void Assembler::xorq(Register dst, Register src) {
  5408   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5409   emit_arith(0x33, 0xC0, dst, src);
  5412 void Assembler::xorq(Register dst, Address src) {
  5413   InstructionMark im(this);
  5414   prefixq(src, dst);
  5415   emit_byte(0x33);
  5416   emit_operand(dst, src);
  5419 #endif // !LP64
  5421 static Assembler::Condition reverse[] = {
  5422     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  5423     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  5424     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  5425     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  5426     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  5427     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  5428     Assembler::above          /* belowEqual    = 0x6 */ ,
  5429     Assembler::belowEqual     /* above         = 0x7 */ ,
  5430     Assembler::positive       /* negative      = 0x8 */ ,
  5431     Assembler::negative       /* positive      = 0x9 */ ,
  5432     Assembler::noParity       /* parity        = 0xa */ ,
  5433     Assembler::parity         /* noParity      = 0xb */ ,
  5434     Assembler::greaterEqual   /* less          = 0xc */ ,
  5435     Assembler::less           /* greaterEqual  = 0xd */ ,
  5436     Assembler::greater        /* lessEqual     = 0xe */ ,
  5437     Assembler::lessEqual      /* greater       = 0xf, */
  5439 };
  5442 // Implementation of MacroAssembler
  5444 // First all the versions that have distinct versions depending on 32/64 bit
  5445 // Unless the difference is trivial (1 line or so).
  5447 #ifndef _LP64
  5449 // 32bit versions
  5451 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5452   return Address(adr.target(), adr.rspec());
  5455 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5456   return Address::make_array(adr);
  5459 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5460                                          Register obj_reg,
  5461                                          Register swap_reg,
  5462                                          Register tmp_reg,
  5463                                          bool swap_reg_contains_mark,
  5464                                          Label& done,
  5465                                          Label* slow_case,
  5466                                          BiasedLockingCounters* counters) {
  5467   assert(UseBiasedLocking, "why call this otherwise?");
  5468   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  5469   assert_different_registers(lock_reg, obj_reg, swap_reg);
  5471   if (PrintBiasedLockingStatistics && counters == NULL)
  5472     counters = BiasedLocking::counters();
  5474   bool need_tmp_reg = false;
  5475   if (tmp_reg == noreg) {
  5476     need_tmp_reg = true;
  5477     tmp_reg = lock_reg;
  5478   } else {
  5479     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5481   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5482   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5483   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  5484   Address saved_mark_addr(lock_reg, 0);
  5486   // Biased locking
  5487   // See whether the lock is currently biased toward our thread and
  5488   // whether the epoch is still valid
  5489   // Note that the runtime guarantees sufficient alignment of JavaThread
  5490   // pointers to allow age to be placed into low bits
  5491   // First check to see whether biasing is even enabled for this object
  5492   Label cas_label;
  5493   int null_check_offset = -1;
  5494   if (!swap_reg_contains_mark) {
  5495     null_check_offset = offset();
  5496     movl(swap_reg, mark_addr);
  5498   if (need_tmp_reg) {
  5499     push(tmp_reg);
  5501   movl(tmp_reg, swap_reg);
  5502   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5503   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  5504   if (need_tmp_reg) {
  5505     pop(tmp_reg);
  5507   jcc(Assembler::notEqual, cas_label);
  5508   // The bias pattern is present in the object's header. Need to check
  5509   // whether the bias owner and the epoch are both still current.
  5510   // Note that because there is no current thread register on x86 we
  5511   // need to store off the mark word we read out of the object to
  5512   // avoid reloading it and needing to recheck invariants below. This
  5513   // store is unfortunate but it makes the overall code shorter and
  5514   // simpler.
  5515   movl(saved_mark_addr, swap_reg);
  5516   if (need_tmp_reg) {
  5517     push(tmp_reg);
  5519   get_thread(tmp_reg);
  5520   xorl(swap_reg, tmp_reg);
  5521   if (swap_reg_contains_mark) {
  5522     null_check_offset = offset();
  5524   movl(tmp_reg, klass_addr);
  5525   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5526   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  5527   if (need_tmp_reg) {
  5528     pop(tmp_reg);
  5530   if (counters != NULL) {
  5531     cond_inc32(Assembler::zero,
  5532                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  5534   jcc(Assembler::equal, done);
  5536   Label try_revoke_bias;
  5537   Label try_rebias;
  5539   // At this point we know that the header has the bias pattern and
  5540   // that we are not the bias owner in the current epoch. We need to
  5541   // figure out more details about the state of the header in order to
  5542   // know what operations can be legally performed on the object's
  5543   // header.
  5545   // If the low three bits in the xor result aren't clear, that means
  5546   // the prototype header is no longer biased and we have to revoke
  5547   // the bias on this object.
  5548   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  5549   jcc(Assembler::notZero, try_revoke_bias);
  5551   // Biasing is still enabled for this data type. See whether the
  5552   // epoch of the current bias is still valid, meaning that the epoch
  5553   // bits of the mark word are equal to the epoch bits of the
  5554   // prototype header. (Note that the prototype header's epoch bits
  5555   // only change at a safepoint.) If not, attempt to rebias the object
  5556   // toward the current thread. Note that we must be absolutely sure
  5557   // that the current epoch is invalid in order to do this because
  5558   // otherwise the manipulations it performs on the mark word are
  5559   // illegal.
  5560   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  5561   jcc(Assembler::notZero, try_rebias);
  5563   // The epoch of the current bias is still valid but we know nothing
  5564   // about the owner; it might be set or it might be clear. Try to
  5565   // acquire the bias of the object using an atomic operation. If this
  5566   // fails we will go in to the runtime to revoke the object's bias.
  5567   // Note that we first construct the presumed unbiased header so we
  5568   // don't accidentally blow away another thread's valid bias.
  5569   movl(swap_reg, saved_mark_addr);
  5570   andl(swap_reg,
  5571        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5572   if (need_tmp_reg) {
  5573     push(tmp_reg);
  5575   get_thread(tmp_reg);
  5576   orl(tmp_reg, swap_reg);
  5577   if (os::is_MP()) {
  5578     lock();
  5580   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5581   if (need_tmp_reg) {
  5582     pop(tmp_reg);
  5584   // If the biasing toward our thread failed, this means that
  5585   // another thread succeeded in biasing it toward itself and we
  5586   // need to revoke that bias. The revocation will occur in the
  5587   // interpreter runtime in the slow case.
  5588   if (counters != NULL) {
  5589     cond_inc32(Assembler::zero,
  5590                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  5592   if (slow_case != NULL) {
  5593     jcc(Assembler::notZero, *slow_case);
  5595   jmp(done);
  5597   bind(try_rebias);
  5598   // At this point we know the epoch has expired, meaning that the
  5599   // current "bias owner", if any, is actually invalid. Under these
  5600   // circumstances _only_, we are allowed to use the current header's
  5601   // value as the comparison value when doing the cas to acquire the
  5602   // bias in the current epoch. In other words, we allow transfer of
  5603   // the bias from one thread to another directly in this situation.
  5604   //
  5605   // FIXME: due to a lack of registers we currently blow away the age
  5606   // bits in this situation. Should attempt to preserve them.
  5607   if (need_tmp_reg) {
  5608     push(tmp_reg);
  5610   get_thread(tmp_reg);
  5611   movl(swap_reg, klass_addr);
  5612   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset()));
  5613   movl(swap_reg, saved_mark_addr);
  5614   if (os::is_MP()) {
  5615     lock();
  5617   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5618   if (need_tmp_reg) {
  5619     pop(tmp_reg);
  5621   // If the biasing toward our thread failed, then another thread
  5622   // succeeded in biasing it toward itself and we need to revoke that
  5623   // bias. The revocation will occur in the runtime in the slow case.
  5624   if (counters != NULL) {
  5625     cond_inc32(Assembler::zero,
  5626                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  5628   if (slow_case != NULL) {
  5629     jcc(Assembler::notZero, *slow_case);
  5631   jmp(done);
  5633   bind(try_revoke_bias);
  5634   // The prototype mark in the klass doesn't have the bias bit set any
  5635   // more, indicating that objects of this data type are not supposed
  5636   // to be biased any more. We are going to try to reset the mark of
  5637   // this object to the prototype value and fall through to the
  5638   // CAS-based locking scheme. Note that if our CAS fails, it means
  5639   // that another thread raced us for the privilege of revoking the
  5640   // bias of this particular object, so it's okay to continue in the
  5641   // normal locking code.
  5642   //
  5643   // FIXME: due to a lack of registers we currently blow away the age
  5644   // bits in this situation. Should attempt to preserve them.
  5645   movl(swap_reg, saved_mark_addr);
  5646   if (need_tmp_reg) {
  5647     push(tmp_reg);
  5649   movl(tmp_reg, klass_addr);
  5650   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset()));
  5651   if (os::is_MP()) {
  5652     lock();
  5654   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  5655   if (need_tmp_reg) {
  5656     pop(tmp_reg);
  5658   // Fall through to the normal CAS-based lock, because no matter what
  5659   // the result of the above CAS, some thread must have succeeded in
  5660   // removing the bias bit from the object's header.
  5661   if (counters != NULL) {
  5662     cond_inc32(Assembler::zero,
  5663                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  5666   bind(cas_label);
  5668   return null_check_offset;
  5670 void MacroAssembler::call_VM_leaf_base(address entry_point,
  5671                                        int number_of_arguments) {
  5672   call(RuntimeAddress(entry_point));
  5673   increment(rsp, number_of_arguments * wordSize);
  5676 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
  5677   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5680 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
  5681   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5684 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  5685   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5688 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  5689   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5692 void MacroAssembler::extend_sign(Register hi, Register lo) {
  5693   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  5694   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  5695     cdql();
  5696   } else {
  5697     movl(hi, lo);
  5698     sarl(hi, 31);
  5702 void MacroAssembler::jC2(Register tmp, Label& L) {
  5703   // set parity bit if FPU flag C2 is set (via rax)
  5704   save_rax(tmp);
  5705   fwait(); fnstsw_ax();
  5706   sahf();
  5707   restore_rax(tmp);
  5708   // branch
  5709   jcc(Assembler::parity, L);
  5712 void MacroAssembler::jnC2(Register tmp, Label& L) {
  5713   // set parity bit if FPU flag C2 is set (via rax)
  5714   save_rax(tmp);
  5715   fwait(); fnstsw_ax();
  5716   sahf();
  5717   restore_rax(tmp);
  5718   // branch
  5719   jcc(Assembler::noParity, L);
  5722 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5723 // to be installed in the Address class
  5724 void MacroAssembler::jump(ArrayAddress entry) {
  5725   jmp(as_Address(entry));
  5728 // Note: y_lo will be destroyed
  5729 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5730   // Long compare for Java (semantics as described in JVM spec.)
  5731   Label high, low, done;
  5733   cmpl(x_hi, y_hi);
  5734   jcc(Assembler::less, low);
  5735   jcc(Assembler::greater, high);
  5736   // x_hi is the return register
  5737   xorl(x_hi, x_hi);
  5738   cmpl(x_lo, y_lo);
  5739   jcc(Assembler::below, low);
  5740   jcc(Assembler::equal, done);
  5742   bind(high);
  5743   xorl(x_hi, x_hi);
  5744   increment(x_hi);
  5745   jmp(done);
  5747   bind(low);
  5748   xorl(x_hi, x_hi);
  5749   decrementl(x_hi);
  5751   bind(done);
  5754 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5755     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  5758 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5759   // leal(dst, as_Address(adr));
  5760   // see note in movl as to why we must use a move
  5761   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  5764 void MacroAssembler::leave() {
  5765   mov(rsp, rbp);
  5766   pop(rbp);
  5769 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  5770   // Multiplication of two Java long values stored on the stack
  5771   // as illustrated below. Result is in rdx:rax.
  5772   //
  5773   // rsp ---> [  ??  ] \               \
  5774   //            ....    | y_rsp_offset  |
  5775   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  5776   //          [ y_hi ]                  | (in bytes)
  5777   //            ....                    |
  5778   //          [ x_lo ]                 /
  5779   //          [ x_hi ]
  5780   //            ....
  5781   //
  5782   // Basic idea: lo(result) = lo(x_lo * y_lo)
  5783   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  5784   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  5785   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  5786   Label quick;
  5787   // load x_hi, y_hi and check if quick
  5788   // multiplication is possible
  5789   movl(rbx, x_hi);
  5790   movl(rcx, y_hi);
  5791   movl(rax, rbx);
  5792   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  5793   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  5794   // do full multiplication
  5795   // 1st step
  5796   mull(y_lo);                                    // x_hi * y_lo
  5797   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  5798   // 2nd step
  5799   movl(rax, x_lo);
  5800   mull(rcx);                                     // x_lo * y_hi
  5801   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  5802   // 3rd step
  5803   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  5804   movl(rax, x_lo);
  5805   mull(y_lo);                                    // x_lo * y_lo
  5806   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  5809 void MacroAssembler::lneg(Register hi, Register lo) {
  5810   negl(lo);
  5811   adcl(hi, 0);
  5812   negl(hi);
  5815 void MacroAssembler::lshl(Register hi, Register lo) {
  5816   // Java shift left long support (semantics as described in JVM spec., p.305)
  5817   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  5818   // shift value is in rcx !
  5819   assert(hi != rcx, "must not use rcx");
  5820   assert(lo != rcx, "must not use rcx");
  5821   const Register s = rcx;                        // shift count
  5822   const int      n = BitsPerWord;
  5823   Label L;
  5824   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5825   cmpl(s, n);                                    // if (s < n)
  5826   jcc(Assembler::less, L);                       // else (s >= n)
  5827   movl(hi, lo);                                  // x := x << n
  5828   xorl(lo, lo);
  5829   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5830   bind(L);                                       // s (mod n) < n
  5831   shldl(hi, lo);                                 // x := x << s
  5832   shll(lo);
  5836 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  5837   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  5838   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  5839   assert(hi != rcx, "must not use rcx");
  5840   assert(lo != rcx, "must not use rcx");
  5841   const Register s = rcx;                        // shift count
  5842   const int      n = BitsPerWord;
  5843   Label L;
  5844   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  5845   cmpl(s, n);                                    // if (s < n)
  5846   jcc(Assembler::less, L);                       // else (s >= n)
  5847   movl(lo, hi);                                  // x := x >> n
  5848   if (sign_extension) sarl(hi, 31);
  5849   else                xorl(hi, hi);
  5850   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  5851   bind(L);                                       // s (mod n) < n
  5852   shrdl(lo, hi);                                 // x := x >> s
  5853   if (sign_extension) sarl(hi);
  5854   else                shrl(hi);
  5857 void MacroAssembler::movoop(Register dst, jobject obj) {
  5858   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5861 void MacroAssembler::movoop(Address dst, jobject obj) {
  5862   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  5865 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  5866   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5869 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  5870   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
  5873 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5874   if (src.is_lval()) {
  5875     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  5876   } else {
  5877     movl(dst, as_Address(src));
  5881 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5882   movl(as_Address(dst), src);
  5885 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5886   movl(dst, as_Address(src));
  5889 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5890 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5891   movl(dst, src);
  5895 void MacroAssembler::pop_callee_saved_registers() {
  5896   pop(rcx);
  5897   pop(rdx);
  5898   pop(rdi);
  5899   pop(rsi);
  5902 void MacroAssembler::pop_fTOS() {
  5903   fld_d(Address(rsp, 0));
  5904   addl(rsp, 2 * wordSize);
  5907 void MacroAssembler::push_callee_saved_registers() {
  5908   push(rsi);
  5909   push(rdi);
  5910   push(rdx);
  5911   push(rcx);
  5914 void MacroAssembler::push_fTOS() {
  5915   subl(rsp, 2 * wordSize);
  5916   fstp_d(Address(rsp, 0));
  5920 void MacroAssembler::pushoop(jobject obj) {
  5921   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5924 void MacroAssembler::pushklass(Metadata* obj) {
  5925   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
  5928 void MacroAssembler::pushptr(AddressLiteral src) {
  5929   if (src.is_lval()) {
  5930     push_literal32((int32_t)src.target(), src.rspec());
  5931   } else {
  5932     pushl(as_Address(src));
  5936 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5937   xorl(dst, dst);
  5938   set_byte_if_not_zero(dst);
  5941 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5942   masm->push(arg);
  5945 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5946   masm->push(arg);
  5949 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5950   masm->push(arg);
  5953 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5954   masm->push(arg);
  5957 #ifndef PRODUCT
  5958 extern "C" void findpc(intptr_t x);
  5959 #endif
  5961 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5962   // In order to get locks to work, we need to fake a in_VM state
  5963   JavaThread* thread = JavaThread::current();
  5964   JavaThreadState saved_state = thread->thread_state();
  5965   thread->set_thread_state(_thread_in_vm);
  5966   if (ShowMessageBoxOnError) {
  5967     JavaThread* thread = JavaThread::current();
  5968     JavaThreadState saved_state = thread->thread_state();
  5969     thread->set_thread_state(_thread_in_vm);
  5970     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5971       ttyLocker ttyl;
  5972       BytecodeCounter::print();
  5974     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5975     // This is the value of eip which points to where verify_oop will return.
  5976     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5977       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
  5978       BREAKPOINT;
  5980   } else {
  5981     ttyLocker ttyl;
  5982     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5984   // Don't assert holding the ttyLock
  5985     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  5986   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5989 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
  5990   ttyLocker ttyl;
  5991   FlagSetting fs(Debugging, true);
  5992   tty->print_cr("eip = 0x%08x", eip);
  5993 #ifndef PRODUCT
  5994   if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5995     tty->cr();
  5996     findpc(eip);
  5997     tty->cr();
  5999 #endif
  6000 #define PRINT_REG(rax) \
  6001   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
  6002   PRINT_REG(rax);
  6003   PRINT_REG(rbx);
  6004   PRINT_REG(rcx);
  6005   PRINT_REG(rdx);
  6006   PRINT_REG(rdi);
  6007   PRINT_REG(rsi);
  6008   PRINT_REG(rbp);
  6009   PRINT_REG(rsp);
  6010 #undef PRINT_REG
  6011   // Print some words near top of staack.
  6012   int* dump_sp = (int*) rsp;
  6013   for (int col1 = 0; col1 < 8; col1++) {
  6014     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  6015     os::print_location(tty, *dump_sp++);
  6017   for (int row = 0; row < 16; row++) {
  6018     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
  6019     for (int col = 0; col < 8; col++) {
  6020       tty->print(" 0x%08x", *dump_sp++);
  6022     tty->cr();
  6024   // Print some instructions around pc:
  6025   Disassembler::decode((address)eip-64, (address)eip);
  6026   tty->print_cr("--------");
  6027   Disassembler::decode((address)eip, (address)eip+32);
  6030 void MacroAssembler::stop(const char* msg) {
  6031   ExternalAddress message((address)msg);
  6032   // push address of message
  6033   pushptr(message.addr());
  6034   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  6035   pusha();                                            // push registers
  6036   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  6037   hlt();
  6040 void MacroAssembler::warn(const char* msg) {
  6041   push_CPU_state();
  6043   ExternalAddress message((address) msg);
  6044   // push address of message
  6045   pushptr(message.addr());
  6047   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  6048   addl(rsp, wordSize);       // discard argument
  6049   pop_CPU_state();
  6052 void MacroAssembler::print_state() {
  6053   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  6054   pusha();                                            // push registers
  6056   push_CPU_state();
  6057   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
  6058   pop_CPU_state();
  6060   popa();
  6061   addl(rsp, wordSize);
  6064 #else // _LP64
  6066 // 64 bit versions
  6068 Address MacroAssembler::as_Address(AddressLiteral adr) {
  6069   // amd64 always does this as a pc-rel
  6070   // we can be absolute or disp based on the instruction type
  6071   // jmp/call are displacements others are absolute
  6072   assert(!adr.is_lval(), "must be rval");
  6073   assert(reachable(adr), "must be");
  6074   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  6078 Address MacroAssembler::as_Address(ArrayAddress adr) {
  6079   AddressLiteral base = adr.base();
  6080   lea(rscratch1, base);
  6081   Address index = adr.index();
  6082   assert(index._disp == 0, "must not have disp"); // maybe it can?
  6083   Address array(rscratch1, index._index, index._scale, index._disp);
  6084   return array;
  6087 int MacroAssembler::biased_locking_enter(Register lock_reg,
  6088                                          Register obj_reg,
  6089                                          Register swap_reg,
  6090                                          Register tmp_reg,
  6091                                          bool swap_reg_contains_mark,
  6092                                          Label& done,
  6093                                          Label* slow_case,
  6094                                          BiasedLockingCounters* counters) {
  6095   assert(UseBiasedLocking, "why call this otherwise?");
  6096   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  6097   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  6098   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  6099   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  6100   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  6101   Address saved_mark_addr(lock_reg, 0);
  6103   if (PrintBiasedLockingStatistics && counters == NULL)
  6104     counters = BiasedLocking::counters();
  6106   // Biased locking
  6107   // See whether the lock is currently biased toward our thread and
  6108   // whether the epoch is still valid
  6109   // Note that the runtime guarantees sufficient alignment of JavaThread
  6110   // pointers to allow age to be placed into low bits
  6111   // First check to see whether biasing is even enabled for this object
  6112   Label cas_label;
  6113   int null_check_offset = -1;
  6114   if (!swap_reg_contains_mark) {
  6115     null_check_offset = offset();
  6116     movq(swap_reg, mark_addr);
  6118   movq(tmp_reg, swap_reg);
  6119   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  6120   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  6121   jcc(Assembler::notEqual, cas_label);
  6122   // The bias pattern is present in the object's header. Need to check
  6123   // whether the bias owner and the epoch are both still current.
  6124   load_prototype_header(tmp_reg, obj_reg);
  6125   orq(tmp_reg, r15_thread);
  6126   xorq(tmp_reg, swap_reg);
  6127   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  6128   if (counters != NULL) {
  6129     cond_inc32(Assembler::zero,
  6130                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  6132   jcc(Assembler::equal, done);
  6134   Label try_revoke_bias;
  6135   Label try_rebias;
  6137   // At this point we know that the header has the bias pattern and
  6138   // that we are not the bias owner in the current epoch. We need to
  6139   // figure out more details about the state of the header in order to
  6140   // know what operations can be legally performed on the object's
  6141   // header.
  6143   // If the low three bits in the xor result aren't clear, that means
  6144   // the prototype header is no longer biased and we have to revoke
  6145   // the bias on this object.
  6146   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  6147   jcc(Assembler::notZero, try_revoke_bias);
  6149   // Biasing is still enabled for this data type. See whether the
  6150   // epoch of the current bias is still valid, meaning that the epoch
  6151   // bits of the mark word are equal to the epoch bits of the
  6152   // prototype header. (Note that the prototype header's epoch bits
  6153   // only change at a safepoint.) If not, attempt to rebias the object
  6154   // toward the current thread. Note that we must be absolutely sure
  6155   // that the current epoch is invalid in order to do this because
  6156   // otherwise the manipulations it performs on the mark word are
  6157   // illegal.
  6158   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  6159   jcc(Assembler::notZero, try_rebias);
  6161   // The epoch of the current bias is still valid but we know nothing
  6162   // about the owner; it might be set or it might be clear. Try to
  6163   // acquire the bias of the object using an atomic operation. If this
  6164   // fails we will go in to the runtime to revoke the object's bias.
