src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Thu, 19 Jul 2012 15:15:54 -0700

author
tonyp
date
Thu, 19 Jul 2012 15:15:54 -0700
changeset 3957
a2f7274eb6ef
parent 3924
3a431b605145
child 3982
aaf61e68b255
permissions
-rw-r--r--

7114678: G1: various small fixes, code cleanup, and refactoring
Summary: Various cleanups as a prelude to introducing iterators for HeapRegions.
Reviewed-by: johnc, brutisso

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    35 #include "gc_implementation/g1/g1EvacFailure.hpp"
    36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    37 #include "gc_implementation/g1/g1Log.hpp"
    38 #include "gc_implementation/g1/g1MarkSweep.hpp"
    39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    41 #include "gc_implementation/g1/heapRegion.inline.hpp"
    42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    44 #include "gc_implementation/g1/vm_operations_g1.hpp"
    45 #include "gc_implementation/shared/isGCActiveMark.hpp"
    46 #include "memory/gcLocker.inline.hpp"
    47 #include "memory/genOopClosures.inline.hpp"
    48 #include "memory/generationSpec.hpp"
    49 #include "memory/referenceProcessor.hpp"
    50 #include "oops/oop.inline.hpp"
    51 #include "oops/oop.pcgc.inline.hpp"
    52 #include "runtime/aprofiler.hpp"
    53 #include "runtime/vmThread.hpp"
    55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    57 // turn it on so that the contents of the young list (scan-only /
    58 // to-be-collected) are printed at "strategic" points before / during
    59 // / after the collection --- this is useful for debugging
    60 #define YOUNG_LIST_VERBOSE 0
    61 // CURRENT STATUS
    62 // This file is under construction.  Search for "FIXME".
    64 // INVARIANTS/NOTES
    65 //
    66 // All allocation activity covered by the G1CollectedHeap interface is
    67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    68 // and allocate_new_tlab, which are the "entry" points to the
    69 // allocation code from the rest of the JVM.  (Note that this does not
    70 // apply to TLAB allocation, which is not part of this interface: it
    71 // is done by clients of this interface.)
    73 // Notes on implementation of parallelism in different tasks.
    74 //
    75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    77 // It does use run_task() which sets _n_workers in the task.
    78 // G1ParTask executes g1_process_strong_roots() ->
    79 // SharedHeap::process_strong_roots() which calls eventuall to
    80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    83 //
    85 // Local to this file.
    87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    88   SuspendibleThreadSet* _sts;
    89   G1RemSet* _g1rs;
    90   ConcurrentG1Refine* _cg1r;
    91   bool _concurrent;
    92 public:
    93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    94                               G1RemSet* g1rs,
    95                               ConcurrentG1Refine* cg1r) :
    96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    97   {}
    98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
   100     // This path is executed by the concurrent refine or mutator threads,
   101     // concurrently, and so we do not care if card_ptr contains references
   102     // that point into the collection set.
   103     assert(!oops_into_cset, "should be");
   105     if (_concurrent && _sts->should_yield()) {
   106       // Caller will actually yield.
   107       return false;
   108     }
   109     // Otherwise, we finished successfully; return true.
   110     return true;
   111   }
   112   void set_concurrent(bool b) { _concurrent = b; }
   113 };
   116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   117   int _calls;
   118   G1CollectedHeap* _g1h;
   119   CardTableModRefBS* _ctbs;
   120   int _histo[256];
   121 public:
   122   ClearLoggedCardTableEntryClosure() :
   123     _calls(0)
   124   {
   125     _g1h = G1CollectedHeap::heap();
   126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   127     for (int i = 0; i < 256; i++) _histo[i] = 0;
   128   }
   129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   131       _calls++;
   132       unsigned char* ujb = (unsigned char*)card_ptr;
   133       int ind = (int)(*ujb);
   134       _histo[ind]++;
   135       *card_ptr = -1;
   136     }
   137     return true;
   138   }
   139   int calls() { return _calls; }
   140   void print_histo() {
   141     gclog_or_tty->print_cr("Card table value histogram:");
   142     for (int i = 0; i < 256; i++) {
   143       if (_histo[i] != 0) {
   144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   145       }
   146     }
   147   }
   148 };
   150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   151   int _calls;
   152   G1CollectedHeap* _g1h;
   153   CardTableModRefBS* _ctbs;
   154 public:
   155   RedirtyLoggedCardTableEntryClosure() :
   156     _calls(0)
   157   {
   158     _g1h = G1CollectedHeap::heap();
   159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   160   }
   161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   163       _calls++;
   164       *card_ptr = 0;
   165     }
   166     return true;
   167   }
   168   int calls() { return _calls; }
   169 };
   171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   172 public:
   173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   174     *card_ptr = CardTableModRefBS::dirty_card_val();
   175     return true;
   176   }
   177 };
   179 YoungList::YoungList(G1CollectedHeap* g1h) :
   180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   182   guarantee(check_list_empty(false), "just making sure...");
   183 }
   185 void YoungList::push_region(HeapRegion *hr) {
   186   assert(!hr->is_young(), "should not already be young");
   187   assert(hr->get_next_young_region() == NULL, "cause it should!");
   189   hr->set_next_young_region(_head);
   190   _head = hr;
   192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   193   ++_length;
   194 }
   196 void YoungList::add_survivor_region(HeapRegion* hr) {
   197   assert(hr->is_survivor(), "should be flagged as survivor region");
   198   assert(hr->get_next_young_region() == NULL, "cause it should!");
   200   hr->set_next_young_region(_survivor_head);
   201   if (_survivor_head == NULL) {
   202     _survivor_tail = hr;
   203   }
   204   _survivor_head = hr;
   205   ++_survivor_length;
   206 }
   208 void YoungList::empty_list(HeapRegion* list) {
   209   while (list != NULL) {
   210     HeapRegion* next = list->get_next_young_region();
   211     list->set_next_young_region(NULL);
   212     list->uninstall_surv_rate_group();
   213     list->set_not_young();
   214     list = next;
   215   }
   216 }
   218 void YoungList::empty_list() {
   219   assert(check_list_well_formed(), "young list should be well formed");
   221   empty_list(_head);
   222   _head = NULL;
   223   _length = 0;
   225   empty_list(_survivor_head);
   226   _survivor_head = NULL;
   227   _survivor_tail = NULL;
   228   _survivor_length = 0;
   230   _last_sampled_rs_lengths = 0;
   232   assert(check_list_empty(false), "just making sure...");
   233 }
   235 bool YoungList::check_list_well_formed() {
   236   bool ret = true;
   238   uint length = 0;
   239   HeapRegion* curr = _head;
   240   HeapRegion* last = NULL;
   241   while (curr != NULL) {
   242     if (!curr->is_young()) {
   243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   244                              "incorrectly tagged (y: %d, surv: %d)",
   245                              curr->bottom(), curr->end(),
   246                              curr->is_young(), curr->is_survivor());
   247       ret = false;
   248     }
   249     ++length;
   250     last = curr;
   251     curr = curr->get_next_young_region();
   252   }
   253   ret = ret && (length == _length);
   255   if (!ret) {
   256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   258                            length, _length);
   259   }
   261   return ret;
   262 }
   264 bool YoungList::check_list_empty(bool check_sample) {
   265   bool ret = true;
   267   if (_length != 0) {
   268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   269                   _length);
   270     ret = false;
   271   }
   272   if (check_sample && _last_sampled_rs_lengths != 0) {
   273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   274     ret = false;
   275   }
   276   if (_head != NULL) {
   277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   278     ret = false;
   279   }
   280   if (!ret) {
   281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   282   }
   284   return ret;
   285 }
   287 void
   288 YoungList::rs_length_sampling_init() {
   289   _sampled_rs_lengths = 0;
   290   _curr               = _head;
   291 }
   293 bool
   294 YoungList::rs_length_sampling_more() {
   295   return _curr != NULL;
   296 }
   298 void
   299 YoungList::rs_length_sampling_next() {
   300   assert( _curr != NULL, "invariant" );
   301   size_t rs_length = _curr->rem_set()->occupied();
   303   _sampled_rs_lengths += rs_length;
   305   // The current region may not yet have been added to the
   306   // incremental collection set (it gets added when it is
   307   // retired as the current allocation region).
   308   if (_curr->in_collection_set()) {
   309     // Update the collection set policy information for this region
   310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   311   }
   313   _curr = _curr->get_next_young_region();
   314   if (_curr == NULL) {
   315     _last_sampled_rs_lengths = _sampled_rs_lengths;
   316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   317   }
   318 }
   320 void
   321 YoungList::reset_auxilary_lists() {
   322   guarantee( is_empty(), "young list should be empty" );
   323   assert(check_list_well_formed(), "young list should be well formed");
   325   // Add survivor regions to SurvRateGroup.
   326   _g1h->g1_policy()->note_start_adding_survivor_regions();
   327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   329   int young_index_in_cset = 0;
   330   for (HeapRegion* curr = _survivor_head;
   331        curr != NULL;
   332        curr = curr->get_next_young_region()) {
   333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   335     // The region is a non-empty survivor so let's add it to
   336     // the incremental collection set for the next evacuation
   337     // pause.
   338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   339     young_index_in_cset += 1;
   340   }
   341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   344   _head   = _survivor_head;
   345   _length = _survivor_length;
   346   if (_survivor_head != NULL) {
   347     assert(_survivor_tail != NULL, "cause it shouldn't be");
   348     assert(_survivor_length > 0, "invariant");
   349     _survivor_tail->set_next_young_region(NULL);
   350   }
   352   // Don't clear the survivor list handles until the start of
   353   // the next evacuation pause - we need it in order to re-tag
   354   // the survivor regions from this evacuation pause as 'young'
   355   // at the start of the next.
   357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   359   assert(check_list_well_formed(), "young list should be well formed");
   360 }
   362 void YoungList::print() {
   363   HeapRegion* lists[] = {_head,   _survivor_head};
   364   const char* names[] = {"YOUNG", "SURVIVOR"};
   366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   368     HeapRegion *curr = lists[list];
   369     if (curr == NULL)
   370       gclog_or_tty->print_cr("  empty");
   371     while (curr != NULL) {
   372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   373                              HR_FORMAT_PARAMS(curr),
   374                              curr->prev_top_at_mark_start(),
   375                              curr->next_top_at_mark_start(),
   376                              curr->age_in_surv_rate_group_cond());
   377       curr = curr->get_next_young_region();
   378     }
   379   }
   381   gclog_or_tty->print_cr("");
   382 }
   384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   385 {
   386   // Claim the right to put the region on the dirty cards region list
   387   // by installing a self pointer.
   388   HeapRegion* next = hr->get_next_dirty_cards_region();
   389   if (next == NULL) {
   390     HeapRegion* res = (HeapRegion*)
   391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   392                           NULL);
   393     if (res == NULL) {
   394       HeapRegion* head;
   395       do {
   396         // Put the region to the dirty cards region list.
   397         head = _dirty_cards_region_list;
   398         next = (HeapRegion*)
   399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   400         if (next == head) {
   401           assert(hr->get_next_dirty_cards_region() == hr,
   402                  "hr->get_next_dirty_cards_region() != hr");
   403           if (next == NULL) {
   404             // The last region in the list points to itself.
   405             hr->set_next_dirty_cards_region(hr);
   406           } else {
   407             hr->set_next_dirty_cards_region(next);
   408           }
   409         }
   410       } while (next != head);
   411     }
   412   }
   413 }
   415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   416 {
   417   HeapRegion* head;
   418   HeapRegion* hr;
   419   do {
   420     head = _dirty_cards_region_list;
   421     if (head == NULL) {
   422       return NULL;
   423     }
   424     HeapRegion* new_head = head->get_next_dirty_cards_region();
   425     if (head == new_head) {
   426       // The last region.
   427       new_head = NULL;
   428     }
   429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   430                                           head);
   431   } while (hr != head);
   432   assert(hr != NULL, "invariant");
   433   hr->set_next_dirty_cards_region(NULL);
   434   return hr;
   435 }
   437 void G1CollectedHeap::stop_conc_gc_threads() {
   438   _cg1r->stop();
   439   _cmThread->stop();
   440 }
   442 #ifdef ASSERT
   443 // A region is added to the collection set as it is retired
   444 // so an address p can point to a region which will be in the
   445 // collection set but has not yet been retired.  This method
   446 // therefore is only accurate during a GC pause after all
   447 // regions have been retired.  It is used for debugging
   448 // to check if an nmethod has references to objects that can
   449 // be move during a partial collection.  Though it can be
   450 // inaccurate, it is sufficient for G1 because the conservative
   451 // implementation of is_scavengable() for G1 will indicate that
   452 // all nmethods must be scanned during a partial collection.
   453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   454   HeapRegion* hr = heap_region_containing(p);
   455   return hr != NULL && hr->in_collection_set();
   456 }
   457 #endif
   459 // Returns true if the reference points to an object that
   460 // can move in an incremental collecction.
   461 bool G1CollectedHeap::is_scavengable(const void* p) {
   462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   463   G1CollectorPolicy* g1p = g1h->g1_policy();
   464   HeapRegion* hr = heap_region_containing(p);
   465   if (hr == NULL) {
   466      // perm gen (or null)
   467      return false;
   468   } else {
   469     return !hr->isHumongous();
   470   }
   471 }
   473 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   474   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   475   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   477   // Count the dirty cards at the start.
   478   CountNonCleanMemRegionClosure count1(this);
   479   ct_bs->mod_card_iterate(&count1);
   480   int orig_count = count1.n();
   482   // First clear the logged cards.
   483   ClearLoggedCardTableEntryClosure clear;
   484   dcqs.set_closure(&clear);
   485   dcqs.apply_closure_to_all_completed_buffers();
   486   dcqs.iterate_closure_all_threads(false);
   487   clear.print_histo();
   489   // Now ensure that there's no dirty cards.
   490   CountNonCleanMemRegionClosure count2(this);
   491   ct_bs->mod_card_iterate(&count2);
   492   if (count2.n() != 0) {
   493     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   494                            count2.n(), orig_count);
   495   }
   496   guarantee(count2.n() == 0, "Card table should be clean.");
   498   RedirtyLoggedCardTableEntryClosure redirty;
   499   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   500   dcqs.apply_closure_to_all_completed_buffers();
   501   dcqs.iterate_closure_all_threads(false);
   502   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   503                          clear.calls(), orig_count);
   504   guarantee(redirty.calls() == clear.calls(),
   505             "Or else mechanism is broken.");
   507   CountNonCleanMemRegionClosure count3(this);
   508   ct_bs->mod_card_iterate(&count3);
   509   if (count3.n() != orig_count) {
   510     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   511                            orig_count, count3.n());
   512     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   513   }
   515   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   516 }
   518 // Private class members.
   520 G1CollectedHeap* G1CollectedHeap::_g1h;
   522 // Private methods.
   524 HeapRegion*
   525 G1CollectedHeap::new_region_try_secondary_free_list() {
   526   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   527   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   528     if (!_secondary_free_list.is_empty()) {
   529       if (G1ConcRegionFreeingVerbose) {
   530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   531                                "secondary_free_list has %u entries",
   532                                _secondary_free_list.length());
   533       }
   534       // It looks as if there are free regions available on the
   535       // secondary_free_list. Let's move them to the free_list and try
   536       // again to allocate from it.
   537       append_secondary_free_list();
   539       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   540              "empty we should have moved at least one entry to the free_list");
   541       HeapRegion* res = _free_list.remove_head();
   542       if (G1ConcRegionFreeingVerbose) {
   543         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   544                                "allocated "HR_FORMAT" from secondary_free_list",
   545                                HR_FORMAT_PARAMS(res));
   546       }
   547       return res;
   548     }
   550     // Wait here until we get notifed either when (a) there are no
   551     // more free regions coming or (b) some regions have been moved on
   552     // the secondary_free_list.
   553     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   554   }
   556   if (G1ConcRegionFreeingVerbose) {
   557     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   558                            "could not allocate from secondary_free_list");
   559   }
   560   return NULL;
   561 }
   563 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
   564   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   565          "the only time we use this to allocate a humongous region is "
   566          "when we are allocating a single humongous region");
   568   HeapRegion* res;
   569   if (G1StressConcRegionFreeing) {
   570     if (!_secondary_free_list.is_empty()) {
   571       if (G1ConcRegionFreeingVerbose) {
   572         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   573                                "forced to look at the secondary_free_list");
   574       }
   575       res = new_region_try_secondary_free_list();
   576       if (res != NULL) {
   577         return res;
   578       }
   579     }
   580   }
   581   res = _free_list.remove_head_or_null();
   582   if (res == NULL) {
   583     if (G1ConcRegionFreeingVerbose) {
   584       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   585                              "res == NULL, trying the secondary_free_list");
   586     }
   587     res = new_region_try_secondary_free_list();
   588   }
   589   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   590     // Currently, only attempts to allocate GC alloc regions set
   591     // do_expand to true. So, we should only reach here during a
   592     // safepoint. If this assumption changes we might have to
   593     // reconsider the use of _expand_heap_after_alloc_failure.
   594     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   596     ergo_verbose1(ErgoHeapSizing,
   597                   "attempt heap expansion",
   598                   ergo_format_reason("region allocation request failed")
   599                   ergo_format_byte("allocation request"),
   600                   word_size * HeapWordSize);
   601     if (expand(word_size * HeapWordSize)) {
   602       // Given that expand() succeeded in expanding the heap, and we
   603       // always expand the heap by an amount aligned to the heap
   604       // region size, the free list should in theory not be empty. So
   605       // it would probably be OK to use remove_head(). But the extra
   606       // check for NULL is unlikely to be a performance issue here (we
   607       // just expanded the heap!) so let's just be conservative and
   608       // use remove_head_or_null().
   609       res = _free_list.remove_head_or_null();
   610     } else {
   611       _expand_heap_after_alloc_failure = false;
   612     }
   613   }
   614   return res;
   615 }
   617 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   618                                                         size_t word_size) {
   619   assert(isHumongous(word_size), "word_size should be humongous");
   620   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   622   uint first = G1_NULL_HRS_INDEX;
   623   if (num_regions == 1) {
   624     // Only one region to allocate, no need to go through the slower
   625     // path. The caller will attempt the expasion if this fails, so
   626     // let's not try to expand here too.
   627     HeapRegion* hr = new_region(word_size, false /* do_expand */);
   628     if (hr != NULL) {
   629       first = hr->hrs_index();
   630     } else {
   631       first = G1_NULL_HRS_INDEX;
   632     }
   633   } else {
   634     // We can't allocate humongous regions while cleanupComplete() is
   635     // running, since some of the regions we find to be empty might not
   636     // yet be added to the free list and it is not straightforward to
   637     // know which list they are on so that we can remove them. Note
   638     // that we only need to do this if we need to allocate more than
   639     // one region to satisfy the current humongous allocation
   640     // request. If we are only allocating one region we use the common
   641     // region allocation code (see above).
   642     wait_while_free_regions_coming();
   643     append_secondary_free_list_if_not_empty_with_lock();
   645     if (free_regions() >= num_regions) {
   646       first = _hrs.find_contiguous(num_regions);
   647       if (first != G1_NULL_HRS_INDEX) {
   648         for (uint i = first; i < first + num_regions; ++i) {
   649           HeapRegion* hr = region_at(i);
   650           assert(hr->is_empty(), "sanity");
   651           assert(is_on_master_free_list(hr), "sanity");
   652           hr->set_pending_removal(true);
   653         }
   654         _free_list.remove_all_pending(num_regions);
   655       }
   656     }
   657   }
   658   return first;
   659 }
   661 HeapWord*
   662 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   663                                                            uint num_regions,
   664                                                            size_t word_size) {
   665   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   666   assert(isHumongous(word_size), "word_size should be humongous");
   667   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   669   // Index of last region in the series + 1.
   670   uint last = first + num_regions;
   672   // We need to initialize the region(s) we just discovered. This is
   673   // a bit tricky given that it can happen concurrently with
   674   // refinement threads refining cards on these regions and
   675   // potentially wanting to refine the BOT as they are scanning
   676   // those cards (this can happen shortly after a cleanup; see CR
   677   // 6991377). So we have to set up the region(s) carefully and in
   678   // a specific order.
   680   // The word size sum of all the regions we will allocate.
   681   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   682   assert(word_size <= word_size_sum, "sanity");
   684   // This will be the "starts humongous" region.
   685   HeapRegion* first_hr = region_at(first);
   686   // The header of the new object will be placed at the bottom of
   687   // the first region.
   688   HeapWord* new_obj = first_hr->bottom();
   689   // This will be the new end of the first region in the series that
   690   // should also match the end of the last region in the seriers.
   691   HeapWord* new_end = new_obj + word_size_sum;
   692   // This will be the new top of the first region that will reflect
   693   // this allocation.
   694   HeapWord* new_top = new_obj + word_size;
   696   // First, we need to zero the header of the space that we will be
   697   // allocating. When we update top further down, some refinement
   698   // threads might try to scan the region. By zeroing the header we
   699   // ensure that any thread that will try to scan the region will
   700   // come across the zero klass word and bail out.
   701   //
   702   // NOTE: It would not have been correct to have used
   703   // CollectedHeap::fill_with_object() and make the space look like
   704   // an int array. The thread that is doing the allocation will
   705   // later update the object header to a potentially different array
   706   // type and, for a very short period of time, the klass and length
   707   // fields will be inconsistent. This could cause a refinement
   708   // thread to calculate the object size incorrectly.
   709   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   711   // We will set up the first region as "starts humongous". This
   712   // will also update the BOT covering all the regions to reflect
   713   // that there is a single object that starts at the bottom of the
   714   // first region.
   715   first_hr->set_startsHumongous(new_top, new_end);
   717   // Then, if there are any, we will set up the "continues
   718   // humongous" regions.
   719   HeapRegion* hr = NULL;
   720   for (uint i = first + 1; i < last; ++i) {
   721     hr = region_at(i);
   722     hr->set_continuesHumongous(first_hr);
   723   }
   724   // If we have "continues humongous" regions (hr != NULL), then the
   725   // end of the last one should match new_end.
   726   assert(hr == NULL || hr->end() == new_end, "sanity");
   728   // Up to this point no concurrent thread would have been able to
   729   // do any scanning on any region in this series. All the top
   730   // fields still point to bottom, so the intersection between
   731   // [bottom,top] and [card_start,card_end] will be empty. Before we
   732   // update the top fields, we'll do a storestore to make sure that
   733   // no thread sees the update to top before the zeroing of the
   734   // object header and the BOT initialization.
   735   OrderAccess::storestore();
   737   // Now that the BOT and the object header have been initialized,
   738   // we can update top of the "starts humongous" region.
   739   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   740          "new_top should be in this region");
   741   first_hr->set_top(new_top);
   742   if (_hr_printer.is_active()) {
   743     HeapWord* bottom = first_hr->bottom();
   744     HeapWord* end = first_hr->orig_end();
   745     if ((first + 1) == last) {
   746       // the series has a single humongous region
   747       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   748     } else {
   749       // the series has more than one humongous regions
   750       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   751     }
   752   }
   754   // Now, we will update the top fields of the "continues humongous"
   755   // regions. The reason we need to do this is that, otherwise,
   756   // these regions would look empty and this will confuse parts of
   757   // G1. For example, the code that looks for a consecutive number
   758   // of empty regions will consider them empty and try to
   759   // re-allocate them. We can extend is_empty() to also include
   760   // !continuesHumongous(), but it is easier to just update the top
   761   // fields here. The way we set top for all regions (i.e., top ==
   762   // end for all regions but the last one, top == new_top for the
   763   // last one) is actually used when we will free up the humongous
   764   // region in free_humongous_region().
   765   hr = NULL;
   766   for (uint i = first + 1; i < last; ++i) {
   767     hr = region_at(i);
   768     if ((i + 1) == last) {
   769       // last continues humongous region
   770       assert(hr->bottom() < new_top && new_top <= hr->end(),
   771              "new_top should fall on this region");
   772       hr->set_top(new_top);
   773       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   774     } else {
   775       // not last one
   776       assert(new_top > hr->end(), "new_top should be above this region");
   777       hr->set_top(hr->end());
   778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   779     }
   780   }
   781   // If we have continues humongous regions (hr != NULL), then the
   782   // end of the last one should match new_end and its top should
   783   // match new_top.
   784   assert(hr == NULL ||
   785          (hr->end() == new_end && hr->top() == new_top), "sanity");
   787   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   788   _summary_bytes_used += first_hr->used();
   789   _humongous_set.add(first_hr);
   791   return new_obj;
   792 }
   794 // If could fit into free regions w/o expansion, try.
   795 // Otherwise, if can expand, do so.
   796 // Otherwise, if using ex regions might help, try with ex given back.
   797 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   798   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   800   verify_region_sets_optional();
   802   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   803   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   804   uint x_num = expansion_regions();
   805   uint fs = _hrs.free_suffix();
   806   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   807   if (first == G1_NULL_HRS_INDEX) {
   808     // The only thing we can do now is attempt expansion.
   809     if (fs + x_num >= num_regions) {
   810       // If the number of regions we're trying to allocate for this
   811       // object is at most the number of regions in the free suffix,
   812       // then the call to humongous_obj_allocate_find_first() above
   813       // should have succeeded and we wouldn't be here.
   814       //
   815       // We should only be trying to expand when the free suffix is
   816       // not sufficient for the object _and_ we have some expansion
   817       // room available.
   818       assert(num_regions > fs, "earlier allocation should have succeeded");
   820       ergo_verbose1(ErgoHeapSizing,
   821                     "attempt heap expansion",
   822                     ergo_format_reason("humongous allocation request failed")
   823                     ergo_format_byte("allocation request"),
   824                     word_size * HeapWordSize);
   825       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   826         // Even though the heap was expanded, it might not have
   827         // reached the desired size. So, we cannot assume that the
   828         // allocation will succeed.
   829         first = humongous_obj_allocate_find_first(num_regions, word_size);
   830       }
   831     }
   832   }
   834   HeapWord* result = NULL;
   835   if (first != G1_NULL_HRS_INDEX) {
   836     result =
   837       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   838     assert(result != NULL, "it should always return a valid result");
   840     // A successful humongous object allocation changes the used space
   841     // information of the old generation so we need to recalculate the
   842     // sizes and update the jstat counters here.
   843     g1mm()->update_sizes();
   844   }
   846   verify_region_sets_optional();
   848   return result;
   849 }
   851 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   852   assert_heap_not_locked_and_not_at_safepoint();
   853   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   855   unsigned int dummy_gc_count_before;
   856   return attempt_allocation(word_size, &dummy_gc_count_before);
   857 }
   859 HeapWord*
   860 G1CollectedHeap::mem_allocate(size_t word_size,
   861                               bool*  gc_overhead_limit_was_exceeded) {
   862   assert_heap_not_locked_and_not_at_safepoint();
   864   // Loop until the allocation is satisified, or unsatisfied after GC.
   865   for (int try_count = 1; /* we'll return */; try_count += 1) {
   866     unsigned int gc_count_before;
   868     HeapWord* result = NULL;
   869     if (!isHumongous(word_size)) {
   870       result = attempt_allocation(word_size, &gc_count_before);
   871     } else {
   872       result = attempt_allocation_humongous(word_size, &gc_count_before);
   873     }
   874     if (result != NULL) {
   875       return result;
   876     }
   878     // Create the garbage collection operation...
   879     VM_G1CollectForAllocation op(gc_count_before, word_size);
   880     // ...and get the VM thread to execute it.
   881     VMThread::execute(&op);
   883     if (op.prologue_succeeded() && op.pause_succeeded()) {
   884       // If the operation was successful we'll return the result even
   885       // if it is NULL. If the allocation attempt failed immediately
   886       // after a Full GC, it's unlikely we'll be able to allocate now.
   887       HeapWord* result = op.result();
   888       if (result != NULL && !isHumongous(word_size)) {
   889         // Allocations that take place on VM operations do not do any
   890         // card dirtying and we have to do it here. We only have to do
   891         // this for non-humongous allocations, though.
   892         dirty_young_block(result, word_size);
   893       }
   894       return result;
   895     } else {
   896       assert(op.result() == NULL,
   897              "the result should be NULL if the VM op did not succeed");
   898     }
   900     // Give a warning if we seem to be looping forever.
   901     if ((QueuedAllocationWarningCount > 0) &&
   902         (try_count % QueuedAllocationWarningCount == 0)) {
   903       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   904     }
   905   }
   907   ShouldNotReachHere();
   908   return NULL;
   909 }
   911 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   912                                            unsigned int *gc_count_before_ret) {
   913   // Make sure you read the note in attempt_allocation_humongous().
   915   assert_heap_not_locked_and_not_at_safepoint();
   916   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   917          "be called for humongous allocation requests");
   919   // We should only get here after the first-level allocation attempt
   920   // (attempt_allocation()) failed to allocate.
   922   // We will loop until a) we manage to successfully perform the
   923   // allocation or b) we successfully schedule a collection which
   924   // fails to perform the allocation. b) is the only case when we'll
   925   // return NULL.
   926   HeapWord* result = NULL;
   927   for (int try_count = 1; /* we'll return */; try_count += 1) {
   928     bool should_try_gc;
   929     unsigned int gc_count_before;
   931     {
   932       MutexLockerEx x(Heap_lock);
   934       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   935                                                       false /* bot_updates */);
   936       if (result != NULL) {
   937         return result;
   938       }
   940       // If we reach here, attempt_allocation_locked() above failed to
   941       // allocate a new region. So the mutator alloc region should be NULL.
   942       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   944       if (GC_locker::is_active_and_needs_gc()) {
   945         if (g1_policy()->can_expand_young_list()) {
   946           // No need for an ergo verbose message here,
   947           // can_expand_young_list() does this when it returns true.
   948           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   949                                                       false /* bot_updates */);
   950           if (result != NULL) {
   951             return result;
   952           }
   953         }
   954         should_try_gc = false;
   955       } else {
   956         // The GCLocker may not be active but the GCLocker initiated
   957         // GC may not yet have been performed (GCLocker::needs_gc()
   958         // returns true). In this case we do not try this GC and
   959         // wait until the GCLocker initiated GC is performed, and
   960         // then retry the allocation.
   961         if (GC_locker::needs_gc()) {
   962           should_try_gc = false;
   963         } else {
   964           // Read the GC count while still holding the Heap_lock.
   965           gc_count_before = total_collections();
   966           should_try_gc = true;
   967         }
   968       }
   969     }
   971     if (should_try_gc) {
   972       bool succeeded;
   973       result = do_collection_pause(word_size, gc_count_before, &succeeded);
   974       if (result != NULL) {
   975         assert(succeeded, "only way to get back a non-NULL result");
   976         return result;
   977       }
   979       if (succeeded) {
   980         // If we get here we successfully scheduled a collection which
   981         // failed to allocate. No point in trying to allocate
   982         // further. We'll just return NULL.
   983         MutexLockerEx x(Heap_lock);
   984         *gc_count_before_ret = total_collections();
   985         return NULL;
   986       }
   987     } else {
   988       // The GCLocker is either active or the GCLocker initiated
   989       // GC has not yet been performed. Stall until it is and
   990       // then retry the allocation.
   991       GC_locker::stall_until_clear();
   992     }
   994     // We can reach here if we were unsuccessul in scheduling a
   995     // collection (because another thread beat us to it) or if we were
   996     // stalled due to the GC locker. In either can we should retry the
   997     // allocation attempt in case another thread successfully
   998     // performed a collection and reclaimed enough space. We do the
   999     // first attempt (without holding the Heap_lock) here and the
  1000     // follow-on attempt will be at the start of the next loop
  1001     // iteration (after taking the Heap_lock).
  1002     result = _mutator_alloc_region.attempt_allocation(word_size,
  1003                                                       false /* bot_updates */);
  1004     if (result != NULL) {
  1005       return result;
  1008     // Give a warning if we seem to be looping forever.
  1009     if ((QueuedAllocationWarningCount > 0) &&
  1010         (try_count % QueuedAllocationWarningCount == 0)) {
  1011       warning("G1CollectedHeap::attempt_allocation_slow() "
  1012               "retries %d times", try_count);
  1016   ShouldNotReachHere();
  1017   return NULL;
  1020 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1021                                           unsigned int * gc_count_before_ret) {
  1022   // The structure of this method has a lot of similarities to
  1023   // attempt_allocation_slow(). The reason these two were not merged
  1024   // into a single one is that such a method would require several "if
  1025   // allocation is not humongous do this, otherwise do that"
  1026   // conditional paths which would obscure its flow. In fact, an early
  1027   // version of this code did use a unified method which was harder to
  1028   // follow and, as a result, it had subtle bugs that were hard to
  1029   // track down. So keeping these two methods separate allows each to
  1030   // be more readable. It will be good to keep these two in sync as
  1031   // much as possible.
  1033   assert_heap_not_locked_and_not_at_safepoint();
  1034   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1035          "should only be called for humongous allocations");
  1037   // Humongous objects can exhaust the heap quickly, so we should check if we
  1038   // need to start a marking cycle at each humongous object allocation. We do
  1039   // the check before we do the actual allocation. The reason for doing it
  1040   // before the allocation is that we avoid having to keep track of the newly
  1041   // allocated memory while we do a GC.
  1042   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1043                                            word_size)) {
  1044     collect(GCCause::_g1_humongous_allocation);
  1047   // We will loop until a) we manage to successfully perform the
  1048   // allocation or b) we successfully schedule a collection which
  1049   // fails to perform the allocation. b) is the only case when we'll
  1050   // return NULL.
  1051   HeapWord* result = NULL;
  1052   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1053     bool should_try_gc;
  1054     unsigned int gc_count_before;
  1057       MutexLockerEx x(Heap_lock);
  1059       // Given that humongous objects are not allocated in young
  1060       // regions, we'll first try to do the allocation without doing a
  1061       // collection hoping that there's enough space in the heap.
  1062       result = humongous_obj_allocate(word_size);
  1063       if (result != NULL) {
  1064         return result;
  1067       if (GC_locker::is_active_and_needs_gc()) {
  1068         should_try_gc = false;
  1069       } else {
  1070          // The GCLocker may not be active but the GCLocker initiated
  1071         // GC may not yet have been performed (GCLocker::needs_gc()
  1072         // returns true). In this case we do not try this GC and
  1073         // wait until the GCLocker initiated GC is performed, and
  1074         // then retry the allocation.
  1075         if (GC_locker::needs_gc()) {
  1076           should_try_gc = false;
  1077         } else {
  1078           // Read the GC count while still holding the Heap_lock.
  1079           gc_count_before = total_collections();
  1080           should_try_gc = true;
  1085     if (should_try_gc) {
  1086       // If we failed to allocate the humongous object, we should try to
  1087       // do a collection pause (if we're allowed) in case it reclaims
  1088       // enough space for the allocation to succeed after the pause.
  1090       bool succeeded;
  1091       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1092       if (result != NULL) {
  1093         assert(succeeded, "only way to get back a non-NULL result");
  1094         return result;
  1097       if (succeeded) {
  1098         // If we get here we successfully scheduled a collection which
  1099         // failed to allocate. No point in trying to allocate
  1100         // further. We'll just return NULL.
  1101         MutexLockerEx x(Heap_lock);
  1102         *gc_count_before_ret = total_collections();
  1103         return NULL;
  1105     } else {
  1106       // The GCLocker is either active or the GCLocker initiated
  1107       // GC has not yet been performed. Stall until it is and
  1108       // then retry the allocation.
  1109       GC_locker::stall_until_clear();
  1112     // We can reach here if we were unsuccessul in scheduling a
  1113     // collection (because another thread beat us to it) or if we were
  1114     // stalled due to the GC locker. In either can we should retry the
  1115     // allocation attempt in case another thread successfully
  1116     // performed a collection and reclaimed enough space.  Give a
  1117     // warning if we seem to be looping forever.
  1119     if ((QueuedAllocationWarningCount > 0) &&
  1120         (try_count % QueuedAllocationWarningCount == 0)) {
  1121       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1122               "retries %d times", try_count);
  1126   ShouldNotReachHere();
  1127   return NULL;
  1130 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1131                                        bool expect_null_mutator_alloc_region) {
  1132   assert_at_safepoint(true /* should_be_vm_thread */);
  1133   assert(_mutator_alloc_region.get() == NULL ||
  1134                                              !expect_null_mutator_alloc_region,
  1135          "the current alloc region was unexpectedly found to be non-NULL");
  1137   if (!isHumongous(word_size)) {
  1138     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1139                                                       false /* bot_updates */);
  1140   } else {
  1141     HeapWord* result = humongous_obj_allocate(word_size);
  1142     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1143       g1_policy()->set_initiate_conc_mark_if_possible();
  1145     return result;
  1148   ShouldNotReachHere();
  1151 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1152   G1CollectedHeap* _g1h;
  1153   ModRefBarrierSet* _mr_bs;
  1154 public:
  1155   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1156     _g1h(g1h), _mr_bs(mr_bs) { }
  1157   bool doHeapRegion(HeapRegion* r) {
  1158     if (r->continuesHumongous()) {
  1159       return false;
  1161     _g1h->reset_gc_time_stamps(r);
  1162     HeapRegionRemSet* hrrs = r->rem_set();
  1163     if (hrrs != NULL) hrrs->clear();
  1164     // You might think here that we could clear just the cards
  1165     // corresponding to the used region.  But no: if we leave a dirty card
  1166     // in a region we might allocate into, then it would prevent that card
  1167     // from being enqueued, and cause it to be missed.
  1168     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1169     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1170     return false;
  1172 };
  1174 void G1CollectedHeap::clear_rsets_post_compaction() {
  1175   PostMCRemSetClearClosure rs_clear(this, mr_bs());
  1176   heap_region_iterate(&rs_clear);
  1179 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1180   G1CollectedHeap*   _g1h;
  1181   UpdateRSOopClosure _cl;
  1182   int                _worker_i;
  1183 public:
  1184   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1185     _cl(g1->g1_rem_set(), worker_i),
  1186     _worker_i(worker_i),
  1187     _g1h(g1)
  1188   { }
  1190   bool doHeapRegion(HeapRegion* r) {
  1191     if (!r->continuesHumongous()) {
  1192       _cl.set_from(r);
  1193       r->oop_iterate(&_cl);
  1195     return false;
  1197 };
  1199 class ParRebuildRSTask: public AbstractGangTask {
  1200   G1CollectedHeap* _g1;
  1201 public:
  1202   ParRebuildRSTask(G1CollectedHeap* g1)
  1203     : AbstractGangTask("ParRebuildRSTask"),
  1204       _g1(g1)
  1205   { }
  1207   void work(uint worker_id) {
  1208     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1209     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1210                                           _g1->workers()->active_workers(),
  1211                                          HeapRegion::RebuildRSClaimValue);
  1213 };
  1215 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1216 private:
  1217   G1HRPrinter* _hr_printer;
  1218 public:
  1219   bool doHeapRegion(HeapRegion* hr) {
  1220     assert(!hr->is_young(), "not expecting to find young regions");
  1221     // We only generate output for non-empty regions.
  1222     if (!hr->is_empty()) {
  1223       if (!hr->isHumongous()) {
  1224         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1225       } else if (hr->startsHumongous()) {
  1226         if (hr->region_num() == 1) {
  1227           // single humongous region
  1228           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1229         } else {
  1230           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1232       } else {
  1233         assert(hr->continuesHumongous(), "only way to get here");
  1234         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1237     return false;
  1240   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1241     : _hr_printer(hr_printer) { }
  1242 };
  1244 void G1CollectedHeap::print_hrs_post_compaction() {
  1245   PostCompactionPrinterClosure cl(hr_printer());
  1246   heap_region_iterate(&cl);
  1249 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1250                                     bool clear_all_soft_refs,
  1251                                     size_t word_size) {
  1252   assert_at_safepoint(true /* should_be_vm_thread */);
  1254   if (GC_locker::check_active_before_gc()) {
  1255     return false;
  1258   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1259   ResourceMark rm;
  1261   print_heap_before_gc();
  1263   HRSPhaseSetter x(HRSPhaseFullGC);
  1264   verify_region_sets_optional();
  1266   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1267                            collector_policy()->should_clear_all_soft_refs();
  1269   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1272     IsGCActiveMark x;
  1274     // Timing
  1275     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1276     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1277     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1279     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
  1280     TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1281     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1283     double start = os::elapsedTime();
  1284     g1_policy()->record_full_collection_start();
  1286     // Note: When we have a more flexible GC logging framework that
  1287     // allows us to add optional attributes to a GC log record we
  1288     // could consider timing and reporting how long we wait in the
  1289     // following two methods.
  1290     wait_while_free_regions_coming();
  1291     // If we start the compaction before the CM threads finish
  1292     // scanning the root regions we might trip them over as we'll
  1293     // be moving objects / updating references. So let's wait until
  1294     // they are done. By telling them to abort, they should complete
  1295     // early.
  1296     _cm->root_regions()->abort();
  1297     _cm->root_regions()->wait_until_scan_finished();
  1298     append_secondary_free_list_if_not_empty_with_lock();
  1300     gc_prologue(true);
  1301     increment_total_collections(true /* full gc */);
  1302     increment_old_marking_cycles_started();
  1304     size_t g1h_prev_used = used();
  1305     assert(used() == recalculate_used(), "Should be equal");
  1307     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1308       HandleMark hm;  // Discard invalid handles created during verification
  1309       gclog_or_tty->print(" VerifyBeforeGC:");
  1310       prepare_for_verify();
  1311       Universe::verify(/* silent      */ false,
  1312                        /* option      */ VerifyOption_G1UsePrevMarking);
  1315     pre_full_gc_dump();
  1317     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1319     // Disable discovery and empty the discovered lists
  1320     // for the CM ref processor.
  1321     ref_processor_cm()->disable_discovery();
  1322     ref_processor_cm()->abandon_partial_discovery();
  1323     ref_processor_cm()->verify_no_references_recorded();
  1325     // Abandon current iterations of concurrent marking and concurrent
  1326     // refinement, if any are in progress. We have to do this before
  1327     // wait_until_scan_finished() below.
  1328     concurrent_mark()->abort();
  1330     // Make sure we'll choose a new allocation region afterwards.
  1331     release_mutator_alloc_region();
  1332     abandon_gc_alloc_regions();
  1333     g1_rem_set()->cleanupHRRS();
  1335     // We should call this after we retire any currently active alloc
  1336     // regions so that all the ALLOC / RETIRE events are generated
  1337     // before the start GC event.
  1338     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1340     // We may have added regions to the current incremental collection
  1341     // set between the last GC or pause and now. We need to clear the
  1342     // incremental collection set and then start rebuilding it afresh
  1343     // after this full GC.
  1344     abandon_collection_set(g1_policy()->inc_cset_head());
  1345     g1_policy()->clear_incremental_cset();
  1346     g1_policy()->stop_incremental_cset_building();
  1348     tear_down_region_sets(false /* free_list_only */);
  1349     g1_policy()->set_gcs_are_young(true);
  1351     // See the comments in g1CollectedHeap.hpp and
  1352     // G1CollectedHeap::ref_processing_init() about
  1353     // how reference processing currently works in G1.
  1355     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1356     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1358     // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1359     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1361     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1362     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1364     // Do collection work
  1366       HandleMark hm;  // Discard invalid handles created during gc
  1367       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1370     assert(free_regions() == 0, "we should not have added any free regions");
  1371     rebuild_region_sets(false /* free_list_only */);
  1373     // Enqueue any discovered reference objects that have
  1374     // not been removed from the discovered lists.
  1375     ref_processor_stw()->enqueue_discovered_references();
  1377     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1379     MemoryService::track_memory_usage();
  1381     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1382       HandleMark hm;  // Discard invalid handles created during verification
  1383       gclog_or_tty->print(" VerifyAfterGC:");
  1384       prepare_for_verify();
  1385       Universe::verify(/* silent      */ false,
  1386                        /* option      */ VerifyOption_G1UsePrevMarking);
  1390     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1391     ref_processor_stw()->verify_no_references_recorded();
  1393     // Note: since we've just done a full GC, concurrent
  1394     // marking is no longer active. Therefore we need not
  1395     // re-enable reference discovery for the CM ref processor.
  1396     // That will be done at the start of the next marking cycle.
  1397     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1398     ref_processor_cm()->verify_no_references_recorded();
  1400     reset_gc_time_stamp();
  1401     // Since everything potentially moved, we will clear all remembered
  1402     // sets, and clear all cards.  Later we will rebuild remebered
  1403     // sets. We will also reset the GC time stamps of the regions.
  1404     clear_rsets_post_compaction();
  1405     check_gc_time_stamps();
  1407     // Resize the heap if necessary.
  1408     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1410     if (_hr_printer.is_active()) {
  1411       // We should do this after we potentially resize the heap so
  1412       // that all the COMMIT / UNCOMMIT events are generated before
  1413       // the end GC event.
  1415       print_hrs_post_compaction();
  1416       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1419     if (_cg1r->use_cache()) {
  1420       _cg1r->clear_and_record_card_counts();
  1421       _cg1r->clear_hot_cache();
  1424     // Rebuild remembered sets of all regions.
  1425     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1426       uint n_workers =
  1427         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1428                                        workers()->active_workers(),
  1429                                        Threads::number_of_non_daemon_threads());
  1430       assert(UseDynamicNumberOfGCThreads ||
  1431              n_workers == workers()->total_workers(),
  1432              "If not dynamic should be using all the  workers");
  1433       workers()->set_active_workers(n_workers);
  1434       // Set parallel threads in the heap (_n_par_threads) only
  1435       // before a parallel phase and always reset it to 0 after
  1436       // the phase so that the number of parallel threads does
  1437       // no get carried forward to a serial phase where there
  1438       // may be code that is "possibly_parallel".
  1439       set_par_threads(n_workers);
  1441       ParRebuildRSTask rebuild_rs_task(this);
  1442       assert(check_heap_region_claim_values(
  1443              HeapRegion::InitialClaimValue), "sanity check");
  1444       assert(UseDynamicNumberOfGCThreads ||
  1445              workers()->active_workers() == workers()->total_workers(),
  1446         "Unless dynamic should use total workers");
  1447       // Use the most recent number of  active workers
  1448       assert(workers()->active_workers() > 0,
  1449         "Active workers not properly set");
  1450       set_par_threads(workers()->active_workers());
  1451       workers()->run_task(&rebuild_rs_task);
  1452       set_par_threads(0);
  1453       assert(check_heap_region_claim_values(
  1454              HeapRegion::RebuildRSClaimValue), "sanity check");
  1455       reset_heap_region_claim_values();
  1456     } else {
  1457       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1458       heap_region_iterate(&rebuild_rs);
  1461     if (G1Log::fine()) {
  1462       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1465     if (true) { // FIXME
  1466       // Ask the permanent generation to adjust size for full collections
  1467       perm()->compute_new_size();
  1470     // Start a new incremental collection set for the next pause
  1471     assert(g1_policy()->collection_set() == NULL, "must be");
  1472     g1_policy()->start_incremental_cset_building();
  1474     // Clear the _cset_fast_test bitmap in anticipation of adding
  1475     // regions to the incremental collection set for the next
  1476     // evacuation pause.
  1477     clear_cset_fast_test();
  1479     init_mutator_alloc_region();
  1481     double end = os::elapsedTime();
  1482     g1_policy()->record_full_collection_end();
  1484 #ifdef TRACESPINNING
  1485     ParallelTaskTerminator::print_termination_counts();
  1486 #endif
  1488     gc_epilogue(true);
  1490     // Discard all rset updates
  1491     JavaThread::dirty_card_queue_set().abandon_logs();
  1492     assert(!G1DeferredRSUpdate
  1493            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1495     _young_list->reset_sampled_info();
  1496     // At this point there should be no regions in the
  1497     // entire heap tagged as young.
  1498     assert( check_young_list_empty(true /* check_heap */),
  1499       "young list should be empty at this point");
  1501     // Update the number of full collections that have been completed.
  1502     increment_old_marking_cycles_completed(false /* concurrent */);
  1504     _hrs.verify_optional();
  1505     verify_region_sets_optional();
  1507     print_heap_after_gc();
  1509     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1510     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1511     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1512     // before any GC notifications are raised.
  1513     g1mm()->update_sizes();
  1516   post_full_gc_dump();
  1518   return true;
  1521 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1522   // do_collection() will return whether it succeeded in performing
  1523   // the GC. Currently, there is no facility on the
  1524   // do_full_collection() API to notify the caller than the collection
  1525   // did not succeed (e.g., because it was locked out by the GC
  1526   // locker). So, right now, we'll ignore the return value.
  1527   bool dummy = do_collection(true,                /* explicit_gc */
  1528                              clear_all_soft_refs,
  1529                              0                    /* word_size */);
  1532 // This code is mostly copied from TenuredGeneration.
  1533 void
  1534 G1CollectedHeap::
  1535 resize_if_necessary_after_full_collection(size_t word_size) {
  1536   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1538   // Include the current allocation, if any, and bytes that will be
  1539   // pre-allocated to support collections, as "used".
  1540   const size_t used_after_gc = used();
  1541   const size_t capacity_after_gc = capacity();
  1542   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1544   // This is enforced in arguments.cpp.
  1545   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1546          "otherwise the code below doesn't make sense");
  1548   // We don't have floating point command-line arguments
  1549   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1550   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1551   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1552   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1554   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1555   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1557   // We have to be careful here as these two calculations can overflow
  1558   // 32-bit size_t's.
  1559   double used_after_gc_d = (double) used_after_gc;
  1560   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1561   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1563   // Let's make sure that they are both under the max heap size, which
  1564   // by default will make them fit into a size_t.
  1565   double desired_capacity_upper_bound = (double) max_heap_size;
  1566   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1567                                     desired_capacity_upper_bound);
  1568   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1569                                     desired_capacity_upper_bound);
  1571   // We can now safely turn them into size_t's.
  1572   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1573   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1575   // This assert only makes sense here, before we adjust them
  1576   // with respect to the min and max heap size.
  1577   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1578          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1579                  "maximum_desired_capacity = "SIZE_FORMAT,
  1580                  minimum_desired_capacity, maximum_desired_capacity));
  1582   // Should not be greater than the heap max size. No need to adjust
  1583   // it with respect to the heap min size as it's a lower bound (i.e.,
  1584   // we'll try to make the capacity larger than it, not smaller).
  1585   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1586   // Should not be less than the heap min size. No need to adjust it
  1587   // with respect to the heap max size as it's an upper bound (i.e.,
  1588   // we'll try to make the capacity smaller than it, not greater).
  1589   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1591   if (capacity_after_gc < minimum_desired_capacity) {
  1592     // Don't expand unless it's significant
  1593     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1594     ergo_verbose4(ErgoHeapSizing,
  1595                   "attempt heap expansion",
  1596                   ergo_format_reason("capacity lower than "
  1597                                      "min desired capacity after Full GC")
  1598                   ergo_format_byte("capacity")
  1599                   ergo_format_byte("occupancy")
  1600                   ergo_format_byte_perc("min desired capacity"),
  1601                   capacity_after_gc, used_after_gc,
  1602                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1603     expand(expand_bytes);
  1605     // No expansion, now see if we want to shrink
  1606   } else if (capacity_after_gc > maximum_desired_capacity) {
  1607     // Capacity too large, compute shrinking size
  1608     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1609     ergo_verbose4(ErgoHeapSizing,
  1610                   "attempt heap shrinking",
  1611                   ergo_format_reason("capacity higher than "
  1612                                      "max desired capacity after Full GC")
  1613                   ergo_format_byte("capacity")
  1614                   ergo_format_byte("occupancy")
  1615                   ergo_format_byte_perc("max desired capacity"),
  1616                   capacity_after_gc, used_after_gc,
  1617                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1618     shrink(shrink_bytes);
  1623 HeapWord*
  1624 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1625                                            bool* succeeded) {
  1626   assert_at_safepoint(true /* should_be_vm_thread */);
  1628   *succeeded = true;
  1629   // Let's attempt the allocation first.
  1630   HeapWord* result =
  1631     attempt_allocation_at_safepoint(word_size,
  1632                                  false /* expect_null_mutator_alloc_region */);
  1633   if (result != NULL) {
  1634     assert(*succeeded, "sanity");
  1635     return result;
  1638   // In a G1 heap, we're supposed to keep allocation from failing by
  1639   // incremental pauses.  Therefore, at least for now, we'll favor
  1640   // expansion over collection.  (This might change in the future if we can
  1641   // do something smarter than full collection to satisfy a failed alloc.)
  1642   result = expand_and_allocate(word_size);
  1643   if (result != NULL) {
  1644     assert(*succeeded, "sanity");
  1645     return result;
  1648   // Expansion didn't work, we'll try to do a Full GC.
  1649   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1650                                     false, /* clear_all_soft_refs */
  1651                                     word_size);
  1652   if (!gc_succeeded) {
  1653     *succeeded = false;
  1654     return NULL;
  1657   // Retry the allocation
  1658   result = attempt_allocation_at_safepoint(word_size,
  1659                                   true /* expect_null_mutator_alloc_region */);
  1660   if (result != NULL) {
  1661     assert(*succeeded, "sanity");
  1662     return result;
  1665   // Then, try a Full GC that will collect all soft references.
  1666   gc_succeeded = do_collection(false, /* explicit_gc */
  1667                                true,  /* clear_all_soft_refs */
  1668                                word_size);
  1669   if (!gc_succeeded) {
  1670     *succeeded = false;
  1671     return NULL;
  1674   // Retry the allocation once more
  1675   result = attempt_allocation_at_safepoint(word_size,
  1676                                   true /* expect_null_mutator_alloc_region */);
  1677   if (result != NULL) {
  1678     assert(*succeeded, "sanity");
  1679     return result;
  1682   assert(!collector_policy()->should_clear_all_soft_refs(),
  1683          "Flag should have been handled and cleared prior to this point");
  1685   // What else?  We might try synchronous finalization later.  If the total
  1686   // space available is large enough for the allocation, then a more
  1687   // complete compaction phase than we've tried so far might be
  1688   // appropriate.
  1689   assert(*succeeded, "sanity");
  1690   return NULL;
  1693 // Attempting to expand the heap sufficiently
  1694 // to support an allocation of the given "word_size".  If
  1695 // successful, perform the allocation and return the address of the
  1696 // allocated block, or else "NULL".
  1698 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1699   assert_at_safepoint(true /* should_be_vm_thread */);
  1701   verify_region_sets_optional();
  1703   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1704   ergo_verbose1(ErgoHeapSizing,
  1705                 "attempt heap expansion",
  1706                 ergo_format_reason("allocation request failed")
  1707                 ergo_format_byte("allocation request"),
  1708                 word_size * HeapWordSize);
  1709   if (expand(expand_bytes)) {
  1710     _hrs.verify_optional();
  1711     verify_region_sets_optional();
  1712     return attempt_allocation_at_safepoint(word_size,
  1713                                  false /* expect_null_mutator_alloc_region */);
  1715   return NULL;
  1718 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1719                                              HeapWord* new_end) {
  1720   assert(old_end != new_end, "don't call this otherwise");
  1721   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1723   // Update the committed mem region.
  1724   _g1_committed.set_end(new_end);
  1725   // Tell the card table about the update.
  1726   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1727   // Tell the BOT about the update.
  1728   _bot_shared->resize(_g1_committed.word_size());
  1731 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1732   size_t old_mem_size = _g1_storage.committed_size();
  1733   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1734   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1735                                        HeapRegion::GrainBytes);
  1736   ergo_verbose2(ErgoHeapSizing,
  1737                 "expand the heap",
  1738                 ergo_format_byte("requested expansion amount")
  1739                 ergo_format_byte("attempted expansion amount"),
  1740                 expand_bytes, aligned_expand_bytes);
  1742   // First commit the memory.
  1743   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1744   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1745   if (successful) {
  1746     // Then propagate this update to the necessary data structures.
  1747     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1748     update_committed_space(old_end, new_end);
  1750     FreeRegionList expansion_list("Local Expansion List");
  1751     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1752     assert(mr.start() == old_end, "post-condition");
  1753     // mr might be a smaller region than what was requested if
  1754     // expand_by() was unable to allocate the HeapRegion instances
  1755     assert(mr.end() <= new_end, "post-condition");
  1757     size_t actual_expand_bytes = mr.byte_size();
  1758     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1759     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1760            "post-condition");
  1761     if (actual_expand_bytes < aligned_expand_bytes) {
  1762       // We could not expand _hrs to the desired size. In this case we
  1763       // need to shrink the committed space accordingly.
  1764       assert(mr.end() < new_end, "invariant");
  1766       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1767       // First uncommit the memory.
  1768       _g1_storage.shrink_by(diff_bytes);
  1769       // Then propagate this update to the necessary data structures.
  1770       update_committed_space(new_end, mr.end());
  1772     _free_list.add_as_tail(&expansion_list);
  1774     if (_hr_printer.is_active()) {
  1775       HeapWord* curr = mr.start();
  1776       while (curr < mr.end()) {
  1777         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1778         _hr_printer.commit(curr, curr_end);
  1779         curr = curr_end;
  1781       assert(curr == mr.end(), "post-condition");
  1783     g1_policy()->record_new_heap_size(n_regions());
  1784   } else {
  1785     ergo_verbose0(ErgoHeapSizing,
  1786                   "did not expand the heap",
  1787                   ergo_format_reason("heap expansion operation failed"));
  1788     // The expansion of the virtual storage space was unsuccessful.
  1789     // Let's see if it was because we ran out of swap.
  1790     if (G1ExitOnExpansionFailure &&
  1791         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1792       // We had head room...
  1793       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1796   return successful;
  1799 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1800   size_t old_mem_size = _g1_storage.committed_size();
  1801   size_t aligned_shrink_bytes =
  1802     ReservedSpace::page_align_size_down(shrink_bytes);
  1803   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1804                                          HeapRegion::GrainBytes);
  1805   uint num_regions_deleted = 0;
  1806   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
  1807   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1808   assert(mr.end() == old_end, "post-condition");
  1810   ergo_verbose3(ErgoHeapSizing,
  1811                 "shrink the heap",
  1812                 ergo_format_byte("requested shrinking amount")
  1813                 ergo_format_byte("aligned shrinking amount")
  1814                 ergo_format_byte("attempted shrinking amount"),
  1815                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
  1816   if (mr.byte_size() > 0) {
  1817     if (_hr_printer.is_active()) {
  1818       HeapWord* curr = mr.end();
  1819       while (curr > mr.start()) {
  1820         HeapWord* curr_end = curr;
  1821         curr -= HeapRegion::GrainWords;
  1822         _hr_printer.uncommit(curr, curr_end);
  1824       assert(curr == mr.start(), "post-condition");
  1827     _g1_storage.shrink_by(mr.byte_size());
  1828     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1829     assert(mr.start() == new_end, "post-condition");
  1831     _expansion_regions += num_regions_deleted;
  1832     update_committed_space(old_end, new_end);
  1833     HeapRegionRemSet::shrink_heap(n_regions());
  1834     g1_policy()->record_new_heap_size(n_regions());
  1835   } else {
  1836     ergo_verbose0(ErgoHeapSizing,
  1837                   "did not shrink the heap",
  1838                   ergo_format_reason("heap shrinking operation failed"));
  1842 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1843   verify_region_sets_optional();
  1845   // We should only reach here at the end of a Full GC which means we
  1846   // should not not be holding to any GC alloc regions. The method
  1847   // below will make sure of that and do any remaining clean up.
  1848   abandon_gc_alloc_regions();
  1850   // Instead of tearing down / rebuilding the free lists here, we
  1851   // could instead use the remove_all_pending() method on free_list to
  1852   // remove only the ones that we need to remove.
  1853   tear_down_region_sets(true /* free_list_only */);
  1854   shrink_helper(shrink_bytes);
  1855   rebuild_region_sets(true /* free_list_only */);
  1857   _hrs.verify_optional();
  1858   verify_region_sets_optional();
  1861 // Public methods.
  1863 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1864 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1865 #endif // _MSC_VER
  1868 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1869   SharedHeap(policy_),
  1870   _g1_policy(policy_),
  1871   _dirty_card_queue_set(false),
  1872   _into_cset_dirty_card_queue_set(false),
  1873   _is_alive_closure_cm(this),
  1874   _is_alive_closure_stw(this),
  1875   _ref_processor_cm(NULL),
  1876   _ref_processor_stw(NULL),
  1877   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1878   _bot_shared(NULL),
  1879   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1880   _evac_failure_scan_stack(NULL) ,
  1881   _mark_in_progress(false),
  1882   _cg1r(NULL), _summary_bytes_used(0),
  1883   _g1mm(NULL),
  1884   _refine_cte_cl(NULL),
  1885   _full_collection(false),
  1886   _free_list("Master Free List"),
  1887   _secondary_free_list("Secondary Free List"),
  1888   _old_set("Old Set"),
  1889   _humongous_set("Master Humongous Set"),
  1890   _free_regions_coming(false),
  1891   _young_list(new YoungList(this)),
  1892   _gc_time_stamp(0),
  1893   _retained_old_gc_alloc_region(NULL),
  1894   _expand_heap_after_alloc_failure(true),
  1895   _surviving_young_words(NULL),
  1896   _old_marking_cycles_started(0),
  1897   _old_marking_cycles_completed(0),
  1898   _in_cset_fast_test(NULL),
  1899   _in_cset_fast_test_base(NULL),
  1900   _dirty_cards_region_list(NULL),
  1901   _worker_cset_start_region(NULL),
  1902   _worker_cset_start_region_time_stamp(NULL) {
  1903   _g1h = this; // To catch bugs.
  1904   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1905     vm_exit_during_initialization("Failed necessary allocation.");
  1908   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1910   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1911   _task_queues = new RefToScanQueueSet(n_queues);
  1913   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1914   assert(n_rem_sets > 0, "Invariant.");
  1916   HeapRegionRemSetIterator** iter_arr =
  1917     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
  1918   for (int i = 0; i < n_queues; i++) {
  1919     iter_arr[i] = new HeapRegionRemSetIterator();
  1921   _rem_set_iterator = iter_arr;
  1923   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1924   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1926   for (int i = 0; i < n_queues; i++) {
  1927     RefToScanQueue* q = new RefToScanQueue();
  1928     q->initialize();
  1929     _task_queues->register_queue(i, q);
  1932   clear_cset_start_regions();
  1934   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1937 jint G1CollectedHeap::initialize() {
  1938   CollectedHeap::pre_initialize();
  1939   os::enable_vtime();
  1941   G1Log::init();
  1943   // Necessary to satisfy locking discipline assertions.
  1945   MutexLocker x(Heap_lock);
  1947   // We have to initialize the printer before committing the heap, as
  1948   // it will be used then.
  1949   _hr_printer.set_active(G1PrintHeapRegions);
  1951   // While there are no constraints in the GC code that HeapWordSize
  1952   // be any particular value, there are multiple other areas in the
  1953   // system which believe this to be true (e.g. oop->object_size in some
  1954   // cases incorrectly returns the size in wordSize units rather than
  1955   // HeapWordSize).
  1956   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1958   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1959   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1961   // Ensure that the sizes are properly aligned.
  1962   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1963   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1965   _cg1r = new ConcurrentG1Refine();
  1967   // Reserve the maximum.
  1968   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  1969   // Includes the perm-gen.
  1971   // When compressed oops are enabled, the preferred heap base
  1972   // is calculated by subtracting the requested size from the
  1973   // 32Gb boundary and using the result as the base address for
  1974   // heap reservation. If the requested size is not aligned to
  1975   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  1976   // into the ReservedHeapSpace constructor) then the actual
  1977   // base of the reserved heap may end up differing from the
  1978   // address that was requested (i.e. the preferred heap base).
  1979   // If this happens then we could end up using a non-optimal
  1980   // compressed oops mode.
  1982   // Since max_byte_size is aligned to the size of a heap region (checked
  1983   // above), we also need to align the perm gen size as it might not be.
  1984   const size_t total_reserved = max_byte_size +
  1985                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
  1986   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
  1988   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  1990   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
  1991                             UseLargePages, addr);
  1993   if (UseCompressedOops) {
  1994     if (addr != NULL && !heap_rs.is_reserved()) {
  1995       // Failed to reserve at specified address - the requested memory
  1996       // region is taken already, for example, by 'java' launcher.
  1997       // Try again to reserver heap higher.
  1998       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  2000       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  2001                                  UseLargePages, addr);
  2003       if (addr != NULL && !heap_rs0.is_reserved()) {
  2004         // Failed to reserve at specified address again - give up.
  2005         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  2006         assert(addr == NULL, "");
  2008         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  2009                                    UseLargePages, addr);
  2010         heap_rs = heap_rs1;
  2011       } else {
  2012         heap_rs = heap_rs0;
  2017   if (!heap_rs.is_reserved()) {
  2018     vm_exit_during_initialization("Could not reserve enough space for object heap");
  2019     return JNI_ENOMEM;
  2022   // It is important to do this in a way such that concurrent readers can't
  2023   // temporarily think somethings in the heap.  (I've actually seen this
  2024   // happen in asserts: DLD.)
  2025   _reserved.set_word_size(0);
  2026   _reserved.set_start((HeapWord*)heap_rs.base());
  2027   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2029   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2031   // Create the gen rem set (and barrier set) for the entire reserved region.
  2032   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2033   set_barrier_set(rem_set()->bs());
  2034   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2035     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2036   } else {
  2037     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2038     return JNI_ENOMEM;
  2041   // Also create a G1 rem set.
  2042   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2043     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2044   } else {
  2045     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2046     return JNI_ENOMEM;
  2049   // Carve out the G1 part of the heap.
  2051   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2052   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2053                            g1_rs.size()/HeapWordSize);
  2054   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2056   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2058   _g1_storage.initialize(g1_rs, 0);
  2059   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2060   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2061                   (HeapWord*) _g1_reserved.end(),
  2062                   _expansion_regions);
  2064   // 6843694 - ensure that the maximum region index can fit
  2065   // in the remembered set structures.
  2066   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2067   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2069   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2070   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2071   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2072             "too many cards per region");
  2074   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2076   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2077                                              heap_word_size(init_byte_size));
  2079   _g1h = this;
  2081    _in_cset_fast_test_length = max_regions();
  2082    _in_cset_fast_test_base =
  2083                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
  2085    // We're biasing _in_cset_fast_test to avoid subtracting the
  2086    // beginning of the heap every time we want to index; basically
  2087    // it's the same with what we do with the card table.
  2088    _in_cset_fast_test = _in_cset_fast_test_base -
  2089                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2091    // Clear the _cset_fast_test bitmap in anticipation of adding
  2092    // regions to the incremental collection set for the first
  2093    // evacuation pause.
  2094    clear_cset_fast_test();
  2096   // Create the ConcurrentMark data structure and thread.
  2097   // (Must do this late, so that "max_regions" is defined.)
  2098   _cm       = new ConcurrentMark(heap_rs, max_regions());
  2099   _cmThread = _cm->cmThread();
  2101   // Initialize the from_card cache structure of HeapRegionRemSet.
  2102   HeapRegionRemSet::init_heap(max_regions());
  2104   // Now expand into the initial heap size.
  2105   if (!expand(init_byte_size)) {
  2106     vm_exit_during_initialization("Failed to allocate initial heap.");
  2107     return JNI_ENOMEM;
  2110   // Perform any initialization actions delegated to the policy.
  2111   g1_policy()->init();
  2113   _refine_cte_cl =
  2114     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2115                                     g1_rem_set(),
  2116                                     concurrent_g1_refine());
  2117   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2119   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2120                                                SATB_Q_FL_lock,
  2121                                                G1SATBProcessCompletedThreshold,
  2122                                                Shared_SATB_Q_lock);
  2124   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2125                                                 DirtyCardQ_FL_lock,
  2126                                                 concurrent_g1_refine()->yellow_zone(),
  2127                                                 concurrent_g1_refine()->red_zone(),
  2128                                                 Shared_DirtyCardQ_lock);
  2130   if (G1DeferredRSUpdate) {
  2131     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2132                                       DirtyCardQ_FL_lock,
  2133                                       -1, // never trigger processing
  2134                                       -1, // no limit on length
  2135                                       Shared_DirtyCardQ_lock,
  2136                                       &JavaThread::dirty_card_queue_set());
  2139   // Initialize the card queue set used to hold cards containing
  2140   // references into the collection set.
  2141   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2142                                              DirtyCardQ_FL_lock,
  2143                                              -1, // never trigger processing
  2144                                              -1, // no limit on length
  2145                                              Shared_DirtyCardQ_lock,
  2146                                              &JavaThread::dirty_card_queue_set());
  2148   // In case we're keeping closure specialization stats, initialize those
  2149   // counts and that mechanism.
  2150   SpecializationStats::clear();
  2152   // Do later initialization work for concurrent refinement.
  2153   _cg1r->init();
  2155   // Here we allocate the dummy full region that is required by the
  2156   // G1AllocRegion class. If we don't pass an address in the reserved
  2157   // space here, lots of asserts fire.
  2159   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2160                                              _g1_reserved.start());
  2161   // We'll re-use the same region whether the alloc region will
  2162   // require BOT updates or not and, if it doesn't, then a non-young
  2163   // region will complain that it cannot support allocations without
  2164   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2165   dummy_region->set_young();
  2166   // Make sure it's full.
  2167   dummy_region->set_top(dummy_region->end());
  2168   G1AllocRegion::setup(this, dummy_region);
  2170   init_mutator_alloc_region();
  2172   // Do create of the monitoring and management support so that
  2173   // values in the heap have been properly initialized.
  2174   _g1mm = new G1MonitoringSupport(this);
  2176   return JNI_OK;
  2179 void G1CollectedHeap::ref_processing_init() {
  2180   // Reference processing in G1 currently works as follows:
  2181   //
  2182   // * There are two reference processor instances. One is
  2183   //   used to record and process discovered references
  2184   //   during concurrent marking; the other is used to
  2185   //   record and process references during STW pauses
  2186   //   (both full and incremental).
  2187   // * Both ref processors need to 'span' the entire heap as
  2188   //   the regions in the collection set may be dotted around.
  2189   //
  2190   // * For the concurrent marking ref processor:
  2191   //   * Reference discovery is enabled at initial marking.
  2192   //   * Reference discovery is disabled and the discovered
  2193   //     references processed etc during remarking.
  2194   //   * Reference discovery is MT (see below).
  2195   //   * Reference discovery requires a barrier (see below).
  2196   //   * Reference processing may or may not be MT
  2197   //     (depending on the value of ParallelRefProcEnabled
  2198   //     and ParallelGCThreads).
  2199   //   * A full GC disables reference discovery by the CM
  2200   //     ref processor and abandons any entries on it's
  2201   //     discovered lists.
  2202   //
  2203   // * For the STW processor:
  2204   //   * Non MT discovery is enabled at the start of a full GC.
  2205   //   * Processing and enqueueing during a full GC is non-MT.
  2206   //   * During a full GC, references are processed after marking.
  2207   //
  2208   //   * Discovery (may or may not be MT) is enabled at the start
  2209   //     of an incremental evacuation pause.
  2210   //   * References are processed near the end of a STW evacuation pause.
  2211   //   * For both types of GC:
  2212   //     * Discovery is atomic - i.e. not concurrent.
  2213   //     * Reference discovery will not need a barrier.
  2215   SharedHeap::ref_processing_init();
  2216   MemRegion mr = reserved_region();
  2218   // Concurrent Mark ref processor
  2219   _ref_processor_cm =
  2220     new ReferenceProcessor(mr,    // span
  2221                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2222                                 // mt processing
  2223                            (int) ParallelGCThreads,
  2224                                 // degree of mt processing
  2225                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2226                                 // mt discovery
  2227                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2228                                 // degree of mt discovery
  2229                            false,
  2230                                 // Reference discovery is not atomic
  2231                            &_is_alive_closure_cm,
  2232                                 // is alive closure
  2233                                 // (for efficiency/performance)
  2234                            true);
  2235                                 // Setting next fields of discovered
  2236                                 // lists requires a barrier.
  2238   // STW ref processor
  2239   _ref_processor_stw =
  2240     new ReferenceProcessor(mr,    // span
  2241                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2242                                 // mt processing
  2243                            MAX2((int)ParallelGCThreads, 1),
  2244                                 // degree of mt processing
  2245                            (ParallelGCThreads > 1),
  2246                                 // mt discovery
  2247                            MAX2((int)ParallelGCThreads, 1),
  2248                                 // degree of mt discovery
  2249                            true,
  2250                                 // Reference discovery is atomic
  2251                            &_is_alive_closure_stw,
  2252                                 // is alive closure
  2253                                 // (for efficiency/performance)
  2254                            false);
  2255                                 // Setting next fields of discovered
  2256                                 // lists requires a barrier.
  2259 size_t G1CollectedHeap::capacity() const {
  2260   return _g1_committed.byte_size();
  2263 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2264   assert(!hr->continuesHumongous(), "pre-condition");
  2265   hr->reset_gc_time_stamp();
  2266   if (hr->startsHumongous()) {
  2267     uint first_index = hr->hrs_index() + 1;
  2268     uint last_index = hr->last_hc_index();
  2269     for (uint i = first_index; i < last_index; i += 1) {
  2270       HeapRegion* chr = region_at(i);
  2271       assert(chr->continuesHumongous(), "sanity");
  2272       chr->reset_gc_time_stamp();
  2277 #ifndef PRODUCT
  2278 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2279 private:
  2280   unsigned _gc_time_stamp;
  2281   bool _failures;
  2283 public:
  2284   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2285     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2287   virtual bool doHeapRegion(HeapRegion* hr) {
  2288     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2289     if (_gc_time_stamp != region_gc_time_stamp) {
  2290       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2291                              "expected %d", HR_FORMAT_PARAMS(hr),
  2292                              region_gc_time_stamp, _gc_time_stamp);
  2293       _failures = true;
  2295     return false;
  2298   bool failures() { return _failures; }
  2299 };
  2301 void G1CollectedHeap::check_gc_time_stamps() {
  2302   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2303   heap_region_iterate(&cl);
  2304   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2306 #endif // PRODUCT
  2308 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2309                                                  DirtyCardQueue* into_cset_dcq,
  2310                                                  bool concurrent,
  2311                                                  int worker_i) {
  2312   // Clean cards in the hot card cache
  2313   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2315   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2316   int n_completed_buffers = 0;
  2317   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2318     n_completed_buffers++;
  2320   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i,
  2321                                                   (double) n_completed_buffers);
  2322   dcqs.clear_n_completed_buffers();
  2323   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2327 // Computes the sum of the storage used by the various regions.
  2329 size_t G1CollectedHeap::used() const {
  2330   assert(Heap_lock->owner() != NULL,
  2331          "Should be owned on this thread's behalf.");
  2332   size_t result = _summary_bytes_used;
  2333   // Read only once in case it is set to NULL concurrently
  2334   HeapRegion* hr = _mutator_alloc_region.get();
  2335   if (hr != NULL)
  2336     result += hr->used();
  2337   return result;
  2340 size_t G1CollectedHeap::used_unlocked() const {
  2341   size_t result = _summary_bytes_used;
  2342   return result;
  2345 class SumUsedClosure: public HeapRegionClosure {
  2346   size_t _used;
  2347 public:
  2348   SumUsedClosure() : _used(0) {}
  2349   bool doHeapRegion(HeapRegion* r) {
  2350     if (!r->continuesHumongous()) {
  2351       _used += r->used();
  2353     return false;
  2355   size_t result() { return _used; }
  2356 };
  2358 size_t G1CollectedHeap::recalculate_used() const {
  2359   SumUsedClosure blk;
  2360   heap_region_iterate(&blk);
  2361   return blk.result();
  2364 size_t G1CollectedHeap::unsafe_max_alloc() {
  2365   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2366   // otherwise, is there space in the current allocation region?
  2368   // We need to store the current allocation region in a local variable
  2369   // here. The problem is that this method doesn't take any locks and
  2370   // there may be other threads which overwrite the current allocation
  2371   // region field. attempt_allocation(), for example, sets it to NULL
  2372   // and this can happen *after* the NULL check here but before the call
  2373   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2374   // to be a problem in the optimized build, since the two loads of the
  2375   // current allocation region field are optimized away.
  2376   HeapRegion* hr = _mutator_alloc_region.get();
  2377   if (hr == NULL) {
  2378     return 0;
  2380   return hr->free();
  2383 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2384   switch (cause) {
  2385     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2386     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2387     case GCCause::_g1_humongous_allocation: return true;
  2388     default:                                return false;
  2392 #ifndef PRODUCT
  2393 void G1CollectedHeap::allocate_dummy_regions() {
  2394   // Let's fill up most of the region
  2395   size_t word_size = HeapRegion::GrainWords - 1024;
  2396   // And as a result the region we'll allocate will be humongous.
  2397   guarantee(isHumongous(word_size), "sanity");
  2399   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2400     // Let's use the existing mechanism for the allocation
  2401     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2402     if (dummy_obj != NULL) {
  2403       MemRegion mr(dummy_obj, word_size);
  2404       CollectedHeap::fill_with_object(mr);
  2405     } else {
  2406       // If we can't allocate once, we probably cannot allocate
  2407       // again. Let's get out of the loop.
  2408       break;
  2412 #endif // !PRODUCT
  2414 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2415   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2416     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2417     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2418     _old_marking_cycles_started, _old_marking_cycles_completed));
  2420   _old_marking_cycles_started++;
  2423 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2424   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2426   // We assume that if concurrent == true, then the caller is a
  2427   // concurrent thread that was joined the Suspendible Thread
  2428   // Set. If there's ever a cheap way to check this, we should add an
  2429   // assert here.
  2431   // Given that this method is called at the end of a Full GC or of a
  2432   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2433   // interrupt a concurrent cycle), the number of full collections
  2434   // completed should be either one (in the case where there was no
  2435   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2436   // behind the number of full collections started.
  2438   // This is the case for the inner caller, i.e. a Full GC.
  2439   assert(concurrent ||
  2440          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2441          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2442          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2443                  "is inconsistent with _old_marking_cycles_completed = %u",
  2444                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2446   // This is the case for the outer caller, i.e. the concurrent cycle.
  2447   assert(!concurrent ||
  2448          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2449          err_msg("for outer caller (concurrent cycle): "
  2450                  "_old_marking_cycles_started = %u "
  2451                  "is inconsistent with _old_marking_cycles_completed = %u",
  2452                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2454   _old_marking_cycles_completed += 1;
  2456   // We need to clear the "in_progress" flag in the CM thread before
  2457   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2458   // is set) so that if a waiter requests another System.gc() it doesn't
  2459   // incorrectly see that a marking cyle is still in progress.
  2460   if (concurrent) {
  2461     _cmThread->clear_in_progress();
  2464   // This notify_all() will ensure that a thread that called
  2465   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2466   // and it's waiting for a full GC to finish will be woken up. It is
  2467   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2468   FullGCCount_lock->notify_all();
  2471 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2472   assert_at_safepoint(true /* should_be_vm_thread */);
  2473   GCCauseSetter gcs(this, cause);
  2474   switch (cause) {
  2475     case GCCause::_heap_inspection:
  2476     case GCCause::_heap_dump: {
  2477       HandleMark hm;
  2478       do_full_collection(false);         // don't clear all soft refs
  2479       break;
  2481     default: // XXX FIX ME
  2482       ShouldNotReachHere(); // Unexpected use of this function
  2486 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2487   assert_heap_not_locked();
  2489   unsigned int gc_count_before;
  2490   unsigned int old_marking_count_before;
  2491   bool retry_gc;
  2493   do {
  2494     retry_gc = false;
  2497       MutexLocker ml(Heap_lock);
  2499       // Read the GC count while holding the Heap_lock
  2500       gc_count_before = total_collections();
  2501       old_marking_count_before = _old_marking_cycles_started;
  2504     if (should_do_concurrent_full_gc(cause)) {
  2505       // Schedule an initial-mark evacuation pause that will start a
  2506       // concurrent cycle. We're setting word_size to 0 which means that
  2507       // we are not requesting a post-GC allocation.
  2508       VM_G1IncCollectionPause op(gc_count_before,
  2509                                  0,     /* word_size */
  2510                                  true,  /* should_initiate_conc_mark */
  2511                                  g1_policy()->max_pause_time_ms(),
  2512                                  cause);
  2514       VMThread::execute(&op);
  2515       if (!op.pause_succeeded()) {
  2516         if (old_marking_count_before == _old_marking_cycles_started) {
  2517           retry_gc = op.should_retry_gc();
  2518         } else {
  2519           // A Full GC happened while we were trying to schedule the
  2520           // initial-mark GC. No point in starting a new cycle given
  2521           // that the whole heap was collected anyway.
  2524         if (retry_gc) {
  2525           if (GC_locker::is_active_and_needs_gc()) {
  2526             GC_locker::stall_until_clear();
  2530     } else {
  2531       if (cause == GCCause::_gc_locker
  2532           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2534         // Schedule a standard evacuation pause. We're setting word_size
  2535         // to 0 which means that we are not requesting a post-GC allocation.
  2536         VM_G1IncCollectionPause op(gc_count_before,
  2537                                    0,     /* word_size */
  2538                                    false, /* should_initiate_conc_mark */
  2539                                    g1_policy()->max_pause_time_ms(),
  2540                                    cause);
  2541         VMThread::execute(&op);
  2542       } else {
  2543         // Schedule a Full GC.
  2544         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2545         VMThread::execute(&op);
  2548   } while (retry_gc);
  2551 bool G1CollectedHeap::is_in(const void* p) const {
  2552   if (_g1_committed.contains(p)) {
  2553     // Given that we know that p is in the committed space,
  2554     // heap_region_containing_raw() should successfully
  2555     // return the containing region.
  2556     HeapRegion* hr = heap_region_containing_raw(p);
  2557     return hr->is_in(p);
  2558   } else {
  2559     return _perm_gen->as_gen()->is_in(p);
  2563 // Iteration functions.
  2565 // Iterates an OopClosure over all ref-containing fields of objects
  2566 // within a HeapRegion.
  2568 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2569   MemRegion _mr;
  2570   OopClosure* _cl;
  2571 public:
  2572   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2573     : _mr(mr), _cl(cl) {}
  2574   bool doHeapRegion(HeapRegion* r) {
  2575     if (!r->continuesHumongous()) {
  2576       r->oop_iterate(_cl);
  2578     return false;
  2580 };
  2582 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2583   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2584   heap_region_iterate(&blk);
  2585   if (do_perm) {
  2586     perm_gen()->oop_iterate(cl);
  2590 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2591   IterateOopClosureRegionClosure blk(mr, cl);
  2592   heap_region_iterate(&blk);
  2593   if (do_perm) {
  2594     perm_gen()->oop_iterate(cl);
  2598 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2600 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2601   ObjectClosure* _cl;
  2602 public:
  2603   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2604   bool doHeapRegion(HeapRegion* r) {
  2605     if (! r->continuesHumongous()) {
  2606       r->object_iterate(_cl);
  2608     return false;
  2610 };
  2612 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2613   IterateObjectClosureRegionClosure blk(cl);
  2614   heap_region_iterate(&blk);
  2615   if (do_perm) {
  2616     perm_gen()->object_iterate(cl);
  2620 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2621   // FIXME: is this right?
  2622   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2625 // Calls a SpaceClosure on a HeapRegion.
  2627 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2628   SpaceClosure* _cl;
  2629 public:
  2630   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2631   bool doHeapRegion(HeapRegion* r) {
  2632     _cl->do_space(r);
  2633     return false;
  2635 };
  2637 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2638   SpaceClosureRegionClosure blk(cl);
  2639   heap_region_iterate(&blk);
  2642 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2643   _hrs.iterate(cl);
  2646 void
  2647 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2648                                                  uint worker_id,
  2649                                                  uint no_of_par_workers,
  2650                                                  jint claim_value) {
  2651   const uint regions = n_regions();
  2652   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2653                              no_of_par_workers :
  2654                              1);
  2655   assert(UseDynamicNumberOfGCThreads ||
  2656          no_of_par_workers == workers()->total_workers(),
  2657          "Non dynamic should use fixed number of workers");
  2658   // try to spread out the starting points of the workers
  2659   const HeapRegion* start_hr =
  2660                         start_region_for_worker(worker_id, no_of_par_workers);
  2661   const uint start_index = start_hr->hrs_index();
  2663   // each worker will actually look at all regions
  2664   for (uint count = 0; count < regions; ++count) {
  2665     const uint index = (start_index + count) % regions;
  2666     assert(0 <= index && index < regions, "sanity");
  2667     HeapRegion* r = region_at(index);
  2668     // we'll ignore "continues humongous" regions (we'll process them
  2669     // when we come across their corresponding "start humongous"
  2670     // region) and regions already claimed
  2671     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2672       continue;
  2674     // OK, try to claim it
  2675     if (r->claimHeapRegion(claim_value)) {
  2676       // success!
  2677       assert(!r->continuesHumongous(), "sanity");
  2678       if (r->startsHumongous()) {
  2679         // If the region is "starts humongous" we'll iterate over its
  2680         // "continues humongous" first; in fact we'll do them
  2681         // first. The order is important. In on case, calling the
  2682         // closure on the "starts humongous" region might de-allocate
  2683         // and clear all its "continues humongous" regions and, as a
  2684         // result, we might end up processing them twice. So, we'll do
  2685         // them first (notice: most closures will ignore them anyway) and
  2686         // then we'll do the "starts humongous" region.
  2687         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2688           HeapRegion* chr = region_at(ch_index);
  2690           // if the region has already been claimed or it's not
  2691           // "continues humongous" we're done
  2692           if (chr->claim_value() == claim_value ||
  2693               !chr->continuesHumongous()) {
  2694             break;
  2697           // Noone should have claimed it directly. We can given
  2698           // that we claimed its "starts humongous" region.
  2699           assert(chr->claim_value() != claim_value, "sanity");
  2700           assert(chr->humongous_start_region() == r, "sanity");
  2702           if (chr->claimHeapRegion(claim_value)) {
  2703             // we should always be able to claim it; noone else should
  2704             // be trying to claim this region
  2706             bool res2 = cl->doHeapRegion(chr);
  2707             assert(!res2, "Should not abort");
  2709             // Right now, this holds (i.e., no closure that actually
  2710             // does something with "continues humongous" regions
  2711             // clears them). We might have to weaken it in the future,
  2712             // but let's leave these two asserts here for extra safety.
  2713             assert(chr->continuesHumongous(), "should still be the case");
  2714             assert(chr->humongous_start_region() == r, "sanity");
  2715           } else {
  2716             guarantee(false, "we should not reach here");
  2721       assert(!r->continuesHumongous(), "sanity");
  2722       bool res = cl->doHeapRegion(r);
  2723       assert(!res, "Should not abort");
  2728 class ResetClaimValuesClosure: public HeapRegionClosure {
  2729 public:
  2730   bool doHeapRegion(HeapRegion* r) {
  2731     r->set_claim_value(HeapRegion::InitialClaimValue);
  2732     return false;
  2734 };
  2736 void G1CollectedHeap::reset_heap_region_claim_values() {
  2737   ResetClaimValuesClosure blk;
  2738   heap_region_iterate(&blk);
  2741 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2742   ResetClaimValuesClosure blk;
  2743   collection_set_iterate(&blk);
  2746 #ifdef ASSERT
  2747 // This checks whether all regions in the heap have the correct claim
  2748 // value. I also piggy-backed on this a check to ensure that the
  2749 // humongous_start_region() information on "continues humongous"
  2750 // regions is correct.
  2752 class CheckClaimValuesClosure : public HeapRegionClosure {
  2753 private:
  2754   jint _claim_value;
  2755   uint _failures;
  2756   HeapRegion* _sh_region;
  2758 public:
  2759   CheckClaimValuesClosure(jint claim_value) :
  2760     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2761   bool doHeapRegion(HeapRegion* r) {
  2762     if (r->claim_value() != _claim_value) {
  2763       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2764                              "claim value = %d, should be %d",
  2765                              HR_FORMAT_PARAMS(r),
  2766                              r->claim_value(), _claim_value);
  2767       ++_failures;
  2769     if (!r->isHumongous()) {
  2770       _sh_region = NULL;
  2771     } else if (r->startsHumongous()) {
  2772       _sh_region = r;
  2773     } else if (r->continuesHumongous()) {
  2774       if (r->humongous_start_region() != _sh_region) {
  2775         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2776                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2777                                HR_FORMAT_PARAMS(r),
  2778                                r->humongous_start_region(),
  2779                                _sh_region);
  2780         ++_failures;
  2783     return false;
  2785   uint failures() { return _failures; }
  2786 };
  2788 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2789   CheckClaimValuesClosure cl(claim_value);
  2790   heap_region_iterate(&cl);
  2791   return cl.failures() == 0;
  2794 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2795 private:
  2796   jint _claim_value;
  2797   uint _failures;
  2799 public:
  2800   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2801     _claim_value(claim_value), _failures(0) { }
  2803   uint failures() { return _failures; }
  2805   bool doHeapRegion(HeapRegion* hr) {
  2806     assert(hr->in_collection_set(), "how?");
  2807     assert(!hr->isHumongous(), "H-region in CSet");
  2808     if (hr->claim_value() != _claim_value) {
  2809       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2810                              "claim value = %d, should be %d",
  2811                              HR_FORMAT_PARAMS(hr),
  2812                              hr->claim_value(), _claim_value);
  2813       _failures += 1;
  2815     return false;
  2817 };
  2819 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2820   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2821   collection_set_iterate(&cl);
  2822   return cl.failures() == 0;
  2824 #endif // ASSERT
  2826 // Clear the cached CSet starting regions and (more importantly)
  2827 // the time stamps. Called when we reset the GC time stamp.
  2828 void G1CollectedHeap::clear_cset_start_regions() {
  2829   assert(_worker_cset_start_region != NULL, "sanity");
  2830   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2832   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2833   for (int i = 0; i < n_queues; i++) {
  2834     _worker_cset_start_region[i] = NULL;
  2835     _worker_cset_start_region_time_stamp[i] = 0;
  2839 // Given the id of a worker, obtain or calculate a suitable
  2840 // starting region for iterating over the current collection set.
  2841 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
  2842   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2844   HeapRegion* result = NULL;
  2845   unsigned gc_time_stamp = get_gc_time_stamp();
  2847   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2848     // Cached starting region for current worker was set
  2849     // during the current pause - so it's valid.
  2850     // Note: the cached starting heap region may be NULL
  2851     // (when the collection set is empty).
  2852     result = _worker_cset_start_region[worker_i];
  2853     assert(result == NULL || result->in_collection_set(), "sanity");
  2854     return result;
  2857   // The cached entry was not valid so let's calculate
  2858   // a suitable starting heap region for this worker.
  2860   // We want the parallel threads to start their collection
  2861   // set iteration at different collection set regions to
  2862   // avoid contention.
  2863   // If we have:
  2864   //          n collection set regions
  2865   //          p threads
  2866   // Then thread t will start at region floor ((t * n) / p)
  2868   result = g1_policy()->collection_set();
  2869   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2870     uint cs_size = g1_policy()->cset_region_length();
  2871     uint active_workers = workers()->active_workers();
  2872     assert(UseDynamicNumberOfGCThreads ||
  2873              active_workers == workers()->total_workers(),
  2874              "Unless dynamic should use total workers");
  2876     uint end_ind   = (cs_size * worker_i) / active_workers;
  2877     uint start_ind = 0;
  2879     if (worker_i > 0 &&
  2880         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2881       // Previous workers starting region is valid
  2882       // so let's iterate from there
  2883       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2884       result = _worker_cset_start_region[worker_i - 1];
  2887     for (uint i = start_ind; i < end_ind; i++) {
  2888       result = result->next_in_collection_set();
  2892   // Note: the calculated starting heap region may be NULL
  2893   // (when the collection set is empty).
  2894   assert(result == NULL || result->in_collection_set(), "sanity");
  2895   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2896          "should be updated only once per pause");
  2897   _worker_cset_start_region[worker_i] = result;
  2898   OrderAccess::storestore();
  2899   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2900   return result;
  2903 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2904                                                      uint no_of_par_workers) {
  2905   uint worker_num =
  2906            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2907   assert(UseDynamicNumberOfGCThreads ||
  2908          no_of_par_workers == workers()->total_workers(),
  2909          "Non dynamic should use fixed number of workers");
  2910   const uint start_index = n_regions() * worker_i / worker_num;
  2911   return region_at(start_index);
  2914 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2915   HeapRegion* r = g1_policy()->collection_set();
  2916   while (r != NULL) {
  2917     HeapRegion* next = r->next_in_collection_set();
  2918     if (cl->doHeapRegion(r)) {
  2919       cl->incomplete();
  2920       return;
  2922     r = next;
  2926 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2927                                                   HeapRegionClosure *cl) {
  2928   if (r == NULL) {
  2929     // The CSet is empty so there's nothing to do.
  2930     return;
  2933   assert(r->in_collection_set(),
  2934          "Start region must be a member of the collection set.");
  2935   HeapRegion* cur = r;
  2936   while (cur != NULL) {
  2937     HeapRegion* next = cur->next_in_collection_set();
  2938     if (cl->doHeapRegion(cur) && false) {
  2939       cl->incomplete();
  2940       return;
  2942     cur = next;
  2944   cur = g1_policy()->collection_set();
  2945   while (cur != r) {
  2946     HeapRegion* next = cur->next_in_collection_set();
  2947     if (cl->doHeapRegion(cur) && false) {
  2948       cl->incomplete();
  2949       return;
  2951     cur = next;
  2955 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2956   return n_regions() > 0 ? region_at(0) : NULL;
  2960 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2961   Space* res = heap_region_containing(addr);
  2962   if (res == NULL)
  2963     res = perm_gen()->space_containing(addr);
  2964   return res;
  2967 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2968   Space* sp = space_containing(addr);
  2969   if (sp != NULL) {
  2970     return sp->block_start(addr);
  2972   return NULL;
  2975 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2976   Space* sp = space_containing(addr);
  2977   assert(sp != NULL, "block_size of address outside of heap");
  2978   return sp->block_size(addr);
  2981 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2982   Space* sp = space_containing(addr);
  2983   return sp->block_is_obj(addr);
  2986 bool G1CollectedHeap::supports_tlab_allocation() const {
  2987   return true;
  2990 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2991   return HeapRegion::GrainBytes;
  2994 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2995   // Return the remaining space in the cur alloc region, but not less than
  2996   // the min TLAB size.
  2998   // Also, this value can be at most the humongous object threshold,
  2999   // since we can't allow tlabs to grow big enough to accomodate
  3000   // humongous objects.
  3002   HeapRegion* hr = _mutator_alloc_region.get();
  3003   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  3004   if (hr == NULL) {
  3005     return max_tlab_size;
  3006   } else {
  3007     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
  3011 size_t G1CollectedHeap::max_capacity() const {
  3012   return _g1_reserved.byte_size();
  3015 jlong G1CollectedHeap::millis_since_last_gc() {
  3016   // assert(false, "NYI");
  3017   return 0;
  3020 void G1CollectedHeap::prepare_for_verify() {
  3021   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3022     ensure_parsability(false);
  3024   g1_rem_set()->prepare_for_verify();
  3027 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3028                                               VerifyOption vo) {
  3029   switch (vo) {
  3030   case VerifyOption_G1UsePrevMarking:
  3031     return hr->obj_allocated_since_prev_marking(obj);
  3032   case VerifyOption_G1UseNextMarking:
  3033     return hr->obj_allocated_since_next_marking(obj);
  3034   case VerifyOption_G1UseMarkWord:
  3035     return false;
  3036   default:
  3037     ShouldNotReachHere();
  3039   return false; // keep some compilers happy
  3042 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3043   switch (vo) {
  3044   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3045   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3046   case VerifyOption_G1UseMarkWord:    return NULL;
  3047   default:                            ShouldNotReachHere();
  3049   return NULL; // keep some compilers happy
  3052 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3053   switch (vo) {
  3054   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3055   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3056   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3057   default:                            ShouldNotReachHere();
  3059   return false; // keep some compilers happy
  3062 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3063   switch (vo) {
  3064   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3065   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3066   case VerifyOption_G1UseMarkWord:    return "NONE";
  3067   default:                            ShouldNotReachHere();
  3069   return NULL; // keep some compilers happy
  3072 class VerifyLivenessOopClosure: public OopClosure {
  3073   G1CollectedHeap* _g1h;
  3074   VerifyOption _vo;
  3075 public:
  3076   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3077     _g1h(g1h), _vo(vo)
  3078   { }
  3079   void do_oop(narrowOop *p) { do_oop_work(p); }
  3080   void do_oop(      oop *p) { do_oop_work(p); }
  3082   template <class T> void do_oop_work(T *p) {
  3083     oop obj = oopDesc::load_decode_heap_oop(p);
  3084     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3085               "Dead object referenced by a not dead object");
  3087 };
  3089 class VerifyObjsInRegionClosure: public ObjectClosure {
  3090 private:
  3091   G1CollectedHeap* _g1h;
  3092   size_t _live_bytes;
  3093   HeapRegion *_hr;
  3094   VerifyOption _vo;
  3095 public:
  3096   // _vo == UsePrevMarking -> use "prev" marking information,
  3097   // _vo == UseNextMarking -> use "next" marking information,
  3098   // _vo == UseMarkWord    -> use mark word from object header.
  3099   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3100     : _live_bytes(0), _hr(hr), _vo(vo) {
  3101     _g1h = G1CollectedHeap::heap();
  3103   void do_object(oop o) {
  3104     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3105     assert(o != NULL, "Huh?");
  3106     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3107       // If the object is alive according to the mark word,
  3108       // then verify that the marking information agrees.
  3109       // Note we can't verify the contra-positive of the
  3110       // above: if the object is dead (according to the mark
  3111       // word), it may not be marked, or may have been marked
  3112       // but has since became dead, or may have been allocated
  3113       // since the last marking.
  3114       if (_vo == VerifyOption_G1UseMarkWord) {
  3115         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3118       o->oop_iterate(&isLive);
  3119       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3120         size_t obj_size = o->size();    // Make sure we don't overflow
  3121         _live_bytes += (obj_size * HeapWordSize);
  3125   size_t live_bytes() { return _live_bytes; }
  3126 };
  3128 class PrintObjsInRegionClosure : public ObjectClosure {
  3129   HeapRegion *_hr;
  3130   G1CollectedHeap *_g1;
  3131 public:
  3132   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3133     _g1 = G1CollectedHeap::heap();
  3134   };
  3136   void do_object(oop o) {
  3137     if (o != NULL) {
  3138       HeapWord *start = (HeapWord *) o;
  3139       size_t word_sz = o->size();
  3140       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3141                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3142                           (void*) o, word_sz,
  3143                           _g1->isMarkedPrev(o),
  3144                           _g1->isMarkedNext(o),
  3145                           _hr->obj_allocated_since_prev_marking(o));
  3146       HeapWord *end = start + word_sz;
  3147       HeapWord *cur;
  3148       int *val;
  3149       for (cur = start; cur < end; cur++) {
  3150         val = (int *) cur;
  3151         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3155 };
  3157 class VerifyRegionClosure: public HeapRegionClosure {
  3158 private:
  3159   bool             _par;
  3160   VerifyOption     _vo;
  3161   bool             _failures;
  3162 public:
  3163   // _vo == UsePrevMarking -> use "prev" marking information,
  3164   // _vo == UseNextMarking -> use "next" marking information,
  3165   // _vo == UseMarkWord    -> use mark word from object header.
  3166   VerifyRegionClosure(bool par, VerifyOption vo)
  3167     : _par(par),
  3168       _vo(vo),
  3169       _failures(false) {}
  3171   bool failures() {
  3172     return _failures;
  3175   bool doHeapRegion(HeapRegion* r) {
  3176     if (!r->continuesHumongous()) {
  3177       bool failures = false;
  3178       r->verify(_vo, &failures);
  3179       if (failures) {
  3180         _failures = true;
  3181       } else {
  3182         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3183         r->object_iterate(&not_dead_yet_cl);
  3184         if (_vo != VerifyOption_G1UseNextMarking) {
  3185           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3186             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3187                                    "max_live_bytes "SIZE_FORMAT" "
  3188                                    "< calculated "SIZE_FORMAT,
  3189                                    r->bottom(), r->end(),
  3190                                    r->max_live_bytes(),
  3191                                  not_dead_yet_cl.live_bytes());
  3192             _failures = true;
  3194         } else {
  3195           // When vo == UseNextMarking we cannot currently do a sanity
  3196           // check on the live bytes as the calculation has not been
  3197           // finalized yet.
  3201     return false; // stop the region iteration if we hit a failure
  3203 };
  3205 class VerifyRootsClosure: public OopsInGenClosure {
  3206 private:
  3207   G1CollectedHeap* _g1h;
  3208   VerifyOption     _vo;
  3209   bool             _failures;
  3210 public:
  3211   // _vo == UsePrevMarking -> use "prev" marking information,
  3212   // _vo == UseNextMarking -> use "next" marking information,
  3213   // _vo == UseMarkWord    -> use mark word from object header.
  3214   VerifyRootsClosure(VerifyOption vo) :
  3215     _g1h(G1CollectedHeap::heap()),
  3216     _vo(vo),
  3217     _failures(false) { }
  3219   bool failures() { return _failures; }
  3221   template <class T> void do_oop_nv(T* p) {
  3222     T heap_oop = oopDesc::load_heap_oop(p);
  3223     if (!oopDesc::is_null(heap_oop)) {
  3224       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3225       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3226         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3227                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3228         if (_vo == VerifyOption_G1UseMarkWord) {
  3229           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3231         obj->print_on(gclog_or_tty);
  3232         _failures = true;
  3237   void do_oop(oop* p)       { do_oop_nv(p); }
  3238   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3239 };
  3241 // This is the task used for parallel heap verification.
  3243 class G1ParVerifyTask: public AbstractGangTask {
  3244 private:
  3245   G1CollectedHeap* _g1h;
  3246   VerifyOption     _vo;
  3247   bool             _failures;
  3249 public:
  3250   // _vo == UsePrevMarking -> use "prev" marking information,
  3251   // _vo == UseNextMarking -> use "next" marking information,
  3252   // _vo == UseMarkWord    -> use mark word from object header.
  3253   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3254     AbstractGangTask("Parallel verify task"),
  3255     _g1h(g1h),
  3256     _vo(vo),
  3257     _failures(false) { }
  3259   bool failures() {
  3260     return _failures;
  3263   void work(uint worker_id) {
  3264     HandleMark hm;
  3265     VerifyRegionClosure blk(true, _vo);
  3266     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3267                                           _g1h->workers()->active_workers(),
  3268                                           HeapRegion::ParVerifyClaimValue);
  3269     if (blk.failures()) {
  3270       _failures = true;
  3273 };
  3275 void G1CollectedHeap::verify(bool silent) {
  3276   verify(silent, VerifyOption_G1UsePrevMarking);
  3279 void G1CollectedHeap::verify(bool silent,
  3280                              VerifyOption vo) {
  3281   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3282     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
  3283     VerifyRootsClosure rootsCl(vo);
  3285     assert(Thread::current()->is_VM_thread(),
  3286       "Expected to be executed serially by the VM thread at this point");
  3288     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  3290     // We apply the relevant closures to all the oops in the
  3291     // system dictionary, the string table and the code cache.
  3292     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3294     process_strong_roots(true,      // activate StrongRootsScope
  3295                          true,      // we set "collecting perm gen" to true,
  3296                                     // so we don't reset the dirty cards in the perm gen.
  3297                          ScanningOption(so),  // roots scanning options
  3298                          &rootsCl,
  3299                          &blobsCl,
  3300                          &rootsCl);
  3302     // If we're verifying after the marking phase of a Full GC then we can't
  3303     // treat the perm gen as roots into the G1 heap. Some of the objects in
  3304     // the perm gen may be dead and hence not marked. If one of these dead
  3305     // objects is considered to be a root then we may end up with a false
  3306     // "Root location <x> points to dead ob <y>" failure.
  3307     if (vo != VerifyOption_G1UseMarkWord) {
  3308       // Since we used "collecting_perm_gen" == true above, we will not have
  3309       // checked the refs from perm into the G1-collected heap. We check those
  3310       // references explicitly below. Whether the relevant cards are dirty
  3311       // is checked further below in the rem set verification.
  3312       if (!silent) { gclog_or_tty->print("Permgen roots "); }
  3313       perm_gen()->oop_iterate(&rootsCl);
  3315     bool failures = rootsCl.failures();
  3317     if (vo != VerifyOption_G1UseMarkWord) {
  3318       // If we're verifying during a full GC then the region sets
  3319       // will have been torn down at the start of the GC. Therefore
  3320       // verifying the region sets will fail. So we only verify
  3321       // the region sets when not in a full GC.
  3322       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3323       verify_region_sets();
  3326     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3327     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3328       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3329              "sanity check");
  3331       G1ParVerifyTask task(this, vo);
  3332       assert(UseDynamicNumberOfGCThreads ||
  3333         workers()->active_workers() == workers()->total_workers(),
  3334         "If not dynamic should be using all the workers");
  3335       int n_workers = workers()->active_workers();
  3336       set_par_threads(n_workers);
  3337       workers()->run_task(&task);
  3338       set_par_threads(0);
  3339       if (task.failures()) {
  3340         failures = true;
  3343       // Checks that the expected amount of parallel work was done.
  3344       // The implication is that n_workers is > 0.
  3345       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3346              "sanity check");
  3348       reset_heap_region_claim_values();
  3350       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3351              "sanity check");
  3352     } else {
  3353       VerifyRegionClosure blk(false, vo);
  3354       heap_region_iterate(&blk);
  3355       if (blk.failures()) {
  3356         failures = true;
  3359     if (!silent) gclog_or_tty->print("RemSet ");
  3360     rem_set()->verify();
  3362     if (failures) {
  3363       gclog_or_tty->print_cr("Heap:");
  3364       // It helps to have the per-region information in the output to
  3365       // help us track down what went wrong. This is why we call
  3366       // print_extended_on() instead of print_on().
  3367       print_extended_on(gclog_or_tty);
  3368       gclog_or_tty->print_cr("");
  3369 #ifndef PRODUCT
  3370       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3371         concurrent_mark()->print_reachable("at-verification-failure",
  3372                                            vo, false /* all */);
  3374 #endif
  3375       gclog_or_tty->flush();
  3377     guarantee(!failures, "there should not have been any failures");
  3378   } else {
  3379     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3383 class PrintRegionClosure: public HeapRegionClosure {
  3384   outputStream* _st;
  3385 public:
  3386   PrintRegionClosure(outputStream* st) : _st(st) {}
  3387   bool doHeapRegion(HeapRegion* r) {
  3388     r->print_on(_st);
  3389     return false;
  3391 };
  3393 void G1CollectedHeap::print_on(outputStream* st) const {
  3394   st->print(" %-20s", "garbage-first heap");
  3395   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3396             capacity()/K, used_unlocked()/K);
  3397   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3398             _g1_storage.low_boundary(),
  3399             _g1_storage.high(),
  3400             _g1_storage.high_boundary());
  3401   st->cr();
  3402   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3403   uint young_regions = _young_list->length();
  3404   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3405             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3406   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3407   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3408             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3409   st->cr();
  3410   perm()->as_gen()->print_on(st);
  3413 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3414   print_on(st);
  3416   // Print the per-region information.
  3417   st->cr();
  3418   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3419                "HS=humongous(starts), HC=humongous(continues), "
  3420                "CS=collection set, F=free, TS=gc time stamp, "
  3421                "PTAMS=previous top-at-mark-start, "
  3422                "NTAMS=next top-at-mark-start)");
  3423   PrintRegionClosure blk(st);
  3424   heap_region_iterate(&blk);
  3427 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3428   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3429     workers()->print_worker_threads_on(st);
  3431   _cmThread->print_on(st);
  3432   st->cr();
  3433   _cm->print_worker_threads_on(st);
  3434   _cg1r->print_worker_threads_on(st);
  3435   st->cr();
  3438 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3439   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3440     workers()->threads_do(tc);
  3442   tc->do_thread(_cmThread);
  3443   _cg1r->threads_do(tc);
  3446 void G1CollectedHeap::print_tracing_info() const {
  3447   // We'll overload this to mean "trace GC pause statistics."
  3448   if (TraceGen0Time || TraceGen1Time) {
  3449     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3450     // to that.
  3451     g1_policy()->print_tracing_info();
  3453   if (G1SummarizeRSetStats) {
  3454     g1_rem_set()->print_summary_info();
  3456   if (G1SummarizeConcMark) {
  3457     concurrent_mark()->print_summary_info();
  3459   g1_policy()->print_yg_surv_rate_info();
  3460   SpecializationStats::print();
  3463 #ifndef PRODUCT
  3464 // Helpful for debugging RSet issues.
  3466 class PrintRSetsClosure : public HeapRegionClosure {
  3467 private:
  3468   const char* _msg;
  3469   size_t _occupied_sum;
  3471 public:
  3472   bool doHeapRegion(HeapRegion* r) {
  3473     HeapRegionRemSet* hrrs = r->rem_set();
  3474     size_t occupied = hrrs->occupied();
  3475     _occupied_sum += occupied;
  3477     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3478                            HR_FORMAT_PARAMS(r));
  3479     if (occupied == 0) {
  3480       gclog_or_tty->print_cr("  RSet is empty");
  3481     } else {
  3482       hrrs->print();
  3484     gclog_or_tty->print_cr("----------");
  3485     return false;
  3488   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3489     gclog_or_tty->cr();
  3490     gclog_or_tty->print_cr("========================================");
  3491     gclog_or_tty->print_cr(msg);
  3492     gclog_or_tty->cr();
  3495   ~PrintRSetsClosure() {
  3496     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3497     gclog_or_tty->print_cr("========================================");
  3498     gclog_or_tty->cr();
  3500 };
  3502 void G1CollectedHeap::print_cset_rsets() {
  3503   PrintRSetsClosure cl("Printing CSet RSets");
  3504   collection_set_iterate(&cl);
  3507 void G1CollectedHeap::print_all_rsets() {
  3508   PrintRSetsClosure cl("Printing All RSets");;
  3509   heap_region_iterate(&cl);
  3511 #endif // PRODUCT
  3513 G1CollectedHeap* G1CollectedHeap::heap() {
  3514   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3515          "not a garbage-first heap");
  3516   return _g1h;
  3519 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3520   // always_do_update_barrier = false;
  3521   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3522   // Call allocation profiler
  3523   AllocationProfiler::iterate_since_last_gc();
  3524   // Fill TLAB's and such
  3525   ensure_parsability(true);
  3528 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3529   // FIXME: what is this about?
  3530   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3531   // is set.
  3532   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3533                         "derived pointer present"));
  3534   // always_do_update_barrier = true;
  3536   // We have just completed a GC. Update the soft reference
  3537   // policy with the new heap occupancy
  3538   Universe::update_heap_info_at_gc();
  3541 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3542                                                unsigned int gc_count_before,
  3543                                                bool* succeeded) {
  3544   assert_heap_not_locked_and_not_at_safepoint();
  3545   g1_policy()->record_stop_world_start();
  3546   VM_G1IncCollectionPause op(gc_count_before,
  3547                              word_size,
  3548                              false, /* should_initiate_conc_mark */
  3549                              g1_policy()->max_pause_time_ms(),
  3550                              GCCause::_g1_inc_collection_pause);
  3551   VMThread::execute(&op);
  3553   HeapWord* result = op.result();
  3554   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3555   assert(result == NULL || ret_succeeded,
  3556          "the result should be NULL if the VM did not succeed");
  3557   *succeeded = ret_succeeded;
  3559   assert_heap_not_locked();
  3560   return result;
  3563 void
  3564 G1CollectedHeap::doConcurrentMark() {
  3565   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3566   if (!_cmThread->in_progress()) {
  3567     _cmThread->set_started();
  3568     CGC_lock->notify();
  3572 size_t G1CollectedHeap::pending_card_num() {
  3573   size_t extra_cards = 0;
  3574   JavaThread *curr = Threads::first();
  3575   while (curr != NULL) {
  3576     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3577     extra_cards += dcq.size();
  3578     curr = curr->next();
  3580   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3581   size_t buffer_size = dcqs.buffer_size();
  3582   size_t buffer_num = dcqs.completed_buffers_num();
  3583   return buffer_size * buffer_num + extra_cards;
  3586 size_t G1CollectedHeap::max_pending_card_num() {
  3587   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3588   size_t buffer_size = dcqs.buffer_size();
  3589   size_t buffer_num  = dcqs.completed_buffers_num();
  3590   int thread_num  = Threads::number_of_threads();
  3591   return (buffer_num + thread_num) * buffer_size;
  3594 size_t G1CollectedHeap::cards_scanned() {
  3595   return g1_rem_set()->cardsScanned();
  3598 void
  3599 G1CollectedHeap::setup_surviving_young_words() {
  3600   assert(_surviving_young_words == NULL, "pre-condition");
  3601   uint array_length = g1_policy()->young_cset_region_length();
  3602   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3603   if (_surviving_young_words == NULL) {
  3604     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3605                           "Not enough space for young surv words summary.");
  3607   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3608 #ifdef ASSERT
  3609   for (uint i = 0;  i < array_length; ++i) {
  3610     assert( _surviving_young_words[i] == 0, "memset above" );
  3612 #endif // !ASSERT
  3615 void
  3616 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3617   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3618   uint array_length = g1_policy()->young_cset_region_length();
  3619   for (uint i = 0; i < array_length; ++i) {
  3620     _surviving_young_words[i] += surv_young_words[i];
  3624 void
  3625 G1CollectedHeap::cleanup_surviving_young_words() {
  3626   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3627   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3628   _surviving_young_words = NULL;
  3631 #ifdef ASSERT
  3632 class VerifyCSetClosure: public HeapRegionClosure {
  3633 public:
  3634   bool doHeapRegion(HeapRegion* hr) {
  3635     // Here we check that the CSet region's RSet is ready for parallel
  3636     // iteration. The fields that we'll verify are only manipulated
  3637     // when the region is part of a CSet and is collected. Afterwards,
  3638     // we reset these fields when we clear the region's RSet (when the
  3639     // region is freed) so they are ready when the region is
  3640     // re-allocated. The only exception to this is if there's an
  3641     // evacuation failure and instead of freeing the region we leave
  3642     // it in the heap. In that case, we reset these fields during
  3643     // evacuation failure handling.
  3644     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3646     // Here's a good place to add any other checks we'd like to
  3647     // perform on CSet regions.
  3648     return false;
  3650 };
  3651 #endif // ASSERT
  3653 #if TASKQUEUE_STATS
  3654 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3655   st->print_raw_cr("GC Task Stats");
  3656   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3657   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3660 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3661   print_taskqueue_stats_hdr(st);
  3663   TaskQueueStats totals;
  3664   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3665   for (int i = 0; i < n; ++i) {
  3666     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3667     totals += task_queue(i)->stats;
  3669   st->print_raw("tot "); totals.print(st); st->cr();
  3671   DEBUG_ONLY(totals.verify());
  3674 void G1CollectedHeap::reset_taskqueue_stats() {
  3675   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3676   for (int i = 0; i < n; ++i) {
  3677     task_queue(i)->stats.reset();
  3680 #endif // TASKQUEUE_STATS
  3682 bool
  3683 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3684   assert_at_safepoint(true /* should_be_vm_thread */);
  3685   guarantee(!is_gc_active(), "collection is not reentrant");
  3687   if (GC_locker::check_active_before_gc()) {
  3688     return false;
  3691   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3692   ResourceMark rm;
  3694   print_heap_before_gc();
  3696   HRSPhaseSetter x(HRSPhaseEvacuation);
  3697   verify_region_sets_optional();
  3698   verify_dirty_young_regions();
  3700   // This call will decide whether this pause is an initial-mark
  3701   // pause. If it is, during_initial_mark_pause() will return true
  3702   // for the duration of this pause.
  3703   g1_policy()->decide_on_conc_mark_initiation();
  3705   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3706   assert(!g1_policy()->during_initial_mark_pause() ||
  3707           g1_policy()->gcs_are_young(), "sanity");
  3709   // We also do not allow mixed GCs during marking.
  3710   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3712   // Record whether this pause is an initial mark. When the current
  3713   // thread has completed its logging output and it's safe to signal
  3714   // the CM thread, the flag's value in the policy has been reset.
  3715   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3717   // Inner scope for scope based logging, timers, and stats collection
  3719     if (g1_policy()->during_initial_mark_pause()) {
  3720       // We are about to start a marking cycle, so we increment the
  3721       // full collection counter.
  3722       increment_old_marking_cycles_started();
  3724     // if the log level is "finer" is on, we'll print long statistics information
  3725     // in the collector policy code, so let's not print this as the output
  3726     // is messy if we do.
  3727     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  3728     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3730     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3731                                 workers()->active_workers() : 1);
  3732     g1_policy()->phase_times()->note_gc_start(os::elapsedTime(), active_workers,
  3733       g1_policy()->gcs_are_young(), g1_policy()->during_initial_mark_pause(), gc_cause());
  3735     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3736     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3738     // If the secondary_free_list is not empty, append it to the
  3739     // free_list. No need to wait for the cleanup operation to finish;
  3740     // the region allocation code will check the secondary_free_list
  3741     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3742     // set, skip this step so that the region allocation code has to
  3743     // get entries from the secondary_free_list.
  3744     if (!G1StressConcRegionFreeing) {
  3745       append_secondary_free_list_if_not_empty_with_lock();
  3748     assert(check_young_list_well_formed(),
  3749       "young list should be well formed");
  3751     // Don't dynamically change the number of GC threads this early.  A value of
  3752     // 0 is used to indicate serial work.  When parallel work is done,
  3753     // it will be set.
  3755     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3756       IsGCActiveMark x;
  3758       gc_prologue(false);
  3759       increment_total_collections(false /* full gc */);
  3760       increment_gc_time_stamp();
  3762       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3763         HandleMark hm;  // Discard invalid handles created during verification
  3764         gclog_or_tty->print(" VerifyBeforeGC:");
  3765         prepare_for_verify();
  3766         Universe::verify(/* silent      */ false,
  3767                          /* option      */ VerifyOption_G1UsePrevMarking);
  3770       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3772       // Please see comment in g1CollectedHeap.hpp and
  3773       // G1CollectedHeap::ref_processing_init() to see how
  3774       // reference processing currently works in G1.
  3776       // Enable discovery in the STW reference processor
  3777       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  3778                                             true /*verify_no_refs*/);
  3781         // We want to temporarily turn off discovery by the
  3782         // CM ref processor, if necessary, and turn it back on
  3783         // on again later if we do. Using a scoped
  3784         // NoRefDiscovery object will do this.
  3785         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  3787         // Forget the current alloc region (we might even choose it to be part
  3788         // of the collection set!).
  3789         release_mutator_alloc_region();
  3791         // We should call this after we retire the mutator alloc
  3792         // region(s) so that all the ALLOC / RETIRE events are generated
  3793         // before the start GC event.
  3794         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  3796         // This timing is only used by the ergonomics to handle our pause target.
  3797         // It is unclear why this should not include the full pause. We will
  3798         // investigate this in CR 7178365.
  3799         //
  3800         // Preserving the old comment here if that helps the investigation:
  3801         //
  3802         // The elapsed time induced by the start time below deliberately elides
  3803         // the possible verification above.
  3804         double sample_start_time_sec = os::elapsedTime();
  3805         size_t start_used_bytes = used();
  3807 #if YOUNG_LIST_VERBOSE
  3808         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3809         _young_list->print();
  3810         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3811 #endif // YOUNG_LIST_VERBOSE
  3813         g1_policy()->record_collection_pause_start(sample_start_time_sec,
  3814                                                    start_used_bytes);
  3816         double scan_wait_start = os::elapsedTime();
  3817         // We have to wait until the CM threads finish scanning the
  3818         // root regions as it's the only way to ensure that all the
  3819         // objects on them have been correctly scanned before we start
  3820         // moving them during the GC.
  3821         bool waited = _cm->root_regions()->wait_until_scan_finished();
  3822         double wait_time_ms = 0.0;
  3823         if (waited) {
  3824           double scan_wait_end = os::elapsedTime();
  3825           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  3827         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  3829 #if YOUNG_LIST_VERBOSE
  3830         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3831         _young_list->print();
  3832 #endif // YOUNG_LIST_VERBOSE
  3834         if (g1_policy()->during_initial_mark_pause()) {
  3835           concurrent_mark()->checkpointRootsInitialPre();
  3837         perm_gen()->save_marks();
  3839 #if YOUNG_LIST_VERBOSE
  3840         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3841         _young_list->print();
  3842         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3843 #endif // YOUNG_LIST_VERBOSE
  3845         g1_policy()->finalize_cset(target_pause_time_ms);
  3847         _cm->note_start_of_gc();
  3848         // We should not verify the per-thread SATB buffers given that
  3849         // we have not filtered them yet (we'll do so during the
  3850         // GC). We also call this after finalize_cset() to
  3851         // ensure that the CSet has been finalized.
  3852         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3853                                  true  /* verify_enqueued_buffers */,
  3854                                  false /* verify_thread_buffers */,
  3855                                  true  /* verify_fingers */);
  3857         if (_hr_printer.is_active()) {
  3858           HeapRegion* hr = g1_policy()->collection_set();
  3859           while (hr != NULL) {
  3860             G1HRPrinter::RegionType type;
  3861             if (!hr->is_young()) {
  3862               type = G1HRPrinter::Old;
  3863             } else if (hr->is_survivor()) {
  3864               type = G1HRPrinter::Survivor;
  3865             } else {
  3866               type = G1HRPrinter::Eden;
  3868             _hr_printer.cset(hr);
  3869             hr = hr->next_in_collection_set();
  3873 #ifdef ASSERT
  3874         VerifyCSetClosure cl;
  3875         collection_set_iterate(&cl);
  3876 #endif // ASSERT
  3878         setup_surviving_young_words();
  3880         // Initialize the GC alloc regions.
  3881         init_gc_alloc_regions();
  3883         // Actually do the work...
  3884         evacuate_collection_set();
  3886         // We do this to mainly verify the per-thread SATB buffers
  3887         // (which have been filtered by now) since we didn't verify
  3888         // them earlier. No point in re-checking the stacks / enqueued
  3889         // buffers given that the CSet has not changed since last time
  3890         // we checked.
  3891         _cm->verify_no_cset_oops(false /* verify_stacks */,
  3892                                  false /* verify_enqueued_buffers */,
  3893                                  true  /* verify_thread_buffers */,
  3894                                  true  /* verify_fingers */);
  3896         free_collection_set(g1_policy()->collection_set());
  3897         g1_policy()->clear_collection_set();
  3899         cleanup_surviving_young_words();
  3901         // Start a new incremental collection set for the next pause.
  3902         g1_policy()->start_incremental_cset_building();
  3904         // Clear the _cset_fast_test bitmap in anticipation of adding
  3905         // regions to the incremental collection set for the next
  3906         // evacuation pause.
  3907         clear_cset_fast_test();
  3909         _young_list->reset_sampled_info();
  3911         // Don't check the whole heap at this point as the
  3912         // GC alloc regions from this pause have been tagged
  3913         // as survivors and moved on to the survivor list.
  3914         // Survivor regions will fail the !is_young() check.
  3915         assert(check_young_list_empty(false /* check_heap */),
  3916           "young list should be empty");
  3918 #if YOUNG_LIST_VERBOSE
  3919         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3920         _young_list->print();
  3921 #endif // YOUNG_LIST_VERBOSE
  3923         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3924                                             _young_list->first_survivor_region(),
  3925                                             _young_list->last_survivor_region());
  3927         _young_list->reset_auxilary_lists();
  3929         if (evacuation_failed()) {
  3930           _summary_bytes_used = recalculate_used();
  3931         } else {
  3932           // The "used" of the the collection set have already been subtracted
  3933           // when they were freed.  Add in the bytes evacuated.
  3934           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  3937         if (g1_policy()->during_initial_mark_pause()) {
  3938           // We have to do this before we notify the CM threads that
  3939           // they can start working to make sure that all the
  3940           // appropriate initialization is done on the CM object.
  3941           concurrent_mark()->checkpointRootsInitialPost();
  3942           set_marking_started();
  3943           // Note that we don't actually trigger the CM thread at
  3944           // this point. We do that later when we're sure that
  3945           // the current thread has completed its logging output.
  3948         allocate_dummy_regions();
  3950 #if YOUNG_LIST_VERBOSE
  3951         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3952         _young_list->print();
  3953         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3954 #endif // YOUNG_LIST_VERBOSE
  3956         init_mutator_alloc_region();
  3959           size_t expand_bytes = g1_policy()->expansion_amount();
  3960           if (expand_bytes > 0) {
  3961             size_t bytes_before = capacity();
  3962             // No need for an ergo verbose message here,
  3963             // expansion_amount() does this when it returns a value > 0.
  3964             if (!expand(expand_bytes)) {
  3965               // We failed to expand the heap so let's verify that
  3966               // committed/uncommitted amount match the backing store
  3967               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3968               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3973         // We redo the verificaiton but now wrt to the new CSet which
  3974         // has just got initialized after the previous CSet was freed.
  3975         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  3976                                  true  /* verify_enqueued_buffers */,
  3977                                  true  /* verify_thread_buffers */,
  3978                                  true  /* verify_fingers */);
  3979         _cm->note_end_of_gc();
  3981         // Collect thread local data to allow the ergonomics to use
  3982         // the collected information
  3983         g1_policy()->phase_times()->collapse_par_times();
  3985         // This timing is only used by the ergonomics to handle our pause target.
  3986         // It is unclear why this should not include the full pause. We will
  3987         // investigate this in CR 7178365.
  3988         double sample_end_time_sec = os::elapsedTime();
  3989         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  3990         g1_policy()->record_collection_pause_end(pause_time_ms);
  3992         MemoryService::track_memory_usage();
  3994         // In prepare_for_verify() below we'll need to scan the deferred
  3995         // update buffers to bring the RSets up-to-date if
  3996         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  3997         // the update buffers we'll probably need to scan cards on the
  3998         // regions we just allocated to (i.e., the GC alloc
  3999         // regions). However, during the last GC we called
  4000         // set_saved_mark() on all the GC alloc regions, so card
  4001         // scanning might skip the [saved_mark_word()...top()] area of
  4002         // those regions (i.e., the area we allocated objects into
  4003         // during the last GC). But it shouldn't. Given that
  4004         // saved_mark_word() is conditional on whether the GC time stamp
  4005         // on the region is current or not, by incrementing the GC time
  4006         // stamp here we invalidate all the GC time stamps on all the
  4007         // regions and saved_mark_word() will simply return top() for
  4008         // all the regions. This is a nicer way of ensuring this rather
  4009         // than iterating over the regions and fixing them. In fact, the
  4010         // GC time stamp increment here also ensures that
  4011         // saved_mark_word() will return top() between pauses, i.e.,
  4012         // during concurrent refinement. So we don't need the
  4013         // is_gc_active() check to decided which top to use when
  4014         // scanning cards (see CR 7039627).
  4015         increment_gc_time_stamp();
  4017         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  4018           HandleMark hm;  // Discard invalid handles created during verification
  4019           gclog_or_tty->print(" VerifyAfterGC:");
  4020           prepare_for_verify();
  4021           Universe::verify(/* silent      */ false,
  4022                            /* option      */ VerifyOption_G1UsePrevMarking);
  4025         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4026         ref_processor_stw()->verify_no_references_recorded();
  4028         // CM reference discovery will be re-enabled if necessary.
  4031       // We should do this after we potentially expand the heap so
  4032       // that all the COMMIT events are generated before the end GC
  4033       // event, and after we retire the GC alloc regions so that all
  4034       // RETIRE events are generated before the end GC event.
  4035       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4037       if (mark_in_progress()) {
  4038         concurrent_mark()->update_g1_committed();
  4041 #ifdef TRACESPINNING
  4042       ParallelTaskTerminator::print_termination_counts();
  4043 #endif
  4045       gc_epilogue(false);
  4047       g1_policy()->phase_times()->note_gc_end(os::elapsedTime());
  4049       // We have to do this after we decide whether to expand the heap or not.
  4050       g1_policy()->print_heap_transition();
  4053     // It is not yet to safe to tell the concurrent mark to
  4054     // start as we have some optional output below. We don't want the
  4055     // output from the concurrent mark thread interfering with this
  4056     // logging output either.
  4058     _hrs.verify_optional();
  4059     verify_region_sets_optional();
  4061     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4062     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4064     print_heap_after_gc();
  4066     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4067     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4068     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4069     // before any GC notifications are raised.
  4070     g1mm()->update_sizes();
  4073   if (G1SummarizeRSetStats &&
  4074       (G1SummarizeRSetStatsPeriod > 0) &&
  4075       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  4076     g1_rem_set()->print_summary_info();
  4079   // It should now be safe to tell the concurrent mark thread to start
  4080   // without its logging output interfering with the logging output
  4081   // that came from the pause.
  4083   if (should_start_conc_mark) {
  4084     // CAUTION: after the doConcurrentMark() call below,
  4085     // the concurrent marking thread(s) could be running
  4086     // concurrently with us. Make sure that anything after
  4087     // this point does not assume that we are the only GC thread
  4088     // running. Note: of course, the actual marking work will
  4089     // not start until the safepoint itself is released in
  4090     // ConcurrentGCThread::safepoint_desynchronize().
  4091     doConcurrentMark();
  4094   return true;
  4097 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4099   size_t gclab_word_size;
  4100   switch (purpose) {
  4101     case GCAllocForSurvived:
  4102       gclab_word_size = YoungPLABSize;
  4103       break;
  4104     case GCAllocForTenured:
  4105       gclab_word_size = OldPLABSize;
  4106       break;
  4107     default:
  4108       assert(false, "unknown GCAllocPurpose");
  4109       gclab_word_size = OldPLABSize;
  4110       break;
  4112   return gclab_word_size;
  4115 void G1CollectedHeap::init_mutator_alloc_region() {
  4116   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4117   _mutator_alloc_region.init();
  4120 void G1CollectedHeap::release_mutator_alloc_region() {
  4121   _mutator_alloc_region.release();
  4122   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4125 void G1CollectedHeap::init_gc_alloc_regions() {
  4126   assert_at_safepoint(true /* should_be_vm_thread */);
  4128   _survivor_gc_alloc_region.init();
  4129   _old_gc_alloc_region.init();
  4130   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4131   _retained_old_gc_alloc_region = NULL;
  4133   // We will discard the current GC alloc region if:
  4134   // a) it's in the collection set (it can happen!),
  4135   // b) it's already full (no point in using it),
  4136   // c) it's empty (this means that it was emptied during
  4137   // a cleanup and it should be on the free list now), or
  4138   // d) it's humongous (this means that it was emptied
  4139   // during a cleanup and was added to the free list, but
  4140   // has been subseqently used to allocate a humongous
  4141   // object that may be less than the region size).
  4142   if (retained_region != NULL &&
  4143       !retained_region->in_collection_set() &&
  4144       !(retained_region->top() == retained_region->end()) &&
  4145       !retained_region->is_empty() &&
  4146       !retained_region->isHumongous()) {
  4147     retained_region->set_saved_mark();
  4148     // The retained region was added to the old region set when it was
  4149     // retired. We have to remove it now, since we don't allow regions
  4150     // we allocate to in the region sets. We'll re-add it later, when
  4151     // it's retired again.
  4152     _old_set.remove(retained_region);
  4153     bool during_im = g1_policy()->during_initial_mark_pause();
  4154     retained_region->note_start_of_copying(during_im);
  4155     _old_gc_alloc_region.set(retained_region);
  4156     _hr_printer.reuse(retained_region);
  4160 void G1CollectedHeap::release_gc_alloc_regions() {
  4161   _survivor_gc_alloc_region.release();
  4162   // If we have an old GC alloc region to release, we'll save it in
  4163   // _retained_old_gc_alloc_region. If we don't
  4164   // _retained_old_gc_alloc_region will become NULL. This is what we
  4165   // want either way so no reason to check explicitly for either
  4166   // condition.
  4167   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4170 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4171   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4172   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4173   _retained_old_gc_alloc_region = NULL;
  4176 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4177   _drain_in_progress = false;
  4178   set_evac_failure_closure(cl);
  4179   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4182 void G1CollectedHeap::finalize_for_evac_failure() {
  4183   assert(_evac_failure_scan_stack != NULL &&
  4184          _evac_failure_scan_stack->length() == 0,
  4185          "Postcondition");
  4186   assert(!_drain_in_progress, "Postcondition");
  4187   delete _evac_failure_scan_stack;
  4188   _evac_failure_scan_stack = NULL;
  4191 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4192   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4194   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4196   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4197     set_par_threads();
  4198     workers()->run_task(&rsfp_task);
  4199     set_par_threads(0);
  4200   } else {
  4201     rsfp_task.work(0);
  4204   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4206   // Reset the claim values in the regions in the collection set.
  4207   reset_cset_heap_region_claim_values();
  4209   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4211   // Now restore saved marks, if any.
  4212   if (_objs_with_preserved_marks != NULL) {
  4213     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4214     guarantee(_objs_with_preserved_marks->length() ==
  4215               _preserved_marks_of_objs->length(), "Both or none.");
  4216     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4217       oop obj   = _objs_with_preserved_marks->at(i);
  4218       markOop m = _preserved_marks_of_objs->at(i);
  4219       obj->set_mark(m);
  4222     // Delete the preserved marks growable arrays (allocated on the C heap).
  4223     delete _objs_with_preserved_marks;
  4224     delete _preserved_marks_of_objs;
  4225     _objs_with_preserved_marks = NULL;
  4226     _preserved_marks_of_objs = NULL;
  4230 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4231   _evac_failure_scan_stack->push(obj);
  4234 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4235   assert(_evac_failure_scan_stack != NULL, "precondition");
  4237   while (_evac_failure_scan_stack->length() > 0) {
  4238      oop obj = _evac_failure_scan_stack->pop();
  4239      _evac_failure_closure->set_region(heap_region_containing(obj));
  4240      obj->oop_iterate_backwards(_evac_failure_closure);
  4244 oop
  4245 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4246                                                oop old) {
  4247   assert(obj_in_cs(old),
  4248          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4249                  (HeapWord*) old));
  4250   markOop m = old->mark();
  4251   oop forward_ptr = old->forward_to_atomic(old);
  4252   if (forward_ptr == NULL) {
  4253     // Forward-to-self succeeded.
  4255     if (_evac_failure_closure != cl) {
  4256       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4257       assert(!_drain_in_progress,
  4258              "Should only be true while someone holds the lock.");
  4259       // Set the global evac-failure closure to the current thread's.
  4260       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4261       set_evac_failure_closure(cl);
  4262       // Now do the common part.
  4263       handle_evacuation_failure_common(old, m);
  4264       // Reset to NULL.
  4265       set_evac_failure_closure(NULL);
  4266     } else {
  4267       // The lock is already held, and this is recursive.
  4268       assert(_drain_in_progress, "This should only be the recursive case.");
  4269       handle_evacuation_failure_common(old, m);
  4271     return old;
  4272   } else {
  4273     // Forward-to-self failed. Either someone else managed to allocate
  4274     // space for this object (old != forward_ptr) or they beat us in
  4275     // self-forwarding it (old == forward_ptr).
  4276     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4277            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4278                    "should not be in the CSet",
  4279                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4280     return forward_ptr;
  4284 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4285   set_evacuation_failed(true);
  4287   preserve_mark_if_necessary(old, m);
  4289   HeapRegion* r = heap_region_containing(old);
  4290   if (!r->evacuation_failed()) {
  4291     r->set_evacuation_failed(true);
  4292     _hr_printer.evac_failure(r);
  4295   push_on_evac_failure_scan_stack(old);
  4297   if (!_drain_in_progress) {
  4298     // prevent recursion in copy_to_survivor_space()
  4299     _drain_in_progress = true;
  4300     drain_evac_failure_scan_stack();
  4301     _drain_in_progress = false;
  4305 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4306   assert(evacuation_failed(), "Oversaving!");
  4307   // We want to call the "for_promotion_failure" version only in the
  4308   // case of a promotion failure.
  4309   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4310     if (_objs_with_preserved_marks == NULL) {
  4311       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4312       _objs_with_preserved_marks =
  4313         new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4314       _preserved_marks_of_objs =
  4315         new (ResourceObj::C_HEAP, mtGC) GrowableArray<markOop>(40, true);
  4317     _objs_with_preserved_marks->push(obj);
  4318     _preserved_marks_of_objs->push(m);
  4322 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4323                                                   size_t word_size) {
  4324   if (purpose == GCAllocForSurvived) {
  4325     HeapWord* result = survivor_attempt_allocation(word_size);
  4326     if (result != NULL) {
  4327       return result;
  4328     } else {
  4329       // Let's try to allocate in the old gen in case we can fit the
  4330       // object there.
  4331       return old_attempt_allocation(word_size);
  4333   } else {
  4334     assert(purpose ==  GCAllocForTenured, "sanity");
  4335     HeapWord* result = old_attempt_allocation(word_size);
  4336     if (result != NULL) {
  4337       return result;
  4338     } else {
  4339       // Let's try to allocate in the survivors in case we can fit the
  4340       // object there.
  4341       return survivor_attempt_allocation(word_size);
  4345   ShouldNotReachHere();
  4346   // Trying to keep some compilers happy.
  4347   return NULL;
  4350 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4351   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
  4353 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
  4354   : _g1h(g1h),
  4355     _refs(g1h->task_queue(queue_num)),
  4356     _dcq(&g1h->dirty_card_queue_set()),
  4357     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4358     _g1_rem(g1h->g1_rem_set()),
  4359     _hash_seed(17), _queue_num(queue_num),
  4360     _term_attempts(0),
  4361     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4362     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4363     _age_table(false),
  4364     _strong_roots_time(0), _term_time(0),
  4365     _alloc_buffer_waste(0), _undo_waste(0) {
  4366   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4367   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4368   // non-young regions (where the age is -1)
  4369   // We also add a few elements at the beginning and at the end in
  4370   // an attempt to eliminate cache contention
  4371   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  4372   uint array_length = PADDING_ELEM_NUM +
  4373                       real_length +
  4374                       PADDING_ELEM_NUM;
  4375   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  4376   if (_surviving_young_words_base == NULL)
  4377     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4378                           "Not enough space for young surv histo.");
  4379   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4380   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  4382   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4383   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4385   _start = os::elapsedTime();
  4388 void
  4389 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4391   st->print_raw_cr("GC Termination Stats");
  4392   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4393                    " ------waste (KiB)------");
  4394   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4395                    "  total   alloc    undo");
  4396   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4397                    " ------- ------- -------");
  4400 void
  4401 G1ParScanThreadState::print_termination_stats(int i,
  4402                                               outputStream* const st) const
  4404   const double elapsed_ms = elapsed_time() * 1000.0;
  4405   const double s_roots_ms = strong_roots_time() * 1000.0;
  4406   const double term_ms    = term_time() * 1000.0;
  4407   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4408                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4409                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4410                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4411                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4412                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4413                alloc_buffer_waste() * HeapWordSize / K,
  4414                undo_waste() * HeapWordSize / K);
  4417 #ifdef ASSERT
  4418 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4419   assert(ref != NULL, "invariant");
  4420   assert(UseCompressedOops, "sanity");
  4421   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4422   oop p = oopDesc::load_decode_heap_oop(ref);
  4423   assert(_g1h->is_in_g1_reserved(p),
  4424          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4425   return true;
  4428 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4429   assert(ref != NULL, "invariant");
  4430   if (has_partial_array_mask(ref)) {
  4431     // Must be in the collection set--it's already been copied.
  4432     oop p = clear_partial_array_mask(ref);
  4433     assert(_g1h->obj_in_cs(p),
  4434            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4435   } else {
  4436     oop p = oopDesc::load_decode_heap_oop(ref);
  4437     assert(_g1h->is_in_g1_reserved(p),
  4438            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4440   return true;
  4443 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4444   if (ref.is_narrow()) {
  4445     return verify_ref((narrowOop*) ref);
  4446   } else {
  4447     return verify_ref((oop*) ref);
  4450 #endif // ASSERT
  4452 void G1ParScanThreadState::trim_queue() {
  4453   assert(_evac_cl != NULL, "not set");
  4454   assert(_evac_failure_cl != NULL, "not set");
  4455   assert(_partial_scan_cl != NULL, "not set");
  4457   StarTask ref;
  4458   do {
  4459     // Drain the overflow stack first, so other threads can steal.
  4460     while (refs()->pop_overflow(ref)) {
  4461       deal_with_reference(ref);
  4464     while (refs()->pop_local(ref)) {
  4465       deal_with_reference(ref);
  4467   } while (!refs()->is_empty());
  4470 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
  4471                                      G1ParScanThreadState* par_scan_state) :
  4472   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4473   _par_scan_state(par_scan_state),
  4474   _worker_id(par_scan_state->queue_num()),
  4475   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
  4476   _mark_in_progress(_g1->mark_in_progress()) { }
  4478 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4479 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
  4480 #ifdef ASSERT
  4481   HeapRegion* hr = _g1->heap_region_containing(obj);
  4482   assert(hr != NULL, "sanity");
  4483   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4484 #endif // ASSERT
  4486   // We know that the object is not moving so it's safe to read its size.
  4487   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4490 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4491 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4492   ::mark_forwarded_object(oop from_obj, oop to_obj) {
  4493 #ifdef ASSERT
  4494   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4495   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4496   assert(from_obj != to_obj, "should not be self-forwarded");
  4498   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4499   assert(from_hr != NULL, "sanity");
  4500   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4502   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4503   assert(to_hr != NULL, "sanity");
  4504   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4505 #endif // ASSERT
  4507   // The object might be in the process of being copied by another
  4508   // worker so we cannot trust that its to-space image is
  4509   // well-formed. So we have to read its size from its from-space
  4510   // image which we know should not be changing.
  4511   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4514 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4515 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4516   ::copy_to_survivor_space(oop old) {
  4517   size_t word_sz = old->size();
  4518   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4519   // +1 to make the -1 indexes valid...
  4520   int       young_index = from_region->young_index_in_cset()+1;
  4521   assert( (from_region->is_young() && young_index >  0) ||
  4522          (!from_region->is_young() && young_index == 0), "invariant" );
  4523   G1CollectorPolicy* g1p = _g1->g1_policy();
  4524   markOop m = old->mark();
  4525   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4526                                            : m->age();
  4527   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4528                                                              word_sz);
  4529   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4530   oop       obj     = oop(obj_ptr);
  4532   if (obj_ptr == NULL) {
  4533     // This will either forward-to-self, or detect that someone else has
  4534     // installed a forwarding pointer.
  4535     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4536     return _g1->handle_evacuation_failure_par(cl, old);
  4539   // We're going to allocate linearly, so might as well prefetch ahead.
  4540   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4542   oop forward_ptr = old->forward_to_atomic(obj);
  4543   if (forward_ptr == NULL) {
  4544     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4545     if (g1p->track_object_age(alloc_purpose)) {
  4546       // We could simply do obj->incr_age(). However, this causes a
  4547       // performance issue. obj->incr_age() will first check whether
  4548       // the object has a displaced mark by checking its mark word;
  4549       // getting the mark word from the new location of the object
  4550       // stalls. So, given that we already have the mark word and we
  4551       // are about to install it anyway, it's better to increase the
  4552       // age on the mark word, when the object does not have a
  4553       // displaced mark word. We're not expecting many objects to have
  4554       // a displaced marked word, so that case is not optimized
  4555       // further (it could be...) and we simply call obj->incr_age().
  4557       if (m->has_displaced_mark_helper()) {
  4558         // in this case, we have to install the mark word first,
  4559         // otherwise obj looks to be forwarded (the old mark word,
  4560         // which contains the forward pointer, was copied)
  4561         obj->set_mark(m);
  4562         obj->incr_age();
  4563       } else {
  4564         m = m->incr_age();
  4565         obj->set_mark(m);
  4567       _par_scan_state->age_table()->add(obj, word_sz);
  4568     } else {
  4569       obj->set_mark(m);
  4572     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4573     surv_young_words[young_index] += word_sz;
  4575     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4576       // We keep track of the next start index in the length field of
  4577       // the to-space object. The actual length can be found in the
  4578       // length field of the from-space object.
  4579       arrayOop(obj)->set_length(0);
  4580       oop* old_p = set_partial_array_mask(old);
  4581       _par_scan_state->push_on_queue(old_p);
  4582     } else {
  4583       // No point in using the slower heap_region_containing() method,
  4584       // given that we know obj is in the heap.
  4585       _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4586       obj->oop_iterate_backwards(&_scanner);
  4588   } else {
  4589     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4590     obj = forward_ptr;
  4592   return obj;
  4595 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
  4596 template <class T>
  4597 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
  4598 ::do_oop_work(T* p) {
  4599   oop obj = oopDesc::load_decode_heap_oop(p);
  4600   assert(barrier != G1BarrierRS || obj != NULL,
  4601          "Precondition: G1BarrierRS implies obj is non-NULL");
  4603   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4605   // here the null check is implicit in the cset_fast_test() test
  4606   if (_g1->in_cset_fast_test(obj)) {
  4607     oop forwardee;
  4608     if (obj->is_forwarded()) {
  4609       forwardee = obj->forwardee();
  4610     } else {
  4611       forwardee = copy_to_survivor_space(obj);
  4613     assert(forwardee != NULL, "forwardee should not be NULL");
  4614     oopDesc::encode_store_heap_oop(p, forwardee);
  4615     if (do_mark_object && forwardee != obj) {
  4616       // If the object is self-forwarded we don't need to explicitly
  4617       // mark it, the evacuation failure protocol will do so.
  4618       mark_forwarded_object(obj, forwardee);
  4621     // When scanning the RS, we only care about objs in CS.
  4622     if (barrier == G1BarrierRS) {
  4623       _par_scan_state->update_rs(_from, p, _worker_id);
  4625   } else {
  4626     // The object is not in collection set. If we're a root scanning
  4627     // closure during an initial mark pause (i.e. do_mark_object will
  4628     // be true) then attempt to mark the object.
  4629     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
  4630       mark_object(obj);
  4634   if (barrier == G1BarrierEvac && obj != NULL) {
  4635     _par_scan_state->update_rs(_from, p, _worker_id);
  4638   if (do_gen_barrier && obj != NULL) {
  4639     par_do_barrier(p);
  4643 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4644 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4646 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4647   assert(has_partial_array_mask(p), "invariant");
  4648   oop from_obj = clear_partial_array_mask(p);
  4650   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
  4651   assert(from_obj->is_objArray(), "must be obj array");
  4652   objArrayOop from_obj_array = objArrayOop(from_obj);
  4653   // The from-space object contains the real length.
  4654   int length                 = from_obj_array->length();
  4656   assert(from_obj->is_forwarded(), "must be forwarded");
  4657   oop to_obj                 = from_obj->forwardee();
  4658   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
  4659   objArrayOop to_obj_array   = objArrayOop(to_obj);
  4660   // We keep track of the next start index in the length field of the
  4661   // to-space object.
  4662   int next_index             = to_obj_array->length();
  4663   assert(0 <= next_index && next_index < length,
  4664          err_msg("invariant, next index: %d, length: %d", next_index, length));
  4666   int start                  = next_index;
  4667   int end                    = length;
  4668   int remainder              = end - start;
  4669   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
  4670   if (remainder > 2 * ParGCArrayScanChunk) {
  4671     end = start + ParGCArrayScanChunk;
  4672     to_obj_array->set_length(end);
  4673     // Push the remainder before we process the range in case another
  4674     // worker has run out of things to do and can steal it.
  4675     oop* from_obj_p = set_partial_array_mask(from_obj);
  4676     _par_scan_state->push_on_queue(from_obj_p);
  4677   } else {
  4678     assert(length == end, "sanity");
  4679     // We'll process the final range for this object. Restore the length
  4680     // so that the heap remains parsable in case of evacuation failure.
  4681     to_obj_array->set_length(end);
  4683   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
  4684   // Process indexes [start,end). It will also process the header
  4685   // along with the first chunk (i.e., the chunk with start == 0).
  4686   // Note that at this point the length field of to_obj_array is not
  4687   // correct given that we are using it to keep track of the next
  4688   // start index. oop_iterate_range() (thankfully!) ignores the length
  4689   // field and only relies on the start / end parameters.  It does
  4690   // however return the size of the object which will be incorrect. So
  4691   // we have to ignore it even if we wanted to use it.
  4692   to_obj_array->oop_iterate_range(&_scanner, start, end);
  4695 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4696 protected:
  4697   G1CollectedHeap*              _g1h;
  4698   G1ParScanThreadState*         _par_scan_state;
  4699   RefToScanQueueSet*            _queues;
  4700   ParallelTaskTerminator*       _terminator;
  4702   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4703   RefToScanQueueSet*      queues()         { return _queues; }
  4704   ParallelTaskTerminator* terminator()     { return _terminator; }
  4706 public:
  4707   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4708                                 G1ParScanThreadState* par_scan_state,
  4709                                 RefToScanQueueSet* queues,
  4710                                 ParallelTaskTerminator* terminator)
  4711     : _g1h(g1h), _par_scan_state(par_scan_state),
  4712       _queues(queues), _terminator(terminator) {}
  4714   void do_void();
  4716 private:
  4717   inline bool offer_termination();
  4718 };
  4720 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4721   G1ParScanThreadState* const pss = par_scan_state();
  4722   pss->start_term_time();
  4723   const bool res = terminator()->offer_termination();
  4724   pss->end_term_time();
  4725   return res;
  4728 void G1ParEvacuateFollowersClosure::do_void() {
  4729   StarTask stolen_task;
  4730   G1ParScanThreadState* const pss = par_scan_state();
  4731   pss->trim_queue();
  4733   do {
  4734     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4735       assert(pss->verify_task(stolen_task), "sanity");
  4736       if (stolen_task.is_narrow()) {
  4737         pss->deal_with_reference((narrowOop*) stolen_task);
  4738       } else {
  4739         pss->deal_with_reference((oop*) stolen_task);
  4742       // We've just processed a reference and we might have made
  4743       // available new entries on the queues. So we have to make sure
  4744       // we drain the queues as necessary.
  4745       pss->trim_queue();
  4747   } while (!offer_termination());
  4749   pss->retire_alloc_buffers();
  4752 class G1ParTask : public AbstractGangTask {
  4753 protected:
  4754   G1CollectedHeap*       _g1h;
  4755   RefToScanQueueSet      *_queues;
  4756   ParallelTaskTerminator _terminator;
  4757   uint _n_workers;
  4759   Mutex _stats_lock;
  4760   Mutex* stats_lock() { return &_stats_lock; }
  4762   size_t getNCards() {
  4763     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4764       / G1BlockOffsetSharedArray::N_bytes;
  4767 public:
  4768   G1ParTask(G1CollectedHeap* g1h,
  4769             RefToScanQueueSet *task_queues)
  4770     : AbstractGangTask("G1 collection"),
  4771       _g1h(g1h),
  4772       _queues(task_queues),
  4773       _terminator(0, _queues),
  4774       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4775   {}
  4777   RefToScanQueueSet* queues() { return _queues; }
  4779   RefToScanQueue *work_queue(int i) {
  4780     return queues()->queue(i);
  4783   ParallelTaskTerminator* terminator() { return &_terminator; }
  4785   virtual void set_for_termination(int active_workers) {
  4786     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4787     // in the young space (_par_seq_tasks) in the G1 heap
  4788     // for SequentialSubTasksDone.
  4789     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4790     // both of which need setting by set_n_termination().
  4791     _g1h->SharedHeap::set_n_termination(active_workers);
  4792     _g1h->set_n_termination(active_workers);
  4793     terminator()->reset_for_reuse(active_workers);
  4794     _n_workers = active_workers;
  4797   void work(uint worker_id) {
  4798     if (worker_id >= _n_workers) return;  // no work needed this round
  4800     double start_time_ms = os::elapsedTime() * 1000.0;
  4801     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4804       ResourceMark rm;
  4805       HandleMark   hm;
  4807       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4809       G1ParScanThreadState            pss(_g1h, worker_id);
  4810       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
  4811       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4812       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
  4814       pss.set_evac_closure(&scan_evac_cl);
  4815       pss.set_evac_failure_closure(&evac_failure_cl);
  4816       pss.set_partial_scan_closure(&partial_scan_cl);
  4818       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4819       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
  4821       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4822       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
  4824       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4825       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
  4827       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4828         // We also need to mark copied objects.
  4829         scan_root_cl = &scan_mark_root_cl;
  4830         scan_perm_cl = &scan_mark_perm_cl;
  4833       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4835       pss.start_strong_roots();
  4836       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4837                                     SharedHeap::SO_AllClasses,
  4838                                     scan_root_cl,
  4839                                     &push_heap_rs_cl,
  4840                                     scan_perm_cl,
  4841                                     worker_id);
  4842       pss.end_strong_roots();
  4845         double start = os::elapsedTime();
  4846         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4847         evac.do_void();
  4848         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4849         double term_ms = pss.term_time()*1000.0;
  4850         _g1h->g1_policy()->phase_times()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4851         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4853       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4854       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4856       if (ParallelGCVerbose) {
  4857         MutexLocker x(stats_lock());
  4858         pss.print_termination_stats(worker_id);
  4861       assert(pss.refs()->is_empty(), "should be empty");
  4863       // Close the inner scope so that the ResourceMark and HandleMark
  4864       // destructors are executed here and are included as part of the
  4865       // "GC Worker Time".
  4868     double end_time_ms = os::elapsedTime() * 1000.0;
  4869     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4871 };
  4873 // *** Common G1 Evacuation Stuff
  4875 // Closures that support the filtering of CodeBlobs scanned during
  4876 // external root scanning.
  4878 // Closure applied to reference fields in code blobs (specifically nmethods)
  4879 // to determine whether an nmethod contains references that point into
  4880 // the collection set. Used as a predicate when walking code roots so
  4881 // that only nmethods that point into the collection set are added to the
  4882 // 'marked' list.
  4884 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
  4886   class G1PointsIntoCSOopClosure : public OopClosure {
  4887     G1CollectedHeap* _g1;
  4888     bool _points_into_cs;
  4889   public:
  4890     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
  4891       _g1(g1), _points_into_cs(false) { }
  4893     bool points_into_cs() const { return _points_into_cs; }
  4895     template <class T>
  4896     void do_oop_nv(T* p) {
  4897       if (!_points_into_cs) {
  4898         T heap_oop = oopDesc::load_heap_oop(p);
  4899         if (!oopDesc::is_null(heap_oop) &&
  4900             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
  4901           _points_into_cs = true;
  4906     virtual void do_oop(oop* p)        { do_oop_nv(p); }
  4907     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
  4908   };
  4910   G1CollectedHeap* _g1;
  4912 public:
  4913   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
  4914     CodeBlobToOopClosure(cl, true), _g1(g1) { }
  4916   virtual void do_code_blob(CodeBlob* cb) {
  4917     nmethod* nm = cb->as_nmethod_or_null();
  4918     if (nm != NULL && !(nm->test_oops_do_mark())) {
  4919       G1PointsIntoCSOopClosure predicate_cl(_g1);
  4920       nm->oops_do(&predicate_cl);
  4922       if (predicate_cl.points_into_cs()) {
  4923         // At least one of the reference fields or the oop relocations
  4924         // in the nmethod points into the collection set. We have to
  4925         // 'mark' this nmethod.
  4926         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
  4927         // or MarkingCodeBlobClosure::do_code_blob() change.
  4928         if (!nm->test_set_oops_do_mark()) {
  4929           do_newly_marked_nmethod(nm);
  4934 };
  4936 // This method is run in a GC worker.
  4938 void
  4939 G1CollectedHeap::
  4940 g1_process_strong_roots(bool collecting_perm_gen,
  4941                         ScanningOption so,
  4942                         OopClosure* scan_non_heap_roots,
  4943                         OopsInHeapRegionClosure* scan_rs,
  4944                         OopsInGenClosure* scan_perm,
  4945                         int worker_i) {
  4947   // First scan the strong roots, including the perm gen.
  4948   double ext_roots_start = os::elapsedTime();
  4949   double closure_app_time_sec = 0.0;
  4951   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4952   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4953   buf_scan_perm.set_generation(perm_gen());
  4955   // Walk the code cache w/o buffering, because StarTask cannot handle
  4956   // unaligned oop locations.
  4957   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
  4959   process_strong_roots(false, // no scoping; this is parallel code
  4960                        collecting_perm_gen, so,
  4961                        &buf_scan_non_heap_roots,
  4962                        &eager_scan_code_roots,
  4963                        &buf_scan_perm);
  4965   // Now the CM ref_processor roots.
  4966   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4967     // We need to treat the discovered reference lists of the
  4968     // concurrent mark ref processor as roots and keep entries
  4969     // (which are added by the marking threads) on them live
  4970     // until they can be processed at the end of marking.
  4971     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4974   // Finish up any enqueued closure apps (attributed as object copy time).
  4975   buf_scan_non_heap_roots.done();
  4976   buf_scan_perm.done();
  4978   double ext_roots_end = os::elapsedTime();
  4980   g1_policy()->phase_times()->reset_obj_copy_time(worker_i);
  4981   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
  4982                                 buf_scan_non_heap_roots.closure_app_seconds();
  4983   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4985   double ext_root_time_ms =
  4986     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4988   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4990   // During conc marking we have to filter the per-thread SATB buffers
  4991   // to make sure we remove any oops into the CSet (which will show up
  4992   // as implicitly live).
  4993   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4994     if (mark_in_progress()) {
  4995       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4998   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4999   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  5001   // Now scan the complement of the collection set.
  5002   if (scan_rs != NULL) {
  5003     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  5006   _process_strong_tasks->all_tasks_completed();
  5009 void
  5010 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  5011                                        OopClosure* non_root_closure) {
  5012   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  5013   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  5016 // Weak Reference Processing support
  5018 // An always "is_alive" closure that is used to preserve referents.
  5019 // If the object is non-null then it's alive.  Used in the preservation
  5020 // of referent objects that are pointed to by reference objects
  5021 // discovered by the CM ref processor.
  5022 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5023   G1CollectedHeap* _g1;
  5024 public:
  5025   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5026   void do_object(oop p) { assert(false, "Do not call."); }
  5027   bool do_object_b(oop p) {
  5028     if (p != NULL) {
  5029       return true;
  5031     return false;
  5033 };
  5035 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5036   // An object is reachable if it is outside the collection set,
  5037   // or is inside and copied.
  5038   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5041 // Non Copying Keep Alive closure
  5042 class G1KeepAliveClosure: public OopClosure {
  5043   G1CollectedHeap* _g1;
  5044 public:
  5045   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5046   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5047   void do_oop(      oop* p) {
  5048     oop obj = *p;
  5050     if (_g1->obj_in_cs(obj)) {
  5051       assert( obj->is_forwarded(), "invariant" );
  5052       *p = obj->forwardee();
  5055 };
  5057 // Copying Keep Alive closure - can be called from both
  5058 // serial and parallel code as long as different worker
  5059 // threads utilize different G1ParScanThreadState instances
  5060 // and different queues.
  5062 class G1CopyingKeepAliveClosure: public OopClosure {
  5063   G1CollectedHeap*         _g1h;
  5064   OopClosure*              _copy_non_heap_obj_cl;
  5065   OopsInHeapRegionClosure* _copy_perm_obj_cl;
  5066   G1ParScanThreadState*    _par_scan_state;
  5068 public:
  5069   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5070                             OopClosure* non_heap_obj_cl,
  5071                             OopsInHeapRegionClosure* perm_obj_cl,
  5072                             G1ParScanThreadState* pss):
  5073     _g1h(g1h),
  5074     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5075     _copy_perm_obj_cl(perm_obj_cl),
  5076     _par_scan_state(pss)
  5077   {}
  5079   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5080   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5082   template <class T> void do_oop_work(T* p) {
  5083     oop obj = oopDesc::load_decode_heap_oop(p);
  5085     if (_g1h->obj_in_cs(obj)) {
  5086       // If the referent object has been forwarded (either copied
  5087       // to a new location or to itself in the event of an
  5088       // evacuation failure) then we need to update the reference
  5089       // field and, if both reference and referent are in the G1
  5090       // heap, update the RSet for the referent.
  5091       //
  5092       // If the referent has not been forwarded then we have to keep
  5093       // it alive by policy. Therefore we have copy the referent.
  5094       //
  5095       // If the reference field is in the G1 heap then we can push
  5096       // on the PSS queue. When the queue is drained (after each
  5097       // phase of reference processing) the object and it's followers
  5098       // will be copied, the reference field set to point to the
  5099       // new location, and the RSet updated. Otherwise we need to
  5100       // use the the non-heap or perm closures directly to copy
  5101       // the refernt object and update the pointer, while avoiding
  5102       // updating the RSet.
  5104       if (_g1h->is_in_g1_reserved(p)) {
  5105         _par_scan_state->push_on_queue(p);
  5106       } else {
  5107         // The reference field is not in the G1 heap.
  5108         if (_g1h->perm_gen()->is_in(p)) {
  5109           _copy_perm_obj_cl->do_oop(p);
  5110         } else {
  5111           _copy_non_heap_obj_cl->do_oop(p);
  5116 };
  5118 // Serial drain queue closure. Called as the 'complete_gc'
  5119 // closure for each discovered list in some of the
  5120 // reference processing phases.
  5122 class G1STWDrainQueueClosure: public VoidClosure {
  5123 protected:
  5124   G1CollectedHeap* _g1h;
  5125   G1ParScanThreadState* _par_scan_state;
  5127   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5129 public:
  5130   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5131     _g1h(g1h),
  5132     _par_scan_state(pss)
  5133   { }
  5135   void do_void() {
  5136     G1ParScanThreadState* const pss = par_scan_state();
  5137     pss->trim_queue();
  5139 };
  5141 // Parallel Reference Processing closures
  5143 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5144 // processing during G1 evacuation pauses.
  5146 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5147 private:
  5148   G1CollectedHeap*   _g1h;
  5149   RefToScanQueueSet* _queues;
  5150   FlexibleWorkGang*  _workers;
  5151   int                _active_workers;
  5153 public:
  5154   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5155                         FlexibleWorkGang* workers,
  5156                         RefToScanQueueSet *task_queues,
  5157                         int n_workers) :
  5158     _g1h(g1h),
  5159     _queues(task_queues),
  5160     _workers(workers),
  5161     _active_workers(n_workers)
  5163     assert(n_workers > 0, "shouldn't call this otherwise");
  5166   // Executes the given task using concurrent marking worker threads.
  5167   virtual void execute(ProcessTask& task);
  5168   virtual void execute(EnqueueTask& task);
  5169 };
  5171 // Gang task for possibly parallel reference processing
  5173 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5174   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5175   ProcessTask&     _proc_task;
  5176   G1CollectedHeap* _g1h;
  5177   RefToScanQueueSet *_task_queues;
  5178   ParallelTaskTerminator* _terminator;
  5180 public:
  5181   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5182                      G1CollectedHeap* g1h,
  5183                      RefToScanQueueSet *task_queues,
  5184                      ParallelTaskTerminator* terminator) :
  5185     AbstractGangTask("Process reference objects in parallel"),
  5186     _proc_task(proc_task),
  5187     _g1h(g1h),
  5188     _task_queues(task_queues),
  5189     _terminator(terminator)
  5190   {}
  5192   virtual void work(uint worker_id) {
  5193     // The reference processing task executed by a single worker.
  5194     ResourceMark rm;
  5195     HandleMark   hm;
  5197     G1STWIsAliveClosure is_alive(_g1h);
  5199     G1ParScanThreadState pss(_g1h, worker_id);
  5201     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5202     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5203     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5205     pss.set_evac_closure(&scan_evac_cl);
  5206     pss.set_evac_failure_closure(&evac_failure_cl);
  5207     pss.set_partial_scan_closure(&partial_scan_cl);
  5209     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5210     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5212     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5213     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5215     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5216     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5218     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5219       // We also need to mark copied objects.
  5220       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5221       copy_perm_cl = &copy_mark_perm_cl;
  5224     // Keep alive closure.
  5225     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5227     // Complete GC closure
  5228     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5230     // Call the reference processing task's work routine.
  5231     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5233     // Note we cannot assert that the refs array is empty here as not all
  5234     // of the processing tasks (specifically phase2 - pp2_work) execute
  5235     // the complete_gc closure (which ordinarily would drain the queue) so
  5236     // the queue may not be empty.
  5238 };
  5240 // Driver routine for parallel reference processing.
  5241 // Creates an instance of the ref processing gang
  5242 // task and has the worker threads execute it.
  5243 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5244   assert(_workers != NULL, "Need parallel worker threads.");
  5246   ParallelTaskTerminator terminator(_active_workers, _queues);
  5247   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5249   _g1h->set_par_threads(_active_workers);
  5250   _workers->run_task(&proc_task_proxy);
  5251   _g1h->set_par_threads(0);
  5254 // Gang task for parallel reference enqueueing.
  5256 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5257   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5258   EnqueueTask& _enq_task;
  5260 public:
  5261   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5262     AbstractGangTask("Enqueue reference objects in parallel"),
  5263     _enq_task(enq_task)
  5264   { }
  5266   virtual void work(uint worker_id) {
  5267     _enq_task.work(worker_id);
  5269 };
  5271 // Driver routine for parallel reference enqueing.
  5272 // Creates an instance of the ref enqueueing gang
  5273 // task and has the worker threads execute it.
  5275 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5276   assert(_workers != NULL, "Need parallel worker threads.");
  5278   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5280   _g1h->set_par_threads(_active_workers);
  5281   _workers->run_task(&enq_task_proxy);
  5282   _g1h->set_par_threads(0);
  5285 // End of weak reference support closures
  5287 // Abstract task used to preserve (i.e. copy) any referent objects
  5288 // that are in the collection set and are pointed to by reference
  5289 // objects discovered by the CM ref processor.
  5291 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5292 protected:
  5293   G1CollectedHeap* _g1h;
  5294   RefToScanQueueSet      *_queues;
  5295   ParallelTaskTerminator _terminator;
  5296   uint _n_workers;
  5298 public:
  5299   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5300     AbstractGangTask("ParPreserveCMReferents"),
  5301     _g1h(g1h),
  5302     _queues(task_queues),
  5303     _terminator(workers, _queues),
  5304     _n_workers(workers)
  5305   { }
  5307   void work(uint worker_id) {
  5308     ResourceMark rm;
  5309     HandleMark   hm;
  5311     G1ParScanThreadState            pss(_g1h, worker_id);
  5312     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
  5313     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5314     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
  5316     pss.set_evac_closure(&scan_evac_cl);
  5317     pss.set_evac_failure_closure(&evac_failure_cl);
  5318     pss.set_partial_scan_closure(&partial_scan_cl);
  5320     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5323     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5324     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
  5326     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5327     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
  5329     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5330     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5332     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5333       // We also need to mark copied objects.
  5334       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5335       copy_perm_cl = &copy_mark_perm_cl;
  5338     // Is alive closure
  5339     G1AlwaysAliveClosure always_alive(_g1h);
  5341     // Copying keep alive closure. Applied to referent objects that need
  5342     // to be copied.
  5343     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
  5345     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5347     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5348     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5350     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5351     // So this must be true - but assert just in case someone decides to
  5352     // change the worker ids.
  5353     assert(0 <= worker_id && worker_id < limit, "sanity");
  5354     assert(!rp->discovery_is_atomic(), "check this code");
  5356     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5357     for (uint idx = worker_id; idx < limit; idx += stride) {
  5358       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5360       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5361       while (iter.has_next()) {
  5362         // Since discovery is not atomic for the CM ref processor, we
  5363         // can see some null referent objects.
  5364         iter.load_ptrs(DEBUG_ONLY(true));
  5365         oop ref = iter.obj();
  5367         // This will filter nulls.
  5368         if (iter.is_referent_alive()) {
  5369           iter.make_referent_alive();
  5371         iter.move_to_next();
  5375     // Drain the queue - which may cause stealing
  5376     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5377     drain_queue.do_void();
  5378     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5379     assert(pss.refs()->is_empty(), "should be");
  5381 };
  5383 // Weak Reference processing during an evacuation pause (part 1).
  5384 void G1CollectedHeap::process_discovered_references() {
  5385   double ref_proc_start = os::elapsedTime();
  5387   ReferenceProcessor* rp = _ref_processor_stw;
  5388   assert(rp->discovery_enabled(), "should have been enabled");
  5390   // Any reference objects, in the collection set, that were 'discovered'
  5391   // by the CM ref processor should have already been copied (either by
  5392   // applying the external root copy closure to the discovered lists, or
  5393   // by following an RSet entry).
  5394   //
  5395   // But some of the referents, that are in the collection set, that these
  5396   // reference objects point to may not have been copied: the STW ref
  5397   // processor would have seen that the reference object had already
  5398   // been 'discovered' and would have skipped discovering the reference,
  5399   // but would not have treated the reference object as a regular oop.
  5400   // As a reult the copy closure would not have been applied to the
  5401   // referent object.
  5402   //
  5403   // We need to explicitly copy these referent objects - the references
  5404   // will be processed at the end of remarking.
  5405   //
  5406   // We also need to do this copying before we process the reference
  5407   // objects discovered by the STW ref processor in case one of these
  5408   // referents points to another object which is also referenced by an
  5409   // object discovered by the STW ref processor.
  5411   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5412                         workers()->active_workers() : 1);
  5414   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5415            active_workers == workers()->active_workers(),
  5416            "Need to reset active_workers");
  5418   set_par_threads(active_workers);
  5419   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
  5421   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5422     workers()->run_task(&keep_cm_referents);
  5423   } else {
  5424     keep_cm_referents.work(0);
  5427   set_par_threads(0);
  5429   // Closure to test whether a referent is alive.
  5430   G1STWIsAliveClosure is_alive(this);
  5432   // Even when parallel reference processing is enabled, the processing
  5433   // of JNI refs is serial and performed serially by the current thread
  5434   // rather than by a worker. The following PSS will be used for processing
  5435   // JNI refs.
  5437   // Use only a single queue for this PSS.
  5438   G1ParScanThreadState pss(this, 0);
  5440   // We do not embed a reference processor in the copying/scanning
  5441   // closures while we're actually processing the discovered
  5442   // reference objects.
  5443   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
  5444   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5445   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
  5447   pss.set_evac_closure(&scan_evac_cl);
  5448   pss.set_evac_failure_closure(&evac_failure_cl);
  5449   pss.set_partial_scan_closure(&partial_scan_cl);
  5451   assert(pss.refs()->is_empty(), "pre-condition");
  5453   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5454   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
  5456   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5457   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
  5459   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5460   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
  5462   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5463     // We also need to mark copied objects.
  5464     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5465     copy_perm_cl = &copy_mark_perm_cl;
  5468   // Keep alive closure.
  5469   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
  5471   // Serial Complete GC closure
  5472   G1STWDrainQueueClosure drain_queue(this, &pss);
  5474   // Setup the soft refs policy...
  5475   rp->setup_policy(false);
  5477   if (!rp->processing_is_mt()) {
  5478     // Serial reference processing...
  5479     rp->process_discovered_references(&is_alive,
  5480                                       &keep_alive,
  5481                                       &drain_queue,
  5482                                       NULL);
  5483   } else {
  5484     // Parallel reference processing
  5485     assert(rp->num_q() == active_workers, "sanity");
  5486     assert(active_workers <= rp->max_num_q(), "sanity");
  5488     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5489     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
  5492   // We have completed copying any necessary live referent objects
  5493   // (that were not copied during the actual pause) so we can
  5494   // retire any active alloc buffers
  5495   pss.retire_alloc_buffers();
  5496   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
  5498   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5499   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5502 // Weak Reference processing during an evacuation pause (part 2).
  5503 void G1CollectedHeap::enqueue_discovered_references() {
  5504   double ref_enq_start = os::elapsedTime();
  5506   ReferenceProcessor* rp = _ref_processor_stw;
  5507   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5509   // Now enqueue any remaining on the discovered lists on to
  5510   // the pending list.
  5511   if (!rp->processing_is_mt()) {
  5512     // Serial reference processing...
  5513     rp->enqueue_discovered_references();
  5514   } else {
  5515     // Parallel reference enqueuing
  5517     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
  5518     assert(active_workers == workers()->active_workers(),
  5519            "Need to reset active_workers");
  5520     assert(rp->num_q() == active_workers, "sanity");
  5521     assert(active_workers <= rp->max_num_q(), "sanity");
  5523     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
  5524     rp->enqueue_discovered_references(&par_task_executor);
  5527   rp->verify_no_references_recorded();
  5528   assert(!rp->discovery_enabled(), "should have been disabled");
  5530   // FIXME
  5531   // CM's reference processing also cleans up the string and symbol tables.
  5532   // Should we do that here also? We could, but it is a serial operation
  5533   // and could signicantly increase the pause time.
  5535   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5536   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5539 void G1CollectedHeap::evacuate_collection_set() {
  5540   _expand_heap_after_alloc_failure = true;
  5541   set_evacuation_failed(false);
  5543   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5544   concurrent_g1_refine()->set_use_cache(false);
  5545   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  5547   uint n_workers;
  5548   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5549     n_workers =
  5550       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5551                                      workers()->active_workers(),
  5552                                      Threads::number_of_non_daemon_threads());
  5553     assert(UseDynamicNumberOfGCThreads ||
  5554            n_workers == workers()->total_workers(),
  5555            "If not dynamic should be using all the  workers");
  5556     workers()->set_active_workers(n_workers);
  5557     set_par_threads(n_workers);
  5558   } else {
  5559     assert(n_par_threads() == 0,
  5560            "Should be the original non-parallel value");
  5561     n_workers = 1;
  5564   G1ParTask g1_par_task(this, _task_queues);
  5566   init_for_evac_failure(NULL);
  5568   rem_set()->prepare_for_younger_refs_iterate(true);
  5570   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5571   double start_par_time_sec = os::elapsedTime();
  5572   double end_par_time_sec;
  5575     StrongRootsScope srs(this);
  5577     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5578       // The individual threads will set their evac-failure closures.
  5579       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5580       // These tasks use ShareHeap::_process_strong_tasks
  5581       assert(UseDynamicNumberOfGCThreads ||
  5582              workers()->active_workers() == workers()->total_workers(),
  5583              "If not dynamic should be using all the  workers");
  5584       workers()->run_task(&g1_par_task);
  5585     } else {
  5586       g1_par_task.set_for_termination(n_workers);
  5587       g1_par_task.work(0);
  5589     end_par_time_sec = os::elapsedTime();
  5591     // Closing the inner scope will execute the destructor
  5592     // for the StrongRootsScope object. We record the current
  5593     // elapsed time before closing the scope so that time
  5594     // taken for the SRS destructor is NOT included in the
  5595     // reported parallel time.
  5598   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5599   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5601   double code_root_fixup_time_ms =
  5602         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5603   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5605   set_par_threads(0);
  5607   // Process any discovered reference objects - we have
  5608   // to do this _before_ we retire the GC alloc regions
  5609   // as we may have to copy some 'reachable' referent
  5610   // objects (and their reachable sub-graphs) that were
  5611   // not copied during the pause.
  5612   process_discovered_references();
  5614   // Weak root processing.
  5615   // Note: when JSR 292 is enabled and code blobs can contain
  5616   // non-perm oops then we will need to process the code blobs
  5617   // here too.
  5619     G1STWIsAliveClosure is_alive(this);
  5620     G1KeepAliveClosure keep_alive(this);
  5621     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5624   release_gc_alloc_regions();
  5625   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5627   concurrent_g1_refine()->clear_hot_cache();
  5628   concurrent_g1_refine()->set_use_cache(true);
  5630   finalize_for_evac_failure();
  5632   if (evacuation_failed()) {
  5633     remove_self_forwarding_pointers();
  5634     if (G1Log::finer()) {
  5635       gclog_or_tty->print(" (to-space exhausted)");
  5636     } else if (G1Log::fine()) {
  5637       gclog_or_tty->print("--");
  5641   // Enqueue any remaining references remaining on the STW
  5642   // reference processor's discovered lists. We need to do
  5643   // this after the card table is cleaned (and verified) as
  5644   // the act of enqueuing entries on to the pending list
  5645   // will log these updates (and dirty their associated
  5646   // cards). We need these updates logged to update any
  5647   // RSets.
  5648   enqueue_discovered_references();
  5650   if (G1DeferredRSUpdate) {
  5651     RedirtyLoggedCardTableEntryFastClosure redirty;
  5652     dirty_card_queue_set().set_closure(&redirty);
  5653     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  5655     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5656     dcq.merge_bufferlists(&dirty_card_queue_set());
  5657     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5659   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5662 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  5663                                      size_t* pre_used,
  5664                                      FreeRegionList* free_list,
  5665                                      OldRegionSet* old_proxy_set,
  5666                                      HumongousRegionSet* humongous_proxy_set,
  5667                                      HRRSCleanupTask* hrrs_cleanup_task,
  5668                                      bool par) {
  5669   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  5670     if (hr->isHumongous()) {
  5671       assert(hr->startsHumongous(), "we should only see starts humongous");
  5672       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  5673     } else {
  5674       _old_set.remove_with_proxy(hr, old_proxy_set);
  5675       free_region(hr, pre_used, free_list, par);
  5677   } else {
  5678     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  5682 void G1CollectedHeap::free_region(HeapRegion* hr,
  5683                                   size_t* pre_used,
  5684                                   FreeRegionList* free_list,
  5685                                   bool par) {
  5686   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5687   assert(!hr->is_empty(), "the region should not be empty");
  5688   assert(free_list != NULL, "pre-condition");
  5690   *pre_used += hr->used();
  5691   hr->hr_clear(par, true /* clear_space */);
  5692   free_list->add_as_head(hr);
  5695 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5696                                      size_t* pre_used,
  5697                                      FreeRegionList* free_list,
  5698                                      HumongousRegionSet* humongous_proxy_set,
  5699                                      bool par) {
  5700   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5701   assert(free_list != NULL, "pre-condition");
  5702   assert(humongous_proxy_set != NULL, "pre-condition");
  5704   size_t hr_used = hr->used();
  5705   size_t hr_capacity = hr->capacity();
  5706   size_t hr_pre_used = 0;
  5707   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5708   // We need to read this before we make the region non-humongous,
  5709   // otherwise the information will be gone.
  5710   uint last_index = hr->last_hc_index();
  5711   hr->set_notHumongous();
  5712   free_region(hr, &hr_pre_used, free_list, par);
  5714   uint i = hr->hrs_index() + 1;
  5715   while (i < last_index) {
  5716     HeapRegion* curr_hr = region_at(i);
  5717     assert(curr_hr->continuesHumongous(), "invariant");
  5718     curr_hr->set_notHumongous();
  5719     free_region(curr_hr, &hr_pre_used, free_list, par);
  5720     i += 1;
  5722   assert(hr_pre_used == hr_used,
  5723          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5724                  "should be the same", hr_pre_used, hr_used));
  5725   *pre_used += hr_pre_used;
  5728 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5729                                        FreeRegionList* free_list,
  5730                                        OldRegionSet* old_proxy_set,
  5731                                        HumongousRegionSet* humongous_proxy_set,
  5732                                        bool par) {
  5733   if (pre_used > 0) {
  5734     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5735     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5736     assert(_summary_bytes_used >= pre_used,
  5737            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5738                    "should be >= pre_used: "SIZE_FORMAT,
  5739                    _summary_bytes_used, pre_used));
  5740     _summary_bytes_used -= pre_used;
  5742   if (free_list != NULL && !free_list->is_empty()) {
  5743     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5744     _free_list.add_as_head(free_list);
  5746   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
  5747     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5748     _old_set.update_from_proxy(old_proxy_set);
  5750   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5751     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5752     _humongous_set.update_from_proxy(humongous_proxy_set);
  5756 class G1ParCleanupCTTask : public AbstractGangTask {
  5757   CardTableModRefBS* _ct_bs;
  5758   G1CollectedHeap* _g1h;
  5759   HeapRegion* volatile _su_head;
  5760 public:
  5761   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5762                      G1CollectedHeap* g1h) :
  5763     AbstractGangTask("G1 Par Cleanup CT Task"),
  5764     _ct_bs(ct_bs), _g1h(g1h) { }
  5766   void work(uint worker_id) {
  5767     HeapRegion* r;
  5768     while (r = _g1h->pop_dirty_cards_region()) {
  5769       clear_cards(r);
  5773   void clear_cards(HeapRegion* r) {
  5774     // Cards of the survivors should have already been dirtied.
  5775     if (!r->is_survivor()) {
  5776       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5779 };
  5781 #ifndef PRODUCT
  5782 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5783   G1CollectedHeap* _g1h;
  5784   CardTableModRefBS* _ct_bs;
  5785 public:
  5786   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
  5787     : _g1h(g1h), _ct_bs(ct_bs) { }
  5788   virtual bool doHeapRegion(HeapRegion* r) {
  5789     if (r->is_survivor()) {
  5790       _g1h->verify_dirty_region(r);
  5791     } else {
  5792       _g1h->verify_not_dirty_region(r);
  5794     return false;
  5796 };
  5798 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5799   // All of the region should be clean.
  5800   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
  5801   MemRegion mr(hr->bottom(), hr->end());
  5802   ct_bs->verify_not_dirty_region(mr);
  5805 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5806   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5807   // dirty allocated blocks as they allocate them. The thread that
  5808   // retires each region and replaces it with a new one will do a
  5809   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5810   // not dirty that area (one less thing to have to do while holding
  5811   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5812   // is dirty.
  5813   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5814   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5815   ct_bs->verify_dirty_region(mr);
  5818 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5819   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
  5820   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5821     verify_dirty_region(hr);
  5825 void G1CollectedHeap::verify_dirty_young_regions() {
  5826   verify_dirty_young_list(_young_list->first_region());
  5828 #endif
  5830 void G1CollectedHeap::cleanUpCardTable() {
  5831   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5832   double start = os::elapsedTime();
  5835     // Iterate over the dirty cards region list.
  5836     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5838     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5839       set_par_threads();
  5840       workers()->run_task(&cleanup_task);
  5841       set_par_threads(0);
  5842     } else {
  5843       while (_dirty_cards_region_list) {
  5844         HeapRegion* r = _dirty_cards_region_list;
  5845         cleanup_task.clear_cards(r);
  5846         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5847         if (_dirty_cards_region_list == r) {
  5848           // The last region.
  5849           _dirty_cards_region_list = NULL;
  5851         r->set_next_dirty_cards_region(NULL);
  5854 #ifndef PRODUCT
  5855     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5856       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5857       heap_region_iterate(&cleanup_verifier);
  5859 #endif
  5862   double elapsed = os::elapsedTime() - start;
  5863   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  5866 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5867   size_t pre_used = 0;
  5868   FreeRegionList local_free_list("Local List for CSet Freeing");
  5870   double young_time_ms     = 0.0;
  5871   double non_young_time_ms = 0.0;
  5873   // Since the collection set is a superset of the the young list,
  5874   // all we need to do to clear the young list is clear its
  5875   // head and length, and unlink any young regions in the code below
  5876   _young_list->clear();
  5878   G1CollectorPolicy* policy = g1_policy();
  5880   double start_sec = os::elapsedTime();
  5881   bool non_young = true;
  5883   HeapRegion* cur = cs_head;
  5884   int age_bound = -1;
  5885   size_t rs_lengths = 0;
  5887   while (cur != NULL) {
  5888     assert(!is_on_master_free_list(cur), "sanity");
  5889     if (non_young) {
  5890       if (cur->is_young()) {
  5891         double end_sec = os::elapsedTime();
  5892         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5893         non_young_time_ms += elapsed_ms;
  5895         start_sec = os::elapsedTime();
  5896         non_young = false;
  5898     } else {
  5899       if (!cur->is_young()) {
  5900         double end_sec = os::elapsedTime();
  5901         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5902         young_time_ms += elapsed_ms;
  5904         start_sec = os::elapsedTime();
  5905         non_young = true;
  5909     rs_lengths += cur->rem_set()->occupied();
  5911     HeapRegion* next = cur->next_in_collection_set();
  5912     assert(cur->in_collection_set(), "bad CS");
  5913     cur->set_next_in_collection_set(NULL);
  5914     cur->set_in_collection_set(false);
  5916     if (cur->is_young()) {
  5917       int index = cur->young_index_in_cset();
  5918       assert(index != -1, "invariant");
  5919       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5920       size_t words_survived = _surviving_young_words[index];
  5921       cur->record_surv_words_in_group(words_survived);
  5923       // At this point the we have 'popped' cur from the collection set
  5924       // (linked via next_in_collection_set()) but it is still in the
  5925       // young list (linked via next_young_region()). Clear the
  5926       // _next_young_region field.
  5927       cur->set_next_young_region(NULL);
  5928     } else {
  5929       int index = cur->young_index_in_cset();
  5930       assert(index == -1, "invariant");
  5933     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5934             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5935             "invariant" );
  5937     if (!cur->evacuation_failed()) {
  5938       MemRegion used_mr = cur->used_region();
  5940       // And the region is empty.
  5941       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5942       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5943     } else {
  5944       cur->uninstall_surv_rate_group();
  5945       if (cur->is_young()) {
  5946         cur->set_young_index_in_cset(-1);
  5948       cur->set_not_young();
  5949       cur->set_evacuation_failed(false);
  5950       // The region is now considered to be old.
  5951       _old_set.add(cur);
  5953     cur = next;
  5956   policy->record_max_rs_lengths(rs_lengths);
  5957   policy->cset_regions_freed();
  5959   double end_sec = os::elapsedTime();
  5960   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5962   if (non_young) {
  5963     non_young_time_ms += elapsed_ms;
  5964   } else {
  5965     young_time_ms += elapsed_ms;
  5968   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5969                                     NULL /* old_proxy_set */,
  5970                                     NULL /* humongous_proxy_set */,
  5971                                     false /* par */);
  5972   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  5973   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  5976 // This routine is similar to the above but does not record
  5977 // any policy statistics or update free lists; we are abandoning
  5978 // the current incremental collection set in preparation of a
  5979 // full collection. After the full GC we will start to build up
  5980 // the incremental collection set again.
  5981 // This is only called when we're doing a full collection
  5982 // and is immediately followed by the tearing down of the young list.
  5984 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5985   HeapRegion* cur = cs_head;
  5987   while (cur != NULL) {
  5988     HeapRegion* next = cur->next_in_collection_set();
  5989     assert(cur->in_collection_set(), "bad CS");
  5990     cur->set_next_in_collection_set(NULL);
  5991     cur->set_in_collection_set(false);
  5992     cur->set_young_index_in_cset(-1);
  5993     cur = next;
  5997 void G1CollectedHeap::set_free_regions_coming() {
  5998   if (G1ConcRegionFreeingVerbose) {
  5999     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6000                            "setting free regions coming");
  6003   assert(!free_regions_coming(), "pre-condition");
  6004   _free_regions_coming = true;
  6007 void G1CollectedHeap::reset_free_regions_coming() {
  6008   assert(free_regions_coming(), "pre-condition");
  6011     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6012     _free_regions_coming = false;
  6013     SecondaryFreeList_lock->notify_all();
  6016   if (G1ConcRegionFreeingVerbose) {
  6017     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6018                            "reset free regions coming");
  6022 void G1CollectedHeap::wait_while_free_regions_coming() {
  6023   // Most of the time we won't have to wait, so let's do a quick test
  6024   // first before we take the lock.
  6025   if (!free_regions_coming()) {
  6026     return;
  6029   if (G1ConcRegionFreeingVerbose) {
  6030     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6031                            "waiting for free regions");
  6035     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6036     while (free_regions_coming()) {
  6037       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6041   if (G1ConcRegionFreeingVerbose) {
  6042     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6043                            "done waiting for free regions");
  6047 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6048   assert(heap_lock_held_for_gc(),
  6049               "the heap lock should already be held by or for this thread");
  6050   _young_list->push_region(hr);
  6053 class NoYoungRegionsClosure: public HeapRegionClosure {
  6054 private:
  6055   bool _success;
  6056 public:
  6057   NoYoungRegionsClosure() : _success(true) { }
  6058   bool doHeapRegion(HeapRegion* r) {
  6059     if (r->is_young()) {
  6060       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6061                              r->bottom(), r->end());
  6062       _success = false;
  6064     return false;
  6066   bool success() { return _success; }
  6067 };
  6069 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6070   bool ret = _young_list->check_list_empty(check_sample);
  6072   if (check_heap) {
  6073     NoYoungRegionsClosure closure;
  6074     heap_region_iterate(&closure);
  6075     ret = ret && closure.success();
  6078   return ret;
  6081 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6082 private:
  6083   OldRegionSet *_old_set;
  6085 public:
  6086   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
  6088   bool doHeapRegion(HeapRegion* r) {
  6089     if (r->is_empty()) {
  6090       // We ignore empty regions, we'll empty the free list afterwards
  6091     } else if (r->is_young()) {
  6092       // We ignore young regions, we'll empty the young list afterwards
  6093     } else if (r->isHumongous()) {
  6094       // We ignore humongous regions, we're not tearing down the
  6095       // humongous region set
  6096     } else {
  6097       // The rest should be old
  6098       _old_set->remove(r);
  6100     return false;
  6103   ~TearDownRegionSetsClosure() {
  6104     assert(_old_set->is_empty(), "post-condition");
  6106 };
  6108 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6109   assert_at_safepoint(true /* should_be_vm_thread */);
  6111   if (!free_list_only) {
  6112     TearDownRegionSetsClosure cl(&_old_set);
  6113     heap_region_iterate(&cl);
  6115     // Need to do this after the heap iteration to be able to
  6116     // recognize the young regions and ignore them during the iteration.
  6117     _young_list->empty_list();
  6119   _free_list.remove_all();
  6122 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6123 private:
  6124   bool            _free_list_only;
  6125   OldRegionSet*   _old_set;
  6126   FreeRegionList* _free_list;
  6127   size_t          _total_used;
  6129 public:
  6130   RebuildRegionSetsClosure(bool free_list_only,
  6131                            OldRegionSet* old_set, FreeRegionList* free_list) :
  6132     _free_list_only(free_list_only),
  6133     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6134     assert(_free_list->is_empty(), "pre-condition");
  6135     if (!free_list_only) {
  6136       assert(_old_set->is_empty(), "pre-condition");
  6140   bool doHeapRegion(HeapRegion* r) {
  6141     if (r->continuesHumongous()) {
  6142       return false;
  6145     if (r->is_empty()) {
  6146       // Add free regions to the free list
  6147       _free_list->add_as_tail(r);
  6148     } else if (!_free_list_only) {
  6149       assert(!r->is_young(), "we should not come across young regions");
  6151       if (r->isHumongous()) {
  6152         // We ignore humongous regions, we left the humongous set unchanged
  6153       } else {
  6154         // The rest should be old, add them to the old set
  6155         _old_set->add(r);
  6157       _total_used += r->used();
  6160     return false;
  6163   size_t total_used() {
  6164     return _total_used;
  6166 };
  6168 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6169   assert_at_safepoint(true /* should_be_vm_thread */);
  6171   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6172   heap_region_iterate(&cl);
  6174   if (!free_list_only) {
  6175     _summary_bytes_used = cl.total_used();
  6177   assert(_summary_bytes_used == recalculate_used(),
  6178          err_msg("inconsistent _summary_bytes_used, "
  6179                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6180                  _summary_bytes_used, recalculate_used()));
  6183 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6184   _refine_cte_cl->set_concurrent(concurrent);
  6187 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6188   HeapRegion* hr = heap_region_containing(p);
  6189   if (hr == NULL) {
  6190     return is_in_permanent(p);
  6191   } else {
  6192     return hr->is_in(p);
  6196 // Methods for the mutator alloc region
  6198 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6199                                                       bool force) {
  6200   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6201   assert(!force || g1_policy()->can_expand_young_list(),
  6202          "if force is true we should be able to expand the young list");
  6203   bool young_list_full = g1_policy()->is_young_list_full();
  6204   if (force || !young_list_full) {
  6205     HeapRegion* new_alloc_region = new_region(word_size,
  6206                                               false /* do_expand */);
  6207     if (new_alloc_region != NULL) {
  6208       set_region_short_lived_locked(new_alloc_region);
  6209       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6210       return new_alloc_region;
  6213   return NULL;
  6216 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6217                                                   size_t allocated_bytes) {
  6218   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6219   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6221   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6222   _summary_bytes_used += allocated_bytes;
  6223   _hr_printer.retire(alloc_region);
  6224   // We update the eden sizes here, when the region is retired,
  6225   // instead of when it's allocated, since this is the point that its
  6226   // used space has been recored in _summary_bytes_used.
  6227   g1mm()->update_eden_size();
  6230 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6231                                                     bool force) {
  6232   return _g1h->new_mutator_alloc_region(word_size, force);
  6235 void G1CollectedHeap::set_par_threads() {
  6236   // Don't change the number of workers.  Use the value previously set
  6237   // in the workgroup.
  6238   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6239   uint n_workers = workers()->active_workers();
  6240   assert(UseDynamicNumberOfGCThreads ||
  6241            n_workers == workers()->total_workers(),
  6242       "Otherwise should be using the total number of workers");
  6243   if (n_workers == 0) {
  6244     assert(false, "Should have been set in prior evacuation pause.");
  6245     n_workers = ParallelGCThreads;
  6246     workers()->set_active_workers(n_workers);
  6248   set_par_threads(n_workers);
  6251 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6252                                        size_t allocated_bytes) {
  6253   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6256 // Methods for the GC alloc regions
  6258 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6259                                                  uint count,
  6260                                                  GCAllocPurpose ap) {
  6261   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6263   if (count < g1_policy()->max_regions(ap)) {
  6264     HeapRegion* new_alloc_region = new_region(word_size,
  6265                                               true /* do_expand */);
  6266     if (new_alloc_region != NULL) {
  6267       // We really only need to do this for old regions given that we
  6268       // should never scan survivors. But it doesn't hurt to do it
  6269       // for survivors too.
  6270       new_alloc_region->set_saved_mark();
  6271       if (ap == GCAllocForSurvived) {
  6272         new_alloc_region->set_survivor();
  6273         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6274       } else {
  6275         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6277       bool during_im = g1_policy()->during_initial_mark_pause();
  6278       new_alloc_region->note_start_of_copying(during_im);
  6279       return new_alloc_region;
  6280     } else {
  6281       g1_policy()->note_alloc_region_limit_reached(ap);
  6284   return NULL;
  6287 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6288                                              size_t allocated_bytes,
  6289                                              GCAllocPurpose ap) {
  6290   bool during_im = g1_policy()->during_initial_mark_pause();
  6291   alloc_region->note_end_of_copying(during_im);
  6292   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6293   if (ap == GCAllocForSurvived) {
  6294     young_list()->add_survivor_region(alloc_region);
  6295   } else {
  6296     _old_set.add(alloc_region);
  6298   _hr_printer.retire(alloc_region);
  6301 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6302                                                        bool force) {
  6303   assert(!force, "not supported for GC alloc regions");
  6304   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6307 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6308                                           size_t allocated_bytes) {
  6309   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6310                                GCAllocForSurvived);
  6313 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6314                                                   bool force) {
  6315   assert(!force, "not supported for GC alloc regions");
  6316   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6319 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6320                                      size_t allocated_bytes) {
  6321   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6322                                GCAllocForTenured);
  6324 // Heap region set verification
  6326 class VerifyRegionListsClosure : public HeapRegionClosure {
  6327 private:
  6328   FreeRegionList*     _free_list;
  6329   OldRegionSet*       _old_set;
  6330   HumongousRegionSet* _humongous_set;
  6331   uint                _region_count;
  6333 public:
  6334   VerifyRegionListsClosure(OldRegionSet* old_set,
  6335                            HumongousRegionSet* humongous_set,
  6336                            FreeRegionList* free_list) :
  6337     _old_set(old_set), _humongous_set(humongous_set),
  6338     _free_list(free_list), _region_count(0) { }
  6340   uint region_count() { return _region_count; }
  6342   bool doHeapRegion(HeapRegion* hr) {
  6343     _region_count += 1;
  6345     if (hr->continuesHumongous()) {
  6346       return false;
  6349     if (hr->is_young()) {
  6350       // TODO
  6351     } else if (hr->startsHumongous()) {
  6352       _humongous_set->verify_next_region(hr);
  6353     } else if (hr->is_empty()) {
  6354       _free_list->verify_next_region(hr);
  6355     } else {
  6356       _old_set->verify_next_region(hr);
  6358     return false;
  6360 };
  6362 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6363                                              HeapWord* bottom) {
  6364   HeapWord* end = bottom + HeapRegion::GrainWords;
  6365   MemRegion mr(bottom, end);
  6366   assert(_g1_reserved.contains(mr), "invariant");
  6367   // This might return NULL if the allocation fails
  6368   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
  6371 void G1CollectedHeap::verify_region_sets() {
  6372   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6374   // First, check the explicit lists.
  6375   _free_list.verify();
  6377     // Given that a concurrent operation might be adding regions to
  6378     // the secondary free list we have to take the lock before
  6379     // verifying it.
  6380     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6381     _secondary_free_list.verify();
  6383   _old_set.verify();
  6384   _humongous_set.verify();
  6386   // If a concurrent region freeing operation is in progress it will
  6387   // be difficult to correctly attributed any free regions we come
  6388   // across to the correct free list given that they might belong to
  6389   // one of several (free_list, secondary_free_list, any local lists,
  6390   // etc.). So, if that's the case we will skip the rest of the
  6391   // verification operation. Alternatively, waiting for the concurrent
  6392   // operation to complete will have a non-trivial effect on the GC's
  6393   // operation (no concurrent operation will last longer than the
  6394   // interval between two calls to verification) and it might hide
  6395   // any issues that we would like to catch during testing.
  6396   if (free_regions_coming()) {
  6397     return;
  6400   // Make sure we append the secondary_free_list on the free_list so
  6401   // that all free regions we will come across can be safely
  6402   // attributed to the free_list.
  6403   append_secondary_free_list_if_not_empty_with_lock();
  6405   // Finally, make sure that the region accounting in the lists is
  6406   // consistent with what we see in the heap.
  6407   _old_set.verify_start();
  6408   _humongous_set.verify_start();
  6409   _free_list.verify_start();
  6411   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6412   heap_region_iterate(&cl);
  6414   _old_set.verify_end();
  6415   _humongous_set.verify_end();
  6416   _free_list.verify_end();

mercurial