src/share/vm/gc_implementation/g1/g1AllocRegion.hpp

Mon, 19 Aug 2019 10:11:31 +0200

author
neugens
date
Mon, 19 Aug 2019 10:11:31 +0200
changeset 9861
a248d0be1309
parent 7118
227a9e5e4b4a
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

8229401: Fix JFR code cache test failures
8223689: Add JFR Thread Sampling Support
8223690: Add JFR BiasedLock Event Support
8223691: Add JFR G1 Region Type Change Event Support
8223692: Add JFR G1 Heap Summary Event Support
Summary: Backport JFR from JDK11, additional fixes
Reviewed-by: neugens, apetushkov
Contributed-by: denghui.ddh@alibaba-inc.com

     1 /*
     2  * Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCREGION_HPP
    28 #include "gc_implementation/g1/heapRegion.hpp"
    30 class G1CollectedHeap;
    32 // 0 -> no tracing, 1 -> basic tracing, 2 -> basic + allocation tracing
    33 #define G1_ALLOC_REGION_TRACING 0
    35 class ar_ext_msg;
    37 // A class that holds a region that is active in satisfying allocation
    38 // requests, potentially issued in parallel. When the active region is
    39 // full it will be retired and replaced with a new one. The
    40 // implementation assumes that fast-path allocations will be lock-free
    41 // and a lock will need to be taken when the active region needs to be
    42 // replaced.
    44 class G1AllocRegion VALUE_OBJ_CLASS_SPEC {
    45   friend class ar_ext_msg;
    47 private:
    48   // The active allocating region we are currently allocating out
    49   // of. The invariant is that if this object is initialized (i.e.,
    50   // init() has been called and release() has not) then _alloc_region
    51   // is either an active allocating region or the dummy region (i.e.,
    52   // it can never be NULL) and this object can be used to satisfy
    53   // allocation requests. If this object is not initialized
    54   // (i.e. init() has not been called or release() has been called)
    55   // then _alloc_region is NULL and this object should not be used to
    56   // satisfy allocation requests (it was done this way to force the
    57   // correct use of init() and release()).
    58   HeapRegion* volatile _alloc_region;
    60   // Allocation context associated with this alloc region.
    61   AllocationContext_t _allocation_context;
    63   // It keeps track of the distinct number of regions that are used
    64   // for allocation in the active interval of this object, i.e.,
    65   // between a call to init() and a call to release(). The count
    66   // mostly includes regions that are freshly allocated, as well as
    67   // the region that is re-used using the set() method. This count can
    68   // be used in any heuristics that might want to bound how many
    69   // distinct regions this object can used during an active interval.
    70   uint _count;
    72   // When we set up a new active region we save its used bytes in this
    73   // field so that, when we retire it, we can calculate how much space
    74   // we allocated in it.
    75   size_t _used_bytes_before;
    77   // When true, indicates that allocate calls should do BOT updates.
    78   const bool _bot_updates;
    80   // Useful for debugging and tracing.
    81   const char* _name;
    83   // A dummy region (i.e., it's been allocated specially for this
    84   // purpose and it is not part of the heap) that is full (i.e., top()
    85   // == end()). When we don't have a valid active region we make
    86   // _alloc_region point to this. This allows us to skip checking
    87   // whether the _alloc_region is NULL or not.
    88   static HeapRegion* _dummy_region;
    90   // Some of the methods below take a bot_updates parameter. Its value
    91   // should be the same as the _bot_updates field. The idea is that
    92   // the parameter will be a constant for a particular alloc region
    93   // and, given that these methods will be hopefully inlined, the
    94   // compiler should compile out the test.
    96   // Perform a non-MT-safe allocation out of the given region.
    97   static inline HeapWord* allocate(HeapRegion* alloc_region,
    98                                    size_t word_size,
    99                                    bool bot_updates);
   101   // Perform a MT-safe allocation out of the given region.
   102   static inline HeapWord* par_allocate(HeapRegion* alloc_region,
   103                                        size_t word_size,
   104                                        bool bot_updates);
   106   // Ensure that the region passed as a parameter has been filled up
   107   // so that noone else can allocate out of it any more.
   108   static void fill_up_remaining_space(HeapRegion* alloc_region,
   109                                       bool bot_updates);
   111   // Retire the active allocating region. If fill_up is true then make
   112   // sure that the region is full before we retire it so that noone
   113   // else can allocate out of it.
   114   void retire(bool fill_up);
   116   // After a region is allocated by alloc_new_region, this
   117   // method is used to set it as the active alloc_region
   118   void update_alloc_region(HeapRegion* alloc_region);