  6165   // Note that we first construct the presumed unbiased header so we
  6166   // don't accidentally blow away another thread's valid bias.
  6167   andq(swap_reg,
  6168        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  6169   movq(tmp_reg, swap_reg);
  6170   orq(tmp_reg, r15_thread);
  6171   if (os::is_MP()) {
  6172     lock();
  6174   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6175   // If the biasing toward our thread failed, this means that
  6176   // another thread succeeded in biasing it toward itself and we
  6177   // need to revoke that bias. The revocation will occur in the
  6178   // interpreter runtime in the slow case.
  6179   if (counters != NULL) {
  6180     cond_inc32(Assembler::zero,
  6181                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  6183   if (slow_case != NULL) {
  6184     jcc(Assembler::notZero, *slow_case);
  6186   jmp(done);
  6188   bind(try_rebias);
  6189   // At this point we know the epoch has expired, meaning that the
  6190   // current "bias owner", if any, is actually invalid. Under these
  6191   // circumstances _only_, we are allowed to use the current header's
  6192   // value as the comparison value when doing the cas to acquire the
  6193   // bias in the current epoch. In other words, we allow transfer of
  6194   // the bias from one thread to another directly in this situation.
  6195   //
  6196   // FIXME: due to a lack of registers we currently blow away the age
  6197   // bits in this situation. Should attempt to preserve them.
  6198   load_prototype_header(tmp_reg, obj_reg);
  6199   orq(tmp_reg, r15_thread);
  6200   if (os::is_MP()) {
  6201     lock();
  6203   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6204   // If the biasing toward our thread failed, then another thread
  6205   // succeeded in biasing it toward itself and we need to revoke that
  6206   // bias. The revocation will occur in the runtime in the slow case.
  6207   if (counters != NULL) {
  6208     cond_inc32(Assembler::zero,
  6209                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  6211   if (slow_case != NULL) {
  6212     jcc(Assembler::notZero, *slow_case);
  6214   jmp(done);
  6216   bind(try_revoke_bias);
  6217   // The prototype mark in the klass doesn't have the bias bit set any
  6218   // more, indicating that objects of this data type are not supposed
  6219   // to be biased any more. We are going to try to reset the mark of
  6220   // this object to the prototype value and fall through to the
  6221   // CAS-based locking scheme. Note that if our CAS fails, it means
  6222   // that another thread raced us for the privilege of revoking the
  6223   // bias of this particular object, so it's okay to continue in the
  6224   // normal locking code.
  6225   //
  6226   // FIXME: due to a lack of registers we currently blow away the age
  6227   // bits in this situation. Should attempt to preserve them.
  6228   load_prototype_header(tmp_reg, obj_reg);
  6229   if (os::is_MP()) {
  6230     lock();
  6232   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  6233   // Fall through to the normal CAS-based lock, because no matter what
  6234   // the result of the above CAS, some thread must have succeeded in
  6235   // removing the bias bit from the object's header.
  6236   if (counters != NULL) {
  6237     cond_inc32(Assembler::zero,
  6238                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  6241   bind(cas_label);
  6243   return null_check_offset;
  6246 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  6247   Label L, E;
  6249 #ifdef _WIN64
  6250   // Windows always allocates space for it's register args
  6251   assert(num_args <= 4, "only register arguments supported");
  6252   subq(rsp,  frame::arg_reg_save_area_bytes);
  6253 #endif
  6255   // Align stack if necessary
  6256   testl(rsp, 15);
  6257   jcc(Assembler::zero, L);
  6259   subq(rsp, 8);
  6261     call(RuntimeAddress(entry_point));
  6263   addq(rsp, 8);
  6264   jmp(E);
  6266   bind(L);
  6268     call(RuntimeAddress(entry_point));
  6271   bind(E);
  6273 #ifdef _WIN64
  6274   // restore stack pointer
  6275   addq(rsp, frame::arg_reg_save_area_bytes);
  6276 #endif
  6280 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  6281   assert(!src2.is_lval(), "should use cmpptr");
  6283   if (reachable(src2)) {
  6284     cmpq(src1, as_Address(src2));
  6285   } else {
  6286     lea(rscratch1, src2);
  6287     Assembler::cmpq(src1, Address(rscratch1, 0));
  6291 int MacroAssembler::corrected_idivq(Register reg) {
  6292   // Full implementation of Java ldiv and lrem; checks for special
  6293   // case as described in JVM spec., p.243 & p.271.  The function
  6294   // returns the (pc) offset of the idivl instruction - may be needed
  6295   // for implicit exceptions.
  6296   //
  6297   //         normal case                           special case
  6298   //
  6299   // input : rax: dividend                         min_long
  6300   //         reg: divisor   (may not be eax/edx)   -1
  6301   //
  6302   // output: rax: quotient  (= rax idiv reg)       min_long
  6303   //         rdx: remainder (= rax irem reg)       0
  6304   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  6305   static const int64_t min_long = 0x8000000000000000;
  6306   Label normal_case, special_case;
  6308   // check for special case
  6309   cmp64(rax, ExternalAddress((address) &min_long));
  6310   jcc(Assembler::notEqual, normal_case);
  6311   xorl(rdx, rdx); // prepare rdx for possible special case (where
  6312                   // remainder = 0)
  6313   cmpq(reg, -1);
  6314   jcc(Assembler::equal, special_case);
  6316   // handle normal case
  6317   bind(normal_case);
  6318   cdqq();
  6319   int idivq_offset = offset();
  6320   idivq(reg);
  6322   // normal and special case exit
  6323   bind(special_case);
  6325   return idivq_offset;
  6328 void MacroAssembler::decrementq(Register reg, int value) {
  6329   if (value == min_jint) { subq(reg, value); return; }
  6330   if (value <  0) { incrementq(reg, -value); return; }
  6331   if (value == 0) {                        ; return; }
  6332   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  6333   /* else */      { subq(reg, value)       ; return; }
  6336 void MacroAssembler::decrementq(Address dst, int value) {
  6337   if (value == min_jint) { subq(dst, value); return; }
  6338   if (value <  0) { incrementq(dst, -value); return; }
  6339   if (value == 0) {                        ; return; }
  6340   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  6341   /* else */      { subq(dst, value)       ; return; }
  6344 void MacroAssembler::incrementq(Register reg, int value) {
  6345   if (value == min_jint) { addq(reg, value); return; }
  6346   if (value <  0) { decrementq(reg, -value); return; }
  6347   if (value == 0) {                        ; return; }
  6348   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  6349   /* else */      { addq(reg, value)       ; return; }
  6352 void MacroAssembler::incrementq(Address dst, int value) {
  6353   if (value == min_jint) { addq(dst, value); return; }
  6354   if (value <  0) { decrementq(dst, -value); return; }
  6355   if (value == 0) {                        ; return; }
  6356   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  6357   /* else */      { addq(dst, value)       ; return; }
  6360 // 32bit can do a case table jump in one instruction but we no longer allow the base
  6361 // to be installed in the Address class
  6362 void MacroAssembler::jump(ArrayAddress entry) {
  6363   lea(rscratch1, entry.base());
  6364   Address dispatch = entry.index();
  6365   assert(dispatch._base == noreg, "must be");
  6366   dispatch._base = rscratch1;
  6367   jmp(dispatch);
  6370 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  6371   ShouldNotReachHere(); // 64bit doesn't use two regs
  6372   cmpq(x_lo, y_lo);
  6375 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  6376     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  6379 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  6380   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  6381   movptr(dst, rscratch1);
  6384 void MacroAssembler::leave() {
  6385   // %%% is this really better? Why not on 32bit too?
  6386   emit_byte(0xC9); // LEAVE
  6389 void MacroAssembler::lneg(Register hi, Register lo) {
  6390   ShouldNotReachHere(); // 64bit doesn't use two regs
  6391   negq(lo);
  6394 void MacroAssembler::movoop(Register dst, jobject obj) {
  6395   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  6398 void MacroAssembler::movoop(Address dst, jobject obj) {
  6399   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  6400   movq(dst, rscratch1);
  6403 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
  6404   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  6407 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
  6408   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
  6409   movq(dst, rscratch1);
  6412 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  6413   if (src.is_lval()) {
  6414     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  6415   } else {
  6416     if (reachable(src)) {
  6417       movq(dst, as_Address(src));
  6418     } else {
  6419       lea(rscratch1, src);
  6420       movq(dst, Address(rscratch1,0));
  6425 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  6426   movq(as_Address(dst), src);
  6429 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  6430   movq(dst, as_Address(src));
  6433 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6434 void MacroAssembler::movptr(Address dst, intptr_t src) {
  6435   mov64(rscratch1, src);
  6436   movq(dst, rscratch1);
  6439 // These are mostly for initializing NULL
  6440 void MacroAssembler::movptr(Address dst, int32_t src) {
  6441   movslq(dst, src);
  6444 void MacroAssembler::movptr(Register dst, int32_t src) {
  6445   mov64(dst, (intptr_t)src);
  6448 void MacroAssembler::pushoop(jobject obj) {
  6449   movoop(rscratch1, obj);
  6450   push(rscratch1);
  6453 void MacroAssembler::pushklass(Metadata* obj) {
  6454   mov_metadata(rscratch1, obj);
  6455   push(rscratch1);
  6458 void MacroAssembler::pushptr(AddressLiteral src) {
  6459   lea(rscratch1, src);
  6460   if (src.is_lval()) {
  6461     push(rscratch1);
  6462   } else {
  6463     pushq(Address(rscratch1, 0));
  6467 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  6468                                            bool clear_pc) {
  6469   // we must set sp to zero to clear frame
  6470   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6471   // must clear fp, so that compiled frames are not confused; it is
  6472   // possible that we need it only for debugging
  6473   if (clear_fp) {
  6474     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6477   if (clear_pc) {
  6478     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6482 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  6483                                          Register last_java_fp,
  6484                                          address  last_java_pc) {
  6485   // determine last_java_sp register
  6486   if (!last_java_sp->is_valid()) {
  6487     last_java_sp = rsp;
  6490   // last_java_fp is optional
  6491   if (last_java_fp->is_valid()) {
  6492     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  6493            last_java_fp);
  6496   // last_java_pc is optional
  6497   if (last_java_pc != NULL) {
  6498     Address java_pc(r15_thread,
  6499                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  6500     lea(rscratch1, InternalAddress(last_java_pc));
  6501     movptr(java_pc, rscratch1);
  6504   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6507 static void pass_arg0(MacroAssembler* masm, Register arg) {
  6508   if (c_rarg0 != arg ) {
  6509     masm->mov(c_rarg0, arg);
  6513 static void pass_arg1(MacroAssembler* masm, Register arg) {
  6514   if (c_rarg1 != arg ) {
  6515     masm->mov(c_rarg1, arg);
  6519 static void pass_arg2(MacroAssembler* masm, Register arg) {
  6520   if (c_rarg2 != arg ) {
  6521     masm->mov(c_rarg2, arg);
  6525 static void pass_arg3(MacroAssembler* masm, Register arg) {
  6526   if (c_rarg3 != arg ) {
  6527     masm->mov(c_rarg3, arg);
  6531 void MacroAssembler::stop(const char* msg) {
  6532   address rip = pc();
  6533   pusha(); // get regs on stack
  6534   lea(c_rarg0, ExternalAddress((address) msg));
  6535   lea(c_rarg1, InternalAddress(rip));
  6536   movq(c_rarg2, rsp); // pass pointer to regs array
  6537   andq(rsp, -16); // align stack as required by ABI
  6538   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  6539   hlt();
  6542 void MacroAssembler::warn(const char* msg) {
  6543   push(rbp);
  6544   movq(rbp, rsp);
  6545   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6546   push_CPU_state();   // keeps alignment at 16 bytes
  6547   lea(c_rarg0, ExternalAddress((address) msg));
  6548   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  6549   pop_CPU_state();
  6550   mov(rsp, rbp);
  6551   pop(rbp);
  6554 void MacroAssembler::print_state() {
  6555   address rip = pc();
  6556   pusha();            // get regs on stack
  6557   push(rbp);
  6558   movq(rbp, rsp);
  6559   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  6560   push_CPU_state();   // keeps alignment at 16 bytes
  6562   lea(c_rarg0, InternalAddress(rip));
  6563   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
  6564   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
  6566   pop_CPU_state();
  6567   mov(rsp, rbp);
  6568   pop(rbp);
  6569   popa();
  6572 #ifndef PRODUCT
  6573 extern "C" void findpc(intptr_t x);
  6574 #endif
  6576 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  6577   // In order to get locks to work, we need to fake a in_VM state
  6578   if (ShowMessageBoxOnError) {
  6579     JavaThread* thread = JavaThread::current();
  6580     JavaThreadState saved_state = thread->thread_state();
  6581     thread->set_thread_state(_thread_in_vm);
  6582 #ifndef PRODUCT
  6583     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  6584       ttyLocker ttyl;
  6585       BytecodeCounter::print();
  6587 #endif
  6588     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  6589     // XXX correct this offset for amd64
  6590     // This is the value of eip which points to where verify_oop will return.
  6591     if (os::message_box(msg, "Execution stopped, print registers?")) {
  6592       print_state64(pc, regs);
  6593       BREAKPOINT;
  6594       assert(false, "start up GDB");
  6596     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  6597   } else {
  6598     ttyLocker ttyl;
  6599     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  6600                     msg);
  6601     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  6605 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
  6606   ttyLocker ttyl;
  6607   FlagSetting fs(Debugging, true);
  6608   tty->print_cr("rip = 0x%016lx", pc);
  6609 #ifndef PRODUCT
  6610   tty->cr();
  6611   findpc(pc);
  6612   tty->cr();
  6613 #endif
  6614 #define PRINT_REG(rax, value) \
  6615   { tty->print("%s = ", #rax); os::print_location(tty, value); }
  6616   PRINT_REG(rax, regs[15]);
  6617   PRINT_REG(rbx, regs[12]);
  6618   PRINT_REG(rcx, regs[14]);
  6619   PRINT_REG(rdx, regs[13]);
  6620   PRINT_REG(rdi, regs[8]);
  6621   PRINT_REG(rsi, regs[9]);
  6622   PRINT_REG(rbp, regs[10]);
  6623   PRINT_REG(rsp, regs[11]);
  6624   PRINT_REG(r8 , regs[7]);
  6625   PRINT_REG(r9 , regs[6]);
  6626   PRINT_REG(r10, regs[5]);
  6627   PRINT_REG(r11, regs[4]);
  6628   PRINT_REG(r12, regs[3]);
  6629   PRINT_REG(r13, regs[2]);
  6630   PRINT_REG(r14, regs[1]);
  6631   PRINT_REG(r15, regs[0]);
  6632 #undef PRINT_REG
  6633   // Print some words near top of staack.
  6634   int64_t* rsp = (int64_t*) regs[11];
  6635   int64_t* dump_sp = rsp;
  6636   for (int col1 = 0; col1 < 8; col1++) {
  6637     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6638     os::print_location(tty, *dump_sp++);
  6640   for (int row = 0; row < 25; row++) {
  6641     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
  6642     for (int col = 0; col < 4; col++) {
  6643       tty->print(" 0x%016lx", *dump_sp++);
  6645     tty->cr();
  6647   // Print some instructions around pc:
  6648   Disassembler::decode((address)pc-64, (address)pc);
  6649   tty->print_cr("--------");
  6650   Disassembler::decode((address)pc, (address)pc+32);
  6653 #endif // _LP64
  6655 // Now versions that are common to 32/64 bit
  6657 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  6658   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  6661 void MacroAssembler::addptr(Register dst, Register src) {
  6662   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6665 void MacroAssembler::addptr(Address dst, Register src) {
  6666   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  6669 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
  6670   if (reachable(src)) {
  6671     Assembler::addsd(dst, as_Address(src));
  6672   } else {
  6673     lea(rscratch1, src);
  6674     Assembler::addsd(dst, Address(rscratch1, 0));
  6678 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
  6679   if (reachable(src)) {
  6680     addss(dst, as_Address(src));
  6681   } else {
  6682     lea(rscratch1, src);
  6683     addss(dst, Address(rscratch1, 0));
  6687 void MacroAssembler::align(int modulus) {
  6688   if (offset() % modulus != 0) {
  6689     nop(modulus - (offset() % modulus));
  6693 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  6694   // Used in sign-masking with aligned address.
  6695   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6696   if (reachable(src)) {
  6697     Assembler::andpd(dst, as_Address(src));
  6698   } else {
  6699     lea(rscratch1, src);
  6700     Assembler::andpd(dst, Address(rscratch1, 0));
  6704 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
  6705   // Used in sign-masking with aligned address.
  6706   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  6707   if (reachable(src)) {
  6708     Assembler::andps(dst, as_Address(src));
  6709   } else {
  6710     lea(rscratch1, src);
  6711     Assembler::andps(dst, Address(rscratch1, 0));
  6715 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  6716   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  6719 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  6720   pushf();
  6721   if (os::is_MP())
  6722     lock();
  6723   incrementl(counter_addr);
  6724   popf();
  6727 // Writes to stack successive pages until offset reached to check for
  6728 // stack overflow + shadow pages.  This clobbers tmp.
  6729 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  6730   movptr(tmp, rsp);
  6731   // Bang stack for total size given plus shadow page size.
  6732   // Bang one page at a time because large size can bang beyond yellow and
  6733   // red zones.
  6734   Label loop;
  6735   bind(loop);
  6736   movl(Address(tmp, (-os::vm_page_size())), size );
  6737   subptr(tmp, os::vm_page_size());
  6738   subl(size, os::vm_page_size());
  6739   jcc(Assembler::greater, loop);
  6741   // Bang down shadow pages too.
  6742   // The -1 because we already subtracted 1 page.
  6743   for (int i = 0; i< StackShadowPages-1; i++) {
  6744     // this could be any sized move but this is can be a debugging crumb
  6745     // so the bigger the better.
  6746     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  6750 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  6751   assert(UseBiasedLocking, "why call this otherwise?");
  6753   // Check for biased locking unlock case, which is a no-op
  6754   // Note: we do not have to check the thread ID for two reasons.
  6755   // First, the interpreter checks for IllegalMonitorStateException at
  6756   // a higher level. Second, if the bias was revoked while we held the
  6757   // lock, the object could not be rebiased toward another thread, so
  6758   // the bias bit would be clear.
  6759   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  6760   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  6761   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  6762   jcc(Assembler::equal, done);
  6765 void MacroAssembler::c2bool(Register x) {
  6766   // implements x == 0 ? 0 : 1
  6767   // note: must only look at least-significant byte of x
  6768   //       since C-style booleans are stored in one byte
  6769   //       only! (was bug)
  6770   andl(x, 0xFF);
  6771   setb(Assembler::notZero, x);
  6774 // Wouldn't need if AddressLiteral version had new name
  6775 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  6776   Assembler::call(L, rtype);
  6779 void MacroAssembler::call(Register entry) {
  6780   Assembler::call(entry);
  6783 void MacroAssembler::call(AddressLiteral entry) {
  6784   if (reachable(entry)) {
  6785     Assembler::call_literal(entry.target(), entry.rspec());
  6786   } else {
  6787     lea(rscratch1, entry);
  6788     Assembler::call(rscratch1);
  6792 void MacroAssembler::ic_call(address entry) {
  6793   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  6794   movptr(rax, (intptr_t)Universe::non_oop_word());
  6795   call(AddressLiteral(entry, rh));
  6798 // Implementation of call_VM versions
  6800 void MacroAssembler::call_VM(Register oop_result,
  6801                              address entry_point,
  6802                              bool check_exceptions) {
  6803   Label C, E;
  6804   call(C, relocInfo::none);
  6805   jmp(E);
  6807   bind(C);
  6808   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  6809   ret(0);
  6811   bind(E);
  6814 void MacroAssembler::call_VM(Register oop_result,
  6815                              address entry_point,
  6816                              Register arg_1,
  6817                              bool check_exceptions) {
  6818   Label C, E;
  6819   call(C, relocInfo::none);
  6820   jmp(E);
  6822   bind(C);
  6823   pass_arg1(this, arg_1);
  6824   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  6825   ret(0);
  6827   bind(E);
  6830 void MacroAssembler::call_VM(Register oop_result,
  6831                              address entry_point,
  6832                              Register arg_1,
  6833                              Register arg_2,
  6834                              bool check_exceptions) {
  6835   Label C, E;
  6836   call(C, relocInfo::none);
  6837   jmp(E);
  6839   bind(C);
  6841   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6843   pass_arg2(this, arg_2);
  6844   pass_arg1(this, arg_1);
  6845   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  6846   ret(0);
  6848   bind(E);
  6851 void MacroAssembler::call_VM(Register oop_result,
  6852                              address entry_point,
  6853                              Register arg_1,
  6854                              Register arg_2,
  6855                              Register arg_3,
  6856                              bool check_exceptions) {
  6857   Label C, E;
  6858   call(C, relocInfo::none);
  6859   jmp(E);
  6861   bind(C);
  6863   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6864   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6865   pass_arg3(this, arg_3);
  6867   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6868   pass_arg2(this, arg_2);
  6870   pass_arg1(this, arg_1);
  6871   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  6872   ret(0);
  6874   bind(E);
  6877 void MacroAssembler::call_VM(Register oop_result,
  6878                              Register last_java_sp,
  6879                              address entry_point,
  6880                              int number_of_arguments,
  6881                              bool check_exceptions) {
  6882   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6883   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6886 void MacroAssembler::call_VM(Register oop_result,
  6887                              Register last_java_sp,
  6888                              address entry_point,
  6889                              Register arg_1,
  6890                              bool check_exceptions) {
  6891   pass_arg1(this, arg_1);
  6892   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6895 void MacroAssembler::call_VM(Register oop_result,
  6896                              Register last_java_sp,
  6897                              address entry_point,
  6898                              Register arg_1,
  6899                              Register arg_2,
  6900                              bool check_exceptions) {
  6902   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6903   pass_arg2(this, arg_2);
  6904   pass_arg1(this, arg_1);
  6905   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6908 void MacroAssembler::call_VM(Register oop_result,
  6909                              Register last_java_sp,
  6910                              address entry_point,
  6911                              Register arg_1,
  6912                              Register arg_2,
  6913                              Register arg_3,
  6914                              bool check_exceptions) {
  6915   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6916   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6917   pass_arg3(this, arg_3);
  6918   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6919   pass_arg2(this, arg_2);
  6920   pass_arg1(this, arg_1);
  6921   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6924 void MacroAssembler::super_call_VM(Register oop_result,
  6925                                    Register last_java_sp,
  6926                                    address entry_point,
  6927                                    int number_of_arguments,
  6928                                    bool check_exceptions) {
  6929   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  6930   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  6933 void MacroAssembler::super_call_VM(Register oop_result,
  6934                                    Register last_java_sp,
  6935                                    address entry_point,
  6936                                    Register arg_1,
  6937                                    bool check_exceptions) {
  6938   pass_arg1(this, arg_1);
  6939   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  6942 void MacroAssembler::super_call_VM(Register oop_result,
  6943                                    Register last_java_sp,
  6944                                    address entry_point,
  6945                                    Register arg_1,
  6946                                    Register arg_2,
  6947                                    bool check_exceptions) {
  6949   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6950   pass_arg2(this, arg_2);
  6951   pass_arg1(this, arg_1);
  6952   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  6955 void MacroAssembler::super_call_VM(Register oop_result,
  6956                                    Register last_java_sp,
  6957                                    address entry_point,
  6958                                    Register arg_1,
  6959                                    Register arg_2,
  6960                                    Register arg_3,
  6961                                    bool check_exceptions) {
  6962   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  6963   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  6964   pass_arg3(this, arg_3);
  6965   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6966   pass_arg2(this, arg_2);
  6967   pass_arg1(this, arg_1);
  6968   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  6971 void MacroAssembler::call_VM_base(Register oop_result,
  6972                                   Register java_thread,
  6973                                   Register last_java_sp,
  6974                                   address  entry_point,
  6975                                   int      number_of_arguments,
  6976                                   bool     check_exceptions) {
  6977   // determine java_thread register
  6978   if (!java_thread->is_valid()) {
  6979 #ifdef _LP64
  6980     java_thread = r15_thread;
  6981 #else
  6982     java_thread = rdi;
  6983     get_thread(java_thread);
  6984 #endif // LP64
  6986   // determine last_java_sp register
  6987   if (!last_java_sp->is_valid()) {
  6988     last_java_sp = rsp;
  6990   // debugging support
  6991   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  6992   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  6993 #ifdef ASSERT
  6994   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  6995   // r12 is the heapbase.
