src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Mon, 19 Aug 2019 10:11:31 +0200

author
neugens
date
Mon, 19 Aug 2019 10:11:31 +0200
changeset 9861
a248d0be1309
parent 9858
b985cbb00e68
child 9896
1b8c45b8216a
permissions
-rw-r--r--

8229401: Fix JFR code cache test failures
8223689: Add JFR Thread Sampling Support
8223690: Add JFR BiasedLock Event Support
8223691: Add JFR G1 Region Type Change Event Support
8223692: Add JFR G1 Heap Summary Event Support
Summary: Backport JFR from JDK11, additional fixes
Reviewed-by: neugens, apetushkov
Contributed-by: denghui.ddh@alibaba-inc.com

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1Allocator.hpp"
    30 #include "gc_implementation/g1/g1MMUTracker.hpp"
    31 #include "memory/collectorPolicy.hpp"
    33 // A G1CollectorPolicy makes policy decisions that determine the
    34 // characteristics of the collector.  Examples include:
    35 //   * choice of collection set.
    36 //   * when to collect.
    38 class HeapRegion;
    39 class CollectionSetChooser;
    40 class G1GCPhaseTimes;
    42 // TraceGen0Time collects data on _both_ young and mixed evacuation pauses
    43 // (the latter may contain non-young regions - i.e. regions that are
    44 // technically in Gen1) while TraceGen1Time collects data about full GCs.
    45 class TraceGen0TimeData : public CHeapObj<mtGC> {
    46  private:
    47   unsigned  _young_pause_num;
    48   unsigned  _mixed_pause_num;
    50   NumberSeq _all_stop_world_times_ms;
    51   NumberSeq _all_yield_times_ms;
    53   NumberSeq _total;
    54   NumberSeq _other;
    55   NumberSeq _root_region_scan_wait;
    56   NumberSeq _parallel;
    57   NumberSeq _ext_root_scan;
    58   NumberSeq _satb_filtering;
    59   NumberSeq _update_rs;
    60   NumberSeq _scan_rs;
    61   NumberSeq _obj_copy;
    62   NumberSeq _termination;
    63   NumberSeq _parallel_other;
    64   NumberSeq _clear_ct;
    66   void print_summary(const char* str, const NumberSeq* seq) const;
    67   void print_summary_sd(const char* str, const NumberSeq* seq) const;
    69 public:
    70    TraceGen0TimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
    71   void record_start_collection(double time_to_stop_the_world_ms);
    72   void record_yield_time(double yield_time_ms);
    73   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
    74   void increment_young_collection_count();
    75   void increment_mixed_collection_count();
    76   void print() const;
    77 };
    79 class TraceGen1TimeData : public CHeapObj<mtGC> {
    80  private:
    81   NumberSeq _all_full_gc_times;
    83  public:
    84   void record_full_collection(double full_gc_time_ms);
    85   void print() const;
    86 };
    88 // There are three command line options related to the young gen size:
    89 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
    90 // just a short form for NewSize==MaxNewSize). G1 will use its internal
    91 // heuristics to calculate the actual young gen size, so these options
    92 // basically only limit the range within which G1 can pick a young gen
    93 // size. Also, these are general options taking byte sizes. G1 will
    94 // internally work with a number of regions instead. So, some rounding
    95 // will occur.
    96 //
    97 // If nothing related to the the young gen size is set on the command
    98 // line we should allow the young gen to be between G1NewSizePercent
    99 // and G1MaxNewSizePercent of the heap size. This means that every time
   100 // the heap size changes, the limits for the young gen size will be
   101 // recalculated.
   102 //
   103 // If only -XX:NewSize is set we should use the specified value as the
   104 // minimum size for young gen. Still using G1MaxNewSizePercent of the
   105 // heap as maximum.
   106 //
   107 // If only -XX:MaxNewSize is set we should use the specified value as the
   108 // maximum size for young gen. Still using G1NewSizePercent of the heap
   109 // as minimum.
