src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Mon, 19 Aug 2019 10:11:31 +0200

author
neugens
date
Mon, 19 Aug 2019 10:11:31 +0200
changeset 9861
a248d0be1309
parent 9858
b985cbb00e68
child 9896
1b8c45b8216a
permissions
-rw-r--r--

8229401: Fix JFR code cache test failures
8223689: Add JFR Thread Sampling Support
8223690: Add JFR BiasedLock Event Support
8223691: Add JFR G1 Region Type Change Event Support
8223692: Add JFR G1 Heap Summary Event Support
Summary: Backport JFR from JDK11, additional fixes
Reviewed-by: neugens, apetushkov
Contributed-by: denghui.ddh@alibaba-inc.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef __clang_major__
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    31 #include "gc_implementation/g1/concurrentMark.hpp"
    32 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    37 #include "gc_implementation/g1/g1Log.hpp"
    38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    39 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/java.hpp"
    42 #include "runtime/mutexLocker.hpp"
    43 #include "utilities/debug.hpp"
    45 // Different defaults for different number of GC threads
    46 // They were chosen by running GCOld and SPECjbb on debris with different
    47 //   numbers of GC threads and choosing them based on the results
    49 // all the same
    50 static double rs_length_diff_defaults[] = {
    51   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    52 };
    54 static double cost_per_card_ms_defaults[] = {
    55   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    56 };
    58 // all the same
    59 static double young_cards_per_entry_ratio_defaults[] = {
    60   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    61 };
    63 static double cost_per_entry_ms_defaults[] = {
    64   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    65 };
    67 static double cost_per_byte_ms_defaults[] = {
    68   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    69 };
    71 // these should be pretty consistent
    72 static double constant_other_time_ms_defaults[] = {
    73   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    74 };
    77 static double young_other_cost_per_region_ms_defaults[] = {
    78   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    79 };
    81 static double non_young_other_cost_per_region_ms_defaults[] = {
    82   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    83 };
    85 G1CollectorPolicy::G1CollectorPolicy() :
    86   _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    87                         ? ParallelGCThreads : 1),
    89   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    90   _stop_world_start(0.0),
    92   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    93   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    95   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    96   _prev_collection_pause_end_ms(0.0),
    97   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
    98   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
    99   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   100   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   101   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   102   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   103   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   104   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   105   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   106   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   107   _non_young_other_cost_per_region_ms_seq(
   108                                          new TruncatedSeq(TruncatedSeqLength)),
   110   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   111   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   113   _pause_time_target_ms((double) MaxGCPauseMillis),
   115   _gcs_are_young(true),
   117   _during_marking(false),
   118   _in_marking_window(false),
   119   _in_marking_window_im(false),
   121   _recent_prev_end_times_for_all_gcs_sec(
   122                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
   124   _recent_avg_pause_time_ratio(0.0),
   126   _initiate_conc_mark_if_possible(false),
   127   _during_initial_mark_pause(false),
   128   _last_young_gc(false),
   129   _last_gc_was_young(false),
   131   _eden_used_bytes_before_gc(0),
   132   _survivor_used_bytes_before_gc(0),
   133   _heap_used_bytes_before_gc(0),
   134   _metaspace_used_bytes_before_gc(0),
   135   _eden_capacity_bytes_before_gc(0),
   136   _heap_capacity_bytes_before_gc(0),
   138   _eden_cset_region_length(0),
   139   _survivor_cset_region_length(0),
   140   _old_cset_region_length(0),
   142   _collection_set(NULL),
   143   _collection_set_bytes_used_before(0),
   145   // Incremental CSet attributes
   146   _inc_cset_build_state(Inactive),
   147   _inc_cset_head(NULL),
   148   _inc_cset_tail(NULL),
   149   _inc_cset_bytes_used_before(0),
   150   _inc_cset_max_finger(NULL),
   151   _inc_cset_recorded_rs_lengths(0),
   152   _inc_cset_recorded_rs_lengths_diffs(0),
   153   _inc_cset_predicted_elapsed_time_ms(0.0),
   154   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
   156 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   157 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   158 #endif // _MSC_VER
   160   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   161                                                  G1YoungSurvRateNumRegionsSummary)),
   162   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   163                                               G1YoungSurvRateNumRegionsSummary)),
   164   // add here any more surv rate groups
   165   _recorded_survivor_regions(0),
   166   _recorded_survivor_head(NULL),
   167   _recorded_survivor_tail(NULL),
   168   _survivors_age_table(true),
   170   _gc_overhead_perc(0.0) {
   172   // Set up the region size and associated fields. Given that the
   173   // policy is created before the heap, we have to set this up here,
   174   // so it's done as soon as possible.
   176   // It would have been natural to pass initial_heap_byte_size() and
   177   // max_heap_byte_size() to setup_heap_region_size() but those have
   178   // not been set up at this point since they should be aligned with
   179   // the region size. So, there is a circular dependency here. We base
   180   // the region size on the heap size, but the heap size should be
   181   // aligned with the region size. To get around this we use the
   182   // unaligned values for the heap.
   183   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
   184   HeapRegionRemSet::setup_remset_size();
   186   G1ErgoVerbose::initialize();
   187   if (PrintAdaptiveSizePolicy) {
   188     // Currently, we only use a single switch for all the heuristics.
   189     G1ErgoVerbose::set_enabled(true);
   190     // Given that we don't currently have a verboseness level
   191     // parameter, we'll hardcode this to high. This can be easily
   192     // changed in the future.
   193     G1ErgoVerbose::set_level(ErgoHigh);
   194   } else {
   195     G1ErgoVerbose::set_enabled(false);
   196   }
   198   // Verify PLAB sizes
   199   const size_t region_size = HeapRegion::GrainWords;
   200   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   201     char buffer[128];
   202     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most " SIZE_FORMAT,
   203                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   204     vm_exit_during_initialization(buffer);
   205   }
   207   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   208   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   210   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads);
   212   int index = MIN2(_parallel_gc_threads - 1, 7);
   214   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   215   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   216   _young_cards_per_entry_ratio_seq->add(
   217                                   young_cards_per_entry_ratio_defaults[index]);
   218   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   219   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   220   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   221   _young_other_cost_per_region_ms_seq->add(
   222                                young_other_cost_per_region_ms_defaults[index]);
   223   _non_young_other_cost_per_region_ms_seq->add(
   224                            non_young_other_cost_per_region_ms_defaults[index]);
   226   // Below, we might need to calculate the pause time target based on
   227   // the pause interval. When we do so we are going to give G1 maximum
   228   // flexibility and allow it to do pauses when it needs to. So, we'll
   229   // arrange that the pause interval to be pause time target + 1 to
   230   // ensure that a) the pause time target is maximized with respect to
   231   // the pause interval and b) we maintain the invariant that pause
   232   // time target < pause interval. If the user does not want this
   233   // maximum flexibility, they will have to set the pause interval
   234   // explicitly.
   236   // First make sure that, if either parameter is set, its value is
   237   // reasonable.
   238   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   239     if (MaxGCPauseMillis < 1) {
   240       vm_exit_during_initialization("MaxGCPauseMillis should be "
   241                                     "greater than 0");
   242     }
   243   }
   244   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   245     if (GCPauseIntervalMillis < 1) {
   246       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   247                                     "greater than 0");
   248     }
   249   }
   251   // Then, if the pause time target parameter was not set, set it to
   252   // the default value.
   253   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   254     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   255       // The default pause time target in G1 is 200ms
   256       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   257     } else {
   258       // We do not allow the pause interval to be set without the
   259       // pause time target
   260       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   261                                     "without setting MaxGCPauseMillis");
   262     }
   263   }
   265   // Then, if the interval parameter was not set, set it according to
   266   // the pause time target (this will also deal with the case when the
   267   // pause time target is the default value).
   268   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   269     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   270   }
   272   // Finally, make sure that the two parameters are consistent.
   273   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   274     char buffer[256];
   275     jio_snprintf(buffer, 256,
   276                  "MaxGCPauseMillis (%u) should be less than "
   277                  "GCPauseIntervalMillis (%u)",
   278                  MaxGCPauseMillis, GCPauseIntervalMillis);
   279     vm_exit_during_initialization(buffer);
   280   }
   282   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   283   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   284   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   286   uintx confidence_perc = G1ConfidencePercent;
   287   // Put an artificial ceiling on this so that it's not set to a silly value.
   288   if (confidence_perc > 100) {
   289     confidence_perc = 100;
   290     warning("G1ConfidencePercent is set to a value that is too large, "
   291             "it's been updated to %u", confidence_perc);
   292   }
   293   _sigma = (double) confidence_perc / 100.0;
   295   // start conservatively (around 50ms is about right)
   296   _concurrent_mark_remark_times_ms->add(0.05);
   297   _concurrent_mark_cleanup_times_ms->add(0.20);
   298   _tenuring_threshold = MaxTenuringThreshold;
   299   // _max_survivor_regions will be calculated by
   300   // update_young_list_target_length() during initialization.
   301   _max_survivor_regions = 0;
   303   assert(GCTimeRatio > 0,
   304          "we should have set it to a default value set_g1_gc_flags() "
   305          "if a user set it to 0");
   306   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   308   uintx reserve_perc = G1ReservePercent;
   309   // Put an artificial ceiling on this so that it's not set to a silly value.
   310   if (reserve_perc > 50) {
   311     reserve_perc = 50;
   312     warning("G1ReservePercent is set to a value that is too large, "
   313             "it's been updated to %u", reserve_perc);
   314   }
   315   _reserve_factor = (double) reserve_perc / 100.0;
   316   // This will be set when the heap is expanded
   317   // for the first time during initialization.
   318   _reserve_regions = 0;
   320   _collectionSetChooser = new CollectionSetChooser();
   321 }
   323 void G1CollectorPolicy::initialize_alignments() {
   324   _space_alignment = HeapRegion::GrainBytes;
   325   size_t card_table_alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
   326   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
   327   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
   328 }
   330 void G1CollectorPolicy::initialize_flags() {
   331   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
   332     FLAG_SET_ERGO(uintx, G1HeapRegionSize, HeapRegion::GrainBytes);
   333   }
   335   if (SurvivorRatio < 1) {
   336     vm_exit_during_initialization("Invalid survivor ratio specified");
   337   }
   338   CollectorPolicy::initialize_flags();
   339   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
   340 }
   342 void G1CollectorPolicy::post_heap_initialize() {
   343   uintx max_regions = G1CollectedHeap::heap()->max_regions();
   344   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
   345   if (max_young_size != MaxNewSize) {
   346     FLAG_SET_ERGO(uintx, MaxNewSize, max_young_size);
   347   }
   348 }
   350 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
   351         _min_desired_young_length(0), _max_desired_young_length(0) {
   352   if (FLAG_IS_CMDLINE(NewRatio)) {
   353     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
   354       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
   355     } else {
   356       _sizer_kind = SizerNewRatio;
   357       _adaptive_size = false;
   358       return;
   359     }
   360   }
   362   if (NewSize > MaxNewSize) {
   363     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   364       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
   365               "A new max generation size of " SIZE_FORMAT "k will be used.",
   366               NewSize/K, MaxNewSize/K, NewSize/K);
   367     }
   368     MaxNewSize = NewSize;
   369   }
   371   if (FLAG_IS_CMDLINE(NewSize)) {
   372     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
   373                                      1U);
   374     if (FLAG_IS_CMDLINE(MaxNewSize)) {
   375       _max_desired_young_length =
   376                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   377                                   1U);
   378       _sizer_kind = SizerMaxAndNewSize;
   379       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
   380     } else {
   381       _sizer_kind = SizerNewSizeOnly;
   382     }
   383   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
   384     _max_desired_young_length =
   385                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
   386                                   1U);
   387     _sizer_kind = SizerMaxNewSizeOnly;
   388   }
   389 }
   391 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
   392   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
   393   return MAX2(1U, default_value);
   394 }
   396 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
   397   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
   398   return MAX2(1U, default_value);
   399 }
   401 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
   402   assert(number_of_heap_regions > 0, "Heap must be initialized");
   404   switch (_sizer_kind) {
   405     case SizerDefaults:
   406       *min_young_length = calculate_default_min_length(number_of_heap_regions);
   407       *max_young_length = calculate_default_max_length(number_of_heap_regions);
   408       break;
   409     case SizerNewSizeOnly:
   410       *max_young_length = calculate_default_max_length(number_of_heap_regions);
   411       *max_young_length = MAX2(*min_young_length, *max_young_length);
   412       break;
   413     case SizerMaxNewSizeOnly:
   414       *min_young_length = calculate_default_min_length(number_of_heap_regions);
   415       *min_young_length = MIN2(*min_young_length, *max_young_length);
   416       break;
   417     case SizerMaxAndNewSize:
   418       // Do nothing. Values set on the command line, don't update them at runtime.
   419       break;
   420     case SizerNewRatio:
   421       *min_young_length = number_of_heap_regions / (NewRatio + 1);
   422       *max_young_length = *min_young_length;
   423       break;
   424     default:
   425       ShouldNotReachHere();
   426   }
   428   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
   429 }
   431 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
   432   // We need to pass the desired values because recalculation may not update these
   433   // values in some cases.
   434   uint temp = _min_desired_young_length;
   435   uint result = _max_desired_young_length;
   436   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
   437   return result;
   438 }
   440 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
   441   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
   442           &_max_desired_young_length);
   443 }
   445 void G1CollectorPolicy::init() {
   446   // Set aside an initial future to_space.
   447   _g1 = G1CollectedHeap::heap();
   449   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   451   initialize_gc_policy_counters();
   453   if (adaptive_young_list_length()) {
   454     _young_list_fixed_length = 0;
   455   } else {
   456     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
   457   }
   458   _free_regions_at_end_of_collection = _g1->num_free_regions();
   459   update_young_list_target_length();
   461   // We may immediately start allocating regions and placing them on the
   462   // collection set list. Initialize the per-collection set info
   463   start_incremental_cset_building();
   464 }
   466 // Create the jstat counters for the policy.
   467 void G1CollectorPolicy::initialize_gc_policy_counters() {
   468   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
   469 }
   471 bool G1CollectorPolicy::predict_will_fit(uint young_length,
   472                                          double base_time_ms,
   473                                          uint base_free_regions,
   474                                          double target_pause_time_ms) {
   475   if (young_length >= base_free_regions) {
   476     // end condition 1: not enough space for the young regions
   477     return false;
   478   }
   480   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
   481   size_t bytes_to_copy =
   482                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   483   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   484   double young_other_time_ms = predict_young_other_time_ms(young_length);
   485   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
   486   if (pause_time_ms > target_pause_time_ms) {
   487     // end condition 2: prediction is over the target pause time
   488     return false;
   489   }
   491   size_t free_bytes =
   492                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
   493   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
   494     // end condition 3: out-of-space (conservatively!)
   495     return false;
   496   }
   498   // success!
   499   return true;
   500 }
   502 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
   503   // re-calculate the necessary reserve
   504   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
   505   // We use ceiling so that if reserve_regions_d is > 0.0 (but
   506   // smaller than 1.0) we'll get 1.
   507   _reserve_regions = (uint) ceil(reserve_regions_d);
   509   _young_gen_sizer->heap_size_changed(new_number_of_regions);
   510 }
   512 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
   513                                                        uint base_min_length) {
   514   uint desired_min_length = 0;
   515   if (adaptive_young_list_length()) {
   516     if (_alloc_rate_ms_seq->num() > 3) {
   517       double now_sec = os::elapsedTime();
   518       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   519       double alloc_rate_ms = predict_alloc_rate_ms();
   520       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
   521     } else {
   522       // otherwise we don't have enough info to make the prediction
   523     }
   524   }
   525   desired_min_length += base_min_length;
   526   // make sure we don't go below any user-defined minimum bound
   527   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
   528 }
   530 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
   531   // Here, we might want to also take into account any additional
   532   // constraints (i.e., user-defined minimum bound). Currently, we
   533   // effectively don't set this bound.
   534   return _young_gen_sizer->max_desired_young_length();
   535 }
   537 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
   538   if (rs_lengths == (size_t) -1) {
   539     // if it's set to the default value (-1), we should predict it;
   540     // otherwise, use the given value.
   541     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   542   }
   544   // Calculate the absolute and desired min bounds.
   546   // This is how many young regions we already have (currently: the survivors).
   547   uint base_min_length = recorded_survivor_regions();
   548   // This is the absolute minimum young length, which ensures that we
   549   // can allocate one eden region in the worst-case.
   550   uint absolute_min_length = base_min_length + 1;
   551   uint desired_min_length =
   552                      calculate_young_list_desired_min_length(base_min_length);
   553   if (desired_min_length < absolute_min_length) {
   554     desired_min_length = absolute_min_length;
   555   }
   557   // Calculate the absolute and desired max bounds.
   559   // We will try our best not to "eat" into the reserve.
   560   uint absolute_max_length = 0;
   561   if (_free_regions_at_end_of_collection > _reserve_regions) {
   562     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
   563   }
   564   uint desired_max_length = calculate_young_list_desired_max_length();
   565   if (desired_max_length > absolute_max_length) {
   566     desired_max_length = absolute_max_length;
   567   }
   569   uint young_list_target_length = 0;
   570   if (adaptive_young_list_length()) {
   571     if (gcs_are_young()) {
   572       young_list_target_length =
   573                         calculate_young_list_target_length(rs_lengths,
   574                                                            base_min_length,
   575                                                            desired_min_length,
   576                                                            desired_max_length);
   577       _rs_lengths_prediction = rs_lengths;
   578     } else {
   579       // Don't calculate anything and let the code below bound it to
   580       // the desired_min_length, i.e., do the next GC as soon as
   581       // possible to maximize how many old regions we can add to it.
   582     }
   583   } else {
   584     // The user asked for a fixed young gen so we'll fix the young gen
   585     // whether the next GC is young or mixed.
   586     young_list_target_length = _young_list_fixed_length;
   587   }
   589   // Make sure we don't go over the desired max length, nor under the
   590   // desired min length. In case they clash, desired_min_length wins
   591   // which is why that test is second.
   592   if (young_list_target_length > desired_max_length) {
   593     young_list_target_length = desired_max_length;
   594   }
   595   if (young_list_target_length < desired_min_length) {
   596     young_list_target_length = desired_min_length;
   597   }
   599   assert(young_list_target_length > recorded_survivor_regions(),
   600          "we should be able to allocate at least one eden region");
   601   assert(young_list_target_length >= absolute_min_length, "post-condition");
   602   _young_list_target_length = young_list_target_length;
   604   update_max_gc_locker_expansion();
   605 }
   607 uint
   608 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
   609                                                      uint base_min_length,
   610                                                      uint desired_min_length,
   611                                                      uint desired_max_length) {
   612   assert(adaptive_young_list_length(), "pre-condition");
   613   assert(gcs_are_young(), "only call this for young GCs");
   615   // In case some edge-condition makes the desired max length too small...
   616   if (desired_max_length <= desired_min_length) {
   617     return desired_min_length;
   618   }
   620   // We'll adjust min_young_length and max_young_length not to include
   621   // the already allocated young regions (i.e., so they reflect the
   622   // min and max eden regions we'll allocate). The base_min_length
   623   // will be reflected in the predictions by the
   624   // survivor_regions_evac_time prediction.
   625   assert(desired_min_length > base_min_length, "invariant");
   626   uint min_young_length = desired_min_length - base_min_length;
   627   assert(desired_max_length > base_min_length, "invariant");
   628   uint max_young_length = desired_max_length - base_min_length;
   630   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   631   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
   632   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   633   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   634   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   635   double base_time_ms =
   636     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
   637     survivor_regions_evac_time;
   638   uint available_free_regions = _free_regions_at_end_of_collection;
   639   uint base_free_regions = 0;
   640   if (available_free_regions > _reserve_regions) {
   641     base_free_regions = available_free_regions - _reserve_regions;
   642   }
   644   // Here, we will make sure that the shortest young length that
   645   // makes sense fits within the target pause time.
   647   if (predict_will_fit(min_young_length, base_time_ms,
   648                        base_free_regions, target_pause_time_ms)) {
   649     // The shortest young length will fit into the target pause time;
   650     // we'll now check whether the absolute maximum number of young
   651     // regions will fit in the target pause time. If not, we'll do
   652     // a binary search between min_young_length and max_young_length.
   653     if (predict_will_fit(max_young_length, base_time_ms,
   654                          base_free_regions, target_pause_time_ms)) {
   655       // The maximum young length will fit into the target pause time.
   656       // We are done so set min young length to the maximum length (as
   657       // the result is assumed to be returned in min_young_length).
   658       min_young_length = max_young_length;
   659     } else {
   660       // The maximum possible number of young regions will not fit within
   661       // the target pause time so we'll search for the optimal
   662       // length. The loop invariants are:
   663       //
   664       // min_young_length < max_young_length
   665       // min_young_length is known to fit into the target pause time
   666       // max_young_length is known not to fit into the target pause time
   667       //
   668       // Going into the loop we know the above hold as we've just
   669       // checked them. Every time around the loop we check whether
   670       // the middle value between min_young_length and
   671       // max_young_length fits into the target pause time. If it
   672       // does, it becomes the new min. If it doesn't, it becomes
   673       // the new max. This way we maintain the loop invariants.
   675       assert(min_young_length < max_young_length, "invariant");
   676       uint diff = (max_young_length - min_young_length) / 2;
   677       while (diff > 0) {
   678         uint young_length = min_young_length + diff;
   679         if (predict_will_fit(young_length, base_time_ms,
   680                              base_free_regions, target_pause_time_ms)) {
   681           min_young_length = young_length;
   682         } else {
   683           max_young_length = young_length;
   684         }
   685         assert(min_young_length <  max_young_length, "invariant");
   686         diff = (max_young_length - min_young_length) / 2;
   687       }
   688       // The results is min_young_length which, according to the
   689       // loop invariants, should fit within the target pause time.
   691       // These are the post-conditions of the binary search above:
   692       assert(min_young_length < max_young_length,
   693              "otherwise we should have discovered that max_young_length "
   694              "fits into the pause target and not done the binary search");
   695       assert(predict_will_fit(min_young_length, base_time_ms,
   696                               base_free_regions, target_pause_time_ms),
   697              "min_young_length, the result of the binary search, should "
   698              "fit into the pause target");
   699       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
   700                                base_free_regions, target_pause_time_ms),
   701              "min_young_length, the result of the binary search, should be "
   702              "optimal, so no larger length should fit into the pause target");
   703     }
   704   } else {
   705     // Even the minimum length doesn't fit into the pause time
   706     // target, return it as the result nevertheless.
   707   }
   708   return base_min_length + min_young_length;
   709 }
   711 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   712   double survivor_regions_evac_time = 0.0;
   713   for (HeapRegion * r = _recorded_survivor_head;
   714        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   715        r = r->get_next_young_region()) {
   716     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
   717   }
   718   return survivor_regions_evac_time;
   719 }
   721 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
   722   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   724   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   725   if (rs_lengths > _rs_lengths_prediction) {
   726     // add 10% to avoid having to recalculate often
   727     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   728     update_young_list_target_length(rs_lengths_prediction);
   729   }
   730 }
   734 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   735                                                bool is_tlab,
   736                                                bool* gc_overhead_limit_was_exceeded) {
   737   guarantee(false, "Not using this policy feature yet.");
   738   return NULL;
   739 }
   741 // This method controls how a collector handles one or more
   742 // of its generations being fully allocated.
   743 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   744                                                        bool is_tlab) {
   745   guarantee(false, "Not using this policy feature yet.");
   746   return NULL;
   747 }
   750 #ifndef PRODUCT
   751 bool G1CollectorPolicy::verify_young_ages() {
   752   HeapRegion* head = _g1->young_list()->first_region();
   753   return
   754     verify_young_ages(head, _short_lived_surv_rate_group);
   755   // also call verify_young_ages on any additional surv rate groups
   756 }
   758 bool
   759 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   760                                      SurvRateGroup *surv_rate_group) {
   761   guarantee( surv_rate_group != NULL, "pre-condition" );
   763   const char* name = surv_rate_group->name();
   764   bool ret = true;
   765   int prev_age = -1;
   767   for (HeapRegion* curr = head;
   768        curr != NULL;
   769        curr = curr->get_next_young_region()) {
   770     SurvRateGroup* group = curr->surv_rate_group();
   771     if (group == NULL && !curr->is_survivor()) {
   772       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   773       ret = false;
   774     }
   776     if (surv_rate_group == group) {
   777       int age = curr->age_in_surv_rate_group();
   779       if (age < 0) {
   780         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   781         ret = false;
   782       }
   784       if (age <= prev_age) {
   785         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   786                                "(%d, %d)", name, age, prev_age);
   787         ret = false;
   788       }
   789       prev_age = age;
   790     }
   791   }
   793   return ret;
   794 }
   795 #endif // PRODUCT
   797 void G1CollectorPolicy::record_full_collection_start() {
   798   _full_collection_start_sec = os::elapsedTime();
   799   record_heap_size_info_at_start(true /* full */);
   800   // Release the future to-space so that it is available for compaction into.
   801   _g1->set_full_collection();
   802 }
   804 void G1CollectorPolicy::record_full_collection_end() {
   805   // Consider this like a collection pause for the purposes of allocation
   806   // since last pause.
   807   double end_sec = os::elapsedTime();
   808   double full_gc_time_sec = end_sec - _full_collection_start_sec;
   809   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   811   _trace_gen1_time_data.record_full_collection(full_gc_time_ms);
   813   update_recent_gc_times(end_sec, full_gc_time_ms);
   815   _g1->clear_full_collection();
   817   // "Nuke" the heuristics that control the young/mixed GC
   818   // transitions and make sure we start with young GCs after the Full GC.
   819   set_gcs_are_young(true);
   820   _last_young_gc = false;
   821   clear_initiate_conc_mark_if_possible();
   822   clear_during_initial_mark_pause();
   823   _in_marking_window = false;
   824   _in_marking_window_im = false;
   826   _short_lived_surv_rate_group->start_adding_regions();
   827   // also call this on any additional surv rate groups
   829   record_survivor_regions(0, NULL, NULL);
   831   _free_regions_at_end_of_collection = _g1->num_free_regions();
   832   // Reset survivors SurvRateGroup.
   833   _survivor_surv_rate_group->reset();
   834   update_young_list_target_length();
   835   _collectionSetChooser->clear();
   836 }
   838 void G1CollectorPolicy::record_stop_world_start() {
   839   _stop_world_start = os::elapsedTime();
   840 }
   842 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec, GCTracer &tracer) {
   843   // We only need to do this here as the policy will only be applied
   844   // to the GC we're about to start. so, no point is calculating this
   845   // every time we calculate / recalculate the target young length.
   846   update_survivors_policy(tracer);
   848   assert(_g1->used() == _g1->recalculate_used(),
   849          err_msg("sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
   850                  _g1->used(), _g1->recalculate_used()));
   852   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   853   _trace_gen0_time_data.record_start_collection(s_w_t_ms);
   854   _stop_world_start = 0.0;
   856   record_heap_size_info_at_start(false /* full */);
   858   phase_times()->record_cur_collection_start_sec(start_time_sec);
   859   _pending_cards = _g1->pending_card_num();
   861   _collection_set_bytes_used_before = 0;
   862   _bytes_copied_during_gc = 0;
   864   _last_gc_was_young = false;
   866   // do that for any other surv rate groups
   867   _short_lived_surv_rate_group->stop_adding_regions();
   868   _survivors_age_table.clear();
   870   assert( verify_young_ages(), "region age verification" );
   871 }
   873 void G1CollectorPolicy::record_concurrent_mark_init_end(double
   874                                                    mark_init_elapsed_time_ms) {
   875   _during_marking = true;
   876   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   877   clear_during_initial_mark_pause();
   878   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   879 }
   881 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   882   _mark_remark_start_sec = os::elapsedTime();
   883   _during_marking = false;
   884 }
   886 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   887   double end_time_sec = os::elapsedTime();
   888   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   889   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   890   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   891   _prev_collection_pause_end_ms += elapsed_time_ms;
   893   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   894 }
   896 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   897   _mark_cleanup_start_sec = os::elapsedTime();
   898 }
   900 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   901   _last_young_gc = true;
   902   _in_marking_window = false;
   903 }
   905 void G1CollectorPolicy::record_concurrent_pause() {
   906   if (_stop_world_start > 0.0) {
   907     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   908     _trace_gen0_time_data.record_yield_time(yield_ms);
   909   }
   910 }
   912 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
   913   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
   914     return false;
   915   }
   917   size_t marking_initiating_used_threshold =
   918     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
   919   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
   920   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
   922   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
   923     if (gcs_are_young() && !_last_young_gc) {
   924       ergo_verbose5(ErgoConcCycles,
   925         "request concurrent cycle initiation",
   926         ergo_format_reason("occupancy higher than threshold")
   927         ergo_format_byte("occupancy")
   928         ergo_format_byte("allocation request")
   929         ergo_format_byte_perc("threshold")
   930         ergo_format_str("source"),
   931         cur_used_bytes,
   932         alloc_byte_size,
   933         marking_initiating_used_threshold,
   934         (double) InitiatingHeapOccupancyPercent,
   935         source);
   936       return true;
   937     } else {
   938       ergo_verbose5(ErgoConcCycles,
   939         "do not request concurrent cycle initiation",
   940         ergo_format_reason("still doing mixed collections")
   941         ergo_format_byte("occupancy")
   942         ergo_format_byte("allocation request")
   943         ergo_format_byte_perc("threshold")
   944         ergo_format_str("source"),
   945         cur_used_bytes,
   946         alloc_byte_size,
   947         marking_initiating_used_threshold,
   948         (double) InitiatingHeapOccupancyPercent,
   949         source);
   950     }
   951   }
   953   return false;
   954 }
   956 // Anything below that is considered to be zero
   957 #define MIN_TIMER_GRANULARITY 0.0000001
   959 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
   960   double end_time_sec = os::elapsedTime();
   961   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
   962          "otherwise, the subtraction below does not make sense");
   963   size_t rs_size =
   964             _cur_collection_pause_used_regions_at_start - cset_region_length();
   965   size_t cur_used_bytes = _g1->used();
   966   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
   967   bool last_pause_included_initial_mark = false;
   968   bool update_stats = !_g1->evacuation_failed();
   970 #ifndef PRODUCT
   971   if (G1YoungSurvRateVerbose) {
   972     gclog_or_tty->cr();
   973     _short_lived_surv_rate_group->print();
   974     // do that for any other surv rate groups too
   975   }
   976 #endif // PRODUCT
   978   last_pause_included_initial_mark = during_initial_mark_pause();
   979   if (last_pause_included_initial_mark) {
   980     record_concurrent_mark_init_end(0.0);
   981   } else if (need_to_start_conc_mark("end of GC")) {
   982     // Note: this might have already been set, if during the last
   983     // pause we decided to start a cycle but at the beginning of
   984     // this pause we decided to postpone it. That's OK.
   985     set_initiate_conc_mark_if_possible();
   986   }
   988   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
   989                           end_time_sec, false);
   991   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
   992   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
   994   if (update_stats) {
   995     _trace_gen0_time_data.record_end_collection(pause_time_ms, phase_times());
   996     // this is where we update the allocation rate of the application
   997     double app_time_ms =
   998       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
   999     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1000       // This usually happens due to the timer not having the required
  1001       // granularity. Some Linuxes are the usual culprits.
  1002       // We'll just set it to something (arbitrarily) small.
  1003       app_time_ms = 1.0;
  1005     // We maintain the invariant that all objects allocated by mutator
  1006     // threads will be allocated out of eden regions. So, we can use
  1007     // the eden region number allocated since the previous GC to
  1008     // calculate the application's allocate rate. The only exception
  1009     // to that is humongous objects that are allocated separately. But
  1010     // given that humongous object allocations do not really affect
  1011     // either the pause's duration nor when the next pause will take
  1012     // place we can safely ignore them here.
  1013     uint regions_allocated = eden_cset_region_length();
  1014     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1015     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1017     double interval_ms =
  1018       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1019     update_recent_gc_times(end_time_sec, pause_time_ms);
  1020     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1021     if (recent_avg_pause_time_ratio() < 0.0 ||
  1022         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1023 #ifndef PRODUCT
  1024       // Dump info to allow post-facto debugging
  1025       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1026       gclog_or_tty->print_cr("-------------------------------------------");
  1027       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1028       _recent_gc_times_ms->dump();
  1029       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1030       _recent_prev_end_times_for_all_gcs_sec->dump();
  1031       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1032                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1033       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1034       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1035 #endif  // !PRODUCT
  1036       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1037       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1038       if (_recent_avg_pause_time_ratio < 0.0) {
  1039         _recent_avg_pause_time_ratio = 0.0;
  1040       } else {
  1041         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1042         _recent_avg_pause_time_ratio = 1.0;
  1047   bool new_in_marking_window = _in_marking_window;
  1048   bool new_in_marking_window_im = false;
  1049   if (last_pause_included_initial_mark) {
  1050     new_in_marking_window = true;
  1051     new_in_marking_window_im = true;
  1054   if (_last_young_gc) {
  1055     // This is supposed to to be the "last young GC" before we start
  1056     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
  1058     if (!last_pause_included_initial_mark) {
  1059       if (next_gc_should_be_mixed("start mixed GCs",
  1060                                   "do not start mixed GCs")) {
  1061         set_gcs_are_young(false);
  1063     } else {
  1064       ergo_verbose0(ErgoMixedGCs,
  1065                     "do not start mixed GCs",
  1066                     ergo_format_reason("concurrent cycle is about to start"));
  1068     _last_young_gc = false;
  1071   if (!_last_gc_was_young) {
  1072     // This is a mixed GC. Here we decide whether to continue doing
  1073     // mixed GCs or not.
  1075     if (!next_gc_should_be_mixed("continue mixed GCs",
  1076                                  "do not continue mixed GCs")) {
  1077       set_gcs_are_young(true);
  1081   _short_lived_surv_rate_group->start_adding_regions();
  1082   // do that for any other surv rate groupsx
  1084   if (update_stats) {
  1085     double cost_per_card_ms = 0.0;
  1086     if (_pending_cards > 0) {
  1087       cost_per_card_ms = phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) / (double) _pending_cards;
  1088       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1091     size_t cards_scanned = _g1->cards_scanned();
  1093     double cost_per_entry_ms = 0.0;
  1094     if (cards_scanned > 10) {
  1095       cost_per_entry_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
  1096       if (_last_gc_was_young) {
  1097         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1098       } else {
  1099         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1103     if (_max_rs_lengths > 0) {
  1104       double cards_per_entry_ratio =
  1105         (double) cards_scanned / (double) _max_rs_lengths;
  1106       if (_last_gc_was_young) {
  1107         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1108       } else {
  1109         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1113     // This is defensive. For a while _max_rs_lengths could get
  1114     // smaller than _recorded_rs_lengths which was causing
  1115     // rs_length_diff to get very large and mess up the RSet length
  1116     // predictions. The reason was unsafe concurrent updates to the
  1117     // _inc_cset_recorded_rs_lengths field which the code below guards
  1118     // against (see CR 7118202). This bug has now been fixed (see CR
  1119     // 7119027). However, I'm still worried that
  1120     // _inc_cset_recorded_rs_lengths might still end up somewhat
  1121     // inaccurate. The concurrent refinement thread calculates an
  1122     // RSet's length concurrently with other CR threads updating it
  1123     // which might cause it to calculate the length incorrectly (if,
  1124     // say, it's in mid-coarsening). So I'll leave in the defensive
  1125     // conditional below just in case.
  1126     size_t rs_length_diff = 0;
  1127     if (_max_rs_lengths > _recorded_rs_lengths) {
  1128       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1130     _rs_length_diff_seq->add((double) rs_length_diff);
  1132     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
  1133     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
  1134     double cost_per_byte_ms = 0.0;
  1136     if (copied_bytes > 0) {
  1137       cost_per_byte_ms = phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
  1138       if (_in_marking_window) {
  1139         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1140       } else {
  1141         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1145     double all_other_time_ms = pause_time_ms -
  1146       (phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS) + phase_times()->average_time_ms(G1GCPhaseTimes::ScanRS) +
  1147           phase_times()->average_time_ms(G1GCPhaseTimes::ObjCopy) + phase_times()->average_time_ms(G1GCPhaseTimes::Termination));
  1149     double young_other_time_ms = 0.0;
  1150     if (young_cset_region_length() > 0) {
  1151       young_other_time_ms =
  1152         phase_times()->young_cset_choice_time_ms() +
  1153         phase_times()->young_free_cset_time_ms();
  1154       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1155                                           (double) young_cset_region_length());
  1157     double non_young_other_time_ms = 0.0;
  1158     if (old_cset_region_length() > 0) {
  1159       non_young_other_time_ms =
  1160         phase_times()->non_young_cset_choice_time_ms() +
  1161         phase_times()->non_young_free_cset_time_ms();
  1163       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1164                                             (double) old_cset_region_length());
  1167     double constant_other_time_ms = all_other_time_ms -
  1168       (young_other_time_ms + non_young_other_time_ms);
  1169     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1171     double survival_ratio = 0.0;
  1172     if (_collection_set_bytes_used_before > 0) {
  1173       survival_ratio = (double) _bytes_copied_during_gc /
  1174                                    (double) _collection_set_bytes_used_before;
  1177     _pending_cards_seq->add((double) _pending_cards);
  1178     _rs_lengths_seq->add((double) _max_rs_lengths);
  1181   _in_marking_window = new_in_marking_window;
  1182   _in_marking_window_im = new_in_marking_window_im;
  1183   _free_regions_at_end_of_collection = _g1->num_free_regions();
  1184   update_young_list_target_length();
  1186   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1187   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1188   adjust_concurrent_refinement(phase_times()->average_time_ms(G1GCPhaseTimes::UpdateRS),
  1189                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS), update_rs_time_goal_ms);
  1191   _collectionSetChooser->verify();
  1194 #define EXT_SIZE_FORMAT "%.1f%s"
  1195 #define EXT_SIZE_PARAMS(bytes)                                  \
  1196   byte_size_in_proper_unit((double)(bytes)),                    \
  1197   proper_unit_for_byte_size((bytes))
  1199 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
  1200   YoungList* young_list = _g1->young_list();
  1201   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
  1202   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
  1203   _heap_capacity_bytes_before_gc = _g1->capacity();
  1204   _heap_used_bytes_before_gc = _g1->used();
  1205   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
  1207   _eden_capacity_bytes_before_gc =
  1208          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
  1210   if (full) {
  1211     _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
  1215 void G1CollectorPolicy::print_heap_transition() {
  1216   _g1->print_size_transition(gclog_or_tty,
  1217                              _heap_used_bytes_before_gc,
  1218                              _g1->used(),
  1219                              _g1->capacity());
  1222 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
  1223   YoungList* young_list = _g1->young_list();
  1225   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
  1226   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
  1227   size_t heap_used_bytes_after_gc = _g1->used();
  1229   size_t heap_capacity_bytes_after_gc = _g1->capacity();
  1230   size_t eden_capacity_bytes_after_gc =
  1231     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
  1233   gclog_or_tty->print(
  1234     "   [Eden: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->" EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ") "
  1235     "Survivors: " EXT_SIZE_FORMAT "->" EXT_SIZE_FORMAT " "
  1236     "Heap: " EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")->"
  1237     EXT_SIZE_FORMAT "(" EXT_SIZE_FORMAT ")]",
  1238     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
  1239     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
  1240     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
  1241     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
  1242     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
  1243     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
  1244     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
  1245     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
  1246     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
  1247     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
  1249   if (full) {
  1250     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
  1253   gclog_or_tty->cr();
  1256 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1257                                                      double update_rs_processed_buffers,
  1258                                                      double goal_ms) {
  1259   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1260   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1262   if (G1UseAdaptiveConcRefinement) {
  1263     const int k_gy = 3, k_gr = 6;
  1264     const double inc_k = 1.1, dec_k = 0.9;
  1266     int g = cg1r->green_zone();
  1267     if (update_rs_time > goal_ms) {
  1268       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1269     } else {
  1270       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1271         g = (int)MAX2(g * inc_k, g + 1.0);
  1274     // Change the refinement threads params
  1275     cg1r->set_green_zone(g);
  1276     cg1r->set_yellow_zone(g * k_gy);
  1277     cg1r->set_red_zone(g * k_gr);
  1278     cg1r->reinitialize_threads();
  1280     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1281     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1282                                     cg1r->yellow_zone());
  1283     // Change the barrier params
  1284     dcqs.set_process_completed_threshold(processing_threshold);
  1285     dcqs.set_max_completed_queue(cg1r->red_zone());
  1288   int curr_queue_size = dcqs.completed_buffers_num();
  1289   if (curr_queue_size >= cg1r->yellow_zone()) {
  1290     dcqs.set_completed_queue_padding(curr_queue_size);
  1291   } else {
  1292     dcqs.set_completed_queue_padding(0);
  1294   dcqs.notify_if_necessary();
  1297 double
  1298 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1299                                                 size_t scanned_cards) {
  1300   return
  1301     predict_rs_update_time_ms(pending_cards) +
  1302     predict_rs_scan_time_ms(scanned_cards) +
  1303     predict_constant_other_time_ms();
  1306 double
  1307 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1308   size_t rs_length = predict_rs_length_diff();
  1309   size_t card_num;
  1310   if (gcs_are_young()) {
  1311     card_num = predict_young_card_num(rs_length);
  1312   } else {
  1313     card_num = predict_non_young_card_num(rs_length);
  1315   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1318 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1319   size_t bytes_to_copy;
  1320   if (hr->is_marked())
  1321     bytes_to_copy = hr->max_live_bytes();
  1322   else {
  1323     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
  1324     int age = hr->age_in_surv_rate_group();
  1325     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1326     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1328   return bytes_to_copy;
  1331 double
  1332 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1333                                                   bool for_young_gc) {
  1334   size_t rs_length = hr->rem_set()->occupied();
  1335   size_t card_num;
  1337   // Predicting the number of cards is based on which type of GC
  1338   // we're predicting for.
  1339   if (for_young_gc) {
  1340     card_num = predict_young_card_num(rs_length);
  1341   } else {
  1342     card_num = predict_non_young_card_num(rs_length);
  1344   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1346   double region_elapsed_time_ms =
  1347     predict_rs_scan_time_ms(card_num) +
  1348     predict_object_copy_time_ms(bytes_to_copy);
  1350   // The prediction of the "other" time for this region is based
  1351   // upon the region type and NOT the GC type.
  1352   if (hr->is_young()) {
  1353     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1354   } else {
  1355     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1357   return region_elapsed_time_ms;
  1360 void
  1361 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
  1362                                             uint survivor_cset_region_length) {
  1363   _eden_cset_region_length     = eden_cset_region_length;
  1364   _survivor_cset_region_length = survivor_cset_region_length;
  1365   _old_cset_region_length      = 0;
  1368 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1369   _recorded_rs_lengths = rs_lengths;
  1372 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1373                                                double elapsed_ms) {
  1374   _recent_gc_times_ms->add(elapsed_ms);
  1375   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1376   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1379 size_t G1CollectorPolicy::expansion_amount() {
  1380   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
  1381   double threshold = _gc_overhead_perc;
  1382   if (recent_gc_overhead > threshold) {
  1383     // We will double the existing space, or take
  1384     // G1ExpandByPercentOfAvailable % of the available expansion
  1385     // space, whichever is smaller, bounded below by a minimum
  1386     // expansion (unless that's all that's left.)
  1387     const size_t min_expand_bytes = 1*M;
  1388     size_t reserved_bytes = _g1->max_capacity();
  1389     size_t committed_bytes = _g1->capacity();
  1390     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  1391     size_t expand_bytes;
  1392     size_t expand_bytes_via_pct =
  1393       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  1394     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  1395     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  1396     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  1398     ergo_verbose5(ErgoHeapSizing,
  1399                   "attempt heap expansion",
  1400                   ergo_format_reason("recent GC overhead higher than "
  1401                                      "threshold after GC")
  1402                   ergo_format_perc("recent GC overhead")
  1403                   ergo_format_perc("threshold")
  1404                   ergo_format_byte("uncommitted")
  1405                   ergo_format_byte_perc("calculated expansion amount"),
  1406                   recent_gc_overhead, threshold,
  1407                   uncommitted_bytes,
  1408                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
  1410     return expand_bytes;
  1411   } else {
  1412     return 0;
  1416 void G1CollectorPolicy::print_tracing_info() const {
  1417   _trace_gen0_time_data.print();
  1418   _trace_gen1_time_data.print();
  1421 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  1422 #ifndef PRODUCT
  1423   _short_lived_surv_rate_group->print_surv_rate_summary();
  1424   // add this call for any other surv rate groups
  1425 #endif // PRODUCT
  1428 bool G1CollectorPolicy::is_young_list_full() {
  1429   uint young_list_length = _g1->young_list()->length();
  1430   uint young_list_target_length = _young_list_target_length;
  1431   return young_list_length >= young_list_target_length;
  1434 bool G1CollectorPolicy::can_expand_young_list() {
  1435   uint young_list_length = _g1->young_list()->length();
  1436   uint young_list_max_length = _young_list_max_length;
  1437   return young_list_length < young_list_max_length;
  1440 void G1CollectorPolicy::update_max_gc_locker_expansion() {
  1441   uint expansion_region_num = 0;
  1442   if (GCLockerEdenExpansionPercent > 0) {
  1443     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
  1444     double expansion_region_num_d = perc * (double) _young_list_target_length;
  1445     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
  1446     // less than 1.0) we'll get 1.
  1447     expansion_region_num = (uint) ceil(expansion_region_num_d);
  1448   } else {
  1449     assert(expansion_region_num == 0, "sanity");
  1451   _young_list_max_length = _young_list_target_length + expansion_region_num;
  1452   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
  1455 // Calculates survivor space parameters.
  1456 void G1CollectorPolicy::update_survivors_policy(GCTracer &tracer) {
  1457   double max_survivor_regions_d =
  1458                  (double) _young_list_target_length / (double) SurvivorRatio;
  1459   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
  1460   // smaller than 1.0) we'll get 1.
  1461   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
  1463   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  1464         HeapRegion::GrainWords * _max_survivor_regions, tracer);
  1467 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
  1468                                                      GCCause::Cause gc_cause) {
  1469   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1470   if (!during_cycle) {
  1471     ergo_verbose1(ErgoConcCycles,
  1472                   "request concurrent cycle initiation",
  1473                   ergo_format_reason("requested by GC cause")
  1474                   ergo_format_str("GC cause"),
  1475                   GCCause::to_string(gc_cause));
  1476     set_initiate_conc_mark_if_possible();
  1477     return true;
  1478   } else {
  1479     ergo_verbose1(ErgoConcCycles,
  1480                   "do not request concurrent cycle initiation",
  1481                   ergo_format_reason("concurrent cycle already in progress")
  1482                   ergo_format_str("GC cause"),
  1483                   GCCause::to_string(gc_cause));
  1484     return false;
  1488 void
  1489 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  1490   // We are about to decide on whether this pause will be an
  1491   // initial-mark pause.
  1493   // First, during_initial_mark_pause() should not be already set. We
  1494   // will set it here if we have to. However, it should be cleared by
  1495   // the end of the pause (it's only set for the duration of an
  1496   // initial-mark pause).
  1497   assert(!during_initial_mark_pause(), "pre-condition");
  1499   if (initiate_conc_mark_if_possible()) {
  1500     // We had noticed on a previous pause that the heap occupancy has
  1501     // gone over the initiating threshold and we should start a
  1502     // concurrent marking cycle. So we might initiate one.
  1504     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  1505     if (!during_cycle) {
  1506       // The concurrent marking thread is not "during a cycle", i.e.,
  1507       // it has completed the last one. So we can go ahead and
  1508       // initiate a new cycle.
  1510       set_during_initial_mark_pause();
  1511       // We do not allow mixed GCs during marking.
  1512       if (!gcs_are_young()) {
  1513         set_gcs_are_young(true);
  1514         ergo_verbose0(ErgoMixedGCs,
  1515                       "end mixed GCs",
  1516                       ergo_format_reason("concurrent cycle is about to start"));
  1519       // And we can now clear initiate_conc_mark_if_possible() as
  1520       // we've already acted on it.
  1521       clear_initiate_conc_mark_if_possible();
  1523       ergo_verbose0(ErgoConcCycles,
  1524                   "initiate concurrent cycle",
  1525                   ergo_format_reason("concurrent cycle initiation requested"));
  1526     } else {
  1527       // The concurrent marking thread is still finishing up the
  1528       // previous cycle. If we start one right now the two cycles
  1529       // overlap. In particular, the concurrent marking thread might
  1530       // be in the process of clearing the next marking bitmap (which
  1531       // we will use for the next cycle if we start one). Starting a
  1532       // cycle now will be bad given that parts of the marking
  1533       // information might get cleared by the marking thread. And we
  1534       // cannot wait for the marking thread to finish the cycle as it
  1535       // periodically yields while clearing the next marking bitmap
  1536       // and, if it's in a yield point, it's waiting for us to
  1537       // finish. So, at this point we will not start a cycle and we'll
  1538       // let the concurrent marking thread complete the last one.
  1539       ergo_verbose0(ErgoConcCycles,
  1540                     "do not initiate concurrent cycle",
  1541                     ergo_format_reason("concurrent cycle already in progress"));
  1546 class KnownGarbageClosure: public HeapRegionClosure {
  1547   G1CollectedHeap* _g1h;
  1548   CollectionSetChooser* _hrSorted;
  1550 public:
  1551   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  1552     _g1h(G1CollectedHeap::heap()), _hrSorted(hrSorted) { }
  1554   bool doHeapRegion(HeapRegion* r) {
  1555     // We only include humongous regions in collection
  1556     // sets when concurrent mark shows that their contained object is
  1557     // unreachable.
  1559     // Do we have any marking information for this region?
  1560     if (r->is_marked()) {
  1561       // We will skip any region that's currently used as an old GC
  1562       // alloc region (we should not consider those for collection
  1563       // before we fill them up).
  1564       if (_hrSorted->should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1565         _hrSorted->add_region(r);
  1568     return false;
  1570 };
  1572 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  1573   G1CollectedHeap* _g1h;
  1574   CSetChooserParUpdater _cset_updater;
  1576 public:
  1577   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  1578                            uint chunk_size) :
  1579     _g1h(G1CollectedHeap::heap()),
  1580     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
  1582   bool doHeapRegion(HeapRegion* r) {
  1583     // Do we have any marking information for this region?
  1584     if (r->is_marked()) {
  1585       // We will skip any region that's currently used as an old GC
  1586       // alloc region (we should not consider those for collection
  1587       // before we fill them up).
  1588       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
  1589         _cset_updater.add_region(r);
  1592     return false;
  1594 };
  1596 class ParKnownGarbageTask: public AbstractGangTask {
  1597   CollectionSetChooser* _hrSorted;
  1598   uint _chunk_size;
  1599   G1CollectedHeap* _g1;
  1600 public:
  1601   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size) :
  1602     AbstractGangTask("ParKnownGarbageTask"),
  1603     _hrSorted(hrSorted), _chunk_size(chunk_size),
  1604     _g1(G1CollectedHeap::heap()) { }
  1606   void work(uint worker_id) {
  1607     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
  1609     // Back to zero for the claim value.
  1610     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, worker_id,
  1611                                          _g1->workers()->active_workers(),
  1612                                          HeapRegion::InitialClaimValue);
  1614 };
  1616 void
  1617 G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
  1618   _collectionSetChooser->clear();
  1620   uint region_num = _g1->num_regions();
  1621   if (G1CollectedHeap::use_parallel_gc_threads()) {
  1622     const uint OverpartitionFactor = 4;
  1623     uint WorkUnit;
  1624     // The use of MinChunkSize = 8 in the original code
  1625     // causes some assertion failures when the total number of
  1626     // region is less than 8.  The code here tries to fix that.
  1627     // Should the original code also be fixed?
  1628     if (no_of_gc_threads > 0) {
  1629       const uint MinWorkUnit = MAX2(region_num / no_of_gc_threads, 1U);
  1630       WorkUnit = MAX2(region_num / (no_of_gc_threads * OverpartitionFactor),
  1631                       MinWorkUnit);
  1632     } else {
  1633       assert(no_of_gc_threads > 0,
  1634         "The active gc workers should be greater than 0");
  1635       // In a product build do something reasonable to avoid a crash.
  1636       const uint MinWorkUnit = MAX2(region_num / (uint) ParallelGCThreads, 1U);
  1637       WorkUnit =
  1638         MAX2(region_num / (uint) (ParallelGCThreads * OverpartitionFactor),
  1639              MinWorkUnit);
  1641     _collectionSetChooser->prepare_for_par_region_addition(_g1->num_regions(),
  1642                                                            WorkUnit);
  1643     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  1644                                             (int) WorkUnit);
  1645     _g1->workers()->run_task(&parKnownGarbageTask);
  1647     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  1648            "sanity check");
  1649   } else {
  1650     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  1651     _g1->heap_region_iterate(&knownGarbagecl);
  1654   _collectionSetChooser->sort_regions();
  1656   double end_sec = os::elapsedTime();
  1657   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
  1658   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  1659   _cur_mark_stop_world_time_ms += elapsed_time_ms;
  1660   _prev_collection_pause_end_ms += elapsed_time_ms;
  1661   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
  1664 // Add the heap region at the head of the non-incremental collection set
  1665 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
  1666   assert(_inc_cset_build_state == Active, "Precondition");
  1667   assert(hr->is_old(), "the region should be old");
  1669   assert(!hr->in_collection_set(), "should not already be in the CSet");
  1670   hr->set_in_collection_set(true);
  1671   hr->set_next_in_collection_set(_collection_set);
  1672   _collection_set = hr;
  1673   _collection_set_bytes_used_before += hr->used();
  1674   _g1->register_old_region_with_in_cset_fast_test(hr);
  1675   size_t rs_length = hr->rem_set()->occupied();
  1676   _recorded_rs_lengths += rs_length;
  1677   _old_cset_region_length += 1;
  1680 // Initialize the per-collection-set information
  1681 void G1CollectorPolicy::start_incremental_cset_building() {
  1682   assert(_inc_cset_build_state == Inactive, "Precondition");
  1684   _inc_cset_head = NULL;
  1685   _inc_cset_tail = NULL;
  1686   _inc_cset_bytes_used_before = 0;
  1688   _inc_cset_max_finger = 0;
  1689   _inc_cset_recorded_rs_lengths = 0;
  1690   _inc_cset_recorded_rs_lengths_diffs = 0;
  1691   _inc_cset_predicted_elapsed_time_ms = 0.0;
  1692   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1693   _inc_cset_build_state = Active;
  1696 void G1CollectorPolicy::finalize_incremental_cset_building() {
  1697   assert(_inc_cset_build_state == Active, "Precondition");
  1698   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
  1700   // The two "main" fields, _inc_cset_recorded_rs_lengths and
  1701   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
  1702   // that adds a new region to the CSet. Further updates by the
  1703   // concurrent refinement thread that samples the young RSet lengths
  1704   // are accumulated in the *_diffs fields. Here we add the diffs to
  1705   // the "main" fields.
  1707   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
  1708     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
  1709   } else {
  1710     // This is defensive. The diff should in theory be always positive
  1711     // as RSets can only grow between GCs. However, given that we
  1712     // sample their size concurrently with other threads updating them
  1713     // it's possible that we might get the wrong size back, which
  1714     // could make the calculations somewhat inaccurate.
  1715     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
  1716     if (_inc_cset_recorded_rs_lengths >= diffs) {
  1717       _inc_cset_recorded_rs_lengths -= diffs;
  1718     } else {
  1719       _inc_cset_recorded_rs_lengths = 0;
  1722   _inc_cset_predicted_elapsed_time_ms +=
  1723                                      _inc_cset_predicted_elapsed_time_ms_diffs;
  1725   _inc_cset_recorded_rs_lengths_diffs = 0;
  1726   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
  1729 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  1730   // This routine is used when:
  1731   // * adding survivor regions to the incremental cset at the end of an
  1732   //   evacuation pause,
  1733   // * adding the current allocation region to the incremental cset
  1734   //   when it is retired, and
  1735   // * updating existing policy information for a region in the
  1736   //   incremental cset via young list RSet sampling.
  1737   // Therefore this routine may be called at a safepoint by the
  1738   // VM thread, or in-between safepoints by mutator threads (when
  1739   // retiring the current allocation region) or a concurrent
  1740   // refine thread (RSet sampling).
  1742   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1743   size_t used_bytes = hr->used();
  1744   _inc_cset_recorded_rs_lengths += rs_length;
  1745   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  1746   _inc_cset_bytes_used_before += used_bytes;
  1748   // Cache the values we have added to the aggregated informtion
  1749   // in the heap region in case we have to remove this region from
  1750   // the incremental collection set, or it is updated by the
  1751   // rset sampling code
  1752   hr->set_recorded_rs_length(rs_length);
  1753   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  1756 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
  1757                                                      size_t new_rs_length) {
  1758   // Update the CSet information that is dependent on the new RS length
  1759   assert(hr->is_young(), "Precondition");
  1760   assert(!SafepointSynchronize::is_at_safepoint(),
  1761                                                "should not be at a safepoint");
  1763   // We could have updated _inc_cset_recorded_rs_lengths and
  1764   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
  1765   // that atomically, as this code is executed by a concurrent
  1766   // refinement thread, potentially concurrently with a mutator thread
  1767   // allocating a new region and also updating the same fields. To
  1768   // avoid the atomic operations we accumulate these updates on two
  1769   // separate fields (*_diffs) and we'll just add them to the "main"
  1770   // fields at the start of a GC.
  1772   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
  1773   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
  1774   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
  1776   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  1777   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  1778   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
  1779   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
  1781   hr->set_recorded_rs_length(new_rs_length);
  1782   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
  1785 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  1786   assert(hr->is_young(), "invariant");
  1787   assert(hr->young_index_in_cset() > -1, "should have already been set");
  1788   assert(_inc_cset_build_state == Active, "Precondition");
  1790   // We need to clear and set the cached recorded/cached collection set
  1791   // information in the heap region here (before the region gets added
  1792   // to the collection set). An individual heap region's cached values
  1793   // are calculated, aggregated with the policy collection set info,
  1794   // and cached in the heap region here (initially) and (subsequently)
  1795   // by the Young List sampling code.
  1797   size_t rs_length = hr->rem_set()->occupied();
  1798   add_to_incremental_cset_info(hr, rs_length);
  1800   HeapWord* hr_end = hr->end();
  1801   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  1803   assert(!hr->in_collection_set(), "invariant");
  1804   hr->set_in_collection_set(true);
  1805   assert( hr->next_in_collection_set() == NULL, "invariant");
  1807   _g1->register_young_region_with_in_cset_fast_test(hr);
  1810 // Add the region at the RHS of the incremental cset
  1811 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  1812   // We should only ever be appending survivors at the end of a pause
  1813   assert(hr->is_survivor(), "Logic");
  1815   // Do the 'common' stuff
  1816   add_region_to_incremental_cset_common(hr);
  1818   // Now add the region at the right hand side
  1819   if (_inc_cset_tail == NULL) {
  1820     assert(_inc_cset_head == NULL, "invariant");
  1821     _inc_cset_head = hr;
  1822   } else {
  1823     _inc_cset_tail->set_next_in_collection_set(hr);
  1825   _inc_cset_tail = hr;
  1828 // Add the region to the LHS of the incremental cset
  1829 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  1830   // Survivors should be added to the RHS at the end of a pause
  1831   assert(hr->is_eden(), "Logic");
  1833   // Do the 'common' stuff
  1834   add_region_to_incremental_cset_common(hr);
  1836   // Add the region at the left hand side
  1837   hr->set_next_in_collection_set(_inc_cset_head);
  1838   if (_inc_cset_head == NULL) {
  1839     assert(_inc_cset_tail == NULL, "Invariant");
  1840     _inc_cset_tail = hr;
  1842   _inc_cset_head = hr;
  1845 #ifndef PRODUCT
  1846 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  1847   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  1849   st->print_cr("\nCollection_set:");
  1850   HeapRegion* csr = list_head;
  1851   while (csr != NULL) {
  1852     HeapRegion* next = csr->next_in_collection_set();
  1853     assert(csr->in_collection_set(), "bad CS");
  1854     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
  1855                  HR_FORMAT_PARAMS(csr),
  1856                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
  1857                  csr->age_in_surv_rate_group_cond());
  1858     csr = next;
  1861 #endif // !PRODUCT
  1863 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
  1864   // Returns the given amount of reclaimable bytes (that represents
  1865   // the amount of reclaimable space still to be collected) as a
  1866   // percentage of the current heap capacity.
  1867   size_t capacity_bytes = _g1->capacity();
  1868   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
  1871 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
  1872                                                 const char* false_action_str) {
  1873   CollectionSetChooser* cset_chooser = _collectionSetChooser;
  1874   if (cset_chooser->is_empty()) {
  1875     ergo_verbose0(ErgoMixedGCs,
  1876                   false_action_str,
  1877                   ergo_format_reason("candidate old regions not available"));
  1878     return false;
  1881   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
  1882   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  1883   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  1884   double threshold = (double) G1HeapWastePercent;
  1885   if (reclaimable_perc <= threshold) {
  1886     ergo_verbose4(ErgoMixedGCs,
  1887               false_action_str,
  1888               ergo_format_reason("reclaimable percentage not over threshold")
  1889               ergo_format_region("candidate old regions")
  1890               ergo_format_byte_perc("reclaimable")
  1891               ergo_format_perc("threshold"),
  1892               cset_chooser->remaining_regions(),
  1893               reclaimable_bytes,
  1894               reclaimable_perc, threshold);
  1895     return false;
  1898   ergo_verbose4(ErgoMixedGCs,
  1899                 true_action_str,
  1900                 ergo_format_reason("candidate old regions available")
  1901                 ergo_format_region("candidate old regions")
  1902                 ergo_format_byte_perc("reclaimable")
  1903                 ergo_format_perc("threshold"),
  1904                 cset_chooser->remaining_regions(),
  1905                 reclaimable_bytes,
  1906                 reclaimable_perc, threshold);
  1907   return true;
  1910 uint G1CollectorPolicy::calc_min_old_cset_length() {
  1911   // The min old CSet region bound is based on the maximum desired
  1912   // number of mixed GCs after a cycle. I.e., even if some old regions
  1913   // look expensive, we should add them to the CSet anyway to make
  1914   // sure we go through the available old regions in no more than the
  1915   // maximum desired number of mixed GCs.
  1916   //
  1917   // The calculation is based on the number of marked regions we added
  1918   // to the CSet chooser in the first place, not how many remain, so
  1919   // that the result is the same during all mixed GCs that follow a cycle.
  1921   const size_t region_num = (size_t) _collectionSetChooser->length();
  1922   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
  1923   size_t result = region_num / gc_num;
  1924   // emulate ceiling
  1925   if (result * gc_num < region_num) {
  1926     result += 1;
  1928   return (uint) result;
  1931 uint G1CollectorPolicy::calc_max_old_cset_length() {
  1932   // The max old CSet region bound is based on the threshold expressed
  1933   // as a percentage of the heap size. I.e., it should bound the
  1934   // number of old regions added to the CSet irrespective of how many
  1935   // of them are available.
  1937   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1938   const size_t region_num = g1h->num_regions();
  1939   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
  1940   size_t result = region_num * perc / 100;
  1941   // emulate ceiling
  1942   if (100 * result < region_num * perc) {
  1943     result += 1;
  1945   return (uint) result;
  1949 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
  1950   double young_start_time_sec = os::elapsedTime();
  1952   YoungList* young_list = _g1->young_list();
  1953   finalize_incremental_cset_building();
  1955   guarantee(target_pause_time_ms > 0.0,
  1956             err_msg("target_pause_time_ms = %1.6lf should be positive",
  1957                     target_pause_time_ms));
  1958   guarantee(_collection_set == NULL, "Precondition");
  1960   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  1961   double predicted_pause_time_ms = base_time_ms;
  1962   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
  1964   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
  1965                 "start choosing CSet",
  1966                 ergo_format_size("_pending_cards")
  1967                 ergo_format_ms("predicted base time")
  1968                 ergo_format_ms("remaining time")
  1969                 ergo_format_ms("target pause time"),
  1970                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
  1972   _last_gc_was_young = gcs_are_young() ? true : false;
  1974   if (_last_gc_was_young) {
  1975     _trace_gen0_time_data.increment_young_collection_count();
  1976   } else {
  1977     _trace_gen0_time_data.increment_mixed_collection_count();
  1980   // The young list is laid with the survivor regions from the previous
  1981   // pause are appended to the RHS of the young list, i.e.
  1982   //   [Newly Young Regions ++ Survivors from last pause].
  1984   uint survivor_region_length = young_list->survivor_length();
  1985   uint eden_region_length = young_list->length() - survivor_region_length;
  1986   init_cset_region_lengths(eden_region_length, survivor_region_length);
  1988   HeapRegion* hr = young_list->first_survivor_region();
  1989   while (hr != NULL) {
  1990     assert(hr->is_survivor(), "badly formed young list");
  1991     // There is a convention that all the young regions in the CSet
  1992     // are tagged as "eden", so we do this for the survivors here. We
  1993     // use the special set_eden_pre_gc() as it doesn't check that the
  1994     // region is free (which is not the case here).
  1995     hr->set_eden_pre_gc();
  1996     hr = hr->get_next_young_region();
  1999   // Clear the fields that point to the survivor list - they are all young now.
  2000   young_list->clear_survivors();
  2002   _collection_set = _inc_cset_head;
  2003   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2004   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
  2005   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2007   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
  2008                 "add young regions to CSet",
  2009                 ergo_format_region("eden")
  2010                 ergo_format_region("survivors")
  2011                 ergo_format_ms("predicted young region time"),
  2012                 eden_region_length, survivor_region_length,
  2013                 _inc_cset_predicted_elapsed_time_ms);
  2015   // The number of recorded young regions is the incremental
  2016   // collection set's current size
  2017   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2019   double young_end_time_sec = os::elapsedTime();
  2020   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
  2022   // Set the start of the non-young choice time.
  2023   double non_young_start_time_sec = young_end_time_sec;
  2025   if (!gcs_are_young()) {
  2026     CollectionSetChooser* cset_chooser = _collectionSetChooser;
  2027     cset_chooser->verify();
  2028     const uint min_old_cset_length = calc_min_old_cset_length();
  2029     const uint max_old_cset_length = calc_max_old_cset_length();
  2031     uint expensive_region_num = 0;
  2032     bool check_time_remaining = adaptive_young_list_length();
  2034     HeapRegion* hr = cset_chooser->peek();
  2035     while (hr != NULL) {
  2036       if (old_cset_region_length() >= max_old_cset_length) {
  2037         // Added maximum number of old regions to the CSet.
  2038         ergo_verbose2(ErgoCSetConstruction,
  2039                       "finish adding old regions to CSet",
  2040                       ergo_format_reason("old CSet region num reached max")
  2041                       ergo_format_region("old")
  2042                       ergo_format_region("max"),
  2043                       old_cset_region_length(), max_old_cset_length);
  2044         break;
  2048       // Stop adding regions if the remaining reclaimable space is
  2049       // not above G1HeapWastePercent.
  2050       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
  2051       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
  2052       double threshold = (double) G1HeapWastePercent;
  2053       if (reclaimable_perc <= threshold) {
  2054         // We've added enough old regions that the amount of uncollected
  2055         // reclaimable space is at or below the waste threshold. Stop
  2056         // adding old regions to the CSet.
  2057         ergo_verbose5(ErgoCSetConstruction,
  2058                       "finish adding old regions to CSet",
  2059                       ergo_format_reason("reclaimable percentage not over threshold")
  2060                       ergo_format_region("old")
  2061                       ergo_format_region("max")
  2062                       ergo_format_byte_perc("reclaimable")
  2063                       ergo_format_perc("threshold"),
  2064                       old_cset_region_length(),
  2065                       max_old_cset_length,
  2066                       reclaimable_bytes,
  2067                       reclaimable_perc, threshold);
  2068         break;
  2071       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
  2072       if (check_time_remaining) {
  2073         if (predicted_time_ms > time_remaining_ms) {
  2074           // Too expensive for the current CSet.
  2076           if (old_cset_region_length() >= min_old_cset_length) {
  2077             // We have added the minimum number of old regions to the CSet,
  2078             // we are done with this CSet.
  2079             ergo_verbose4(ErgoCSetConstruction,
  2080                           "finish adding old regions to CSet",
  2081                           ergo_format_reason("predicted time is too high")
  2082                           ergo_format_ms("predicted time")
  2083                           ergo_format_ms("remaining time")
  2084                           ergo_format_region("old")
  2085                           ergo_format_region("min"),
  2086                           predicted_time_ms, time_remaining_ms,
  2087                           old_cset_region_length(), min_old_cset_length);
  2088             break;
  2091           // We'll add it anyway given that we haven't reached the
  2092           // minimum number of old regions.
  2093           expensive_region_num += 1;
  2095       } else {
  2096         if (old_cset_region_length() >= min_old_cset_length) {
  2097           // In the non-auto-tuning case, we'll finish adding regions
  2098           // to the CSet if we reach the minimum.
  2099           ergo_verbose2(ErgoCSetConstruction,
  2100                         "finish adding old regions to CSet",
  2101                         ergo_format_reason("old CSet region num reached min")
  2102                         ergo_format_region("old")
  2103                         ergo_format_region("min"),
  2104                         old_cset_region_length(), min_old_cset_length);
  2105           break;
  2109       // We will add this region to the CSet.
  2110       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
  2111       predicted_pause_time_ms += predicted_time_ms;
  2112       cset_chooser->remove_and_move_to_next(hr);
  2113       _g1->old_set_remove(hr);
  2114       add_old_region_to_cset(hr);
  2116       hr = cset_chooser->peek();
  2118     if (hr == NULL) {
  2119       ergo_verbose0(ErgoCSetConstruction,
  2120                     "finish adding old regions to CSet",
  2121                     ergo_format_reason("candidate old regions not available"));
  2124     if (expensive_region_num > 0) {
  2125       // We print the information once here at the end, predicated on
  2126       // whether we added any apparently expensive regions or not, to
  2127       // avoid generating output per region.
  2128       ergo_verbose4(ErgoCSetConstruction,
  2129                     "added expensive regions to CSet",
  2130                     ergo_format_reason("old CSet region num not reached min")
  2131                     ergo_format_region("old")
  2132                     ergo_format_region("expensive")
  2133                     ergo_format_region("min")
  2134                     ergo_format_ms("remaining time"),
  2135                     old_cset_region_length(),
  2136                     expensive_region_num,
  2137                     min_old_cset_length,
  2138                     time_remaining_ms);
  2141     cset_chooser->verify();
  2144   stop_incremental_cset_building();
  2146   ergo_verbose5(ErgoCSetConstruction,
  2147                 "finish choosing CSet",
  2148                 ergo_format_region("eden")
  2149                 ergo_format_region("survivors")
  2150                 ergo_format_region("old")
  2151                 ergo_format_ms("predicted pause time")
  2152                 ergo_format_ms("target pause time"),
  2153                 eden_region_length, survivor_region_length,
  2154                 old_cset_region_length(),
  2155                 predicted_pause_time_ms, target_pause_time_ms);
  2157   double non_young_end_time_sec = os::elapsedTime();
  2158   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
  2159   evacuation_info.set_collectionset_regions(cset_region_length());
  2162 void TraceGen0TimeData::record_start_collection(double time_to_stop_the_world_ms) {
  2163   if(TraceGen0Time) {
  2164     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
  2168 void TraceGen0TimeData::record_yield_time(double yield_time_ms) {
  2169   if(TraceGen0Time) {
  2170     _all_yield_times_ms.add(yield_time_ms);
  2174 void TraceGen0TimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
  2175   if(TraceGen0Time) {
  2176     _total.add(pause_time_ms);
  2177     _other.add(pause_time_ms - phase_times->accounted_time_ms());
  2178     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
  2179     _parallel.add(phase_times->cur_collection_par_time_ms());
  2180     _ext_root_scan.add(phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan));
  2181     _satb_filtering.add(phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering));
  2182     _update_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS));
  2183     _scan_rs.add(phase_times->average_time_ms(G1GCPhaseTimes::ScanRS));
  2184     _obj_copy.add(phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy));
  2185     _termination.add(phase_times->average_time_ms(G1GCPhaseTimes::Termination));
  2187     double parallel_known_time = phase_times->average_time_ms(G1GCPhaseTimes::ExtRootScan) +
  2188       phase_times->average_time_ms(G1GCPhaseTimes::SATBFiltering) +
  2189       phase_times->average_time_ms(G1GCPhaseTimes::UpdateRS) +
  2190       phase_times->average_time_ms(G1GCPhaseTimes::ScanRS) +
  2191       phase_times->average_time_ms(G1GCPhaseTimes::ObjCopy) +
  2192       phase_times->average_time_ms(G1GCPhaseTimes::Termination);
  2194     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
  2195     _parallel_other.add(parallel_other_time);
  2196     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
  2200 void TraceGen0TimeData::increment_young_collection_count() {
  2201   if(TraceGen0Time) {
  2202     ++_young_pause_num;
  2206 void TraceGen0TimeData::increment_mixed_collection_count() {
  2207   if(TraceGen0Time) {
  2208     ++_mixed_pause_num;
  2212 void TraceGen0TimeData::print_summary(const char* str,
  2213                                       const NumberSeq* seq) const {
  2214   double sum = seq->sum();
  2215   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
  2216                 str, sum / 1000.0, seq->avg());
  2219 void TraceGen0TimeData::print_summary_sd(const char* str,
  2220                                          const NumberSeq* seq) const {
  2221   print_summary(str, seq);
  2222   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2223                 "(num", seq->num(), seq->sd(), seq->maximum());
  2226 void TraceGen0TimeData::print() const {
  2227   if (!TraceGen0Time) {
  2228     return;
  2231   gclog_or_tty->print_cr("ALL PAUSES");
  2232   print_summary_sd("   Total", &_total);
  2233   gclog_or_tty->cr();
  2234   gclog_or_tty->cr();
  2235   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
  2236   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
  2237   gclog_or_tty->cr();
  2239   gclog_or_tty->print_cr("EVACUATION PAUSES");
  2241   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
  2242     gclog_or_tty->print_cr("none");
  2243   } else {
  2244     print_summary_sd("   Evacuation Pauses", &_total);
  2245     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
  2246     print_summary("      Parallel Time", &_parallel);
  2247     print_summary("         Ext Root Scanning", &_ext_root_scan);
  2248     print_summary("         SATB Filtering", &_satb_filtering);
  2249     print_summary("         Update RS", &_update_rs);
  2250     print_summary("         Scan RS", &_scan_rs);
  2251     print_summary("         Object Copy", &_obj_copy);
  2252     print_summary("         Termination", &_termination);
  2253     print_summary("         Parallel Other", &_parallel_other);
  2254     print_summary("      Clear CT", &_clear_ct);
  2255     print_summary("      Other", &_other);
  2257   gclog_or_tty->cr();
  2259   gclog_or_tty->print_cr("MISC");
  2260   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
  2261   print_summary_sd("   Yields", &_all_yield_times_ms);
  2264 void TraceGen1TimeData::record_full_collection(double full_gc_time_ms) {
  2265   if (TraceGen1Time) {
  2266     _all_full_gc_times.add(full_gc_time_ms);
  2270 void TraceGen1TimeData::print() const {
  2271   if (!TraceGen1Time) {
  2272     return;
  2275   if (_all_full_gc_times.num() > 0) {
  2276     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2277       _all_full_gc_times.num(),
  2278       _all_full_gc_times.sum() / 1000.0);
  2279     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
  2280     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2281       _all_full_gc_times.sd(),
  2282       _all_full_gc_times.maximum());

mercurial