  6996   LP64_ONLY(if ((UseCompressedOops || UseCompressedKlassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
  6997 #endif // ASSERT
  6999   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  7000   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  7002   // push java thread (becomes first argument of C function)
  7004   NOT_LP64(push(java_thread); number_of_arguments++);
  7005   LP64_ONLY(mov(c_rarg0, r15_thread));
  7007   // set last Java frame before call
  7008   assert(last_java_sp != rbp, "can't use ebp/rbp");
  7010   // Only interpreter should have to set fp
  7011   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  7013   // do the call, remove parameters
  7014   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  7016   // restore the thread (cannot use the pushed argument since arguments
  7017   // may be overwritten by C code generated by an optimizing compiler);
  7018   // however can use the register value directly if it is callee saved.
  7019   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  7020     // rdi & rsi (also r15) are callee saved -> nothing to do
  7021 #ifdef ASSERT
  7022     guarantee(java_thread != rax, "change this code");
  7023     push(rax);
  7024     { Label L;
  7025       get_thread(rax);
  7026       cmpptr(java_thread, rax);
  7027       jcc(Assembler::equal, L);
  7028       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  7029       bind(L);
  7031     pop(rax);
  7032 #endif
  7033   } else {
  7034     get_thread(java_thread);
  7036   // reset last Java frame
  7037   // Only interpreter should have to clear fp
  7038   reset_last_Java_frame(java_thread, true, false);
  7040 #ifndef CC_INTERP
  7041    // C++ interp handles this in the interpreter
  7042   check_and_handle_popframe(java_thread);
  7043   check_and_handle_earlyret(java_thread);
  7044 #endif /* CC_INTERP */
  7046   if (check_exceptions) {
  7047     // check for pending exceptions (java_thread is set upon return)
  7048     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  7049 #ifndef _LP64
  7050     jump_cc(Assembler::notEqual,
  7051             RuntimeAddress(StubRoutines::forward_exception_entry()));
  7052 #else
  7053     // This used to conditionally jump to forward_exception however it is
  7054     // possible if we relocate that the branch will not reach. So we must jump
  7055     // around so we can always reach
  7057     Label ok;
  7058     jcc(Assembler::equal, ok);
  7059     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  7060     bind(ok);
  7061 #endif // LP64
  7064   // get oop result if there is one and reset the value in the thread
  7065   if (oop_result->is_valid()) {
  7066     get_vm_result(oop_result, java_thread);
  7070 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  7072   // Calculate the value for last_Java_sp
  7073   // somewhat subtle. call_VM does an intermediate call
  7074   // which places a return address on the stack just under the
  7075   // stack pointer as the user finsihed with it. This allows
  7076   // use to retrieve last_Java_pc from last_Java_sp[-1].
  7077   // On 32bit we then have to push additional args on the stack to accomplish
  7078   // the actual requested call. On 64bit call_VM only can use register args
  7079   // so the only extra space is the return address that call_VM created.
  7080   // This hopefully explains the calculations here.
  7082 #ifdef _LP64
  7083   // We've pushed one address, correct last_Java_sp
  7084   lea(rax, Address(rsp, wordSize));
  7085 #else
  7086   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  7087 #endif // LP64
  7089   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  7093 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  7094   call_VM_leaf_base(entry_point, number_of_arguments);
  7097 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  7098   pass_arg0(this, arg_0);
  7099   call_VM_leaf(entry_point, 1);
  7102 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  7104   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7105   pass_arg1(this, arg_1);
  7106   pass_arg0(this, arg_0);
  7107   call_VM_leaf(entry_point, 2);
  7110 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  7111   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7112   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7113   pass_arg2(this, arg_2);
  7114   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7115   pass_arg1(this, arg_1);
  7116   pass_arg0(this, arg_0);
  7117   call_VM_leaf(entry_point, 3);
  7120 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  7121   pass_arg0(this, arg_0);
  7122   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  7125 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  7127   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7128   pass_arg1(this, arg_1);
  7129   pass_arg0(this, arg_0);
  7130   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  7133 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  7134   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7135   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7136   pass_arg2(this, arg_2);
  7137   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7138   pass_arg1(this, arg_1);
  7139   pass_arg0(this, arg_0);
  7140   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  7143 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  7144   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  7145   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  7146   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  7147   pass_arg3(this, arg_3);
  7148   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  7149   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  7150   pass_arg2(this, arg_2);
  7151   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  7152   pass_arg1(this, arg_1);
  7153   pass_arg0(this, arg_0);
  7154   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  7157 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  7158   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  7159   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  7160   verify_oop(oop_result, "broken oop in call_VM_base");
  7163 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  7164   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  7165   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  7168 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  7171 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  7174 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  7175   if (reachable(src1)) {
  7176     cmpl(as_Address(src1), imm);
  7177   } else {
  7178     lea(rscratch1, src1);
  7179     cmpl(Address(rscratch1, 0), imm);
  7183 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  7184   assert(!src2.is_lval(), "use cmpptr");
  7185   if (reachable(src2)) {
  7186     cmpl(src1, as_Address(src2));
  7187   } else {
  7188     lea(rscratch1, src2);
  7189     cmpl(src1, Address(rscratch1, 0));
  7193 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  7194   Assembler::cmpl(src1, imm);
  7197 void MacroAssembler::cmp32(Register src1, Address src2) {
  7198   Assembler::cmpl(src1, src2);
  7201 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  7202   ucomisd(opr1, opr2);
  7204   Label L;
  7205   if (unordered_is_less) {
  7206     movl(dst, -1);
  7207     jcc(Assembler::parity, L);
  7208     jcc(Assembler::below , L);
  7209     movl(dst, 0);
  7210     jcc(Assembler::equal , L);
  7211     increment(dst);
  7212   } else { // unordered is greater
  7213     movl(dst, 1);
  7214     jcc(Assembler::parity, L);
  7215     jcc(Assembler::above , L);
  7216     movl(dst, 0);
  7217     jcc(Assembler::equal , L);
  7218     decrementl(dst);
  7220   bind(L);
  7223 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  7224   ucomiss(opr1, opr2);
  7226   Label L;
  7227   if (unordered_is_less) {
  7228     movl(dst, -1);
  7229     jcc(Assembler::parity, L);
  7230     jcc(Assembler::below , L);
  7231     movl(dst, 0);
  7232     jcc(Assembler::equal , L);
  7233     increment(dst);
  7234   } else { // unordered is greater
  7235     movl(dst, 1);
  7236     jcc(Assembler::parity, L);
  7237     jcc(Assembler::above , L);
  7238     movl(dst, 0);
  7239     jcc(Assembler::equal , L);
  7240     decrementl(dst);
  7242   bind(L);
  7246 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  7247   if (reachable(src1)) {
  7248     cmpb(as_Address(src1), imm);
  7249   } else {
  7250     lea(rscratch1, src1);
  7251     cmpb(Address(rscratch1, 0), imm);
  7255 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  7256 #ifdef _LP64
  7257   if (src2.is_lval()) {
  7258     movptr(rscratch1, src2);
  7259     Assembler::cmpq(src1, rscratch1);
  7260   } else if (reachable(src2)) {
  7261     cmpq(src1, as_Address(src2));
  7262   } else {
  7263     lea(rscratch1, src2);
  7264     Assembler::cmpq(src1, Address(rscratch1, 0));
  7266 #else
  7267   if (src2.is_lval()) {
  7268     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  7269   } else {
  7270     cmpl(src1, as_Address(src2));
  7272 #endif // _LP64
  7275 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  7276   assert(src2.is_lval(), "not a mem-mem compare");
  7277 #ifdef _LP64
  7278   // moves src2's literal address
  7279   movptr(rscratch1, src2);
  7280   Assembler::cmpq(src1, rscratch1);
  7281 #else
  7282   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  7283 #endif // _LP64
  7286 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  7287   if (reachable(adr)) {
  7288     if (os::is_MP())
  7289       lock();
  7290     cmpxchgptr(reg, as_Address(adr));
  7291   } else {
  7292     lea(rscratch1, adr);
  7293     if (os::is_MP())
  7294       lock();
  7295     cmpxchgptr(reg, Address(rscratch1, 0));
  7299 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  7300   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  7303 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  7304   if (reachable(src)) {
  7305     Assembler::comisd(dst, as_Address(src));
  7306   } else {
  7307     lea(rscratch1, src);
  7308     Assembler::comisd(dst, Address(rscratch1, 0));
  7312 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  7313   if (reachable(src)) {
  7314     Assembler::comiss(dst, as_Address(src));
  7315   } else {
  7316     lea(rscratch1, src);
  7317     Assembler::comiss(dst, Address(rscratch1, 0));
  7322 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  7323   Condition negated_cond = negate_condition(cond);
  7324   Label L;
  7325   jcc(negated_cond, L);
  7326   atomic_incl(counter_addr);
  7327   bind(L);
  7330 int MacroAssembler::corrected_idivl(Register reg) {
  7331   // Full implementation of Java idiv and irem; checks for
  7332   // special case as described in JVM spec., p.243 & p.271.
  7333   // The function returns the (pc) offset of the idivl
  7334   // instruction - may be needed for implicit exceptions.
  7335   //
  7336   //         normal case                           special case
  7337   //
  7338   // input : rax,: dividend                         min_int
  7339   //         reg: divisor   (may not be rax,/rdx)   -1
  7340   //
  7341   // output: rax,: quotient  (= rax, idiv reg)       min_int
  7342   //         rdx: remainder (= rax, irem reg)       0
  7343   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  7344   const int min_int = 0x80000000;
  7345   Label normal_case, special_case;
  7347   // check for special case
  7348   cmpl(rax, min_int);
  7349   jcc(Assembler::notEqual, normal_case);
  7350   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  7351   cmpl(reg, -1);
  7352   jcc(Assembler::equal, special_case);
  7354   // handle normal case
  7355   bind(normal_case);
  7356   cdql();
  7357   int idivl_offset = offset();
  7358   idivl(reg);
  7360   // normal and special case exit
  7361   bind(special_case);
  7363   return idivl_offset;
  7368 void MacroAssembler::decrementl(Register reg, int value) {
  7369   if (value == min_jint) {subl(reg, value) ; return; }
  7370   if (value <  0) { incrementl(reg, -value); return; }
  7371   if (value == 0) {                        ; return; }
  7372   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  7373   /* else */      { subl(reg, value)       ; return; }
  7376 void MacroAssembler::decrementl(Address dst, int value) {
  7377   if (value == min_jint) {subl(dst, value) ; return; }
  7378   if (value <  0) { incrementl(dst, -value); return; }
  7379   if (value == 0) {                        ; return; }
  7380   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  7381   /* else */      { subl(dst, value)       ; return; }
  7384 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  7385   assert (shift_value > 0, "illegal shift value");
  7386   Label _is_positive;
  7387   testl (reg, reg);
  7388   jcc (Assembler::positive, _is_positive);
  7389   int offset = (1 << shift_value) - 1 ;
  7391   if (offset == 1) {
  7392     incrementl(reg);
  7393   } else {
  7394     addl(reg, offset);
  7397   bind (_is_positive);
  7398   sarl(reg, shift_value);
  7401 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  7402   if (reachable(src)) {
  7403     Assembler::divsd(dst, as_Address(src));
  7404   } else {
  7405     lea(rscratch1, src);
  7406     Assembler::divsd(dst, Address(rscratch1, 0));
  7410 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  7411   if (reachable(src)) {
  7412     Assembler::divss(dst, as_Address(src));
  7413   } else {
  7414     lea(rscratch1, src);
  7415     Assembler::divss(dst, Address(rscratch1, 0));
  7419 // !defined(COMPILER2) is because of stupid core builds
  7420 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  7421 void MacroAssembler::empty_FPU_stack() {
  7422   if (VM_Version::supports_mmx()) {
  7423     emms();
  7424   } else {
  7425     for (int i = 8; i-- > 0; ) ffree(i);
  7428 #endif // !LP64 || C1 || !C2
  7431 // Defines obj, preserves var_size_in_bytes
  7432 void MacroAssembler::eden_allocate(Register obj,
  7433                                    Register var_size_in_bytes,
  7434                                    int con_size_in_bytes,
  7435                                    Register t1,
  7436                                    Label& slow_case) {
  7437   assert(obj == rax, "obj must be in rax, for cmpxchg");
  7438   assert_different_registers(obj, var_size_in_bytes, t1);
  7439   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7440     jmp(slow_case);
  7441   } else {
  7442     Register end = t1;
  7443     Label retry;
  7444     bind(retry);
  7445     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  7446     movptr(obj, heap_top);
  7447     if (var_size_in_bytes == noreg) {
  7448       lea(end, Address(obj, con_size_in_bytes));
  7449     } else {
  7450       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7452     // if end < obj then we wrapped around => object too long => slow case
  7453     cmpptr(end, obj);
  7454     jcc(Assembler::below, slow_case);
  7455     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  7456     jcc(Assembler::above, slow_case);
  7457     // Compare obj with the top addr, and if still equal, store the new top addr in
  7458     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  7459     // it otherwise. Use lock prefix for atomicity on MPs.
  7460     locked_cmpxchgptr(end, heap_top);
  7461     jcc(Assembler::notEqual, retry);
  7465 void MacroAssembler::enter() {
  7466   push(rbp);
  7467   mov(rbp, rsp);
  7470 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  7471 void MacroAssembler::fat_nop() {
  7472   if (UseAddressNop) {
  7473     addr_nop_5();
  7474   } else {
  7475     emit_byte(0x26); // es:
  7476     emit_byte(0x2e); // cs:
  7477     emit_byte(0x64); // fs:
  7478     emit_byte(0x65); // gs:
  7479     emit_byte(0x90);
  7483 void MacroAssembler::fcmp(Register tmp) {
  7484   fcmp(tmp, 1, true, true);
  7487 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  7488   assert(!pop_right || pop_left, "usage error");
  7489   if (VM_Version::supports_cmov()) {
  7490     assert(tmp == noreg, "unneeded temp");
  7491     if (pop_left) {
  7492       fucomip(index);
  7493     } else {
  7494       fucomi(index);
  7496     if (pop_right) {
  7497       fpop();
  7499   } else {
  7500     assert(tmp != noreg, "need temp");
  7501     if (pop_left) {
  7502       if (pop_right) {
  7503         fcompp();
  7504       } else {
  7505         fcomp(index);
  7507     } else {
  7508       fcom(index);
  7510     // convert FPU condition into eflags condition via rax,
  7511     save_rax(tmp);
  7512     fwait(); fnstsw_ax();
  7513     sahf();
  7514     restore_rax(tmp);
  7516   // condition codes set as follows:
  7517   //
  7518   // CF (corresponds to C0) if x < y
  7519   // PF (corresponds to C2) if unordered
  7520   // ZF (corresponds to C3) if x = y
  7523 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  7524   fcmp2int(dst, unordered_is_less, 1, true, true);
  7527 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  7528   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  7529   Label L;
  7530   if (unordered_is_less) {
  7531     movl(dst, -1);
  7532     jcc(Assembler::parity, L);
  7533     jcc(Assembler::below , L);
  7534     movl(dst, 0);
  7535     jcc(Assembler::equal , L);
  7536     increment(dst);
  7537   } else { // unordered is greater
  7538     movl(dst, 1);
  7539     jcc(Assembler::parity, L);
  7540     jcc(Assembler::above , L);
  7541     movl(dst, 0);
  7542     jcc(Assembler::equal , L);
  7543     decrementl(dst);
  7545   bind(L);
  7548 void MacroAssembler::fld_d(AddressLiteral src) {
  7549   fld_d(as_Address(src));
  7552 void MacroAssembler::fld_s(AddressLiteral src) {
  7553   fld_s(as_Address(src));
  7556 void MacroAssembler::fld_x(AddressLiteral src) {
  7557   Assembler::fld_x(as_Address(src));
  7560 void MacroAssembler::fldcw(AddressLiteral src) {
  7561   Assembler::fldcw(as_Address(src));
  7564 void MacroAssembler::pow_exp_core_encoding() {
  7565   // kills rax, rcx, rdx
  7566   subptr(rsp,sizeof(jdouble));
  7567   // computes 2^X. Stack: X ...
  7568   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  7569   // keep it on the thread's stack to compute 2^int(X) later
  7570   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  7571   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  7572   fld_s(0);                 // Stack: X X ...
  7573   frndint();                // Stack: int(X) X ...
  7574   fsuba(1);                 // Stack: int(X) X-int(X) ...
  7575   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  7576   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  7577   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  7578   faddp(1);                 // Stack: 2^(X-int(X))
  7579   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  7580   // shift int(X)+1023 to exponent position.
  7581   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  7582   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  7583   // values so detect them and set result to NaN.
  7584   movl(rax,Address(rsp,0));
  7585   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  7586   addl(rax, 1023);
  7587   movl(rdx,rax);
  7588   shll(rax,20);
  7589   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  7590   addl(rdx,1);
  7591   // Check that 1 < int(X)+1023+1 < 2048
  7592   // in 3 steps:
  7593   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  7594   // 2- (int(X)+1023+1)&-2048 != 0
  7595   // 3- (int(X)+1023+1)&-2048 != 1
  7596   // Do 2- first because addl just updated the flags.
  7597   cmov32(Assembler::equal,rax,rcx);
  7598   cmpl(rdx,1);
  7599   cmov32(Assembler::equal,rax,rcx);
  7600   testl(rdx,rcx);
  7601   cmov32(Assembler::notEqual,rax,rcx);
  7602   movl(Address(rsp,4),rax);
  7603   movl(Address(rsp,0),0);
  7604   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  7605   addptr(rsp,sizeof(jdouble));
  7608 void MacroAssembler::increase_precision() {
  7609   subptr(rsp, BytesPerWord);
  7610   fnstcw(Address(rsp, 0));
  7611   movl(rax, Address(rsp, 0));
  7612   orl(rax, 0x300);
  7613   push(rax);
  7614   fldcw(Address(rsp, 0));
  7615   pop(rax);
  7618 void MacroAssembler::restore_precision() {
  7619   fldcw(Address(rsp, 0));
  7620   addptr(rsp, BytesPerWord);
  7623 void MacroAssembler::fast_pow() {
  7624   // computes X^Y = 2^(Y * log2(X))
  7625   // if fast computation is not possible, result is NaN. Requires
  7626   // fallback from user of this macro.
  7627   // increase precision for intermediate steps of the computation
  7628   increase_precision();
  7629   fyl2x();                 // Stack: (Y*log2(X)) ...
  7630   pow_exp_core_encoding(); // Stack: exp(X) ...
  7631   restore_precision();
  7634 void MacroAssembler::fast_exp() {
  7635   // computes exp(X) = 2^(X * log2(e))
  7636   // if fast computation is not possible, result is NaN. Requires
  7637   // fallback from user of this macro.
  7638   // increase precision for intermediate steps of the computation
  7639   increase_precision();
  7640   fldl2e();                // Stack: log2(e) X ...
  7641   fmulp(1);                // Stack: (X*log2(e)) ...
  7642   pow_exp_core_encoding(); // Stack: exp(X) ...
  7643   restore_precision();
  7646 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  7647   // kills rax, rcx, rdx
  7648   // pow and exp needs 2 extra registers on the fpu stack.
  7649   Label slow_case, done;
  7650   Register tmp = noreg;
  7651   if (!VM_Version::supports_cmov()) {
  7652     // fcmp needs a temporary so preserve rdx,
  7653     tmp = rdx;
  7655   Register tmp2 = rax;
  7656   Register tmp3 = rcx;
  7658   if (is_exp) {
  7659     // Stack: X
  7660     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  7661     fast_exp();                 // Stack: exp(X) X
  7662     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  7663     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  7664     jcc(Assembler::parity, slow_case);
  7665     // get rid of duplicate argument. Stack: exp(X)
  7666     if (num_fpu_regs_in_use > 0) {
  7667       fxch();
  7668       fpop();
  7669     } else {
  7670       ffree(1);
  7672     jmp(done);
  7673   } else {
  7674     // Stack: X Y
  7675     Label x_negative, y_odd;
  7677     fldz();                     // Stack: 0 X Y
  7678     fcmp(tmp, 1, true, false);  // Stack: X Y
  7679     jcc(Assembler::above, x_negative);
  7681     // X >= 0
  7683     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7684     fld_s(1);                   // Stack: X Y X Y
  7685     fast_pow();                 // Stack: X^Y X Y
  7686     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  7687     // X^Y not equal to itself: X^Y is NaN go to slow case.
  7688     jcc(Assembler::parity, slow_case);
  7689     // get rid of duplicate arguments. Stack: X^Y
  7690     if (num_fpu_regs_in_use > 0) {
  7691       fxch(); fpop();
  7692       fxch(); fpop();
  7693     } else {
  7694       ffree(2);
  7695       ffree(1);
  7697     jmp(done);
  7699     // X <= 0
  7700     bind(x_negative);
  7702     fld_s(1);                   // Stack: Y X Y
  7703     frndint();                  // Stack: int(Y) X Y
  7704     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  7705     jcc(Assembler::notEqual, slow_case);
  7707     subptr(rsp, 8);
  7709     // For X^Y, when X < 0, Y has to be an integer and the final
  7710     // result depends on whether it's odd or even. We just checked
  7711     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  7712     // integer to test its parity. If int(Y) is huge and doesn't fit
  7713     // in the 64 bit integer range, the integer indefinite value will
  7714     // end up in the gp registers. Huge numbers are all even, the
  7715     // integer indefinite number is even so it's fine.
  7717 #ifdef ASSERT
  7718     // Let's check we don't end up with an integer indefinite number
  7719     // when not expected. First test for huge numbers: check whether
  7720     // int(Y)+1 == int(Y) which is true for very large numbers and
  7721     // those are all even. A 64 bit integer is guaranteed to not
  7722     // overflow for numbers where y+1 != y (when precision is set to
  7723     // double precision).
  7724     Label y_not_huge;
  7726     fld1();                     // Stack: 1 int(Y) X Y
  7727     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  7729 #ifdef _LP64
  7730     // trip to memory to force the precision down from double extended
  7731     // precision
  7732     fstp_d(Address(rsp, 0));
  7733     fld_d(Address(rsp, 0));
  7734 #endif
  7736     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  7737 #endif
  7739     // move int(Y) as 64 bit integer to thread's stack
  7740     fistp_d(Address(rsp,0));    // Stack: X Y
  7742 #ifdef ASSERT
  7743     jcc(Assembler::notEqual, y_not_huge);
  7745     // Y is huge so we know it's even. It may not fit in a 64 bit
  7746     // integer and we don't want the debug code below to see the
  7747     // integer indefinite value so overwrite int(Y) on the thread's
  7748     // stack with 0.
  7749     movl(Address(rsp, 0), 0);
  7750     movl(Address(rsp, 4), 0);
  7752     bind(y_not_huge);
  7753 #endif
  7755     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  7756     fld_s(1);                   // Stack: X Y X Y
  7757     fabs();                     // Stack: abs(X) Y X Y
  7758     fast_pow();                 // Stack: abs(X)^Y X Y
  7759     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  7760     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  7762     pop(tmp2);
  7763     NOT_LP64(pop(tmp3));
  7764     jcc(Assembler::parity, slow_case);
  7766 #ifdef ASSERT
  7767     // Check that int(Y) is not integer indefinite value (int
  7768     // overflow). Shouldn't happen because for values that would
  7769     // overflow, 1+int(Y)==Y which was tested earlier.
  7770 #ifndef _LP64
  7772       Label integer;
  7773       testl(tmp2, tmp2);
  7774       jcc(Assembler::notZero, integer);
  7775       cmpl(tmp3, 0x80000000);
  7776       jcc(Assembler::notZero, integer);
  7777       STOP("integer indefinite value shouldn't be seen here");
  7778       bind(integer);
  7780 #else
  7782       Label integer;
  7783       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  7784       shlq(tmp3, 1);
  7785       jcc(Assembler::carryClear, integer);
  7786       jcc(Assembler::notZero, integer);
  7787       STOP("integer indefinite value shouldn't be seen here");
  7788       bind(integer);
  7790 #endif
  7791 #endif
  7793     // get rid of duplicate arguments. Stack: X^Y
  7794     if (num_fpu_regs_in_use > 0) {
  7795       fxch(); fpop();
  7796       fxch(); fpop();
  7797     } else {
  7798       ffree(2);
  7799       ffree(1);
  7802     testl(tmp2, 1);
  7803     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  7804     // X <= 0, Y even: X^Y = -abs(X)^Y
  7806     fchs();                     // Stack: -abs(X)^Y Y
  7807     jmp(done);
  7810   // slow case: runtime call
  7811   bind(slow_case);
  7813   fpop();                       // pop incorrect result or int(Y)
  7815   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  7816                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  7818   // Come here with result in F-TOS
  7819   bind(done);
  7822 void MacroAssembler::fpop() {
  7823   ffree();
  7824   fincstp();
  7827 void MacroAssembler::fremr(Register tmp) {
  7828   save_rax(tmp);
  7829   { Label L;
  7830     bind(L);
  7831     fprem();
  7832     fwait(); fnstsw_ax();
  7833 #ifdef _LP64
  7834     testl(rax, 0x400);
  7835     jcc(Assembler::notEqual, L);
  7836 #else
  7837     sahf();
  7838     jcc(Assembler::parity, L);
  7839 #endif // _LP64
  7841   restore_rax(tmp);
  7842   // Result is in ST0.
  7843   // Note: fxch & fpop to get rid of ST1
  7844   // (otherwise FPU stack could overflow eventually)
  7845   fxch(1);
  7846   fpop();
  7850 void MacroAssembler::incrementl(AddressLiteral dst) {
  7851   if (reachable(dst)) {
  7852     incrementl(as_Address(dst));
  7853   } else {
  7854     lea(rscratch1, dst);
  7855     incrementl(Address(rscratch1, 0));
  7859 void MacroAssembler::incrementl(ArrayAddress dst) {
  7860   incrementl(as_Address(dst));
  7863 void MacroAssembler::incrementl(Register reg, int value) {
  7864   if (value == min_jint) {addl(reg, value) ; return; }
  7865   if (value <  0) { decrementl(reg, -value); return; }
  7866   if (value == 0) {                        ; return; }
  7867   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  7868   /* else */      { addl(reg, value)       ; return; }
  7871 void MacroAssembler::incrementl(Address dst, int value) {
  7872   if (value == min_jint) {addl(dst, value) ; return; }
  7873   if (value <  0) { decrementl(dst, -value); return; }
  7874   if (value == 0) {                        ; return; }
  7875   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  7876   /* else */      { addl(dst, value)       ; return; }
  7879 void MacroAssembler::jump(AddressLiteral dst) {
  7880   if (reachable(dst)) {
  7881     jmp_literal(dst.target(), dst.rspec());
  7882   } else {
  7883     lea(rscratch1, dst);
  7884     jmp(rscratch1);
  7888 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  7889   if (reachable(dst)) {
  7890     InstructionMark im(this);
  7891     relocate(dst.reloc());
  7892     const int short_size = 2;
  7893     const int long_size = 6;
  7894     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  7895     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  7896       // 0111 tttn #8-bit disp
  7897       emit_byte(0x70 | cc);
  7898       emit_byte((offs - short_size) & 0xFF);
  7899     } else {
  7900       // 0000 1111 1000 tttn #32-bit disp
  7901       emit_byte(0x0F);
  7902       emit_byte(0x80 | cc);
  7903       emit_long(offs - long_size);
  7905   } else {
  7906 #ifdef ASSERT
  7907     warning("reversing conditional branch");
  7908 #endif /* ASSERT */
  7909     Label skip;
  7910     jccb(reverse[cc], skip);
  7911     lea(rscratch1, dst);
  7912     Assembler::jmp(rscratch1);
  7913     bind(skip);
  7917 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  7918   if (reachable(src)) {
  7919     Assembler::ldmxcsr(as_Address(src));
  7920   } else {
  7921     lea(rscratch1, src);
  7922     Assembler::ldmxcsr(Address(rscratch1, 0));
  7926 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  7927   int off;
  7928   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7929     off = offset();
  7930     movsbl(dst, src); // movsxb
  7931   } else {
  7932     off = load_unsigned_byte(dst, src);
  7933     shll(dst, 24);
  7934     sarl(dst, 24);
  7936   return off;
  7939 // Note: load_signed_short used to be called load_signed_word.
  7940 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  7941 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  7942 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  7943 int MacroAssembler::load_signed_short(Register dst, Address src) {
  7944   int off;
  7945   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  7946     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  7947     // version but this is what 64bit has always done. This seems to imply
  7948     // that users are only using 32bits worth.
  7949     off = offset();
  7950     movswl(dst, src); // movsxw
  7951   } else {
  7952     off = load_unsigned_short(dst, src);
  7953     shll(dst, 16);
  7954     sarl(dst, 16);
  7956   return off;
  7959 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  7960   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7961   // and "3.9 Partial Register Penalties", p. 22).
  7962   int off;
  7963   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  7964     off = offset();
  7965     movzbl(dst, src); // movzxb
  7966   } else {
  7967     xorl(dst, dst);
  7968     off = offset();
  7969     movb(dst, src);
  7971   return off;
  7974 // Note: load_unsigned_short used to be called load_unsigned_word.
  7975 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  7976   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  7977   // and "3.9 Partial Register Penalties", p. 22).
  7978   int off;
  7979   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  7980     off = offset();
  7981     movzwl(dst, src); // movzxw
  7982   } else {
  7983     xorl(dst, dst);
  7984     off = offset();
  7985     movw(dst, src);
  7987   return off;
  7990 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  7991   switch (size_in_bytes) {
  7992 #ifndef _LP64
  7993   case  8:
  7994     assert(dst2 != noreg, "second dest register required");
  7995     movl(dst,  src);
  7996     movl(dst2, src.plus_disp(BytesPerInt));
  7997     break;
  7998 #else
  7999   case  8:  movq(dst, src); break;
  8000 #endif
  8001   case  4:  movl(dst, src); break;
  8002   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  8003   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  8004   default:  ShouldNotReachHere();
  8008 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  8009   switch (size_in_bytes) {
  8010 #ifndef _LP64
  8011   case  8:
  8012     assert(src2 != noreg, "second source register required");
  8013     movl(dst,                        src);
  8014     movl(dst.plus_disp(BytesPerInt), src2);
  8015     break;
  8016 #else
  8017   case  8:  movq(dst, src); break;
  8018 #endif
  8019   case  4:  movl(dst, src); break;
  8020   case  2:  movw(dst, src); break;
  8021   case  1:  movb(dst, src); break;
  8022   default:  ShouldNotReachHere();
  8026 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  8027   if (reachable(dst)) {
  8028     movl(as_Address(dst), src);
  8029   } else {
  8030     lea(rscratch1, dst);
  8031     movl(Address(rscratch1, 0), src);
  8035 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  8036   if (reachable(src)) {
  8037     movl(dst, as_Address(src));
  8038   } else {
  8039     lea(rscratch1, src);
  8040     movl(dst, Address(rscratch1, 0));
  8044 // C++ bool manipulation
  8046 void MacroAssembler::movbool(Register dst, Address src) {
  8047   if(sizeof(bool) == 1)
  8048     movb(dst, src);
  8049   else if(sizeof(bool) == 2)
  8050     movw(dst, src);
  8051   else if(sizeof(bool) == 4)
  8052     movl(dst, src);
  8053   else
  8054     // unsupported
  8055     ShouldNotReachHere();
  8058 void MacroAssembler::movbool(Address dst, bool boolconst) {
  8059   if(sizeof(bool) == 1)
  8060     movb(dst, (int) boolconst);
  8061   else if(sizeof(bool) == 2)
  8062     movw(dst, (int) boolconst);
  8063   else if(sizeof(bool) == 4)
  8064     movl(dst, (int) boolconst);
  8065   else
  8066     // unsupported
  8067     ShouldNotReachHere();
  8070 void MacroAssembler::movbool(Address dst, Register src) {
  8071   if(sizeof(bool) == 1)
  8072     movb(dst, src);
  8073   else if(sizeof(bool) == 2)
  8074     movw(dst, src);
  8075   else if(sizeof(bool) == 4)
  8076     movl(dst, src);
  8077   else
  8078     // unsupported
  8079     ShouldNotReachHere();
  8082 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  8083   movb(as_Address(dst), src);
  8086 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  8087   if (reachable(src)) {
  8088     movdl(dst, as_Address(src));
  8089   } else {
  8090     lea(rscratch1, src);
  8091     movdl(dst, Address(rscratch1, 0));
  8095 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  8096   if (reachable(src)) {
  8097     movq(dst, as_Address(src));
  8098   } else {
  8099     lea(rscratch1, src);
  8100     movq(dst, Address(rscratch1, 0));
  8104 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  8105   if (reachable(src)) {
  8106     if (UseXmmLoadAndClearUpper) {
  8107       movsd (dst, as_Address(src));
  8108     } else {
  8109       movlpd(dst, as_Address(src));
  8111   } else {
  8112     lea(rscratch1, src);
  8113     if (UseXmmLoadAndClearUpper) {
  8114       movsd (dst, Address(rscratch1, 0));
  8115     } else {
  8116       movlpd(dst, Address(rscratch1, 0));
  8121 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  8122   if (reachable(src)) {
  8123     movss(dst, as_Address(src));
  8124   } else {
  8125     lea(rscratch1, src);
  8126     movss(dst, Address(rscratch1, 0));
  8130 void MacroAssembler::movptr(Register dst, Register src) {
  8131   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8134 void MacroAssembler::movptr(Register dst, Address src) {
  8135   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8138 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  8139 void MacroAssembler::movptr(Register dst, intptr_t src) {
  8140   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  8143 void MacroAssembler::movptr(Address dst, Register src) {
  8144   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  8147 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  8148   if (reachable(src)) {
  8149     Assembler::movdqu(dst, as_Address(src));
  8150   } else {
  8151     lea(rscratch1, src);
  8152     Assembler::movdqu(dst, Address(rscratch1, 0));
  8156 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  8157   if (reachable(src)) {
  8158     Assembler::movsd(dst, as_Address(src));
  8159   } else {
  8160     lea(rscratch1, src);
  8161     Assembler::movsd(dst, Address(rscratch1, 0));
  8165 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  8166   if (reachable(src)) {
  8167     Assembler::movss(dst, as_Address(src));
  8168   } else {
  8169     lea(rscratch1, src);
  8170     Assembler::movss(dst, Address(rscratch1, 0));
  8174 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  8175   if (reachable(src)) {
  8176     Assembler::mulsd(dst, as_Address(src));
  8177   } else {
  8178     lea(rscratch1, src);
  8179     Assembler::mulsd(dst, Address(rscratch1, 0));
  8183 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  8184   if (reachable(src)) {
  8185     Assembler::mulss(dst, as_Address(src));
  8186   } else {
  8187     lea(rscratch1, src);
  8188     Assembler::mulss(dst, Address(rscratch1, 0));
  8192 void MacroAssembler::null_check(Register reg, int offset) {
  8193   if (needs_explicit_null_check(offset)) {
  8194     // provoke OS NULL exception if reg = NULL by
  8195     // accessing M[reg] w/o changing any (non-CC) registers
  8196     // NOTE: cmpl is plenty here to provoke a segv
  8197     cmpptr(rax, Address(reg, 0));
  8198     // Note: should probably use testl(rax, Address(reg, 0));
  8199     //       may be shorter code (however, this version of
  8200     //       testl needs to be implemented first)
  8201   } else {
  8202     // nothing to do, (later) access of M[reg + offset]
  8203     // will provoke OS NULL exception if reg = NULL
  8207 void MacroAssembler::os_breakpoint() {
  8208   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  8209   // (e.g., MSVC can't call ps() otherwise)
  8210   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  8213 void MacroAssembler::pop_CPU_state() {
  8214   pop_FPU_state();
  8215   pop_IU_state();
  8218 void MacroAssembler::pop_FPU_state() {
  8219   NOT_LP64(frstor(Address(rsp, 0));)
  8220   LP64_ONLY(fxrstor(Address(rsp, 0));)
  8221   addptr(rsp, FPUStateSizeInWords * wordSize);
  8224 void MacroAssembler::pop_IU_state() {
  8225   popa();
  8226   LP64_ONLY(addq(rsp, 8));
  8227   popf();
  8230 // Save Integer and Float state
  8231 // Warning: Stack must be 16 byte aligned (64bit)
  8232 void MacroAssembler::push_CPU_state() {
  8233   push_IU_state();
  8234   push_FPU_state();
  8237 void MacroAssembler::push_FPU_state() {
  8238   subptr(rsp, FPUStateSizeInWords * wordSize);
  8239 #ifndef _LP64
  8240   fnsave(Address(rsp, 0));
  8241   fwait();
  8242 #else
  8243   fxsave(Address(rsp, 0));
  8244 #endif // LP64
  8247 void MacroAssembler::push_IU_state() {
  8248   // Push flags first because pusha kills them
  8249   pushf();
  8250   // Make sure rsp stays 16-byte aligned
  8251   LP64_ONLY(subq(rsp, 8));
  8252   pusha();
  8255 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  8256   // determine java_thread register
  8257   if (!java_thread->is_valid()) {
  8258     java_thread = rdi;
  8259     get_thread(java_thread);
  8261   // we must set sp to zero to clear frame
  8262   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  8263   if (clear_fp) {
  8264     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  8267   if (clear_pc)
  8268     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  8272 void MacroAssembler::restore_rax(Register tmp) {
  8273   if (tmp == noreg) pop(rax);
  8274   else if (tmp != rax) mov(rax, tmp);
  8277 void MacroAssembler::round_to(Register reg, int modulus) {
  8278   addptr(reg, modulus - 1);
  8279   andptr(reg, -modulus);
  8282 void MacroAssembler::save_rax(Register tmp) {
  8283   if (tmp == noreg) push(rax);
  8284   else if (tmp != rax) mov(tmp, rax);
  8287 // Write serialization page so VM thread can do a pseudo remote membar.
  8288 // We use the current thread pointer to calculate a thread specific
  8289 // offset to write to within the page. This minimizes bus traffic
  8290 // due to cache line collision.
  8291 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  8292   movl(tmp, thread);
  8293   shrl(tmp, os::get_serialize_page_shift_count());
  8294   andl(tmp, (os::vm_page_size() - sizeof(int)));
  8296   Address index(noreg, tmp, Address::times_1);
  8297   ExternalAddress page(os::get_memory_serialize_page());
  8299   // Size of store must match masking code above
  8300   movl(as_Address(ArrayAddress(page, index)), tmp);
  8303 // Calls to C land
  8304 //
  8305 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  8306 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  8307 // has to be reset to 0. This is required to allow proper stack traversal.
  8308 void MacroAssembler::set_last_Java_frame(Register java_thread,
  8309                                          Register last_java_sp,
  8310                                          Register last_java_fp,
  8311                                          address  last_java_pc) {
  8312   // determine java_thread register
  8313   if (!java_thread->is_valid()) {
  8314     java_thread = rdi;
  8315     get_thread(java_thread);
  8317   // determine last_java_sp register
  8318   if (!last_java_sp->is_valid()) {
  8319     last_java_sp = rsp;
  8322   // last_java_fp is optional
  8324   if (last_java_fp->is_valid()) {
  8325     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  8328   // last_java_pc is optional
  8330   if (last_java_pc != NULL) {
  8331     lea(Address(java_thread,
  8332                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  8333         InternalAddress(last_java_pc));
  8336   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  8339 void MacroAssembler::shlptr(Register dst, int imm8) {
  8340   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  8343 void MacroAssembler::shrptr(Register dst, int imm8) {
  8344   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  8347 void MacroAssembler::sign_extend_byte(Register reg) {
  8348   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  8349     movsbl(reg, reg); // movsxb
  8350   } else {
  8351     shll(reg, 24);
  8352     sarl(reg, 24);
  8356 void MacroAssembler::sign_extend_short(Register reg) {
  8357   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  8358     movswl(reg, reg); // movsxw
  8359   } else {
  8360     shll(reg, 16);
  8361     sarl(reg, 16);
  8365 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  8366   assert(reachable(src), "Address should be reachable");
  8367   testl(dst, as_Address(src));
  8370 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  8371   if (reachable(src)) {
  8372     Assembler::sqrtsd(dst, as_Address(src));
  8373   } else {
  8374     lea(rscratch1, src);
  8375     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  8379 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  8380   if (reachable(src)) {
  8381     Assembler::sqrtss(dst, as_Address(src));
  8382   } else {
  8383     lea(rscratch1, src);
  8384     Assembler::sqrtss(dst, Address(rscratch1, 0));
  8388 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  8389   if (reachable(src)) {
  8390     Assembler::subsd(dst, as_Address(src));
  8391   } else {
  8392     lea(rscratch1, src);
  8393     Assembler::subsd(dst, Address(rscratch1, 0));
  8397 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  8398   if (reachable(src)) {
  8399     Assembler::subss(dst, as_Address(src));
  8400   } else {
  8401     lea(rscratch1, src);
  8402     Assembler::subss(dst, Address(rscratch1, 0));
  8406 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  8407   if (reachable(src)) {
  8408     Assembler::ucomisd(dst, as_Address(src));
  8409   } else {
  8410     lea(rscratch1, src);
  8411     Assembler::ucomisd(dst, Address(rscratch1, 0));
  8415 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  8416   if (reachable(src)) {
  8417     Assembler::ucomiss(dst, as_Address(src));
  8418   } else {
  8419     lea(rscratch1, src);
  8420     Assembler::ucomiss(dst, Address(rscratch1, 0));
  8424 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  8425   // Used in sign-bit flipping with aligned address.
  8426   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8427   if (reachable(src)) {
  8428     Assembler::xorpd(dst, as_Address(src));
  8429   } else {
  8430     lea(rscratch1, src);
  8431     Assembler::xorpd(dst, Address(rscratch1, 0));
  8435 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  8436   // Used in sign-bit flipping with aligned address.
  8437   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8438   if (reachable(src)) {
  8439     Assembler::xorps(dst, as_Address(src));
  8440   } else {
  8441     lea(rscratch1, src);
  8442     Assembler::xorps(dst, Address(rscratch1, 0));
  8446 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  8447   // Used in sign-bit flipping with aligned address.
  8448   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  8449   if (reachable(src)) {
  8450     Assembler::pshufb(dst, as_Address(src));
  8451   } else {
  8452     lea(rscratch1, src);
  8453     Assembler::pshufb(dst, Address(rscratch1, 0));
  8457 // AVX 3-operands instructions
  8459 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8460   if (reachable(src)) {
  8461     vaddsd(dst, nds, as_Address(src));
  8462   } else {
  8463     lea(rscratch1, src);
  8464     vaddsd(dst, nds, Address(rscratch1, 0));
  8468 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8469   if (reachable(src)) {
  8470     vaddss(dst, nds, as_Address(src));
  8471   } else {
  8472     lea(rscratch1, src);
  8473     vaddss(dst, nds, Address(rscratch1, 0));
  8477 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8478   if (reachable(src)) {
  8479     vandpd(dst, nds, as_Address(src), vector256);
  8480   } else {
  8481     lea(rscratch1, src);
  8482     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  8486 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8487   if (reachable(src)) {
  8488     vandps(dst, nds, as_Address(src), vector256);
  8489   } else {
  8490     lea(rscratch1, src);
  8491     vandps(dst, nds, Address(rscratch1, 0), vector256);
  8495 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8496   if (reachable(src)) {
  8497     vdivsd(dst, nds, as_Address(src));
  8498   } else {
  8499     lea(rscratch1, src);
  8500     vdivsd(dst, nds, Address(rscratch1, 0));
  8504 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8505   if (reachable(src)) {
  8506     vdivss(dst, nds, as_Address(src));
  8507   } else {
  8508     lea(rscratch1, src);
  8509     vdivss(dst, nds, Address(rscratch1, 0));
  8513 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8514   if (reachable(src)) {
  8515     vmulsd(dst, nds, as_Address(src));
  8516   } else {
  8517     lea(rscratch1, src);
  8518     vmulsd(dst, nds, Address(rscratch1, 0));
  8522 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8523   if (reachable(src)) {
  8524     vmulss(dst, nds, as_Address(src));
  8525   } else {
  8526     lea(rscratch1, src);
  8527     vmulss(dst, nds, Address(rscratch1, 0));
  8531 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8532   if (reachable(src)) {
  8533     vsubsd(dst, nds, as_Address(src));
  8534   } else {
  8535     lea(rscratch1, src);
  8536     vsubsd(dst, nds, Address(rscratch1, 0));
  8540 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  8541   if (reachable(src)) {
  8542     vsubss(dst, nds, as_Address(src));
  8543   } else {
  8544     lea(rscratch1, src);
  8545     vsubss(dst, nds, Address(rscratch1, 0));
  8549 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8550   if (reachable(src)) {
  8551     vxorpd(dst, nds, as_Address(src), vector256);
  8552   } else {
  8553     lea(rscratch1, src);
  8554     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  8558 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  8559   if (reachable(src)) {
  8560     vxorps(dst, nds, as_Address(src), vector256);
  8561   } else {
  8562     lea(rscratch1, src);
  8563     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  8568 //////////////////////////////////////////////////////////////////////////////////
  8569 #ifndef SERIALGC
  8571 void MacroAssembler::g1_write_barrier_pre(Register obj,
  8572                                           Register pre_val,
  8573                                           Register thread,
  8574                                           Register tmp,
  8575                                           bool tosca_live,
  8576                                           bool expand_call) {
  8578   // If expand_call is true then we expand the call_VM_leaf macro
  8579   // directly to skip generating the check by
  8580   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  8582 #ifdef _LP64
  8583   assert(thread == r15_thread, "must be");
  8584 #endif // _LP64
  8586   Label done;
  8587   Label runtime;
  8589   assert(pre_val != noreg, "check this code");
  8591   if (obj != noreg) {
  8592     assert_different_registers(obj, pre_val, tmp);
  8593     assert(pre_val != rax, "check this code");
  8596   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8597                                        PtrQueue::byte_offset_of_active()));
  8598   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8599                                        PtrQueue::byte_offset_of_index()));
  8600   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  8601                                        PtrQueue::byte_offset_of_buf()));
  8604   // Is marking active?