   110 //
   111 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
   112 // No updates when the heap size changes. There is a special case when
   113 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
   114 // different heuristic for calculating the collection set when we do mixed
   115 // collection.
   116 //
   117 // If only -XX:NewRatio is set we should use the specified ratio of the heap
   118 // as both min and max. This will be interpreted as "fixed" just like the
   119 // NewSize==MaxNewSize case above. But we will update the min and max
   120 // everytime the heap size changes.
   121 //
   122 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
   123 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
   124 class G1YoungGenSizer : public CHeapObj<mtGC> {
   125 private:
   126   enum SizerKind {
   127     SizerDefaults,
   128     SizerNewSizeOnly,
   129     SizerMaxNewSizeOnly,
   130     SizerMaxAndNewSize,
   131     SizerNewRatio
   132   };
   133   SizerKind _sizer_kind;
   134   uint _min_desired_young_length;
   135   uint _max_desired_young_length;
   136   bool _adaptive_size;
   137   uint calculate_default_min_length(uint new_number_of_heap_regions);
   138   uint calculate_default_max_length(uint new_number_of_heap_regions);
   140   // Update the given values for minimum and maximum young gen length in regions
   141   // given the number of heap regions depending on the kind of sizing algorithm.
   142   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
   144 public:
   145   G1YoungGenSizer();
   146   // Calculate the maximum length of the young gen given the number of regions
   147   // depending on the sizing algorithm.
   148   uint max_young_length(uint number_of_heap_regions);
   150   void heap_size_changed(uint new_number_of_heap_regions);
   151   uint min_desired_young_length() {
   152     return _min_desired_young_length;
   153   }
   154   uint max_desired_young_length() {
   155     return _max_desired_young_length;
   156   }
   157   bool adaptive_young_list_length() {
   158     return _adaptive_size;
   159   }
   160 };
   162 class G1CollectorPolicy: public CollectorPolicy {
   163 private:
   164   // either equal to the number of parallel threads, if ParallelGCThreads
   165   // has been set, or 1 otherwise
   166   int _parallel_gc_threads;
   168   // The number of GC threads currently active.
   169   uintx _no_of_gc_threads;
   171   enum SomePrivateConstants {
   172     NumPrevPausesForHeuristics = 10
   173   };
   175   G1MMUTracker* _mmu_tracker;
   177   void initialize_alignments();
   178   void initialize_flags();
   180   CollectionSetChooser* _collectionSetChooser;
   182   double _full_collection_start_sec;
   183   uint   _cur_collection_pause_used_regions_at_start;
   185   // These exclude marking times.
   186   TruncatedSeq* _recent_gc_times_ms;
   188   TruncatedSeq* _concurrent_mark_remark_times_ms;
   189   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   191   TraceGen0TimeData _trace_gen0_time_data;
   192   TraceGen1TimeData _trace_gen1_time_data;
   194   double _stop_world_start;
   196   // indicates whether we are in young or mixed GC mode
   197   bool _gcs_are_young;
   199   uint _young_list_target_length;
   200   uint _young_list_fixed_length;
   202   // The max number of regions we can extend the eden by while the GC
   203   // locker is active. This should be >= _young_list_target_length;
   204   uint _young_list_max_length;
   206   bool                  _last_gc_was_young;
   208   bool                  _during_marking;
   209   bool                  _in_marking_window;
   210   bool                  _in_marking_window_im;
   212   SurvRateGroup*        _short_lived_surv_rate_group;
   213   SurvRateGroup*        _survivor_surv_rate_group;
   214   // add here any more surv rate groups
   216   double                _gc_overhead_perc;
   218   double _reserve_factor;
   219   uint _reserve_regions;
   221   bool during_marking() {
   222     return _during_marking;
   223   }
   225   enum PredictionConstants {
   226     TruncatedSeqLength = 10
   227   };
   229   TruncatedSeq* _alloc_rate_ms_seq;
   230   double        _prev_collection_pause_end_ms;
   232   TruncatedSeq* _rs_length_diff_seq;
   233   TruncatedSeq* _cost_per_card_ms_seq;
   234   TruncatedSeq* _young_cards_per_entry_ratio_seq;
   235   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
   236   TruncatedSeq* _cost_per_entry_ms_seq;
   237   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
   238   TruncatedSeq* _cost_per_byte_ms_seq;
   239   TruncatedSeq* _constant_other_time_ms_seq;
   240   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   241   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   243   TruncatedSeq* _pending_cards_seq;
   244   TruncatedSeq* _rs_lengths_seq;
   246   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   248   G1YoungGenSizer* _young_gen_sizer;
   250   uint _eden_cset_region_length;
   251   uint _survivor_cset_region_length;
   252   uint _old_cset_region_length;
   254   void init_cset_region_lengths(uint eden_cset_region_length,
   255                                 uint survivor_cset_region_length);
   257   uint eden_cset_region_length()     { return _eden_cset_region_length;     }
   258   uint survivor_cset_region_length() { return _survivor_cset_region_length; }
   259   uint old_cset_region_length()      { return _old_cset_region_length;      }
   261   uint _free_regions_at_end_of_collection;
   263   size_t _recorded_rs_lengths;
   264   size_t _max_rs_lengths;
   265   double _sigma;
   267   size_t _rs_lengths_prediction;
   269   double sigma() { return _sigma; }
   271   // A function that prevents us putting too much stock in small sample
   272   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   273   // of samples.  5 or more samples yields one; fewer scales linearly from
   274   // 2.0 at 1 sample to 1.0 at 5.
   275   double confidence_factor(int samples) {
   276     if (samples > 4) return 1.0;
   277     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   278   }
   280   double get_new_neg_prediction(TruncatedSeq* seq) {
   281     return seq->davg() - sigma() * seq->dsd();
   282   }
   284 #ifndef PRODUCT
   285   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   286 #endif // PRODUCT
   288   void adjust_concurrent_refinement(double update_rs_time,
   289                                     double update_rs_processed_buffers,
   290                                     double goal_ms);
   292   uintx no_of_gc_threads() { return _no_of_gc_threads; }
   293   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
   295   double _pause_time_target_ms;
   297   size_t _pending_cards;
   299 public:
   300   // Accessors
   302   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
   303     hr->set_eden();
   304     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   305     hr->set_young_index_in_cset(young_index_in_cset);
   306   }
   308   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
   309     assert(hr->is_survivor(), "pre-condition");
   310     hr->install_surv_rate_group(_survivor_surv_rate_group);
   311     hr->set_young_index_in_cset(young_index_in_cset);
   312   }
   314 #ifndef PRODUCT
   315   bool verify_young_ages();
   316 #endif // PRODUCT
   318   double get_new_prediction(TruncatedSeq* seq) {
   319     return MAX2(seq->davg() + sigma() * seq->dsd(),
   320                 seq->davg() * confidence_factor(seq->num()));
   321   }
   323   void record_max_rs_lengths(size_t rs_lengths) {
   324     _max_rs_lengths = rs_lengths;
   325   }
   327   size_t predict_rs_length_diff() {
   328     return (size_t) get_new_prediction(_rs_length_diff_seq);
   329   }
   331   double predict_alloc_rate_ms() {
   332     return get_new_prediction(_alloc_rate_ms_seq);
   333   }
   335   double predict_cost_per_card_ms() {
   336     return get_new_prediction(_cost_per_card_ms_seq);
   337   }
   339   double predict_rs_update_time_ms(size_t pending_cards) {
   340     return (double) pending_cards * predict_cost_per_card_ms();
   341   }
   343   double predict_young_cards_per_entry_ratio() {
   344     return get_new_prediction(_young_cards_per_entry_ratio_seq);
   345   }
   347   double predict_mixed_cards_per_entry_ratio() {
   348     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
   349       return predict_young_cards_per_entry_ratio();
   350     } else {
   351       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
   352     }
   353   }
   355   size_t predict_young_card_num(size_t rs_length) {
   356     return (size_t) ((double) rs_length *
   357                      predict_young_cards_per_entry_ratio());
   358   }
   360   size_t predict_non_young_card_num(size_t rs_length) {
   361     return (size_t) ((double) rs_length *
   362                      predict_mixed_cards_per_entry_ratio());
   363   }
   365   double predict_rs_scan_time_ms(size_t card_num) {
   366     if (gcs_are_young()) {
   367       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   368     } else {
   369       return predict_mixed_rs_scan_time_ms(card_num);
   370     }
   371   }
   373   double predict_mixed_rs_scan_time_ms(size_t card_num) {
   374     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
   375       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   376     } else {
   377       return (double) (card_num *
   378                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
   379     }
   380   }
   382   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   383     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
   384       return (1.1 * (double) bytes_to_copy) *
   385               get_new_prediction(_cost_per_byte_ms_seq);
   386     } else {
   387       return (double) bytes_to_copy *
   388              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   389     }
   390   }
   392   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   393     if (_in_marking_window && !_in_marking_window_im) {
   394       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   395     } else {
   396       return (double) bytes_to_copy *
   397               get_new_prediction(_cost_per_byte_ms_seq);
   398     }
   399   }
   401   double predict_constant_other_time_ms() {
   402     return get_new_prediction(_constant_other_time_ms_seq);
   403   }
   405   double predict_young_other_time_ms(size_t young_num) {
   406     return (double) young_num *
   407            get_new_prediction(_young_other_cost_per_region_ms_seq);
   408   }
   410   double predict_non_young_other_time_ms(size_t non_young_num) {
   411     return (double) non_young_num *
   412            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   413   }
   415   double predict_base_elapsed_time_ms(size_t pending_cards);
   416   double predict_base_elapsed_time_ms(size_t pending_cards,
   417                                       size_t scanned_cards);
   418   size_t predict_bytes_to_copy(HeapRegion* hr);
   419   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc);
   421   void set_recorded_rs_lengths(size_t rs_lengths);
   423   uint cset_region_length()       { return young_cset_region_length() +
   424                                            old_cset_region_length(); }
   425   uint young_cset_region_length() { return eden_cset_region_length() +
   426                                            survivor_cset_region_length(); }
   428   double predict_survivor_regions_evac_time();
   430   void cset_regions_freed() {
   431     bool propagate = _last_gc_was_young && !_in_marking_window;
   432     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   433     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   434     // also call it on any more surv rate groups
   435   }
   437   G1MMUTracker* mmu_tracker() {
   438     return _mmu_tracker;
   439   }
   441   double max_pause_time_ms() {
   442     return _mmu_tracker->max_gc_time() * 1000.0;
   443   }
   445   double predict_remark_time_ms() {
   446     return get_new_prediction(_concurrent_mark_remark_times_ms);
   447   }
   449   double predict_cleanup_time_ms() {
   450     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   451   }
   453   // Returns an estimate of the survival rate of the region at yg-age
   454   // "yg_age".
   455   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   456     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   457     if (seq->num() == 0)
   458       gclog_or_tty->print("BARF! age is %d", age);
   459     guarantee( seq->num() > 0, "invariant" );
   460     double pred = get_new_prediction(seq);
   461     if (pred > 1.0)
   462       pred = 1.0;
   463     return pred;
   464   }
   466   double predict_yg_surv_rate(int age) {
   467     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   468   }
   470   double accum_yg_surv_rate_pred(int age) {
   471     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   472   }
   474 private:
   475   // Statistics kept per GC stoppage, pause or full.
   476   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   478   // Add a new GC of the given duration and end time to the record.
   479   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   481   // The head of the list (via "next_in_collection_set()") representing the
   482   // current collection set. Set from the incrementally built collection
   483   // set at the start of the pause.
   484   HeapRegion* _collection_set;
   486   // The number of bytes in the collection set before the pause. Set from
   487   // the incrementally built collection set at the start of an evacuation
   488   // pause, and incremented in finalize_cset() when adding old regions
   489   // (if any) to the collection set.
   490   size_t _collection_set_bytes_used_before;
   492   // The number of bytes copied during the GC.
   493   size_t _bytes_copied_during_gc;
   495   // The associated information that is maintained while the incremental
   496   // collection set is being built with young regions. Used to populate
   497   // the recorded info for the evacuation pause.
   499   enum CSetBuildType {
   500     Active,             // We are actively building the collection set
   501     Inactive            // We are not actively building the collection set
   502   };
   504   CSetBuildType _inc_cset_build_state;
   506   // The head of the incrementally built collection set.
   507   HeapRegion* _inc_cset_head;
   509   // The tail of the incrementally built collection set.
   510   HeapRegion* _inc_cset_tail;
   512   // The number of bytes in the incrementally built collection set.
   513   // Used to set _collection_set_bytes_used_before at the start of
   514   // an evacuation pause.
   515   size_t _inc_cset_bytes_used_before;
   517   // Used to record the highest end of heap region in collection set
   518   HeapWord* _inc_cset_max_finger;
   520   // The RSet lengths recorded for regions in the CSet. It is updated
   521   // by the thread that adds a new region to the CSet. We assume that
   522   // only one thread can be allocating a new CSet region (currently,
   523   // it does so after taking the Heap_lock) hence no need to
   524   // synchronize updates to this field.
   525   size_t _inc_cset_recorded_rs_lengths;
   527   // A concurrent refinement thread periodcially samples the young
   528   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
   529   // the RSets grow. Instead of having to syncronize updates to that
   530   // field we accumulate them in this field and add it to
   531   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
   532   ssize_t _inc_cset_recorded_rs_lengths_diffs;
   534   // The predicted elapsed time it will take to collect the regions in
   535   // the CSet. This is updated by the thread that adds a new region to
   536   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
   537   // MT-safety assumptions.
   538   double _inc_cset_predicted_elapsed_time_ms;
   540   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
   541   double _inc_cset_predicted_elapsed_time_ms_diffs;
   543   // Stash a pointer to the g1 heap.
   544   G1CollectedHeap* _g1;
   546   G1GCPhaseTimes* _phase_times;
   548   // The ratio of gc time to elapsed time, computed over recent pauses.
   549   double _recent_avg_pause_time_ratio;
   551   double recent_avg_pause_time_ratio() {
   552     return _recent_avg_pause_time_ratio;
   553   }
   555   // At the end of a pause we check the heap occupancy and we decide
   556   // whether we will start a marking cycle during the next pause. If
   557   // we decide that we want to do that, we will set this parameter to
   558   // true. So, this parameter will stay true between the end of a
   559   // pause and the beginning of a subsequent pause (not necessarily
   560   // the next one, see the comments on the next field) when we decide
   561   // that we will indeed start a marking cycle and do the initial-mark
   562   // work.
   563   volatile bool _initiate_conc_mark_if_possible;
   565   // If initiate_conc_mark_if_possible() is set at the beginning of a
   566   // pause, it is a suggestion that the pause should start a marking
   567   // cycle by doing the initial-mark work. However, it is possible
   568   // that the concurrent marking thread is still finishing up the
   569   // previous marking cycle (e.g., clearing the next marking
   570   // bitmap). If that is the case we cannot start a new cycle and
   571   // we'll have to wait for the concurrent marking thread to finish
   572   // what it is doing. In this case we will postpone the marking cycle
   573   // initiation decision for the next pause. When we eventually decide
   574   // to start a cycle, we will set _during_initial_mark_pause which
   575   // will stay true until the end of the initial-mark pause and it's
   576   // the condition that indicates that a pause is doing the
   577   // initial-mark work.
   578   volatile bool _during_initial_mark_pause;
   580   bool _last_young_gc;
   582   // This set of variables tracks the collector efficiency, in order to
   583   // determine whether we should initiate a new marking.
   584   double _cur_mark_stop_world_time_ms;
   585   double _mark_remark_start_sec;
   586   double _mark_cleanup_start_sec;
   588   // Update the young list target length either by setting it to the
   589   // desired fixed value or by calculating it using G1's pause
   590   // prediction model. If no rs_lengths parameter is passed, predict
   591   // the RS lengths using the prediction model, otherwise use the
   592   // given rs_lengths as the prediction.
   593   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   595   // Calculate and return the minimum desired young list target
   596   // length. This is the minimum desired young list length according
   597   // to the user's inputs.
   598   uint calculate_young_list_desired_min_length(uint base_min_length);
   600   // Calculate and return the maximum desired young list target
   601   // length. This is the maximum desired young list length according
   602   // to the user's inputs.
   603   uint calculate_young_list_desired_max_length();
   605   // Calculate and return the maximum young list target length that
   606   // can fit into the pause time goal. The parameters are: rs_lengths
   607   // represent the prediction of how large the young RSet lengths will
   608   // be, base_min_length is the alreay existing number of regions in
   609   // the young list, min_length and max_length are the desired min and
   610   // max young list length according to the user's inputs.
   611   uint calculate_young_list_target_length(size_t rs_lengths,
   612                                           uint base_min_length,
   613                                           uint desired_min_length,
   614                                           uint desired_max_length);
   616   // Check whether a given young length (young_length) fits into the
   617   // given target pause time and whether the prediction for the amount
   618   // of objects to be copied for the given length will fit into the
   619   // given free space (expressed by base_free_regions).  It is used by
   620   // calculate_young_list_target_length().
   621   bool predict_will_fit(uint young_length, double base_time_ms,
   622                         uint base_free_regions, double target_pause_time_ms);
   624   // Calculate the minimum number of old regions we'll add to the CSet
   625   // during a mixed GC.
   626   uint calc_min_old_cset_length();
   628   // Calculate the maximum number of old regions we'll add to the CSet
   629   // during a mixed GC.
   630   uint calc_max_old_cset_length();
   632   // Returns the given amount of uncollected reclaimable space
   633   // as a percentage of the current heap capacity.
   634   double reclaimable_bytes_perc(size_t reclaimable_bytes);
   636 public:
   638   G1CollectorPolicy();
   640   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   642   virtual CollectorPolicy::Name kind() {
   643     return CollectorPolicy::G1CollectorPolicyKind;
   644   }
   646   G1GCPhaseTimes* phase_times() const { return _phase_times; }
   648   // Check the current value of the young list RSet lengths and
   649   // compare it against the last prediction. If the current value is
   650   // higher, recalculate the young list target length prediction.
   651   void revise_young_list_target_length_if_necessary();
   653   // This should be called after the heap is resized.
   654   void record_new_heap_size(uint new_number_of_regions);
   656   void init();
   658   // Create jstat counters for the policy.
   659   virtual void initialize_gc_policy_counters();
   661   virtual HeapWord* mem_allocate_work(size_t size,
   662                                       bool is_tlab,
   663                                       bool* gc_overhead_limit_was_exceeded);
   665   // This method controls how a collector handles one or more
   666   // of its generations being fully allocated.
   667   virtual HeapWord* satisfy_failed_allocation(size_t size,
   668                                               bool is_tlab);
   670   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   672   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
   674   // Record the start and end of an evacuation pause.
   675   void record_collection_pause_start(double start_time_sec, GCTracer &tracer);
   676   void record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info);
   678   // Record the start and end of a full collection.
   679   void record_full_collection_start();
   680   void record_full_collection_end();
   682   // Must currently be called while the world is stopped.
   683   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
   685   // Record start and end of remark.
   686   void record_concurrent_mark_remark_start();
   687   void record_concurrent_mark_remark_end();
   689   // Record start, end, and completion of cleanup.
   690   void record_concurrent_mark_cleanup_start();
   691   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
   692   void record_concurrent_mark_cleanup_completed();
   694   // Records the information about the heap size for reporting in
   695   // print_detailed_heap_transition
   696   void record_heap_size_info_at_start(bool full);
   698   // Print heap sizing transition (with less and more detail).
   699   void print_heap_transition();
   700   void print_detailed_heap_transition(bool full = false);
   702   void record_stop_world_start();
   703   void record_concurrent_pause();
   705   // Record how much space we copied during a GC. This is typically
   706   // called when a GC alloc region is being retired.
   707   void record_bytes_copied_during_gc(size_t bytes) {
   708     _bytes_copied_during_gc += bytes;
   709   }
   711   // The amount of space we copied during a GC.
   712   size_t bytes_copied_during_gc() {
   713     return _bytes_copied_during_gc;
   714   }
   716   // Determine whether there are candidate regions so that the
   717   // next GC should be mixed. The two action strings are used
   718   // in the ergo output when the method returns true or false.
   719   bool next_gc_should_be_mixed(const char* true_action_str,
   720                                const char* false_action_str);
   722   // Choose a new collection set.  Marks the chosen regions as being
   723   // "in_collection_set", and links them together.  The head and number of
   724   // the collection set are available via access methods.
   725   void finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info);
   727   // The head of the list (via "next_in_collection_set()") representing the
   728   // current collection set.
   729   HeapRegion* collection_set() { return _collection_set; }
   731   void clear_collection_set() { _collection_set = NULL; }
   733   // Add old region "hr" to the CSet.
   734   void add_old_region_to_cset(HeapRegion* hr);
   736   // Incremental CSet Support
   738   // The head of the incrementally built collection set.
   739   HeapRegion* inc_cset_head() { return _inc_cset_head; }
   741   // The tail of the incrementally built collection set.
   742   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
   744   // Initialize incremental collection set info.
   745   void start_incremental_cset_building();
   747   // Perform any final calculations on the incremental CSet fields
   748   // before we can use them.
   749   void finalize_incremental_cset_building();
   751   void clear_incremental_cset() {
   752     _inc_cset_head = NULL;
   753     _inc_cset_tail = NULL;
   754   }
   756   // Stop adding regions to the incremental collection set
   757   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
   759   // Add information about hr to the aggregated information for the
   760   // incrementally built collection set.
   761   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
   763   // Update information about hr in the aggregated information for
   764   // the incrementally built collection set.
   765   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
   767 private:
   768   // Update the incremental cset information when adding a region
   769   // (should not be called directly).
   770   void add_region_to_incremental_cset_common(HeapRegion* hr);
   772 public:
   773   // Add hr to the LHS of the incremental collection set.
   774   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
   776   // Add hr to the RHS of the incremental collection set.
   777   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
   779 #ifndef PRODUCT
   780   void print_collection_set(HeapRegion* list_head, outputStream* st);
   781 #endif // !PRODUCT
   783   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
   784   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
   785   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
   787   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
   788   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
   789   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
   791   // This sets the initiate_conc_mark_if_possible() flag to start a
   792   // new cycle, as long as we are not already in one. It's best if it
   793   // is called during a safepoint when the test whether a cycle is in
   794   // progress or not is stable.
   795   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
   797   // This is called at the very beginning of an evacuation pause (it
   798   // has to be the first thing that the pause does). If
   799   // initiate_conc_mark_if_possible() is true, and the concurrent
   800   // marking thread has completed its work during the previous cycle,
   801   // it will set during_initial_mark_pause() to so that the pause does
   802   // the initial-mark work and start a marking cycle.
   803   void decide_on_conc_mark_initiation();
   805   // If an expansion would be appropriate, because recent GC overhead had
   806   // exceeded the desired limit, return an amount to expand by.
   807   virtual size_t expansion_amount();
   809   // Print tracing information.
   810   void print_tracing_info() const;
   812   // Print stats on young survival ratio
   813   void print_yg_surv_rate_info() const;
   815   void finished_recalculating_age_indexes(bool is_survivors) {
   816     if (is_survivors) {
   817       _survivor_surv_rate_group->finished_recalculating_age_indexes();
   818     } else {
   819       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
   820     }
   821     // do that for any other surv rate groups
   822   }
   824   size_t young_list_target_length() const { return _young_list_target_length; }
   826   bool is_young_list_full();
   828   bool can_expand_young_list();
   830   uint young_list_max_length() {
   831     return _young_list_max_length;
   832   }
   834   bool gcs_are_young() {
   835     return _gcs_are_young;
   836   }
   837   void set_gcs_are_young(bool gcs_are_young) {
   838     _gcs_are_young = gcs_are_young;
   839   }
   841   bool adaptive_young_list_length() {
   842     return _young_gen_sizer->adaptive_young_list_length();
   843   }
   845 private:
   846   //
   847   // Survivor regions policy.
   848   //
   850   // Current tenuring threshold, set to 0 if the collector reaches the
   851   // maximum amount of survivors regions.
   852   uint _tenuring_threshold;
   854   // The limit on the number of regions allocated for survivors.
   855   uint _max_survivor_regions;
   857   // For reporting purposes.
   858   // The value of _heap_bytes_before_gc is also used to calculate
   859   // the cost of copying.
   861   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
   862   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
   863   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
   864   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
   866   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
   867   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
   869   // The amount of survivor regions after a collection.
   870   uint _recorded_survivor_regions;
   871   // List of survivor regions.
   872   HeapRegion* _recorded_survivor_head;
   873   HeapRegion* _recorded_survivor_tail;
   875   ageTable _survivors_age_table;
   877 public:
   878   uint tenuring_threshold() const { return _tenuring_threshold; }
   880   static const uint REGIONS_UNLIMITED = (uint) -1;
   882   uint max_regions(InCSetState dest) {
   883     switch (dest.value()) {
   884       case InCSetState::Young:
   885         return _max_survivor_regions;
   886       case InCSetState::Old:
   887         return REGIONS_UNLIMITED;
   888       default:
   889         assert(false, err_msg("Unknown dest state: " CSETSTATE_FORMAT, dest.value()));
   890         break;
   891     }
   892     // keep some compilers happy
   893     return 0;
   894   }
   896   void note_start_adding_survivor_regions() {
   897     _survivor_surv_rate_group->start_adding_regions();
   898   }
   900   void note_stop_adding_survivor_regions() {
   901     _survivor_surv_rate_group->stop_adding_regions();
   902   }
   904   void record_survivor_regions(uint regions,
   905                                HeapRegion* head,
   906                                HeapRegion* tail) {
   907     _recorded_survivor_regions = regions;
   908     _recorded_survivor_head    = head;
   909     _recorded_survivor_tail    = tail;
   910   }
   912   uint recorded_survivor_regions() {
   913     return _recorded_survivor_regions;
   914   }
   916   void record_thread_age_table(ageTable* age_table) {
   917     _survivors_age_table.merge_par(age_table);
   918   }
   920   void update_max_gc_locker_expansion();
   922   // Calculates survivor space parameters.
   923   void update_survivors_policy(GCTracer &tracer);
   925   virtual void post_heap_initialize();
   926 };
   928 // This should move to some place more general...
   930 // If we have "n" measurements, and we've kept track of their "sum" and the
   931 // "sum_of_squares" of the measurements, this returns the variance of the
   932 // sequence.
   933 inline double variance(int n, double sum_of_squares, double sum) {
   934   double n_d = (double)n;
   935   double avg = sum/n_d;
   936   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
   937 }
   939 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial