src/os/linux/vm/os_linux.cpp

Wed, 07 Feb 2018 10:45:15 -0800

author
robm
date
Wed, 07 Feb 2018 10:45:15 -0800
changeset 9291
a2c8195708cc
parent 9013
18366fa39fe0
parent 9289
427b2fb1944f
child 9348
cb9634ab2906
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "jvm_linux.h"
    35 #include "memory/allocation.inline.hpp"
    36 #include "memory/filemap.hpp"
    37 #include "mutex_linux.inline.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "os_share_linux.hpp"
    40 #include "prims/jniFastGetField.hpp"
    41 #include "prims/jvm.h"
    42 #include "prims/jvm_misc.hpp"
    43 #include "runtime/arguments.hpp"
    44 #include "runtime/extendedPC.hpp"
    45 #include "runtime/globals.hpp"
    46 #include "runtime/interfaceSupport.hpp"
    47 #include "runtime/init.hpp"
    48 #include "runtime/java.hpp"
    49 #include "runtime/javaCalls.hpp"
    50 #include "runtime/mutexLocker.hpp"
    51 #include "runtime/objectMonitor.hpp"
    52 #include "runtime/orderAccess.inline.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/thread.inline.hpp"
    59 #include "runtime/threadCritical.hpp"
    60 #include "runtime/timer.hpp"
    61 #include "services/attachListener.hpp"
    62 #include "services/memTracker.hpp"
    63 #include "services/runtimeService.hpp"
    64 #include "utilities/decoder.hpp"
    65 #include "utilities/defaultStream.hpp"
    66 #include "utilities/events.hpp"
    67 #include "utilities/elfFile.hpp"
    68 #include "utilities/growableArray.hpp"
    69 #include "utilities/vmError.hpp"
    71 // put OS-includes here
    72 # include <sys/types.h>
    73 # include <sys/mman.h>
    74 # include <sys/stat.h>
    75 # include <sys/select.h>
    76 # include <pthread.h>
    77 # include <signal.h>
    78 # include <errno.h>
    79 # include <dlfcn.h>
    80 # include <stdio.h>
    81 # include <unistd.h>
    82 # include <sys/resource.h>
    83 # include <pthread.h>
    84 # include <sys/stat.h>
    85 # include <sys/time.h>
    86 # include <sys/times.h>
    87 # include <sys/utsname.h>
    88 # include <sys/socket.h>
    89 # include <sys/wait.h>
    90 # include <pwd.h>
    91 # include <poll.h>
    92 # include <semaphore.h>
    93 # include <fcntl.h>
    94 # include <string.h>
    95 # include <syscall.h>
    96 # include <sys/sysinfo.h>
    97 # include <gnu/libc-version.h>
    98 # include <sys/ipc.h>
    99 # include <sys/shm.h>
   100 # include <link.h>
   101 # include <stdint.h>
   102 # include <inttypes.h>
   103 # include <sys/ioctl.h>
   105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
   107 #ifndef _GNU_SOURCE
   108   #define _GNU_SOURCE
   109   #include <sched.h>
   110   #undef _GNU_SOURCE
   111 #else
   112   #include <sched.h>
   113 #endif
   115 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
   116 // getrusage() is prepared to handle the associated failure.
   117 #ifndef RUSAGE_THREAD
   118 #define RUSAGE_THREAD   (1)               /* only the calling thread */
   119 #endif
   121 #define MAX_PATH    (2 * K)
   123 #define MAX_SECS 100000000
   125 // for timer info max values which include all bits
   126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   128 #define LARGEPAGES_BIT (1 << 6)
   129 ////////////////////////////////////////////////////////////////////////////////
   130 // global variables
   131 julong os::Linux::_physical_memory = 0;
   133 address   os::Linux::_initial_thread_stack_bottom = NULL;
   134 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   136 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   137 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   138 Mutex* os::Linux::_createThread_lock = NULL;
   139 pthread_t os::Linux::_main_thread;
   140 int os::Linux::_page_size = -1;
   141 const int os::Linux::_vm_default_page_size = (8 * K);
   142 bool os::Linux::_is_floating_stack = false;
   143 bool os::Linux::_is_NPTL = false;
   144 bool os::Linux::_supports_fast_thread_cpu_time = false;
   145 const char * os::Linux::_glibc_version = NULL;
   146 const char * os::Linux::_libpthread_version = NULL;
   147 pthread_condattr_t os::Linux::_condattr[1];
   149 static jlong initial_time_count=0;
   151 static int clock_tics_per_sec = 100;
   153 // For diagnostics to print a message once. see run_periodic_checks
   154 static sigset_t check_signal_done;
   155 static bool check_signals = true;
   157 static pid_t _initial_pid = 0;
   159 /* Signal number used to suspend/resume a thread */
   161 /* do not use any signal number less than SIGSEGV, see 4355769 */
   162 static int SR_signum = SIGUSR2;
   163 sigset_t SR_sigset;
   165 /* Used to protect dlsym() calls */
   166 static pthread_mutex_t dl_mutex;
   168 // Declarations
   169 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
   171 // utility functions
   173 static int SR_initialize();
   175 julong os::available_memory() {
   176   return Linux::available_memory();
   177 }
   179 julong os::Linux::available_memory() {
   180   // values in struct sysinfo are "unsigned long"
   181   struct sysinfo si;
   182   sysinfo(&si);
   184   return (julong)si.freeram * si.mem_unit;
   185 }
   187 julong os::physical_memory() {
   188   return Linux::physical_memory();
   189 }
   191 ////////////////////////////////////////////////////////////////////////////////
   192 // environment support
   194 bool os::getenv(const char* name, char* buf, int len) {
   195   const char* val = ::getenv(name);
   196   if (val != NULL && strlen(val) < (size_t)len) {
   197     strcpy(buf, val);
   198     return true;
   199   }
   200   if (len > 0) buf[0] = 0;  // return a null string
   201   return false;
   202 }
   205 // Return true if user is running as root.
   207 bool os::have_special_privileges() {
   208   static bool init = false;
   209   static bool privileges = false;
   210   if (!init) {
   211     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   212     init = true;
   213   }
   214   return privileges;
   215 }
   218 #ifndef SYS_gettid
   219 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   220   #ifdef __ia64__
   221     #define SYS_gettid 1105
   222   #else
   223     #ifdef __i386__
   224       #define SYS_gettid 224
   225     #else
   226       #ifdef __amd64__
   227         #define SYS_gettid 186
   228       #else
   229         #ifdef __sparc__
   230           #define SYS_gettid 143
   231         #else
   232           #error define gettid for the arch
   233         #endif
   234       #endif
   235     #endif
   236   #endif
   237 #endif
   239 // Cpu architecture string
   240 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
   242 // pid_t gettid()
   243 //
   244 // Returns the kernel thread id of the currently running thread. Kernel
   245 // thread id is used to access /proc.
   246 //
   247 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   248 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   249 //
   250 pid_t os::Linux::gettid() {
   251   int rslt = syscall(SYS_gettid);
   252   if (rslt == -1) {
   253      // old kernel, no NPTL support
   254      return getpid();
   255   } else {
   256      return (pid_t)rslt;
   257   }
   258 }
   260 // Most versions of linux have a bug where the number of processors are
   261 // determined by looking at the /proc file system.  In a chroot environment,
   262 // the system call returns 1.  This causes the VM to act as if it is
   263 // a single processor and elide locking (see is_MP() call).
   264 static bool unsafe_chroot_detected = false;
   265 static const char *unstable_chroot_error = "/proc file system not found.\n"
   266                      "Java may be unstable running multithreaded in a chroot "
   267                      "environment on Linux when /proc filesystem is not mounted.";
   269 void os::Linux::initialize_system_info() {
   270   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   271   if (processor_count() == 1) {
   272     pid_t pid = os::Linux::gettid();
   273     char fname[32];
   274     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   275     FILE *fp = fopen(fname, "r");
   276     if (fp == NULL) {
   277       unsafe_chroot_detected = true;
   278     } else {
   279       fclose(fp);
   280     }
   281   }
   282   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   283   assert(processor_count() > 0, "linux error");
   284 }
   286 void os::init_system_properties_values() {
   287   // The next steps are taken in the product version:
   288   //
   289   // Obtain the JAVA_HOME value from the location of libjvm.so.
   290   // This library should be located at:
   291   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
   292   //
   293   // If "/jre/lib/" appears at the right place in the path, then we
   294   // assume libjvm.so is installed in a JDK and we use this path.
   295   //
   296   // Otherwise exit with message: "Could not create the Java virtual machine."
   297   //
   298   // The following extra steps are taken in the debugging version:
   299   //
   300   // If "/jre/lib/" does NOT appear at the right place in the path
   301   // instead of exit check for $JAVA_HOME environment variable.
   302   //
   303   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   304   // then we append a fake suffix "hotspot/libjvm.so" to this path so
   305   // it looks like libjvm.so is installed there
   306   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
   307   //
   308   // Otherwise exit.
   309   //
   310   // Important note: if the location of libjvm.so changes this
   311   // code needs to be changed accordingly.
   313 // See ld(1):
   314 //      The linker uses the following search paths to locate required
   315 //      shared libraries:
   316 //        1: ...
   317 //        ...
   318 //        7: The default directories, normally /lib and /usr/lib.
   319 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   320 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   321 #else
   322 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   323 #endif
   325 // Base path of extensions installed on the system.
   326 #define SYS_EXT_DIR     "/usr/java/packages"
   327 #define EXTENSIONS_DIR  "/lib/ext"
   328 #define ENDORSED_DIR    "/lib/endorsed"
   330   // Buffer that fits several sprintfs.
   331   // Note that the space for the colon and the trailing null are provided
   332   // by the nulls included by the sizeof operator.
   333   const size_t bufsize =
   334     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
   335          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
   336          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
   337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
   339   // sysclasspath, java_home, dll_dir
   340   {
   341     char *pslash;
   342     os::jvm_path(buf, bufsize);
   344     // Found the full path to libjvm.so.
   345     // Now cut the path to <java_home>/jre if we can.
   346     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
   347     pslash = strrchr(buf, '/');
   348     if (pslash != NULL) {
   349       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
   350     }
   351     Arguments::set_dll_dir(buf);
   353     if (pslash != NULL) {
   354       pslash = strrchr(buf, '/');
   355       if (pslash != NULL) {
   356         *pslash = '\0';          // Get rid of /<arch>.
   357         pslash = strrchr(buf, '/');
   358         if (pslash != NULL) {
   359           *pslash = '\0';        // Get rid of /lib.
   360         }
   361       }
   362     }
   363     Arguments::set_java_home(buf);
   364     set_boot_path('/', ':');
   365   }
   367   // Where to look for native libraries.
   368   //
   369   // Note: Due to a legacy implementation, most of the library path
   370   // is set in the launcher. This was to accomodate linking restrictions
   371   // on legacy Linux implementations (which are no longer supported).
   372   // Eventually, all the library path setting will be done here.
   373   //
   374   // However, to prevent the proliferation of improperly built native
   375   // libraries, the new path component /usr/java/packages is added here.
   376   // Eventually, all the library path setting will be done here.
   377   {
   378     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
   379     // should always exist (until the legacy problem cited above is
   380     // addressed).
   381     const char *v = ::getenv("LD_LIBRARY_PATH");
   382     const char *v_colon = ":";
   383     if (v == NULL) { v = ""; v_colon = ""; }
   384     // That's +1 for the colon and +1 for the trailing '\0'.
   385     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
   386                                                      strlen(v) + 1 +
   387                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
   388                                                      mtInternal);
   389     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
   390     Arguments::set_library_path(ld_library_path);
   391     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
   392   }
   394   // Extensions directories.
   395   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
   396   Arguments::set_ext_dirs(buf);
   398   // Endorsed standards default directory.
   399   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   400   Arguments::set_endorsed_dirs(buf);
   402   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
   404 #undef DEFAULT_LIBPATH
   405 #undef SYS_EXT_DIR
   406 #undef EXTENSIONS_DIR
   407 #undef ENDORSED_DIR
   408 }
   410 ////////////////////////////////////////////////////////////////////////////////
   411 // breakpoint support
   413 void os::breakpoint() {
   414   BREAKPOINT;
   415 }
   417 extern "C" void breakpoint() {
   418   // use debugger to set breakpoint here
   419 }
   421 ////////////////////////////////////////////////////////////////////////////////
   422 // signal support
   424 debug_only(static bool signal_sets_initialized = false);
   425 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   427 bool os::Linux::is_sig_ignored(int sig) {
   428       struct sigaction oact;
   429       sigaction(sig, (struct sigaction*)NULL, &oact);
   430       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   431                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   432       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   433            return true;
   434       else
   435            return false;
   436 }
   438 void os::Linux::signal_sets_init() {
   439   // Should also have an assertion stating we are still single-threaded.
   440   assert(!signal_sets_initialized, "Already initialized");
   441   // Fill in signals that are necessarily unblocked for all threads in
   442   // the VM. Currently, we unblock the following signals:
   443   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   444   //                         by -Xrs (=ReduceSignalUsage));
   445   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   446   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   447   // the dispositions or masks wrt these signals.
   448   // Programs embedding the VM that want to use the above signals for their
   449   // own purposes must, at this time, use the "-Xrs" option to prevent
   450   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   451   // (See bug 4345157, and other related bugs).
   452   // In reality, though, unblocking these signals is really a nop, since
   453   // these signals are not blocked by default.
   454   sigemptyset(&unblocked_sigs);
   455   sigemptyset(&allowdebug_blocked_sigs);
   456   sigaddset(&unblocked_sigs, SIGILL);
   457   sigaddset(&unblocked_sigs, SIGSEGV);
   458   sigaddset(&unblocked_sigs, SIGBUS);
   459   sigaddset(&unblocked_sigs, SIGFPE);
   460 #if defined(PPC64)
   461   sigaddset(&unblocked_sigs, SIGTRAP);
   462 #endif
   463   sigaddset(&unblocked_sigs, SR_signum);
   465   if (!ReduceSignalUsage) {
   466    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   467       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   469    }
   470    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   471       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   472       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   473    }
   474    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   475       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   476       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   477    }
   478   }
   479   // Fill in signals that are blocked by all but the VM thread.
   480   sigemptyset(&vm_sigs);
   481   if (!ReduceSignalUsage)
   482     sigaddset(&vm_sigs, BREAK_SIGNAL);
   483   debug_only(signal_sets_initialized = true);
   485 }
   487 // These are signals that are unblocked while a thread is running Java.
   488 // (For some reason, they get blocked by default.)
   489 sigset_t* os::Linux::unblocked_signals() {
   490   assert(signal_sets_initialized, "Not initialized");
   491   return &unblocked_sigs;
   492 }
   494 // These are the signals that are blocked while a (non-VM) thread is
   495 // running Java. Only the VM thread handles these signals.
   496 sigset_t* os::Linux::vm_signals() {
   497   assert(signal_sets_initialized, "Not initialized");
   498   return &vm_sigs;
   499 }
   501 // These are signals that are blocked during cond_wait to allow debugger in
   502 sigset_t* os::Linux::allowdebug_blocked_signals() {
   503   assert(signal_sets_initialized, "Not initialized");
   504   return &allowdebug_blocked_sigs;
   505 }
   507 void os::Linux::hotspot_sigmask(Thread* thread) {
   509   //Save caller's signal mask before setting VM signal mask
   510   sigset_t caller_sigmask;
   511   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   513   OSThread* osthread = thread->osthread();
   514   osthread->set_caller_sigmask(caller_sigmask);
   516   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   518   if (!ReduceSignalUsage) {
   519     if (thread->is_VM_thread()) {
   520       // Only the VM thread handles BREAK_SIGNAL ...
   521       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   522     } else {
   523       // ... all other threads block BREAK_SIGNAL
   524       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   525     }
   526   }
   527 }
   529 //////////////////////////////////////////////////////////////////////////////
   530 // detecting pthread library
   532 void os::Linux::libpthread_init() {
   533   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   534   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   535   // generic name for earlier versions.
   536   // Define macros here so we can build HotSpot on old systems.
   537 # ifndef _CS_GNU_LIBC_VERSION
   538 # define _CS_GNU_LIBC_VERSION 2
   539 # endif
   540 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   541 # define _CS_GNU_LIBPTHREAD_VERSION 3
   542 # endif
   544   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   545   if (n > 0) {
   546      char *str = (char *)malloc(n, mtInternal);
   547      confstr(_CS_GNU_LIBC_VERSION, str, n);
   548      os::Linux::set_glibc_version(str);
   549   } else {
   550      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   551      static char _gnu_libc_version[32];
   552      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   553               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   554      os::Linux::set_glibc_version(_gnu_libc_version);
   555   }
   557   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   558   if (n > 0) {
   559      char *str = (char *)malloc(n, mtInternal);
   560      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   561      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   562      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   563      // is the case. LinuxThreads has a hard limit on max number of threads.
   564      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   565      // On the other hand, NPTL does not have such a limit, sysconf()
   566      // will return -1 and errno is not changed. Check if it is really NPTL.
   567      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   568          strstr(str, "NPTL") &&
   569          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   570        free(str);
   571        os::Linux::set_libpthread_version("linuxthreads");
   572      } else {
   573        os::Linux::set_libpthread_version(str);
   574      }
   575   } else {
   576     // glibc before 2.3.2 only has LinuxThreads.
   577     os::Linux::set_libpthread_version("linuxthreads");
   578   }
   580   if (strstr(libpthread_version(), "NPTL")) {
   581      os::Linux::set_is_NPTL();
   582   } else {
   583      os::Linux::set_is_LinuxThreads();
   584   }
   586   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   587   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   588   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   589      os::Linux::set_is_floating_stack();
   590   }
   591 }
   593 /////////////////////////////////////////////////////////////////////////////
   594 // thread stack
   596 // Force Linux kernel to expand current thread stack. If "bottom" is close
   597 // to the stack guard, caller should block all signals.
   598 //
   599 // MAP_GROWSDOWN:
   600 //   A special mmap() flag that is used to implement thread stacks. It tells
   601 //   kernel that the memory region should extend downwards when needed. This
   602 //   allows early versions of LinuxThreads to only mmap the first few pages
   603 //   when creating a new thread. Linux kernel will automatically expand thread
   604 //   stack as needed (on page faults).
   605 //
   606 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   607 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   608 //   region, it's hard to tell if the fault is due to a legitimate stack
   609 //   access or because of reading/writing non-exist memory (e.g. buffer
   610 //   overrun). As a rule, if the fault happens below current stack pointer,
   611 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   612 //   application (see Linux kernel fault.c).
   613 //
   614 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   615 //   stack overflow detection.
   616 //
   617 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   618 //   not use this flag. However, the stack of initial thread is not created
   619 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   620 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   621 //   and then attach the thread to JVM.
   622 //
   623 // To get around the problem and allow stack banging on Linux, we need to
   624 // manually expand thread stack after receiving the SIGSEGV.
   625 //
   626 // There are two ways to expand thread stack to address "bottom", we used
   627 // both of them in JVM before 1.5:
   628 //   1. adjust stack pointer first so that it is below "bottom", and then
   629 //      touch "bottom"
   630 //   2. mmap() the page in question
   631 //
   632 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   633 // if current sp is already near the lower end of page 101, and we need to
   634 // call mmap() to map page 100, it is possible that part of the mmap() frame
   635 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   636 // That will destroy the mmap() frame and cause VM to crash.
   637 //
   638 // The following code works by adjusting sp first, then accessing the "bottom"
   639 // page to force a page fault. Linux kernel will then automatically expand the
   640 // stack mapping.
   641 //
   642 // _expand_stack_to() assumes its frame size is less than page size, which
   643 // should always be true if the function is not inlined.
   645 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   646 #define NOINLINE
   647 #else
   648 #define NOINLINE __attribute__ ((noinline))
   649 #endif
   651 static void _expand_stack_to(address bottom) NOINLINE;
   653 static void _expand_stack_to(address bottom) {
   654   address sp;
   655   size_t size;
   656   volatile char *p;
   658   // Adjust bottom to point to the largest address within the same page, it
   659   // gives us a one-page buffer if alloca() allocates slightly more memory.
   660   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   661   bottom += os::Linux::page_size() - 1;
   663   // sp might be slightly above current stack pointer; if that's the case, we
   664   // will alloca() a little more space than necessary, which is OK. Don't use
   665   // os::current_stack_pointer(), as its result can be slightly below current
   666   // stack pointer, causing us to not alloca enough to reach "bottom".
   667   sp = (address)&sp;
   669   if (sp > bottom) {
   670     size = sp - bottom;
   671     p = (volatile char *)alloca(size);
   672     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   673     p[0] = '\0';
   674   }
   675 }
   677 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   678   assert(t!=NULL, "just checking");
   679   assert(t->osthread()->expanding_stack(), "expand should be set");
   680   assert(t->stack_base() != NULL, "stack_base was not initialized");
   682   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   683     sigset_t mask_all, old_sigset;
   684     sigfillset(&mask_all);
   685     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   686     _expand_stack_to(addr);
   687     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   688     return true;
   689   }
   690   return false;
   691 }
   693 //////////////////////////////////////////////////////////////////////////////
   694 // create new thread
   696 static address highest_vm_reserved_address();
   698 // check if it's safe to start a new thread
   699 static bool _thread_safety_check(Thread* thread) {
   700   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   701     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   702     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   703     //   allocated (MAP_FIXED) from high address space. Every thread stack
   704     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   705     //   it to other values if they rebuild LinuxThreads).
   706     //
   707     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   708     // the memory region has already been mmap'ed. That means if we have too
   709     // many threads and/or very large heap, eventually thread stack will
   710     // collide with heap.
   711     //
   712     // Here we try to prevent heap/stack collision by comparing current
   713     // stack bottom with the highest address that has been mmap'ed by JVM
   714     // plus a safety margin for memory maps created by native code.
   715     //
   716     // This feature can be disabled by setting ThreadSafetyMargin to 0
   717     //
   718     if (ThreadSafetyMargin > 0) {
   719       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   721       // not safe if our stack extends below the safety margin
   722       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   723     } else {
   724       return true;
   725     }
   726   } else {
   727     // Floating stack LinuxThreads or NPTL:
   728     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   729     //   there's not enough space left, pthread_create() will fail. If we come
   730     //   here, that means enough space has been reserved for stack.
   731     return true;
   732   }
   733 }
   735 // Thread start routine for all newly created threads
   736 static void *java_start(Thread *thread) {
   737   // Try to randomize the cache line index of hot stack frames.
   738   // This helps when threads of the same stack traces evict each other's
   739   // cache lines. The threads can be either from the same JVM instance, or
   740   // from different JVM instances. The benefit is especially true for
   741   // processors with hyperthreading technology.