  8605   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  8606     cmpl(in_progress, 0);
  8607   } else {
  8608     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  8609     cmpb(in_progress, 0);
  8611   jcc(Assembler::equal, done);
  8613   // Do we need to load the previous value?
  8614   if (obj != noreg) {
  8615     load_heap_oop(pre_val, Address(obj, 0));
  8618   // Is the previous value null?
  8619   cmpptr(pre_val, (int32_t) NULL_WORD);
  8620   jcc(Assembler::equal, done);
  8622   // Can we store original value in the thread's buffer?
  8623   // Is index == 0?
  8624   // (The index field is typed as size_t.)
  8626   movptr(tmp, index);                   // tmp := *index_adr
  8627   cmpptr(tmp, 0);                       // tmp == 0?
  8628   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  8630   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  8631   movptr(index, tmp);                   // *index_adr := tmp
  8632   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  8634   // Record the previous value
  8635   movptr(Address(tmp, 0), pre_val);
  8636   jmp(done);
  8638   bind(runtime);
  8639   // save the live input values
  8640   if(tosca_live) push(rax);
  8642   if (obj != noreg && obj != rax)
  8643     push(obj);
  8645   if (pre_val != rax)
  8646     push(pre_val);
  8648   // Calling the runtime using the regular call_VM_leaf mechanism generates
  8649   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  8650   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  8651   //
  8652   // If we care generating the pre-barrier without a frame (e.g. in the
  8653   // intrinsified Reference.get() routine) then ebp might be pointing to
  8654   // the caller frame and so this check will most likely fail at runtime.
  8655   //
  8656   // Expanding the call directly bypasses the generation of the check.
  8657   // So when we do not have have a full interpreter frame on the stack
  8658   // expand_call should be passed true.
  8660   NOT_LP64( push(thread); )
  8662   if (expand_call) {
  8663     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  8664     pass_arg1(this, thread);
  8665     pass_arg0(this, pre_val);
  8666     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  8667   } else {
  8668     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  8671   NOT_LP64( pop(thread); )
  8673   // save the live input values
  8674   if (pre_val != rax)
  8675     pop(pre_val);
  8677   if (obj != noreg && obj != rax)
  8678     pop(obj);
  8680   if(tosca_live) pop(rax);
  8682   bind(done);
  8685 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  8686                                            Register new_val,
  8687                                            Register thread,
  8688                                            Register tmp,
  8689                                            Register tmp2) {
  8690 #ifdef _LP64
  8691   assert(thread == r15_thread, "must be");
  8692 #endif // _LP64
  8694   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8695                                        PtrQueue::byte_offset_of_index()));
  8696   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  8697                                        PtrQueue::byte_offset_of_buf()));
  8699   BarrierSet* bs = Universe::heap()->barrier_set();
  8700   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8701   Label done;
  8702   Label runtime;
  8704   // Does store cross heap regions?
  8706   movptr(tmp, store_addr);
  8707   xorptr(tmp, new_val);
  8708   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  8709   jcc(Assembler::equal, done);
  8711   // crosses regions, storing NULL?
  8713   cmpptr(new_val, (int32_t) NULL_WORD);
  8714   jcc(Assembler::equal, done);
  8716   // storing region crossing non-NULL, is card already dirty?
  8718   ExternalAddress cardtable((address) ct->byte_map_base);
  8719   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8720 #ifdef _LP64
  8721   const Register card_addr = tmp;
  8723   movq(card_addr, store_addr);
  8724   shrq(card_addr, CardTableModRefBS::card_shift);
  8726   lea(tmp2, cardtable);
  8728   // get the address of the card
  8729   addq(card_addr, tmp2);
  8730 #else
  8731   const Register card_index = tmp;
  8733   movl(card_index, store_addr);
  8734   shrl(card_index, CardTableModRefBS::card_shift);
  8736   Address index(noreg, card_index, Address::times_1);
  8737   const Register card_addr = tmp;
  8738   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  8739 #endif
  8740   cmpb(Address(card_addr, 0), 0);
  8741   jcc(Assembler::equal, done);
  8743   // storing a region crossing, non-NULL oop, card is clean.
  8744   // dirty card and log.
  8746   movb(Address(card_addr, 0), 0);
  8748   cmpl(queue_index, 0);
  8749   jcc(Assembler::equal, runtime);
  8750   subl(queue_index, wordSize);
  8751   movptr(tmp2, buffer);
  8752 #ifdef _LP64
  8753   movslq(rscratch1, queue_index);
  8754   addq(tmp2, rscratch1);
  8755   movq(Address(tmp2, 0), card_addr);
  8756 #else
  8757   addl(tmp2, queue_index);
  8758   movl(Address(tmp2, 0), card_index);
  8759 #endif
  8760   jmp(done);
  8762   bind(runtime);
  8763   // save the live input values
  8764   push(store_addr);
  8765   push(new_val);
  8766 #ifdef _LP64
  8767   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  8768 #else
  8769   push(thread);
  8770   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  8771   pop(thread);
  8772 #endif
  8773   pop(new_val);
  8774   pop(store_addr);
  8776   bind(done);
  8779 #endif // SERIALGC
  8780 //////////////////////////////////////////////////////////////////////////////////
  8783 void MacroAssembler::store_check(Register obj) {
  8784   // Does a store check for the oop in register obj. The content of
  8785   // register obj is destroyed afterwards.
  8786   store_check_part_1(obj);
  8787   store_check_part_2(obj);
  8790 void MacroAssembler::store_check(Register obj, Address dst) {
  8791   store_check(obj);
  8795 // split the store check operation so that other instructions can be scheduled inbetween
  8796 void MacroAssembler::store_check_part_1(Register obj) {
  8797   BarrierSet* bs = Universe::heap()->barrier_set();
  8798   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8799   shrptr(obj, CardTableModRefBS::card_shift);
  8802 void MacroAssembler::store_check_part_2(Register obj) {
  8803   BarrierSet* bs = Universe::heap()->barrier_set();
  8804   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  8805   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  8806   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  8808   // The calculation for byte_map_base is as follows:
  8809   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  8810   // So this essentially converts an address to a displacement and
  8811   // it will never need to be relocated. On 64bit however the value may be too
  8812   // large for a 32bit displacement
  8814   intptr_t disp = (intptr_t) ct->byte_map_base;
  8815   if (is_simm32(disp)) {
  8816     Address cardtable(noreg, obj, Address::times_1, disp);
  8817     movb(cardtable, 0);
  8818   } else {
  8819     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  8820     // displacement and done in a single instruction given favorable mapping and
  8821     // a smarter version of as_Address. Worst case it is two instructions which
  8822     // is no worse off then loading disp into a register and doing as a simple
  8823     // Address() as above.
  8824     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  8825     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  8826     // in some cases we'll get a single instruction version.
  8828     ExternalAddress cardtable((address)disp);
  8829     Address index(noreg, obj, Address::times_1);
  8830     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  8834 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  8835   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  8838 // Force generation of a 4 byte immediate value even if it fits into 8bit
  8839 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  8840   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  8843 void MacroAssembler::subptr(Register dst, Register src) {
  8844   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  8847 // C++ bool manipulation
  8848 void MacroAssembler::testbool(Register dst) {
  8849   if(sizeof(bool) == 1)
  8850     testb(dst, 0xff);
  8851   else if(sizeof(bool) == 2) {
  8852     // testw implementation needed for two byte bools
  8853     ShouldNotReachHere();
  8854   } else if(sizeof(bool) == 4)
  8855     testl(dst, dst);
  8856   else
  8857     // unsupported
  8858     ShouldNotReachHere();
  8861 void MacroAssembler::testptr(Register dst, Register src) {
  8862   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  8865 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  8866 void MacroAssembler::tlab_allocate(Register obj,
  8867                                    Register var_size_in_bytes,
  8868                                    int con_size_in_bytes,
  8869                                    Register t1,
  8870                                    Register t2,
  8871                                    Label& slow_case) {
  8872   assert_different_registers(obj, t1, t2);
  8873   assert_different_registers(obj, var_size_in_bytes, t1);
  8874   Register end = t2;
  8875   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  8877   verify_tlab();
  8879   NOT_LP64(get_thread(thread));
  8881   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  8882   if (var_size_in_bytes == noreg) {
  8883     lea(end, Address(obj, con_size_in_bytes));
  8884   } else {
  8885     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  8887   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  8888   jcc(Assembler::above, slow_case);
  8890   // update the tlab top pointer
  8891   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  8893   // recover var_size_in_bytes if necessary
  8894   if (var_size_in_bytes == end) {
  8895     subptr(var_size_in_bytes, obj);
  8897   verify_tlab();
  8900 // Preserves rbx, and rdx.
  8901 Register MacroAssembler::tlab_refill(Label& retry,
  8902                                      Label& try_eden,
  8903                                      Label& slow_case) {
  8904   Register top = rax;
  8905   Register t1  = rcx;
  8906   Register t2  = rsi;
  8907   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  8908   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  8909   Label do_refill, discard_tlab;
  8911   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  8912     // No allocation in the shared eden.
  8913     jmp(slow_case);
  8916   NOT_LP64(get_thread(thread_reg));
  8918   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  8919   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  8921   // calculate amount of free space
  8922   subptr(t1, top);
  8923   shrptr(t1, LogHeapWordSize);
  8925   // Retain tlab and allocate object in shared space if
  8926   // the amount free in the tlab is too large to discard.
  8927   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  8928   jcc(Assembler::lessEqual, discard_tlab);
  8930   // Retain
  8931   // %%% yuck as movptr...
  8932   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  8933   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  8934   if (TLABStats) {
  8935     // increment number of slow_allocations
  8936     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  8938   jmp(try_eden);
  8940   bind(discard_tlab);
  8941   if (TLABStats) {
  8942     // increment number of refills
  8943     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  8944     // accumulate wastage -- t1 is amount free in tlab
  8945     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  8948   // if tlab is currently allocated (top or end != null) then
  8949   // fill [top, end + alignment_reserve) with array object
  8950   testptr(top, top);
  8951   jcc(Assembler::zero, do_refill);
  8953   // set up the mark word
  8954   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  8955   // set the length to the remaining space
  8956   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  8957   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  8958   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  8959   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  8960   // set klass to intArrayKlass
  8961   // dubious reloc why not an oop reloc?
  8962   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  8963   // store klass last.  concurrent gcs assumes klass length is valid if
  8964   // klass field is not null.
  8965   store_klass(top, t1);
  8967   movptr(t1, top);
  8968   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  8969   incr_allocated_bytes(thread_reg, t1, 0);
  8971   // refill the tlab with an eden allocation
  8972   bind(do_refill);
  8973   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8974   shlptr(t1, LogHeapWordSize);
  8975   // allocate new tlab, address returned in top
  8976   eden_allocate(top, t1, 0, t2, slow_case);
  8978   // Check that t1 was preserved in eden_allocate.
  8979 #ifdef ASSERT
  8980   if (UseTLAB) {
  8981     Label ok;
  8982     Register tsize = rsi;
  8983     assert_different_registers(tsize, thread_reg, t1);
  8984     push(tsize);
  8985     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  8986     shlptr(tsize, LogHeapWordSize);
  8987     cmpptr(t1, tsize);
  8988     jcc(Assembler::equal, ok);
  8989     STOP("assert(t1 != tlab size)");
  8990     should_not_reach_here();
  8992     bind(ok);
  8993     pop(tsize);
  8995 #endif
  8996   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  8997   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  8998   addptr(top, t1);
  8999   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  9000   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  9001   verify_tlab();
  9002   jmp(retry);
  9004   return thread_reg; // for use by caller
  9007 void MacroAssembler::incr_allocated_bytes(Register thread,
  9008                                           Register var_size_in_bytes,
  9009                                           int con_size_in_bytes,
  9010                                           Register t1) {
  9011   if (!thread->is_valid()) {
  9012 #ifdef _LP64
  9013     thread = r15_thread;
  9014 #else
  9015     assert(t1->is_valid(), "need temp reg");
  9016     thread = t1;
  9017     get_thread(thread);
  9018 #endif
  9021 #ifdef _LP64
  9022   if (var_size_in_bytes->is_valid()) {
  9023     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  9024   } else {
  9025     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  9027 #else
  9028   if (var_size_in_bytes->is_valid()) {
  9029     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  9030   } else {
  9031     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  9033   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  9034 #endif
  9037 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  9038   pusha();
  9040   // if we are coming from c1, xmm registers may be live
  9041   int off = 0;
  9042   if (UseSSE == 1)  {
  9043     subptr(rsp, sizeof(jdouble)*8);
  9044     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  9045     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  9046     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  9047     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  9048     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  9049     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  9050     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  9051     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  9052   } else if (UseSSE >= 2)  {
  9053 #ifdef COMPILER2
  9054     if (MaxVectorSize > 16) {
  9055       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  9056       // Save upper half of YMM registes
  9057       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  9058       vextractf128h(Address(rsp,  0),xmm0);
  9059       vextractf128h(Address(rsp, 16),xmm1);
  9060       vextractf128h(Address(rsp, 32),xmm2);
  9061       vextractf128h(Address(rsp, 48),xmm3);
  9062       vextractf128h(Address(rsp, 64),xmm4);
  9063       vextractf128h(Address(rsp, 80),xmm5);
  9064       vextractf128h(Address(rsp, 96),xmm6);
  9065       vextractf128h(Address(rsp,112),xmm7);
  9066 #ifdef _LP64
  9067       vextractf128h(Address(rsp,128),xmm8);
  9068       vextractf128h(Address(rsp,144),xmm9);
  9069       vextractf128h(Address(rsp,160),xmm10);
  9070       vextractf128h(Address(rsp,176),xmm11);
  9071       vextractf128h(Address(rsp,192),xmm12);
  9072       vextractf128h(Address(rsp,208),xmm13);
  9073       vextractf128h(Address(rsp,224),xmm14);
  9074       vextractf128h(Address(rsp,240),xmm15);
  9075 #endif
  9077 #endif
  9078     // Save whole 128bit (16 bytes) XMM regiters
  9079     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  9080     movdqu(Address(rsp,off++*16),xmm0);
  9081     movdqu(Address(rsp,off++*16),xmm1);
  9082     movdqu(Address(rsp,off++*16),xmm2);
  9083     movdqu(Address(rsp,off++*16),xmm3);
  9084     movdqu(Address(rsp,off++*16),xmm4);
  9085     movdqu(Address(rsp,off++*16),xmm5);
  9086     movdqu(Address(rsp,off++*16),xmm6);
  9087     movdqu(Address(rsp,off++*16),xmm7);
  9088 #ifdef _LP64
  9089     movdqu(Address(rsp,off++*16),xmm8);
  9090     movdqu(Address(rsp,off++*16),xmm9);
  9091     movdqu(Address(rsp,off++*16),xmm10);
  9092     movdqu(Address(rsp,off++*16),xmm11);
  9093     movdqu(Address(rsp,off++*16),xmm12);
  9094     movdqu(Address(rsp,off++*16),xmm13);
  9095     movdqu(Address(rsp,off++*16),xmm14);
  9096     movdqu(Address(rsp,off++*16),xmm15);
  9097 #endif
  9100   // Preserve registers across runtime call
  9101   int incoming_argument_and_return_value_offset = -1;
  9102   if (num_fpu_regs_in_use > 1) {
  9103     // Must preserve all other FPU regs (could alternatively convert
  9104     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  9105     // FPU state, but can not trust C compiler)
  9106     NEEDS_CLEANUP;
  9107     // NOTE that in this case we also push the incoming argument(s) to
  9108     // the stack and restore it later; we also use this stack slot to
  9109     // hold the return value from dsin, dcos etc.
  9110     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  9111       subptr(rsp, sizeof(jdouble));
  9112       fstp_d(Address(rsp, 0));
  9114     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  9115     for (int i = nb_args-1; i >= 0; i--) {
  9116       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  9120   subptr(rsp, nb_args*sizeof(jdouble));
  9121   for (int i = 0; i < nb_args; i++) {
  9122     fstp_d(Address(rsp, i*sizeof(jdouble)));
  9125 #ifdef _LP64
  9126   if (nb_args > 0) {
  9127     movdbl(xmm0, Address(rsp, 0));
  9129   if (nb_args > 1) {
  9130     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  9132   assert(nb_args <= 2, "unsupported number of args");
  9133 #endif // _LP64
  9135   // NOTE: we must not use call_VM_leaf here because that requires a
  9136   // complete interpreter frame in debug mode -- same bug as 4387334
  9137   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  9138   // do proper 64bit abi
  9140   NEEDS_CLEANUP;
  9141   // Need to add stack banging before this runtime call if it needs to
  9142   // be taken; however, there is no generic stack banging routine at
  9143   // the MacroAssembler level
  9145   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  9147 #ifdef _LP64
  9148   movsd(Address(rsp, 0), xmm0);
  9149   fld_d(Address(rsp, 0));
  9150 #endif // _LP64
  9151   addptr(rsp, sizeof(jdouble) * nb_args);
  9152   if (num_fpu_regs_in_use > 1) {
  9153     // Must save return value to stack and then restore entire FPU
  9154     // stack except incoming arguments
  9155     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  9156     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  9157       fld_d(Address(rsp, 0));
  9158       addptr(rsp, sizeof(jdouble));
  9160     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  9161     addptr(rsp, sizeof(jdouble) * nb_args);
  9164   off = 0;
  9165   if (UseSSE == 1)  {
  9166     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  9167     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  9168     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  9169     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  9170     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  9171     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  9172     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  9173     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  9174     addptr(rsp, sizeof(jdouble)*8);
  9175   } else if (UseSSE >= 2)  {
  9176     // Restore whole 128bit (16 bytes) XMM regiters
  9177     movdqu(xmm0, Address(rsp,off++*16));
  9178     movdqu(xmm1, Address(rsp,off++*16));
  9179     movdqu(xmm2, Address(rsp,off++*16));
  9180     movdqu(xmm3, Address(rsp,off++*16));
  9181     movdqu(xmm4, Address(rsp,off++*16));
  9182     movdqu(xmm5, Address(rsp,off++*16));
  9183     movdqu(xmm6, Address(rsp,off++*16));
  9184     movdqu(xmm7, Address(rsp,off++*16));
  9185 #ifdef _LP64
  9186     movdqu(xmm8, Address(rsp,off++*16));
  9187     movdqu(xmm9, Address(rsp,off++*16));
  9188     movdqu(xmm10, Address(rsp,off++*16));
  9189     movdqu(xmm11, Address(rsp,off++*16));
  9190     movdqu(xmm12, Address(rsp,off++*16));
  9191     movdqu(xmm13, Address(rsp,off++*16));
  9192     movdqu(xmm14, Address(rsp,off++*16));
  9193     movdqu(xmm15, Address(rsp,off++*16));
  9194 #endif
  9195     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  9196 #ifdef COMPILER2
  9197     if (MaxVectorSize > 16) {
  9198       // Restore upper half of YMM registes.
  9199       vinsertf128h(xmm0, Address(rsp,  0));
  9200       vinsertf128h(xmm1, Address(rsp, 16));
  9201       vinsertf128h(xmm2, Address(rsp, 32));
  9202       vinsertf128h(xmm3, Address(rsp, 48));
  9203       vinsertf128h(xmm4, Address(rsp, 64));
  9204       vinsertf128h(xmm5, Address(rsp, 80));
  9205       vinsertf128h(xmm6, Address(rsp, 96));
  9206       vinsertf128h(xmm7, Address(rsp,112));
  9207 #ifdef _LP64
  9208       vinsertf128h(xmm8, Address(rsp,128));
  9209       vinsertf128h(xmm9, Address(rsp,144));
  9210       vinsertf128h(xmm10, Address(rsp,160));
  9211       vinsertf128h(xmm11, Address(rsp,176));
  9212       vinsertf128h(xmm12, Address(rsp,192));
  9213       vinsertf128h(xmm13, Address(rsp,208));
  9214       vinsertf128h(xmm14, Address(rsp,224));
  9215       vinsertf128h(xmm15, Address(rsp,240));
  9216 #endif
  9217       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  9219 #endif
  9221   popa();
  9224 static const double     pi_4 =  0.7853981633974483;
  9226 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  9227   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  9228   // was attempted in this code; unfortunately it appears that the
  9229   // switch to 80-bit precision and back causes this to be
  9230   // unprofitable compared with simply performing a runtime call if
  9231   // the argument is out of the (-pi/4, pi/4) range.
  9233   Register tmp = noreg;
  9234   if (!VM_Version::supports_cmov()) {
  9235     // fcmp needs a temporary so preserve rbx,
  9236     tmp = rbx;
  9237     push(tmp);
  9240   Label slow_case, done;
  9242   ExternalAddress pi4_adr = (address)&pi_4;
  9243   if (reachable(pi4_adr)) {
  9244     // x ?<= pi/4
  9245     fld_d(pi4_adr);
  9246     fld_s(1);                // Stack:  X  PI/4  X
  9247     fabs();                  // Stack: |X| PI/4  X
  9248     fcmp(tmp);
  9249     jcc(Assembler::above, slow_case);
  9251     // fastest case: -pi/4 <= x <= pi/4
  9252     switch(trig) {
  9253     case 's':
  9254       fsin();
  9255       break;
  9256     case 'c':
  9257       fcos();
  9258       break;
  9259     case 't':
  9260       ftan();
  9261       break;
  9262     default:
  9263       assert(false, "bad intrinsic");
  9264       break;
  9266     jmp(done);
  9269   // slow case: runtime call
  9270   bind(slow_case);
  9272   switch(trig) {
  9273   case 's':
  9275       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  9277     break;
  9278   case 'c':
  9280       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  9282     break;
  9283   case 't':
  9285       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  9287     break;
  9288   default:
  9289     assert(false, "bad intrinsic");
  9290     break;
  9293   // Come here with result in F-TOS
  9294   bind(done);
  9296   if (tmp != noreg) {
  9297     pop(tmp);
  9302 // Look up the method for a megamorphic invokeinterface call.
  9303 // The target method is determined by <intf_klass, itable_index>.
  9304 // The receiver klass is in recv_klass.
  9305 // On success, the result will be in method_result, and execution falls through.
  9306 // On failure, execution transfers to the given label.
  9307 void MacroAssembler::lookup_interface_method(Register recv_klass,
  9308                                              Register intf_klass,
  9309                                              RegisterOrConstant itable_index,
  9310                                              Register method_result,
  9311                                              Register scan_temp,
  9312                                              Label& L_no_such_interface) {
  9313   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  9314   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  9315          "caller must use same register for non-constant itable index as for method");
  9317   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  9318   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  9319   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  9320   int scan_step   = itableOffsetEntry::size() * wordSize;
  9321   int vte_size    = vtableEntry::size() * wordSize;
  9322   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  9323   assert(vte_size == wordSize, "else adjust times_vte_scale");
  9325   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  9327   // %%% Could store the aligned, prescaled offset in the klassoop.
  9328   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  9329   if (HeapWordsPerLong > 1) {
  9330     // Round up to align_object_offset boundary
  9331     // see code for InstanceKlass::start_of_itable!
  9332     round_to(scan_temp, BytesPerLong);
  9335   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  9336   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  9337   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  9339   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  9340   //   if (scan->interface() == intf) {
  9341   //     result = (klass + scan->offset() + itable_index);
  9342   //   }
  9343   // }
  9344   Label search, found_method;
  9346   for (int peel = 1; peel >= 0; peel--) {
  9347     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  9348     cmpptr(intf_klass, method_result);
  9350     if (peel) {
  9351       jccb(Assembler::equal, found_method);
  9352     } else {
  9353       jccb(Assembler::notEqual, search);
  9354       // (invert the test to fall through to found_method...)
  9357     if (!peel)  break;
  9359     bind(search);
  9361     // Check that the previous entry is non-null.  A null entry means that
  9362     // the receiver class doesn't implement the interface, and wasn't the
  9363     // same as when the caller was compiled.
  9364     testptr(method_result, method_result);
  9365     jcc(Assembler::zero, L_no_such_interface);
  9366     addptr(scan_temp, scan_step);
  9369   bind(found_method);
  9371   // Got a hit.
  9372   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  9373   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  9377 // virtual method calling
  9378 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  9379                                            RegisterOrConstant vtable_index,
  9380                                            Register method_result) {
  9381   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  9382   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  9383   Address vtable_entry_addr(recv_klass,
  9384                             vtable_index, Address::times_ptr,
  9385                             base + vtableEntry::method_offset_in_bytes());
  9386   movptr(method_result, vtable_entry_addr);
  9390 void MacroAssembler::check_klass_subtype(Register sub_klass,
  9391                            Register super_klass,
  9392                            Register temp_reg,
  9393                            Label& L_success) {
  9394   Label L_failure;
  9395   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  9396   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  9397   bind(L_failure);
  9401 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  9402                                                    Register super_klass,
  9403                                                    Register temp_reg,
  9404                                                    Label* L_success,
  9405                                                    Label* L_failure,
  9406                                                    Label* L_slow_path,
  9407                                         RegisterOrConstant super_check_offset) {
  9408   assert_different_registers(sub_klass, super_klass, temp_reg);
  9409   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  9410   if (super_check_offset.is_register()) {
  9411     assert_different_registers(sub_klass, super_klass,
  9412                                super_check_offset.as_register());
  9413   } else if (must_load_sco) {
  9414     assert(temp_reg != noreg, "supply either a temp or a register offset");
  9417   Label L_fallthrough;
  9418   int label_nulls = 0;
  9419   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  9420   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  9421   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  9422   assert(label_nulls <= 1, "at most one NULL in the batch");
  9424   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  9425   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  9426   Address super_check_offset_addr(super_klass, sco_offset);
  9428   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  9429   // range of a jccb.  If this routine grows larger, reconsider at
  9430   // least some of these.
  9431 #define local_jcc(assembler_cond, label)                                \
  9432   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  9433   else                             jcc( assembler_cond, label) /*omit semi*/
  9435   // Hacked jmp, which may only be used just before L_fallthrough.
  9436 #define final_jmp(label)                                                \
  9437   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  9438   else                            jmp(label)                /*omit semi*/
  9440   // If the pointers are equal, we are done (e.g., String[] elements).
  9441   // This self-check enables sharing of secondary supertype arrays among
  9442   // non-primary types such as array-of-interface.  Otherwise, each such
  9443   // type would need its own customized SSA.
  9444   // We move this check to the front of the fast path because many
  9445   // type checks are in fact trivially successful in this manner,
  9446   // so we get a nicely predicted branch right at the start of the check.
  9447   cmpptr(sub_klass, super_klass);
  9448   local_jcc(Assembler::equal, *L_success);
  9450   // Check the supertype display:
  9451   if (must_load_sco) {
  9452     // Positive movl does right thing on LP64.
  9453     movl(temp_reg, super_check_offset_addr);
  9454     super_check_offset = RegisterOrConstant(temp_reg);
  9456   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  9457   cmpptr(super_klass, super_check_addr); // load displayed supertype
  9459   // This check has worked decisively for primary supers.
  9460   // Secondary supers are sought in the super_cache ('super_cache_addr').
  9461   // (Secondary supers are interfaces and very deeply nested subtypes.)
  9462   // This works in the same check above because of a tricky aliasing
  9463   // between the super_cache and the primary super display elements.
  9464   // (The 'super_check_addr' can address either, as the case requires.)
  9465   // Note that the cache is updated below if it does not help us find
  9466   // what we need immediately.
  9467   // So if it was a primary super, we can just fail immediately.
  9468   // Otherwise, it's the slow path for us (no success at this point).
  9470   if (super_check_offset.is_register()) {
  9471     local_jcc(Assembler::equal, *L_success);
  9472     cmpl(super_check_offset.as_register(), sc_offset);
  9473     if (L_failure == &L_fallthrough) {
  9474       local_jcc(Assembler::equal, *L_slow_path);
  9475     } else {
  9476       local_jcc(Assembler::notEqual, *L_failure);
  9477       final_jmp(*L_slow_path);
  9479   } else if (super_check_offset.as_constant() == sc_offset) {
  9480     // Need a slow path; fast failure is impossible.
  9481     if (L_slow_path == &L_fallthrough) {
  9482       local_jcc(Assembler::equal, *L_success);
  9483     } else {
  9484       local_jcc(Assembler::notEqual, *L_slow_path);
  9485       final_jmp(*L_success);
  9487   } else {
  9488     // No slow path; it's a fast decision.
  9489     if (L_failure == &L_fallthrough) {
  9490       local_jcc(Assembler::equal, *L_success);
  9491     } else {
  9492       local_jcc(Assembler::notEqual, *L_failure);
  9493       final_jmp(*L_success);
  9497   bind(L_fallthrough);
  9499 #undef local_jcc
  9500 #undef final_jmp
  9504 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  9505                                                    Register super_klass,
  9506                                                    Register temp_reg,
  9507                                                    Register temp2_reg,
  9508                                                    Label* L_success,
  9509                                                    Label* L_failure,
  9510                                                    bool set_cond_codes) {
  9511   assert_different_registers(sub_klass, super_klass, temp_reg);
  9512   if (temp2_reg != noreg)
  9513     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  9514 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  9516   Label L_fallthrough;
  9517   int label_nulls = 0;
  9518   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  9519   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  9520   assert(label_nulls <= 1, "at most one NULL in the batch");
  9522   // a couple of useful fields in sub_klass:
  9523   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  9524   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  9525   Address secondary_supers_addr(sub_klass, ss_offset);
  9526   Address super_cache_addr(     sub_klass, sc_offset);
  9528   // Do a linear scan of the secondary super-klass chain.
  9529   // This code is rarely used, so simplicity is a virtue here.
  9530   // The repne_scan instruction uses fixed registers, which we must spill.
  9531   // Don't worry too much about pre-existing connections with the input regs.
  9533   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  9534   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  9536   // Get super_klass value into rax (even if it was in rdi or rcx).
  9537   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  9538   if (super_klass != rax || UseCompressedOops) {
  9539     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  9540     mov(rax, super_klass);
  9542   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  9543   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  9545 #ifndef PRODUCT
  9546   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  9547   ExternalAddress pst_counter_addr((address) pst_counter);
  9548   NOT_LP64(  incrementl(pst_counter_addr) );
  9549   LP64_ONLY( lea(rcx, pst_counter_addr) );
  9550   LP64_ONLY( incrementl(Address(rcx, 0)) );
  9551 #endif //PRODUCT
  9553   // We will consult the secondary-super array.
  9554   movptr(rdi, secondary_supers_addr);
  9555   // Load the array length.  (Positive movl does right thing on LP64.)
  9556   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  9557   // Skip to start of data.
  9558   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  9560   // Scan RCX words at [RDI] for an occurrence of RAX.
  9561   // Set NZ/Z based on last compare.
  9562   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  9563   // not change flags (only scas instruction which is repeated sets flags).
  9564   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  9566     testptr(rax,rax); // Set Z = 0
  9567     repne_scan();
  9569   // Unspill the temp. registers:
  9570   if (pushed_rdi)  pop(rdi);
  9571   if (pushed_rcx)  pop(rcx);
  9572   if (pushed_rax)  pop(rax);
  9574   if (set_cond_codes) {
  9575     // Special hack for the AD files:  rdi is guaranteed non-zero.
  9576     assert(!pushed_rdi, "rdi must be left non-NULL");
  9577     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  9580   if (L_failure == &L_fallthrough)
  9581         jccb(Assembler::notEqual, *L_failure);
  9582   else  jcc(Assembler::notEqual, *L_failure);
  9584   // Success.  Cache the super we found and proceed in triumph.
  9585   movptr(super_cache_addr, super_klass);
  9587   if (L_success != &L_fallthrough) {
  9588     jmp(*L_success);
  9591 #undef IS_A_TEMP
  9593   bind(L_fallthrough);
  9597 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  9598   if (VM_Version::supports_cmov()) {
  9599     cmovl(cc, dst, src);
  9600   } else {
  9601     Label L;
  9602     jccb(negate_condition(cc), L);
  9603     movl(dst, src);
  9604     bind(L);
  9608 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  9609   if (VM_Version::supports_cmov()) {
  9610     cmovl(cc, dst, src);
  9611   } else {
  9612     Label L;
  9613     jccb(negate_condition(cc), L);
  9614     movl(dst, src);
  9615     bind(L);
  9619 void MacroAssembler::verify_oop(Register reg, const char* s) {
  9620   if (!VerifyOops) return;
  9622   // Pass register number to verify_oop_subroutine
  9623   char* b = new char[strlen(s) + 50];
  9624   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  9625   BLOCK_COMMENT("verify_oop {");
  9626 #ifdef _LP64
  9627   push(rscratch1);                    // save r10, trashed by movptr()
  9628 #endif
  9629   push(rax);                          // save rax,
  9630   push(reg);                          // pass register argument
  9631   ExternalAddress buffer((address) b);
  9632   // avoid using pushptr, as it modifies scratch registers
  9633   // and our contract is not to modify anything
  9634   movptr(rax, buffer.addr());
  9635   push(rax);
  9636   // call indirectly to solve generation ordering problem
  9637   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9638   call(rax);
  9639   // Caller pops the arguments (oop, message) and restores rax, r10
  9640   BLOCK_COMMENT("} verify_oop");
  9644 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  9645                                                       Register tmp,
  9646                                                       int offset) {
  9647   intptr_t value = *delayed_value_addr;
  9648   if (value != 0)
  9649     return RegisterOrConstant(value + offset);
  9651   // load indirectly to solve generation ordering problem
  9652   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  9654 #ifdef ASSERT
  9655   { Label L;
  9656     testptr(tmp, tmp);
  9657     if (WizardMode) {
  9658       jcc(Assembler::notZero, L);
  9659       char* buf = new char[40];
  9660       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  9661       STOP(buf);
  9662     } else {
  9663       jccb(Assembler::notZero, L);
  9664       hlt();
  9666     bind(L);
  9668 #endif
  9670   if (offset != 0)
  9671     addptr(tmp, offset);
  9673   return RegisterOrConstant(tmp);
  9677 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  9678                                          int extra_slot_offset) {
  9679   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  9680   int stackElementSize = Interpreter::stackElementSize;
  9681   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  9682 #ifdef ASSERT
  9683   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  9684   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  9685 #endif
  9686   Register             scale_reg    = noreg;
  9687   Address::ScaleFactor scale_factor = Address::no_scale;
  9688   if (arg_slot.is_constant()) {
  9689     offset += arg_slot.as_constant() * stackElementSize;
  9690   } else {
  9691     scale_reg    = arg_slot.as_register();
  9692     scale_factor = Address::times(stackElementSize);
  9694   offset += wordSize;           // return PC is on stack
  9695   return Address(rsp, scale_reg, scale_factor, offset);
  9699 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  9700   if (!VerifyOops) return;
  9702   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  9703   // Pass register number to verify_oop_subroutine
  9704   char* b = new char[strlen(s) + 50];
  9705   sprintf(b, "verify_oop_addr: %s", s);
  9707 #ifdef _LP64
  9708   push(rscratch1);                    // save r10, trashed by movptr()
  9709 #endif
  9710   push(rax);                          // save rax,
  9711   // addr may contain rsp so we will have to adjust it based on the push
  9712   // we just did (and on 64 bit we do two pushes)
  9713   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  9714   // stores rax into addr which is backwards of what was intended.
  9715   if (addr.uses(rsp)) {
  9716     lea(rax, addr);
  9717     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  9718   } else {
  9719     pushptr(addr);
  9722   ExternalAddress buffer((address) b);
  9723   // pass msg argument
  9724   // avoid using pushptr, as it modifies scratch registers
  9725   // and our contract is not to modify anything
  9726   movptr(rax, buffer.addr());
  9727   push(rax);
  9729   // call indirectly to solve generation ordering problem
  9730   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  9731   call(rax);
  9732   // Caller pops the arguments (addr, message) and restores rax, r10.
  9735 void MacroAssembler::verify_tlab() {
  9736 #ifdef ASSERT
  9737   if (UseTLAB && VerifyOops) {
  9738     Label next, ok;
  9739     Register t1 = rsi;
  9740     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  9742     push(t1);
  9743     NOT_LP64(push(thread_reg));
  9744     NOT_LP64(get_thread(thread_reg));
  9746     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9747     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  9748     jcc(Assembler::aboveEqual, next);
  9749     STOP("assert(top >= start)");
  9750     should_not_reach_here();
  9752     bind(next);
  9753     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  9754     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  9755     jcc(Assembler::aboveEqual, ok);
  9756     STOP("assert(top <= end)");
  9757     should_not_reach_here();
  9759     bind(ok);
  9760     NOT_LP64(pop(thread_reg));
  9761     pop(t1);
  9763 #endif
  9766 class ControlWord {
  9767  public:
  9768   int32_t _value;
  9770   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  9771   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  9772   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9773   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9774   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9775   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9776   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9777   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9779   void print() const {
  9780     // rounding control
  9781     const char* rc;
  9782     switch (rounding_control()) {
  9783       case 0: rc = "round near"; break;
  9784       case 1: rc = "round down"; break;
  9785       case 2: rc = "round up  "; break;
  9786       case 3: rc = "chop      "; break;
  9787     };
  9788     // precision control
  9789     const char* pc;
  9790     switch (precision_control()) {
  9791       case 0: pc = "24 bits "; break;
  9792       case 1: pc = "reserved"; break;
  9793       case 2: pc = "53 bits "; break;
  9794       case 3: pc = "64 bits "; break;
  9795     };
  9796     // flags
  9797     char f[9];
  9798     f[0] = ' ';
  9799     f[1] = ' ';
  9800     f[2] = (precision   ()) ? 'P' : 'p';
  9801     f[3] = (underflow   ()) ? 'U' : 'u';
  9802     f[4] = (overflow    ()) ? 'O' : 'o';
  9803     f[5] = (zero_divide ()) ? 'Z' : 'z';
  9804     f[6] = (denormalized()) ? 'D' : 'd';
  9805     f[7] = (invalid     ()) ? 'I' : 'i';
  9806     f[8] = '\x0';
  9807     // output
  9808     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  9811 };
  9813 class StatusWord {
  9814  public:
  9815   int32_t _value;
  9817   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  9818   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  9819   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  9820   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  9821   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  9822   int  top() const                     { return  (_value >> 11) & 7      ; }
  9823   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  9824   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  9825   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  9826   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  9827   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  9828   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  9829   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  9830   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  9832   void print() const {
  9833     // condition codes
  9834     char c[5];
  9835     c[0] = (C3()) ? '3' : '-';
  9836     c[1] = (C2()) ? '2' : '-';
  9837     c[2] = (C1()) ? '1' : '-';
  9838     c[3] = (C0()) ? '0' : '-';
  9839     c[4] = '\x0';
  9840     // flags
  9841     char f[9];
  9842     f[0] = (error_status()) ? 'E' : '-';
  9843     f[1] = (stack_fault ()) ? 'S' : '-';
  9844     f[2] = (precision   ()) ? 'P' : '-';
  9845     f[3] = (underflow   ()) ? 'U' : '-';
  9846     f[4] = (overflow    ()) ? 'O' : '-';
  9847     f[5] = (zero_divide ()) ? 'Z' : '-';
  9848     f[6] = (denormalized()) ? 'D' : '-';
  9849     f[7] = (invalid     ()) ? 'I' : '-';
  9850     f[8] = '\x0';
  9851     // output
  9852     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  9855 };
  9857 class TagWord {
  9858  public:
  9859   int32_t _value;
  9861   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  9863   void print() const {
  9864     printf("%04x", _value & 0xFFFF);
  9867 };
  9869 class FPU_Register {
  9870  public:
  9871   int32_t _m0;
  9872   int32_t _m1;
  9873   int16_t _ex;
  9875   bool is_indefinite() const           {
  9876     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  9879   void print() const {
  9880     char  sign = (_ex < 0) ? '-' : '+';
  9881     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  9882     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  9883   };
  9885 };
  9887 class FPU_State {
  9888  public:
  9889   enum {
  9890     register_size       = 10,
  9891     number_of_registers =  8,
  9892     register_mask       =  7
  9893   };
  9895   ControlWord  _control_word;
  9896   StatusWord   _status_word;
  9897   TagWord      _tag_word;
  9898   int32_t      _error_offset;
  9899   int32_t      _error_selector;
  9900   int32_t      _data_offset;
  9901   int32_t      _data_selector;
  9902   int8_t       _register[register_size * number_of_registers];
  9904   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  9905   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  9907   const char* tag_as_string(int tag) const {
  9908     switch (tag) {
  9909       case 0: return "valid";
  9910       case 1: return "zero";
  9911       case 2: return "special";
  9912       case 3: return "empty";
  9914     ShouldNotReachHere();
  9915     return NULL;
  9918   void print() const {
  9919     // print computation registers
  9920     { int t = _status_word.top();
  9921       for (int i = 0; i < number_of_registers; i++) {
  9922         int j = (i - t) & register_mask;
  9923         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  9924         st(j)->print();
  9925         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  9928     printf("\n");
  9929     // print control registers
  9930     printf("ctrl = "); _control_word.print(); printf("\n");
  9931     printf("stat = "); _status_word .print(); printf("\n");
  9932     printf("tags = "); _tag_word    .print(); printf("\n");
  9935 };
  9937 class Flag_Register {
  9938  public:
  9939   int32_t _value;
  9941   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  9942   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  9943   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  9944   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  9945   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  9946   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  9947   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  9949   void print() const {
  9950     // flags
  9951     char f[8];
  9952     f[0] = (overflow       ()) ? 'O' : '-';
  9953     f[1] = (direction      ()) ? 'D' : '-';
  9954     f[2] = (sign           ()) ? 'S' : '-';
  9955     f[3] = (zero           ()) ? 'Z' : '-';
  9956     f[4] = (auxiliary_carry()) ? 'A' : '-';
  9957     f[5] = (parity         ()) ? 'P' : '-';
  9958     f[6] = (carry          ()) ? 'C' : '-';
  9959     f[7] = '\x0';
  9960     // output
  9961     printf("%08x  flags = %s", _value, f);
  9964 };
  9966 class IU_Register {
  9967  public:
  9968   int32_t _value;
  9970   void print() const {
  9971     printf("%08x  %11d", _value, _value);
  9974 };
  9976 class IU_State {
  9977  public:
  9978   Flag_Register _eflags;
  9979   IU_Register   _rdi;
  9980   IU_Register   _rsi;
  9981   IU_Register   _rbp;
  9982   IU_Register   _rsp;
  9983   IU_Register   _rbx;
  9984   IU_Register   _rdx;
  9985   IU_Register   _rcx;
  9986   IU_Register   _rax;
  9988   void print() const {
  9989     // computation registers
  9990     printf("rax,  = "); _rax.print(); printf("\n");
  9991     printf("rbx,  = "); _rbx.print(); printf("\n");
  9992     printf("rcx  = "); _rcx.print(); printf("\n");
  9993     printf("rdx  = "); _rdx.print(); printf("\n");
  9994     printf("rdi  = "); _rdi.print(); printf("\n");
  9995     printf("rsi  = "); _rsi.print(); printf("\n");
  9996     printf("rbp,  = "); _rbp.print(); printf("\n");
  9997     printf("rsp  = "); _rsp.print(); printf("\n");
  9998     printf("\n");
  9999     // control registers
 10000     printf("flgs = "); _eflags.print(); printf("\n");
 10002 };
 10005 class CPU_State {
 10006  public:
 10007   FPU_State _fpu_state;
 10008   IU_State  _iu_state;
 10010   void print() const {
 10011     printf("--------------------------------------------------\n");
 10012     _iu_state .print();
 10013     printf("\n");
 10014     _fpu_state.print();
 10015     printf("--------------------------------------------------\n");
 10018 };
 10021 static void _print_CPU_state(CPU_State* state) {
 10022   state->print();
 10023 };
 10026 void MacroAssembler::print_CPU_state() {
 10027   push_CPU_state();
 10028   push(rsp);                // pass CPU state
 10029   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
 10030   addptr(rsp, wordSize);       // discard argument
 10031   pop_CPU_state();
 10035 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
 10036   static int counter = 0;
 10037   FPU_State* fs = &state->_fpu_state;
 10038   counter++;
 10039   // For leaf calls, only verify that the top few elements remain empty.
 10040   // We only need 1 empty at the top for C2 code.
 10041   if( stack_depth < 0 ) {
 10042     if( fs->tag_for_st(7) != 3 ) {
 10043       printf("FPR7 not empty\n");
 10044       state->print();
 10045       assert(false, "error");
 10046       return false;
 10048     return true;                // All other stack states do not matter
 10051   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
 10052          "bad FPU control word");
 10054   // compute stack depth
 10055   int i = 0;
 10056   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
 10057   int d = i;
 10058   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
 10059   // verify findings
 10060   if (i != FPU_State::number_of_registers) {
 10061     // stack not contiguous
 10062     printf("%s: stack not contiguous at ST%d\n", s, i);
 10063     state->print();
 10064     assert(false, "error");
 10065     return false;
 10067   // check if computed stack depth corresponds to expected stack depth
 10068   if (stack_depth < 0) {
 10069     // expected stack depth is -stack_depth or less
 10070     if (d > -stack_depth) {
 10071       // too many elements on the stack
 10072       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
 10073       state->print();
 10074       assert(false, "error");
 10075       return false;
 10077   } else {
 10078     // expected stack depth is stack_depth
 10079     if (d != stack_depth) {
 10080       // wrong stack depth
 10081       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
 10082       state->print();
 10083       assert(false, "error");
 10084       return false;
 10087   // everything is cool
 10088   return true;
 10092 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
 10093   if (!VerifyFPU) return;
 10094   push_CPU_state();
 10095   push(rsp);                // pass CPU state
 10096   ExternalAddress msg((address) s);
 10097   // pass message string s
 10098   pushptr(msg.addr());
 10099   push(stack_depth);        // pass stack depth
 10100   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
 10101   addptr(rsp, 3 * wordSize);   // discard arguments
 10102   // check for error
 10103   { Label L;
 10104     testl(rax, rax);
 10105     jcc(Assembler::notZero, L);
 10106     int3();                  // break if error condition
 10107     bind(L);
 10109   pop_CPU_state();
 10112 void MacroAssembler::load_klass(Register dst, Register src) {
 10113 #ifdef _LP64
 10114   if (UseCompressedKlassPointers) {
 10115     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 10116     decode_klass_not_null(dst);
 10117   } else
 10118 #endif
 10119     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 10122 void MacroAssembler::load_prototype_header(Register dst, Register src) {
 10123 #ifdef _LP64
 10124   if (UseCompressedKlassPointers) {
 10125     assert (Universe::heap() != NULL, "java heap should be initialized");
 10126     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 10127     if (Universe::narrow_klass_shift() != 0) {
 10128       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
 10129       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
 10130       movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset()));
 10131     } else {
 10132       movq(dst, Address(dst, Klass::prototype_header_offset()));
 10134   } else
 10135 #endif
 10137     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
 10138     movptr(dst, Address(dst, Klass::prototype_header_offset()));
 10142 void MacroAssembler::store_klass(Register dst, Register src) {
 10143 #ifdef _LP64
 10144   if (UseCompressedKlassPointers) {
 10145     encode_klass_not_null(src);
 10146     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 10147   } else
 10148 #endif
 10149     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
 10152 void MacroAssembler::load_heap_oop(Register dst, Address src) {
 10153 #ifdef _LP64
 10154   // FIXME: Must change all places where we try to load the klass.
 10155   if (UseCompressedOops) {
 10156     movl(dst, src);
 10157     decode_heap_oop(dst);
 10158   } else
 10159 #endif
 10160     movptr(dst, src);
 10163 // Doesn't do verfication, generates fixed size code
 10164 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
 10165 #ifdef _LP64
 10166   if (UseCompressedOops) {
 10167     movl(dst, src);
 10168     decode_heap_oop_not_null(dst);
 10169   } else
 10170 #endif
 10171     movptr(dst, src);
 10174 void MacroAssembler::store_heap_oop(Address dst, Register src) {
 10175 #ifdef _LP64
 10176   if (UseCompressedOops) {
 10177     assert(!dst.uses(src), "not enough registers");
 10178     encode_heap_oop(src);
 10179     movl(dst, src);
 10180   } else
 10181 #endif
 10182     movptr(dst, src);
 10185 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
 10186   assert_different_registers(src1, tmp);
 10187 #ifdef _LP64
 10188   if (UseCompressedOops) {
 10189     bool did_push = false;
 10190     if (tmp == noreg) {
 10191       tmp = rax;
 10192       push(tmp);
 10193       did_push = true;
 10194       assert(!src2.uses(rsp), "can't push");
 10196     load_heap_oop(tmp, src2);
 10197     cmpptr(src1, tmp);
 10198     if (did_push)  pop(tmp);
 10199   } else
 10200 #endif
 10201     cmpptr(src1, src2);
 10204 // Used for storing NULLs.
 10205 void MacroAssembler::store_heap_oop_null(Address dst) {
 10206 #ifdef _LP64
 10207   if (UseCompressedOops) {
 10208     movl(dst, (int32_t)NULL_WORD);
 10209   } else {
 10210     movslq(dst, (int32_t)NULL_WORD);
 10212 #else
 10213   movl(dst, (int32_t)NULL_WORD);
 10214 #endif
 10217 #ifdef _LP64
 10218 void MacroAssembler::store_klass_gap(Register dst, Register src) {
 10219   if (UseCompressedKlassPointers) {
 10220     // Store to klass gap in destination
 10221     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
 10225 #ifdef ASSERT
 10226 void MacroAssembler::verify_heapbase(const char* msg) {
 10227   assert (UseCompressedOops || UseCompressedKlassPointers, "should be compressed");
 10228   assert (Universe::heap() != NULL, "java heap should be initialized");
 10229   if (CheckCompressedOops) {
 10230     Label ok;
 10231     push(rscratch1); // cmpptr trashes rscratch1
 10232     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
 10233     jcc(Assembler::equal, ok);
 10234     STOP(msg);
 10235     bind(ok);
 10236     pop(rscratch1);
 10239 #endif
 10241 // Algorithm must match oop.inline.hpp encode_heap_oop.
 10242 void MacroAssembler::encode_heap_oop(Register r) {
 10243 #ifdef ASSERT
 10244   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
 10245 #endif
 10246   verify_oop(r, "broken oop in encode_heap_oop");
 10247   if (Universe::narrow_oop_base() == NULL) {
 10248     if (Universe::narrow_oop_shift() != 0) {
 10249       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10250       shrq(r, LogMinObjAlignmentInBytes);
 10252     return;
 10254   testq(r, r);
 10255   cmovq(Assembler::equal, r, r12_heapbase);
 10256   subq(r, r12_heapbase);
 10257   shrq(r, LogMinObjAlignmentInBytes);
 10260 void MacroAssembler::encode_heap_oop_not_null(Register r) {
 10261 #ifdef ASSERT
 10262   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
 10263   if (CheckCompressedOops) {
 10264     Label ok;
 10265     testq(r, r);
 10266     jcc(Assembler::notEqual, ok);
 10267     STOP("null oop passed to encode_heap_oop_not_null");
 10268     bind(ok);
 10270 #endif
 10271   verify_oop(r, "broken oop in encode_heap_oop_not_null");
 10272   if (Universe::narrow_oop_base() != NULL) {
 10273     subq(r, r12_heapbase);
 10275   if (Universe::narrow_oop_shift() != 0) {
 10276     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10277     shrq(r, LogMinObjAlignmentInBytes);
 10281 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
 10282 #ifdef ASSERT
 10283   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
 10284   if (CheckCompressedOops) {
 10285     Label ok;
 10286     testq(src, src);
 10287     jcc(Assembler::notEqual, ok);
 10288     STOP("null oop passed to encode_heap_oop_not_null2");
 10289     bind(ok);
 10291 #endif
 10292   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
 10293   if (dst != src) {
 10294     movq(dst, src);
 10296   if (Universe::narrow_oop_base() != NULL) {
 10297     subq(dst, r12_heapbase);
 10299   if (Universe::narrow_oop_shift() != 0) {
 10300     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10301     shrq(dst, LogMinObjAlignmentInBytes);
 10305 void  MacroAssembler::decode_heap_oop(Register r) {
 10306 #ifdef ASSERT
 10307   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
 10308 #endif
 10309   if (Universe::narrow_oop_base() == NULL) {
 10310     if (Universe::narrow_oop_shift() != 0) {
 10311       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10312       shlq(r, LogMinObjAlignmentInBytes);
 10314   } else {
 10315     Label done;
 10316     shlq(r, LogMinObjAlignmentInBytes);
 10317     jccb(Assembler::equal, done);
 10318     addq(r, r12_heapbase);
 10319     bind(done);
 10321   verify_oop(r, "broken oop in decode_heap_oop");
 10324 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
 10325   // Note: it will change flags
 10326   assert (UseCompressedOops, "should only be used for compressed headers");
 10327   assert (Universe::heap() != NULL, "java heap should be initialized");
 10328   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10329   // vtableStubs also counts instructions in pd_code_size_limit.
 10330   // Also do not verify_oop as this is called by verify_oop.
 10331   if (Universe::narrow_oop_shift() != 0) {
 10332     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10333     shlq(r, LogMinObjAlignmentInBytes);
 10334     if (Universe::narrow_oop_base() != NULL) {
 10335       addq(r, r12_heapbase);
 10337   } else {
 10338     assert (Universe::narrow_oop_base() == NULL, "sanity");
 10342 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
 10343   // Note: it will change flags
 10344   assert (UseCompressedOops, "should only be used for compressed headers");
 10345   assert (Universe::heap() != NULL, "java heap should be initialized");
 10346   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10347   // vtableStubs also counts instructions in pd_code_size_limit.
 10348   // Also do not verify_oop as this is called by verify_oop.
 10349   if (Universe::narrow_oop_shift() != 0) {
 10350     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
 10351     if (LogMinObjAlignmentInBytes == Address::times_8) {
 10352       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 10353     } else {
 10354       if (dst != src) {
 10355         movq(dst, src);
 10357       shlq(dst, LogMinObjAlignmentInBytes);
 10358       if (Universe::narrow_oop_base() != NULL) {
 10359         addq(dst, r12_heapbase);
 10362   } else {
 10363     assert (Universe::narrow_oop_base() == NULL, "sanity");
 10364     if (dst != src) {
 10365       movq(dst, src);
 10370 void MacroAssembler::encode_klass_not_null(Register r) {
 10371   assert(Metaspace::is_initialized(), "metaspace should be initialized");
 10372 #ifdef ASSERT
 10373   verify_heapbase("MacroAssembler::encode_klass_not_null: heap base corrupted?");
 10374 #endif
 10375   if (Universe::narrow_klass_base() != NULL) {
 10376     subq(r, r12_heapbase);
 10378   if (Universe::narrow_klass_shift() != 0) {
 10379     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
 10380     shrq(r, LogKlassAlignmentInBytes);
 10384 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
 10385   assert(Metaspace::is_initialized(), "metaspace should be initialized");
 10386 #ifdef ASSERT
 10387   verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
 10388 #endif
 10389   if (dst != src) {
 10390     movq(dst, src);
 10392   if (Universe::narrow_klass_base() != NULL) {
 10393     subq(dst, r12_heapbase);
 10395   if (Universe::narrow_klass_shift() != 0) {
 10396     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
 10397     shrq(dst, LogKlassAlignmentInBytes);
 10401 void  MacroAssembler::decode_klass_not_null(Register r) {
 10402   assert(Metaspace::is_initialized(), "metaspace should be initialized");
 10403   // Note: it will change flags
 10404   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
 10405   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10406   // vtableStubs also counts instructions in pd_code_size_limit.
 10407   // Also do not verify_oop as this is called by verify_oop.
 10408   if (Universe::narrow_klass_shift() != 0) {
 10409     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
 10410     shlq(r, LogKlassAlignmentInBytes);
 10411     if (Universe::narrow_klass_base() != NULL) {
 10412       addq(r, r12_heapbase);
 10414   } else {
 10415     assert (Universe::narrow_klass_base() == NULL, "sanity");
 10419 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
 10420   assert(Metaspace::is_initialized(), "metaspace should be initialized");
 10421   // Note: it will change flags
 10422   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
 10423   // Cannot assert, unverified entry point counts instructions (see .ad file)
 10424   // vtableStubs also counts instructions in pd_code_size_limit.
 10425   // Also do not verify_oop as this is called by verify_oop.
 10426   if (Universe::narrow_klass_shift() != 0) {
 10427     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
 10428     assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
 10429     leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
 10430   } else {
 10431     assert (Universe::narrow_klass_base() == NULL, "sanity");
 10432     if (dst != src) {
 10433       movq(dst, src);
 10438 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
 10439   assert (UseCompressedOops, "should only be used for compressed headers");
 10440   assert (Universe::heap() != NULL, "java heap should be initialized");
 10441   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10442   int oop_index = oop_recorder()->find_index(obj);
 10443   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10444   mov_narrow_oop(dst, oop_index, rspec);
 10447 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
 10448   assert (UseCompressedOops, "should only be used for compressed headers");
 10449   assert (Universe::heap() != NULL, "java heap should be initialized");
 10450   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10451   int oop_index = oop_recorder()->find_index(obj);
 10452   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10453   mov_narrow_oop(dst, oop_index, rspec);
 10456 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
 10457   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
 10458   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10459   int klass_index = oop_recorder()->find_index(k);
 10460   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 10461   mov_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
 10464 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
 10465   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
 10466   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10467   int klass_index = oop_recorder()->find_index(k);
 10468   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 10469   mov_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
 10472 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
 10473   assert (UseCompressedOops, "should only be used for compressed headers");
 10474   assert (Universe::heap() != NULL, "java heap should be initialized");
 10475   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10476   int oop_index = oop_recorder()->find_index(obj);
 10477   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10478   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 10481 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
 10482   assert (UseCompressedOops, "should only be used for compressed headers");
 10483   assert (Universe::heap() != NULL, "java heap should be initialized");
 10484   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10485   int oop_index = oop_recorder()->find_index(obj);
 10486   RelocationHolder rspec = oop_Relocation::spec(oop_index);
 10487   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
 10490 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
 10491   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
 10492   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10493   int klass_index = oop_recorder()->find_index(k);
 10494   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 10495   Assembler::cmp_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
 10498 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
 10499   assert (UseCompressedKlassPointers, "should only be used for compressed headers");
 10500   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
 10501   int klass_index = oop_recorder()->find_index(k);
 10502   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
 10503   Assembler::cmp_narrow_oop(dst, oopDesc::encode_klass(k), rspec);
 10506 void MacroAssembler::reinit_heapbase() {
 10507   if (UseCompressedOops || UseCompressedKlassPointers) {
 10508     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
 10511 #endif // _LP64
 10514 // C2 compiled method's prolog code.
 10515 void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode_24b) {
 10517   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 10518   // NativeJump::patch_verified_entry will be able to patch out the entry
 10519   // code safely. The push to verify stack depth is ok at 5 bytes,
 10520   // the frame allocation can be either 3 or 6 bytes. So if we don't do
 10521   // stack bang then we must use the 6 byte frame allocation even if
 10522   // we have no frame. :-(
 10524   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 10525   // Remove word for return addr
 10526   framesize -= wordSize;
 10528   // Calls to C2R adapters often do not accept exceptional returns.
 10529   // We require that their callers must bang for them.  But be careful, because
 10530   // some VM calls (such as call site linkage) can use several kilobytes of
 10531   // stack.  But the stack safety zone should account for that.
 10532   // See bugs 4446381, 4468289, 4497237.
 10533   if (stack_bang) {
 10534     generate_stack_overflow_check(framesize);
 10536     // We always push rbp, so that on return to interpreter rbp, will be
 10537     // restored correctly and we can correct the stack.
 10538     push(rbp);
 10539     // Remove word for ebp
 10540     framesize -= wordSize;
 10542     // Create frame
 10543     if (framesize) {
 10544       subptr(rsp, framesize);
 10546   } else {
 10547     // Create frame (force generation of a 4 byte immediate value)
 10548     subptr_imm32(rsp, framesize);
 10550     // Save RBP register now.
 10551     framesize -= wordSize;
 10552     movptr(Address(rsp, framesize), rbp);
 10555   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
 10556     framesize -= wordSize;
 10557     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
 10560 #ifndef _LP64
 10561   // If method sets FPU control word do it now
 10562   if (fp_mode_24b) {
 10563     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 10565   if (UseSSE >= 2 && VerifyFPU) {
 10566     verify_FPU(0, "FPU stack must be clean on entry");
 10568 #endif
 10570 #ifdef ASSERT
 10571   if (VerifyStackAtCalls) {
 10572     Label L;
 10573     push(rax);
 10574     mov(rax, rsp);
 10575     andptr(rax, StackAlignmentInBytes-1);
 10576     cmpptr(rax, StackAlignmentInBytes-wordSize);
 10577     pop(rax);
 10578     jcc(Assembler::equal, L);
 10579     STOP("Stack is not properly aligned!");
 10580     bind(L);
 10582 #endif
 10587 // IndexOf for constant substrings with size >= 8 chars
 10588 // which don't need to be loaded through stack.
 10589 void MacroAssembler::string_indexofC8(Register str1, Register str2,
 10590                                       Register cnt1, Register cnt2,
 10591                                       int int_cnt2,  Register result,
 10592                                       XMMRegister vec, Register tmp) {
 10593   ShortBranchVerifier sbv(this);
 10594   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10596   // This method uses pcmpestri inxtruction with bound registers
 10597   //   inputs:
 10598   //     xmm - substring
 10599   //     rax - substring length (elements count)
 10600   //     mem - scanned string
 10601   //     rdx - string length (elements count)
 10602   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10603   //   outputs:
 10604   //     rcx - matched index in string
 10605   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10607   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
 10608         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
 10609         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
 10611   // Note, inline_string_indexOf() generates checks:
 10612   // if (substr.count > string.count) return -1;
 10613   // if (substr.count == 0) return 0;
 10614   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
 10616   // Load substring.
 10617   movdqu(vec, Address(str2, 0));
 10618   movl(cnt2, int_cnt2);
 10619   movptr(result, str1); // string addr
 10621   if (int_cnt2 > 8) {
 10622     jmpb(SCAN_TO_SUBSTR);
 10624     // Reload substr for rescan, this code
 10625     // is executed only for large substrings (> 8 chars)
 10626     bind(RELOAD_SUBSTR);
 10627     movdqu(vec, Address(str2, 0));
 10628     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
 10630     bind(RELOAD_STR);
 10631     // We came here after the beginning of the substring was
 10632     // matched but the rest of it was not so we need to search
 10633     // again. Start from the next element after the previous match.
 10635     // cnt2 is number of substring reminding elements and
 10636     // cnt1 is number of string reminding elements when cmp failed.
 10637     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
 10638     subl(cnt1, cnt2);
 10639     addl(cnt1, int_cnt2);
 10640     movl(cnt2, int_cnt2); // Now restore cnt2
 10642     decrementl(cnt1);     // Shift to next element
 10643     cmpl(cnt1, cnt2);
 10644     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10646     addptr(result, 2);
 10648   } // (int_cnt2 > 8)
 10650   // Scan string for start of substr in 16-byte vectors
 10651   bind(SCAN_TO_SUBSTR);
 10652   pcmpestri(vec, Address(result, 0), 0x0d);
 10653   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10654   subl(cnt1, 8);
 10655   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10656   cmpl(cnt1, cnt2);
 10657   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10658   addptr(result, 16);
 10659   jmpb(SCAN_TO_SUBSTR);
 10661   // Found a potential substr
 10662   bind(FOUND_CANDIDATE);
 10663   // Matched whole vector if first element matched (tmp(rcx) == 0).
 10664   if (int_cnt2 == 8) {
 10665     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
 10666   } else { // int_cnt2 > 8
 10667     jccb(Assembler::overflow, FOUND_SUBSTR);
 10669   // After pcmpestri tmp(rcx) contains matched element index
 10670   // Compute start addr of substr
 10671   lea(result, Address(result, tmp, Address::times_2));
 10673   // Make sure string is still long enough
 10674   subl(cnt1, tmp);
 10675   cmpl(cnt1, cnt2);
 10676   if (int_cnt2 == 8) {
 10677     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10678   } else { // int_cnt2 > 8
 10679     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
 10681   // Left less then substring.
 10683   bind(RET_NOT_FOUND);
 10684   movl(result, -1);
 10685   jmpb(EXIT);
 10687   if (int_cnt2 > 8) {
 10688     // This code is optimized for the case when whole substring
 10689     // is matched if its head is matched.
 10690     bind(MATCH_SUBSTR_HEAD);
 10691     pcmpestri(vec, Address(result, 0), 0x0d);
 10692     // Reload only string if does not match
 10693     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
 10695     Label CONT_SCAN_SUBSTR;
 10696     // Compare the rest of substring (> 8 chars).
 10697     bind(FOUND_SUBSTR);
 10698     // First 8 chars are already matched.
 10699     negptr(cnt2);
 10700     addptr(cnt2, 8);
 10702     bind(SCAN_SUBSTR);
 10703     subl(cnt1, 8);
 10704     cmpl(cnt2, -8); // Do not read beyond substring
 10705     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
 10706     // Back-up strings to avoid reading beyond substring:
 10707     // cnt1 = cnt1 - cnt2 + 8
 10708     addl(cnt1, cnt2); // cnt2 is negative
 10709     addl(cnt1, 8);
 10710     movl(cnt2, 8); negptr(cnt2);
 10711     bind(CONT_SCAN_SUBSTR);
 10712     if (int_cnt2 < (int)G) {
 10713       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
 10714       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
 10715     } else {
 10716       // calculate index in register to avoid integer overflow (int_cnt2*2)
 10717       movl(tmp, int_cnt2);
 10718       addptr(tmp, cnt2);
 10719       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
 10720       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
 10722     // Need to reload strings pointers if not matched whole vector
 10723     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10724     addptr(cnt2, 8);
 10725     jcc(Assembler::negative, SCAN_SUBSTR);
 10726     // Fall through if found full substring
 10728   } // (int_cnt2 > 8)
 10730   bind(RET_FOUND);
 10731   // Found result if we matched full small substring.
 10732   // Compute substr offset
 10733   subptr(result, str1);
 10734   shrl(result, 1); // index
 10735   bind(EXIT);
 10737 } // string_indexofC8
 10739 // Small strings are loaded through stack if they cross page boundary.
 10740 void MacroAssembler::string_indexof(Register str1, Register str2,
 10741                                     Register cnt1, Register cnt2,
 10742                                     int int_cnt2,  Register result,
 10743                                     XMMRegister vec, Register tmp) {
 10744   ShortBranchVerifier sbv(this);
 10745   assert(UseSSE42Intrinsics, "SSE4.2 is required");
 10746   //
 10747   // int_cnt2 is length of small (< 8 chars) constant substring
 10748   // or (-1) for non constant substring in which case its length
 10749   // is in cnt2 register.
 10750   //
 10751   // Note, inline_string_indexOf() generates checks:
 10752   // if (substr.count > string.count) return -1;
 10753   // if (substr.count == 0) return 0;
 10754   //
 10755   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
 10757   // This method uses pcmpestri inxtruction with bound registers
 10758   //   inputs:
 10759   //     xmm - substring
 10760   //     rax - substring length (elements count)
 10761   //     mem - scanned string
 10762   //     rdx - string length (elements count)
 10763   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
 10764   //   outputs:
 10765   //     rcx - matched index in string
 10766   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10768   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
 10769         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
 10770         FOUND_CANDIDATE;
 10772   { //========================================================
 10773     // We don't know where these strings are located
 10774     // and we can't read beyond them. Load them through stack.
 10775     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
 10777     movptr(tmp, rsp); // save old SP
 10779     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
 10780       if (int_cnt2 == 1) {  // One char
 10781         load_unsigned_short(result, Address(str2, 0));
 10782         movdl(vec, result); // move 32 bits
 10783       } else if (int_cnt2 == 2) { // Two chars
 10784         movdl(vec, Address(str2, 0)); // move 32 bits
 10785       } else if (int_cnt2 == 4) { // Four chars
 10786         movq(vec, Address(str2, 0));  // move 64 bits
 10787       } else { // cnt2 = { 3, 5, 6, 7 }
 10788         // Array header size is 12 bytes in 32-bit VM
 10789         // + 6 bytes for 3 chars == 18 bytes,
 10790         // enough space to load vec and shift.
 10791         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
 10792         movdqu(vec, Address(str2, (int_cnt2*2)-16));
 10793         psrldq(vec, 16-(int_cnt2*2));
 10795     } else { // not constant substring
 10796       cmpl(cnt2, 8);
 10797       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
 10799       // We can read beyond string if srt+16 does not cross page boundary
 10800       // since heaps are aligned and mapped by pages.
 10801       assert(os::vm_page_size() < (int)G, "default page should be small");
 10802       movl(result, str2); // We need only low 32 bits
 10803       andl(result, (os::vm_page_size()-1));
 10804       cmpl(result, (os::vm_page_size()-16));
 10805       jccb(Assembler::belowEqual, CHECK_STR);
 10807       // Move small strings to stack to allow load 16 bytes into vec.
 10808       subptr(rsp, 16);
 10809       int stk_offset = wordSize-2;
 10810       push(cnt2);
 10812       bind(COPY_SUBSTR);
 10813       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
 10814       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10815       decrement(cnt2);
 10816       jccb(Assembler::notZero, COPY_SUBSTR);
 10818       pop(cnt2);
 10819       movptr(str2, rsp);  // New substring address
 10820     } // non constant
 10822     bind(CHECK_STR);
 10823     cmpl(cnt1, 8);
 10824     jccb(Assembler::aboveEqual, BIG_STRINGS);
 10826     // Check cross page boundary.
 10827     movl(result, str1); // We need only low 32 bits
 10828     andl(result, (os::vm_page_size()-1));
 10829     cmpl(result, (os::vm_page_size()-16));
 10830     jccb(Assembler::belowEqual, BIG_STRINGS);
 10832     subptr(rsp, 16);
 10833     int stk_offset = -2;
 10834     if (int_cnt2 < 0) { // not constant
 10835       push(cnt2);
 10836       stk_offset += wordSize;
 10838     movl(cnt2, cnt1);
 10840     bind(COPY_STR);
 10841     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
 10842     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
 10843     decrement(cnt2);
 10844     jccb(Assembler::notZero, COPY_STR);
 10846     if (int_cnt2 < 0) { // not constant
 10847       pop(cnt2);
 10849     movptr(str1, rsp);  // New string address
 10851     bind(BIG_STRINGS);
 10852     // Load substring.
 10853     if (int_cnt2 < 0) { // -1
 10854       movdqu(vec, Address(str2, 0));
 10855       push(cnt2);       // substr count
 10856       push(str2);       // substr addr
 10857       push(str1);       // string addr
 10858     } else {
 10859       // Small (< 8 chars) constant substrings are loaded already.
 10860       movl(cnt2, int_cnt2);
 10862     push(tmp);  // original SP
 10864   } // Finished loading
 10866   //========================================================
 10867   // Start search
 10868   //
 10870   movptr(result, str1); // string addr
 10872   if (int_cnt2  < 0) {  // Only for non constant substring
 10873     jmpb(SCAN_TO_SUBSTR);
 10875     // SP saved at sp+0
 10876     // String saved at sp+1*wordSize
 10877     // Substr saved at sp+2*wordSize
 10878     // Substr count saved at sp+3*wordSize
 10880     // Reload substr for rescan, this code
 10881     // is executed only for large substrings (> 8 chars)
 10882     bind(RELOAD_SUBSTR);
 10883     movptr(str2, Address(rsp, 2*wordSize));
 10884     movl(cnt2, Address(rsp, 3*wordSize));
 10885     movdqu(vec, Address(str2, 0));
 10886     // We came here after the beginning of the substring was
 10887     // matched but the rest of it was not so we need to search
 10888     // again. Start from the next element after the previous match.
 10889     subptr(str1, result); // Restore counter
 10890     shrl(str1, 1);
 10891     addl(cnt1, str1);
 10892     decrementl(cnt1);   // Shift to next element
 10893     cmpl(cnt1, cnt2);
 10894     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10896     addptr(result, 2);
 10897   } // non constant
 10899   // Scan string for start of substr in 16-byte vectors
 10900   bind(SCAN_TO_SUBSTR);
 10901   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
 10902   pcmpestri(vec, Address(result, 0), 0x0d);
 10903   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
 10904   subl(cnt1, 8);
 10905   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
 10906   cmpl(cnt1, cnt2);
 10907   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
 10908   addptr(result, 16);
 10910   bind(ADJUST_STR);
 10911   cmpl(cnt1, 8); // Do not read beyond string
 10912   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
 10913   // Back-up string to avoid reading beyond string.
 10914   lea(result, Address(result, cnt1, Address::times_2, -16));
 10915   movl(cnt1, 8);
 10916   jmpb(SCAN_TO_SUBSTR);
 10918   // Found a potential substr
 10919   bind(FOUND_CANDIDATE);
 10920   // After pcmpestri tmp(rcx) contains matched element index
 10922   // Make sure string is still long enough
 10923   subl(cnt1, tmp);
 10924   cmpl(cnt1, cnt2);
 10925   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
 10926   // Left less then substring.
 10928   bind(RET_NOT_FOUND);
 10929   movl(result, -1);
 10930   jmpb(CLEANUP);
 10932   bind(FOUND_SUBSTR);
 10933   // Compute start addr of substr
 10934   lea(result, Address(result, tmp, Address::times_2));
 10936   if (int_cnt2 > 0) { // Constant substring
 10937     // Repeat search for small substring (< 8 chars)
 10938     // from new point without reloading substring.
 10939     // Have to check that we don't read beyond string.
 10940     cmpl(tmp, 8-int_cnt2);
 10941     jccb(Assembler::greater, ADJUST_STR);
 10942     // Fall through if matched whole substring.
 10943   } else { // non constant
 10944     assert(int_cnt2 == -1, "should be != 0");
 10946     addl(tmp, cnt2);
 10947     // Found result if we matched whole substring.
 10948     cmpl(tmp, 8);
 10949     jccb(Assembler::lessEqual, RET_FOUND);
 10951     // Repeat search for small substring (<= 8 chars)
 10952     // from new point 'str1' without reloading substring.
 10953     cmpl(cnt2, 8);
 10954     // Have to check that we don't read beyond string.
 10955     jccb(Assembler::lessEqual, ADJUST_STR);
 10957     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
 10958     // Compare the rest of substring (> 8 chars).
 10959     movptr(str1, result);
 10961     cmpl(tmp, cnt2);
 10962     // First 8 chars are already matched.
 10963     jccb(Assembler::equal, CHECK_NEXT);
 10965     bind(SCAN_SUBSTR);
 10966     pcmpestri(vec, Address(str1, 0), 0x0d);
 10967     // Need to reload strings pointers if not matched whole vector
 10968     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
 10970     bind(CHECK_NEXT);
 10971     subl(cnt2, 8);
 10972     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
 10973     addptr(str1, 16);
 10974     addptr(str2, 16);
 10975     subl(cnt1, 8);
 10976     cmpl(cnt2, 8); // Do not read beyond substring
 10977     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
 10978     // Back-up strings to avoid reading beyond substring.
 10979     lea(str2, Address(str2, cnt2, Address::times_2, -16));
 10980     lea(str1, Address(str1, cnt2, Address::times_2, -16));
 10981     subl(cnt1, cnt2);
 10982     movl(cnt2, 8);
 10983     addl(cnt1, 8);
 10984     bind(CONT_SCAN_SUBSTR);
 10985     movdqu(vec, Address(str2, 0));
 10986     jmpb(SCAN_SUBSTR);
 10988     bind(RET_FOUND_LONG);
 10989     movptr(str1, Address(rsp, wordSize));
 10990   } // non constant
 10992   bind(RET_FOUND);
 10993   // Compute substr offset
 10994   subptr(result, str1);
 10995   shrl(result, 1); // index
 10997   bind(CLEANUP);
 10998   pop(rsp); // restore SP
 11000 } // string_indexof
 11002 // Compare strings.
 11003 void MacroAssembler::string_compare(Register str1, Register str2,
 11004                                     Register cnt1, Register cnt2, Register result,
 11005                                     XMMRegister vec1) {
 11006   ShortBranchVerifier sbv(this);
 11007   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
 11009   // Compute the minimum of the string lengths and the
 11010   // difference of the string lengths (stack).
 11011   // Do the conditional move stuff
 11012   movl(result, cnt1);
 11013   subl(cnt1, cnt2);
 11014   push(cnt1);
 11015   cmov32(Assembler::lessEqual, cnt2, result);
 11017   // Is the minimum length zero?
 11018   testl(cnt2, cnt2);
 11019   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 11021   // Load first characters
 11022   load_unsigned_short(result, Address(str1, 0));
 11023   load_unsigned_short(cnt1, Address(str2, 0));
 11025   // Compare first characters
 11026   subl(result, cnt1);
 11027   jcc(Assembler::notZero,  POP_LABEL);
 11028   decrementl(cnt2);
 11029   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
 11032     // Check after comparing first character to see if strings are equivalent
 11033     Label LSkip2;
 11034     // Check if the strings start at same location
 11035     cmpptr(str1, str2);
 11036     jccb(Assembler::notEqual, LSkip2);
 11038     // Check if the length difference is zero (from stack)
 11039     cmpl(Address(rsp, 0), 0x0);
 11040     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
 11042     // Strings might not be equivalent
 11043     bind(LSkip2);
 11046   Address::ScaleFactor scale = Address::times_2;
 11047   int stride = 8;
 11049   // Advance to next element
 11050   addptr(str1, 16/stride);
 11051   addptr(str2, 16/stride);
 11053   if (UseSSE42Intrinsics) {
 11054     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
 11055     int pcmpmask = 0x19;
 11056     // Setup to compare 16-byte vectors
 11057     movl(result, cnt2);
 11058     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
 11059     jccb(Assembler::zero, COMPARE_TAIL);
 11061     lea(str1, Address(str1, result, scale));
 11062     lea(str2, Address(str2, result, scale));
 11063     negptr(result);
 11065     // pcmpestri
 11066     //   inputs:
 11067     //     vec1- substring
 11068     //     rax - negative string length (elements count)
 11069     //     mem - scaned string
 11070     //     rdx - string length (elements count)
 11071     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
 11072     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
 11073     //   outputs:
 11074     //     rcx - first mismatched element index
 11075     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
 11077     bind(COMPARE_WIDE_VECTORS);
 11078     movdqu(vec1, Address(str1, result, scale));
 11079     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 11080     // After pcmpestri cnt1(rcx) contains mismatched element index
 11082     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
 11083     addptr(result, stride);
 11084     subptr(cnt2, stride);
 11085     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
 11087     // compare wide vectors tail
 11088     testl(result, result);
 11089     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
 11091     movl(cnt2, stride);
 11092     movl(result, stride);
 11093     negptr(result);
 11094     movdqu(vec1, Address(str1, result, scale));
 11095     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
 11096     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
 11098     // Mismatched characters in the vectors
 11099     bind(VECTOR_NOT_EQUAL);
 11100     addptr(result, cnt1);
 11101     movptr(cnt2, result);
 11102     load_unsigned_short(result, Address(str1, cnt2, scale));
 11103     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
 11104     subl(result, cnt1);
 11105     jmpb(POP_LABEL);
 11107     bind(COMPARE_TAIL); // limit is zero
 11108     movl(cnt2, result);
 11109     // Fallthru to tail compare
 11112   // Shift str2 and str1 to the end of the arrays, negate min
 11113   lea(str1, Address(str1, cnt2, scale, 0));
 11114   lea(str2, Address(str2, cnt2, scale, 0));
 11115   negptr(cnt2);
 11117   // Compare the rest of the elements
 11118   bind(WHILE_HEAD_LABEL);
 11119   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
 11120   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
 11121   subl(result, cnt1);
 11122   jccb(Assembler::notZero, POP_LABEL);
 11123   increment(cnt2);
 11124   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
 11126   // Strings are equal up to min length.  Return the length difference.
 11127   bind(LENGTH_DIFF_LABEL);
 11128   pop(result);
 11129   jmpb(DONE_LABEL);
 11131   // Discard the stored length difference
 11132   bind(POP_LABEL);
 11133   pop(cnt1);
 11135   // That's it
 11136   bind(DONE_LABEL);
 11139 // Compare char[] arrays aligned to 4 bytes or substrings.
 11140 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
 11141                                         Register limit, Register result, Register chr,
 11142                                         XMMRegister vec1, XMMRegister vec2) {
 11143   ShortBranchVerifier sbv(this);
 11144   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
 11146   int length_offset  = arrayOopDesc::length_offset_in_bytes();
 11147   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
 11149   // Check the input args
 11150   cmpptr(ary1, ary2);
 11151   jcc(Assembler::equal, TRUE_LABEL);
 11153   if (is_array_equ) {
 11154     // Need additional checks for arrays_equals.
 11155     testptr(ary1, ary1);
 11156     jcc(Assembler::zero, FALSE_LABEL);
 11157     testptr(ary2, ary2);
 11158     jcc(Assembler::zero, FALSE_LABEL);
 11160     // Check the lengths
 11161     movl(limit, Address(ary1, length_offset));
 11162     cmpl(limit, Address(ary2, length_offset));
 11163     jcc(Assembler::notEqual, FALSE_LABEL);
 11166   // count == 0
 11167   testl(limit, limit);
 11168   jcc(Assembler::zero, TRUE_LABEL);
 11170   if (is_array_equ) {
 11171     // Load array address
 11172     lea(ary1, Address(ary1, base_offset));
 11173     lea(ary2, Address(ary2, base_offset));
 11176   shll(limit, 1);      // byte count != 0
 11177   movl(result, limit); // copy
 11179   if (UseSSE42Intrinsics) {
 11180     // With SSE4.2, use double quad vector compare
 11181     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
 11183     // Compare 16-byte vectors
 11184     andl(result, 0x0000000e);  //   tail count (in bytes)
 11185     andl(limit, 0xfffffff0);   // vector count (in bytes)
 11186     jccb(Assembler::zero, COMPARE_TAIL);
 11188     lea(ary1, Address(ary1, limit, Address::times_1));
 11189     lea(ary2, Address(ary2, limit, Address::times_1));
 11190     negptr(limit);
 11192     bind(COMPARE_WIDE_VECTORS);
 11193     movdqu(vec1, Address(ary1, limit, Address::times_1));
 11194     movdqu(vec2, Address(ary2, limit, Address::times_1));
 11195     pxor(vec1, vec2);
 11197     ptest(vec1, vec1);
 11198     jccb(Assembler::notZero, FALSE_LABEL);
 11199     addptr(limit, 16);
 11200     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
 11202     testl(result, result);
 11203     jccb(Assembler::zero, TRUE_LABEL);
 11205     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
 11206     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
 11207     pxor(vec1, vec2);
 11209     ptest(vec1, vec1);
 11210     jccb(Assembler::notZero, FALSE_LABEL);
 11211     jmpb(TRUE_LABEL);
 11213     bind(COMPARE_TAIL); // limit is zero
 11214     movl(limit, result);
 11215     // Fallthru to tail compare
 11218   // Compare 4-byte vectors
 11219   andl(limit, 0xfffffffc); // vector count (in bytes)
 11220   jccb(Assembler::zero, COMPARE_CHAR);
 11222   lea(ary1, Address(ary1, limit, Address::times_1));
 11223   lea(ary2, Address(ary2, limit, Address::times_1));
 11224   negptr(limit);
 11226   bind(COMPARE_VECTORS);
 11227   movl(chr, Address(ary1, limit, Address::times_1));
 11228   cmpl(chr, Address(ary2, limit, Address::times_1));
 11229   jccb(Assembler::notEqual, FALSE_LABEL);
 11230   addptr(limit, 4);
 11231   jcc(Assembler::notZero, COMPARE_VECTORS);
 11233   // Compare trailing char (final 2 bytes), if any
 11234   bind(COMPARE_CHAR);
 11235   testl(result, 0x2);   // tail  char
 11236   jccb(Assembler::zero, TRUE_LABEL);
 11237   load_unsigned_short(chr, Address(ary1, 0));
 11238   load_unsigned_short(limit, Address(ary2, 0));
 11239   cmpl(chr, limit);
 11240   jccb(Assembler::notEqual, FALSE_LABEL);
 11242   bind(TRUE_LABEL);
 11243   movl(result, 1);   // return true
 11244   jmpb(DONE);
 11246   bind(FALSE_LABEL);
 11247   xorl(result, result); // return false
 11249   // That's it
 11250   bind(DONE);
 11253 void MacroAssembler::generate_fill(BasicType t, bool aligned,
 11254                                    Register to, Register value, Register count,
 11255                                    Register rtmp, XMMRegister xtmp) {
 11256   ShortBranchVerifier sbv(this);
 11257   assert_different_registers(to, value, count, rtmp);
 11258   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 11259   Label L_fill_2_bytes, L_fill_4_bytes;
 11261   int shift = -1;
 11262   switch (t) {
 11263     case T_BYTE:
 11264       shift = 2;
 11265       break;
 11266     case T_SHORT:
 11267       shift = 1;
 11268       break;
 11269     case T_INT:
 11270       shift = 0;
 11271       break;
 11272     default: ShouldNotReachHere();
 11275   if (t == T_BYTE) {
 11276     andl(value, 0xff);
 11277     movl(rtmp, value);
 11278     shll(rtmp, 8);
 11279     orl(value, rtmp);
 11281   if (t == T_SHORT) {
 11282     andl(value, 0xffff);
 11284   if (t == T_BYTE || t == T_SHORT) {
 11285     movl(rtmp, value);
 11286     shll(rtmp, 16);
 11287     orl(value, rtmp);
 11290   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
 11291   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
 11292   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 11293     // align source address at 4 bytes address boundary
 11294     if (t == T_BYTE) {
 11295       // One byte misalignment happens only for byte arrays
 11296       testptr(to, 1);
 11297       jccb(Assembler::zero, L_skip_align1);
 11298       movb(Address(to, 0), value);
 11299       increment(to);
 11300       decrement(count);
 11301       BIND(L_skip_align1);
 11303     // Two bytes misalignment happens only for byte and short (char) arrays
 11304     testptr(to, 2);
 11305     jccb(Assembler::zero, L_skip_align2);
 11306     movw(Address(to, 0), value);
 11307     addptr(to, 2);
 11308     subl(count, 1<<(shift-1));
 11309     BIND(L_skip_align2);
 11311   if (UseSSE < 2) {
 11312     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 11313     // Fill 32-byte chunks
 11314     subl(count, 8 << shift);
 11315     jcc(Assembler::less, L_check_fill_8_bytes);
 11316     align(16);
 11318     BIND(L_fill_32_bytes_loop);
 11320     for (int i = 0; i < 32; i += 4) {
 11321       movl(Address(to, i), value);
 11324     addptr(to, 32);
 11325     subl(count, 8 << shift);
 11326     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 11327     BIND(L_check_fill_8_bytes);
 11328     addl(count, 8 << shift);
 11329     jccb(Assembler::zero, L_exit);
 11330     jmpb(L_fill_8_bytes);
 11332     //
 11333     // length is too short, just fill qwords
 11334     //
 11335     BIND(L_fill_8_bytes_loop);
 11336     movl(Address(to, 0), value);
 11337     movl(Address(to, 4), value);
 11338     addptr(to, 8);
 11339     BIND(L_fill_8_bytes);
 11340     subl(count, 1 << (shift + 1));
 11341     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 11342     // fall through to fill 4 bytes
 11343   } else {
 11344     Label L_fill_32_bytes;
 11345     if (!UseUnalignedLoadStores) {
 11346       // align to 8 bytes, we know we are 4 byte aligned to start
 11347       testptr(to, 4);
 11348       jccb(Assembler::zero, L_fill_32_bytes);
 11349       movl(Address(to, 0), value);
 11350       addptr(to, 4);
 11351       subl(count, 1<<shift);
 11353     BIND(L_fill_32_bytes);
 11355       assert( UseSSE >= 2, "supported cpu only" );
 11356       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
 11357       // Fill 32-byte chunks
 11358       movdl(xtmp, value);
 11359       pshufd(xtmp, xtmp, 0);
 11361       subl(count, 8 << shift);
 11362       jcc(Assembler::less, L_check_fill_8_bytes);
 11363       align(16);
 11365       BIND(L_fill_32_bytes_loop);
 11367       if (UseUnalignedLoadStores) {
 11368         movdqu(Address(to, 0), xtmp);
 11369         movdqu(Address(to, 16), xtmp);
 11370       } else {
 11371         movq(Address(to, 0), xtmp);
 11372         movq(Address(to, 8), xtmp);
 11373         movq(Address(to, 16), xtmp);
 11374         movq(Address(to, 24), xtmp);
 11377       addptr(to, 32);
 11378       subl(count, 8 << shift);
 11379       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
 11380       BIND(L_check_fill_8_bytes);
 11381       addl(count, 8 << shift);
 11382       jccb(Assembler::zero, L_exit);
 11383       jmpb(L_fill_8_bytes);
 11385       //
 11386       // length is too short, just fill qwords
 11387       //
 11388       BIND(L_fill_8_bytes_loop);
 11389       movq(Address(to, 0), xtmp);
 11390       addptr(to, 8);
 11391       BIND(L_fill_8_bytes);
 11392       subl(count, 1 << (shift + 1));
 11393       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
 11396   // fill trailing 4 bytes
 11397   BIND(L_fill_4_bytes);
 11398   testl(count, 1<<shift);
 11399   jccb(Assembler::zero, L_fill_2_bytes);
 11400   movl(Address(to, 0), value);
 11401   if (t == T_BYTE || t == T_SHORT) {
 11402     addptr(to, 4);
 11403     BIND(L_fill_2_bytes);
 11404     // fill trailing 2 bytes
 11405     testl(count, 1<<(shift-1));
 11406     jccb(Assembler::zero, L_fill_byte);
 11407     movw(Address(to, 0), value);
 11408     if (t == T_BYTE) {
 11409       addptr(to, 2);
 11410       BIND(L_fill_byte);
 11411       // fill trailing byte
 11412       testl(count, 1);
 11413       jccb(Assembler::zero, L_exit);
 11414       movb(Address(to, 0), value);
 11415     } else {
 11416       BIND(L_fill_byte);
 11418   } else {
 11419     BIND(L_fill_2_bytes);
 11421   BIND(L_exit);
 11423 #undef BIND
 11424 #undef BLOCK_COMMENT
 11427 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
 11428   switch (cond) {
 11429     // Note some conditions are synonyms for others
 11430     case Assembler::zero:         return Assembler::notZero;
 11431     case Assembler::notZero:      return Assembler::zero;
 11432     case Assembler::less:         return Assembler::greaterEqual;
 11433     case Assembler::lessEqual:    return Assembler::greater;
 11434     case Assembler::greater:      return Assembler::lessEqual;
 11435     case Assembler::greaterEqual: return Assembler::less;
 11436     case Assembler::below:        return Assembler::aboveEqual;
 11437     case Assembler::belowEqual:   return Assembler::above;
 11438     case Assembler::above:        return Assembler::belowEqual;
 11439     case Assembler::aboveEqual:   return Assembler::below;
 11440     case Assembler::overflow:     return Assembler::noOverflow;
 11441     case Assembler::noOverflow:   return Assembler::overflow;
 11442     case Assembler::negative:     return Assembler::positive;
 11443     case Assembler::positive:     return Assembler::negative;
 11444     case Assembler::parity:       return Assembler::noParity;
 11445     case Assembler::noParity:     return Assembler::parity;
 11447   ShouldNotReachHere(); return Assembler::overflow;
 11450 SkipIfEqual::SkipIfEqual(
 11451     MacroAssembler* masm, const bool* flag_addr, bool value) {
 11452   _masm = masm;
 11453   _masm->cmp8(ExternalAddress((address)flag_addr), value);
 11454   _masm->jcc(Assembler::equal, _label);
 11457 SkipIfEqual::~SkipIfEqual() {
 11458   _masm->bind(_label);

mercurial