src/share/vm/memory/binaryTreeDictionary.cpp

Mon, 04 Jun 2012 09:21:53 +0200

author
mgerdin
date
Mon, 04 Jun 2012 09:21:53 +0200
changeset 3822
a297b0e14605
parent 3732
f69a5d43dc19
child 4196
685df3c6f84b
permissions
-rw-r--r--

7172226: HotSpot fails to build with GCC 4.7 because of stricter c++ argument dependent lookup
Summary: Add "using" keyword to import base class functions from FreeList<T> to fix template name lookup in gcc 4.7
Reviewed-by: brutisso, iveresov

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/allocationStats.hpp"
    27 #include "memory/binaryTreeDictionary.hpp"
    28 #include "runtime/globals.hpp"
    29 #include "utilities/ostream.hpp"
    30 #ifndef SERIALGC
    31 #include "gc_implementation/shared/spaceDecorator.hpp"
    32 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    33 #endif // SERIALGC
    35 ////////////////////////////////////////////////////////////////////////////////
    36 // A binary tree based search structure for free blocks.
    37 // This is currently used in the Concurrent Mark&Sweep implementation.
    38 ////////////////////////////////////////////////////////////////////////////////
    40 template <class Chunk>
    41 TreeChunk<Chunk>* TreeChunk<Chunk>::as_TreeChunk(Chunk* fc) {
    42   // Do some assertion checking here.
    43   return (TreeChunk<Chunk>*) fc;
    44 }
    46 template <class Chunk>
    47 void TreeChunk<Chunk>::verify_tree_chunk_list() const {
    48   TreeChunk<Chunk>* nextTC = (TreeChunk<Chunk>*)next();
    49   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    50     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    51               embedded_list()->right()  == NULL, "should be clear");
    52   }
    53   if (nextTC != NULL) {
    54     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    55     guarantee(nextTC->size() == size(), "wrong size");
    56     nextTC->verify_tree_chunk_list();
    57   }
    58 }
    61 template <class Chunk>
    62 TreeList<Chunk>* TreeList<Chunk>::as_TreeList(TreeChunk<Chunk>* tc) {
    63   // This first free chunk in the list will be the tree list.
    64   assert(tc->size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk");
    65   TreeList<Chunk>* tl = tc->embedded_list();
    66   tc->set_list(tl);
    67 #ifdef ASSERT
    68   tl->set_protecting_lock(NULL);
    69 #endif
    70   tl->set_hint(0);
    71   tl->set_size(tc->size());
    72   tl->link_head(tc);
    73   tl->link_tail(tc);
    74   tl->set_count(1);
    75   tl->init_statistics(true /* split_birth */);
    76   tl->set_parent(NULL);
    77   tl->set_left(NULL);
    78   tl->set_right(NULL);
    79   return tl;
    80 }
    82 template <class Chunk>
    83 TreeList<Chunk>* TreeList<Chunk>::as_TreeList(HeapWord* addr, size_t size) {
    84   TreeChunk<Chunk>* tc = (TreeChunk<Chunk>*) addr;
    85   assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "Chunk is too small for a TreeChunk");
    86   // The space in the heap will have been mangled initially but
    87   // is not remangled when a free chunk is returned to the free list
    88   // (since it is used to maintain the chunk on the free list).
    89   assert((ZapUnusedHeapArea &&
    90           SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
    91           SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
    92           SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
    93           (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
    94     "Space should be clear or mangled");
    95   tc->set_size(size);
    96   tc->link_prev(NULL);
    97   tc->link_next(NULL);
    98   TreeList<Chunk>* tl = TreeList<Chunk>::as_TreeList(tc);
    99   return tl;
   100 }
   102 template <class Chunk>
   103 TreeList<Chunk>* TreeList<Chunk>::remove_chunk_replace_if_needed(TreeChunk<Chunk>* tc) {
   105   TreeList<Chunk>* retTL = this;
   106   Chunk* list = head();
   107   assert(!list || list != list->next(), "Chunk on list twice");
   108   assert(tc != NULL, "Chunk being removed is NULL");
   109   assert(parent() == NULL || this == parent()->left() ||
   110     this == parent()->right(), "list is inconsistent");
   111   assert(tc->is_free(), "Header is not marked correctly");
   112   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   113   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   115   Chunk* prevFC = tc->prev();
   116   TreeChunk<Chunk>* nextTC = TreeChunk<Chunk>::as_TreeChunk(tc->next());
   117   assert(list != NULL, "should have at least the target chunk");
   119   // Is this the first item on the list?
   120   if (tc == list) {
   121     // The "getChunk..." functions for a TreeList<Chunk> will not return the
   122     // first chunk in the list unless it is the last chunk in the list
   123     // because the first chunk is also acting as the tree node.
   124     // When coalescing happens, however, the first chunk in the a tree
   125     // list can be the start of a free range.  Free ranges are removed
   126     // from the free lists so that they are not available to be
   127     // allocated when the sweeper yields (giving up the free list lock)
   128     // to allow mutator activity.  If this chunk is the first in the
   129     // list and is not the last in the list, do the work to copy the
   130     // TreeList<Chunk> from the first chunk to the next chunk and update all
   131     // the TreeList<Chunk> pointers in the chunks in the list.
   132     if (nextTC == NULL) {
   133       assert(prevFC == NULL, "Not last chunk in the list");
   134       set_tail(NULL);
   135       set_head(NULL);
   136     } else {
   137       // copy embedded list.
   138       nextTC->set_embedded_list(tc->embedded_list());
   139       retTL = nextTC->embedded_list();
   140       // Fix the pointer to the list in each chunk in the list.
   141       // This can be slow for a long list.  Consider having
   142       // an option that does not allow the first chunk on the
   143       // list to be coalesced.
   144       for (TreeChunk<Chunk>* curTC = nextTC; curTC != NULL;
   145           curTC = TreeChunk<Chunk>::as_TreeChunk(curTC->next())) {
   146         curTC->set_list(retTL);
   147       }
   148       // Fix the parent to point to the new TreeList<Chunk>.
   149       if (retTL->parent() != NULL) {
   150         if (this == retTL->parent()->left()) {
   151           retTL->parent()->set_left(retTL);
   152         } else {
   153           assert(this == retTL->parent()->right(), "Parent is incorrect");
   154           retTL->parent()->set_right(retTL);
   155         }
   156       }
   157       // Fix the children's parent pointers to point to the
   158       // new list.
   159       assert(right() == retTL->right(), "Should have been copied");
   160       if (retTL->right() != NULL) {
   161         retTL->right()->set_parent(retTL);
   162       }
   163       assert(left() == retTL->left(), "Should have been copied");
   164       if (retTL->left() != NULL) {
   165         retTL->left()->set_parent(retTL);
   166       }
   167       retTL->link_head(nextTC);
   168       assert(nextTC->is_free(), "Should be a free chunk");
   169     }
   170   } else {
   171     if (nextTC == NULL) {
   172       // Removing chunk at tail of list
   173       link_tail(prevFC);
   174     }
   175     // Chunk is interior to the list
   176     prevFC->link_after(nextTC);
   177   }
   179   // Below this point the embeded TreeList<Chunk> being used for the
   180   // tree node may have changed. Don't use "this"
   181   // TreeList<Chunk>*.
   182   // chunk should still be a free chunk (bit set in _prev)
   183   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   184     "Wrong sized chunk in list");
   185   debug_only(
   186     tc->link_prev(NULL);
   187     tc->link_next(NULL);
   188     tc->set_list(NULL);
   189     bool prev_found = false;
   190     bool next_found = false;
   191     for (Chunk* curFC = retTL->head();
   192          curFC != NULL; curFC = curFC->next()) {
   193       assert(curFC != tc, "Chunk is still in list");
   194       if (curFC == prevFC) {
   195         prev_found = true;
   196       }
   197       if (curFC == nextTC) {
   198         next_found = true;
   199       }
   200     }
   201     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   202     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   203     assert(retTL->parent() == NULL ||
   204            retTL == retTL->parent()->left() ||
   205            retTL == retTL->parent()->right(),
   206            "list is inconsistent");
   207   )
   208   retTL->decrement_count();
   210   assert(tc->is_free(), "Should still be a free chunk");
   211   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   212     "list invariant");
   213   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   214     "list invariant");
   215   return retTL;
   216 }
   218 template <class Chunk>
   219 void TreeList<Chunk>::return_chunk_at_tail(TreeChunk<Chunk>* chunk) {
   220   assert(chunk != NULL, "returning NULL chunk");
   221   assert(chunk->list() == this, "list should be set for chunk");
   222   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   223   // which means that the list can never be empty.
   224   assert(!verify_chunk_in_free_list(chunk), "Double entry");
   225   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   226   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   228   Chunk* fc = tail();
   229   fc->link_after(chunk);
   230   link_tail(chunk);
   232   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   233   increment_count();
   234   debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   235   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   236   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   237 }
   239 // Add this chunk at the head of the list.  "At the head of the list"
   240 // is defined to be after the chunk pointer to by head().  This is
   241 // because the TreeList<Chunk> is embedded in the first TreeChunk<Chunk> in the
   242 // list.  See the definition of TreeChunk<Chunk>.
   243 template <class Chunk>
   244 void TreeList<Chunk>::return_chunk_at_head(TreeChunk<Chunk>* chunk) {
   245   assert(chunk->list() == this, "list should be set for chunk");
   246   assert(head() != NULL, "The tree list is embedded in the first chunk");
   247   assert(chunk != NULL, "returning NULL chunk");
   248   assert(!verify_chunk_in_free_list(chunk), "Double entry");
   249   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   250   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   252   Chunk* fc = head()->next();
   253   if (fc != NULL) {
   254     chunk->link_after(fc);
   255   } else {
   256     assert(tail() == NULL, "List is inconsistent");
   257     link_tail(chunk);
   258   }
   259   head()->link_after(chunk);
   260   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   261   increment_count();
   262   debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   263   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   264   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   265 }
   267 template <class Chunk>
   268 TreeChunk<Chunk>* TreeList<Chunk>::head_as_TreeChunk() {
   269   assert(head() == NULL || TreeChunk<Chunk>::as_TreeChunk(head())->list() == this,
   270     "Wrong type of chunk?");
   271   return TreeChunk<Chunk>::as_TreeChunk(head());
   272 }
   274 template <class Chunk>
   275 TreeChunk<Chunk>* TreeList<Chunk>::first_available() {
   276   assert(head() != NULL, "The head of the list cannot be NULL");
   277   Chunk* fc = head()->next();
   278   TreeChunk<Chunk>* retTC;
   279   if (fc == NULL) {
   280     retTC = head_as_TreeChunk();
   281   } else {
   282     retTC = TreeChunk<Chunk>::as_TreeChunk(fc);
   283   }
   284   assert(retTC->list() == this, "Wrong type of chunk.");
   285   return retTC;
   286 }
   288 // Returns the block with the largest heap address amongst
   289 // those in the list for this size; potentially slow and expensive,
   290 // use with caution!
   291 template <class Chunk>
   292 TreeChunk<Chunk>* TreeList<Chunk>::largest_address() {
   293   assert(head() != NULL, "The head of the list cannot be NULL");
   294   Chunk* fc = head()->next();
   295   TreeChunk<Chunk>* retTC;
   296   if (fc == NULL) {
   297     retTC = head_as_TreeChunk();
   298   } else {
   299     // walk down the list and return the one with the highest
   300     // heap address among chunks of this size.
   301     Chunk* last = fc;
   302     while (fc->next() != NULL) {
   303       if ((HeapWord*)last < (HeapWord*)fc) {
   304         last = fc;
   305       }
   306       fc = fc->next();
   307     }
   308     retTC = TreeChunk<Chunk>::as_TreeChunk(last);
   309   }
   310   assert(retTC->list() == this, "Wrong type of chunk.");
   311   return retTC;
   312 }
   314 template <class Chunk>
   315 BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(bool adaptive_freelists, bool splay) :
   316   _splay(splay), _adaptive_freelists(adaptive_freelists),
   317   _total_size(0), _total_free_blocks(0), _root(0) {}
   319 template <class Chunk>
   320 BinaryTreeDictionary<Chunk>::BinaryTreeDictionary(MemRegion mr,
   321                                            bool adaptive_freelists,
   322                                            bool splay):
   323   _adaptive_freelists(adaptive_freelists), _splay(splay)
   324 {
   325   assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
   327   reset(mr);
   328   assert(root()->left() == NULL, "reset check failed");
   329   assert(root()->right() == NULL, "reset check failed");
   330   assert(root()->head()->next() == NULL, "reset check failed");
   331   assert(root()->head()->prev() == NULL, "reset check failed");
   332   assert(total_size() == root()->size(), "reset check failed");
   333   assert(total_free_blocks() == 1, "reset check failed");
   334 }
   336 template <class Chunk>
   337 void BinaryTreeDictionary<Chunk>::inc_total_size(size_t inc) {
   338   _total_size = _total_size + inc;
   339 }
   341 template <class Chunk>
   342 void BinaryTreeDictionary<Chunk>::dec_total_size(size_t dec) {
   343   _total_size = _total_size - dec;
   344 }
   346 template <class Chunk>
   347 void BinaryTreeDictionary<Chunk>::reset(MemRegion mr) {
   348   assert(mr.word_size() >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
   349   set_root(TreeList<Chunk>::as_TreeList(mr.start(), mr.word_size()));
   350   set_total_size(mr.word_size());
   351   set_total_free_blocks(1);
   352 }
   354 template <class Chunk>
   355 void BinaryTreeDictionary<Chunk>::reset(HeapWord* addr, size_t byte_size) {
   356   MemRegion mr(addr, heap_word_size(byte_size));
   357   reset(mr);
   358 }
   360 template <class Chunk>
   361 void BinaryTreeDictionary<Chunk>::reset() {
   362   set_root(NULL);
   363   set_total_size(0);
   364   set_total_free_blocks(0);
   365 }
   367 // Get a free block of size at least size from tree, or NULL.
   368 // If a splay step is requested, the removal algorithm (only) incorporates
   369 // a splay step as follows:
   370 // . the search proceeds down the tree looking for a possible
   371 //   match. At the (closest) matching location, an appropriate splay step is applied
   372 //   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
   373 //   if available, and if it's the last chunk, the node is deleted. A deteleted
   374 //   node is replaced in place by its tree successor.
   375 template <class Chunk>
   376 TreeChunk<Chunk>*
   377 BinaryTreeDictionary<Chunk>::get_chunk_from_tree(size_t size, enum FreeBlockDictionary<Chunk>::Dither dither, bool splay)
   378 {
   379   TreeList<Chunk> *curTL, *prevTL;
   380   TreeChunk<Chunk>* retTC = NULL;
   381   assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "minimum chunk size");
   382   if (FLSVerifyDictionary) {
   383     verify_tree();
   384   }
   385   // starting at the root, work downwards trying to find match.
   386   // Remember the last node of size too great or too small.
   387   for (prevTL = curTL = root(); curTL != NULL;) {
   388     if (curTL->size() == size) {        // exact match
   389       break;
   390     }
   391     prevTL = curTL;
   392     if (curTL->size() < size) {        // proceed to right sub-tree
   393       curTL = curTL->right();
   394     } else {                           // proceed to left sub-tree
   395       assert(curTL->size() > size, "size inconsistency");
   396       curTL = curTL->left();
   397     }
   398   }
   399   if (curTL == NULL) { // couldn't find exact match
   401     if (dither == FreeBlockDictionary<Chunk>::exactly) return NULL;
   403     // try and find the next larger size by walking back up the search path
   404     for (curTL = prevTL; curTL != NULL;) {
   405       if (curTL->size() >= size) break;
   406       else curTL = curTL->parent();
   407     }
   408     assert(curTL == NULL || curTL->count() > 0,
   409       "An empty list should not be in the tree");
   410   }
   411   if (curTL != NULL) {
   412     assert(curTL->size() >= size, "size inconsistency");
   413     if (adaptive_freelists()) {
   415       // A candidate chunk has been found.  If it is already under
   416       // populated, get a chunk associated with the hint for this
   417       // chunk.
   418       if (curTL->surplus() <= 0) {
   419         /* Use the hint to find a size with a surplus, and reset the hint. */
   420         TreeList<Chunk>* hintTL = curTL;
   421         while (hintTL->hint() != 0) {
   422           assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
   423             "hint points in the wrong direction");
   424           hintTL = find_list(hintTL->hint());
   425           assert(curTL != hintTL, "Infinite loop");
   426           if (hintTL == NULL ||
   427               hintTL == curTL /* Should not happen but protect against it */ ) {
   428             // No useful hint.  Set the hint to NULL and go on.
   429             curTL->set_hint(0);
   430             break;
   431           }
   432           assert(hintTL->size() > size, "hint is inconsistent");
   433           if (hintTL->surplus() > 0) {
   434             // The hint led to a list that has a surplus.  Use it.
   435             // Set the hint for the candidate to an overpopulated
   436             // size.
   437             curTL->set_hint(hintTL->size());
   438             // Change the candidate.
   439             curTL = hintTL;
   440             break;
   441           }
   442           // The evm code reset the hint of the candidate as
   443           // at an interim point.  Why?  Seems like this leaves
   444           // the hint pointing to a list that didn't work.
   445           // curTL->set_hint(hintTL->size());
   446         }
   447       }
   448     }
   449     // don't waste time splaying if chunk's singleton
   450     if (splay && curTL->head()->next() != NULL) {
   451       semi_splay_step(curTL);
   452     }
   453     retTC = curTL->first_available();
   454     assert((retTC != NULL) && (curTL->count() > 0),
   455       "A list in the binary tree should not be NULL");
   456     assert(retTC->size() >= size,
   457       "A chunk of the wrong size was found");
   458     remove_chunk_from_tree(retTC);
   459     assert(retTC->is_free(), "Header is not marked correctly");
   460   }
   462   if (FLSVerifyDictionary) {
   463     verify();
   464   }
   465   return retTC;
   466 }
   468 template <class Chunk>
   469 TreeList<Chunk>* BinaryTreeDictionary<Chunk>::find_list(size_t size) const {
   470   TreeList<Chunk>* curTL;
   471   for (curTL = root(); curTL != NULL;) {
   472     if (curTL->size() == size) {        // exact match
   473       break;
   474     }
   476     if (curTL->size() < size) {        // proceed to right sub-tree
   477       curTL = curTL->right();
   478     } else {                           // proceed to left sub-tree
   479       assert(curTL->size() > size, "size inconsistency");
   480       curTL = curTL->left();
   481     }
   482   }
   483   return curTL;
   484 }
   487 template <class Chunk>
   488 bool BinaryTreeDictionary<Chunk>::verify_chunk_in_free_list(Chunk* tc) const {
   489   size_t size = tc->size();
   490   TreeList<Chunk>* tl = find_list(size);
   491   if (tl == NULL) {
   492     return false;
   493   } else {
   494     return tl->verify_chunk_in_free_list(tc);
   495   }
   496 }
   498 template <class Chunk>
   499 Chunk* BinaryTreeDictionary<Chunk>::find_largest_dict() const {
   500   TreeList<Chunk> *curTL = root();
   501   if (curTL != NULL) {
   502     while(curTL->right() != NULL) curTL = curTL->right();
   503     return curTL->largest_address();
   504   } else {
   505     return NULL;
   506   }
   507 }
   509 // Remove the current chunk from the tree.  If it is not the last
   510 // chunk in a list on a tree node, just unlink it.
