src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 19 Jul 2012 15:15:54 -0700

author
tonyp
date
Thu, 19 Jul 2012 15:15:54 -0700
changeset 3957
a2f7274eb6ef
parent 3900
d2a62e0f25eb
child 3982
aaf61e68b255
permissions
-rw-r--r--

7114678: G1: various small fixes, code cleanup, and refactoring
Summary: Various cleanups as a prelude to introducing iterators for HeapRegions.
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1AllocRegion.hpp"
    30 #include "gc_implementation/g1/g1HRPrinter.hpp"
    31 #include "gc_implementation/g1/g1RemSet.hpp"
    32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    33 #include "gc_implementation/g1/heapRegionSeq.hpp"
    34 #include "gc_implementation/g1/heapRegionSets.hpp"
    35 #include "gc_implementation/shared/hSpaceCounters.hpp"
    36 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    37 #include "memory/barrierSet.hpp"
    38 #include "memory/memRegion.hpp"
    39 #include "memory/sharedHeap.hpp"
    41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    42 // It uses the "Garbage First" heap organization and algorithm, which
    43 // may combine concurrent marking with parallel, incremental compaction of
    44 // heap subsets that will yield large amounts of garbage.
    46 class HeapRegion;
    47 class HRRSCleanupTask;
    48 class PermanentGenerationSpec;
    49 class GenerationSpec;
    50 class OopsInHeapRegionClosure;
    51 class G1ScanHeapEvacClosure;
    52 class ObjectClosure;
    53 class SpaceClosure;
    54 class CompactibleSpaceClosure;
    55 class Space;
    56 class G1CollectorPolicy;
    57 class GenRemSet;
    58 class G1RemSet;
    59 class HeapRegionRemSetIterator;
    60 class ConcurrentMark;
    61 class ConcurrentMarkThread;
    62 class ConcurrentG1Refine;
    63 class GenerationCounters;
    65 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    66 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    71 enum GCAllocPurpose {
    72   GCAllocForTenured,
    73   GCAllocForSurvived,
    74   GCAllocPurposeCount
    75 };
    77 class YoungList : public CHeapObj<mtGC> {
    78 private:
    79   G1CollectedHeap* _g1h;
    81   HeapRegion* _head;
    83   HeapRegion* _survivor_head;
    84   HeapRegion* _survivor_tail;
    86   HeapRegion* _curr;
    88   uint        _length;
    89   uint        _survivor_length;
    91   size_t      _last_sampled_rs_lengths;
    92   size_t      _sampled_rs_lengths;
    94   void         empty_list(HeapRegion* list);
    96 public:
    97   YoungList(G1CollectedHeap* g1h);
    99   void         push_region(HeapRegion* hr);
   100   void         add_survivor_region(HeapRegion* hr);
   102   void         empty_list();
   103   bool         is_empty() { return _length == 0; }
   104   uint         length() { return _length; }
   105   uint         survivor_length() { return _survivor_length; }
   107   // Currently we do not keep track of the used byte sum for the
   108   // young list and the survivors and it'd be quite a lot of work to
   109   // do so. When we'll eventually replace the young list with
   110   // instances of HeapRegionLinkedList we'll get that for free. So,
   111   // we'll report the more accurate information then.
   112   size_t       eden_used_bytes() {
   113     assert(length() >= survivor_length(), "invariant");
   114     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   115   }
   116   size_t       survivor_used_bytes() {
   117     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   118   }
   120   void rs_length_sampling_init();
   121   bool rs_length_sampling_more();
   122   void rs_length_sampling_next();
   124   void reset_sampled_info() {
   125     _last_sampled_rs_lengths =   0;
   126   }
   127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   129   // for development purposes
   130   void reset_auxilary_lists();
   131   void clear() { _head = NULL; _length = 0; }
   133   void clear_survivors() {
   134     _survivor_head    = NULL;
   135     _survivor_tail    = NULL;
   136     _survivor_length  = 0;
   137   }
   139   HeapRegion* first_region() { return _head; }
   140   HeapRegion* first_survivor_region() { return _survivor_head; }
   141   HeapRegion* last_survivor_region() { return _survivor_tail; }
   143   // debugging
   144   bool          check_list_well_formed();
   145   bool          check_list_empty(bool check_sample = true);
   146   void          print();
   147 };
   149 class MutatorAllocRegion : public G1AllocRegion {
   150 protected:
   151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   153 public:
   154   MutatorAllocRegion()
   155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   156 };
   158 // The G1 STW is alive closure.
   159 // An instance is embedded into the G1CH and used as the
   160 // (optional) _is_alive_non_header closure in the STW
   161 // reference processor. It is also extensively used during
   162 // refence processing during STW evacuation pauses.
   163 class G1STWIsAliveClosure: public BoolObjectClosure {
   164   G1CollectedHeap* _g1;
   165 public:
   166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   167   void do_object(oop p) { assert(false, "Do not call."); }
   168   bool do_object_b(oop p);
   169 };
   171 class SurvivorGCAllocRegion : public G1AllocRegion {
   172 protected:
   173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   175 public:
   176   SurvivorGCAllocRegion()
   177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   178 };
   180 class OldGCAllocRegion : public G1AllocRegion {
   181 protected:
   182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   184 public:
   185   OldGCAllocRegion()
   186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   187 };
   189 class RefineCardTableEntryClosure;
   191 class G1CollectedHeap : public SharedHeap {
   192   friend class VM_G1CollectForAllocation;
   193   friend class VM_GenCollectForPermanentAllocation;
   194   friend class VM_G1CollectFull;
   195   friend class VM_G1IncCollectionPause;
   196   friend class VMStructs;
   197   friend class MutatorAllocRegion;
   198   friend class SurvivorGCAllocRegion;
   199   friend class OldGCAllocRegion;
   201   // Closures used in implementation.
   202   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
   203   friend class G1ParCopyClosure;
   204   friend class G1IsAliveClosure;
   205   friend class G1EvacuateFollowersClosure;
   206   friend class G1ParScanThreadState;
   207   friend class G1ParScanClosureSuper;
   208   friend class G1ParEvacuateFollowersClosure;
   209   friend class G1ParTask;
   210   friend class G1FreeGarbageRegionClosure;
   211   friend class RefineCardTableEntryClosure;
   212   friend class G1PrepareCompactClosure;
   213   friend class RegionSorter;
   214   friend class RegionResetter;
   215   friend class CountRCClosure;
   216   friend class EvacPopObjClosure;
   217   friend class G1ParCleanupCTTask;
   219   // Other related classes.
   220   friend class G1MarkSweep;
   222 private:
   223   // The one and only G1CollectedHeap, so static functions can find it.
   224   static G1CollectedHeap* _g1h;
   226   static size_t _humongous_object_threshold_in_words;
   228   // Storage for the G1 heap (excludes the permanent generation).
   229   VirtualSpace _g1_storage;
   230   MemRegion    _g1_reserved;
   232   // The part of _g1_storage that is currently committed.
   233   MemRegion _g1_committed;
   235   // The master free list. It will satisfy all new region allocations.
   236   MasterFreeRegionList      _free_list;
   238   // The secondary free list which contains regions that have been
   239   // freed up during the cleanup process. This will be appended to the
   240   // master free list when appropriate.
   241   SecondaryFreeRegionList   _secondary_free_list;
   243   // It keeps track of the old regions.
   244   MasterOldRegionSet        _old_set;
   246   // It keeps track of the humongous regions.
   247   MasterHumongousRegionSet  _humongous_set;
   249   // The number of regions we could create by expansion.
   250   uint _expansion_regions;
   252   // The block offset table for the G1 heap.
   253   G1BlockOffsetSharedArray* _bot_shared;
   255   // Tears down the region sets / lists so that they are empty and the
   256   // regions on the heap do not belong to a region set / list. The
   257   // only exception is the humongous set which we leave unaltered. If
   258   // free_list_only is true, it will only tear down the master free
   259   // list. It is called before a Full GC (free_list_only == false) or
   260   // before heap shrinking (free_list_only == true).
   261   void tear_down_region_sets(bool free_list_only);
   263   // Rebuilds the region sets / lists so that they are repopulated to
   264   // reflect the contents of the heap. The only exception is the
   265   // humongous set which was not torn down in the first place. If
   266   // free_list_only is true, it will only rebuild the master free
   267   // list. It is called after a Full GC (free_list_only == false) or
   268   // after heap shrinking (free_list_only == true).
   269   void rebuild_region_sets(bool free_list_only);
   271   // The sequence of all heap regions in the heap.
   272   HeapRegionSeq _hrs;
   274   // Alloc region used to satisfy mutator allocation requests.
   275   MutatorAllocRegion _mutator_alloc_region;
   277   // Alloc region used to satisfy allocation requests by the GC for
   278   // survivor objects.
   279   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   281   // Alloc region used to satisfy allocation requests by the GC for
   282   // old objects.
   283   OldGCAllocRegion _old_gc_alloc_region;
   285   // The last old region we allocated to during the last GC.
   286   // Typically, it is not full so we should re-use it during the next GC.
   287   HeapRegion* _retained_old_gc_alloc_region;
   289   // It specifies whether we should attempt to expand the heap after a
   290   // region allocation failure. If heap expansion fails we set this to
   291   // false so that we don't re-attempt the heap expansion (it's likely
   292   // that subsequent expansion attempts will also fail if one fails).
   293   // Currently, it is only consulted during GC and it's reset at the
   294   // start of each GC.
   295   bool _expand_heap_after_alloc_failure;
   297   // It resets the mutator alloc region before new allocations can take place.
   298   void init_mutator_alloc_region();
   300   // It releases the mutator alloc region.
   301   void release_mutator_alloc_region();
   303   // It initializes the GC alloc regions at the start of a GC.
   304   void init_gc_alloc_regions();
   306   // It releases the GC alloc regions at the end of a GC.
   307   void release_gc_alloc_regions();
   309   // It does any cleanup that needs to be done on the GC alloc regions
   310   // before a Full GC.
   311   void abandon_gc_alloc_regions();
   313   // Helper for monitoring and management support.
   314   G1MonitoringSupport* _g1mm;
   316   // Determines PLAB size for a particular allocation purpose.
   317   static size_t desired_plab_sz(GCAllocPurpose purpose);
   319   // Outside of GC pauses, the number of bytes used in all regions other
   320   // than the current allocation region.
   321   size_t _summary_bytes_used;
   323   // This is used for a quick test on whether a reference points into
   324   // the collection set or not. Basically, we have an array, with one
   325   // byte per region, and that byte denotes whether the corresponding
   326   // region is in the collection set or not. The entry corresponding
   327   // the bottom of the heap, i.e., region 0, is pointed to by
   328   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   329   // biased so that it actually points to address 0 of the address
   330   // space, to make the test as fast as possible (we can simply shift
   331   // the address to address into it, instead of having to subtract the
   332   // bottom of the heap from the address before shifting it; basically
   333   // it works in the same way the card table works).
   334   bool* _in_cset_fast_test;
   336   // The allocated array used for the fast test on whether a reference
   337   // points into the collection set or not. This field is also used to
   338   // free the array.
   339   bool* _in_cset_fast_test_base;
   341   // The length of the _in_cset_fast_test_base array.
   342   uint _in_cset_fast_test_length;
   344   volatile unsigned _gc_time_stamp;
   346   size_t* _surviving_young_words;
   348   G1HRPrinter _hr_printer;
   350   void setup_surviving_young_words();
   351   void update_surviving_young_words(size_t* surv_young_words);
   352   void cleanup_surviving_young_words();
   354   // It decides whether an explicit GC should start a concurrent cycle
   355   // instead of doing a STW GC. Currently, a concurrent cycle is
   356   // explicitly started if:
   357   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   358   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   359   // (c) cause == _g1_humongous_allocation
   360   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   362   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   363   // concurrent cycles) we have started.
   364   volatile unsigned int _old_marking_cycles_started;
   366   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   367   // concurrent cycles) we have completed.
   368   volatile unsigned int _old_marking_cycles_completed;
   370   // This is a non-product method that is helpful for testing. It is
   371   // called at the end of a GC and artificially expands the heap by
   372   // allocating a number of dead regions. This way we can induce very
   373   // frequent marking cycles and stress the cleanup / concurrent
   374   // cleanup code more (as all the regions that will be allocated by
   375   // this method will be found dead by the marking cycle).
   376   void allocate_dummy_regions() PRODUCT_RETURN;
   378   // Clear RSets after a compaction. It also resets the GC time stamps.
   379   void clear_rsets_post_compaction();
   381   // If the HR printer is active, dump the state of the regions in the
   382   // heap after a compaction.
   383   void print_hrs_post_compaction();
   385   // These are macros so that, if the assert fires, we get the correct
   386   // line number, file, etc.
   388 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   389   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   390           (_extra_message_),                                                  \
   391           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   392           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   393           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   395 #define assert_heap_locked()                                                  \
   396   do {                                                                        \
   397     assert(Heap_lock->owned_by_self(),                                        \
   398            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   399   } while (0)
   401 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   402   do {                                                                        \
   403     assert(Heap_lock->owned_by_self() ||                                      \
   404            (SafepointSynchronize::is_at_safepoint() &&                        \
   405              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   406            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   407                                         "should be at a safepoint"));         \
   408   } while (0)
   410 #define assert_heap_locked_and_not_at_safepoint()                             \
   411   do {                                                                        \
   412     assert(Heap_lock->owned_by_self() &&                                      \
   413                                     !SafepointSynchronize::is_at_safepoint(), \
   414           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   415                                        "should not be at a safepoint"));      \
   416   } while (0)
   418 #define assert_heap_not_locked()                                              \
   419   do {                                                                        \
   420     assert(!Heap_lock->owned_by_self(),                                       \
   421         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   422   } while (0)
   424 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   425   do {                                                                        \
   426     assert(!Heap_lock->owned_by_self() &&                                     \
   427                                     !SafepointSynchronize::is_at_safepoint(), \
   428       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   429                                    "should not be at a safepoint"));          \
   430   } while (0)
   432 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   433   do {                                                                        \
   434     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   435               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   436            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   437   } while (0)
   439 #define assert_not_at_safepoint()                                             \
   440   do {                                                                        \
   441     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   442            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   443   } while (0)
   445 protected:
   447   // The young region list.
   448   YoungList*  _young_list;
   450   // The current policy object for the collector.
   451   G1CollectorPolicy* _g1_policy;
   453   // This is the second level of trying to allocate a new region. If
   454   // new_region() didn't find a region on the free_list, this call will
   455   // check whether there's anything available on the
   456   // secondary_free_list and/or wait for more regions to appear on
   457   // that list, if _free_regions_coming is set.
   458   HeapRegion* new_region_try_secondary_free_list();
   460   // Try to allocate a single non-humongous HeapRegion sufficient for
   461   // an allocation of the given word_size. If do_expand is true,
   462   // attempt to expand the heap if necessary to satisfy the allocation
   463   // request.
   464   HeapRegion* new_region(size_t word_size, bool do_expand);
   466   // Attempt to satisfy a humongous allocation request of the given
   467   // size by finding a contiguous set of free regions of num_regions
   468   // length and remove them from the master free list. Return the
   469   // index of the first region or G1_NULL_HRS_INDEX if the search
   470   // was unsuccessful.
   471   uint humongous_obj_allocate_find_first(uint num_regions,
   472                                          size_t word_size);
   474   // Initialize a contiguous set of free regions of length num_regions
   475   // and starting at index first so that they appear as a single
   476   // humongous region.
   477   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   478                                                       uint num_regions,
   479                                                       size_t word_size);
   481   // Attempt to allocate a humongous object of the given size. Return
   482   // NULL if unsuccessful.
   483   HeapWord* humongous_obj_allocate(size_t word_size);
   485   // The following two methods, allocate_new_tlab() and
   486   // mem_allocate(), are the two main entry points from the runtime
   487   // into the G1's allocation routines. They have the following
   488   // assumptions:
   489   //
   490   // * They should both be called outside safepoints.
   491   //
   492   // * They should both be called without holding the Heap_lock.
   493   //
   494   // * All allocation requests for new TLABs should go to
   495   //   allocate_new_tlab().
   496   //
   497   // * All non-TLAB allocation requests should go to mem_allocate().
   498   //
   499   // * If either call cannot satisfy the allocation request using the
   500   //   current allocating region, they will try to get a new one. If
   501   //   this fails, they will attempt to do an evacuation pause and
   502   //   retry the allocation.
   503   //
   504   // * If all allocation attempts fail, even after trying to schedule
   505   //   an evacuation pause, allocate_new_tlab() will return NULL,
   506   //   whereas mem_allocate() will attempt a heap expansion and/or
   507   //   schedule a Full GC.
   508   //
   509   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   510   //   should never be called with word_size being humongous. All
   511   //   humongous allocation requests should go to mem_allocate() which
   512   //   will satisfy them with a special path.
   514   virtual HeapWord* allocate_new_tlab(size_t word_size);
   516   virtual HeapWord* mem_allocate(size_t word_size,
   517                                  bool*  gc_overhead_limit_was_exceeded);
   519   // The following three methods take a gc_count_before_ret
   520   // parameter which is used to return the GC count if the method
   521   // returns NULL. Given that we are required to read the GC count
   522   // while holding the Heap_lock, and these paths will take the
   523   // Heap_lock at some point, it's easier to get them to read the GC
   524   // count while holding the Heap_lock before they return NULL instead
   525   // of the caller (namely: mem_allocate()) having to also take the
   526   // Heap_lock just to read the GC count.
   528   // First-level mutator allocation attempt: try to allocate out of
   529   // the mutator alloc region without taking the Heap_lock. This
   530   // should only be used for non-humongous allocations.
   531   inline HeapWord* attempt_allocation(size_t word_size,
   532                                       unsigned int* gc_count_before_ret);
   534   // Second-level mutator allocation attempt: take the Heap_lock and
   535   // retry the allocation attempt, potentially scheduling a GC
   536   // pause. This should only be used for non-humongous allocations.
   537   HeapWord* attempt_allocation_slow(size_t word_size,
   538                                     unsigned int* gc_count_before_ret);
   540   // Takes the Heap_lock and attempts a humongous allocation. It can
   541   // potentially schedule a GC pause.
   542   HeapWord* attempt_allocation_humongous(size_t word_size,
   543                                          unsigned int* gc_count_before_ret);
   545   // Allocation attempt that should be called during safepoints (e.g.,
   546   // at the end of a successful GC). expect_null_mutator_alloc_region
   547   // specifies whether the mutator alloc region is expected to be NULL
   548   // or not.
   549   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   550                                        bool expect_null_mutator_alloc_region);
   552   // It dirties the cards that cover the block so that so that the post
   553   // write barrier never queues anything when updating objects on this
   554   // block. It is assumed (and in fact we assert) that the block
   555   // belongs to a young region.
   556   inline void dirty_young_block(HeapWord* start, size_t word_size);
   558   // Allocate blocks during garbage collection. Will ensure an
   559   // allocation region, either by picking one or expanding the
   560   // heap, and then allocate a block of the given size. The block
   561   // may not be a humongous - it must fit into a single heap region.
   562   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   564   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   565                                     HeapRegion*    alloc_region,
   566                                     bool           par,
   567                                     size_t         word_size);
   569   // Ensure that no further allocations can happen in "r", bearing in mind
   570   // that parallel threads might be attempting allocations.
   571   void par_allocate_remaining_space(HeapRegion* r);
   573   // Allocation attempt during GC for a survivor object / PLAB.
   574   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   576   // Allocation attempt during GC for an old object / PLAB.
   577   inline HeapWord* old_attempt_allocation(size_t word_size);
   579   // These methods are the "callbacks" from the G1AllocRegion class.
   581   // For mutator alloc regions.
   582   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   583   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   584                                    size_t allocated_bytes);
   586   // For GC alloc regions.
   587   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   588                                   GCAllocPurpose ap);
   589   void retire_gc_alloc_region(HeapRegion* alloc_region,
   590                               size_t allocated_bytes, GCAllocPurpose ap);
   592   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   593   //   inspection request and should collect the entire heap
   594   // - if clear_all_soft_refs is true, all soft references should be
   595   //   cleared during the GC
   596   // - if explicit_gc is false, word_size describes the allocation that
   597   //   the GC should attempt (at least) to satisfy
   598   // - it returns false if it is unable to do the collection due to the
   599   //   GC locker being active, true otherwise
   600   bool do_collection(bool explicit_gc,
   601                      bool clear_all_soft_refs,
   602                      size_t word_size);
   604   // Callback from VM_G1CollectFull operation.
   605   // Perform a full collection.
   606   void do_full_collection(bool clear_all_soft_refs);
   608   // Resize the heap if necessary after a full collection.  If this is
   609   // after a collect-for allocation, "word_size" is the allocation size,
   610   // and will be considered part of the used portion of the heap.
   611   void resize_if_necessary_after_full_collection(size_t word_size);
   613   // Callback from VM_G1CollectForAllocation operation.
   614   // This function does everything necessary/possible to satisfy a
   615   // failed allocation request (including collection, expansion, etc.)
   616   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   618   // Attempting to expand the heap sufficiently
   619   // to support an allocation of the given "word_size".  If
   620   // successful, perform the allocation and return the address of the
   621   // allocated block, or else "NULL".
   622   HeapWord* expand_and_allocate(size_t word_size);
   624   // Process any reference objects discovered during
   625   // an incremental evacuation pause.
   626   void process_discovered_references();
   628   // Enqueue any remaining discovered references
   629   // after processing.
   630   void enqueue_discovered_references();
   632 public:
   634   G1MonitoringSupport* g1mm() {
   635     assert(_g1mm != NULL, "should have been initialized");
   636     return _g1mm;
   637   }
   639   // Expand the garbage-first heap by at least the given size (in bytes!).
   640   // Returns true if the heap was expanded by the requested amount;
   641   // false otherwise.
   642   // (Rounds up to a HeapRegion boundary.)
   643   bool expand(size_t expand_bytes);
   645   // Do anything common to GC's.
   646   virtual void gc_prologue(bool full);
   647   virtual void gc_epilogue(bool full);
   649   // We register a region with the fast "in collection set" test. We
   650   // simply set to true the array slot corresponding to this region.
   651   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   652     assert(_in_cset_fast_test_base != NULL, "sanity");
   653     assert(r->in_collection_set(), "invariant");
   654     uint index = r->hrs_index();
   655     assert(index < _in_cset_fast_test_length, "invariant");
   656     assert(!_in_cset_fast_test_base[index], "invariant");
   657     _in_cset_fast_test_base[index] = true;
   658   }
   660   // This is a fast test on whether a reference points into the
   661   // collection set or not. It does not assume that the reference
   662   // points into the heap; if it doesn't, it will return false.
   663   bool in_cset_fast_test(oop obj) {
   664     assert(_in_cset_fast_test != NULL, "sanity");
   665     if (_g1_committed.contains((HeapWord*) obj)) {
   666       // no need to subtract the bottom of the heap from obj,
   667       // _in_cset_fast_test is biased
   668       uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
   669       bool ret = _in_cset_fast_test[index];
   670       // let's make sure the result is consistent with what the slower
   671       // test returns
   672       assert( ret || !obj_in_cs(obj), "sanity");
   673       assert(!ret ||  obj_in_cs(obj), "sanity");
   674       return ret;
   675     } else {
   676       return false;
   677     }
   678   }
   680   void clear_cset_fast_test() {
   681     assert(_in_cset_fast_test_base != NULL, "sanity");
   682     memset(_in_cset_fast_test_base, false,
   683            (size_t) _in_cset_fast_test_length * sizeof(bool));
   684   }
   686   // This is called at the start of either a concurrent cycle or a Full
   687   // GC to update the number of old marking cycles started.
   688   void increment_old_marking_cycles_started();
   690   // This is called at the end of either a concurrent cycle or a Full
   691   // GC to update the number of old marking cycles completed. Those two
   692   // can happen in a nested fashion, i.e., we start a concurrent
   693   // cycle, a Full GC happens half-way through it which ends first,
   694   // and then the cycle notices that a Full GC happened and ends
   695   // too. The concurrent parameter is a boolean to help us do a bit
   696   // tighter consistency checking in the method. If concurrent is
   697   // false, the caller is the inner caller in the nesting (i.e., the
   698   // Full GC). If concurrent is true, the caller is the outer caller
   699   // in this nesting (i.e., the concurrent cycle). Further nesting is
   700   // not currently supported. The end of this call also notifies
   701   // the FullGCCount_lock in case a Java thread is waiting for a full
   702   // GC to happen (e.g., it called System.gc() with
   703   // +ExplicitGCInvokesConcurrent).
   704   void increment_old_marking_cycles_completed(bool concurrent);
   706   unsigned int old_marking_cycles_completed() {
   707     return _old_marking_cycles_completed;
   708   }
   710   G1HRPrinter* hr_printer() { return &_hr_printer; }
   712 protected:
   714   // Shrink the garbage-first heap by at most the given size (in bytes!).
   715   // (Rounds down to a HeapRegion boundary.)
   716   virtual void shrink(size_t expand_bytes);
   717   void shrink_helper(size_t expand_bytes);
   719   #if TASKQUEUE_STATS
   720   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   721   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   722   void reset_taskqueue_stats();
   723   #endif // TASKQUEUE_STATS
   725   // Schedule the VM operation that will do an evacuation pause to
   726   // satisfy an allocation request of word_size. *succeeded will
   727   // return whether the VM operation was successful (it did do an
   728   // evacuation pause) or not (another thread beat us to it or the GC
   729   // locker was active). Given that we should not be holding the
   730   // Heap_lock when we enter this method, we will pass the
   731   // gc_count_before (i.e., total_collections()) as a parameter since
   732   // it has to be read while holding the Heap_lock. Currently, both
   733   // methods that call do_collection_pause() release the Heap_lock
   734   // before the call, so it's easy to read gc_count_before just before.
   735   HeapWord* do_collection_pause(size_t       word_size,
   736                                 unsigned int gc_count_before,
   737                                 bool*        succeeded);
   739   // The guts of the incremental collection pause, executed by the vm
   740   // thread. It returns false if it is unable to do the collection due
   741   // to the GC locker being active, true otherwise
   742   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   744   // Actually do the work of evacuating the collection set.
   745   void evacuate_collection_set();
   747   // The g1 remembered set of the heap.
   748   G1RemSet* _g1_rem_set;
   749   // And it's mod ref barrier set, used to track updates for the above.
   750   ModRefBarrierSet* _mr_bs;
   752   // A set of cards that cover the objects for which the Rsets should be updated
   753   // concurrently after the collection.
   754   DirtyCardQueueSet _dirty_card_queue_set;
   756   // The Heap Region Rem Set Iterator.
   757   HeapRegionRemSetIterator** _rem_set_iterator;
   759   // The closure used to refine a single card.
   760   RefineCardTableEntryClosure* _refine_cte_cl;
   762   // A function to check the consistency of dirty card logs.
   763   void check_ct_logs_at_safepoint();
   765   // A DirtyCardQueueSet that is used to hold cards that contain
   766   // references into the current collection set. This is used to
   767   // update the remembered sets of the regions in the collection
   768   // set in the event of an evacuation failure.
   769   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   771   // After a collection pause, make the regions in the CS into free
   772   // regions.
   773   void free_collection_set(HeapRegion* cs_head);
   775   // Abandon the current collection set without recording policy
   776   // statistics or updating free lists.
   777   void abandon_collection_set(HeapRegion* cs_head);
   779   // Applies "scan_non_heap_roots" to roots outside the heap,
   780   // "scan_rs" to roots inside the heap (having done "set_region" to
   781   // indicate the region in which the root resides), and does "scan_perm"
   782   // (setting the generation to the perm generation.)  If "scan_rs" is
   783   // NULL, then this step is skipped.  The "worker_i"
   784   // param is for use with parallel roots processing, and should be
   785   // the "i" of the calling parallel worker thread's work(i) function.
   786   // In the sequential case this param will be ignored.
   787   void g1_process_strong_roots(bool collecting_perm_gen,
   788                                ScanningOption so,
   789                                OopClosure* scan_non_heap_roots,
   790                                OopsInHeapRegionClosure* scan_rs,
   791                                OopsInGenClosure* scan_perm,
   792                                int worker_i);
   794   // Apply "blk" to all the weak roots of the system.  These include
   795   // JNI weak roots, the code cache, system dictionary, symbol table,
   796   // string table, and referents of reachable weak refs.
   797   void g1_process_weak_roots(OopClosure* root_closure,
   798                              OopClosure* non_root_closure);
   800   // Frees a non-humongous region by initializing its contents and
   801   // adding it to the free list that's passed as a parameter (this is
   802   // usually a local list which will be appended to the master free
   803   // list later). The used bytes of freed regions are accumulated in
   804   // pre_used. If par is true, the region's RSet will not be freed
   805   // up. The assumption is that this will be done later.
   806   void free_region(HeapRegion* hr,
   807                    size_t* pre_used,
   808                    FreeRegionList* free_list,
   809                    bool par);
   811   // Frees a humongous region by collapsing it into individual regions
   812   // and calling free_region() for each of them. The freed regions
   813   // will be added to the free list that's passed as a parameter (this
   814   // is usually a local list which will be appended to the master free
   815   // list later). The used bytes of freed regions are accumulated in
   816   // pre_used. If par is true, the region's RSet will not be freed
   817   // up. The assumption is that this will be done later.
   818   void free_humongous_region(HeapRegion* hr,
   819                              size_t* pre_used,
   820                              FreeRegionList* free_list,
   821                              HumongousRegionSet* humongous_proxy_set,
   822                              bool par);
   824   // Notifies all the necessary spaces that the committed space has
   825   // been updated (either expanded or shrunk). It should be called
   826   // after _g1_storage is updated.
   827   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   829   // The concurrent marker (and the thread it runs in.)
   830   ConcurrentMark* _cm;
   831   ConcurrentMarkThread* _cmThread;
   832   bool _mark_in_progress;
   834   // The concurrent refiner.
   835   ConcurrentG1Refine* _cg1r;
   837   // The parallel task queues
   838   RefToScanQueueSet *_task_queues;
   840   // True iff a evacuation has failed in the current collection.
   841   bool _evacuation_failed;
   843   // Set the attribute indicating whether evacuation has failed in the
   844   // current collection.
   845   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   847   // Failed evacuations cause some logical from-space objects to have
   848   // forwarding pointers to themselves.  Reset them.
   849   void remove_self_forwarding_pointers();
   851   // When one is non-null, so is the other.  Together, they each pair is
   852   // an object with a preserved mark, and its mark value.
   853   GrowableArray<oop>*     _objs_with_preserved_marks;
   854   GrowableArray<markOop>* _preserved_marks_of_objs;
   856   // Preserve the mark of "obj", if necessary, in preparation for its mark
   857   // word being overwritten with a self-forwarding-pointer.
   858   void preserve_mark_if_necessary(oop obj, markOop m);
   860   // The stack of evac-failure objects left to be scanned.
   861   GrowableArray<oop>*    _evac_failure_scan_stack;
   862   // The closure to apply to evac-failure objects.
   864   OopsInHeapRegionClosure* _evac_failure_closure;
   865   // Set the field above.
   866   void
   867   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   868     _evac_failure_closure = evac_failure_closure;
   869   }
   871   // Push "obj" on the scan stack.
   872   void push_on_evac_failure_scan_stack(oop obj);
   873   // Process scan stack entries until the stack is empty.
   874   void drain_evac_failure_scan_stack();
   875   // True iff an invocation of "drain_scan_stack" is in progress; to
   876   // prevent unnecessary recursion.
   877   bool _drain_in_progress;
   879   // Do any necessary initialization for evacuation-failure handling.
   880   // "cl" is the closure that will be used to process evac-failure
   881   // objects.
   882   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   883   // Do any necessary cleanup for evacuation-failure handling data
   884   // structures.
   885   void finalize_for_evac_failure();
   887   // An attempt to evacuate "obj" has failed; take necessary steps.
   888   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   889   void handle_evacuation_failure_common(oop obj, markOop m);
   891   // ("Weak") Reference processing support.
   892   //
   893   // G1 has 2 instances of the referece processor class. One
   894   // (_ref_processor_cm) handles reference object discovery
   895   // and subsequent processing during concurrent marking cycles.
   896   //
   897   // The other (_ref_processor_stw) handles reference object
   898   // discovery and processing during full GCs and incremental
   899   // evacuation pauses.
   900   //
   901   // During an incremental pause, reference discovery will be
   902   // temporarily disabled for _ref_processor_cm and will be
   903   // enabled for _ref_processor_stw. At the end of the evacuation
   904   // pause references discovered by _ref_processor_stw will be
   905   // processed and discovery will be disabled. The previous
   906   // setting for reference object discovery for _ref_processor_cm
   907   // will be re-instated.
   908   //
   909   // At the start of marking:
   910   //  * Discovery by the CM ref processor is verified to be inactive
   911   //    and it's discovered lists are empty.
   912   //  * Discovery by the CM ref processor is then enabled.
   913   //
   914   // At the end of marking:
   915   //  * Any references on the CM ref processor's discovered
   916   //    lists are processed (possibly MT).
   917   //
   918   // At the start of full GC we:
   919   //  * Disable discovery by the CM ref processor and
   920   //    empty CM ref processor's discovered lists
   921   //    (without processing any entries).
   922   //  * Verify that the STW ref processor is inactive and it's
   923   //    discovered lists are empty.
   924   //  * Temporarily set STW ref processor discovery as single threaded.
   925   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   926   //    field.
   927   //  * Finally enable discovery by the STW ref processor.
   928   //
   929   // The STW ref processor is used to record any discovered
   930   // references during the full GC.
   931   //
   932   // At the end of a full GC we:
   933   //  * Enqueue any reference objects discovered by the STW ref processor
   934   //    that have non-live referents. This has the side-effect of
   935   //    making the STW ref processor inactive by disabling discovery.
   936   //  * Verify that the CM ref processor is still inactive
   937   //    and no references have been placed on it's discovered
   938   //    lists (also checked as a precondition during initial marking).
   940   // The (stw) reference processor...
   941   ReferenceProcessor* _ref_processor_stw;
   943   // During reference object discovery, the _is_alive_non_header
   944   // closure (if non-null) is applied to the referent object to
   945   // determine whether the referent is live. If so then the
   946   // reference object does not need to be 'discovered' and can
   947   // be treated as a regular oop. This has the benefit of reducing
   948   // the number of 'discovered' reference objects that need to
   949   // be processed.
   950   //
   951   // Instance of the is_alive closure for embedding into the
   952   // STW reference processor as the _is_alive_non_header field.
   953   // Supplying a value for the _is_alive_non_header field is
   954   // optional but doing so prevents unnecessary additions to
   955   // the discovered lists during reference discovery.
   956   G1STWIsAliveClosure _is_alive_closure_stw;
   958   // The (concurrent marking) reference processor...
   959   ReferenceProcessor* _ref_processor_cm;
   961   // Instance of the concurrent mark is_alive closure for embedding
   962   // into the Concurrent Marking reference processor as the
   963   // _is_alive_non_header field. Supplying a value for the
   964   // _is_alive_non_header field is optional but doing so prevents
   965   // unnecessary additions to the discovered lists during reference
   966   // discovery.
   967   G1CMIsAliveClosure _is_alive_closure_cm;
   969   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
   970   HeapRegion** _worker_cset_start_region;
   972   // Time stamp to validate the regions recorded in the cache
   973   // used by G1CollectedHeap::start_cset_region_for_worker().
   974   // The heap region entry for a given worker is valid iff
   975   // the associated time stamp value matches the current value
   976   // of G1CollectedHeap::_gc_time_stamp.
   977   unsigned int* _worker_cset_start_region_time_stamp;
   979   enum G1H_process_strong_roots_tasks {
   980     G1H_PS_filter_satb_buffers,
   981     G1H_PS_refProcessor_oops_do,
   982     // Leave this one last.
   983     G1H_PS_NumElements
   984   };
   986   SubTasksDone* _process_strong_tasks;
   988   volatile bool _free_regions_coming;
   990 public:
   992   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   994   void set_refine_cte_cl_concurrency(bool concurrent);
   996   RefToScanQueue *task_queue(int i) const;
   998   // A set of cards where updates happened during the GC
   999   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1001   // A DirtyCardQueueSet that is used to hold cards that contain
  1002   // references into the current collection set. This is used to
  1003   // update the remembered sets of the regions in the collection
  1004   // set in the event of an evacuation failure.
  1005   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1006         { return _into_cset_dirty_card_queue_set; }
  1008   // Create a G1CollectedHeap with the specified policy.
  1009   // Must call the initialize method afterwards.
  1010   // May not return if something goes wrong.
  1011   G1CollectedHeap(G1CollectorPolicy* policy);
  1013   // Initialize the G1CollectedHeap to have the initial and
  1014   // maximum sizes, permanent generation, and remembered and barrier sets
  1015   // specified by the policy object.
  1016   jint initialize();
  1018   // Initialize weak reference processing.
  1019   virtual void ref_processing_init();
  1021   void set_par_threads(uint t) {
  1022     SharedHeap::set_par_threads(t);
  1023     // Done in SharedHeap but oddly there are
  1024     // two _process_strong_tasks's in a G1CollectedHeap
  1025     // so do it here too.
  1026     _process_strong_tasks->set_n_threads(t);
  1029   // Set _n_par_threads according to a policy TBD.
  1030   void set_par_threads();
  1032   void set_n_termination(int t) {
  1033     _process_strong_tasks->set_n_threads(t);
  1036   virtual CollectedHeap::Name kind() const {
  1037     return CollectedHeap::G1CollectedHeap;
  1040   // The current policy object for the collector.
  1041   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1043   // Adaptive size policy.  No such thing for g1.
  1044   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1046   // The rem set and barrier set.
  1047   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1048   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
  1050   // The rem set iterator.
  1051   HeapRegionRemSetIterator* rem_set_iterator(int i) {
  1052     return _rem_set_iterator[i];
  1055   HeapRegionRemSetIterator* rem_set_iterator() {
  1056     return _rem_set_iterator[0];
  1059   unsigned get_gc_time_stamp() {
  1060     return _gc_time_stamp;
  1063   void reset_gc_time_stamp() {
  1064     _gc_time_stamp = 0;
  1065     OrderAccess::fence();
  1066     // Clear the cached CSet starting regions and time stamps.
  1067     // Their validity is dependent on the GC timestamp.
  1068     clear_cset_start_regions();
  1071   void check_gc_time_stamps() PRODUCT_RETURN;
  1073   void increment_gc_time_stamp() {
  1074     ++_gc_time_stamp;
  1075     OrderAccess::fence();
  1078   // Reset the given region's GC timestamp. If it's starts humongous,
  1079   // also reset the GC timestamp of its corresponding
  1080   // continues humongous regions too.
  1081   void reset_gc_time_stamps(HeapRegion* hr);
  1083   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1084                                   DirtyCardQueue* into_cset_dcq,
  1085                                   bool concurrent, int worker_i);
  1087   // The shared block offset table array.
  1088   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1090   // Reference Processing accessors
  1092   // The STW reference processor....
  1093   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1095   // The Concurent Marking reference processor...
  1096   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1098   virtual size_t capacity() const;
  1099   virtual size_t used() const;
  1100   // This should be called when we're not holding the heap lock. The
  1101   // result might be a bit inaccurate.
  1102   size_t used_unlocked() const;
  1103   size_t recalculate_used() const;
  1105   // These virtual functions do the actual allocation.
  1106   // Some heaps may offer a contiguous region for shared non-blocking
  1107   // allocation, via inlined code (by exporting the address of the top and
  1108   // end fields defining the extent of the contiguous allocation region.)
  1109   // But G1CollectedHeap doesn't yet support this.
  1111   // Return an estimate of the maximum allocation that could be performed
  1112   // without triggering any collection or expansion activity.  In a
  1113   // generational collector, for example, this is probably the largest
  1114   // allocation that could be supported (without expansion) in the youngest
  1115   // generation.  It is "unsafe" because no locks are taken; the result
  1116   // should be treated as an approximation, not a guarantee, for use in
  1117   // heuristic resizing decisions.
  1118   virtual size_t unsafe_max_alloc();
  1120   virtual bool is_maximal_no_gc() const {
  1121     return _g1_storage.uncommitted_size() == 0;
  1124   // The total number of regions in the heap.
  1125   uint n_regions() { return _hrs.length(); }
  1127   // The max number of regions in the heap.
  1128   uint max_regions() { return _hrs.max_length(); }
  1130   // The number of regions that are completely free.
  1131   uint free_regions() { return _free_list.length(); }
  1133   // The number of regions that are not completely free.
  1134   uint used_regions() { return n_regions() - free_regions(); }
  1136   // The number of regions available for "regular" expansion.
  1137   uint expansion_regions() { return _expansion_regions; }
  1139   // Factory method for HeapRegion instances. It will return NULL if
  1140   // the allocation fails.
  1141   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1143   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1144   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1145   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1146   void verify_dirty_young_regions() PRODUCT_RETURN;
  1148   // verify_region_sets() performs verification over the region
  1149   // lists. It will be compiled in the product code to be used when
  1150   // necessary (i.e., during heap verification).
  1151   void verify_region_sets();
  1153   // verify_region_sets_optional() is planted in the code for
  1154   // list verification in non-product builds (and it can be enabled in
  1155   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1156 #if HEAP_REGION_SET_FORCE_VERIFY
  1157   void verify_region_sets_optional() {
  1158     verify_region_sets();
  1160 #else // HEAP_REGION_SET_FORCE_VERIFY
  1161   void verify_region_sets_optional() { }
  1162 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1164 #ifdef ASSERT
  1165   bool is_on_master_free_list(HeapRegion* hr) {
  1166     return hr->containing_set() == &_free_list;
  1169   bool is_in_humongous_set(HeapRegion* hr) {
  1170     return hr->containing_set() == &_humongous_set;
  1172 #endif // ASSERT
  1174   // Wrapper for the region list operations that can be called from
  1175   // methods outside this class.
  1177   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1178     _secondary_free_list.add_as_tail(list);
  1181   void append_secondary_free_list() {
  1182     _free_list.add_as_head(&_secondary_free_list);
  1185   void append_secondary_free_list_if_not_empty_with_lock() {
  1186     // If the secondary free list looks empty there's no reason to
  1187     // take the lock and then try to append it.
  1188     if (!_secondary_free_list.is_empty()) {
  1189       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1190       append_secondary_free_list();
  1194   void old_set_remove(HeapRegion* hr) {
  1195     _old_set.remove(hr);
  1198   size_t non_young_capacity_bytes() {
  1199     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1202   void set_free_regions_coming();
  1203   void reset_free_regions_coming();
  1204   bool free_regions_coming() { return _free_regions_coming; }
  1205   void wait_while_free_regions_coming();
  1207   // Determine whether the given region is one that we are using as an
  1208   // old GC alloc region.
  1209   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1210     return hr == _retained_old_gc_alloc_region;
  1213   // Perform a collection of the heap; intended for use in implementing
  1214   // "System.gc".  This probably implies as full a collection as the
  1215   // "CollectedHeap" supports.
  1216   virtual void collect(GCCause::Cause cause);
  1218   // The same as above but assume that the caller holds the Heap_lock.
  1219   void collect_locked(GCCause::Cause cause);
  1221   // This interface assumes that it's being called by the
  1222   // vm thread. It collects the heap assuming that the
  1223   // heap lock is already held and that we are executing in
  1224   // the context of the vm thread.
  1225   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1227   // True iff a evacuation has failed in the most-recent collection.
  1228   bool evacuation_failed() { return _evacuation_failed; }
  1230   // It will free a region if it has allocated objects in it that are
  1231   // all dead. It calls either free_region() or
  1232   // free_humongous_region() depending on the type of the region that
  1233   // is passed to it.
  1234   void free_region_if_empty(HeapRegion* hr,
  1235                             size_t* pre_used,
  1236                             FreeRegionList* free_list,
  1237                             OldRegionSet* old_proxy_set,
  1238                             HumongousRegionSet* humongous_proxy_set,
  1239                             HRRSCleanupTask* hrrs_cleanup_task,
  1240                             bool par);
  1242   // It appends the free list to the master free list and updates the
  1243   // master humongous list according to the contents of the proxy
  1244   // list. It also adjusts the total used bytes according to pre_used
  1245   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1246   void update_sets_after_freeing_regions(size_t pre_used,
  1247                                        FreeRegionList* free_list,
  1248                                        OldRegionSet* old_proxy_set,
  1249                                        HumongousRegionSet* humongous_proxy_set,
  1250                                        bool par);
  1252   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1253   virtual bool is_in(const void* p) const;
  1255   // Return "TRUE" iff the given object address is within the collection
  1256   // set.
  1257   inline bool obj_in_cs(oop obj);
  1259   // Return "TRUE" iff the given object address is in the reserved
  1260   // region of g1 (excluding the permanent generation).
  1261   bool is_in_g1_reserved(const void* p) const {
  1262     return _g1_reserved.contains(p);
  1265   // Returns a MemRegion that corresponds to the space that has been
  1266   // reserved for the heap
  1267   MemRegion g1_reserved() {
  1268     return _g1_reserved;
  1271   // Returns a MemRegion that corresponds to the space that has been
  1272   // committed in the heap
  1273   MemRegion g1_committed() {
  1274     return _g1_committed;
  1277   virtual bool is_in_closed_subset(const void* p) const;
  1279   // This resets the card table to all zeros.  It is used after
  1280   // a collection pause which used the card table to claim cards.
  1281   void cleanUpCardTable();
  1283   // Iteration functions.
  1285   // Iterate over all the ref-containing fields of all objects, calling
  1286   // "cl.do_oop" on each.
  1287   virtual void oop_iterate(OopClosure* cl) {
  1288     oop_iterate(cl, true);
  1290   void oop_iterate(OopClosure* cl, bool do_perm);
  1292   // Same as above, restricted to a memory region.
  1293   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1294     oop_iterate(mr, cl, true);
  1296   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1298   // Iterate over all objects, calling "cl.do_object" on each.
  1299   virtual void object_iterate(ObjectClosure* cl) {
  1300     object_iterate(cl, true);
  1302   virtual void safe_object_iterate(ObjectClosure* cl) {
  1303     object_iterate(cl, true);
  1305   void object_iterate(ObjectClosure* cl, bool do_perm);
  1307   // Iterate over all objects allocated since the last collection, calling
  1308   // "cl.do_object" on each.  The heap must have been initialized properly
  1309   // to support this function, or else this call will fail.
  1310   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1312   // Iterate over all spaces in use in the heap, in ascending address order.
  1313   virtual void space_iterate(SpaceClosure* cl);
  1315   // Iterate over heap regions, in address order, terminating the
  1316   // iteration early if the "doHeapRegion" method returns "true".
  1317   void heap_region_iterate(HeapRegionClosure* blk) const;
  1319   // Return the region with the given index. It assumes the index is valid.
  1320   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
  1322   // Divide the heap region sequence into "chunks" of some size (the number
  1323   // of regions divided by the number of parallel threads times some
  1324   // overpartition factor, currently 4).  Assumes that this will be called
  1325   // in parallel by ParallelGCThreads worker threads with discinct worker
  1326   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1327   // calls will use the same "claim_value", and that that claim value is
  1328   // different from the claim_value of any heap region before the start of
  1329   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1330   // attempting to claim the first region in each chunk, and, if
  1331   // successful, applying the closure to each region in the chunk (and
  1332   // setting the claim value of the second and subsequent regions of the
  1333   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1334   // i.e., that a closure never attempt to abort a traversal.
  1335   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1336                                        uint worker,
  1337                                        uint no_of_par_workers,
  1338                                        jint claim_value);
  1340   // It resets all the region claim values to the default.
  1341   void reset_heap_region_claim_values();
  1343   // Resets the claim values of regions in the current
  1344   // collection set to the default.
  1345   void reset_cset_heap_region_claim_values();
  1347 #ifdef ASSERT
  1348   bool check_heap_region_claim_values(jint claim_value);
  1350   // Same as the routine above but only checks regions in the
  1351   // current collection set.
  1352   bool check_cset_heap_region_claim_values(jint claim_value);
  1353 #endif // ASSERT
  1355   // Clear the cached cset start regions and (more importantly)
  1356   // the time stamps. Called when we reset the GC time stamp.
  1357   void clear_cset_start_regions();
  1359   // Given the id of a worker, obtain or calculate a suitable
  1360   // starting region for iterating over the current collection set.
  1361   HeapRegion* start_cset_region_for_worker(int worker_i);
  1363   // This is a convenience method that is used by the
  1364   // HeapRegionIterator classes to calculate the starting region for
  1365   // each worker so that they do not all start from the same region.
  1366   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1368   // Iterate over the regions (if any) in the current collection set.
  1369   void collection_set_iterate(HeapRegionClosure* blk);
  1371   // As above but starting from region r
  1372   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1374   // Returns the first (lowest address) compactible space in the heap.
  1375   virtual CompactibleSpace* first_compactible_space();
  1377   // A CollectedHeap will contain some number of spaces.  This finds the
  1378   // space containing a given address, or else returns NULL.
  1379   virtual Space* space_containing(const void* addr) const;
  1381   // A G1CollectedHeap will contain some number of heap regions.  This
  1382   // finds the region containing a given address, or else returns NULL.
  1383   template <class T>
  1384   inline HeapRegion* heap_region_containing(const T addr) const;
  1386   // Like the above, but requires "addr" to be in the heap (to avoid a
  1387   // null-check), and unlike the above, may return an continuing humongous
  1388   // region.
  1389   template <class T>
  1390   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1392   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1393   // each address in the (reserved) heap is a member of exactly
  1394   // one block.  The defining characteristic of a block is that it is
  1395   // possible to find its size, and thus to progress forward to the next
  1396   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1397   // represent Java objects, or they might be free blocks in a
  1398   // free-list-based heap (or subheap), as long as the two kinds are
  1399   // distinguishable and the size of each is determinable.
  1401   // Returns the address of the start of the "block" that contains the
  1402   // address "addr".  We say "blocks" instead of "object" since some heaps
  1403   // may not pack objects densely; a chunk may either be an object or a
  1404   // non-object.
  1405   virtual HeapWord* block_start(const void* addr) const;
  1407   // Requires "addr" to be the start of a chunk, and returns its size.
  1408   // "addr + size" is required to be the start of a new chunk, or the end
  1409   // of the active area of the heap.
  1410   virtual size_t block_size(const HeapWord* addr) const;
  1412   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1413   // the block is an object.
  1414   virtual bool block_is_obj(const HeapWord* addr) const;
  1416   // Does this heap support heap inspection? (+PrintClassHistogram)
  1417   virtual bool supports_heap_inspection() const { return true; }
  1419   // Section on thread-local allocation buffers (TLABs)
  1420   // See CollectedHeap for semantics.
  1422   virtual bool supports_tlab_allocation() const;
  1423   virtual size_t tlab_capacity(Thread* thr) const;
  1424   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1426   // Can a compiler initialize a new object without store barriers?
  1427   // This permission only extends from the creation of a new object
  1428   // via a TLAB up to the first subsequent safepoint. If such permission
  1429   // is granted for this heap type, the compiler promises to call
  1430   // defer_store_barrier() below on any slow path allocation of
  1431   // a new object for which such initializing store barriers will
  1432   // have been elided. G1, like CMS, allows this, but should be
  1433   // ready to provide a compensating write barrier as necessary
  1434   // if that storage came out of a non-young region. The efficiency
  1435   // of this implementation depends crucially on being able to
  1436   // answer very efficiently in constant time whether a piece of
  1437   // storage in the heap comes from a young region or not.
  1438   // See ReduceInitialCardMarks.
  1439   virtual bool can_elide_tlab_store_barriers() const {
  1440     return true;
  1443   virtual bool card_mark_must_follow_store() const {
  1444     return true;
  1447   bool is_in_young(const oop obj) {
  1448     HeapRegion* hr = heap_region_containing(obj);
  1449     return hr != NULL && hr->is_young();
  1452 #ifdef ASSERT
  1453   virtual bool is_in_partial_collection(const void* p);
  1454 #endif
  1456   virtual bool is_scavengable(const void* addr);
  1458   // We don't need barriers for initializing stores to objects
  1459   // in the young gen: for the SATB pre-barrier, there is no
  1460   // pre-value that needs to be remembered; for the remembered-set
  1461   // update logging post-barrier, we don't maintain remembered set
  1462   // information for young gen objects.
  1463   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1464     return is_in_young(new_obj);
  1467   // Can a compiler elide a store barrier when it writes
  1468   // a permanent oop into the heap?  Applies when the compiler
  1469   // is storing x to the heap, where x->is_perm() is true.
  1470   virtual bool can_elide_permanent_oop_store_barriers() const {
  1471     // At least until perm gen collection is also G1-ified, at
  1472     // which point this should return false.
  1473     return true;
  1476   // Returns "true" iff the given word_size is "very large".
  1477   static bool isHumongous(size_t word_size) {
  1478     // Note this has to be strictly greater-than as the TLABs
  1479     // are capped at the humongous thresold and we want to
  1480     // ensure that we don't try to allocate a TLAB as
  1481     // humongous and that we don't allocate a humongous
  1482     // object in a TLAB.
  1483     return word_size > _humongous_object_threshold_in_words;
  1486   // Update mod union table with the set of dirty cards.
  1487   void updateModUnion();
  1489   // Set the mod union bits corresponding to the given memRegion.  Note
  1490   // that this is always a safe operation, since it doesn't clear any
  1491   // bits.
  1492   void markModUnionRange(MemRegion mr);
  1494   // Records the fact that a marking phase is no longer in progress.
  1495   void set_marking_complete() {
  1496     _mark_in_progress = false;
  1498   void set_marking_started() {
  1499     _mark_in_progress = true;
  1501   bool mark_in_progress() {
  1502     return _mark_in_progress;
  1505   // Print the maximum heap capacity.
  1506   virtual size_t max_capacity() const;
  1508   virtual jlong millis_since_last_gc();
  1510   // Perform any cleanup actions necessary before allowing a verification.
  1511   virtual void prepare_for_verify();
  1513   // Perform verification.
  1515   // vo == UsePrevMarking  -> use "prev" marking information,
  1516   // vo == UseNextMarking -> use "next" marking information
  1517   // vo == UseMarkWord    -> use the mark word in the object header
  1518   //
  1519   // NOTE: Only the "prev" marking information is guaranteed to be
  1520   // consistent most of the time, so most calls to this should use
  1521   // vo == UsePrevMarking.
  1522   // Currently, there is only one case where this is called with
  1523   // vo == UseNextMarking, which is to verify the "next" marking
  1524   // information at the end of remark.
  1525   // Currently there is only one place where this is called with
  1526   // vo == UseMarkWord, which is to verify the marking during a
  1527   // full GC.
  1528   void verify(bool silent, VerifyOption vo);
  1530   // Override; it uses the "prev" marking information
  1531   virtual void verify(bool silent);
  1532   virtual void print_on(outputStream* st) const;
  1533   virtual void print_extended_on(outputStream* st) const;
  1535   virtual void print_gc_threads_on(outputStream* st) const;
  1536   virtual void gc_threads_do(ThreadClosure* tc) const;
  1538   // Override
  1539   void print_tracing_info() const;
  1541   // The following two methods are helpful for debugging RSet issues.
  1542   void print_cset_rsets() PRODUCT_RETURN;
  1543   void print_all_rsets() PRODUCT_RETURN;
  1545   // Convenience function to be used in situations where the heap type can be
  1546   // asserted to be this type.
  1547   static G1CollectedHeap* heap();
  1549   void set_region_short_lived_locked(HeapRegion* hr);
  1550   // add appropriate methods for any other surv rate groups
  1552   YoungList* young_list() { return _young_list; }
  1554   // debugging
  1555   bool check_young_list_well_formed() {
  1556     return _young_list->check_list_well_formed();
  1559   bool check_young_list_empty(bool check_heap,
  1560                               bool check_sample = true);
  1562   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1563   // many of these need to be public.
  1565   // The functions below are helper functions that a subclass of
  1566   // "CollectedHeap" can use in the implementation of its virtual
  1567   // functions.
  1568   // This performs a concurrent marking of the live objects in a
  1569   // bitmap off to the side.
  1570   void doConcurrentMark();
  1572   bool isMarkedPrev(oop obj) const;
  1573   bool isMarkedNext(oop obj) const;
  1575   // Determine if an object is dead, given the object and also
  1576   // the region to which the object belongs. An object is dead
  1577   // iff a) it was not allocated since the last mark and b) it
  1578   // is not marked.
  1580   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1581     return
  1582       !hr->obj_allocated_since_prev_marking(obj) &&
  1583       !isMarkedPrev(obj);
  1586   // This function returns true when an object has been
  1587   // around since the previous marking and hasn't yet
  1588   // been marked during this marking.
  1590   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1591     return
  1592       !hr->obj_allocated_since_next_marking(obj) &&
  1593       !isMarkedNext(obj);
  1596   // Determine if an object is dead, given only the object itself.
  1597   // This will find the region to which the object belongs and
  1598   // then call the region version of the same function.
  1600   // Added if it is in permanent gen it isn't dead.
  1601   // Added if it is NULL it isn't dead.
  1603   bool is_obj_dead(const oop obj) const {
  1604     const HeapRegion* hr = heap_region_containing(obj);
  1605     if (hr == NULL) {
  1606       if (Universe::heap()->is_in_permanent(obj))
  1607         return false;
  1608       else if (obj == NULL) return false;
  1609       else return true;
  1611     else return is_obj_dead(obj, hr);
  1614   bool is_obj_ill(const oop obj) const {
  1615     const HeapRegion* hr = heap_region_containing(obj);
  1616     if (hr == NULL) {
  1617       if (Universe::heap()->is_in_permanent(obj))
  1618         return false;
  1619       else if (obj == NULL) return false;
  1620       else return true;
  1622     else return is_obj_ill(obj, hr);
  1625   // The methods below are here for convenience and dispatch the
  1626   // appropriate method depending on value of the given VerifyOption
  1627   // parameter. The options for that parameter are:
  1628   //
  1629   // vo == UsePrevMarking -> use "prev" marking information,
  1630   // vo == UseNextMarking -> use "next" marking information,
  1631   // vo == UseMarkWord    -> use mark word from object header
  1633   bool is_obj_dead_cond(const oop obj,
  1634                         const HeapRegion* hr,
  1635                         const VerifyOption vo) const {
  1636     switch (vo) {
  1637     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  1638     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  1639     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1640     default:                            ShouldNotReachHere();
  1642     return false; // keep some compilers happy
  1645   bool is_obj_dead_cond(const oop obj,
  1646                         const VerifyOption vo) const {
  1647     switch (vo) {
  1648     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  1649     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  1650     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  1651     default:                            ShouldNotReachHere();
  1653     return false; // keep some compilers happy
  1656   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1657   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1658   bool is_marked(oop obj, VerifyOption vo);
  1659   const char* top_at_mark_start_str(VerifyOption vo);
  1661   // The following is just to alert the verification code
  1662   // that a full collection has occurred and that the
  1663   // remembered sets are no longer up to date.
  1664   bool _full_collection;
  1665   void set_full_collection() { _full_collection = true;}
  1666   void clear_full_collection() {_full_collection = false;}
  1667   bool full_collection() {return _full_collection;}
  1669   ConcurrentMark* concurrent_mark() const { return _cm; }
  1670   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1672   // The dirty cards region list is used to record a subset of regions
  1673   // whose cards need clearing. The list if populated during the
  1674   // remembered set scanning and drained during the card table
  1675   // cleanup. Although the methods are reentrant, population/draining
  1676   // phases must not overlap. For synchronization purposes the last
  1677   // element on the list points to itself.
  1678   HeapRegion* _dirty_cards_region_list;
  1679   void push_dirty_cards_region(HeapRegion* hr);
  1680   HeapRegion* pop_dirty_cards_region();
  1682 public:
  1683   void stop_conc_gc_threads();
  1685   size_t pending_card_num();
  1686   size_t max_pending_card_num();
  1687   size_t cards_scanned();
  1689 protected:
  1690   size_t _max_heap_capacity;
  1691 };
  1693 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1694 private:
  1695   bool        _retired;
  1697 public:
  1698   G1ParGCAllocBuffer(size_t gclab_word_size);
  1700   void set_buf(HeapWord* buf) {
  1701     ParGCAllocBuffer::set_buf(buf);
  1702     _retired = false;
  1705   void retire(bool end_of_gc, bool retain) {
  1706     if (_retired)
  1707       return;
  1708     ParGCAllocBuffer::retire(end_of_gc, retain);
  1709     _retired = true;
  1711 };
  1713 class G1ParScanThreadState : public StackObj {
  1714 protected:
  1715   G1CollectedHeap* _g1h;
  1716   RefToScanQueue*  _refs;
  1717   DirtyCardQueue   _dcq;
  1718   CardTableModRefBS* _ct_bs;
  1719   G1RemSet* _g1_rem;
  1721   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1722   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1723   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1724   ageTable            _age_table;
  1726   size_t           _alloc_buffer_waste;
  1727   size_t           _undo_waste;
  1729   OopsInHeapRegionClosure*      _evac_failure_cl;
  1730   G1ParScanHeapEvacClosure*     _evac_cl;
  1731   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1733   int _hash_seed;
  1734   uint _queue_num;
  1736   size_t _term_attempts;
  1738   double _start;
  1739   double _start_strong_roots;
  1740   double _strong_roots_time;
  1741   double _start_term;
  1742   double _term_time;
  1744   // Map from young-age-index (0 == not young, 1 is youngest) to
  1745   // surviving words. base is what we get back from the malloc call
  1746   size_t* _surviving_young_words_base;
  1747   // this points into the array, as we use the first few entries for padding
  1748   size_t* _surviving_young_words;
  1750 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1752   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1754   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1756   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1757   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1759   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1760     if (!from->is_survivor()) {
  1761       _g1_rem->par_write_ref(from, p, tid);
  1765   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1766     // If the new value of the field points to the same region or
  1767     // is the to-space, we don't need to include it in the Rset updates.
  1768     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1769       size_t card_index = ctbs()->index_for(p);
  1770       // If the card hasn't been added to the buffer, do it.
  1771       if (ctbs()->mark_card_deferred(card_index)) {
  1772         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1777 public:
  1778   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
  1780   ~G1ParScanThreadState() {
  1781     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  1784   RefToScanQueue*   refs()            { return _refs;             }
  1785   ageTable*         age_table()       { return &_age_table;       }
  1787   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1788     return _alloc_buffers[purpose];
  1791   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1792   size_t undo_waste() const                      { return _undo_waste; }
  1794 #ifdef ASSERT
  1795   bool verify_ref(narrowOop* ref) const;
  1796   bool verify_ref(oop* ref) const;
  1797   bool verify_task(StarTask ref) const;
  1798 #endif // ASSERT
  1800   template <class T> void push_on_queue(T* ref) {
  1801     assert(verify_ref(ref), "sanity");
  1802     refs()->push(ref);
  1805   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1806     if (G1DeferredRSUpdate) {
  1807       deferred_rs_update(from, p, tid);
  1808     } else {
  1809       immediate_rs_update(from, p, tid);
  1813   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1815     HeapWord* obj = NULL;
  1816     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1817     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1818       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1819       assert(gclab_word_size == alloc_buf->word_sz(),
  1820              "dynamic resizing is not supported");
  1821       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1822       alloc_buf->retire(false, false);
  1824       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1825       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1826       // Otherwise.
  1827       alloc_buf->set_buf(buf);
  1829       obj = alloc_buf->allocate(word_sz);
  1830       assert(obj != NULL, "buffer was definitely big enough...");
  1831     } else {
  1832       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1834     return obj;
  1837   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1838     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1839     if (obj != NULL) return obj;
  1840     return allocate_slow(purpose, word_sz);
  1843   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1844     if (alloc_buffer(purpose)->contains(obj)) {
  1845       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1846              "should contain whole object");
  1847       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1848     } else {
  1849       CollectedHeap::fill_with_object(obj, word_sz);
  1850       add_to_undo_waste(word_sz);
  1854   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1855     _evac_failure_cl = evac_failure_cl;
  1857   OopsInHeapRegionClosure* evac_failure_closure() {
  1858     return _evac_failure_cl;
  1861   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1862     _evac_cl = evac_cl;
  1865   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1866     _partial_scan_cl = partial_scan_cl;
  1869   int* hash_seed() { return &_hash_seed; }
  1870   uint queue_num() { return _queue_num; }
  1872   size_t term_attempts() const  { return _term_attempts; }
  1873   void note_term_attempt() { _term_attempts++; }
  1875   void start_strong_roots() {
  1876     _start_strong_roots = os::elapsedTime();
  1878   void end_strong_roots() {
  1879     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1881   double strong_roots_time() const { return _strong_roots_time; }
  1883   void start_term_time() {
  1884     note_term_attempt();
  1885     _start_term = os::elapsedTime();
  1887   void end_term_time() {
  1888     _term_time += (os::elapsedTime() - _start_term);
  1890   double term_time() const { return _term_time; }
  1892   double elapsed_time() const {
  1893     return os::elapsedTime() - _start;
  1896   static void
  1897     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1898   void
  1899     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1901   size_t* surviving_young_words() {
  1902     // We add on to hide entry 0 which accumulates surviving words for
  1903     // age -1 regions (i.e. non-young ones)
  1904     return _surviving_young_words;
  1907   void retire_alloc_buffers() {
  1908     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1909       size_t waste = _alloc_buffers[ap]->words_remaining();
  1910       add_to_alloc_buffer_waste(waste);
  1911       _alloc_buffers[ap]->retire(true, false);
  1915   template <class T> void deal_with_reference(T* ref_to_scan) {
  1916     if (has_partial_array_mask(ref_to_scan)) {
  1917       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1918     } else {
  1919       // Note: we can use "raw" versions of "region_containing" because
  1920       // "obj_to_scan" is definitely in the heap, and is not in a
  1921       // humongous region.
  1922       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  1923       _evac_cl->set_region(r);
  1924       _evac_cl->do_oop_nv(ref_to_scan);
  1928   void deal_with_reference(StarTask ref) {
  1929     assert(verify_task(ref), "sanity");
  1930     if (ref.is_narrow()) {
  1931       deal_with_reference((narrowOop*)ref);
  1932     } else {
  1933       deal_with_reference((oop*)ref);
  1937 public:
  1938   void trim_queue();
  1939 };
  1941 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial