src/share/vm/memory/genCollectedHeap.cpp

Mon, 04 Jun 2012 09:21:53 +0200

author
mgerdin
date
Mon, 04 Jun 2012 09:21:53 +0200
changeset 3822
a297b0e14605
parent 3812
bbc900c2482a
child 4037
da91efe96a93
permissions
-rw-r--r--

7172226: HotSpot fails to build with GCC 4.7 because of stricter c++ argument dependent lookup
Summary: Add "using" keyword to import base class functions from FreeList<T> to fix template name lookup in gcc 4.7
Reviewed-by: brutisso, iveresov

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "gc_implementation/shared/collectorCounters.hpp"
    31 #include "gc_implementation/shared/vmGCOperations.hpp"
    32 #include "gc_interface/collectedHeap.inline.hpp"
    33 #include "memory/compactPermGen.hpp"
    34 #include "memory/filemap.hpp"
    35 #include "memory/gcLocker.inline.hpp"
    36 #include "memory/genCollectedHeap.hpp"
    37 #include "memory/genOopClosures.inline.hpp"
    38 #include "memory/generation.inline.hpp"
    39 #include "memory/generationSpec.hpp"
    40 #include "memory/permGen.hpp"
    41 #include "memory/resourceArea.hpp"
    42 #include "memory/sharedHeap.hpp"
    43 #include "memory/space.hpp"
    44 #include "oops/oop.inline.hpp"
    45 #include "oops/oop.inline2.hpp"
    46 #include "runtime/aprofiler.hpp"
    47 #include "runtime/biasedLocking.hpp"
    48 #include "runtime/fprofiler.hpp"
    49 #include "runtime/handles.hpp"
    50 #include "runtime/handles.inline.hpp"
    51 #include "runtime/java.hpp"
    52 #include "runtime/vmThread.hpp"
    53 #include "services/memoryService.hpp"
    54 #include "utilities/vmError.hpp"
    55 #include "utilities/workgroup.hpp"
    56 #ifndef SERIALGC
    57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    59 #endif
    61 GenCollectedHeap* GenCollectedHeap::_gch;
    62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    64 // The set of potentially parallel tasks in strong root scanning.
    65 enum GCH_process_strong_roots_tasks {
    66   // We probably want to parallelize both of these internally, but for now...
    67   GCH_PS_younger_gens,
    68   // Leave this one last.
    69   GCH_PS_NumElements
    70 };
    72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    73   SharedHeap(policy),
    74   _gen_policy(policy),
    75   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    76   _full_collections_completed(0)
    77 {
    78   if (_gen_process_strong_tasks == NULL ||
    79       !_gen_process_strong_tasks->valid()) {
    80     vm_exit_during_initialization("Failed necessary allocation.");
    81   }
    82   assert(policy != NULL, "Sanity check");
    83   _preloading_shared_classes = false;
    84 }
    86 jint GenCollectedHeap::initialize() {
    87   CollectedHeap::pre_initialize();
    89   int i;
    90   _n_gens = gen_policy()->number_of_generations();
    92   // While there are no constraints in the GC code that HeapWordSize
    93   // be any particular value, there are multiple other areas in the
    94   // system which believe this to be true (e.g. oop->object_size in some
    95   // cases incorrectly returns the size in wordSize units rather than
    96   // HeapWordSize).
    97   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    99   // The heap must be at least as aligned as generations.
   100   size_t alignment = Generation::GenGrain;
   102   _gen_specs = gen_policy()->generations();
   103   PermanentGenerationSpec *perm_gen_spec =
   104                                 collector_policy()->permanent_generation();
   106   // Make sure the sizes are all aligned.
   107   for (i = 0; i < _n_gens; i++) {
   108     _gen_specs[i]->align(alignment);
   109   }
   110   perm_gen_spec->align(alignment);
   112   // If we are dumping the heap, then allocate a wasted block of address
   113   // space in order to push the heap to a lower address.  This extra
   114   // address range allows for other (or larger) libraries to be loaded
   115   // without them occupying the space required for the shared spaces.
   117   if (DumpSharedSpaces) {
   118     uintx reserved = 0;
   119     uintx block_size = 64*1024*1024;
   120     while (reserved < SharedDummyBlockSize) {
   121       char* dummy = os::reserve_memory(block_size);
   122       reserved += block_size;
   123     }
   124   }
   126   // Allocate space for the heap.
   128   char* heap_address;
   129   size_t total_reserved = 0;
   130   int n_covered_regions = 0;
   131   ReservedSpace heap_rs(0);
   133   heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
   134                           &n_covered_regions, &heap_rs);
   136   if (UseSharedSpaces) {
   137     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
   138       if (heap_rs.is_reserved()) {
   139         heap_rs.release();
   140       }
   141       FileMapInfo* mapinfo = FileMapInfo::current_info();
   142       mapinfo->fail_continue("Unable to reserve shared region.");
   143       allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
   144                &heap_rs);
   145     }
   146   }
   148   if (!heap_rs.is_reserved()) {
   149     vm_shutdown_during_initialization(
   150       "Could not reserve enough space for object heap");
   151     return JNI_ENOMEM;
   152   }
   154   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   155                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   157   // It is important to do this in a way such that concurrent readers can't
   158   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   159   _reserved.set_word_size(0);
   160   _reserved.set_start((HeapWord*)heap_rs.base());
   161   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
   162                                            - perm_gen_spec->misc_code_size();
   163   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   165   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   166   set_barrier_set(rem_set()->bs());
   168   _gch = this;
   170   for (i = 0; i < _n_gens; i++) {
   171     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
   172                                               UseSharedSpaces, UseSharedSpaces);
   173     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   174     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   175   }
   176   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
   178   clear_incremental_collection_failed();
   180 #ifndef SERIALGC
   181   // If we are running CMS, create the collector responsible
   182   // for collecting the CMS generations.
   183   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   184     bool success = create_cms_collector();
   185     if (!success) return JNI_ENOMEM;
   186   }
   187 #endif // SERIALGC
   189   return JNI_OK;
   190 }
   193 char* GenCollectedHeap::allocate(size_t alignment,
   194                                  PermanentGenerationSpec* perm_gen_spec,
   195                                  size_t* _total_reserved,
   196                                  int* _n_covered_regions,
   197                                  ReservedSpace* heap_rs){
   198   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   199     "the maximum representable size";
   201   // Now figure out the total size.
   202   size_t total_reserved = 0;
   203   int n_covered_regions = 0;
   204   const size_t pageSize = UseLargePages ?
   205       os::large_page_size() : os::vm_page_size();
   207   for (int i = 0; i < _n_gens; i++) {
   208     total_reserved += _gen_specs[i]->max_size();
   209     if (total_reserved < _gen_specs[i]->max_size()) {
   210       vm_exit_during_initialization(overflow_msg);
   211     }
   212     n_covered_regions += _gen_specs[i]->n_covered_regions();
   213   }
   214   assert(total_reserved % pageSize == 0,
   215          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
   216                  SIZE_FORMAT, total_reserved, pageSize));
   217   total_reserved += perm_gen_spec->max_size();
   218   assert(total_reserved % pageSize == 0,
   219          err_msg("Perm size; total_reserved=" SIZE_FORMAT ", pageSize="
   220                  SIZE_FORMAT ", perm gen max=" SIZE_FORMAT, total_reserved,
   221                  pageSize, perm_gen_spec->max_size()));
   223   if (total_reserved < perm_gen_spec->max_size()) {
   224     vm_exit_during_initialization(overflow_msg);
   225   }
   226   n_covered_regions += perm_gen_spec->n_covered_regions();
   228   // Add the size of the data area which shares the same reserved area
   229   // as the heap, but which is not actually part of the heap.
   230   size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
   232   total_reserved += s;
   233   if (total_reserved < s) {
   234     vm_exit_during_initialization(overflow_msg);
   235   }
   237   if (UseLargePages) {
   238     assert(total_reserved != 0, "total_reserved cannot be 0");
   239     total_reserved = round_to(total_reserved, os::large_page_size());
   240     if (total_reserved < os::large_page_size()) {
   241       vm_exit_during_initialization(overflow_msg);
   242     }
   243   }
   245   // Calculate the address at which the heap must reside in order for
   246   // the shared data to be at the required address.
   248   char* heap_address;
   249   if (UseSharedSpaces) {
   251     // Calculate the address of the first word beyond the heap.
   252     FileMapInfo* mapinfo = FileMapInfo::current_info();
   253     int lr = CompactingPermGenGen::n_regions - 1;
   254     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
   255     heap_address = mapinfo->region_base(lr) + capacity;
   257     // Calculate the address of the first word of the heap.
   258     heap_address -= total_reserved;
   259   } else {
   260     heap_address = NULL;  // any address will do.
   261     if (UseCompressedOops) {
   262       heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   263       *_total_reserved = total_reserved;
   264       *_n_covered_regions = n_covered_regions;
   265       *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   266                                    UseLargePages, heap_address);
   268       if (heap_address != NULL && !heap_rs->is_reserved()) {
   269         // Failed to reserve at specified address - the requested memory
   270         // region is taken already, for example, by 'java' launcher.
   271         // Try again to reserver heap higher.
   272         heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   273         *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   274                                      UseLargePages, heap_address);
   276         if (heap_address != NULL && !heap_rs->is_reserved()) {
   277           // Failed to reserve at specified address again - give up.
   278           heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   279           assert(heap_address == NULL, "");
   280           *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   281                                        UseLargePages, heap_address);
   282         }
   283       }
   284       return heap_address;
   285     }
   286   }
   288   *_total_reserved = total_reserved;
   289   *_n_covered_regions = n_covered_regions;
   290   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   291                                UseLargePages, heap_address);
   293   return heap_address;
   294 }
   297 void GenCollectedHeap::post_initialize() {
   298   SharedHeap::post_initialize();
   299   TwoGenerationCollectorPolicy *policy =
   300     (TwoGenerationCollectorPolicy *)collector_policy();
   301   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   302   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   303   assert(def_new_gen->kind() == Generation::DefNew ||
   304          def_new_gen->kind() == Generation::ParNew ||
   305          def_new_gen->kind() == Generation::ASParNew,
   306          "Wrong generation kind");
   308   Generation* old_gen = get_gen(1);
   309   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   310          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   311          old_gen->kind() == Generation::MarkSweepCompact,
   312     "Wrong generation kind");
   314   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   315                                  old_gen->capacity(),
   316                                  def_new_gen->from()->capacity());
   317   policy->initialize_gc_policy_counters();
   318 }
   320 void GenCollectedHeap::ref_processing_init() {
   321   SharedHeap::ref_processing_init();
   322   for (int i = 0; i < _n_gens; i++) {
   323     _gens[i]->ref_processor_init();
   324   }
   325 }
   327 size_t GenCollectedHeap::capacity() const {
   328   size_t res = 0;
   329   for (int i = 0; i < _n_gens; i++) {
   330     res += _gens[i]->capacity();
   331   }
   332   return res;
   333 }
   335 size_t GenCollectedHeap::used() const {
   336   size_t res = 0;
   337   for (int i = 0; i < _n_gens; i++) {
   338     res += _gens[i]->used();
   339   }
   340   return res;
   341 }
   343 // Save the "used_region" for generations level and lower,
   344 // and, if perm is true, for perm gen.
   345 void GenCollectedHeap::save_used_regions(int level, bool perm) {
   346   assert(level < _n_gens, "Illegal level parameter");
   347   for (int i = level; i >= 0; i--) {
   348     _gens[i]->save_used_region();
   349   }
   350   if (perm) {
   351     perm_gen()->save_used_region();
   352   }
   353 }
   355 size_t GenCollectedHeap::max_capacity() const {
   356   size_t res = 0;
   357   for (int i = 0; i < _n_gens; i++) {
   358     res += _gens[i]->max_capacity();
   359   }
   360   return res;
   361 }
   363 // Update the _full_collections_completed counter
   364 // at the end of a stop-world full GC.
   365 unsigned int GenCollectedHeap::update_full_collections_completed() {
   366   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   367   assert(_full_collections_completed <= _total_full_collections,
   368          "Can't complete more collections than were started");
   369   _full_collections_completed = _total_full_collections;
   370   ml.notify_all();
   371   return _full_collections_completed;
   372 }
   374 // Update the _full_collections_completed counter, as appropriate,
   375 // at the end of a concurrent GC cycle. Note the conditional update
   376 // below to allow this method to be called by a concurrent collector
   377 // without synchronizing in any manner with the VM thread (which
   378 // may already have initiated a STW full collection "concurrently").
   379 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   380   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   381   assert((_full_collections_completed <= _total_full_collections) &&
   382          (count <= _total_full_collections),
   383          "Can't complete more collections than were started");
   384   if (count > _full_collections_completed) {
   385     _full_collections_completed = count;
   386     ml.notify_all();
   387   }
   388   return _full_collections_completed;
   389 }
   392 #ifndef PRODUCT
   393 // Override of memory state checking method in CollectedHeap:
   394 // Some collectors (CMS for example) can't have badHeapWordVal written
   395 // in the first two words of an object. (For instance , in the case of
   396 // CMS these words hold state used to synchronize between certain
   397 // (concurrent) GC steps and direct allocating mutators.)
   398 // The skip_header_HeapWords() method below, allows us to skip
   399 // over the requisite number of HeapWord's. Note that (for
   400 // generational collectors) this means that those many words are
   401 // skipped in each object, irrespective of the generation in which
   402 // that object lives. The resultant loss of precision seems to be
   403 // harmless and the pain of avoiding that imprecision appears somewhat
   404 // higher than we are prepared to pay for such rudimentary debugging
   405 // support.
   406 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   407                                                          size_t size) {
   408   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   409     // We are asked to check a size in HeapWords,
   410     // but the memory is mangled in juint words.
   411     juint* start = (juint*) (addr + skip_header_HeapWords());
   412     juint* end   = (juint*) (addr + size);
   413     for (juint* slot = start; slot < end; slot += 1) {
   414       assert(*slot == badHeapWordVal,
   415              "Found non badHeapWordValue in pre-allocation check");
   416     }
   417   }
   418 }
   419 #endif
   421 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   422                                                bool is_tlab,
   423                                                bool first_only) {
   424   HeapWord* res;
   425   for (int i = 0; i < _n_gens; i++) {
   426     if (_gens[i]->should_allocate(size, is_tlab)) {
   427       res = _gens[i]->allocate(size, is_tlab);
   428       if (res != NULL) return res;
   429       else if (first_only) break;
   430     }
   431   }
   432   // Otherwise...
   433   return NULL;
   434 }
   436 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   437                                          bool* gc_overhead_limit_was_exceeded) {
   438   return collector_policy()->mem_allocate_work(size,
   439                                                false /* is_tlab */,
   440                                                gc_overhead_limit_was_exceeded);
   441 }
   443 bool GenCollectedHeap::must_clear_all_soft_refs() {
   444   return _gc_cause == GCCause::_last_ditch_collection;
   445 }
   447 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   448   return UseConcMarkSweepGC &&
   449          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   450           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   451 }
   453 void GenCollectedHeap::do_collection(bool  full,
   454                                      bool   clear_all_soft_refs,
   455                                      size_t size,
   456                                      bool   is_tlab,
   457                                      int    max_level) {
   458   bool prepared_for_verification = false;
   459   ResourceMark rm;
   460   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   462   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   463   assert(my_thread->is_VM_thread() ||
   464          my_thread->is_ConcurrentGC_thread(),
   465          "incorrect thread type capability");
   466   assert(Heap_lock->is_locked(),
   467          "the requesting thread should have the Heap_lock");
   468   guarantee(!is_gc_active(), "collection is not reentrant");
   469   assert(max_level < n_gens(), "sanity check");
   471   if (GC_locker::check_active_before_gc()) {
   472     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   473   }
   475   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   476                           collector_policy()->should_clear_all_soft_refs();
   478   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   480   const size_t perm_prev_used = perm_gen()->used();
   482   print_heap_before_gc();
   484   {
   485     FlagSetting fl(_is_gc_active, true);
   487     bool complete = full && (max_level == (n_gens()-1));
   488     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
   489     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   490     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   491     TraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, gclog_or_tty);
   493     gc_prologue(complete);
   494     increment_total_collections(complete);
   496     size_t gch_prev_used = used();
   498     int starting_level = 0;
   499     if (full) {
   500       // Search for the oldest generation which will collect all younger
   501       // generations, and start collection loop there.
   502       for (int i = max_level; i >= 0; i--) {
   503         if (_gens[i]->full_collects_younger_generations()) {
   504           starting_level = i;
   505           break;
   506         }
   507       }
   508     }
   510     bool must_restore_marks_for_biased_locking = false;
   512     int max_level_collected = starting_level;
   513     for (int i = starting_level; i <= max_level; i++) {
   514       if (_gens[i]->should_collect(full, size, is_tlab)) {
   515         if (i == n_gens() - 1) {  // a major collection is to happen
   516           if (!complete) {
   517             // The full_collections increment was missed above.
   518             increment_total_full_collections();
   519           }
   520           pre_full_gc_dump();    // do any pre full gc dumps
   521         }
   522         // Timer for individual generations. Last argument is false: no CR
   523         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
   524         TraceCollectorStats tcs(_gens[i]->counters());
   525         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
   527         size_t prev_used = _gens[i]->used();
   528         _gens[i]->stat_record()->invocations++;
   529         _gens[i]->stat_record()->accumulated_time.start();
   531         // Must be done anew before each collection because
   532         // a previous collection will do mangling and will
   533         // change top of some spaces.
   534         record_gen_tops_before_GC();
   536         if (PrintGC && Verbose) {
   537           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   538                      i,
   539                      _gens[i]->stat_record()->invocations,
   540                      size*HeapWordSize);
   541         }
   543         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   544             total_collections() >= VerifyGCStartAt) {
   545           HandleMark hm;  // Discard invalid handles created during verification
   546           if (!prepared_for_verification) {
   547             prepare_for_verify();
   548             prepared_for_verification = true;
   549           }
   550           gclog_or_tty->print(" VerifyBeforeGC:");
   551           Universe::verify(true);
   552         }
   553         COMPILER2_PRESENT(DerivedPointerTable::clear());
   555         if (!must_restore_marks_for_biased_locking &&
   556             _gens[i]->performs_in_place_marking()) {
   557           // We perform this mark word preservation work lazily
   558           // because it's only at this point that we know whether we
   559           // absolutely have to do it; we want to avoid doing it for
   560           // scavenge-only collections where it's unnecessary
   561           must_restore_marks_for_biased_locking = true;
   562           BiasedLocking::preserve_marks();
   563         }
   565         // Do collection work
   566         {
   567           // Note on ref discovery: For what appear to be historical reasons,
   568           // GCH enables and disabled (by enqueing) refs discovery.
   569           // In the future this should be moved into the generation's
   570           // collect method so that ref discovery and enqueueing concerns
   571           // are local to a generation. The collect method could return
   572           // an appropriate indication in the case that notification on
   573           // the ref lock was needed. This will make the treatment of
   574           // weak refs more uniform (and indeed remove such concerns
   575           // from GCH). XXX
   577           HandleMark hm;  // Discard invalid handles created during gc
   578           save_marks();   // save marks for all gens
   579           // We want to discover references, but not process them yet.
   580           // This mode is disabled in process_discovered_references if the
   581           // generation does some collection work, or in
   582           // enqueue_discovered_references if the generation returns
   583           // without doing any work.
   584           ReferenceProcessor* rp = _gens[i]->ref_processor();
   585           // If the discovery of ("weak") refs in this generation is
   586           // atomic wrt other collectors in this configuration, we
   587           // are guaranteed to have empty discovered ref lists.
   588           if (rp->discovery_is_atomic()) {
   589             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   590             rp->setup_policy(do_clear_all_soft_refs);
   591           } else {
   592             // collect() below will enable discovery as appropriate
   593           }
   594           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   595           if (!rp->enqueuing_is_done()) {
   596             rp->enqueue_discovered_references();
   597           } else {
   598             rp->set_enqueuing_is_done(false);
   599           }
   600           rp->verify_no_references_recorded();
   601         }
   602         max_level_collected = i;
   604         // Determine if allocation request was met.
   605         if (size > 0) {
   606           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   607             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   608               size = 0;
   609             }
   610           }
   611         }
   613         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   615         _gens[i]->stat_record()->accumulated_time.stop();
   617         update_gc_stats(i, full);
   619         if (VerifyAfterGC && i >= VerifyGCLevel &&
   620             total_collections() >= VerifyGCStartAt) {
   621           HandleMark hm;  // Discard invalid handles created during verification
   622           gclog_or_tty->print(" VerifyAfterGC:");
   623           Universe::verify(false);
   624         }
   626         if (PrintGCDetails) {
   627           gclog_or_tty->print(":");
   628           _gens[i]->print_heap_change(prev_used);
   629         }
   630       }
   631     }
   633     // Update "complete" boolean wrt what actually transpired --
   634     // for instance, a promotion failure could have led to
   635     // a whole heap collection.
   636     complete = complete || (max_level_collected == n_gens() - 1);
   638     if (complete) { // We did a "major" collection
   639       post_full_gc_dump();   // do any post full gc dumps
   640     }
   642     if (PrintGCDetails) {
   643       print_heap_change(gch_prev_used);
   645       // Print perm gen info for full GC with PrintGCDetails flag.
   646       if (complete) {
   647         print_perm_heap_change(perm_prev_used);
   648       }
   649     }
   651     for (int j = max_level_collected; j >= 0; j -= 1) {
   652       // Adjust generation sizes.
   653       _gens[j]->compute_new_size();
   654     }
   656     if (complete) {
   657       // Ask the permanent generation to adjust size for full collections
   658       perm()->compute_new_size();
   659       update_full_collections_completed();
   660     }
   662     // Track memory usage and detect low memory after GC finishes
   663     MemoryService::track_memory_usage();
   665     gc_epilogue(complete);
   667     if (must_restore_marks_for_biased_locking) {
   668       BiasedLocking::restore_marks();
   669     }
   670   }
   672   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   673   AdaptiveSizePolicyOutput(sp, total_collections());
   675   print_heap_after_gc();
   677 #ifdef TRACESPINNING
   678   ParallelTaskTerminator::print_termination_counts();
   679 #endif
   680 }
   682 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   683   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   684 }
   686 void GenCollectedHeap::set_par_threads(uint t) {
   687   SharedHeap::set_par_threads(t);
   688   _gen_process_strong_tasks->set_n_threads(t);
   689 }
   691 void GenCollectedHeap::
   692 gen_process_strong_roots(int level,
   693                          bool younger_gens_as_roots,
   694                          bool activate_scope,
   695                          bool collecting_perm_gen,
   696                          SharedHeap::ScanningOption so,
   697                          OopsInGenClosure* not_older_gens,
   698                          bool do_code_roots,
   699                          OopsInGenClosure* older_gens) {
   700   // General strong roots.
   702   if (!do_code_roots) {
   703     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
   704                                      not_older_gens, NULL, older_gens);
   705   } else {
   706     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
   707     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
   708     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
   709                                      not_older_gens, &code_roots, older_gens);
   710   }
   712   if (younger_gens_as_roots) {
   713     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   714       for (int i = 0; i < level; i++) {
   715         not_older_gens->set_generation(_gens[i]);
   716         _gens[i]->oop_iterate(not_older_gens);
   717       }
   718       not_older_gens->reset_generation();
   719     }
   720   }
   721   // When collection is parallel, all threads get to cooperate to do
   722   // older-gen scanning.
   723   for (int i = level+1; i < _n_gens; i++) {
   724     older_gens->set_generation(_gens[i]);
   725     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   726     older_gens->reset_generation();
   727   }
   729   _gen_process_strong_tasks->all_tasks_completed();
   730 }
   732 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   733                                               CodeBlobClosure* code_roots,
   734                                               OopClosure* non_root_closure) {
   735   SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
   736   // "Local" "weak" refs
   737   for (int i = 0; i < _n_gens; i++) {
   738     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   739   }
   740 }
   742 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   743 void GenCollectedHeap::                                                 \
   744 oop_since_save_marks_iterate(int level,                                 \
   745                              OopClosureType* cur,                       \
   746                              OopClosureType* older) {                   \
   747   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   748   for (int i = level+1; i < n_gens(); i++) {                            \
   749     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   750   }                                                                     \
   751   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
   752 }
   754 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   756 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   758 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   759   for (int i = level; i < _n_gens; i++) {
   760     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   761   }
   762   return perm_gen()->no_allocs_since_save_marks();
   763 }
   765 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   766   return _gens[0]->supports_inline_contig_alloc();
   767 }
   769 HeapWord** GenCollectedHeap::top_addr() const {
   770   return _gens[0]->top_addr();
   771 }
   773 HeapWord** GenCollectedHeap::end_addr() const {
   774   return _gens[0]->end_addr();
   775 }
   777 size_t GenCollectedHeap::unsafe_max_alloc() {
   778   return _gens[0]->unsafe_max_alloc_nogc();
   779 }
   781 // public collection interfaces
   783 void GenCollectedHeap::collect(GCCause::Cause cause) {
   784   if (should_do_concurrent_full_gc(cause)) {
   785 #ifndef SERIALGC
   786     // mostly concurrent full collection
   787     collect_mostly_concurrent(cause);
   788 #else  // SERIALGC
   789     ShouldNotReachHere();
   790 #endif // SERIALGC
   791   } else {
   792 #ifdef ASSERT
   793     if (cause == GCCause::_scavenge_alot) {
   794       // minor collection only
   795       collect(cause, 0);
   796     } else {
   797       // Stop-the-world full collection
   798       collect(cause, n_gens() - 1);
   799     }
   800 #else
   801     // Stop-the-world full collection
   802     collect(cause, n_gens() - 1);
   803 #endif
   804   }
   805 }
   807 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   808   // The caller doesn't have the Heap_lock
   809   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   810   MutexLocker ml(Heap_lock);
   811   collect_locked(cause, max_level);
   812 }
   814 // This interface assumes that it's being called by the
   815 // vm thread. It collects the heap assuming that the
   816 // heap lock is already held and that we are executing in
   817 // the context of the vm thread.
   818 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   819   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   820   assert(Heap_lock->is_locked(), "Precondition#2");
   821   GCCauseSetter gcs(this, cause);
   822   switch (cause) {
   823     case GCCause::_heap_inspection:
   824     case GCCause::_heap_dump: {
   825       HandleMark hm;
   826       do_full_collection(false,         // don't clear all soft refs
   827                          n_gens() - 1);
   828       break;
   829     }
   830     default: // XXX FIX ME
   831       ShouldNotReachHere(); // Unexpected use of this function
   832   }
   833 }
   835 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   836   // The caller has the Heap_lock
   837   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   838   collect_locked(cause, n_gens() - 1);
   839 }
   841 // this is the private collection interface
   842 // The Heap_lock is expected to be held on entry.
   844 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   845   if (_preloading_shared_classes) {
   846     report_out_of_shared_space(SharedPermGen);
   847   }
   848   // Read the GC count while holding the Heap_lock
   849   unsigned int gc_count_before      = total_collections();
   850   unsigned int full_gc_count_before = total_full_collections();
   851   {
   852     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   853     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   854                          cause, max_level);
   855     VMThread::execute(&op);
   856   }
   857 }
   859 #ifndef SERIALGC
   860 bool GenCollectedHeap::create_cms_collector() {
   862   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   863          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
   864          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
   865          "Unexpected generation kinds");
   866   // Skip two header words in the block content verification
   867   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   868   CMSCollector* collector = new CMSCollector(
   869     (ConcurrentMarkSweepGeneration*)_gens[1],
   870     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
   871     _rem_set->as_CardTableRS(),
   872     (ConcurrentMarkSweepPolicy*) collector_policy());
   874   if (collector == NULL || !collector->completed_initialization()) {
   875     if (collector) {
   876       delete collector;  // Be nice in embedded situation
   877     }
   878     vm_shutdown_during_initialization("Could not create CMS collector");
   879     return false;
   880   }
   881   return true;  // success
   882 }
   884 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   885   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   887   MutexLocker ml(Heap_lock);
   888   // Read the GC counts while holding the Heap_lock
   889   unsigned int full_gc_count_before = total_full_collections();
   890   unsigned int gc_count_before      = total_collections();
   891   {
   892     MutexUnlocker mu(Heap_lock);
   893     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   894     VMThread::execute(&op);
   895   }
   896 }
   897 #endif // SERIALGC
   900 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   901                                           int max_level) {
   902   int local_max_level;
   903   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
   904       gc_cause() == GCCause::_gc_locker) {
   905     local_max_level = 0;
   906   } else {
   907     local_max_level = max_level;
   908   }
   910   do_collection(true                 /* full */,
   911                 clear_all_soft_refs  /* clear_all_soft_refs */,
   912                 0                    /* size */,
   913                 false                /* is_tlab */,
   914                 local_max_level      /* max_level */);
   915   // Hack XXX FIX ME !!!
   916   // A scavenge may not have been attempted, or may have
   917   // been attempted and failed, because the old gen was too full
   918   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   919       incremental_collection_will_fail(false /* don't consult_young */)) {
   920     if (PrintGCDetails) {
   921       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   922                              "because scavenge failed");
   923     }
   924     // This time allow the old gen to be collected as well
   925     do_collection(true                 /* full */,
   926                   clear_all_soft_refs  /* clear_all_soft_refs */,
   927                   0                    /* size */,
   928                   false                /* is_tlab */,
   929                   n_gens() - 1         /* max_level */);
   930   }
   931 }
   933 bool GenCollectedHeap::is_in_young(oop p) {
   934   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
   935   assert(result == _gens[0]->is_in_reserved(p),
   936          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
   937   return result;
   938 }
   940 // Returns "TRUE" iff "p" points into the committed areas of the heap.
   941 bool GenCollectedHeap::is_in(const void* p) const {
   942   #ifndef ASSERT
   943   guarantee(VerifyBeforeGC   ||
   944             VerifyDuringGC   ||
   945             VerifyBeforeExit ||
   946             PrintAssembly    ||
   947             tty->count() != 0 ||   // already printing
   948             VerifyAfterGC    ||
   949     VMError::fatal_error_in_progress(), "too expensive");
   951   #endif
   952   // This might be sped up with a cache of the last generation that
   953   // answered yes.
   954   for (int i = 0; i < _n_gens; i++) {
   955     if (_gens[i]->is_in(p)) return true;
   956   }
   957   if (_perm_gen->as_gen()->is_in(p)) return true;
   958   // Otherwise...
   959   return false;
   960 }
   962 #ifdef ASSERT
   963 // Don't implement this by using is_in_young().  This method is used
   964 // in some cases to check that is_in_young() is correct.
   965 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
   966   assert(is_in_reserved(p) || p == NULL,
   967     "Does not work if address is non-null and outside of the heap");
   968   // The order of the generations is young (low addr), old, perm (high addr)
   969   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
   970 }
   971 #endif
   973 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
   974   for (int i = 0; i < _n_gens; i++) {
   975     _gens[i]->oop_iterate(cl);
   976   }
   977 }
   979 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
   980   for (int i = 0; i < _n_gens; i++) {
   981     _gens[i]->oop_iterate(mr, cl);
   982   }
   983 }
   985 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   986   for (int i = 0; i < _n_gens; i++) {
   987     _gens[i]->object_iterate(cl);
   988   }
   989   perm_gen()->object_iterate(cl);
   990 }
   992 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   993   for (int i = 0; i < _n_gens; i++) {
   994     _gens[i]->safe_object_iterate(cl);
   995   }
   996   perm_gen()->safe_object_iterate(cl);
   997 }
   999 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  1000   for (int i = 0; i < _n_gens; i++) {
  1001     _gens[i]->object_iterate_since_last_GC(cl);
  1005 Space* GenCollectedHeap::space_containing(const void* addr) const {
  1006   for (int i = 0; i < _n_gens; i++) {
  1007     Space* res = _gens[i]->space_containing(addr);
  1008     if (res != NULL) return res;
  1010   Space* res = perm_gen()->space_containing(addr);
  1011   if (res != NULL) return res;
  1012   // Otherwise...
  1013   assert(false, "Could not find containing space");
  1014   return NULL;
  1018 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
  1019   assert(is_in_reserved(addr), "block_start of address outside of heap");
  1020   for (int i = 0; i < _n_gens; i++) {
  1021     if (_gens[i]->is_in_reserved(addr)) {
  1022       assert(_gens[i]->is_in(addr),
  1023              "addr should be in allocated part of generation");
  1024       return _gens[i]->block_start(addr);
  1027   if (perm_gen()->is_in_reserved(addr)) {
  1028     assert(perm_gen()->is_in(addr),
  1029            "addr should be in allocated part of perm gen");
  1030     return perm_gen()->block_start(addr);
  1032   assert(false, "Some generation should contain the address");
  1033   return NULL;
  1036 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
  1037   assert(is_in_reserved(addr), "block_size of address outside of heap");
  1038   for (int i = 0; i < _n_gens; i++) {
  1039     if (_gens[i]->is_in_reserved(addr)) {
  1040       assert(_gens[i]->is_in(addr),
  1041              "addr should be in allocated part of generation");
  1042       return _gens[i]->block_size(addr);
  1045   if (perm_gen()->is_in_reserved(addr)) {
  1046     assert(perm_gen()->is_in(addr),
  1047            "addr should be in allocated part of perm gen");
  1048     return perm_gen()->block_size(addr);
  1050   assert(false, "Some generation should contain the address");
  1051   return 0;
  1054 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
  1055   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
  1056   assert(block_start(addr) == addr, "addr must be a block start");
  1057   for (int i = 0; i < _n_gens; i++) {
  1058     if (_gens[i]->is_in_reserved(addr)) {
  1059       return _gens[i]->block_is_obj(addr);
  1062   if (perm_gen()->is_in_reserved(addr)) {
  1063     return perm_gen()->block_is_obj(addr);
  1065   assert(false, "Some generation should contain the address");
  1066   return false;
  1069 bool GenCollectedHeap::supports_tlab_allocation() const {
  1070   for (int i = 0; i < _n_gens; i += 1) {
  1071     if (_gens[i]->supports_tlab_allocation()) {
  1072       return true;
  1075   return false;
  1078 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  1079   size_t result = 0;
  1080   for (int i = 0; i < _n_gens; i += 1) {
  1081     if (_gens[i]->supports_tlab_allocation()) {
  1082       result += _gens[i]->tlab_capacity();
  1085   return result;
  1088 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  1089   size_t result = 0;
  1090   for (int i = 0; i < _n_gens; i += 1) {
  1091     if (_gens[i]->supports_tlab_allocation()) {
  1092       result += _gens[i]->unsafe_max_tlab_alloc();
  1095   return result;
  1098 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  1099   bool gc_overhead_limit_was_exceeded;
  1100   return collector_policy()->mem_allocate_work(size /* size */,
  1101                                                true /* is_tlab */,
  1102                                                &gc_overhead_limit_was_exceeded);
  1105 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
  1106 // from the list headed by "*prev_ptr".
  1107 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  1108   bool first = true;
  1109   size_t min_size = 0;   // "first" makes this conceptually infinite.
  1110   ScratchBlock **smallest_ptr, *smallest;
  1111   ScratchBlock  *cur = *prev_ptr;
  1112   while (cur) {
  1113     assert(*prev_ptr == cur, "just checking");
  1114     if (first || cur->num_words < min_size) {
  1115       smallest_ptr = prev_ptr;
  1116       smallest     = cur;
  1117       min_size     = smallest->num_words;
  1118       first        = false;
  1120     prev_ptr = &cur->next;
  1121     cur     =  cur->next;
  1123   smallest      = *smallest_ptr;
  1124   *smallest_ptr = smallest->next;
  1125   return smallest;
  1128 // Sort the scratch block list headed by res into decreasing size order,
  1129 // and set "res" to the result.
  1130 static void sort_scratch_list(ScratchBlock*& list) {
  1131   ScratchBlock* sorted = NULL;
  1132   ScratchBlock* unsorted = list;
  1133   while (unsorted) {
  1134     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
  1135     smallest->next  = sorted;
  1136     sorted          = smallest;
  1138   list = sorted;
  1141 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1142                                                size_t max_alloc_words) {
  1143   ScratchBlock* res = NULL;
  1144   for (int i = 0; i < _n_gens; i++) {
  1145     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1147   sort_scratch_list(res);
  1148   return res;
  1151 void GenCollectedHeap::release_scratch() {
  1152   for (int i = 0; i < _n_gens; i++) {
  1153     _gens[i]->reset_scratch();
  1157 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1158   void do_generation(Generation* gen) {
  1159     gen->prepare_for_verify();
  1161 };
  1163 void GenCollectedHeap::prepare_for_verify() {
  1164   ensure_parsability(false);        // no need to retire TLABs
  1165   GenPrepareForVerifyClosure blk;
  1166   generation_iterate(&blk, false);
  1167   perm_gen()->prepare_for_verify();
  1171 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1172                                           bool old_to_young) {
  1173   if (old_to_young) {
  1174     for (int i = _n_gens-1; i >= 0; i--) {
  1175       cl->do_generation(_gens[i]);
  1177   } else {
  1178     for (int i = 0; i < _n_gens; i++) {
  1179       cl->do_generation(_gens[i]);
  1184 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1185   for (int i = 0; i < _n_gens; i++) {
  1186     _gens[i]->space_iterate(cl, true);
  1188   perm_gen()->space_iterate(cl, true);
  1191 bool GenCollectedHeap::is_maximal_no_gc() const {
  1192   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
  1193     if (!_gens[i]->is_maximal_no_gc()) {
  1194       return false;
  1197   return true;
  1200 void GenCollectedHeap::save_marks() {
  1201   for (int i = 0; i < _n_gens; i++) {
  1202     _gens[i]->save_marks();
  1204   perm_gen()->save_marks();
  1207 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  1208   for (int i = 0; i <= collectedGen; i++) {
  1209     _gens[i]->compute_new_size();
  1213 GenCollectedHeap* GenCollectedHeap::heap() {
  1214   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1215   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1216   return _gch;
  1220 void GenCollectedHeap::prepare_for_compaction() {
  1221   Generation* scanning_gen = _gens[_n_gens-1];
  1222   // Start by compacting into same gen.
  1223   CompactPoint cp(scanning_gen, NULL, NULL);
  1224   while (scanning_gen != NULL) {
  1225     scanning_gen->prepare_for_compaction(&cp);
  1226     scanning_gen = prev_gen(scanning_gen);
  1230 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1231   return _gens[level]->gc_stats();
  1234 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
  1235   if (!silent) {
  1236     gclog_or_tty->print("permgen ");
  1238   perm_gen()->verify();
  1239   for (int i = _n_gens-1; i >= 0; i--) {
  1240     Generation* g = _gens[i];
  1241     if (!silent) {
  1242       gclog_or_tty->print(g->name());
  1243       gclog_or_tty->print(" ");
  1245     g->verify();
  1247   if (!silent) {
  1248     gclog_or_tty->print("remset ");
  1250   rem_set()->verify();
  1253 void GenCollectedHeap::print_on(outputStream* st) const {
  1254   for (int i = 0; i < _n_gens; i++) {
  1255     _gens[i]->print_on(st);
  1257   perm_gen()->print_on(st);
  1260 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1261   if (workers() != NULL) {
  1262     workers()->threads_do(tc);
  1264 #ifndef SERIALGC
  1265   if (UseConcMarkSweepGC) {
  1266     ConcurrentMarkSweepThread::threads_do(tc);
  1268 #endif // SERIALGC
  1271 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1272 #ifndef SERIALGC
  1273   if (UseParNewGC) {
  1274     workers()->print_worker_threads_on(st);
  1276   if (UseConcMarkSweepGC) {
  1277     ConcurrentMarkSweepThread::print_all_on(st);
  1279 #endif // SERIALGC
  1282 void GenCollectedHeap::print_tracing_info() const {
  1283   if (TraceGen0Time) {
  1284     get_gen(0)->print_summary_info();
  1286   if (TraceGen1Time) {
  1287     get_gen(1)->print_summary_info();
  1291 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1292   if (PrintGCDetails && Verbose) {
  1293     gclog_or_tty->print(" "  SIZE_FORMAT
  1294                         "->" SIZE_FORMAT
  1295                         "("  SIZE_FORMAT ")",
  1296                         prev_used, used(), capacity());
  1297   } else {
  1298     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1299                         "->" SIZE_FORMAT "K"
  1300                         "("  SIZE_FORMAT "K)",
  1301                         prev_used / K, used() / K, capacity() / K);
  1305 //New method to print perm gen info with PrintGCDetails flag
  1306 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
  1307   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
  1308   perm_gen()->print_heap_change(perm_prev_used);
  1309   gclog_or_tty->print("]");
  1312 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1313  private:
  1314   bool _full;
  1315  public:
  1316   void do_generation(Generation* gen) {
  1317     gen->gc_prologue(_full);
  1319   GenGCPrologueClosure(bool full) : _full(full) {};
  1320 };
  1322 void GenCollectedHeap::gc_prologue(bool full) {
  1323   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1325   always_do_update_barrier = false;
  1326   // Fill TLAB's and such
  1327   CollectedHeap::accumulate_statistics_all_tlabs();
  1328   ensure_parsability(true);   // retire TLABs
  1330   // Call allocation profiler
  1331   AllocationProfiler::iterate_since_last_gc();
  1332   // Walk generations
  1333   GenGCPrologueClosure blk(full);
  1334   generation_iterate(&blk, false);  // not old-to-young.
  1335   perm_gen()->gc_prologue(full);
  1336 };
  1338 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1339  private:
  1340   bool _full;
  1341  public:
  1342   void do_generation(Generation* gen) {
  1343     gen->gc_epilogue(_full);
  1345   GenGCEpilogueClosure(bool full) : _full(full) {};
  1346 };
  1348 void GenCollectedHeap::gc_epilogue(bool full) {
  1349 #ifdef COMPILER2
  1350   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1351   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1352   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1353 #endif /* COMPILER2 */
  1355   resize_all_tlabs();
  1357   GenGCEpilogueClosure blk(full);
  1358   generation_iterate(&blk, false);  // not old-to-young.
  1359   perm_gen()->gc_epilogue(full);
  1361   if (!CleanChunkPoolAsync) {
  1362     Chunk::clean_chunk_pool();
  1365   always_do_update_barrier = UseConcMarkSweepGC;
  1366 };
  1368 #ifndef PRODUCT
  1369 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1370  private:
  1371  public:
  1372   void do_generation(Generation* gen) {
  1373     gen->record_spaces_top();
  1375 };
  1377 void GenCollectedHeap::record_gen_tops_before_GC() {
  1378   if (ZapUnusedHeapArea) {
  1379     GenGCSaveTopsBeforeGCClosure blk;
  1380     generation_iterate(&blk, false);  // not old-to-young.
  1381     perm_gen()->record_spaces_top();
  1384 #endif  // not PRODUCT
  1386 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1387  public:
  1388   void do_generation(Generation* gen) {
  1389     gen->ensure_parsability();
  1391 };
  1393 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1394   CollectedHeap::ensure_parsability(retire_tlabs);
  1395   GenEnsureParsabilityClosure ep_cl;
  1396   generation_iterate(&ep_cl, false);
  1397   perm_gen()->ensure_parsability();
  1400 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
  1401                                               oop obj,
  1402                                               size_t obj_size) {
  1403   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1404   HeapWord* result = NULL;
  1406   // First give each higher generation a chance to allocate the promoted object.
  1407   Generation* allocator = next_gen(gen);
  1408   if (allocator != NULL) {
  1409     do {
  1410       result = allocator->allocate(obj_size, false);
  1411     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  1414   if (result == NULL) {
  1415     // Then give gen and higher generations a chance to expand and allocate the
  1416     // object.
  1417     do {
  1418       result = gen->expand_and_allocate(obj_size, false);
  1419     } while (result == NULL && (gen = next_gen(gen)) != NULL);
  1422   if (result != NULL) {
  1423     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1425   return oop(result);
  1428 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1429   jlong _time;   // in ms
  1430   jlong _now;    // in ms
  1432  public:
  1433   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1435   jlong time() { return _time; }
  1437   void do_generation(Generation* gen) {
  1438     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1440 };
  1442 jlong GenCollectedHeap::millis_since_last_gc() {
  1443   // We need a monotonically non-deccreasing time in ms but
  1444   // os::javaTimeMillis() does not guarantee monotonicity.
  1445   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1446   GenTimeOfLastGCClosure tolgc_cl(now);
  1447   // iterate over generations getting the oldest
  1448   // time that a generation was collected
  1449   generation_iterate(&tolgc_cl, false);
  1450   tolgc_cl.do_generation(perm_gen());
  1452   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
  1453   // provided the underlying platform provides such a time source
  1454   // (and it is bug free). So we still have to guard against getting
  1455   // back a time later than 'now'.
  1456   jlong retVal = now - tolgc_cl.time();
  1457   if (retVal < 0) {
  1458     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
  1459     return 0;
  1461   return retVal;

mercurial