   511 // If it is the last chunk in the list (the next link is NULL),
   512 // remove the node and repair the tree.
   513 template <class Chunk>
   514 TreeChunk<Chunk>*
   515 BinaryTreeDictionary<Chunk>::remove_chunk_from_tree(TreeChunk<Chunk>* tc) {
   516   assert(tc != NULL, "Should not call with a NULL chunk");
   517   assert(tc->is_free(), "Header is not marked correctly");
   519   TreeList<Chunk> *newTL, *parentTL;
   520   TreeChunk<Chunk>* retTC;
   521   TreeList<Chunk>* tl = tc->list();
   522   debug_only(
   523     bool removing_only_chunk = false;
   524     if (tl == _root) {
   525       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   526         if (_root->count() == 1) {
   527           assert(_root->head() == tc, "Should only be this one chunk");
   528           removing_only_chunk = true;
   529         }
   530       }
   531     }
   532   )
   533   assert(tl != NULL, "List should be set");
   534   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   535          tl == tl->parent()->right(), "list is inconsistent");
   537   bool complicated_splice = false;
   539   retTC = tc;
   540   // Removing this chunk can have the side effect of changing the node
   541   // (TreeList<Chunk>*) in the tree.  If the node is the root, update it.
   542   TreeList<Chunk>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
   543   assert(tc->is_free(), "Chunk should still be free");
   544   assert(replacementTL->parent() == NULL ||
   545          replacementTL == replacementTL->parent()->left() ||
   546          replacementTL == replacementTL->parent()->right(),
   547          "list is inconsistent");
   548   if (tl == root()) {
   549     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   550     set_root(replacementTL);
   551   }
   552   debug_only(
   553     if (tl != replacementTL) {
   554       assert(replacementTL->head() != NULL,
   555         "If the tree list was replaced, it should not be a NULL list");
   556       TreeList<Chunk>* rhl = replacementTL->head_as_TreeChunk()->list();
   557       TreeList<Chunk>* rtl = TreeChunk<Chunk>::as_TreeChunk(replacementTL->tail())->list();
   558       assert(rhl == replacementTL, "Broken head");
   559       assert(rtl == replacementTL, "Broken tail");
   560       assert(replacementTL->size() == tc->size(),  "Broken size");
   561     }
   562   )
   564   // Does the tree need to be repaired?
   565   if (replacementTL->count() == 0) {
   566     assert(replacementTL->head() == NULL &&
   567            replacementTL->tail() == NULL, "list count is incorrect");
   568     // Find the replacement node for the (soon to be empty) node being removed.
   569     // if we have a single (or no) child, splice child in our stead
   570     if (replacementTL->left() == NULL) {
   571       // left is NULL so pick right.  right may also be NULL.
   572       newTL = replacementTL->right();
   573       debug_only(replacementTL->clear_right();)
   574     } else if (replacementTL->right() == NULL) {
   575       // right is NULL
   576       newTL = replacementTL->left();
   577       debug_only(replacementTL->clearLeft();)
   578     } else {  // we have both children, so, by patriarchal convention,
   579               // my replacement is least node in right sub-tree
   580       complicated_splice = true;
   581       newTL = remove_tree_minimum(replacementTL->right());
   582       assert(newTL != NULL && newTL->left() == NULL &&
   583              newTL->right() == NULL, "sub-tree minimum exists");
   584     }
   585     // newTL is the replacement for the (soon to be empty) node.
   586     // newTL may be NULL.
   587     // should verify; we just cleanly excised our replacement
   588     if (FLSVerifyDictionary) {
   589       verify_tree();
   590     }
   591     // first make newTL my parent's child
   592     if ((parentTL = replacementTL->parent()) == NULL) {
   593       // newTL should be root
   594       assert(tl == root(), "Incorrectly replacing root");
   595       set_root(newTL);
   596       if (newTL != NULL) {
   597         newTL->clear_parent();
   598       }
   599     } else if (parentTL->right() == replacementTL) {
   600       // replacementTL is a right child
   601       parentTL->set_right(newTL);
   602     } else {                                // replacementTL is a left child
   603       assert(parentTL->left() == replacementTL, "should be left child");
   604       parentTL->set_left(newTL);
   605     }
   606     debug_only(replacementTL->clear_parent();)
   607     if (complicated_splice) {  // we need newTL to get replacementTL's
   608                               // two children
   609       assert(newTL != NULL &&
   610              newTL->left() == NULL && newTL->right() == NULL,
   611             "newTL should not have encumbrances from the past");
   612       // we'd like to assert as below:
   613       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   614       //       "else !complicated_splice");
   615       // ... however, the above assertion is too strong because we aren't
   616       // guaranteed that replacementTL->right() is still NULL.
   617       // Recall that we removed
   618       // the right sub-tree minimum from replacementTL.
   619       // That may well have been its right
   620       // child! So we'll just assert half of the above:
   621       assert(replacementTL->left() != NULL, "else !complicated_splice");
   622       newTL->set_left(replacementTL->left());
   623       newTL->set_right(replacementTL->right());
   624       debug_only(
   625         replacementTL->clear_right();
   626         replacementTL->clearLeft();
   627       )
   628     }
   629     assert(replacementTL->right() == NULL &&
   630            replacementTL->left() == NULL &&
   631            replacementTL->parent() == NULL,
   632         "delete without encumbrances");
   633   }
   635   assert(total_size() >= retTC->size(), "Incorrect total size");
   636   dec_total_size(retTC->size());     // size book-keeping
   637   assert(total_free_blocks() > 0, "Incorrect total count");
   638   set_total_free_blocks(total_free_blocks() - 1);
   640   assert(retTC != NULL, "null chunk?");
   641   assert(retTC->prev() == NULL && retTC->next() == NULL,
   642          "should return without encumbrances");
   643   if (FLSVerifyDictionary) {
   644     verify_tree();
   645   }
   646   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   647   return TreeChunk<Chunk>::as_TreeChunk(retTC);
   648 }
   650 // Remove the leftmost node (lm) in the tree and return it.
   651 // If lm has a right child, link it to the left node of
   652 // the parent of lm.
   653 template <class Chunk>
   654 TreeList<Chunk>* BinaryTreeDictionary<Chunk>::remove_tree_minimum(TreeList<Chunk>* tl) {
   655   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   656   // locate the subtree minimum by walking down left branches
   657   TreeList<Chunk>* curTL = tl;
   658   for (; curTL->left() != NULL; curTL = curTL->left());
   659   // obviously curTL now has at most one child, a right child
   660   if (curTL != root()) {  // Should this test just be removed?
   661     TreeList<Chunk>* parentTL = curTL->parent();
   662     if (parentTL->left() == curTL) { // curTL is a left child
   663       parentTL->set_left(curTL->right());
   664     } else {
   665       // If the list tl has no left child, then curTL may be
   666       // the right child of parentTL.
   667       assert(parentTL->right() == curTL, "should be a right child");
   668       parentTL->set_right(curTL->right());
   669     }
   670   } else {
   671     // The only use of this method would not pass the root of the
   672     // tree (as indicated by the assertion above that the tree list
   673     // has a parent) but the specification does not explicitly exclude the
   674     // passing of the root so accomodate it.
   675     set_root(NULL);
   676   }
   677   debug_only(
   678     curTL->clear_parent();  // Test if this needs to be cleared
   679     curTL->clear_right();    // recall, above, left child is already null
   680   )
   681   // we just excised a (non-root) node, we should still verify all tree invariants
   682   if (FLSVerifyDictionary) {
   683     verify_tree();
   684   }
   685   return curTL;
   686 }
   688 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
   689 // The simplifications are the following:
   690 // . we splay only when we delete (not when we insert)
   691 // . we apply a single spay step per deletion/access
   692 // By doing such partial splaying, we reduce the amount of restructuring,
   693 // while getting a reasonably efficient search tree (we think).
   694 // [Measurements will be needed to (in)validate this expectation.]
   696 template <class Chunk>
   697 void BinaryTreeDictionary<Chunk>::semi_splay_step(TreeList<Chunk>* tc) {
   698   // apply a semi-splay step at the given node:
   699   // . if root, norting needs to be done
   700   // . if child of root, splay once
   701   // . else zig-zig or sig-zag depending on path from grandparent
   702   if (root() == tc) return;
   703   warning("*** Splaying not yet implemented; "
   704           "tree operations may be inefficient ***");
   705 }
   707 template <class Chunk>
   708 void BinaryTreeDictionary<Chunk>::insert_chunk_in_tree(Chunk* fc) {
   709   TreeList<Chunk> *curTL, *prevTL;
   710   size_t size = fc->size();
   712   assert(size >= BinaryTreeDictionary<Chunk>::min_tree_chunk_size, "too small to be a TreeList<Chunk>");
   713   if (FLSVerifyDictionary) {
   714     verify_tree();
   715   }
   717   fc->clear_next();
   718   fc->link_prev(NULL);
   720   // work down from the _root, looking for insertion point
   721   for (prevTL = curTL = root(); curTL != NULL;) {
   722     if (curTL->size() == size)  // exact match
   723       break;
   724     prevTL = curTL;
   725     if (curTL->size() > size) { // follow left branch
   726       curTL = curTL->left();
   727     } else {                    // follow right branch
   728       assert(curTL->size() < size, "size inconsistency");
   729       curTL = curTL->right();
   730     }
   731   }
   732   TreeChunk<Chunk>* tc = TreeChunk<Chunk>::as_TreeChunk(fc);
   733   // This chunk is being returned to the binary tree.  Its embedded
   734   // TreeList<Chunk> should be unused at this point.
   735   tc->initialize();
   736   if (curTL != NULL) {          // exact match
   737     tc->set_list(curTL);
   738     curTL->return_chunk_at_tail(tc);
   739   } else {                     // need a new node in tree
   740     tc->clear_next();
   741     tc->link_prev(NULL);
   742     TreeList<Chunk>* newTL = TreeList<Chunk>::as_TreeList(tc);
   743     assert(((TreeChunk<Chunk>*)tc)->list() == newTL,
   744       "List was not initialized correctly");
   745     if (prevTL == NULL) {      // we are the only tree node
   746       assert(root() == NULL, "control point invariant");
   747       set_root(newTL);
   748     } else {                   // insert under prevTL ...
   749       if (prevTL->size() < size) {   // am right child
   750         assert(prevTL->right() == NULL, "control point invariant");
   751         prevTL->set_right(newTL);
   752       } else {                       // am left child
   753         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   754         prevTL->set_left(newTL);
   755       }
   756     }
   757   }
   758   assert(tc->list() != NULL, "Tree list should be set");
   760   inc_total_size(size);
   761   // Method 'total_size_in_tree' walks through the every block in the
   762   // tree, so it can cause significant performance loss if there are
   763   // many blocks in the tree
   764   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
   765   set_total_free_blocks(total_free_blocks() + 1);
   766   if (FLSVerifyDictionary) {
   767     verify_tree();
   768   }
   769 }
   771 template <class Chunk>
   772 size_t BinaryTreeDictionary<Chunk>::max_chunk_size() const {
   773   FreeBlockDictionary<Chunk>::verify_par_locked();
   774   TreeList<Chunk>* tc = root();
   775   if (tc == NULL) return 0;
   776   for (; tc->right() != NULL; tc = tc->right());
   777   return tc->size();
   778 }
   780 template <class Chunk>
   781 size_t BinaryTreeDictionary<Chunk>::total_list_length(TreeList<Chunk>* tl) const {
   782   size_t res;
   783   res = tl->count();
   784 #ifdef ASSERT
   785   size_t cnt;
   786   Chunk* tc = tl->head();
   787   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   788   assert(res == cnt, "The count is not being maintained correctly");
   789 #endif
   790   return res;
   791 }
   793 template <class Chunk>
   794 size_t BinaryTreeDictionary<Chunk>::total_size_in_tree(TreeList<Chunk>* tl) const {
   795   if (tl == NULL)
   796     return 0;
   797   return (tl->size() * total_list_length(tl)) +
   798          total_size_in_tree(tl->left())    +
   799          total_size_in_tree(tl->right());
   800 }
   802 template <class Chunk>
   803 double BinaryTreeDictionary<Chunk>::sum_of_squared_block_sizes(TreeList<Chunk>* const tl) const {
   804   if (tl == NULL) {
   805     return 0.0;
   806   }
   807   double size = (double)(tl->size());
   808   double curr = size * size * total_list_length(tl);
   809   curr += sum_of_squared_block_sizes(tl->left());
   810   curr += sum_of_squared_block_sizes(tl->right());
   811   return curr;
   812 }
   814 template <class Chunk>
   815 size_t BinaryTreeDictionary<Chunk>::total_free_blocks_in_tree(TreeList<Chunk>* tl) const {
   816   if (tl == NULL)
   817     return 0;
   818   return total_list_length(tl) +
   819          total_free_blocks_in_tree(tl->left()) +
   820          total_free_blocks_in_tree(tl->right());
   821 }
   823 template <class Chunk>
   824 size_t BinaryTreeDictionary<Chunk>::num_free_blocks() const {
   825   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
   826          "_total_free_blocks inconsistency");
   827   return total_free_blocks();
   828 }
   830 template <class Chunk>
   831 size_t BinaryTreeDictionary<Chunk>::tree_height_helper(TreeList<Chunk>* tl) const {
   832   if (tl == NULL)
   833     return 0;
   834   return 1 + MAX2(tree_height_helper(tl->left()),
   835                   tree_height_helper(tl->right()));
   836 }
   838 template <class Chunk>
   839 size_t BinaryTreeDictionary<Chunk>::treeHeight() const {
   840   return tree_height_helper(root());
   841 }
   843 template <class Chunk>
   844 size_t BinaryTreeDictionary<Chunk>::total_nodes_helper(TreeList<Chunk>* tl) const {
   845   if (tl == NULL) {
   846     return 0;
   847   }
   848   return 1 + total_nodes_helper(tl->left()) +
   849     total_nodes_helper(tl->right());
   850 }
   852 template <class Chunk>
   853 size_t BinaryTreeDictionary<Chunk>::total_nodes_in_tree(TreeList<Chunk>* tl) const {
   854   return total_nodes_helper(root());
   855 }
   857 template <class Chunk>
   858 void BinaryTreeDictionary<Chunk>::dict_census_udpate(size_t size, bool split, bool birth){
   859   TreeList<Chunk>* nd = find_list(size);
   860   if (nd) {
   861     if (split) {
   862       if (birth) {
   863         nd->increment_split_births();
   864         nd->increment_surplus();
   865       }  else {
   866         nd->increment_split_deaths();
   867         nd->decrement_surplus();
   868       }
   869     } else {
   870       if (birth) {
   871         nd->increment_coal_births();
   872         nd->increment_surplus();
   873       } else {
   874         nd->increment_coal_deaths();
   875         nd->decrement_surplus();
   876       }
   877     }
   878   }
   879   // A list for this size may not be found (nd == 0) if
   880   //   This is a death where the appropriate list is now
   881   //     empty and has been removed from the list.
   882   //   This is a birth associated with a LinAB.  The chunk
   883   //     for the LinAB is not in the dictionary.
   884 }
   886 template <class Chunk>
   887 bool BinaryTreeDictionary<Chunk>::coal_dict_over_populated(size_t size) {
   888   if (FLSAlwaysCoalesceLarge) return true;
   890   TreeList<Chunk>* list_of_size = find_list(size);
   891   // None of requested size implies overpopulated.
   892   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
   893          list_of_size->count() > list_of_size->coal_desired();
   894 }
   896 // Closures for walking the binary tree.
   897 //   do_list() walks the free list in a node applying the closure
   898 //     to each free chunk in the list
   899 //   do_tree() walks the nodes in the binary tree applying do_list()
   900 //     to each list at each node.
   902 template <class Chunk>
   903 class TreeCensusClosure : public StackObj {
   904  protected:
   905   virtual void do_list(FreeList<Chunk>* fl) = 0;
   906  public:
   907   virtual void do_tree(TreeList<Chunk>* tl) = 0;
   908 };
   910 template <class Chunk>
   911 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk> {
   912   using TreeCensusClosure<Chunk>::do_list;
   913  public:
   914   void do_tree(TreeList<Chunk>* tl) {
   915     if (tl != NULL) {
   916       do_tree(tl->left());
   917       do_list(tl);
   918       do_tree(tl->right());
   919     }
   920   }
   921 };
   923 template <class Chunk>
   924 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk> {
   925   using TreeCensusClosure<Chunk>::do_list;
   926  public:
   927   void do_tree(TreeList<Chunk>* tl) {
   928     if (tl != NULL) {
   929       do_tree(tl->right());
   930       do_list(tl);
   931       do_tree(tl->left());
   932     }
   933   }
   934 };
   936 // For each list in the tree, calculate the desired, desired
   937 // coalesce, count before sweep, and surplus before sweep.
   938 template <class Chunk>
   939 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk> {
   940   double _percentage;
   941   float _inter_sweep_current;
   942   float _inter_sweep_estimate;
   943   float _intra_sweep_estimate;
   945  public:
   946   BeginSweepClosure(double p, float inter_sweep_current,
   947                               float inter_sweep_estimate,
   948                               float intra_sweep_estimate) :
   949    _percentage(p),
   950    _inter_sweep_current(inter_sweep_current),
   951    _inter_sweep_estimate(inter_sweep_estimate),
   952    _intra_sweep_estimate(intra_sweep_estimate) { }
   954   void do_list(FreeList<Chunk>* fl) {
   955     double coalSurplusPercent = _percentage;
   956     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
   957     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   958     fl->set_before_sweep(fl->count());
   959     fl->set_bfr_surp(fl->surplus());
   960   }
   961 };
   963 // Used to search the tree until a condition is met.
   964 // Similar to TreeCensusClosure but searches the
   965 // tree and returns promptly when found.
   967 template <class Chunk>
   968 class TreeSearchClosure : public StackObj {
   969  protected:
   970   virtual bool do_list(FreeList<Chunk>* fl) = 0;
   971  public:
   972   virtual bool do_tree(TreeList<Chunk>* tl) = 0;
   973 };
   975 #if 0 //  Don't need this yet but here for symmetry.
   976 template <class Chunk>
   977 class AscendTreeSearchClosure : public TreeSearchClosure {
   978  public:
   979   bool do_tree(TreeList<Chunk>* tl) {
   980     if (tl != NULL) {
   981       if (do_tree(tl->left())) return true;
   982       if (do_list(tl)) return true;
   983       if (do_tree(tl->right())) return true;
   984     }
   985     return false;
   986   }
   987 };
   988 #endif
   990 template <class Chunk>
   991 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk> {
   992   using TreeSearchClosure<Chunk>::do_list;
   993  public:
   994   bool do_tree(TreeList<Chunk>* tl) {
   995     if (tl != NULL) {
   996       if (do_tree(tl->right())) return true;
   997       if (do_list(tl)) return true;
   998       if (do_tree(tl->left())) return true;
   999     }
  1000     return false;
  1002 };
  1004 // Searches the tree for a chunk that ends at the
  1005 // specified address.
  1006 template <class Chunk>
  1007 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk> {
  1008   HeapWord* _target;
  1009   Chunk* _found;
  1011  public:
  1012   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  1013   bool do_list(FreeList<Chunk>* fl) {
  1014     Chunk* item = fl->head();
  1015     while (item != NULL) {
  1016       if (item->end() == _target) {
  1017         _found = item;
  1018         return true;
  1020       item = item->next();
  1022     return false;
  1024   Chunk* found() { return _found; }
  1025 };
  1027 template <class Chunk>
  1028 Chunk* BinaryTreeDictionary<Chunk>::find_chunk_ends_at(HeapWord* target) const {
  1029   EndTreeSearchClosure<Chunk> etsc(target);
  1030   bool found_target = etsc.do_tree(root());
  1031   assert(found_target || etsc.found() == NULL, "Consistency check");
  1032   assert(!found_target || etsc.found() != NULL, "Consistency check");
  1033   return etsc.found();
  1036 template <class Chunk>
  1037 void BinaryTreeDictionary<Chunk>::begin_sweep_dict_census(double coalSurplusPercent,
  1038   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
  1039   BeginSweepClosure<Chunk> bsc(coalSurplusPercent, inter_sweep_current,
  1040                                             inter_sweep_estimate,
  1041                                             intra_sweep_estimate);
  1042   bsc.do_tree(root());
  1045 // Closures and methods for calculating total bytes returned to the
  1046 // free lists in the tree.
  1047 #ifndef PRODUCT
  1048 template <class Chunk>
  1049 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
  1050    public:
  1051   void do_list(FreeList<Chunk>* fl) {
  1052     fl->set_returned_bytes(0);
  1054 };
  1056 template <class Chunk>
  1057 void BinaryTreeDictionary<Chunk>::initialize_dict_returned_bytes() {
  1058   InitializeDictReturnedBytesClosure<Chunk> idrb;
  1059   idrb.do_tree(root());
  1062 template <class Chunk>
  1063 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk> {
  1064   size_t _dict_returned_bytes;
  1065  public:
  1066   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
  1067   void do_list(FreeList<Chunk>* fl) {
  1068     _dict_returned_bytes += fl->returned_bytes();
  1070   size_t dict_returned_bytes() { return _dict_returned_bytes; }
  1071 };
  1073 template <class Chunk>
  1074 size_t BinaryTreeDictionary<Chunk>::sum_dict_returned_bytes() {
  1075   ReturnedBytesClosure<Chunk> rbc;
  1076   rbc.do_tree(root());
  1078   return rbc.dict_returned_bytes();
  1081 // Count the number of entries in the tree.
  1082 template <class Chunk>
  1083 class treeCountClosure : public DescendTreeCensusClosure<Chunk> {
  1084  public:
  1085   uint count;
  1086   treeCountClosure(uint c) { count = c; }
  1087   void do_list(FreeList<Chunk>* fl) {
  1088     count++;
  1090 };
  1092 template <class Chunk>
  1093 size_t BinaryTreeDictionary<Chunk>::total_count() {
  1094   treeCountClosure<Chunk> ctc(0);
  1095   ctc.do_tree(root());
  1096   return ctc.count;
  1098 #endif // PRODUCT
  1100 // Calculate surpluses for the lists in the tree.
  1101 template <class Chunk>
  1102 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk> {
  1103   double percentage;
  1104  public:
  1105   setTreeSurplusClosure(double v) { percentage = v; }
  1106   void do_list(FreeList<Chunk>* fl) {
  1107     double splitSurplusPercent = percentage;
  1108     fl->set_surplus(fl->count() -
  1109                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
  1111 };
  1113 template <class Chunk>
  1114 void BinaryTreeDictionary<Chunk>::set_tree_surplus(double splitSurplusPercent) {
  1115   setTreeSurplusClosure<Chunk> sts(splitSurplusPercent);
  1116   sts.do_tree(root());
  1119 // Set hints for the lists in the tree.
  1120 template <class Chunk>
  1121 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk> {
  1122   size_t hint;
  1123  public:
  1124   setTreeHintsClosure(size_t v) { hint = v; }
  1125   void do_list(FreeList<Chunk>* fl) {
  1126     fl->set_hint(hint);
  1127     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1128       "Current hint is inconsistent");
  1129     if (fl->surplus() > 0) {
  1130       hint = fl->size();
  1133 };
  1135 template <class Chunk>
  1136 void BinaryTreeDictionary<Chunk>::set_tree_hints(void) {
  1137   setTreeHintsClosure<Chunk> sth(0);
  1138   sth.do_tree(root());
  1141 // Save count before previous sweep and splits and coalesces.
  1142 template <class Chunk>
  1143 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
  1144   void do_list(FreeList<Chunk>* fl) {
  1145     fl->set_prev_sweep(fl->count());
  1146     fl->set_coal_births(0);
  1147     fl->set_coal_deaths(0);
  1148     fl->set_split_births(0);
  1149     fl->set_split_deaths(0);
  1151 };
  1153 template <class Chunk>
  1154 void BinaryTreeDictionary<Chunk>::clear_tree_census(void) {
  1155   clearTreeCensusClosure<Chunk> ctc;
  1156   ctc.do_tree(root());
  1159 // Do reporting and post sweep clean up.
  1160 template <class Chunk>
  1161 void BinaryTreeDictionary<Chunk>::end_sweep_dict_census(double splitSurplusPercent) {
  1162   // Does walking the tree 3 times hurt?
  1163   set_tree_surplus(splitSurplusPercent);
  1164   set_tree_hints();
  1165   if (PrintGC && Verbose) {
  1166     report_statistics();
  1168   clear_tree_census();
  1171 // Print summary statistics
  1172 template <class Chunk>
  1173 void BinaryTreeDictionary<Chunk>::report_statistics() const {
  1174   FreeBlockDictionary<Chunk>::verify_par_locked();
  1175   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1176          "------------------------------------\n");
  1177   size_t total_size = total_chunk_size(debug_only(NULL));
  1178   size_t    free_blocks = num_free_blocks();
  1179   gclog_or_tty->print("Total Free Space: %d\n", total_size);
  1180   gclog_or_tty->print("Max   Chunk Size: %d\n", max_chunk_size());
  1181   gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
  1182   if (free_blocks > 0) {
  1183     gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
  1185   gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
  1188 // Print census information - counts, births, deaths, etc.
  1189 // for each list in the tree.  Also print some summary
  1190 // information.
  1191 template <class Chunk>
  1192 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk> {
  1193   int _print_line;
  1194   size_t _total_free;
  1195   FreeList<Chunk> _total;
  1197  public:
  1198   PrintTreeCensusClosure() {
  1199     _print_line = 0;
  1200     _total_free = 0;
  1202   FreeList<Chunk>* total() { return &_total; }
  1203   size_t total_free() { return _total_free; }
  1204   void do_list(FreeList<Chunk>* fl) {
  1205     if (++_print_line >= 40) {
  1206       FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
  1207       _print_line = 0;
  1209     fl->print_on(gclog_or_tty);
  1210     _total_free +=            fl->count()            * fl->size()        ;
  1211     total()->set_count(      total()->count()       + fl->count()      );
  1212     total()->set_bfr_surp(    total()->bfr_surp()     + fl->bfr_surp()    );
  1213     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
  1214     total()->set_desired(    total()->desired()     + fl->desired()    );
  1215     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
  1216     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
  1217     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
  1218     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
  1219     total()->set_split_births(total()->split_births() + fl->split_births());
  1220     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
  1222 };
  1224 template <class Chunk>
  1225 void BinaryTreeDictionary<Chunk>::print_dict_census(void) const {
  1227   gclog_or_tty->print("\nBinaryTree\n");
  1228   FreeList<Chunk>::print_labels_on(gclog_or_tty, "size");
  1229   PrintTreeCensusClosure<Chunk> ptc;
  1230   ptc.do_tree(root());
  1232   FreeList<Chunk>* total = ptc.total();
  1233   FreeList<Chunk>::print_labels_on(gclog_or_tty, " ");
  1234   total->print_on(gclog_or_tty, "TOTAL\t");
  1235   gclog_or_tty->print(
  1236               "total_free(words): " SIZE_FORMAT_W(16)
  1237               " growth: %8.5f  deficit: %8.5f\n",
  1238               ptc.total_free(),
  1239               (double)(total->split_births() + total->coal_births()
  1240                      - total->split_deaths() - total->coal_deaths())
  1241               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
  1242              (double)(total->desired() - total->count())
  1243              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1246 template <class Chunk>
  1247 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk> {
  1248   outputStream* _st;
  1249   int _print_line;
  1251  public:
  1252   PrintFreeListsClosure(outputStream* st) {
  1253     _st = st;
  1254     _print_line = 0;
  1256   void do_list(FreeList<Chunk>* fl) {
  1257     if (++_print_line >= 40) {
  1258       FreeList<Chunk>::print_labels_on(_st, "size");
  1259       _print_line = 0;
  1261     fl->print_on(gclog_or_tty);
  1262     size_t sz = fl->size();
  1263     for (Chunk* fc = fl->head(); fc != NULL;
  1264          fc = fc->next()) {
  1265       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
  1266                     fc, (HeapWord*)fc + sz,
  1267                     fc->cantCoalesce() ? "\t CC" : "");
  1270 };
  1272 template <class Chunk>
  1273 void BinaryTreeDictionary<Chunk>::print_free_lists(outputStream* st) const {
  1275   FreeList<Chunk>::print_labels_on(st, "size");
  1276   PrintFreeListsClosure<Chunk> pflc(st);
  1277   pflc.do_tree(root());
  1280 // Verify the following tree invariants:
  1281 // . _root has no parent
  1282 // . parent and child point to each other
  1283 // . each node's key correctly related to that of its child(ren)
  1284 template <class Chunk>
  1285 void BinaryTreeDictionary<Chunk>::verify_tree() const {
  1286   guarantee(root() == NULL || total_free_blocks() == 0 ||
  1287     total_size() != 0, "_total_size should't be 0?");
  1288   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1289   verify_tree_helper(root());
  1292 template <class Chunk>
  1293 size_t BinaryTreeDictionary<Chunk>::verify_prev_free_ptrs(TreeList<Chunk>* tl) {
  1294   size_t ct = 0;
  1295   for (Chunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1296     ct++;
  1297     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
  1298       "Chunk should be free");
  1300   return ct;
  1303 // Note: this helper is recursive rather than iterative, so use with
  1304 // caution on very deep trees; and watch out for stack overflow errors;
  1305 // In general, to be used only for debugging.
  1306 template <class Chunk>
  1307 void BinaryTreeDictionary<Chunk>::verify_tree_helper(TreeList<Chunk>* tl) const {
  1308   if (tl == NULL)
  1309     return;
  1310   guarantee(tl->size() != 0, "A list must has a size");
  1311   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1312          "parent<-/->left");
  1313   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1314          "parent<-/->right");;
  1315   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1316          "parent !> left");
  1317   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1318          "parent !< left");
  1319   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
  1320   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1321     "list inconsistency");
  1322   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1323     "list count is inconsistent");
  1324   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1325     "list is incorrectly constructed");
  1326   size_t count = verify_prev_free_ptrs(tl);
  1327   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1328   if (tl->head() != NULL) {
  1329     tl->head_as_TreeChunk()->verify_tree_chunk_list();
  1331   verify_tree_helper(tl->left());
  1332   verify_tree_helper(tl->right());
  1335 template <class Chunk>
  1336 void BinaryTreeDictionary<Chunk>::verify() const {
  1337   verify_tree();
  1338   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
  1341 #ifndef SERIALGC
  1342 // Explicitly instantiate these types for FreeChunk.
  1343 template class BinaryTreeDictionary<FreeChunk>;
  1344 template class TreeChunk<FreeChunk>;
  1345 template class TreeList<FreeChunk>;
  1346 #endif // SERIALGC

mercurial