   120   // Allocate a new active region and use it to perform a word_size
   121   // allocation. The force parameter will be passed on to
   122   // G1CollectedHeap::allocate_new_alloc_region() and tells it to try
   123   // to allocate a new region even if the max has been reached.
   124   HeapWord* new_alloc_region_and_allocate(size_t word_size, bool force);
   126   void fill_in_ext_msg(ar_ext_msg* msg, const char* message);
   128 protected:
   129   // For convenience as subclasses use it.
   130   static G1CollectedHeap* _g1h;
   132   virtual HeapRegion* allocate_new_region(size_t word_size, bool force) = 0;
   133   virtual void retire_region(HeapRegion* alloc_region,
   134                              size_t allocated_bytes) = 0;
   136   G1AllocRegion(const char* name, bool bot_updates);
   138 public:
   139   static void setup(G1CollectedHeap* g1h, HeapRegion* dummy_region);
   141   HeapRegion* get() const {
   142     HeapRegion * hr = _alloc_region;
   143     // Make sure that the dummy region does not escape this class.
   144     return (hr == _dummy_region) ? NULL : hr;
   145   }
   147   void set_allocation_context(AllocationContext_t context) { _allocation_context = context; }
   148   AllocationContext_t  allocation_context() { return _allocation_context; }
   150   uint count() { return _count; }
   152   // The following two are the building blocks for the allocation method.
   154   // First-level allocation: Should be called without holding a
   155   // lock. It will try to allocate lock-free out of the active region,
   156   // or return NULL if it was unable to.
   157   inline HeapWord* attempt_allocation(size_t word_size, bool bot_updates);
   159   // Second-level allocation: Should be called while holding a
   160   // lock. It will try to first allocate lock-free out of the active
   161   // region or, if it's unable to, it will try to replace the active
   162   // alloc region with a new one. We require that the caller takes the
   163   // appropriate lock before calling this so that it is easier to make
   164   // it conform to its locking protocol.
   165   inline HeapWord* attempt_allocation_locked(size_t word_size,
   166                                              bool bot_updates);
   168   // Should be called to allocate a new region even if the max of this
   169   // type of regions has been reached. Should only be called if other
   170   // allocation attempts have failed and we are not holding a valid
   171   // active region.
   172   inline HeapWord* attempt_allocation_force(size_t word_size,
   173                                             bool bot_updates);
   175   // Should be called before we start using this object.
   176   void init();
   178   // This can be used to set the active region to a specific
   179   // region. (Use Example: we try to retain the last old GC alloc
   180   // region that we've used during a GC and we can use set() to
   181   // re-instate it at the beginning of the next GC.)
   182   void set(HeapRegion* alloc_region);
   184   // Should be called when we want to release the active region which
   185   // is returned after it's been retired.
   186   virtual HeapRegion* release();
   188 #if G1_ALLOC_REGION_TRACING
   189   void trace(const char* str, size_t word_size = 0, HeapWord* result = NULL);
   190 #else // G1_ALLOC_REGION_TRACING
   191   void trace(const char* str, size_t word_size = 0, HeapWord* result = NULL) { }
   192 #endif // G1_ALLOC_REGION_TRACING
   193 };
   195 class MutatorAllocRegion : public G1AllocRegion {
   196 protected:
   197   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   198   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   199 public:
   200   MutatorAllocRegion()
   201     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   202 };
   204 class SurvivorGCAllocRegion : public G1AllocRegion {
   205 protected:
   206   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   207   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   208 public:
   209   SurvivorGCAllocRegion()
   210   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   211 };
   213 class OldGCAllocRegion : public G1AllocRegion {
   214 protected:
   215   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   216   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   217 public:
   218   OldGCAllocRegion()
   219   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   221   // This specialization of release() makes sure that the last card that has
   222   // been allocated into has been completely filled by a dummy object.  This
   223   // avoids races when remembered set scanning wants to update the BOT of the
   224   // last card in the retained old gc alloc region, and allocation threads
   225   // allocating into that card at the same time.
   226   virtual HeapRegion* release();
   227 };
   229 class ar_ext_msg : public err_msg {
   230 public:
   231   ar_ext_msg(G1AllocRegion* alloc_region, const char *message) : err_msg("%s", "") {
   232     alloc_region->fill_in_ext_msg(this, message);
   233   }
   234 };
   236 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1ALLOCREGION_HPP

mercurial