   742   static int counter = 0;
   743   int pid = os::current_process_id();
   744   alloca(((pid ^ counter++) & 7) * 128);
   746   ThreadLocalStorage::set_thread(thread);
   748   OSThread* osthread = thread->osthread();
   749   Monitor* sync = osthread->startThread_lock();
   751   // non floating stack LinuxThreads needs extra check, see above
   752   if (!_thread_safety_check(thread)) {
   753     // notify parent thread
   754     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   755     osthread->set_state(ZOMBIE);
   756     sync->notify_all();
   757     return NULL;
   758   }
   760   // thread_id is kernel thread id (similar to Solaris LWP id)
   761   osthread->set_thread_id(os::Linux::gettid());
   763   if (UseNUMA) {
   764     int lgrp_id = os::numa_get_group_id();
   765     if (lgrp_id != -1) {
   766       thread->set_lgrp_id(lgrp_id);
   767     }
   768   }
   769   // initialize signal mask for this thread
   770   os::Linux::hotspot_sigmask(thread);
   772   // initialize floating point control register
   773   os::Linux::init_thread_fpu_state();
   775   // handshaking with parent thread
   776   {
   777     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   779     // notify parent thread
   780     osthread->set_state(INITIALIZED);
   781     sync->notify_all();
   783     // wait until os::start_thread()
   784     while (osthread->get_state() == INITIALIZED) {
   785       sync->wait(Mutex::_no_safepoint_check_flag);
   786     }
   787   }
   789   // call one more level start routine
   790   thread->run();
   792   return 0;
   793 }
   795 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   796   assert(thread->osthread() == NULL, "caller responsible");
   798   // Allocate the OSThread object
   799   OSThread* osthread = new OSThread(NULL, NULL);
   800   if (osthread == NULL) {
   801     return false;
   802   }
   804   // set the correct thread state
   805   osthread->set_thread_type(thr_type);
   807   // Initial state is ALLOCATED but not INITIALIZED
   808   osthread->set_state(ALLOCATED);
   810   thread->set_osthread(osthread);
   812   // init thread attributes
   813   pthread_attr_t attr;
   814   pthread_attr_init(&attr);
   815   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   817   // stack size
   818   if (os::Linux::supports_variable_stack_size()) {
   819     // calculate stack size if it's not specified by caller
   820     if (stack_size == 0) {
   821       stack_size = os::Linux::default_stack_size(thr_type);
   823       switch (thr_type) {
   824       case os::java_thread:
   825         // Java threads use ThreadStackSize which default value can be
   826         // changed with the flag -Xss
   827         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   828         stack_size = JavaThread::stack_size_at_create();
   829         break;
   830       case os::compiler_thread:
   831         if (CompilerThreadStackSize > 0) {
   832           stack_size = (size_t)(CompilerThreadStackSize * K);
   833           break;
   834         } // else fall through:
   835           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   836       case os::vm_thread:
   837       case os::pgc_thread:
   838       case os::cgc_thread:
   839       case os::watcher_thread:
   840         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   841         break;
   842       }
   843     }
   845     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   846     pthread_attr_setstacksize(&attr, stack_size);
   847   } else {
   848     // let pthread_create() pick the default value.
   849   }
   851   // glibc guard page
   852   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   854   ThreadState state;
   856   {
   857     // Serialize thread creation if we are running with fixed stack LinuxThreads
   858     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   859     if (lock) {
   860       os::Linux::createThread_lock()->lock_without_safepoint_check();
   861     }
   863     pthread_t tid;
   864     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   866     pthread_attr_destroy(&attr);
   868     if (ret != 0) {
   869       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   870         perror("pthread_create()");
   871       }
   872       // Need to clean up stuff we've allocated so far
   873       thread->set_osthread(NULL);
   874       delete osthread;
   875       if (lock) os::Linux::createThread_lock()->unlock();
   876       return false;
   877     }
   879     // Store pthread info into the OSThread
   880     osthread->set_pthread_id(tid);
   882     // Wait until child thread is either initialized or aborted
   883     {
   884       Monitor* sync_with_child = osthread->startThread_lock();
   885       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   886       while ((state = osthread->get_state()) == ALLOCATED) {
   887         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   888       }
   889     }
   891     if (lock) {
   892       os::Linux::createThread_lock()->unlock();
   893     }
   894   }
   896   // Aborted due to thread limit being reached
   897   if (state == ZOMBIE) {
   898       thread->set_osthread(NULL);
   899       delete osthread;
   900       return false;
   901   }
   903   // The thread is returned suspended (in state INITIALIZED),
   904   // and is started higher up in the call chain
   905   assert(state == INITIALIZED, "race condition");
   906   return true;
   907 }
   909 /////////////////////////////////////////////////////////////////////////////
   910 // attach existing thread
   912 // bootstrap the main thread
   913 bool os::create_main_thread(JavaThread* thread) {
   914   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   915   return create_attached_thread(thread);
   916 }
   918 bool os::create_attached_thread(JavaThread* thread) {
   919 #ifdef ASSERT
   920     thread->verify_not_published();
   921 #endif
   923   // Allocate the OSThread object
   924   OSThread* osthread = new OSThread(NULL, NULL);
   926   if (osthread == NULL) {
   927     return false;
   928   }
   930   // Store pthread info into the OSThread
   931   osthread->set_thread_id(os::Linux::gettid());
   932   osthread->set_pthread_id(::pthread_self());
   934   // initialize floating point control register
   935   os::Linux::init_thread_fpu_state();
   937   // Initial thread state is RUNNABLE
   938   osthread->set_state(RUNNABLE);
   940   thread->set_osthread(osthread);
   942   if (UseNUMA) {
   943     int lgrp_id = os::numa_get_group_id();
   944     if (lgrp_id != -1) {
   945       thread->set_lgrp_id(lgrp_id);
   946     }
   947   }
   949   if (os::is_primordial_thread()) {
   950     // If current thread is primordial thread, its stack is mapped on demand,
   951     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   952     // the entire stack region to avoid SEGV in stack banging.
   953     // It is also useful to get around the heap-stack-gap problem on SuSE
   954     // kernel (see 4821821 for details). We first expand stack to the top
   955     // of yellow zone, then enable stack yellow zone (order is significant,
   956     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   957     // is no gap between the last two virtual memory regions.
   959     JavaThread *jt = (JavaThread *)thread;
   960     address addr = jt->stack_yellow_zone_base();
   961     assert(addr != NULL, "initialization problem?");
   962     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   964     osthread->set_expanding_stack();
   965     os::Linux::manually_expand_stack(jt, addr);
   966     osthread->clear_expanding_stack();
   967   }
   969   // initialize signal mask for this thread
   970   // and save the caller's signal mask
   971   os::Linux::hotspot_sigmask(thread);
   973   return true;
   974 }
   976 void os::pd_start_thread(Thread* thread) {
   977   OSThread * osthread = thread->osthread();
   978   assert(osthread->get_state() != INITIALIZED, "just checking");
   979   Monitor* sync_with_child = osthread->startThread_lock();
   980   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   981   sync_with_child->notify();
   982 }
   984 // Free Linux resources related to the OSThread
   985 void os::free_thread(OSThread* osthread) {
   986   assert(osthread != NULL, "osthread not set");
   988   if (Thread::current()->osthread() == osthread) {
   989     // Restore caller's signal mask
   990     sigset_t sigmask = osthread->caller_sigmask();
   991     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   992    }
   994   delete osthread;
   995 }
   997 //////////////////////////////////////////////////////////////////////////////
   998 // thread local storage
  1000 // Restore the thread pointer if the destructor is called. This is in case
  1001 // someone from JNI code sets up a destructor with pthread_key_create to run
  1002 // detachCurrentThread on thread death. Unless we restore the thread pointer we
  1003 // will hang or crash. When detachCurrentThread is called the key will be set
  1004 // to null and we will not be called again. If detachCurrentThread is never
  1005 // called we could loop forever depending on the pthread implementation.
  1006 static void restore_thread_pointer(void* p) {
  1007   Thread* thread = (Thread*) p;
  1008   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
  1011 int os::allocate_thread_local_storage() {
  1012   pthread_key_t key;
  1013   int rslt = pthread_key_create(&key, restore_thread_pointer);
  1014   assert(rslt == 0, "cannot allocate thread local storage");
  1015   return (int)key;
  1018 // Note: This is currently not used by VM, as we don't destroy TLS key
  1019 // on VM exit.
  1020 void os::free_thread_local_storage(int index) {
  1021   int rslt = pthread_key_delete((pthread_key_t)index);
  1022   assert(rslt == 0, "invalid index");
  1025 void os::thread_local_storage_at_put(int index, void* value) {
  1026   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1027   assert(rslt == 0, "pthread_setspecific failed");
  1030 extern "C" Thread* get_thread() {
  1031   return ThreadLocalStorage::thread();
  1034 //////////////////////////////////////////////////////////////////////////////
  1035 // primordial thread
  1037 // Check if current thread is the primordial thread, similar to Solaris thr_main.
  1038 bool os::is_primordial_thread(void) {
  1039   char dummy;
  1040   // If called before init complete, thread stack bottom will be null.
  1041   // Can be called if fatal error occurs before initialization.
  1042   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
  1043   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
  1044          os::Linux::initial_thread_stack_size()   != 0,
  1045          "os::init did not locate primordial thread's stack region");
  1046   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
  1047       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
  1048                         os::Linux::initial_thread_stack_size()) {
  1049        return true;
  1050   } else {
  1051        return false;
  1055 // Find the virtual memory area that contains addr
  1056 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1057   FILE *fp = fopen("/proc/self/maps", "r");
  1058   if (fp) {
  1059     address low, high;
  1060     while (!feof(fp)) {
  1061       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1062         if (low <= addr && addr < high) {
  1063            if (vma_low)  *vma_low  = low;
  1064            if (vma_high) *vma_high = high;
  1065            fclose (fp);
  1066            return true;
  1069       for (;;) {
  1070         int ch = fgetc(fp);
  1071         if (ch == EOF || ch == (int)'\n') break;
  1074     fclose(fp);
  1076   return false;
  1079 // Locate primordial thread stack. This special handling of primordial thread stack
  1080 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1081 // bogus value for the primordial process thread. While the launcher has created
  1082 // the VM in a new thread since JDK 6, we still have to allow for the use of the
  1083 // JNI invocation API from a primordial thread.
  1084 void os::Linux::capture_initial_stack(size_t max_size) {
  1086   // max_size is either 0 (which means accept OS default for thread stacks) or
  1087   // a user-specified value known to be at least the minimum needed. If we
  1088   // are actually on the primordial thread we can make it appear that we have a
  1089   // smaller max_size stack by inserting the guard pages at that location. But we
  1090   // cannot do anything to emulate a larger stack than what has been provided by
  1091   // the OS or threading library. In fact if we try to use a stack greater than
  1092   // what is set by rlimit then we will crash the hosting process.
  1094   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
  1095   // If this is "unlimited" then it will be a huge value.
  1096   struct rlimit rlim;
  1097   getrlimit(RLIMIT_STACK, &rlim);
  1098   size_t stack_size = rlim.rlim_cur;
  1100   // 6308388: a bug in ld.so will relocate its own .data section to the
  1101   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1102   //   so we won't install guard page on ld.so's data section.
  1103   //   But ensure we don't underflow the stack size - allow 1 page spare
  1104   if (stack_size >= (size_t)(3 * page_size())) {
  1105     stack_size -= 2 * page_size();
  1108   // Try to figure out where the stack base (top) is. This is harder.
  1109   //
  1110   // When an application is started, glibc saves the initial stack pointer in
  1111   // a global variable "__libc_stack_end", which is then used by system
  1112   // libraries. __libc_stack_end should be pretty close to stack top. The
  1113   // variable is available since the very early days. However, because it is
  1114   // a private interface, it could disappear in the future.
  1115   //
  1116   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1117   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1118   // stack top. Note that /proc may not exist if VM is running as a chroot
  1119   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1120   // /proc/<pid>/stat could change in the future (though unlikely).
  1121   //
  1122   // We try __libc_stack_end first. If that doesn't work, look for
  1123   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1124   // as a hint, which should work well in most cases.
  1126   uintptr_t stack_start;
  1128   // try __libc_stack_end first
  1129   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1130   if (p && *p) {
  1131     stack_start = *p;
  1132   } else {
  1133     // see if we can get the start_stack field from /proc/self/stat
  1134     FILE *fp;
  1135     int pid;
  1136     char state;
  1137     int ppid;
  1138     int pgrp;
  1139     int session;
  1140     int nr;
  1141     int tpgrp;
  1142     unsigned long flags;
  1143     unsigned long minflt;
  1144     unsigned long cminflt;
  1145     unsigned long majflt;
  1146     unsigned long cmajflt;
  1147     unsigned long utime;
  1148     unsigned long stime;
  1149     long cutime;
  1150     long cstime;
  1151     long prio;
  1152     long nice;
  1153     long junk;
  1154     long it_real;
  1155     uintptr_t start;
  1156     uintptr_t vsize;
  1157     intptr_t rss;
  1158     uintptr_t rsslim;
  1159     uintptr_t scodes;
  1160     uintptr_t ecode;
  1161     int i;
  1163     // Figure what the primordial thread stack base is. Code is inspired
  1164     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1165     // followed by command name surrounded by parentheses, state, etc.
  1166     char stat[2048];
  1167     int statlen;
  1169     fp = fopen("/proc/self/stat", "r");
  1170     if (fp) {
  1171       statlen = fread(stat, 1, 2047, fp);
  1172       stat[statlen] = '\0';
  1173       fclose(fp);
  1175       // Skip pid and the command string. Note that we could be dealing with
  1176       // weird command names, e.g. user could decide to rename java launcher
  1177       // to "java 1.4.2 :)", then the stat file would look like
  1178       //                1234 (java 1.4.2 :)) R ... ...
  1179       // We don't really need to know the command string, just find the last
  1180       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1181       char * s = strrchr(stat, ')');
  1183       i = 0;
  1184       if (s) {
  1185         // Skip blank chars
  1186         do s++; while (isspace(*s));
  1188 #define _UFM UINTX_FORMAT
  1189 #define _DFM INTX_FORMAT
  1191         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1192         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1193         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1194              &state,          /* 3  %c  */
  1195              &ppid,           /* 4  %d  */
  1196              &pgrp,           /* 5  %d  */
  1197              &session,        /* 6  %d  */
  1198              &nr,             /* 7  %d  */
  1199              &tpgrp,          /* 8  %d  */
  1200              &flags,          /* 9  %lu  */
  1201              &minflt,         /* 10 %lu  */
  1202              &cminflt,        /* 11 %lu  */
  1203              &majflt,         /* 12 %lu  */
  1204              &cmajflt,        /* 13 %lu  */
  1205              &utime,          /* 14 %lu  */
  1206              &stime,          /* 15 %lu  */
  1207              &cutime,         /* 16 %ld  */
  1208              &cstime,         /* 17 %ld  */
  1209              &prio,           /* 18 %ld  */
  1210              &nice,           /* 19 %ld  */
  1211              &junk,           /* 20 %ld  */
  1212              &it_real,        /* 21 %ld  */
  1213              &start,          /* 22 UINTX_FORMAT */
  1214              &vsize,          /* 23 UINTX_FORMAT */
  1215              &rss,            /* 24 INTX_FORMAT  */
  1216              &rsslim,         /* 25 UINTX_FORMAT */
  1217              &scodes,         /* 26 UINTX_FORMAT */
  1218              &ecode,          /* 27 UINTX_FORMAT */
  1219              &stack_start);   /* 28 UINTX_FORMAT */
  1222 #undef _UFM
  1223 #undef _DFM
  1225       if (i != 28 - 2) {
  1226          assert(false, "Bad conversion from /proc/self/stat");
  1227          // product mode - assume we are the primordial thread, good luck in the
  1228          // embedded case.
  1229          warning("Can't detect primordial thread stack location - bad conversion");
  1230          stack_start = (uintptr_t) &rlim;
  1232     } else {
  1233       // For some reason we can't open /proc/self/stat (for example, running on
  1234       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1235       // most cases, so don't abort:
  1236       warning("Can't detect primordial thread stack location - no /proc/self/stat");
  1237       stack_start = (uintptr_t) &rlim;
  1241   // Now we have a pointer (stack_start) very close to the stack top, the
  1242   // next thing to do is to figure out the exact location of stack top. We
  1243   // can find out the virtual memory area that contains stack_start by
  1244   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1245   // and its upper limit is the real stack top. (again, this would fail if
  1246   // running inside chroot, because /proc may not exist.)
  1248   uintptr_t stack_top;
  1249   address low, high;
  1250   if (find_vma((address)stack_start, &low, &high)) {
  1251     // success, "high" is the true stack top. (ignore "low", because initial
  1252     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1253     stack_top = (uintptr_t)high;
  1254   } else {
  1255     // failed, likely because /proc/self/maps does not exist
  1256     warning("Can't detect primordial thread stack location - find_vma failed");
  1257     // best effort: stack_start is normally within a few pages below the real
  1258     // stack top, use it as stack top, and reduce stack size so we won't put
  1259     // guard page outside stack.
  1260     stack_top = stack_start;
  1261     stack_size -= 16 * page_size();
  1264   // stack_top could be partially down the page so align it
  1265   stack_top = align_size_up(stack_top, page_size());
  1267   // Allowed stack value is minimum of max_size and what we derived from rlimit
  1268   if (max_size > 0) {
  1269     _initial_thread_stack_size = MIN2(max_size, stack_size);
  1270   } else {
  1271     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
  1272     // clamp it at 8MB as we do on Solaris
  1273     _initial_thread_stack_size = MIN2(stack_size, 8*M);
  1276   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1277   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1278   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
  1281 ////////////////////////////////////////////////////////////////////////////////
  1282 // time support
  1284 // Time since start-up in seconds to a fine granularity.
  1285 // Used by VMSelfDestructTimer and the MemProfiler.
  1286 double os::elapsedTime() {
  1288   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
  1291 jlong os::elapsed_counter() {
  1292   return javaTimeNanos() - initial_time_count;
  1295 jlong os::elapsed_frequency() {
  1296   return NANOSECS_PER_SEC; // nanosecond resolution
  1299 bool os::supports_vtime() { return true; }
  1300 bool os::enable_vtime()   { return false; }
  1301 bool os::vtime_enabled()  { return false; }
  1303 double os::elapsedVTime() {
  1304   struct rusage usage;
  1305   int retval = getrusage(RUSAGE_THREAD, &usage);
  1306   if (retval == 0) {
  1307     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
  1308   } else {
  1309     // better than nothing, but not much
  1310     return elapsedTime();
  1314 jlong os::javaTimeMillis() {
  1315   timeval time;
  1316   int status = gettimeofday(&time, NULL);
  1317   assert(status != -1, "linux error");
  1318   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1321 #ifndef CLOCK_MONOTONIC
  1322 #define CLOCK_MONOTONIC (1)
  1323 #endif
  1325 void os::Linux::clock_init() {
  1326   // we do dlopen's in this particular order due to bug in linux
  1327   // dynamical loader (see 6348968) leading to crash on exit
  1328   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1329   if (handle == NULL) {
  1330     handle = dlopen("librt.so", RTLD_LAZY);
  1333   if (handle) {
  1334     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1335            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1336     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1337            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1338     if (clock_getres_func && clock_gettime_func) {
  1339       // See if monotonic clock is supported by the kernel. Note that some
  1340       // early implementations simply return kernel jiffies (updated every
  1341       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1342       // for nano time (though the monotonic property is still nice to have).
  1343       // It's fixed in newer kernels, however clock_getres() still returns
  1344       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1345       // resolution for now. Hopefully as people move to new kernels, this
  1346       // won't be a problem.
  1347       struct timespec res;
  1348       struct timespec tp;
  1349       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1350           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1351         // yes, monotonic clock is supported
  1352         _clock_gettime = clock_gettime_func;
  1353         return;
  1354       } else {
  1355         // close librt if there is no monotonic clock
  1356         dlclose(handle);
  1360   warning("No monotonic clock was available - timed services may " \
  1361           "be adversely affected if the time-of-day clock changes");
  1364 #ifndef SYS_clock_getres
  1366 #if defined(IA32) || defined(AMD64)
  1367 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1368 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1369 #else
  1370 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1371 #define sys_clock_getres(x,y)  -1
  1372 #endif
  1374 #else
  1375 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1376 #endif
  1378 void os::Linux::fast_thread_clock_init() {
  1379   if (!UseLinuxPosixThreadCPUClocks) {
  1380     return;
  1382   clockid_t clockid;
  1383   struct timespec tp;
  1384   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1385       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1387   // Switch to using fast clocks for thread cpu time if
  1388   // the sys_clock_getres() returns 0 error code.
  1389   // Note, that some kernels may support the current thread
  1390   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1391   // returned by the pthread_getcpuclockid().
  1392   // If the fast Posix clocks are supported then the sys_clock_getres()
  1393   // must return at least tp.tv_sec == 0 which means a resolution
  1394   // better than 1 sec. This is extra check for reliability.
  1396   if(pthread_getcpuclockid_func &&
  1397      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1398      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1400     _supports_fast_thread_cpu_time = true;
  1401     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1405 jlong os::javaTimeNanos() {
  1406   if (Linux::supports_monotonic_clock()) {
  1407     struct timespec tp;
  1408     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1409     assert(status == 0, "gettime error");
  1410     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1411     return result;
  1412   } else {
  1413     timeval time;
  1414     int status = gettimeofday(&time, NULL);
  1415     assert(status != -1, "linux error");
  1416     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1417     return 1000 * usecs;
  1421 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1422   if (Linux::supports_monotonic_clock()) {
  1423     info_ptr->max_value = ALL_64_BITS;
  1425     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1426     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1427     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1428   } else {
  1429     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1430     info_ptr->max_value = ALL_64_BITS;
  1432     // gettimeofday is a real time clock so it skips
  1433     info_ptr->may_skip_backward = true;
  1434     info_ptr->may_skip_forward = true;
  1437   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1440 // Return the real, user, and system times in seconds from an
  1441 // arbitrary fixed point in the past.
  1442 bool os::getTimesSecs(double* process_real_time,
  1443                       double* process_user_time,
  1444                       double* process_system_time) {
  1445   struct tms ticks;
  1446   clock_t real_ticks = times(&ticks);
  1448   if (real_ticks == (clock_t) (-1)) {
  1449     return false;
  1450   } else {
  1451     double ticks_per_second = (double) clock_tics_per_sec;
  1452     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1453     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1454     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1456     return true;
  1461 char * os::local_time_string(char *buf, size_t buflen) {
  1462   struct tm t;
  1463   time_t long_time;
  1464   time(&long_time);
  1465   localtime_r(&long_time, &t);
  1466   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1467                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1468                t.tm_hour, t.tm_min, t.tm_sec);
  1469   return buf;
  1472 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1473   return localtime_r(clock, res);
  1476 ////////////////////////////////////////////////////////////////////////////////
  1477 // runtime exit support
  1479 // Note: os::shutdown() might be called very early during initialization, or
  1480 // called from signal handler. Before adding something to os::shutdown(), make
  1481 // sure it is async-safe and can handle partially initialized VM.
  1482 void os::shutdown() {
  1484   // allow PerfMemory to attempt cleanup of any persistent resources
  1485   perfMemory_exit();
  1487   // needs to remove object in file system
  1488   AttachListener::abort();
  1490   // flush buffered output, finish log files
  1491   ostream_abort();
  1493   // Check for abort hook
  1494   abort_hook_t abort_hook = Arguments::abort_hook();
  1495   if (abort_hook != NULL) {
  1496     abort_hook();
  1501 // Note: os::abort() might be called very early during initialization, or
  1502 // called from signal handler. Before adding something to os::abort(), make
  1503 // sure it is async-safe and can handle partially initialized VM.
  1504 void os::abort(bool dump_core) {
  1505   os::shutdown();
  1506   if (dump_core) {
  1507 #ifndef PRODUCT
  1508     fdStream out(defaultStream::output_fd());
  1509     out.print_raw("Current thread is ");
  1510     char buf[16];
  1511     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1512     out.print_raw_cr(buf);
  1513     out.print_raw_cr("Dumping core ...");
  1514 #endif
  1515     ::abort(); // dump core
  1518   ::exit(1);
  1521 // Die immediately, no exit hook, no abort hook, no cleanup.
  1522 void os::die() {
  1523   // _exit() on LinuxThreads only kills current thread
  1524   ::abort();
  1528 // This method is a copy of JDK's sysGetLastErrorString
  1529 // from src/solaris/hpi/src/system_md.c
  1531 size_t os::lasterror(char *buf, size_t len) {
  1533   if (errno == 0)  return 0;
  1535   const char *s = ::strerror(errno);
  1536   size_t n = ::strlen(s);
  1537   if (n >= len) {
  1538     n = len - 1;
  1540   ::strncpy(buf, s, n);
  1541   buf[n] = '\0';
  1542   return n;
  1545 intx os::current_thread_id() { return (intx)pthread_self(); }
  1546 int os::current_process_id() {
  1548   // Under the old linux thread library, linux gives each thread
  1549   // its own process id. Because of this each thread will return
  1550   // a different pid if this method were to return the result
  1551   // of getpid(2). Linux provides no api that returns the pid
  1552   // of the launcher thread for the vm. This implementation
  1553   // returns a unique pid, the pid of the launcher thread
  1554   // that starts the vm 'process'.
  1556   // Under the NPTL, getpid() returns the same pid as the
  1557   // launcher thread rather than a unique pid per thread.
  1558   // Use gettid() if you want the old pre NPTL behaviour.
  1560   // if you are looking for the result of a call to getpid() that
  1561   // returns a unique pid for the calling thread, then look at the
  1562   // OSThread::thread_id() method in osThread_linux.hpp file
  1564   return (int)(_initial_pid ? _initial_pid : getpid());
  1567 // DLL functions
  1569 const char* os::dll_file_extension() { return ".so"; }
  1571 // This must be hard coded because it's the system's temporary
  1572 // directory not the java application's temp directory, ala java.io.tmpdir.
  1573 const char* os::get_temp_directory() { return "/tmp"; }
  1575 static bool file_exists(const char* filename) {
  1576   struct stat statbuf;
  1577   if (filename == NULL || strlen(filename) == 0) {
  1578     return false;
  1580   return os::stat(filename, &statbuf) == 0;
  1583 bool os::dll_build_name(char* buffer, size_t buflen,
  1584                         const char* pname, const char* fname) {
  1585   bool retval = false;
  1586   // Copied from libhpi
  1587   const size_t pnamelen = pname ? strlen(pname) : 0;
  1589   // Return error on buffer overflow.
  1590   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1591     return retval;
  1594   if (pnamelen == 0) {
  1595     snprintf(buffer, buflen, "lib%s.so", fname);
  1596     retval = true;
  1597   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1598     int n;
  1599     char** pelements = split_path(pname, &n);
  1600     if (pelements == NULL) {
  1601       return false;
  1603     for (int i = 0 ; i < n ; i++) {
  1604       // Really shouldn't be NULL, but check can't hurt
  1605       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1606         continue; // skip the empty path values
  1608       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1609       if (file_exists(buffer)) {
  1610         retval = true;
  1611         break;
  1614     // release the storage
  1615     for (int i = 0 ; i < n ; i++) {
  1616       if (pelements[i] != NULL) {
  1617         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1620     if (pelements != NULL) {
  1621       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1623   } else {
  1624     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1625     retval = true;
  1627   return retval;
  1630 // check if addr is inside libjvm.so
  1631 bool os::address_is_in_vm(address addr) {
  1632   static address libjvm_base_addr;
  1633   Dl_info dlinfo;
  1635   if (libjvm_base_addr == NULL) {
  1636     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
  1637       libjvm_base_addr = (address)dlinfo.dli_fbase;
  1639     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1642   if (dladdr((void *)addr, &dlinfo) != 0) {
  1643     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1646   return false;
  1649 bool os::dll_address_to_function_name(address addr, char *buf,
  1650                                       int buflen, int *offset) {
  1651   // buf is not optional, but offset is optional
  1652   assert(buf != NULL, "sanity check");
  1654   Dl_info dlinfo;
  1656   if (dladdr((void*)addr, &dlinfo) != 0) {
  1657     // see if we have a matching symbol
  1658     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
  1659       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1660         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1662       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1663       return true;
  1665     // no matching symbol so try for just file info
  1666     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
  1667       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1668                           buf, buflen, offset, dlinfo.dli_fname)) {
  1669         return true;
  1674   buf[0] = '\0';
  1675   if (offset != NULL) *offset = -1;
  1676   return false;
  1679 struct _address_to_library_name {
  1680   address addr;          // input : memory address
  1681   size_t  buflen;        //         size of fname
  1682   char*   fname;         // output: library name
  1683   address base;          //         library base addr
  1684 };
  1686 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1687                                             size_t size, void *data) {
  1688   int i;
  1689   bool found = false;
  1690   address libbase = NULL;
  1691   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1693   // iterate through all loadable segments
  1694   for (i = 0; i < info->dlpi_phnum; i++) {
  1695     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1696     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1697       // base address of a library is the lowest address of its loaded
  1698       // segments.
  1699       if (libbase == NULL || libbase > segbase) {
  1700         libbase = segbase;
  1702       // see if 'addr' is within current segment
  1703       if (segbase <= d->addr &&
  1704           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1705         found = true;
  1710   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1711   // so dll_address_to_library_name() can fall through to use dladdr() which
  1712   // can figure out executable name from argv[0].
  1713   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1714     d->base = libbase;
  1715     if (d->fname) {
  1716       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1718     return 1;
  1720   return 0;
  1723 bool os::dll_address_to_library_name(address addr, char* buf,
  1724                                      int buflen, int* offset) {
  1725   // buf is not optional, but offset is optional
  1726   assert(buf != NULL, "sanity check");
  1728   Dl_info dlinfo;
  1729   struct _address_to_library_name data;
  1731   // There is a bug in old glibc dladdr() implementation that it could resolve
  1732   // to wrong library name if the .so file has a base address != NULL. Here
  1733   // we iterate through the program headers of all loaded libraries to find
  1734   // out which library 'addr' really belongs to. This workaround can be
  1735   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1736   data.addr = addr;
  1737   data.fname = buf;
  1738   data.buflen = buflen;
  1739   data.base = NULL;
  1740   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1742   if (rslt) {
  1743      // buf already contains library name
  1744      if (offset) *offset = addr - data.base;
  1745      return true;
  1747   if (dladdr((void*)addr, &dlinfo) != 0) {
  1748     if (dlinfo.dli_fname != NULL) {
  1749       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1751     if (dlinfo.dli_fbase != NULL && offset != NULL) {
  1752       *offset = addr - (address)dlinfo.dli_fbase;
  1754     return true;
  1757   buf[0] = '\0';
  1758   if (offset) *offset = -1;
  1759   return false;
  1762   // Loads .dll/.so and
  1763   // in case of error it checks if .dll/.so was built for the
  1764   // same architecture as Hotspot is running on
  1767 // Remember the stack's state. The Linux dynamic linker will change
  1768 // the stack to 'executable' at most once, so we must safepoint only once.
  1769 bool os::Linux::_stack_is_executable = false;
  1771 // VM operation that loads a library.  This is necessary if stack protection
  1772 // of the Java stacks can be lost during loading the library.  If we
  1773 // do not stop the Java threads, they can stack overflow before the stacks
  1774 // are protected again.
  1775 class VM_LinuxDllLoad: public VM_Operation {
  1776  private:
  1777   const char *_filename;
  1778   char *_ebuf;
  1779   int _ebuflen;
  1780   void *_lib;
  1781  public:
  1782   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
  1783     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
  1784   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
  1785   void doit() {
  1786     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
  1787     os::Linux::_stack_is_executable = true;
  1789   void* loaded_library() { return _lib; }
  1790 };
  1792 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1794   void * result = NULL;
  1795   bool load_attempted = false;
  1797   // Check whether the library to load might change execution rights
  1798   // of the stack. If they are changed, the protection of the stack
  1799   // guard pages will be lost. We need a safepoint to fix this.
  1800   //
  1801   // See Linux man page execstack(8) for more info.
  1802   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
  1803     ElfFile ef(filename);
  1804     if (!ef.specifies_noexecstack()) {
  1805       if (!is_init_completed()) {
  1806         os::Linux::_stack_is_executable = true;
  1807         // This is OK - No Java threads have been created yet, and hence no
  1808         // stack guard pages to fix.
  1809         //
  1810         // This should happen only when you are building JDK7 using a very
  1811         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
  1812         //
  1813         // Dynamic loader will make all stacks executable after
  1814         // this function returns, and will not do that again.
  1815         assert(Threads::first() == NULL, "no Java threads should exist yet.");
  1816       } else {
  1817         warning("You have loaded library %s which might have disabled stack guard. "
  1818                 "The VM will try to fix the stack guard now.\n"
  1819                 "It's highly recommended that you fix the library with "
  1820                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
  1821                 filename);
  1823         assert(Thread::current()->is_Java_thread(), "must be Java thread");
  1824         JavaThread *jt = JavaThread::current();
  1825         if (jt->thread_state() != _thread_in_native) {
  1826           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
  1827           // that requires ExecStack. Cannot enter safe point. Let's give up.
  1828           warning("Unable to fix stack guard. Giving up.");
  1829         } else {
  1830           if (!LoadExecStackDllInVMThread) {
  1831             // This is for the case where the DLL has an static
  1832             // constructor function that executes JNI code. We cannot
  1833             // load such DLLs in the VMThread.
  1834             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1837           ThreadInVMfromNative tiv(jt);
  1838           debug_only(VMNativeEntryWrapper vew;)
  1840           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
  1841           VMThread::execute(&op);
  1842           if (LoadExecStackDllInVMThread) {
  1843             result = op.loaded_library();
  1845           load_attempted = true;
  1851   if (!load_attempted) {
  1852     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
  1855   if (result != NULL) {
  1856     // Successful loading
  1857     return result;
  1860   Elf32_Ehdr elf_head;
  1861   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1862   char* diag_msg_buf=ebuf+strlen(ebuf);
  1864   if (diag_msg_max_length==0) {
  1865     // No more space in ebuf for additional diagnostics message
  1866     return NULL;
  1870   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1872   if (file_descriptor < 0) {
  1873     // Can't open library, report dlerror() message
  1874     return NULL;
  1877   bool failed_to_read_elf_head=
  1878     (sizeof(elf_head)!=
  1879         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1881   ::close(file_descriptor);
  1882   if (failed_to_read_elf_head) {
  1883     // file i/o error - report dlerror() msg
  1884     return NULL;
  1887   typedef struct {
  1888     Elf32_Half  code;         // Actual value as defined in elf.h
  1889     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1890     char        elf_class;    // 32 or 64 bit
  1891     char        endianess;    // MSB or LSB
  1892     char*       name;         // String representation
  1893   } arch_t;
  1895   #ifndef EM_486
  1896   #define EM_486          6               /* Intel 80486 */
  1897   #endif
  1899   static const arch_t arch_array[]={
  1900     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1901     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1902     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1903     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1904     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1905     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1906     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1907     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1908 #if defined(VM_LITTLE_ENDIAN)
  1909     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
  1910 #else
  1911     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1912 #endif
  1913     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1914     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1915     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1916     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1917     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1918     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1919     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1920   };
  1922   #if  (defined IA32)
  1923     static  Elf32_Half running_arch_code=EM_386;
  1924   #elif   (defined AMD64)
  1925     static  Elf32_Half running_arch_code=EM_X86_64;
  1926   #elif  (defined IA64)
  1927     static  Elf32_Half running_arch_code=EM_IA_64;
  1928   #elif  (defined __sparc) && (defined _LP64)
  1929     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1930   #elif  (defined __sparc) && (!defined _LP64)
  1931     static  Elf32_Half running_arch_code=EM_SPARC;
  1932   #elif  (defined __powerpc64__)
  1933     static  Elf32_Half running_arch_code=EM_PPC64;
  1934   #elif  (defined __powerpc__)
  1935     static  Elf32_Half running_arch_code=EM_PPC;
  1936   #elif  (defined ARM)
  1937     static  Elf32_Half running_arch_code=EM_ARM;
  1938   #elif  (defined S390)
  1939     static  Elf32_Half running_arch_code=EM_S390;
  1940   #elif  (defined ALPHA)
  1941     static  Elf32_Half running_arch_code=EM_ALPHA;
  1942   #elif  (defined MIPSEL)
  1943     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1944   #elif  (defined PARISC)
  1945     static  Elf32_Half running_arch_code=EM_PARISC;
  1946   #elif  (defined MIPS)
  1947     static  Elf32_Half running_arch_code=EM_MIPS;
  1948   #elif  (defined M68K)
  1949     static  Elf32_Half running_arch_code=EM_68K;
  1950   #else
  1951     #error Method os::dll_load requires that one of following is defined:\
  1952          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1953   #endif
  1955   // Identify compatability class for VM's architecture and library's architecture
  1956   // Obtain string descriptions for architectures
  1958   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1959   int running_arch_index=-1;
  1961   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1962     if (running_arch_code == arch_array[i].code) {
  1963       running_arch_index    = i;
  1965     if (lib_arch.code == arch_array[i].code) {
  1966       lib_arch.compat_class = arch_array[i].compat_class;
  1967       lib_arch.name         = arch_array[i].name;
  1971   assert(running_arch_index != -1,
  1972     "Didn't find running architecture code (running_arch_code) in arch_array");
  1973   if (running_arch_index == -1) {
  1974     // Even though running architecture detection failed
  1975     // we may still continue with reporting dlerror() message
  1976     return NULL;
  1979   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1980     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1981     return NULL;
  1984 #ifndef S390
  1985   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1986     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1987     return NULL;
  1989 #endif // !S390
  1991   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1992     if ( lib_arch.name!=NULL ) {
  1993       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1994         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1995         lib_arch.name, arch_array[running_arch_index].name);
  1996     } else {
  1997       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1998       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1999         lib_arch.code,
  2000         arch_array[running_arch_index].name);
  2004   return NULL;
  2007 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
  2008   void * result = ::dlopen(filename, RTLD_LAZY);
  2009   if (result == NULL) {
  2010     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
  2011     ebuf[ebuflen-1] = '\0';
  2013   return result;
  2016 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
  2017   void * result = NULL;
  2018   if (LoadExecStackDllInVMThread) {
  2019     result = dlopen_helper(filename, ebuf, ebuflen);
  2022   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
  2023   // library that requires an executable stack, or which does not have this
  2024   // stack attribute set, dlopen changes the stack attribute to executable. The
  2025   // read protection of the guard pages gets lost.
  2026   //
  2027   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
  2028   // may have been queued at the same time.
  2030   if (!_stack_is_executable) {
  2031     JavaThread *jt = Threads::first();
  2033     while (jt) {
  2034       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
  2035           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
  2036         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
  2037                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
  2038           warning("Attempt to reguard stack yellow zone failed.");
  2041       jt = jt->next();
  2045   return result;
  2048 /*
  2049  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  2050  * chances are you might want to run the generated bits against glibc-2.0
  2051  * libdl.so, so always use locking for any version of glibc.
  2052  */
  2053 void* os::dll_lookup(void* handle, const char* name) {
  2054   pthread_mutex_lock(&dl_mutex);
  2055   void* res = dlsym(handle, name);
  2056   pthread_mutex_unlock(&dl_mutex);
  2057   return res;
  2060 void* os::get_default_process_handle() {
  2061   return (void*)::dlopen(NULL, RTLD_LAZY);
  2064 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2065   int fd = ::open(filename, O_RDONLY);
  2066   if (fd == -1) {
  2067      return false;
  2070   char buf[32];
  2071   int bytes;
  2072   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2073     st->print_raw(buf, bytes);
  2076   ::close(fd);
  2078   return true;
  2081 void os::print_dll_info(outputStream *st) {
  2082    st->print_cr("Dynamic libraries:");
  2084    char fname[32];
  2085    pid_t pid = os::Linux::gettid();
  2087    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2089    if (!_print_ascii_file(fname, st)) {
  2090      st->print("Can not get library information for pid = %d\n", pid);
  2094 void os::print_os_info_brief(outputStream* st) {
  2095   os::Linux::print_distro_info(st);
  2097   os::Posix::print_uname_info(st);
  2099   os::Linux::print_libversion_info(st);
  2103 void os::print_os_info(outputStream* st) {
  2104   st->print("OS:");
  2106   os::Linux::print_distro_info(st);
  2108   os::Posix::print_uname_info(st);
  2110   // Print warning if unsafe chroot environment detected
  2111   if (unsafe_chroot_detected) {
  2112     st->print("WARNING!! ");
  2113     st->print_cr("%s", unstable_chroot_error);
  2116   os::Linux::print_libversion_info(st);
  2118   os::Posix::print_rlimit_info(st);
  2120   os::Posix::print_load_average(st);
  2122   os::Linux::print_full_memory_info(st);
  2125 // Try to identify popular distros.
  2126 // Most Linux distributions have a /etc/XXX-release file, which contains
  2127 // the OS version string. Newer Linux distributions have a /etc/lsb-release
  2128 // file that also contains the OS version string. Some have more than one
  2129 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
  2130 // /etc/redhat-release.), so the order is important.
  2131 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
  2132 // their own specific XXX-release file as well as a redhat-release file.
  2133 // Because of this the XXX-release file needs to be searched for before the
  2134 // redhat-release file.
  2135 // Since Red Hat has a lsb-release file that is not very descriptive the
  2136 // search for redhat-release needs to be before lsb-release.
  2137 // Since the lsb-release file is the new standard it needs to be searched
  2138 // before the older style release files.
  2139 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
  2140 // next to last resort.  The os-release file is a new standard that contains
  2141 // distribution information and the system-release file seems to be an old
  2142 // standard that has been replaced by the lsb-release and os-release files.
  2143 // Searching for the debian_version file is the last resort.  It contains
  2144 // an informative string like "6.0.6" or "wheezy/sid". Because of this
  2145 // "Debian " is printed before the contents of the debian_version file.
  2146 void os::Linux::print_distro_info(outputStream* st) {
  2147    if (!_print_ascii_file("/etc/oracle-release", st) &&
  2148        !_print_ascii_file("/etc/mandriva-release", st) &&
  2149        !_print_ascii_file("/etc/mandrake-release", st) &&
  2150        !_print_ascii_file("/etc/sun-release", st) &&
  2151        !_print_ascii_file("/etc/redhat-release", st) &&
  2152        !_print_ascii_file("/etc/lsb-release", st) &&
  2153        !_print_ascii_file("/etc/SuSE-release", st) &&
  2154        !_print_ascii_file("/etc/turbolinux-release", st) &&
  2155        !_print_ascii_file("/etc/gentoo-release", st) &&
  2156        !_print_ascii_file("/etc/ltib-release", st) &&
  2157        !_print_ascii_file("/etc/angstrom-version", st) &&
  2158        !_print_ascii_file("/etc/system-release", st) &&
  2159        !_print_ascii_file("/etc/os-release", st)) {
  2161        if (file_exists("/etc/debian_version")) {
  2162          st->print("Debian ");
  2163          _print_ascii_file("/etc/debian_version", st);
  2164        } else {
  2165          st->print("Linux");
  2168    st->cr();
  2171 void os::Linux::print_libversion_info(outputStream* st) {
  2172   // libc, pthread
  2173   st->print("libc:");
  2174   st->print("%s ", os::Linux::glibc_version());
  2175   st->print("%s ", os::Linux::libpthread_version());
  2176   if (os::Linux::is_LinuxThreads()) {
  2177      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2179   st->cr();
  2182 void os::Linux::print_full_memory_info(outputStream* st) {
  2183    st->print("\n/proc/meminfo:\n");
  2184    _print_ascii_file("/proc/meminfo", st);
  2185    st->cr();
  2188 void os::print_memory_info(outputStream* st) {
  2190   st->print("Memory:");
  2191   st->print(" %dk page", os::vm_page_size()>>10);
  2193   // values in struct sysinfo are "unsigned long"
  2194   struct sysinfo si;
  2195   sysinfo(&si);
  2197   st->print(", physical " UINT64_FORMAT "k",
  2198             os::physical_memory() >> 10);
  2199   st->print("(" UINT64_FORMAT "k free)",
  2200             os::available_memory() >> 10);
  2201   st->print(", swap " UINT64_FORMAT "k",
  2202             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2203   st->print("(" UINT64_FORMAT "k free)",
  2204             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2205   st->cr();
  2208 void os::pd_print_cpu_info(outputStream* st) {
  2209   st->print("\n/proc/cpuinfo:\n");
  2210   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2211     st->print("  <Not Available>");
  2213   st->cr();
  2216 void os::print_siginfo(outputStream* st, void* siginfo) {
  2217   const siginfo_t* si = (const siginfo_t*)siginfo;
  2219   os::Posix::print_siginfo_brief(st, si);
  2220 #if INCLUDE_CDS
  2221   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2222       UseSharedSpaces) {
  2223     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2224     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2225       st->print("\n\nError accessing class data sharing archive."   \
  2226                 " Mapped file inaccessible during execution, "      \
  2227                 " possible disk/network problem.");
  2230 #endif
  2231   st->cr();
  2235 static void print_signal_handler(outputStream* st, int sig,
  2236                                  char* buf, size_t buflen);
  2238 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2239   st->print_cr("Signal Handlers:");
  2240   print_signal_handler(st, SIGSEGV, buf, buflen);
  2241   print_signal_handler(st, SIGBUS , buf, buflen);
  2242   print_signal_handler(st, SIGFPE , buf, buflen);
  2243   print_signal_handler(st, SIGPIPE, buf, buflen);
  2244   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2245   print_signal_handler(st, SIGILL , buf, buflen);
  2246   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2247   print_signal_handler(st, SR_signum, buf, buflen);
  2248   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2249   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2250   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2251   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2252 #if defined(PPC64)
  2253   print_signal_handler(st, SIGTRAP, buf, buflen);
  2254 #endif
  2257 static char saved_jvm_path[MAXPATHLEN] = {0};
  2259 // Find the full path to the current module, libjvm.so
  2260 void os::jvm_path(char *buf, jint buflen) {
  2261   // Error checking.
  2262   if (buflen < MAXPATHLEN) {
  2263     assert(false, "must use a large-enough buffer");
  2264     buf[0] = '\0';
  2265     return;
  2267   // Lazy resolve the path to current module.
  2268   if (saved_jvm_path[0] != 0) {
  2269     strcpy(buf, saved_jvm_path);
  2270     return;
  2273   char dli_fname[MAXPATHLEN];
  2274   bool ret = dll_address_to_library_name(
  2275                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2276                 dli_fname, sizeof(dli_fname), NULL);
  2277   assert(ret, "cannot locate libjvm");
  2278   char *rp = NULL;
  2279   if (ret && dli_fname[0] != '\0') {
  2280     rp = realpath(dli_fname, buf);
  2282   if (rp == NULL)
  2283     return;
  2285   if (Arguments::created_by_gamma_launcher()) {
  2286     // Support for the gamma launcher.  Typical value for buf is
  2287     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2288     // the right place in the string, then assume we are installed in a JDK and
  2289     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2290     // up the path so it looks like libjvm.so is installed there (append a
  2291     // fake suffix hotspot/libjvm.so).
  2292     const char *p = buf + strlen(buf) - 1;
  2293     for (int count = 0; p > buf && count < 5; ++count) {
  2294       for (--p; p > buf && *p != '/'; --p)
  2295         /* empty */ ;
  2298     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2299       // Look for JAVA_HOME in the environment.
  2300       char* java_home_var = ::getenv("JAVA_HOME");
  2301       if (java_home_var != NULL && java_home_var[0] != 0) {
  2302         char* jrelib_p;
  2303         int len;
  2305         // Check the current module name "libjvm.so".
  2306         p = strrchr(buf, '/');
  2307         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2309         rp = realpath(java_home_var, buf);
  2310         if (rp == NULL)
  2311           return;
  2313         // determine if this is a legacy image or modules image
  2314         // modules image doesn't have "jre" subdirectory
  2315         len = strlen(buf);
  2316         assert(len < buflen, "Ran out of buffer room");
  2317         jrelib_p = buf + len;
  2318         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2319         if (0 != access(buf, F_OK)) {
  2320           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2323         if (0 == access(buf, F_OK)) {
  2324           // Use current module name "libjvm.so"
  2325           len = strlen(buf);
  2326           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
  2327         } else {
  2328           // Go back to path of .so
  2329           rp = realpath(dli_fname, buf);
  2330           if (rp == NULL)
  2331             return;
  2337   strncpy(saved_jvm_path, buf, MAXPATHLEN);
  2340 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2341   // no prefix required, not even "_"
  2344 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2345   // no suffix required
  2348 ////////////////////////////////////////////////////////////////////////////////
  2349 // sun.misc.Signal support
  2351 static volatile jint sigint_count = 0;
  2353 static void
  2354 UserHandler(int sig, void *siginfo, void *context) {
  2355   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2356   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2357   // don't want to flood the manager thread with sem_post requests.
  2358   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2359       return;
  2361   // Ctrl-C is pressed during error reporting, likely because the error
  2362   // handler fails to abort. Let VM die immediately.
  2363   if (sig == SIGINT && is_error_reported()) {
  2364      os::die();
  2367   os::signal_notify(sig);
  2370 void* os::user_handler() {
  2371   return CAST_FROM_FN_PTR(void*, UserHandler);
  2374 class Semaphore : public StackObj {
  2375   public:
  2376     Semaphore();
  2377     ~Semaphore();
  2378     void signal();
  2379     void wait();
  2380     bool trywait();
  2381     bool timedwait(unsigned int sec, int nsec);
  2382   private:
  2383     sem_t _semaphore;
  2384 };
  2386 Semaphore::Semaphore() {
  2387   sem_init(&_semaphore, 0, 0);
  2390 Semaphore::~Semaphore() {
  2391   sem_destroy(&_semaphore);
  2394 void Semaphore::signal() {
  2395   sem_post(&_semaphore);
  2398 void Semaphore::wait() {
  2399   sem_wait(&_semaphore);
  2402 bool Semaphore::trywait() {
  2403   return sem_trywait(&_semaphore) == 0;
  2406 bool Semaphore::timedwait(unsigned int sec, int nsec) {
  2408   struct timespec ts;
  2409   // Semaphore's are always associated with CLOCK_REALTIME
  2410   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
  2411   // see unpackTime for discussion on overflow checking
  2412   if (sec >= MAX_SECS) {
  2413     ts.tv_sec += MAX_SECS;
  2414     ts.tv_nsec = 0;
  2415   } else {
  2416     ts.tv_sec += sec;
  2417     ts.tv_nsec += nsec;
  2418     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
  2419       ts.tv_nsec -= NANOSECS_PER_SEC;
  2420       ++ts.tv_sec; // note: this must be <= max_secs
  2424   while (1) {
  2425     int result = sem_timedwait(&_semaphore, &ts);
  2426     if (result == 0) {
  2427       return true;
  2428     } else if (errno == EINTR) {
  2429       continue;
  2430     } else if (errno == ETIMEDOUT) {
  2431       return false;
  2432     } else {
  2433       return false;
  2438 extern "C" {
  2439   typedef void (*sa_handler_t)(int);
  2440   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2443 void* os::signal(int signal_number, void* handler) {
  2444   struct sigaction sigAct, oldSigAct;
  2446   sigfillset(&(sigAct.sa_mask));
  2447   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2448   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2450   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2451     // -1 means registration failed
  2452     return (void *)-1;
  2455   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2458 void os::signal_raise(int signal_number) {
  2459   ::raise(signal_number);
  2462 /*
  2463  * The following code is moved from os.cpp for making this
  2464  * code platform specific, which it is by its very nature.
  2465  */
  2467 // Will be modified when max signal is changed to be dynamic
  2468 int os::sigexitnum_pd() {
  2469   return NSIG;
  2472 // a counter for each possible signal value
  2473 static volatile jint pending_signals[NSIG+1] = { 0 };
  2475 // Linux(POSIX) specific hand shaking semaphore.
  2476 static sem_t sig_sem;
  2477 static Semaphore sr_semaphore;
  2479 void os::signal_init_pd() {
  2480   // Initialize signal structures
  2481   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2483   // Initialize signal semaphore
  2484   ::sem_init(&sig_sem, 0, 0);
  2487 void os::signal_notify(int sig) {
  2488   Atomic::inc(&pending_signals[sig]);
  2489   ::sem_post(&sig_sem);
  2492 static int check_pending_signals(bool wait) {
  2493   Atomic::store(0, &sigint_count);
  2494   for (;;) {
  2495     for (int i = 0; i < NSIG + 1; i++) {
  2496       jint n = pending_signals[i];
  2497       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2498         return i;
  2501     if (!wait) {
  2502       return -1;
  2504     JavaThread *thread = JavaThread::current();
  2505     ThreadBlockInVM tbivm(thread);
  2507     bool threadIsSuspended;
  2508     do {
  2509       thread->set_suspend_equivalent();
  2510       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2511       ::sem_wait(&sig_sem);
  2513       // were we externally suspended while we were waiting?
  2514       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2515       if (threadIsSuspended) {
  2516         //
  2517         // The semaphore has been incremented, but while we were waiting
  2518         // another thread suspended us. We don't want to continue running
  2519         // while suspended because that would surprise the thread that
  2520         // suspended us.
  2521         //
  2522         ::sem_post(&sig_sem);
  2524         thread->java_suspend_self();
  2526     } while (threadIsSuspended);
  2530 int os::signal_lookup() {
  2531   return check_pending_signals(false);
  2534 int os::signal_wait() {
  2535   return check_pending_signals(true);
  2538 ////////////////////////////////////////////////////////////////////////////////
  2539 // Virtual Memory
  2541 int os::vm_page_size() {
  2542   // Seems redundant as all get out
  2543   assert(os::Linux::page_size() != -1, "must call os::init");
  2544   return os::Linux::page_size();
  2547 // Solaris allocates memory by pages.
  2548 int os::vm_allocation_granularity() {
  2549   assert(os::Linux::page_size() != -1, "must call os::init");
  2550   return os::Linux::page_size();
  2553 // Rationale behind this function:
  2554 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2555 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2556 //  samples for JITted code. Here we create private executable mapping over the code cache
  2557 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2558 //  info for the reporting script by storing timestamp and location of symbol
  2559 void linux_wrap_code(char* base, size_t size) {
  2560   static volatile jint cnt = 0;
  2562   if (!UseOprofile) {
  2563     return;
  2566   char buf[PATH_MAX+1];
  2567   int num = Atomic::add(1, &cnt);
  2569   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2570            os::get_temp_directory(), os::current_process_id(), num);
  2571   unlink(buf);
  2573   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2575   if (fd != -1) {
  2576     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2577     if (rv != (off_t)-1) {
  2578       if (::write(fd, "", 1) == 1) {
  2579         mmap(base, size,
  2580              PROT_READ|PROT_WRITE|PROT_EXEC,
  2581              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2584     ::close(fd);
  2585     unlink(buf);
  2589 static bool recoverable_mmap_error(int err) {
  2590   // See if the error is one we can let the caller handle. This
  2591   // list of errno values comes from JBS-6843484. I can't find a
  2592   // Linux man page that documents this specific set of errno
  2593   // values so while this list currently matches Solaris, it may
  2594   // change as we gain experience with this failure mode.
  2595   switch (err) {
  2596   case EBADF:
  2597   case EINVAL:
  2598   case ENOTSUP:
  2599     // let the caller deal with these errors
  2600     return true;
  2602   default:
  2603     // Any remaining errors on this OS can cause our reserved mapping
  2604     // to be lost. That can cause confusion where different data
  2605     // structures think they have the same memory mapped. The worst
  2606     // scenario is if both the VM and a library think they have the
  2607     // same memory mapped.
  2608     return false;
  2612 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
  2613                                     int err) {
  2614   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2615           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
  2616           strerror(err), err);
  2619 static void warn_fail_commit_memory(char* addr, size_t size,
  2620                                     size_t alignment_hint, bool exec,
  2621                                     int err) {
  2622   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
  2623           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
  2624           alignment_hint, exec, strerror(err), err);
  2627 // NOTE: Linux kernel does not really reserve the pages for us.
  2628 //       All it does is to check if there are enough free pages
  2629 //       left at the time of mmap(). This could be a potential
  2630 //       problem.
  2631 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
  2632   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2633   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2634                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2635   if (res != (uintptr_t) MAP_FAILED) {
  2636     if (UseNUMAInterleaving) {
  2637       numa_make_global(addr, size);
  2639     return 0;
  2642   int err = errno;  // save errno from mmap() call above
  2644   if (!recoverable_mmap_error(err)) {
  2645     warn_fail_commit_memory(addr, size, exec, err);
  2646     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
  2649   return err;
  2652 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2653   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
  2656 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
  2657                                   const char* mesg) {
  2658   assert(mesg != NULL, "mesg must be specified");
  2659   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2660   if (err != 0) {
  2661     // the caller wants all commit errors to exit with the specified mesg:
  2662     warn_fail_commit_memory(addr, size, exec, err);
  2663     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2667 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2668 #ifndef MAP_HUGETLB
  2669 #define MAP_HUGETLB 0x40000
  2670 #endif
  2672 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2673 #ifndef MADV_HUGEPAGE
  2674 #define MADV_HUGEPAGE 14
  2675 #endif
  2677 int os::Linux::commit_memory_impl(char* addr, size_t size,
  2678                                   size_t alignment_hint, bool exec) {
  2679   int err = os::Linux::commit_memory_impl(addr, size, exec);
  2680   if (err == 0) {
  2681     realign_memory(addr, size, alignment_hint);
  2683   return err;
  2686 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2687                           bool exec) {
  2688   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
  2691 void os::pd_commit_memory_or_exit(char* addr, size_t size,
  2692                                   size_t alignment_hint, bool exec,
  2693                                   const char* mesg) {
  2694   assert(mesg != NULL, "mesg must be specified");
  2695   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
  2696   if (err != 0) {
  2697     // the caller wants all commit errors to exit with the specified mesg:
  2698     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
  2699     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
  2703 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2704   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
  2705     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2706     // be supported or the memory may already be backed by huge pages.
  2707     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2711 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2712   // This method works by doing an mmap over an existing mmaping and effectively discarding
  2713   // the existing pages. However it won't work for SHM-based large pages that cannot be
  2714   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  2715   // small pages on top of the SHM segment. This method always works for small pages, so we
  2716   // allow that in any case.
  2717   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
  2718     commit_memory(addr, bytes, alignment_hint, !ExecMem);
  2722 void os::numa_make_global(char *addr, size_t bytes) {
  2723   Linux::numa_interleave_memory(addr, bytes);
  2726 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
  2727 // bind policy to MPOL_PREFERRED for the current thread.
  2728 #define USE_MPOL_PREFERRED 0
  2730 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2731   // To make NUMA and large pages more robust when both enabled, we need to ease
  2732   // the requirements on where the memory should be allocated. MPOL_BIND is the
  2733   // default policy and it will force memory to be allocated on the specified
  2734   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
  2735   // the specified node, but will not force it. Using this policy will prevent
  2736   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
  2737   // free large pages.
  2738   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
  2739   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2742 bool os::numa_topology_changed()   { return false; }
  2744 size_t os::numa_get_groups_num() {
  2745   // Return just the number of nodes in which it's possible to allocate memory
  2746   // (in numa terminology, configured nodes).
  2747   return Linux::numa_num_configured_nodes();
  2750 int os::numa_get_group_id() {
  2751   int cpu_id = Linux::sched_getcpu();
  2752   if (cpu_id != -1) {
  2753     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2754     if (lgrp_id != -1) {
  2755       return lgrp_id;
  2758   return 0;
  2761 int os::Linux::get_existing_num_nodes() {
  2762   size_t node;
  2763   size_t highest_node_number = Linux::numa_max_node();
  2764   int num_nodes = 0;
  2766   // Get the total number of nodes in the system including nodes without memory.
  2767   for (node = 0; node <= highest_node_number; node++) {
  2768     if (isnode_in_existing_nodes(node)) {
  2769       num_nodes++;
  2772   return num_nodes;
  2775 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2776   size_t highest_node_number = Linux::numa_max_node();
  2777   size_t i = 0;
  2779   // Map all node ids in which is possible to allocate memory. Also nodes are
  2780   // not always consecutively available, i.e. available from 0 to the highest
  2781   // node number.
  2782   for (size_t node = 0; node <= highest_node_number; node++) {
  2783     if (Linux::isnode_in_configured_nodes(node)) {
  2784       ids[i++] = node;
  2787   return i;
  2790 bool os::get_page_info(char *start, page_info* info) {
  2791   return false;
  2794 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2795   return end;
  2799 int os::Linux::sched_getcpu_syscall(void) {
  2800   unsigned int cpu = 0;
  2801   int retval = -1;
  2803 #if defined(IA32)
  2804 # ifndef SYS_getcpu
  2805 # define SYS_getcpu 318
  2806 # endif
  2807   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2808 #elif defined(AMD64)
  2809 // Unfortunately we have to bring all these macros here from vsyscall.h
  2810 // to be able to compile on old linuxes.
  2811 # define __NR_vgetcpu 2
  2812 # define VSYSCALL_START (-10UL << 20)
  2813 # define VSYSCALL_SIZE 1024
  2814 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2815   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2816   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2817   retval = vgetcpu(&cpu, NULL, NULL);
  2818 #endif
  2820   return (retval == -1) ? retval : cpu;
  2823 // Something to do with the numa-aware allocator needs these symbols
  2824 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2825 extern "C" JNIEXPORT void numa_error(char *where) { }
  2826 extern "C" JNIEXPORT int fork1() { return fork(); }
  2828 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
  2829 // load symbol from base version instead.
  2830 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2831   void *f = dlvsym(handle, name, "libnuma_1.1");
  2832   if (f == NULL) {
  2833     f = dlsym(handle, name);
  2835   return f;
  2838 // Handle request to load libnuma symbol version 1.2 (API v2) only.
  2839 // Return NULL if the symbol is not defined in this particular version.
  2840 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
  2841   return dlvsym(handle, name, "libnuma_1.2");
  2844 bool os::Linux::libnuma_init() {
  2845   // sched_getcpu() should be in libc.
  2846   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2847                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2849   // If it's not, try a direct syscall.
  2850   if (sched_getcpu() == -1)
  2851     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2853   if (sched_getcpu() != -1) { // Does it work?
  2854     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2855     if (handle != NULL) {
  2856       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2857                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2858       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2859                                        libnuma_dlsym(handle, "numa_max_node")));
  2860       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
  2861                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
  2862       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2863                                         libnuma_dlsym(handle, "numa_available")));
  2864       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2865                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2866       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2867                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
  2868       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
  2869                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
  2870       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
  2871                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
  2872       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
  2873                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
  2874       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
  2875                                        libnuma_dlsym(handle, "numa_distance")));
  2877       if (numa_available() != -1) {
  2878         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2879         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
  2880         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
  2881         // Create an index -> node mapping, since nodes are not always consecutive
  2882         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2883         rebuild_nindex_to_node_map();
  2884         // Create a cpu -> node mapping
  2885         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
  2886         rebuild_cpu_to_node_map();
  2887         return true;
  2891   return false;
  2894 void os::Linux::rebuild_nindex_to_node_map() {
  2895   int highest_node_number = Linux::numa_max_node();
  2897   nindex_to_node()->clear();
  2898   for (int node = 0; node <= highest_node_number; node++) {
  2899     if (Linux::isnode_in_existing_nodes(node)) {
  2900       nindex_to_node()->append(node);
  2905 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2906 // The table is later used in get_node_by_cpu().
  2907 void os::Linux::rebuild_cpu_to_node_map() {
  2908   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2909                               // in libnuma (possible values are starting from 16,
  2910                               // and continuing up with every other power of 2, but less
  2911                               // than the maximum number of CPUs supported by kernel), and
  2912                               // is a subject to change (in libnuma version 2 the requirements
  2913                               // are more reasonable) we'll just hardcode the number they use
  2914                               // in the library.
  2915   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2917   size_t cpu_num = processor_count();
  2918   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2919   size_t cpu_map_valid_size =
  2920     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2922   cpu_to_node()->clear();
  2923   cpu_to_node()->at_grow(cpu_num - 1);
  2925   size_t node_num = get_existing_num_nodes();
  2927   int distance = 0;
  2928   int closest_distance = INT_MAX;
  2929   int closest_node = 0;
  2930   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  2931   for (size_t i = 0; i < node_num; i++) {
  2932     // Check if node is configured (not a memory-less node). If it is not, find
  2933     // the closest configured node.
  2934     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
  2935       closest_distance = INT_MAX;
  2936       // Check distance from all remaining nodes in the system. Ignore distance
  2937       // from itself and from another non-configured node.
  2938       for (size_t m = 0; m < node_num; m++) {
  2939         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
  2940           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
  2941           // If a closest node is found, update. There is always at least one
  2942           // configured node in the system so there is always at least one node
  2943           // close.
  2944           if (distance != 0 && distance < closest_distance) {
  2945             closest_distance = distance;
  2946             closest_node = nindex_to_node()->at(m);
  2950      } else {
  2951        // Current node is already a configured node.
  2952        closest_node = nindex_to_node()->at(i);
  2955     // Get cpus from the original node and map them to the closest node. If node
  2956     // is a configured node (not a memory-less node), then original node and
  2957     // closest node are the same.
  2958     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2959       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2960         if (cpu_map[j] != 0) {
  2961           for (size_t k = 0; k < BitsPerCLong; k++) {
  2962             if (cpu_map[j] & (1UL << k)) {
  2963               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
  2970   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
  2973 int os::Linux::get_node_by_cpu(int cpu_id) {
  2974   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2975     return cpu_to_node()->at(cpu_id);
  2977   return -1;
  2980 GrowableArray<int>* os::Linux::_cpu_to_node;
  2981 GrowableArray<int>* os::Linux::_nindex_to_node;
  2982 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2983 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2984 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2985 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
  2986 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2987 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2988 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2989 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
  2990 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
  2991 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
  2992 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
  2993 unsigned long* os::Linux::_numa_all_nodes;
  2994 struct bitmask* os::Linux::_numa_all_nodes_ptr;
  2995 struct bitmask* os::Linux::_numa_nodes_ptr;
  2997 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2998   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2999                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  3000   return res  != (uintptr_t) MAP_FAILED;
  3003 static
  3004 address get_stack_commited_bottom(address bottom, size_t size) {
  3005   address nbot = bottom;
  3006   address ntop = bottom + size;
  3008   size_t page_sz = os::vm_page_size();
  3009   unsigned pages = size / page_sz;
  3011   unsigned char vec[1];
  3012   unsigned imin = 1, imax = pages + 1, imid;
  3013   int mincore_return_value = 0;
  3015   assert(imin <= imax, "Unexpected page size");
  3017   while (imin < imax) {
  3018     imid = (imax + imin) / 2;
  3019     nbot = ntop - (imid * page_sz);
  3021     // Use a trick with mincore to check whether the page is mapped or not.
  3022     // mincore sets vec to 1 if page resides in memory and to 0 if page
  3023     // is swapped output but if page we are asking for is unmapped
  3024     // it returns -1,ENOMEM
  3025     mincore_return_value = mincore(nbot, page_sz, vec);
  3027     if (mincore_return_value == -1) {
  3028       // Page is not mapped go up
  3029       // to find first mapped page
  3030       if (errno != EAGAIN) {
  3031         assert(errno == ENOMEM, "Unexpected mincore errno");
  3032         imax = imid;
  3034     } else {
  3035       // Page is mapped go down
  3036       // to find first not mapped page
  3037       imin = imid + 1;
  3041   nbot = nbot + page_sz;
  3043   // Adjust stack bottom one page up if last checked page is not mapped
  3044   if (mincore_return_value == -1) {
  3045     nbot = nbot + page_sz;
  3048   return nbot;
  3052 // Linux uses a growable mapping for the stack, and if the mapping for
  3053 // the stack guard pages is not removed when we detach a thread the
  3054 // stack cannot grow beyond the pages where the stack guard was
  3055 // mapped.  If at some point later in the process the stack expands to
  3056 // that point, the Linux kernel cannot expand the stack any further
  3057 // because the guard pages are in the way, and a segfault occurs.
  3058 //
  3059 // However, it's essential not to split the stack region by unmapping
  3060 // a region (leaving a hole) that's already part of the stack mapping,
  3061 // so if the stack mapping has already grown beyond the guard pages at
  3062 // the time we create them, we have to truncate the stack mapping.
  3063 // So, we need to know the extent of the stack mapping when
  3064 // create_stack_guard_pages() is called.
  3066 // We only need this for stacks that are growable: at the time of
  3067 // writing thread stacks don't use growable mappings (i.e. those
  3068 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  3069 // only applies to the main thread.
  3071 // If the (growable) stack mapping already extends beyond the point
  3072 // where we're going to put our guard pages, truncate the mapping at
  3073 // that point by munmap()ping it.  This ensures that when we later
  3074 // munmap() the guard pages we don't leave a hole in the stack
  3075 // mapping. This only affects the main/primordial thread
  3077 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  3079   if (os::is_primordial_thread()) {
  3080     // As we manually grow stack up to bottom inside create_attached_thread(),
  3081     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
  3082     // we don't need to do anything special.
  3083     // Check it first, before calling heavy function.
  3084     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
  3085     unsigned char vec[1];
  3087     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
  3088       // Fallback to slow path on all errors, including EAGAIN
  3089       stack_extent = (uintptr_t) get_stack_commited_bottom(
  3090                                     os::Linux::initial_thread_stack_bottom(),
  3091                                     (size_t)addr - stack_extent);
  3094     if (stack_extent < (uintptr_t)addr) {
  3095       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
  3099   return os::commit_memory(addr, size, !ExecMem);
  3102 // If this is a growable mapping, remove the guard pages entirely by
  3103 // munmap()ping them.  If not, just call uncommit_memory(). This only
  3104 // affects the main/primordial thread, but guard against future OS changes.
  3105 // It's safe to always unmap guard pages for primordial thread because we
  3106 // always place it right after end of the mapped region.
  3108 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3109   uintptr_t stack_extent, stack_base;
  3111   if (os::is_primordial_thread()) {
  3112     return ::munmap(addr, size) == 0;
  3115   return os::uncommit_memory(addr, size);
  3118 static address _highest_vm_reserved_address = NULL;
  3120 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  3121 // at 'requested_addr'. If there are existing memory mappings at the same
  3122 // location, however, they will be overwritten. If 'fixed' is false,
  3123 // 'requested_addr' is only treated as a hint, the return value may or
  3124 // may not start from the requested address. Unlike Linux mmap(), this
  3125 // function returns NULL to indicate failure.
  3126 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  3127   char * addr;
  3128   int flags;
  3130   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  3131   if (fixed) {
  3132     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  3133     flags |= MAP_FIXED;
  3136   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
  3137   // touch an uncommitted page. Otherwise, the read/write might
  3138   // succeed if we have enough swap space to back the physical page.
  3139   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
  3140                        flags, -1, 0);
  3142   if (addr != MAP_FAILED) {
  3143     // anon_mmap() should only get called during VM initialization,
  3144     // don't need lock (actually we can skip locking even it can be called
  3145     // from multiple threads, because _highest_vm_reserved_address is just a
  3146     // hint about the upper limit of non-stack memory regions.)
  3147     if ((address)addr + bytes > _highest_vm_reserved_address) {
  3148       _highest_vm_reserved_address = (address)addr + bytes;
  3152   return addr == MAP_FAILED ? NULL : addr;
  3155 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
  3156 //   (req_addr != NULL) or with a given alignment.
  3157 //  - bytes shall be a multiple of alignment.
  3158 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3159 //  - alignment sets the alignment at which memory shall be allocated.
  3160 //     It must be a multiple of allocation granularity.
  3161 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3162 //  req_addr or NULL.
  3163 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
  3165   size_t extra_size = bytes;
  3166   if (req_addr == NULL && alignment > 0) {
  3167     extra_size += alignment;
  3170   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
  3171     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  3172     -1, 0);
  3173   if (start == MAP_FAILED) {
  3174     start = NULL;
  3175   } else {
  3176     if (req_addr != NULL) {
  3177       if (start != req_addr) {
  3178         ::munmap(start, extra_size);
  3179         start = NULL;
  3181     } else {
  3182       char* const start_aligned = (char*) align_ptr_up(start, alignment);
  3183       char* const end_aligned = start_aligned + bytes;
  3184       char* const end = start + extra_size;
  3185       if (start_aligned > start) {
  3186         ::munmap(start, start_aligned - start);
  3188       if (end_aligned < end) {
  3189         ::munmap(end_aligned, end - end_aligned);
  3191       start = start_aligned;
  3194   return start;
  3197 // Don't update _highest_vm_reserved_address, because there might be memory
  3198 // regions above addr + size. If so, releasing a memory region only creates
  3199 // a hole in the address space, it doesn't help prevent heap-stack collision.
  3200 //
  3201 static int anon_munmap(char * addr, size_t size) {
  3202   return ::munmap(addr, size) == 0;
  3205 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  3206                          size_t alignment_hint) {
  3207   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  3210 bool os::pd_release_memory(char* addr, size_t size) {
  3211   return anon_munmap(addr, size);
  3214 static address highest_vm_reserved_address() {
  3215   return _highest_vm_reserved_address;
  3218 static bool linux_mprotect(char* addr, size_t size, int prot) {
  3219   // Linux wants the mprotect address argument to be page aligned.
  3220   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  3222   // According to SUSv3, mprotect() should only be used with mappings
  3223   // established by mmap(), and mmap() always maps whole pages. Unaligned
  3224   // 'addr' likely indicates problem in the VM (e.g. trying to change
  3225   // protection of malloc'ed or statically allocated memory). Check the
  3226   // caller if you hit this assert.
  3227   assert(addr == bottom, "sanity check");
  3229   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  3230   return ::mprotect(bottom, size, prot) == 0;
  3233 // Set protections specified
  3234 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3235                         bool is_committed) {
  3236   unsigned int p = 0;
  3237   switch (prot) {
  3238   case MEM_PROT_NONE: p = PROT_NONE; break;
  3239   case MEM_PROT_READ: p = PROT_READ; break;
  3240   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3241   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3242   default:
  3243     ShouldNotReachHere();
  3245   // is_committed is unused.
  3246   return linux_mprotect(addr, bytes, p);
  3249 bool os::guard_memory(char* addr, size_t size) {
  3250   return linux_mprotect(addr, size, PROT_NONE);
  3253 bool os::unguard_memory(char* addr, size_t size) {
  3254   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  3257 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
  3258   bool result = false;
  3259   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
  3260                  MAP_ANONYMOUS|MAP_PRIVATE,
  3261                  -1, 0);
  3262   if (p != MAP_FAILED) {
  3263     void *aligned_p = align_ptr_up(p, page_size);
  3265     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
  3267     munmap(p, page_size * 2);
  3270   if (warn && !result) {
  3271     warning("TransparentHugePages is not supported by the operating system.");
  3274   return result;
  3277 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  3278   bool result = false;
  3279   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
  3280                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  3281                  -1, 0);
  3283   if (p != MAP_FAILED) {
  3284     // We don't know if this really is a huge page or not.
  3285     FILE *fp = fopen("/proc/self/maps", "r");
  3286     if (fp) {
  3287       while (!feof(fp)) {
  3288         char chars[257];
  3289         long x = 0;
  3290         if (fgets(chars, sizeof(chars), fp)) {
  3291           if (sscanf(chars, "%lx-%*x", &x) == 1
  3292               && x == (long)p) {
  3293             if (strstr (chars, "hugepage")) {
  3294               result = true;
  3295               break;
  3300       fclose(fp);
  3302     munmap(p, page_size);
  3305   if (warn && !result) {
  3306     warning("HugeTLBFS is not supported by the operating system.");
  3309   return result;
  3312 /*
  3313 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  3315 * From the coredump_filter documentation:
  3317 * - (bit 0) anonymous private memory
  3318 * - (bit 1) anonymous shared memory
  3319 * - (bit 2) file-backed private memory
  3320 * - (bit 3) file-backed shared memory
  3321 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  3322 *           effective only if the bit 2 is cleared)
  3323 * - (bit 5) hugetlb private memory
  3324 * - (bit 6) hugetlb shared memory
  3325 */
  3326 static void set_coredump_filter(void) {
  3327   FILE *f;
  3328   long cdm;
  3330   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  3331     return;
  3334   if (fscanf(f, "%lx", &cdm) != 1) {
  3335     fclose(f);
  3336     return;
  3339   rewind(f);
  3341   if ((cdm & LARGEPAGES_BIT) == 0) {
  3342     cdm |= LARGEPAGES_BIT;
  3343     fprintf(f, "%#lx", cdm);
  3346   fclose(f);
  3349 // Large page support
  3351 static size_t _large_page_size = 0;
  3353 size_t os::Linux::find_large_page_size() {
  3354   size_t large_page_size = 0;
  3356   // large_page_size on Linux is used to round up heap size. x86 uses either
  3357   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3358   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3359   // page as large as 256M.
  3360   //
  3361   // Here we try to figure out page size by parsing /proc/meminfo and looking
  3362   // for a line with the following format:
  3363   //    Hugepagesize:     2048 kB
  3364   //
  3365   // If we can't determine the value (e.g. /proc is not mounted, or the text
  3366   // format has been changed), we'll use the largest page size supported by
  3367   // the processor.
  3369 #ifndef ZERO
  3370   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3371                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3372 #endif // ZERO
  3374   FILE *fp = fopen("/proc/meminfo", "r");
  3375   if (fp) {
  3376     while (!feof(fp)) {
  3377       int x = 0;
  3378       char buf[16];
  3379       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3380         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3381           large_page_size = x * K;
  3382           break;
  3384       } else {
  3385         // skip to next line
  3386         for (;;) {
  3387           int ch = fgetc(fp);
  3388           if (ch == EOF || ch == (int)'\n') break;
  3392     fclose(fp);
  3395   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
  3396     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
  3397         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
  3398         proper_unit_for_byte_size(large_page_size));
  3401   return large_page_size;
  3404 size_t os::Linux::setup_large_page_size() {
  3405   _large_page_size = Linux::find_large_page_size();
  3406   const size_t default_page_size = (size_t)Linux::page_size();
  3407   if (_large_page_size > default_page_size) {
  3408     _page_sizes[0] = _large_page_size;
  3409     _page_sizes[1] = default_page_size;
  3410     _page_sizes[2] = 0;
  3413   return _large_page_size;
  3416 bool os::Linux::setup_large_page_type(size_t page_size) {
  3417   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
  3418       FLAG_IS_DEFAULT(UseSHM) &&
  3419       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
  3421     // The type of large pages has not been specified by the user.
  3423     // Try UseHugeTLBFS and then UseSHM.
  3424     UseHugeTLBFS = UseSHM = true;
  3426     // Don't try UseTransparentHugePages since there are known
  3427     // performance issues with it turned on. This might change in the future.
  3428     UseTransparentHugePages = false;
  3431   if (UseTransparentHugePages) {
  3432     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
  3433     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
  3434       UseHugeTLBFS = false;
  3435       UseSHM = false;
  3436       return true;
  3438     UseTransparentHugePages = false;
  3441   if (UseHugeTLBFS) {
  3442     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3443     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
  3444       UseSHM = false;
  3445       return true;
  3447     UseHugeTLBFS = false;
  3450   return UseSHM;
  3453 void os::large_page_init() {
  3454   if (!UseLargePages &&
  3455       !UseTransparentHugePages &&
  3456       !UseHugeTLBFS &&
  3457       !UseSHM) {
  3458     // Not using large pages.
  3459     return;
  3462   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
  3463     // The user explicitly turned off large pages.
  3464     // Ignore the rest of the large pages flags.
  3465     UseTransparentHugePages = false;
  3466     UseHugeTLBFS = false;
  3467     UseSHM = false;
  3468     return;
  3471   size_t large_page_size = Linux::setup_large_page_size();
  3472   UseLargePages          = Linux::setup_large_page_type(large_page_size);
  3474   set_coredump_filter();
  3477 #ifndef SHM_HUGETLB
  3478 #define SHM_HUGETLB 04000
  3479 #endif
  3481 #define shm_warning_format(format, ...)              \
  3482   do {                                               \
  3483     if (UseLargePages &&                             \
  3484         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
  3485          !FLAG_IS_DEFAULT(UseSHM) ||                 \
  3486          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
  3487       warning(format, __VA_ARGS__);                  \
  3488     }                                                \
  3489   } while (0)
  3491 #define shm_warning(str) shm_warning_format("%s", str)
  3493 #define shm_warning_with_errno(str)                \
  3494   do {                                             \
  3495     int err = errno;                               \
  3496     shm_warning_format(str " (error = %d)", err);  \
  3497   } while (0)
  3499 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
  3500   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
  3502   if (!is_size_aligned(alignment, SHMLBA)) {
  3503     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
  3504     return NULL;
  3507   // To ensure that we get 'alignment' aligned memory from shmat,
  3508   // we pre-reserve aligned virtual memory and then attach to that.
  3510   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
  3511   if (pre_reserved_addr == NULL) {
  3512     // Couldn't pre-reserve aligned memory.
  3513     shm_warning("Failed to pre-reserve aligned memory for shmat.");
  3514     return NULL;
  3517   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
  3518   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
  3520   if ((intptr_t)addr == -1) {
  3521     int err = errno;
  3522     shm_warning_with_errno("Failed to attach shared memory.");
  3524     assert(err != EACCES, "Unexpected error");
  3525     assert(err != EIDRM,  "Unexpected error");
  3526     assert(err != EINVAL, "Unexpected error");
  3528     // Since we don't know if the kernel unmapped the pre-reserved memory area
  3529     // we can't unmap it, since that would potentially unmap memory that was
  3530     // mapped from other threads.
  3531     return NULL;
  3534   return addr;
  3537 static char* shmat_at_address(int shmid, char* req_addr) {
  3538   if (!is_ptr_aligned(req_addr, SHMLBA)) {
  3539     assert(false, "Requested address needs to be SHMLBA aligned");
  3540     return NULL;
  3543   char* addr = (char*)shmat(shmid, req_addr, 0);
  3545   if ((intptr_t)addr == -1) {
  3546     shm_warning_with_errno("Failed to attach shared memory.");
  3547     return NULL;
  3550   return addr;
  3553 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
  3554   // If a req_addr has been provided, we assume that the caller has already aligned the address.
  3555   if (req_addr != NULL) {
  3556     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
  3557     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
  3558     return shmat_at_address(shmid, req_addr);
  3561   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
  3562   // return large page size aligned memory addresses when req_addr == NULL.
  3563   // However, if the alignment is larger than the large page size, we have
  3564   // to manually ensure that the memory returned is 'alignment' aligned.
  3565   if (alignment > os::large_page_size()) {
  3566     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
  3567     return shmat_with_alignment(shmid, bytes, alignment);
  3568   } else {
  3569     return shmat_at_address(shmid, NULL);
  3573 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3574   // "exec" is passed in but not used.  Creating the shared image for
  3575   // the code cache doesn't have an SHM_X executable permission to check.
  3576   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3577   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3578   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
  3580   if (!is_size_aligned(bytes, os::large_page_size())) {
  3581     return NULL; // Fallback to small pages.
  3584   // Create a large shared memory region to attach to based on size.
  3585   // Currently, size is the total size of the heap.
  3586   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3587   if (shmid == -1) {
  3588     // Possible reasons for shmget failure:
  3589     // 1. shmmax is too small for Java heap.
  3590     //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3591     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3592     // 2. not enough large page memory.
  3593     //    > check available large pages: cat /proc/meminfo
  3594     //    > increase amount of large pages:
  3595     //          echo new_value > /proc/sys/vm/nr_hugepages
  3596     //      Note 1: different Linux may use different name for this property,
  3597     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3598     //      Note 2: it's possible there's enough physical memory available but
  3599     //            they are so fragmented after a long run that they can't
  3600     //            coalesce into large pages. Try to reserve large pages when
  3601     //            the system is still "fresh".
  3602     shm_warning_with_errno("Failed to reserve shared memory.");
  3603     return NULL;
  3606   // Attach to the region.
  3607   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
  3609   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3610   // will be deleted when it's detached by shmdt() or when the process
  3611   // terminates. If shmat() is not successful this will remove the shared
  3612   // segment immediately.
  3613   shmctl(shmid, IPC_RMID, NULL);
  3615   return addr;
  3618 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
  3619   assert(error == ENOMEM, "Only expect to fail if no memory is available");
  3621   bool warn_on_failure = UseLargePages &&
  3622       (!FLAG_IS_DEFAULT(UseLargePages) ||
  3623        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
  3624        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
  3626   if (warn_on_failure) {
  3627     char msg[128];
  3628     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
  3629         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
  3630     warning("%s", msg);
  3634 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
  3635   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3636   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
  3637   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
  3639   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3640   char* addr = (char*)::mmap(req_addr, bytes, prot,
  3641                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
  3642                              -1, 0);
  3644   if (addr == MAP_FAILED) {
  3645     warn_on_large_pages_failure(req_addr, bytes, errno);
  3646     return NULL;
  3649   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
  3651   return addr;
  3654 // Reserve memory using mmap(MAP_HUGETLB).
  3655 //  - bytes shall be a multiple of alignment.
  3656 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
  3657 //  - alignment sets the alignment at which memory shall be allocated.
  3658 //     It must be a multiple of allocation granularity.
  3659 // Returns address of memory or NULL. If req_addr was not NULL, will only return
  3660 //  req_addr or NULL.
  3661 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3662   size_t large_page_size = os::large_page_size();
  3663   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
  3665   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3666   assert(is_size_aligned(bytes, alignment), "Must be");
  3668   // First reserve - but not commit - the address range in small pages.
  3669   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
  3671   if (start == NULL) {
  3672     return NULL;
  3675   assert(is_ptr_aligned(start, alignment), "Must be");
  3677   char* end = start + bytes;
  3679   // Find the regions of the allocated chunk that can be promoted to large pages.
  3680   char* lp_start = (char*)align_ptr_up(start, large_page_size);
  3681   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
  3683   size_t lp_bytes = lp_end - lp_start;
  3685   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
  3687   if (lp_bytes == 0) {
  3688     // The mapped region doesn't even span the start and the end of a large page.
  3689     // Fall back to allocate a non-special area.
  3690     ::munmap(start, end - start);
  3691     return NULL;
  3694   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  3696   void* result;
  3698   // Commit small-paged leading area.
  3699   if (start != lp_start) {
  3700     result = ::mmap(start, lp_start - start, prot,
  3701                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3702                     -1, 0);
  3703     if (result == MAP_FAILED) {
  3704       ::munmap(lp_start, end - lp_start);
  3705       return NULL;
  3709   // Commit large-paged area.
  3710   result = ::mmap(lp_start, lp_bytes, prot,
  3711                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
  3712                   -1, 0);
  3713   if (result == MAP_FAILED) {
  3714     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
  3715     // If the mmap above fails, the large pages region will be unmapped and we
  3716     // have regions before and after with small pages. Release these regions.
  3717     //
  3718     // |  mapped  |  unmapped  |  mapped  |
  3719     // ^          ^            ^          ^
  3720     // start      lp_start     lp_end     end
  3721     //
  3722     ::munmap(start, lp_start - start);
  3723     ::munmap(lp_end, end - lp_end);
  3724     return NULL;
  3727   // Commit small-paged trailing area.
  3728   if (lp_end != end) {
  3729       result = ::mmap(lp_end, end - lp_end, prot,
  3730                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
  3731                       -1, 0);
  3732     if (result == MAP_FAILED) {
  3733       ::munmap(start, lp_end - start);
  3734       return NULL;
  3738   return start;
  3741 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3742   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
  3743   assert(is_ptr_aligned(req_addr, alignment), "Must be");
  3744   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
  3745   assert(is_power_of_2(os::large_page_size()), "Must be");
  3746   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
  3748   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
  3749     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
  3750   } else {
  3751     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
  3755 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
  3756   assert(UseLargePages, "only for large pages");
  3758   char* addr;
  3759   if (UseSHM) {
  3760     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
  3761   } else {
  3762     assert(UseHugeTLBFS, "must be");
  3763     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
  3766   if (addr != NULL) {
  3767     if (UseNUMAInterleaving) {
  3768       numa_make_global(addr, bytes);
  3771     // The memory is committed
  3772     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
  3775   return addr;
  3778 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
  3779   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
  3780   return shmdt(base) == 0;
  3783 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
  3784   return pd_release_memory(base, bytes);
  3787 bool os::release_memory_special(char* base, size_t bytes) {
  3788   bool res;
  3789   if (MemTracker::tracking_level() > NMT_minimal) {
  3790     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  3791     res = os::Linux::release_memory_special_impl(base, bytes);
  3792     if (res) {
  3793       tkr.record((address)base, bytes);
  3796   } else {
  3797     res = os::Linux::release_memory_special_impl(base, bytes);
  3799   return res;
  3802 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
  3803   assert(UseLargePages, "only for large pages");
  3804   bool res;
  3806   if (UseSHM) {
  3807     res = os::Linux::release_memory_special_shm(base, bytes);
  3808   } else {
  3809     assert(UseHugeTLBFS, "must be");
  3810     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
  3812   return res;
  3815 size_t os::large_page_size() {
  3816   return _large_page_size;
  3819 // With SysV SHM the entire memory region must be allocated as shared
  3820 // memory.
  3821 // HugeTLBFS allows application to commit large page memory on demand.
  3822 // However, when committing memory with HugeTLBFS fails, the region
  3823 // that was supposed to be committed will lose the old reservation
  3824 // and allow other threads to steal that memory region. Because of this
  3825 // behavior we can't commit HugeTLBFS memory.
  3826 bool os::can_commit_large_page_memory() {
  3827   return UseTransparentHugePages;
  3830 bool os::can_execute_large_page_memory() {
  3831   return UseTransparentHugePages || UseHugeTLBFS;
  3834 // Reserve memory at an arbitrary address, only if that area is
  3835 // available (and not reserved for something else).
  3837 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3838   const int max_tries = 10;
  3839   char* base[max_tries];
  3840   size_t size[max_tries];
  3841   const size_t gap = 0x000000;
  3843   // Assert only that the size is a multiple of the page size, since
  3844   // that's all that mmap requires, and since that's all we really know
  3845   // about at this low abstraction level.  If we need higher alignment,
  3846   // we can either pass an alignment to this method or verify alignment
  3847   // in one of the methods further up the call chain.  See bug 5044738.
  3848   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3850   // Repeatedly allocate blocks until the block is allocated at the
  3851   // right spot. Give up after max_tries. Note that reserve_memory() will
  3852   // automatically update _highest_vm_reserved_address if the call is
  3853   // successful. The variable tracks the highest memory address every reserved
  3854   // by JVM. It is used to detect heap-stack collision if running with
  3855   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3856   // space than needed, it could confuse the collision detecting code. To
  3857   // solve the problem, save current _highest_vm_reserved_address and
  3858   // calculate the correct value before return.
  3859   address old_highest = _highest_vm_reserved_address;
  3861   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3862   // if kernel honors the hint then we can return immediately.
  3863   char * addr = anon_mmap(requested_addr, bytes, false);
  3864   if (addr == requested_addr) {
  3865      return requested_addr;
  3868   if (addr != NULL) {
  3869      // mmap() is successful but it fails to reserve at the requested address
  3870      anon_munmap(addr, bytes);
  3873   int i;
  3874   for (i = 0; i < max_tries; ++i) {
  3875     base[i] = reserve_memory(bytes);
  3877     if (base[i] != NULL) {
  3878       // Is this the block we wanted?
  3879       if (base[i] == requested_addr) {
  3880         size[i] = bytes;
  3881         break;
  3884       // Does this overlap the block we wanted? Give back the overlapped
  3885       // parts and try again.
  3887       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3888       if (top_overlap >= 0 && top_overlap < bytes) {
  3889         unmap_memory(base[i], top_overlap);
  3890         base[i] += top_overlap;
  3891         size[i] = bytes - top_overlap;
  3892       } else {
  3893         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3894         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3895           unmap_memory(requested_addr, bottom_overlap);
  3896           size[i] = bytes - bottom_overlap;
  3897         } else {
  3898           size[i] = bytes;
  3904   // Give back the unused reserved pieces.
  3906   for (int j = 0; j < i; ++j) {
  3907     if (base[j] != NULL) {
  3908       unmap_memory(base[j], size[j]);
  3912   if (i < max_tries) {
  3913     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3914     return requested_addr;
  3915   } else {
  3916     _highest_vm_reserved_address = old_highest;
  3917     return NULL;
  3921 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3922   return ::read(fd, buf, nBytes);
  3925 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3926 // Solaris uses poll(), linux uses park().
  3927 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3928 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3929 // SIGSEGV, see 4355769.
  3931 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3932   assert(thread == Thread::current(),  "thread consistency check");
  3934   ParkEvent * const slp = thread->_SleepEvent ;
  3935   slp->reset() ;
  3936   OrderAccess::fence() ;
  3938   if (interruptible) {
  3939     jlong prevtime = javaTimeNanos();
  3941     for (;;) {
  3942       if (os::is_interrupted(thread, true)) {
  3943         return OS_INTRPT;
  3946       jlong newtime = javaTimeNanos();
  3948       if (newtime - prevtime < 0) {
  3949         // time moving backwards, should only happen if no monotonic clock
  3950         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3951         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3952       } else {
  3953         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3956       if(millis <= 0) {
  3957         return OS_OK;
  3960       prevtime = newtime;
  3963         assert(thread->is_Java_thread(), "sanity check");
  3964         JavaThread *jt = (JavaThread *) thread;
  3965         ThreadBlockInVM tbivm(jt);
  3966         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3968         jt->set_suspend_equivalent();
  3969         // cleared by handle_special_suspend_equivalent_condition() or
  3970         // java_suspend_self() via check_and_wait_while_suspended()
  3972         slp->park(millis);
  3974         // were we externally suspended while we were waiting?
  3975         jt->check_and_wait_while_suspended();
  3978   } else {
  3979     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3980     jlong prevtime = javaTimeNanos();
  3982     for (;;) {
  3983       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3984       // the 1st iteration ...
  3985       jlong newtime = javaTimeNanos();
  3987       if (newtime - prevtime < 0) {
  3988         // time moving backwards, should only happen if no monotonic clock
  3989         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3990         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3991       } else {
  3992         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  3995       if(millis <= 0) break ;
  3997       prevtime = newtime;
  3998       slp->park(millis);
  4000     return OS_OK ;
  4004 //
  4005 // Short sleep, direct OS call.
  4006 //
  4007 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
  4008 // sched_yield(2) will actually give up the CPU:
  4009 //
  4010 //   * Alone on this pariticular CPU, keeps running.
  4011 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
  4012 //     (pre 2.6.39).
  4013 //
  4014 // So calling this with 0 is an alternative.
  4015 //
  4016 void os::naked_short_sleep(jlong ms) {
  4017   struct timespec req;
  4019   assert(ms < 1000, "Un-interruptable sleep, short time use only");
  4020   req.tv_sec = 0;
  4021   if (ms > 0) {
  4022     req.tv_nsec = (ms % 1000) * 1000000;
  4024   else {
  4025     req.tv_nsec = 1;
  4028   nanosleep(&req, NULL);
  4030   return;
  4033 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  4034 void os::infinite_sleep() {
  4035   while (true) {    // sleep forever ...
  4036     ::sleep(100);   // ... 100 seconds at a time
  4040 // Used to convert frequent JVM_Yield() to nops
  4041 bool os::dont_yield() {
  4042   return DontYieldALot;
  4045 void os::yield() {
  4046   sched_yield();
  4049 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  4051 void os::yield_all(int attempts) {
  4052   // Yields to all threads, including threads with lower priorities
  4053   // Threads on Linux are all with same priority. The Solaris style
  4054   // os::yield_all() with nanosleep(1ms) is not necessary.
  4055   sched_yield();
  4058 // Called from the tight loops to possibly influence time-sharing heuristics
  4059 void os::loop_breaker(int attempts) {
  4060   os::yield_all(attempts);
  4063 ////////////////////////////////////////////////////////////////////////////////
  4064 // thread priority support
  4066 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  4067 // only supports dynamic priority, static priority must be zero. For real-time
  4068 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  4069 // However, for large multi-threaded applications, SCHED_RR is not only slower
  4070 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  4071 // of 5 runs - Sep 2005).
  4072 //
  4073 // The following code actually changes the niceness of kernel-thread/LWP. It
  4074 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  4075 // not the entire user process, and user level threads are 1:1 mapped to kernel
  4076 // threads. It has always been the case, but could change in the future. For
  4077 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  4078 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  4080 int os::java_to_os_priority[CriticalPriority + 1] = {
  4081   19,              // 0 Entry should never be used
  4083    4,              // 1 MinPriority
  4084    3,              // 2
  4085    2,              // 3
  4087    1,              // 4
  4088    0,              // 5 NormPriority
  4089   -1,              // 6
  4091   -2,              // 7
  4092   -3,              // 8
  4093   -4,              // 9 NearMaxPriority
  4095   -5,              // 10 MaxPriority
  4097   -5               // 11 CriticalPriority
  4098 };
  4100 static int prio_init() {
  4101   if (ThreadPriorityPolicy == 1) {
  4102     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  4103     // if effective uid is not root. Perhaps, a more elegant way of doing
  4104     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  4105     if (geteuid() != 0) {
  4106       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  4107         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  4109       ThreadPriorityPolicy = 0;
  4112   if (UseCriticalJavaThreadPriority) {
  4113     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  4115   return 0;
  4118 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4119   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  4121   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  4122   return (ret == 0) ? OS_OK : OS_ERR;
  4125 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4126   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  4127     *priority_ptr = java_to_os_priority[NormPriority];
  4128     return OS_OK;
  4131   errno = 0;
  4132   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  4133   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  4136 // Hint to the underlying OS that a task switch would not be good.
  4137 // Void return because it's a hint and can fail.
  4138 void os::hint_no_preempt() {}
  4140 ////////////////////////////////////////////////////////////////////////////////
  4141 // suspend/resume support
  4143 //  the low-level signal-based suspend/resume support is a remnant from the
  4144 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  4145 //  within hotspot. Now there is a single use-case for this:
  4146 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  4147 //      that runs in the watcher thread.
  4148 //  The remaining code is greatly simplified from the more general suspension
  4149 //  code that used to be used.
  4150 //
  4151 //  The protocol is quite simple:
  4152 //  - suspend:
  4153 //      - sends a signal to the target thread
  4154 //      - polls the suspend state of the osthread using a yield loop
  4155 //      - target thread signal handler (SR_handler) sets suspend state
  4156 //        and blocks in sigsuspend until continued
  4157 //  - resume:
  4158 //      - sets target osthread state to continue
  4159 //      - sends signal to end the sigsuspend loop in the SR_handler
  4160 //
  4161 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  4162 //
  4164 static void resume_clear_context(OSThread *osthread) {
  4165   osthread->set_ucontext(NULL);
  4166   osthread->set_siginfo(NULL);
  4169 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  4170   osthread->set_ucontext(context);
  4171   osthread->set_siginfo(siginfo);
  4174 //
  4175 // Handler function invoked when a thread's execution is suspended or
  4176 // resumed. We have to be careful that only async-safe functions are
  4177 // called here (Note: most pthread functions are not async safe and
  4178 // should be avoided.)
  4179 //
  4180 // Note: sigwait() is a more natural fit than sigsuspend() from an
  4181 // interface point of view, but sigwait() prevents the signal hander
  4182 // from being run. libpthread would get very confused by not having
  4183 // its signal handlers run and prevents sigwait()'s use with the
  4184 // mutex granting granting signal.
  4185 //
  4186 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
  4187 //
  4188 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  4189   // Save and restore errno to avoid confusing native code with EINTR
  4190   // after sigsuspend.
  4191   int old_errno = errno;
  4193   Thread* thread = Thread::current();
  4194   OSThread* osthread = thread->osthread();
  4195   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
  4197   os::SuspendResume::State current = osthread->sr.state();
  4198   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
  4199     suspend_save_context(osthread, siginfo, context);
  4201     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
  4202     os::SuspendResume::State state = osthread->sr.suspended();
  4203     if (state == os::SuspendResume::SR_SUSPENDED) {
  4204       sigset_t suspend_set;  // signals for sigsuspend()
  4206       // get current set of blocked signals and unblock resume signal
  4207       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  4208       sigdelset(&suspend_set, SR_signum);
  4210       sr_semaphore.signal();
  4211       // wait here until we are resumed
  4212       while (1) {
  4213         sigsuspend(&suspend_set);
  4215         os::SuspendResume::State result = osthread->sr.running();
  4216         if (result == os::SuspendResume::SR_RUNNING) {
  4217           sr_semaphore.signal();
  4218           break;
  4222     } else if (state == os::SuspendResume::SR_RUNNING) {
  4223       // request was cancelled, continue
  4224     } else {
  4225       ShouldNotReachHere();
  4228     resume_clear_context(osthread);
  4229   } else if (current == os::SuspendResume::SR_RUNNING) {
  4230     // request was cancelled, continue
  4231   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
  4232     // ignore
  4233   } else {
  4234     // ignore
  4237   errno = old_errno;
  4241 static int SR_initialize() {
  4242   struct sigaction act;
  4243   char *s;
  4244   /* Get signal number to use for suspend/resume */
  4245   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  4246     int sig = ::strtol(s, 0, 10);
  4247     if (sig > 0 || sig < _NSIG) {
  4248         SR_signum = sig;
  4252   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  4253         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  4255   sigemptyset(&SR_sigset);
  4256   sigaddset(&SR_sigset, SR_signum);
  4258   /* Set up signal handler for suspend/resume */
  4259   act.sa_flags = SA_RESTART|SA_SIGINFO;
  4260   act.sa_handler = (void (*)(int)) SR_handler;
  4262   // SR_signum is blocked by default.
  4263   // 4528190 - We also need to block pthread restart signal (32 on all
  4264   // supported Linux platforms). Note that LinuxThreads need to block
  4265   // this signal for all threads to work properly. So we don't have
  4266   // to use hard-coded signal number when setting up the mask.
  4267   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  4269   if (sigaction(SR_signum, &act, 0) == -1) {
  4270     return -1;
  4273   // Save signal flag
  4274   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  4275   return 0;
  4278 static int sr_notify(OSThread* osthread) {
  4279   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  4280   assert_status(status == 0, status, "pthread_kill");
  4281   return status;
  4284 // "Randomly" selected value for how long we want to spin
  4285 // before bailing out on suspending a thread, also how often
  4286 // we send a signal to a thread we want to resume
  4287 static const int RANDOMLY_LARGE_INTEGER = 1000000;
  4288 static const int RANDOMLY_LARGE_INTEGER2 = 100;
  4290 // returns true on success and false on error - really an error is fatal
  4291 // but this seems the normal response to library errors
  4292 static bool do_suspend(OSThread* osthread) {
  4293   assert(osthread->sr.is_running(), "thread should be running");
  4294   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
  4296   // mark as suspended and send signal
  4297   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
  4298     // failed to switch, state wasn't running?
  4299     ShouldNotReachHere();
  4300     return false;
  4303   if (sr_notify(osthread) != 0) {
  4304     ShouldNotReachHere();
  4307   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
  4308   while (true) {
  4309     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4310       break;
  4311     } else {
  4312       // timeout
  4313       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
  4314       if (cancelled == os::SuspendResume::SR_RUNNING) {
  4315         return false;
  4316       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
  4317         // make sure that we consume the signal on the semaphore as well
  4318         sr_semaphore.wait();
  4319         break;
  4320       } else {
  4321         ShouldNotReachHere();
  4322         return false;
  4327   guarantee(osthread->sr.is_suspended(), "Must be suspended");
  4328   return true;
  4331 static void do_resume(OSThread* osthread) {
  4332   assert(osthread->sr.is_suspended(), "thread should be suspended");
  4333   assert(!sr_semaphore.trywait(), "invalid semaphore state");
  4335   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
  4336     // failed to switch to WAKEUP_REQUEST
  4337     ShouldNotReachHere();
  4338     return;
  4341   while (true) {
  4342     if (sr_notify(osthread) == 0) {
  4343       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
  4344         if (osthread->sr.is_running()) {
  4345           return;
  4348     } else {
  4349       ShouldNotReachHere();
  4353   guarantee(osthread->sr.is_running(), "Must be running!");
  4356 ////////////////////////////////////////////////////////////////////////////////
  4357 // interrupt support
  4359 void os::interrupt(Thread* thread) {
  4360   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4361     "possibility of dangling Thread pointer");
  4363   OSThread* osthread = thread->osthread();
  4365   if (!osthread->interrupted()) {
  4366     osthread->set_interrupted(true);
  4367     // More than one thread can get here with the same value of osthread,
  4368     // resulting in multiple notifications.  We do, however, want the store
  4369     // to interrupted() to be visible to other threads before we execute unpark().
  4370     OrderAccess::fence();
  4371     ParkEvent * const slp = thread->_SleepEvent ;
  4372     if (slp != NULL) slp->unpark() ;
  4375   // For JSR166. Unpark even if interrupt status already was set
  4376   if (thread->is_Java_thread())
  4377     ((JavaThread*)thread)->parker()->unpark();
  4379   ParkEvent * ev = thread->_ParkEvent ;
  4380   if (ev != NULL) ev->unpark() ;
  4384 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4385   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  4386     "possibility of dangling Thread pointer");
  4388   OSThread* osthread = thread->osthread();
  4390   bool interrupted = osthread->interrupted();
  4392   if (interrupted && clear_interrupted) {
  4393     osthread->set_interrupted(false);
  4394     // consider thread->_SleepEvent->reset() ... optional optimization
  4397   return interrupted;
  4400 ///////////////////////////////////////////////////////////////////////////////////
  4401 // signal handling (except suspend/resume)
  4403 // This routine may be used by user applications as a "hook" to catch signals.
  4404 // The user-defined signal handler must pass unrecognized signals to this
  4405 // routine, and if it returns true (non-zero), then the signal handler must
  4406 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4407 // routine will never retun false (zero), but instead will execute a VM panic
  4408 // routine kill the process.
  4409 //
  4410 // If this routine returns false, it is OK to call it again.  This allows
  4411 // the user-defined signal handler to perform checks either before or after
  4412 // the VM performs its own checks.  Naturally, the user code would be making
  4413 // a serious error if it tried to handle an exception (such as a null check
  4414 // or breakpoint) that the VM was generating for its own correct operation.
  4415 //
  4416 // This routine may recognize any of the following kinds of signals:
  4417 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  4418 // It should be consulted by handlers for any of those signals.
  4419 //
  4420 // The caller of this routine must pass in the three arguments supplied
  4421 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4422 // field of the structure passed to sigaction().  This routine assumes that
  4423 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4424 //
  4425 // Note that the VM will print warnings if it detects conflicting signal
  4426 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4427 //
  4428 extern "C" JNIEXPORT int
  4429 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  4430                         void* ucontext, int abort_if_unrecognized);
  4432 void signalHandler(int sig, siginfo_t* info, void* uc) {
  4433   assert(info != NULL && uc != NULL, "it must be old kernel");
  4434   int orig_errno = errno;  // Preserve errno value over signal handler.
  4435   JVM_handle_linux_signal(sig, info, uc, true);
  4436   errno = orig_errno;
  4440 // This boolean allows users to forward their own non-matching signals
  4441 // to JVM_handle_linux_signal, harmlessly.
  4442 bool os::Linux::signal_handlers_are_installed = false;
  4444 // For signal-chaining
  4445 struct sigaction os::Linux::sigact[MAXSIGNUM];
  4446 unsigned int os::Linux::sigs = 0;
  4447 bool os::Linux::libjsig_is_loaded = false;
  4448 typedef struct sigaction *(*get_signal_t)(int);
  4449 get_signal_t os::Linux::get_signal_action = NULL;
  4451 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  4452   struct sigaction *actp = NULL;
  4454   if (libjsig_is_loaded) {
  4455     // Retrieve the old signal handler from libjsig
  4456     actp = (*get_signal_action)(sig);
  4458   if (actp == NULL) {
  4459     // Retrieve the preinstalled signal handler from jvm
  4460     actp = get_preinstalled_handler(sig);
  4463   return actp;
  4466 static bool call_chained_handler(struct sigaction *actp, int sig,
  4467                                  siginfo_t *siginfo, void *context) {
  4468   // Call the old signal handler
  4469   if (actp->sa_handler == SIG_DFL) {
  4470     // It's more reasonable to let jvm treat it as an unexpected exception
  4471     // instead of taking the default action.
  4472     return false;
  4473   } else if (actp->sa_handler != SIG_IGN) {
  4474     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4475       // automaticlly block the signal
  4476       sigaddset(&(actp->sa_mask), sig);
  4479     sa_handler_t hand = NULL;
  4480     sa_sigaction_t sa = NULL;
  4481     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4482     // retrieve the chained handler
  4483     if (siginfo_flag_set) {
  4484       sa = actp->sa_sigaction;
  4485     } else {
  4486       hand = actp->sa_handler;
  4489     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4490       actp->sa_handler = SIG_DFL;
  4493     // try to honor the signal mask
  4494     sigset_t oset;
  4495     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4497     // call into the chained handler
  4498     if (siginfo_flag_set) {
  4499       (*sa)(sig, siginfo, context);
  4500     } else {
  4501       (*hand)(sig);
  4504     // restore the signal mask
  4505     pthread_sigmask(SIG_SETMASK, &oset, 0);
  4507   // Tell jvm's signal handler the signal is taken care of.
  4508   return true;
  4511 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4512   bool chained = false;
  4513   // signal-chaining
  4514   if (UseSignalChaining) {
  4515     struct sigaction *actp = get_chained_signal_action(sig);
  4516     if (actp != NULL) {
  4517       chained = call_chained_handler(actp, sig, siginfo, context);
  4520   return chained;
  4523 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  4524   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  4525     return &sigact[sig];
  4527   return NULL;
  4530 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4531   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4532   sigact[sig] = oldAct;
  4533   sigs |= (unsigned int)1 << sig;
  4536 // for diagnostic
  4537 int os::Linux::sigflags[MAXSIGNUM];
  4539 int os::Linux::get_our_sigflags(int sig) {
  4540   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4541   return sigflags[sig];
  4544 void os::Linux::set_our_sigflags(int sig, int flags) {
  4545   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4546   sigflags[sig] = flags;
  4549 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  4550   // Check for overwrite.
  4551   struct sigaction oldAct;
  4552   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4554   void* oldhand = oldAct.sa_sigaction
  4555                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4556                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4557   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4558       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4559       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  4560     if (AllowUserSignalHandlers || !set_installed) {
  4561       // Do not overwrite; user takes responsibility to forward to us.
  4562       return;
  4563     } else if (UseSignalChaining) {
  4564       // save the old handler in jvm
  4565       save_preinstalled_handler(sig, oldAct);
  4566       // libjsig also interposes the sigaction() call below and saves the
  4567       // old sigaction on it own.
  4568     } else {
  4569       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4570                     "%#lx for signal %d.", (long)oldhand, sig));
  4574   struct sigaction sigAct;
  4575   sigfillset(&(sigAct.sa_mask));
  4576   sigAct.sa_handler = SIG_DFL;
  4577   if (!set_installed) {
  4578     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4579   } else {
  4580     sigAct.sa_sigaction = signalHandler;
  4581     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  4583   // Save flags, which are set by ours
  4584   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  4585   sigflags[sig] = sigAct.sa_flags;
  4587   int ret = sigaction(sig, &sigAct, &oldAct);
  4588   assert(ret == 0, "check");
  4590   void* oldhand2  = oldAct.sa_sigaction
  4591                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4592                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4593   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4596 // install signal handlers for signals that HotSpot needs to
  4597 // handle in order to support Java-level exception handling.
  4599 void os::Linux::install_signal_handlers() {
  4600   if (!signal_handlers_are_installed) {
  4601     signal_handlers_are_installed = true;
  4603     // signal-chaining
  4604     typedef void (*signal_setting_t)();
  4605     signal_setting_t begin_signal_setting = NULL;
  4606     signal_setting_t end_signal_setting = NULL;
  4607     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4608                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4609     if (begin_signal_setting != NULL) {
  4610       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4611                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4612       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4613                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4614       libjsig_is_loaded = true;
  4615       assert(UseSignalChaining, "should enable signal-chaining");
  4617     if (libjsig_is_loaded) {
  4618       // Tell libjsig jvm is setting signal handlers
  4619       (*begin_signal_setting)();
  4622     set_signal_handler(SIGSEGV, true);
  4623     set_signal_handler(SIGPIPE, true);
  4624     set_signal_handler(SIGBUS, true);
  4625     set_signal_handler(SIGILL, true);
  4626     set_signal_handler(SIGFPE, true);
  4627 #if defined(PPC64)
  4628     set_signal_handler(SIGTRAP, true);
  4629 #endif
  4630     set_signal_handler(SIGXFSZ, true);
  4632     if (libjsig_is_loaded) {
  4633       // Tell libjsig jvm finishes setting signal handlers
  4634       (*end_signal_setting)();
  4637     // We don't activate signal checker if libjsig is in place, we trust ourselves
  4638     // and if UserSignalHandler is installed all bets are off.
  4639     // Log that signal checking is off only if -verbose:jni is specified.
  4640     if (CheckJNICalls) {
  4641       if (libjsig_is_loaded) {
  4642         if (PrintJNIResolving) {
  4643           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4645         check_signals = false;
  4647       if (AllowUserSignalHandlers) {
  4648         if (PrintJNIResolving) {
  4649           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4651         check_signals = false;
  4657 // This is the fastest way to get thread cpu time on Linux.
  4658 // Returns cpu time (user+sys) for any thread, not only for current.
  4659 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  4660 // It might work on 2.6.10+ with a special kernel/glibc patch.
  4661 // For reference, please, see IEEE Std 1003.1-2004:
  4662 //   http://www.unix.org/single_unix_specification
  4664 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  4665   struct timespec tp;
  4666   int rc = os::Linux::clock_gettime(clockid, &tp);
  4667   assert(rc == 0, "clock_gettime is expected to return 0 code");
  4669   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
  4672 /////
  4673 // glibc on Linux platform uses non-documented flag
  4674 // to indicate, that some special sort of signal
  4675 // trampoline is used.
  4676 // We will never set this flag, and we should
  4677 // ignore this flag in our diagnostic
  4678 #ifdef SIGNIFICANT_SIGNAL_MASK
  4679 #undef SIGNIFICANT_SIGNAL_MASK
  4680 #endif
  4681 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  4683 static const char* get_signal_handler_name(address handler,
  4684                                            char* buf, int buflen) {
  4685   int offset = 0;
  4686   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  4687   if (found) {
  4688     // skip directory names
  4689     const char *p1, *p2;
  4690     p1 = buf;
  4691     size_t len = strlen(os::file_separator());
  4692     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  4693     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  4694   } else {
  4695     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  4697   return buf;
  4700 static void print_signal_handler(outputStream* st, int sig,
  4701                                  char* buf, size_t buflen) {
  4702   struct sigaction sa;
  4704   sigaction(sig, NULL, &sa);
  4706   // See comment for SIGNIFICANT_SIGNAL_MASK define
  4707   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4709   st->print("%s: ", os::exception_name(sig, buf, buflen));
  4711   address handler = (sa.sa_flags & SA_SIGINFO)
  4712     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  4713     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  4715   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  4716     st->print("SIG_DFL");
  4717   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  4718     st->print("SIG_IGN");
  4719   } else {
  4720     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  4723   st->print(", sa_mask[0]=");
  4724   os::Posix::print_signal_set_short(st, &sa.sa_mask);
  4726   address rh = VMError::get_resetted_sighandler(sig);
  4727   // May be, handler was resetted by VMError?
  4728   if(rh != NULL) {
  4729     handler = rh;
  4730     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  4733   st->print(", sa_flags=");
  4734   os::Posix::print_sa_flags(st, sa.sa_flags);
  4736   // Check: is it our handler?
  4737   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  4738      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  4739     // It is our signal handler
  4740     // check for flags, reset system-used one!
  4741     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4742       st->print(
  4743                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4744                 os::Linux::get_our_sigflags(sig));
  4747   st->cr();
  4751 #define DO_SIGNAL_CHECK(sig) \
  4752   if (!sigismember(&check_signal_done, sig)) \
  4753     os::Linux::check_signal_handler(sig)
  4755 // This method is a periodic task to check for misbehaving JNI applications
  4756 // under CheckJNI, we can add any periodic checks here
  4758 void os::run_periodic_checks() {
  4760   if (check_signals == false) return;
  4762   // SEGV and BUS if overridden could potentially prevent
  4763   // generation of hs*.log in the event of a crash, debugging
  4764   // such a case can be very challenging, so we absolutely
  4765   // check the following for a good measure:
  4766   DO_SIGNAL_CHECK(SIGSEGV);
  4767   DO_SIGNAL_CHECK(SIGILL);
  4768   DO_SIGNAL_CHECK(SIGFPE);
  4769   DO_SIGNAL_CHECK(SIGBUS);
  4770   DO_SIGNAL_CHECK(SIGPIPE);
  4771   DO_SIGNAL_CHECK(SIGXFSZ);
  4772 #if defined(PPC64)
  4773   DO_SIGNAL_CHECK(SIGTRAP);
  4774 #endif
  4776   // ReduceSignalUsage allows the user to override these handlers
  4777   // see comments at the very top and jvm_solaris.h
  4778   if (!ReduceSignalUsage) {
  4779     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4780     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4781     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4782     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4785   DO_SIGNAL_CHECK(SR_signum);
  4786   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4789 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4791 static os_sigaction_t os_sigaction = NULL;
  4793 void os::Linux::check_signal_handler(int sig) {
  4794   char buf[O_BUFLEN];
  4795   address jvmHandler = NULL;
  4798   struct sigaction act;
  4799   if (os_sigaction == NULL) {
  4800     // only trust the default sigaction, in case it has been interposed
  4801     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4802     if (os_sigaction == NULL) return;
  4805   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4808   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4810   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4811     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4812     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4815   switch(sig) {
  4816   case SIGSEGV:
  4817   case SIGBUS:
  4818   case SIGFPE:
  4819   case SIGPIPE:
  4820   case SIGILL:
  4821   case SIGXFSZ:
  4822     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4823     break;
  4825   case SHUTDOWN1_SIGNAL:
  4826   case SHUTDOWN2_SIGNAL:
  4827   case SHUTDOWN3_SIGNAL:
  4828   case BREAK_SIGNAL:
  4829     jvmHandler = (address)user_handler();
  4830     break;
  4832   case INTERRUPT_SIGNAL:
  4833     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4834     break;
  4836   default:
  4837     if (sig == SR_signum) {
  4838       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4839     } else {
  4840       return;
  4842     break;
  4845   if (thisHandler != jvmHandler) {
  4846     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4847     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4848     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4849     // No need to check this sig any longer
  4850     sigaddset(&check_signal_done, sig);
  4851     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
  4852     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
  4853       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
  4854                     exception_name(sig, buf, O_BUFLEN));
  4856   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4857     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4858     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4859     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4860     // No need to check this sig any longer
  4861     sigaddset(&check_signal_done, sig);
  4864   // Dump all the signal
  4865   if (sigismember(&check_signal_done, sig)) {
  4866     print_signal_handlers(tty, buf, O_BUFLEN);
  4870 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4872 extern bool signal_name(int signo, char* buf, size_t len);
  4874 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4875   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4876     // signal
  4877     if (!signal_name(exception_code, buf, size)) {
  4878       jio_snprintf(buf, size, "SIG%d", exception_code);
  4880     return buf;
  4881   } else {
  4882     return NULL;
  4886 // this is called _before_ most of the global arguments have been parsed
  4887 void os::init(void) {
  4888   char dummy;   /* used to get a guess on initial stack address */
  4890   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4891   // is different than the pid of the java launcher thread.
  4892   // So, on Linux, the launcher thread pid is passed to the VM
  4893   // via the sun.java.launcher.pid property.
  4894   // Use this property instead of getpid() if it was correctly passed.
  4895   // See bug 6351349.
  4896   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4898   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4900   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4902   init_random(1234567);
  4904   ThreadCritical::initialize();
  4906   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4907   if (Linux::page_size() == -1) {
  4908     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4909                   strerror(errno)));
  4911   init_page_sizes((size_t) Linux::page_size());
  4913   Linux::initialize_system_info();
  4915   // _main_thread points to the thread that created/loaded the JVM.
  4916   Linux::_main_thread = pthread_self();
  4918   Linux::clock_init();
  4919   initial_time_count = javaTimeNanos();
  4921   // pthread_condattr initialization for monotonic clock
  4922   int status;
  4923   pthread_condattr_t* _condattr = os::Linux::condAttr();
  4924   if ((status = pthread_condattr_init(_condattr)) != 0) {
  4925     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
  4927   // Only set the clock if CLOCK_MONOTONIC is available
  4928   if (Linux::supports_monotonic_clock()) {
  4929     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
  4930       if (status == EINVAL) {
  4931         warning("Unable to use monotonic clock with relative timed-waits" \
  4932                 " - changes to the time-of-day clock may have adverse affects");
  4933       } else {
  4934         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
  4938   // else it defaults to CLOCK_REALTIME
  4940   pthread_mutex_init(&dl_mutex, NULL);
  4942   // If the pagesize of the VM is greater than 8K determine the appropriate
  4943   // number of initial guard pages.  The user can change this with the
  4944   // command line arguments, if needed.
  4945   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
  4946     StackYellowPages = 1;
  4947     StackRedPages = 1;
  4948     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
  4952 // To install functions for atexit system call
  4953 extern "C" {
  4954   static void perfMemory_exit_helper() {
  4955     perfMemory_exit();
  4959 // this is called _after_ the global arguments have been parsed
  4960 jint os::init_2(void)
  4962   Linux::fast_thread_clock_init();
  4964   // Allocate a single page and mark it as readable for safepoint polling
  4965   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4966   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4968   os::set_polling_page( polling_page );
  4970 #ifndef PRODUCT
  4971   if(Verbose && PrintMiscellaneous)
  4972     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4973 #endif
  4975   if (!UseMembar) {
  4976     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4977     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
  4978     os::set_memory_serialize_page( mem_serialize_page );
  4980 #ifndef PRODUCT
  4981     if(Verbose && PrintMiscellaneous)
  4982       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4983 #endif
  4986   // initialize suspend/resume support - must do this before signal_sets_init()
  4987   if (SR_initialize() != 0) {
  4988     perror("SR_initialize failed");
  4989     return JNI_ERR;
  4992   Linux::signal_sets_init();
  4993   Linux::install_signal_handlers();
  4995   // Check minimum allowable stack size for thread creation and to initialize
  4996   // the java system classes, including StackOverflowError - depends on page
  4997   // size.  Add a page for compiler2 recursion in main thread.
  4998   // Add in 2*BytesPerWord times page size to account for VM stack during
  4999   // class initialization depending on 32 or 64 bit VM.
  5000   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  5001             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
  5002                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
  5004   size_t threadStackSizeInBytes = ThreadStackSize * K;
  5005   if (threadStackSizeInBytes != 0 &&
  5006       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  5007         tty->print_cr("\nThe stack size specified is too small, "
  5008                       "Specify at least %dk",
  5009                       os::Linux::min_stack_allowed/ K);
  5010         return JNI_ERR;
  5013   // Make the stack size a multiple of the page size so that
  5014   // the yellow/red zones can be guarded.
  5015   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5016         vm_page_size()));
  5018   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  5020 #if defined(IA32)
  5021   workaround_expand_exec_shield_cs_limit();
  5022 #endif
  5024   Linux::libpthread_init();
  5025   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  5026      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  5027           Linux::glibc_version(), Linux::libpthread_version(),
  5028           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  5031   if (UseNUMA) {
  5032     if (!Linux::libnuma_init()) {
  5033       UseNUMA = false;
  5034     } else {
  5035       if ((Linux::numa_max_node() < 1)) {
  5036         // There's only one node(they start from 0), disable NUMA.
  5037         UseNUMA = false;
  5040     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
  5041     // we can make the adaptive lgrp chunk resizing work. If the user specified
  5042     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
  5043     // disable adaptive resizing.
  5044     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
  5045       if (FLAG_IS_DEFAULT(UseNUMA)) {
  5046         UseNUMA = false;
  5047       } else {
  5048         if (FLAG_IS_DEFAULT(UseLargePages) &&
  5049             FLAG_IS_DEFAULT(UseSHM) &&
  5050             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
  5051           UseLargePages = false;
  5052         } else {
  5053           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
  5054           UseAdaptiveSizePolicy = false;
  5055           UseAdaptiveNUMAChunkSizing = false;
  5059     if (!UseNUMA && ForceNUMA) {
  5060       UseNUMA = true;
  5064   if (MaxFDLimit) {
  5065     // set the number of file descriptors to max. print out error
  5066     // if getrlimit/setrlimit fails but continue regardless.
  5067     struct rlimit nbr_files;
  5068     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5069     if (status != 0) {
  5070       if (PrintMiscellaneous && (Verbose || WizardMode))
  5071         perror("os::init_2 getrlimit failed");
  5072     } else {
  5073       nbr_files.rlim_cur = nbr_files.rlim_max;
  5074       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5075       if (status != 0) {
  5076         if (PrintMiscellaneous && (Verbose || WizardMode))
  5077           perror("os::init_2 setrlimit failed");
  5082   // Initialize lock used to serialize thread creation (see os::create_thread)
  5083   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  5085   // at-exit methods are called in the reverse order of their registration.
  5086   // atexit functions are called on return from main or as a result of a
  5087   // call to exit(3C). There can be only 32 of these functions registered
  5088   // and atexit() does not set errno.
  5090   if (PerfAllowAtExitRegistration) {
  5091     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5092     // atexit functions can be delayed until process exit time, which
  5093     // can be problematic for embedded VM situations. Embedded VMs should
  5094     // call DestroyJavaVM() to assure that VM resources are released.
  5096     // note: perfMemory_exit_helper atexit function may be removed in
  5097     // the future if the appropriate cleanup code can be added to the
  5098     // VM_Exit VMOperation's doit method.
  5099     if (atexit(perfMemory_exit_helper) != 0) {
  5100       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  5104   // initialize thread priority policy
  5105   prio_init();
  5107   return JNI_OK;
  5110 // Mark the polling page as unreadable
  5111 void os::make_polling_page_unreadable(void) {
  5112   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  5113     fatal("Could not disable polling page");
  5114 };
  5116 // Mark the polling page as readable
  5117 void os::make_polling_page_readable(void) {
  5118   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  5119     fatal("Could not enable polling page");
  5121 };
  5123 static int os_cpu_count(const cpu_set_t* cpus) {
  5124   int count = 0;
  5125   // only look up to the number of configured processors
  5126   for (int i = 0; i < os::processor_count(); i++) {
  5127     if (CPU_ISSET(i, cpus)) {
  5128       count++;
  5131   return count;
  5134 // Get the current number of available processors for this process.
  5135 // This value can change at any time during a process's lifetime.
  5136 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
  5137 // If anything goes wrong we fallback to returning the number of online
  5138 // processors - which can be greater than the number available to the process.
  5139 int os::active_processor_count() {
  5140   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
  5141   int cpus_size = sizeof(cpu_set_t);
  5142   int cpu_count = 0;
  5144   // pid 0 means the current thread - which we have to assume represents the process
  5145   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
  5146     cpu_count = os_cpu_count(&cpus);
  5147     if (PrintActiveCpus) {
  5148       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
  5151   else {
  5152     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
  5153     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
  5154             "which may exceed available processors", strerror(errno), cpu_count);
  5157   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
  5158   return cpu_count;
  5161 void os::set_native_thread_name(const char *name) {
  5162   // Not yet implemented.
  5163   return;
  5166 bool os::distribute_processes(uint length, uint* distribution) {
  5167   // Not yet implemented.
  5168   return false;
  5171 bool os::bind_to_processor(uint processor_id) {
  5172   // Not yet implemented.
  5173   return false;
  5176 ///
  5178 void os::SuspendedThreadTask::internal_do_task() {
  5179   if (do_suspend(_thread->osthread())) {
  5180     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
  5181     do_task(context);
  5182     do_resume(_thread->osthread());
  5186 class PcFetcher : public os::SuspendedThreadTask {
  5187 public:
  5188   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
  5189   ExtendedPC result();
  5190 protected:
  5191   void do_task(const os::SuspendedThreadTaskContext& context);
  5192 private:
  5193   ExtendedPC _epc;
  5194 };
  5196 ExtendedPC PcFetcher::result() {
  5197   guarantee(is_done(), "task is not done yet.");
  5198   return _epc;
  5201 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
  5202   Thread* thread = context.thread();
  5203   OSThread* osthread = thread->osthread();
  5204   if (osthread->ucontext() != NULL) {
  5205     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
  5206   } else {
  5207     // NULL context is unexpected, double-check this is the VMThread
  5208     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  5212 // Suspends the target using the signal mechanism and then grabs the PC before
  5213 // resuming the target. Used by the flat-profiler only
  5214 ExtendedPC os::get_thread_pc(Thread* thread) {
  5215   // Make sure that it is called by the watcher for the VMThread
  5216   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  5217   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  5219   PcFetcher fetcher(thread);
  5220   fetcher.run();
  5221   return fetcher.result();
  5224 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  5226    if (is_NPTL()) {
  5227       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  5228    } else {
  5229       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  5230       // word back to default 64bit precision if condvar is signaled. Java
  5231       // wants 53bit precision.  Save and restore current value.
  5232       int fpu = get_fpu_control_word();
  5233       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  5234       set_fpu_control_word(fpu);
  5235       return status;
  5239 ////////////////////////////////////////////////////////////////////////////////
  5240 // debug support
  5242 bool os::find(address addr, outputStream* st) {
  5243   Dl_info dlinfo;
  5244   memset(&dlinfo, 0, sizeof(dlinfo));
  5245   if (dladdr(addr, &dlinfo) != 0) {
  5246     st->print(PTR_FORMAT ": ", addr);
  5247     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
  5248       st->print("%s+%#x", dlinfo.dli_sname,
  5249                  addr - (intptr_t)dlinfo.dli_saddr);
  5250     } else if (dlinfo.dli_fbase != NULL) {
  5251       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  5252     } else {
  5253       st->print("<absolute address>");
  5255     if (dlinfo.dli_fname != NULL) {
  5256       st->print(" in %s", dlinfo.dli_fname);
  5258     if (dlinfo.dli_fbase != NULL) {
  5259       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  5261     st->cr();
  5263     if (Verbose) {
  5264       // decode some bytes around the PC
  5265       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
  5266       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
  5267       address       lowest = (address) dlinfo.dli_sname;
  5268       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5269       if (begin < lowest)  begin = lowest;
  5270       Dl_info dlinfo2;
  5271       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5272           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5273         end = (address) dlinfo2.dli_saddr;
  5274       Disassembler::decode(begin, end, st);
  5276     return true;
  5278   return false;
  5281 ////////////////////////////////////////////////////////////////////////////////
  5282 // misc
  5284 // This does not do anything on Linux. This is basically a hook for being
  5285 // able to use structured exception handling (thread-local exception filters)
  5286 // on, e.g., Win32.
  5287 void
  5288 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  5289                          JavaCallArguments* args, Thread* thread) {
  5290   f(value, method, args, thread);
  5293 void os::print_statistics() {
  5296 int os::message_box(const char* title, const char* message) {
  5297   int i;
  5298   fdStream err(defaultStream::error_fd());
  5299   for (i = 0; i < 78; i++) err.print_raw("=");
  5300   err.cr();
  5301   err.print_raw_cr(title);
  5302   for (i = 0; i < 78; i++) err.print_raw("-");
  5303   err.cr();
  5304   err.print_raw_cr(message);
  5305   for (i = 0; i < 78; i++) err.print_raw("=");
  5306   err.cr();
  5308   char buf[16];
  5309   // Prevent process from exiting upon "read error" without consuming all CPU
  5310   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  5312   return buf[0] == 'y' || buf[0] == 'Y';
  5315 int os::stat(const char *path, struct stat *sbuf) {
  5316   char pathbuf[MAX_PATH];
  5317   if (strlen(path) > MAX_PATH - 1) {
  5318     errno = ENAMETOOLONG;
  5319     return -1;
  5321   os::native_path(strcpy(pathbuf, path));
  5322   return ::stat(pathbuf, sbuf);
  5325 bool os::check_heap(bool force) {
  5326   return true;
  5329 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  5330   return ::vsnprintf(buf, count, format, args);
  5333 // Is a (classpath) directory empty?
  5334 bool os::dir_is_empty(const char* path) {
  5335   DIR *dir = NULL;
  5336   struct dirent *ptr;
  5338   dir = opendir(path);
  5339   if (dir == NULL) return true;
  5341   /* Scan the directory */
  5342   bool result = true;
  5343   char buf[sizeof(struct dirent) + MAX_PATH];
  5344   while (result && (ptr = ::readdir(dir)) != NULL) {
  5345     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5346       result = false;
  5349   closedir(dir);
  5350   return result;
  5353 // This code originates from JDK's sysOpen and open64_w
  5354 // from src/solaris/hpi/src/system_md.c
  5356 #ifndef O_DELETE
  5357 #define O_DELETE 0x10000
  5358 #endif
  5360 // Open a file. Unlink the file immediately after open returns
  5361 // if the specified oflag has the O_DELETE flag set.
  5362 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5364 int os::open(const char *path, int oflag, int mode) {
  5366   if (strlen(path) > MAX_PATH - 1) {
  5367     errno = ENAMETOOLONG;
  5368     return -1;
  5370   int fd;
  5371   int o_delete = (oflag & O_DELETE);
  5372   oflag = oflag & ~O_DELETE;
  5374   fd = ::open64(path, oflag, mode);
  5375   if (fd == -1) return -1;
  5377   //If the open succeeded, the file might still be a directory
  5379     struct stat64 buf64;
  5380     int ret = ::fstat64(fd, &buf64);
  5381     int st_mode = buf64.st_mode;
  5383     if (ret != -1) {
  5384       if ((st_mode & S_IFMT) == S_IFDIR) {
  5385         errno = EISDIR;
  5386         ::close(fd);
  5387         return -1;
  5389     } else {
  5390       ::close(fd);
  5391       return -1;
  5395     /*
  5396      * All file descriptors that are opened in the JVM and not
  5397      * specifically destined for a subprocess should have the
  5398      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5399      * party native code might fork and exec without closing all
  5400      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5401      * UNIXProcess.c), and this in turn might:
  5403      * - cause end-of-file to fail to be detected on some file
  5404      *   descriptors, resulting in mysterious hangs, or
  5406      * - might cause an fopen in the subprocess to fail on a system
  5407      *   suffering from bug 1085341.
  5409      * (Yes, the default setting of the close-on-exec flag is a Unix
  5410      * design flaw)
  5412      * See:
  5413      * 1085341: 32-bit stdio routines should support file descriptors >255
  5414      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5415      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5416      */
  5417 #ifdef FD_CLOEXEC
  5419         int flags = ::fcntl(fd, F_GETFD);
  5420         if (flags != -1)
  5421             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5423 #endif
  5425   if (o_delete != 0) {
  5426     ::unlink(path);
  5428   return fd;
  5432 // create binary file, rewriting existing file if required
  5433 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5434   int oflags = O_WRONLY | O_CREAT;
  5435   if (!rewrite_existing) {
  5436     oflags |= O_EXCL;
  5438   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5441 // return current position of file pointer
  5442 jlong os::current_file_offset(int fd) {
  5443   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5446 // move file pointer to the specified offset
  5447 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5448   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5451 // This code originates from JDK's sysAvailable
  5452 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  5454 int os::available(int fd, jlong *bytes) {
  5455   jlong cur, end;
  5456   int mode;
  5457   struct stat64 buf64;
  5459   if (::fstat64(fd, &buf64) >= 0) {
  5460     mode = buf64.st_mode;
  5461     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5462       /*
  5463       * XXX: is the following call interruptible? If so, this might
  5464       * need to go through the INTERRUPT_IO() wrapper as for other
  5465       * blocking, interruptible calls in this file.
  5466       */
  5467       int n;
  5468       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  5469         *bytes = n;
  5470         return 1;
  5474   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5475     return 0;
  5476   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5477     return 0;
  5478   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5479     return 0;
  5481   *bytes = end - cur;
  5482   return 1;
  5485 int os::socket_available(int fd, jint *pbytes) {
  5486   // Linux doc says EINTR not returned, unlike Solaris
  5487   int ret = ::ioctl(fd, FIONREAD, pbytes);
  5489   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  5490   // is expected to return 0 on failure and 1 on success to the jdk.
  5491   return (ret < 0) ? 0 : 1;
  5494 // Map a block of memory.
  5495 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  5496                      char *addr, size_t bytes, bool read_only,
  5497                      bool allow_exec) {
  5498   int prot;
  5499   int flags = MAP_PRIVATE;
  5501   if (read_only) {
  5502     prot = PROT_READ;
  5503   } else {
  5504     prot = PROT_READ | PROT_WRITE;
  5507   if (allow_exec) {
  5508     prot |= PROT_EXEC;
  5511   if (addr != NULL) {
  5512     flags |= MAP_FIXED;
  5515   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5516                                      fd, file_offset);
  5517   if (mapped_address == MAP_FAILED) {
  5518     return NULL;
  5520   return mapped_address;
  5524 // Remap a block of memory.
  5525 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  5526                        char *addr, size_t bytes, bool read_only,
  5527                        bool allow_exec) {
  5528   // same as map_memory() on this OS
  5529   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5530                         allow_exec);
  5534 // Unmap a block of memory.
  5535 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  5536   return munmap(addr, bytes) == 0;
  5539 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  5541 static clockid_t thread_cpu_clockid(Thread* thread) {
  5542   pthread_t tid = thread->osthread()->pthread_id();
  5543   clockid_t clockid;
  5545   // Get thread clockid
  5546   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  5547   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  5548   return clockid;
  5551 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5552 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5553 // of a thread.
  5554 //
  5555 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  5556 // the fast estimate available on the platform.
  5558 jlong os::current_thread_cpu_time() {
  5559   if (os::Linux::supports_fast_thread_cpu_time()) {
  5560     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5561   } else {
  5562     // return user + sys since the cost is the same
  5563     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  5567 jlong os::thread_cpu_time(Thread* thread) {
  5568   // consistent with what current_thread_cpu_time() returns
  5569   if (os::Linux::supports_fast_thread_cpu_time()) {
  5570     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5571   } else {
  5572     return slow_thread_cpu_time(thread, true /* user + sys */);
  5576 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5577   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5578     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  5579   } else {
  5580     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5584 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5585   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  5586     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  5587   } else {
  5588     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  5592 //
  5593 //  -1 on error.
  5594 //
  5596 PRAGMA_DIAG_PUSH
  5597 PRAGMA_FORMAT_NONLITERAL_IGNORED
  5598 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5599   static bool proc_task_unchecked = true;
  5600   static const char *proc_stat_path = "/proc/%d/stat";
  5601   pid_t  tid = thread->osthread()->thread_id();
  5602   char *s;
  5603   char stat[2048];
  5604   int statlen;
  5605   char proc_name[64];
  5606   int count;
  5607   long sys_time, user_time;
  5608   char cdummy;
  5609   int idummy;
  5610   long ldummy;
  5611   FILE *fp;
  5613   // The /proc/<tid>/stat aggregates per-process usage on
  5614   // new Linux kernels 2.6+ where NPTL is supported.
  5615   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  5616   // See bug 6328462.
  5617   // There possibly can be cases where there is no directory
  5618   // /proc/self/task, so we check its availability.
  5619   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  5620     // This is executed only once
  5621     proc_task_unchecked = false;
  5622     fp = fopen("/proc/self/task", "r");
  5623     if (fp != NULL) {
  5624       proc_stat_path = "/proc/self/task/%d/stat";
  5625       fclose(fp);
  5629   sprintf(proc_name, proc_stat_path, tid);
  5630   fp = fopen(proc_name, "r");
  5631   if ( fp == NULL ) return -1;
  5632   statlen = fread(stat, 1, 2047, fp);
  5633   stat[statlen] = '\0';
  5634   fclose(fp);
  5636   // Skip pid and the command string. Note that we could be dealing with
  5637   // weird command names, e.g. user could decide to rename java launcher
  5638   // to "java 1.4.2 :)", then the stat file would look like
  5639   //                1234 (java 1.4.2 :)) R ... ...
  5640   // We don't really need to know the command string, just find the last
  5641   // occurrence of ")" and then start parsing from there. See bug 4726580.
  5642   s = strrchr(stat, ')');
  5643   if (s == NULL ) return -1;
  5645   // Skip blank chars
  5646   do s++; while (isspace(*s));
  5648   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  5649                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  5650                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  5651                  &user_time, &sys_time);
  5652   if ( count != 13 ) return -1;
  5653   if (user_sys_cpu_time) {
  5654     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  5655   } else {
  5656     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  5659 PRAGMA_DIAG_POP
  5661 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5662   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5663   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5664   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5665   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5668 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5669   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  5670   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  5671   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  5672   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  5675 bool os::is_thread_cpu_time_supported() {
  5676   return true;
  5679 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5680 // Linux doesn't yet have a (official) notion of processor sets,
  5681 // so just return the system wide load average.
  5682 int os::loadavg(double loadavg[], int nelem) {
  5683   return ::getloadavg(loadavg, nelem);
  5686 void os::pause() {
  5687   char filename[MAX_PATH];
  5688   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5689     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5690   } else {
  5691     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5694   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5695   if (fd != -1) {
  5696     struct stat buf;
  5697     ::close(fd);
  5698     while (::stat(filename, &buf) == 0) {
  5699       (void)::poll(NULL, 0, 100);
  5701   } else {
  5702     jio_fprintf(stderr,
  5703       "Could not open pause file '%s', continuing immediately.\n", filename);
  5708 // Refer to the comments in os_solaris.cpp park-unpark.
  5709 //
  5710 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  5711 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  5712 // For specifics regarding the bug see GLIBC BUGID 261237 :
  5713 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  5714 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  5715 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  5716 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  5717 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  5718 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  5719 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  5720 // of libpthread avoids the problem, but isn't practical.
  5721 //
  5722 // Possible remedies:
  5723 //
  5724 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  5725 //      This is palliative and probabilistic, however.  If the thread is preempted
  5726 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  5727 //      than the minimum period may have passed, and the abstime may be stale (in the
  5728 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  5729 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  5730 //
  5731 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  5732 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  5733 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  5734 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  5735 //      thread.
  5736 //
  5737 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  5738 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  5739 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  5740 //      This also works well.  In fact it avoids kernel-level scalability impediments
  5741 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  5742 //      timers in a graceful fashion.
  5743 //
  5744 // 4.   When the abstime value is in the past it appears that control returns
  5745 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  5746 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  5747 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  5748 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  5749 //      It may be possible to avoid reinitialization by checking the return
  5750 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  5751 //      condvar we must establish the invariant that cond_signal() is only called
  5752 //      within critical sections protected by the adjunct mutex.  This prevents
  5753 //      cond_signal() from "seeing" a condvar that's in the midst of being
  5754 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  5755 //      desirable signal-after-unlock optimization that avoids futile context switching.
  5756 //
  5757 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  5758 //      structure when a condvar is used or initialized.  cond_destroy()  would
  5759 //      release the helper structure.  Our reinitialize-after-timedwait fix
  5760 //      put excessive stress on malloc/free and locks protecting the c-heap.
  5761 //
  5762 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  5763 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  5764 // and only enabling the work-around for vulnerable environments.
  5766 // utility to compute the abstime argument to timedwait:
  5767 // millis is the relative timeout time
  5768 // abstime will be the absolute timeout time
  5769 // TODO: replace compute_abstime() with unpackTime()
  5771 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  5772   if (millis < 0)  millis = 0;
  5774   jlong seconds = millis / 1000;
  5775   millis %= 1000;
  5776   if (seconds > 50000000) { // see man cond_timedwait(3T)
  5777     seconds = 50000000;
  5780   if (os::Linux::supports_monotonic_clock()) {
  5781     struct timespec now;
  5782     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  5783     assert_status(status == 0, status, "clock_gettime");
  5784     abstime->tv_sec = now.tv_sec  + seconds;
  5785     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
  5786     if (nanos >= NANOSECS_PER_SEC) {
  5787       abstime->tv_sec += 1;
  5788       nanos -= NANOSECS_PER_SEC;
  5790     abstime->tv_nsec = nanos;
  5791   } else {
  5792     struct timeval now;
  5793     int status = gettimeofday(&now, NULL);
  5794     assert(status == 0, "gettimeofday");
  5795     abstime->tv_sec = now.tv_sec  + seconds;
  5796     long usec = now.tv_usec + millis * 1000;
  5797     if (usec >= 1000000) {
  5798       abstime->tv_sec += 1;
  5799       usec -= 1000000;
  5801     abstime->tv_nsec = usec * 1000;
  5803   return abstime;
  5807 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5808 // Conceptually TryPark() should be equivalent to park(0).
  5810 int os::PlatformEvent::TryPark() {
  5811   for (;;) {
  5812     const int v = _Event ;
  5813     guarantee ((v == 0) || (v == 1), "invariant") ;
  5814     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5818 void os::PlatformEvent::park() {       // AKA "down()"
  5819   // Invariant: Only the thread associated with the Event/PlatformEvent
  5820   // may call park().
  5821   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5822   int v ;
  5823   for (;;) {
  5824       v = _Event ;
  5825       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5827   guarantee (v >= 0, "invariant") ;
  5828   if (v == 0) {
  5829      // Do this the hard way by blocking ...
  5830      int status = pthread_mutex_lock(_mutex);
  5831      assert_status(status == 0, status, "mutex_lock");
  5832      guarantee (_nParked == 0, "invariant") ;
  5833      ++ _nParked ;
  5834      while (_Event < 0) {
  5835         status = pthread_cond_wait(_cond, _mutex);
  5836         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5837         // Treat this the same as if the wait was interrupted
  5838         if (status == ETIME) { status = EINTR; }
  5839         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5841      -- _nParked ;
  5843     _Event = 0 ;
  5844      status = pthread_mutex_unlock(_mutex);
  5845      assert_status(status == 0, status, "mutex_unlock");
  5846     // Paranoia to ensure our locked and lock-free paths interact
  5847     // correctly with each other.
  5848     OrderAccess::fence();
  5850   guarantee (_Event >= 0, "invariant") ;
  5853 int os::PlatformEvent::park(jlong millis) {
  5854   guarantee (_nParked == 0, "invariant") ;
  5856   int v ;
  5857   for (;;) {
  5858       v = _Event ;
  5859       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5861   guarantee (v >= 0, "invariant") ;
  5862   if (v != 0) return OS_OK ;
  5864   // We do this the hard way, by blocking the thread.
  5865   // Consider enforcing a minimum timeout value.
  5866   struct timespec abst;
  5867   compute_abstime(&abst, millis);
  5869   int ret = OS_TIMEOUT;
  5870   int status = pthread_mutex_lock(_mutex);
  5871   assert_status(status == 0, status, "mutex_lock");
  5872   guarantee (_nParked == 0, "invariant") ;
  5873   ++_nParked ;
  5875   // Object.wait(timo) will return because of
  5876   // (a) notification
  5877   // (b) timeout
  5878   // (c) thread.interrupt
  5879   //
  5880   // Thread.interrupt and object.notify{All} both call Event::set.
  5881   // That is, we treat thread.interrupt as a special case of notification.
  5882   // The underlying Solaris implementation, cond_timedwait, admits
  5883   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5884   // JVM from making those visible to Java code.  As such, we must
  5885   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5886   //
  5887   // TODO: properly differentiate simultaneous notify+interrupt.
  5888   // In that case, we should propagate the notify to another waiter.
  5890   while (_Event < 0) {
  5891     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5892     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5893       pthread_cond_destroy (_cond);
  5894       pthread_cond_init (_cond, os::Linux::condAttr()) ;
  5896     assert_status(status == 0 || status == EINTR ||
  5897                   status == ETIME || status == ETIMEDOUT,
  5898                   status, "cond_timedwait");
  5899     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5900     if (status == ETIME || status == ETIMEDOUT) break ;
  5901     // We consume and ignore EINTR and spurious wakeups.
  5903   --_nParked ;
  5904   if (_Event >= 0) {
  5905      ret = OS_OK;
  5907   _Event = 0 ;
  5908   status = pthread_mutex_unlock(_mutex);
  5909   assert_status(status == 0, status, "mutex_unlock");
  5910   assert (_nParked == 0, "invariant") ;
  5911   // Paranoia to ensure our locked and lock-free paths interact
  5912   // correctly with each other.
  5913   OrderAccess::fence();
  5914   return ret;
  5917 void os::PlatformEvent::unpark() {
  5918   // Transitions for _Event:
  5919   //    0 :=> 1
  5920   //    1 :=> 1
  5921   //   -1 :=> either 0 or 1; must signal target thread
  5922   //          That is, we can safely transition _Event from -1 to either
  5923   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
  5924   //          unpark() calls.
  5925   // See also: "Semaphores in Plan 9" by Mullender & Cox
  5926   //
  5927   // Note: Forcing a transition from "-1" to "1" on an unpark() means
  5928   // that it will take two back-to-back park() calls for the owning
  5929   // thread to block. This has the benefit of forcing a spurious return
  5930   // from the first park() call after an unpark() call which will help
  5931   // shake out uses of park() and unpark() without condition variables.
  5933   if (Atomic::xchg(1, &_Event) >= 0) return;
  5935   // Wait for the thread associated with the event to vacate
  5936   int status = pthread_mutex_lock(_mutex);
  5937   assert_status(status == 0, status, "mutex_lock");
  5938   int AnyWaiters = _nParked;
  5939   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
  5940   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5941     AnyWaiters = 0;
  5942     pthread_cond_signal(_cond);
  5944   status = pthread_mutex_unlock(_mutex);
  5945   assert_status(status == 0, status, "mutex_unlock");
  5946   if (AnyWaiters != 0) {
  5947     status = pthread_cond_signal(_cond);
  5948     assert_status(status == 0, status, "cond_signal");
  5951   // Note that we signal() _after dropping the lock for "immortal" Events.
  5952   // This is safe and avoids a common class of  futile wakeups.  In rare
  5953   // circumstances this can cause a thread to return prematurely from
  5954   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5955   // simply re-test the condition and re-park itself.
  5959 // JSR166
  5960 // -------------------------------------------------------
  5962 /*
  5963  * The solaris and linux implementations of park/unpark are fairly
  5964  * conservative for now, but can be improved. They currently use a
  5965  * mutex/condvar pair, plus a a count.
  5966  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5967  * sets count to 1 and signals condvar.  Only one thread ever waits
  5968  * on the condvar. Contention seen when trying to park implies that someone
  5969  * is unparking you, so don't wait. And spurious returns are fine, so there
  5970  * is no need to track notifications.
  5971  */
  5973 /*
  5974  * This code is common to linux and solaris and will be moved to a
  5975  * common place in dolphin.
  5977  * The passed in time value is either a relative time in nanoseconds
  5978  * or an absolute time in milliseconds. Either way it has to be unpacked
  5979  * into suitable seconds and nanoseconds components and stored in the
  5980  * given timespec structure.
  5981  * Given time is a 64-bit value and the time_t used in the timespec is only
  5982  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5983  * overflow if times way in the future are given. Further on Solaris versions
  5984  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5985  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5986  * As it will be 28 years before "now + 100000000" will overflow we can
  5987  * ignore overflow and just impose a hard-limit on seconds using the value
  5988  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5989  * years from "now".
  5990  */
  5992 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5993   assert (time > 0, "convertTime");
  5994   time_t max_secs = 0;
  5996   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
  5997     struct timeval now;
  5998     int status = gettimeofday(&now, NULL);
  5999     assert(status == 0, "gettimeofday");
  6001     max_secs = now.tv_sec + MAX_SECS;
  6003     if (isAbsolute) {
  6004       jlong secs = time / 1000;
  6005       if (secs > max_secs) {
  6006         absTime->tv_sec = max_secs;
  6007       } else {
  6008         absTime->tv_sec = secs;
  6010       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6011     } else {
  6012       jlong secs = time / NANOSECS_PER_SEC;
  6013       if (secs >= MAX_SECS) {
  6014         absTime->tv_sec = max_secs;
  6015         absTime->tv_nsec = 0;
  6016       } else {
  6017         absTime->tv_sec = now.tv_sec + secs;
  6018         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6019         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6020           absTime->tv_nsec -= NANOSECS_PER_SEC;
  6021           ++absTime->tv_sec; // note: this must be <= max_secs
  6025   } else {
  6026     // must be relative using monotonic clock
  6027     struct timespec now;
  6028     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
  6029     assert_status(status == 0, status, "clock_gettime");
  6030     max_secs = now.tv_sec + MAX_SECS;
  6031     jlong secs = time / NANOSECS_PER_SEC;
  6032     if (secs >= MAX_SECS) {
  6033       absTime->tv_sec = max_secs;
  6034       absTime->tv_nsec = 0;
  6035     } else {
  6036       absTime->tv_sec = now.tv_sec + secs;
  6037       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
  6038       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6039         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6040         ++absTime->tv_sec; // note: this must be <= max_secs
  6044   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6045   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6046   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6047   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6050 void Parker::park(bool isAbsolute, jlong time) {
  6051   // Ideally we'd do something useful while spinning, such
  6052   // as calling unpackTime().
  6054   // Optional fast-path check:
  6055   // Return immediately if a permit is available.
  6056   // We depend on Atomic::xchg() having full barrier semantics
  6057   // since we are doing a lock-free update to _counter.
  6058   if (Atomic::xchg(0, &_counter) > 0) return;
  6060   Thread* thread = Thread::current();
  6061   assert(thread->is_Java_thread(), "Must be JavaThread");
  6062   JavaThread *jt = (JavaThread *)thread;
  6064   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  6065   // Check interrupt before trying to wait
  6066   if (Thread::is_interrupted(thread, false)) {
  6067     return;
  6070   // Next, demultiplex/decode time arguments
  6071   timespec absTime;
  6072   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6073     return;
  6075   if (time > 0) {
  6076     unpackTime(&absTime, isAbsolute, time);
  6080   // Enter safepoint region
  6081   // Beware of deadlocks such as 6317397.
  6082   // The per-thread Parker:: mutex is a classic leaf-lock.
  6083   // In particular a thread must never block on the Threads_lock while
  6084   // holding the Parker:: mutex.  If safepoints are pending both the
  6085   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6086   ThreadBlockInVM tbivm(jt);
  6088   // Don't wait if cannot get lock since interference arises from
  6089   // unblocking.  Also. check interrupt before trying wait
  6090   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  6091     return;
  6094   int status ;
  6095   if (_counter > 0)  { // no wait needed
  6096     _counter = 0;
  6097     status = pthread_mutex_unlock(_mutex);
  6098     assert (status == 0, "invariant") ;
  6099     // Paranoia to ensure our locked and lock-free paths interact
  6100     // correctly with each other and Java-level accesses.
  6101     OrderAccess::fence();
  6102     return;
  6105 #ifdef ASSERT
  6106   // Don't catch signals while blocked; let the running threads have the signals.
  6107   // (This allows a debugger to break into the running thread.)
  6108   sigset_t oldsigs;
  6109   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  6110   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6111 #endif
  6113   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6114   jt->set_suspend_equivalent();
  6115   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6117   assert(_cur_index == -1, "invariant");
  6118   if (time == 0) {
  6119     _cur_index = REL_INDEX; // arbitrary choice when not timed
  6120     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
  6121   } else {
  6122     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
  6123     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
  6124     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  6125       pthread_cond_destroy (&_cond[_cur_index]) ;
  6126       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
  6129   _cur_index = -1;
  6130   assert_status(status == 0 || status == EINTR ||
  6131                 status == ETIME || status == ETIMEDOUT,
  6132                 status, "cond_timedwait");
  6134 #ifdef ASSERT
  6135   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  6136 #endif
  6138   _counter = 0 ;
  6139   status = pthread_mutex_unlock(_mutex) ;
  6140   assert_status(status == 0, status, "invariant") ;
  6141   // Paranoia to ensure our locked and lock-free paths interact
  6142   // correctly with each other and Java-level accesses.
  6143   OrderAccess::fence();
  6145   // If externally suspended while waiting, re-suspend
  6146   if (jt->handle_special_suspend_equivalent_condition()) {
  6147     jt->java_suspend_self();
  6151 void Parker::unpark() {
  6152   int s, status ;
  6153   status = pthread_mutex_lock(_mutex);
  6154   assert (status == 0, "invariant") ;
  6155   s = _counter;
  6156   _counter = 1;
  6157   if (s < 1) {
  6158     // thread might be parked
  6159     if (_cur_index != -1) {
  6160       // thread is definitely parked
  6161       if (WorkAroundNPTLTimedWaitHang) {
  6162         status = pthread_cond_signal (&_cond[_cur_index]);
  6163         assert (status == 0, "invariant");
  6164         status = pthread_mutex_unlock(_mutex);
  6165         assert (status == 0, "invariant");
  6166       } else {
  6167         // must capture correct index before unlocking
  6168         int index = _cur_index;
  6169         status = pthread_mutex_unlock(_mutex);
  6170         assert (status == 0, "invariant");
  6171         status = pthread_cond_signal (&_cond[index]);
  6172         assert (status == 0, "invariant");
  6174     } else {
  6175       pthread_mutex_unlock(_mutex);
  6176       assert (status == 0, "invariant") ;
  6178   } else {
  6179     pthread_mutex_unlock(_mutex);
  6180     assert (status == 0, "invariant") ;
  6185 extern char** environ;
  6187 // Run the specified command in a separate process. Return its exit value,
  6188 // or -1 on failure (e.g. can't fork a new process).
  6189 // Unlike system(), this function can be called from signal handler. It
  6190 // doesn't block SIGINT et al.
  6191 int os::fork_and_exec(char* cmd) {
  6192   const char * argv[4] = {"sh", "-c", cmd, NULL};
  6194   pid_t pid = fork();
  6196   if (pid < 0) {
  6197     // fork failed
  6198     return -1;
  6200   } else if (pid == 0) {
  6201     // child process
  6203     execve("/bin/sh", (char* const*)argv, environ);
  6205     // execve failed
  6206     _exit(-1);
  6208   } else  {
  6209     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6210     // care about the actual exit code, for now.
  6212     int status;
  6214     // Wait for the child process to exit.  This returns immediately if
  6215     // the child has already exited. */
  6216     while (waitpid(pid, &status, 0) < 0) {
  6217         switch (errno) {
  6218         case ECHILD: return 0;
  6219         case EINTR: break;
  6220         default: return -1;
  6224     if (WIFEXITED(status)) {
  6225        // The child exited normally; get its exit code.
  6226        return WEXITSTATUS(status);
  6227     } else if (WIFSIGNALED(status)) {
  6228        // The child exited because of a signal
  6229        // The best value to return is 0x80 + signal number,
  6230        // because that is what all Unix shells do, and because
  6231        // it allows callers to distinguish between process exit and
  6232        // process death by signal.
  6233        return 0x80 + WTERMSIG(status);
  6234     } else {
  6235        // Unknown exit code; pass it through
  6236        return status;
  6241 // is_headless_jre()
  6242 //
  6243 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  6244 // in order to report if we are running in a headless jre
  6245 //
  6246 // Since JDK8 xawt/libmawt.so was moved into the same directory
  6247 // as libawt.so, and renamed libawt_xawt.so
  6248 //
  6249 bool os::is_headless_jre() {
  6250     struct stat statbuf;
  6251     char buf[MAXPATHLEN];
  6252     char libmawtpath[MAXPATHLEN];
  6253     const char *xawtstr  = "/xawt/libmawt.so";
  6254     const char *new_xawtstr = "/libawt_xawt.so";
  6255     char *p;
  6257     // Get path to libjvm.so
  6258     os::jvm_path(buf, sizeof(buf));
  6260     // Get rid of libjvm.so
  6261     p = strrchr(buf, '/');
  6262     if (p == NULL) return false;
  6263     else *p = '\0';
  6265     // Get rid of client or server
  6266     p = strrchr(buf, '/');
  6267     if (p == NULL) return false;
  6268     else *p = '\0';
  6270     // check xawt/libmawt.so
  6271     strcpy(libmawtpath, buf);
  6272     strcat(libmawtpath, xawtstr);
  6273     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6275     // check libawt_xawt.so
  6276     strcpy(libmawtpath, buf);
  6277     strcat(libmawtpath, new_xawtstr);
  6278     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6280     return true;
  6283 // Get the default path to the core file
  6284 // Returns the length of the string
  6285 int os::get_core_path(char* buffer, size_t bufferSize) {
  6286   const char* p = get_current_directory(buffer, bufferSize);
  6288   if (p == NULL) {
  6289     assert(p != NULL, "failed to get current directory");
  6290     return 0;
  6293   return strlen(buffer);
  6296 /////////////// Unit tests ///////////////
  6298 #ifndef PRODUCT
  6300 #define test_log(...) \
  6301   do {\
  6302     if (VerboseInternalVMTests) { \
  6303       tty->print_cr(__VA_ARGS__); \
  6304       tty->flush(); \
  6305     }\
  6306   } while (false)
  6308 class TestReserveMemorySpecial : AllStatic {
  6309  public:
  6310   static void small_page_write(void* addr, size_t size) {
  6311     size_t page_size = os::vm_page_size();
  6313     char* end = (char*)addr + size;
  6314     for (char* p = (char*)addr; p < end; p += page_size) {
  6315       *p = 1;
  6319   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
  6320     if (!UseHugeTLBFS) {
  6321       return;
  6324     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
  6326     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
  6328     if (addr != NULL) {
  6329       small_page_write(addr, size);
  6331       os::Linux::release_memory_special_huge_tlbfs(addr, size);
  6335   static void test_reserve_memory_special_huge_tlbfs_only() {
  6336     if (!UseHugeTLBFS) {
  6337       return;
  6340     size_t lp = os::large_page_size();
  6342     for (size_t size = lp; size <= lp * 10; size += lp) {
  6343       test_reserve_memory_special_huge_tlbfs_only(size);
  6347   static void test_reserve_memory_special_huge_tlbfs_mixed() {
  6348     size_t lp = os::large_page_size();
  6349     size_t ag = os::vm_allocation_granularity();
  6351     // sizes to test
  6352     const size_t sizes[] = {
  6353       lp, lp + ag, lp + lp / 2, lp * 2,
  6354       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
  6355       lp * 10, lp * 10 + lp / 2
  6356     };
  6357     const int num_sizes = sizeof(sizes) / sizeof(size_t);
  6359     // For each size/alignment combination, we test three scenarios:
  6360     // 1) with req_addr == NULL
  6361     // 2) with a non-null req_addr at which we expect to successfully allocate
  6362     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
  6363     //    expect the allocation to either fail or to ignore req_addr
  6365     // Pre-allocate two areas; they shall be as large as the largest allocation
  6366     //  and aligned to the largest alignment we will be testing.
  6367     const size_t mapping_size = sizes[num_sizes - 1] * 2;
  6368     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
  6369       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6370       -1, 0);
  6371     assert(mapping1 != MAP_FAILED, "should work");
  6373     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
  6374       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
  6375       -1, 0);
  6376     assert(mapping2 != MAP_FAILED, "should work");
  6378     // Unmap the first mapping, but leave the second mapping intact: the first
  6379     // mapping will serve as a value for a "good" req_addr (case 2). The second
  6380     // mapping, still intact, as "bad" req_addr (case 3).
  6381     ::munmap(mapping1, mapping_size);
  6383     // Case 1
  6384     test_log("%s, req_addr NULL:", __FUNCTION__);
  6385     test_log("size            align           result");
  6387     for (int i = 0; i < num_sizes; i++) {
  6388       const size_t size = sizes[i];
  6389       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6390         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
  6391         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
  6392             size, alignment, p, (p != NULL ? "" : "(failed)"));
  6393         if (p != NULL) {
  6394           assert(is_ptr_aligned(p, alignment), "must be");
  6395           small_page_write(p, size);
  6396           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6401     // Case 2
  6402     test_log("%s, req_addr non-NULL:", __FUNCTION__);
  6403     test_log("size            align           req_addr         result");
  6405     for (int i = 0; i < num_sizes; i++) {
  6406       const size_t size = sizes[i];
  6407       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6408         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
  6409         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6410         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6411             size, alignment, req_addr, p,
  6412             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
  6413         if (p != NULL) {
  6414           assert(p == req_addr, "must be");
  6415           small_page_write(p, size);
  6416           os::Linux::release_memory_special_huge_tlbfs(p, size);
  6421     // Case 3
  6422     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
  6423     test_log("size            align           req_addr         result");
  6425     for (int i = 0; i < num_sizes; i++) {
  6426       const size_t size = sizes[i];
  6427       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6428         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
  6429         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
  6430         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
  6431             size, alignment, req_addr, p,
  6432             ((p != NULL ? "" : "(failed)")));
  6433         // as the area around req_addr contains already existing mappings, the API should always
  6434         // return NULL (as per contract, it cannot return another address)
  6435         assert(p == NULL, "must be");
  6439     ::munmap(mapping2, mapping_size);
  6443   static void test_reserve_memory_special_huge_tlbfs() {
  6444     if (!UseHugeTLBFS) {
  6445       return;
  6448     test_reserve_memory_special_huge_tlbfs_only();
  6449     test_reserve_memory_special_huge_tlbfs_mixed();
  6452   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
  6453     if (!UseSHM) {
  6454       return;
  6457     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
  6459     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
  6461     if (addr != NULL) {
  6462       assert(is_ptr_aligned(addr, alignment), "Check");
  6463       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
  6465       small_page_write(addr, size);
  6467       os::Linux::release_memory_special_shm(addr, size);
  6471   static void test_reserve_memory_special_shm() {
  6472     size_t lp = os::large_page_size();
  6473     size_t ag = os::vm_allocation_granularity();
  6475     for (size_t size = ag; size < lp * 3; size += ag) {
  6476       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
  6477         test_reserve_memory_special_shm(size, alignment);
  6482   static void test() {
  6483     test_reserve_memory_special_huge_tlbfs();
  6484     test_reserve_memory_special_shm();
  6486 };
  6488 void TestReserveMemorySpecial_test() {
  6489   TestReserveMemorySpecial::test();
  6492 #endif

mercurial