src/share/vm/code/dependencies.cpp

Mon, 19 Aug 2019 10:11:31 +0200

author
neugens
date
Mon, 19 Aug 2019 10:11:31 +0200
changeset 9861
a248d0be1309
parent 9606
c40a28e54185
child 9637
eef07cd490d4
permissions
-rw-r--r--

8229401: Fix JFR code cache test failures
8223689: Add JFR Thread Sampling Support
8223690: Add JFR BiasedLock Event Support
8223691: Add JFR G1 Region Type Change Event Support
8223692: Add JFR G1 Heap Summary Event Support
Summary: Backport JFR from JDK11, additional fixes
Reviewed-by: neugens, apetushkov
Contributed-by: denghui.ddh@alibaba-inc.com

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciArrayKlass.hpp"
    27 #include "ci/ciEnv.hpp"
    28 #include "ci/ciKlass.hpp"
    29 #include "ci/ciMethod.hpp"
    30 #include "code/dependencies.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/handles.hpp"
    34 #include "runtime/handles.inline.hpp"
    35 #include "runtime/thread.inline.hpp"
    36 #include "utilities/copy.hpp"
    39 #ifdef ASSERT
    40 static bool must_be_in_vm() {
    41   Thread* thread = Thread::current();
    42   if (thread->is_Java_thread())
    43     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
    44   else
    45     return true;  //something like this: thread->is_VM_thread();
    46 }
    47 #endif //ASSERT
    49 void Dependencies::initialize(ciEnv* env) {
    50   Arena* arena = env->arena();
    51   _oop_recorder = env->oop_recorder();
    52   _log = env->log();
    53   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
    54   DEBUG_ONLY(_deps[end_marker] = NULL);
    55   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
    56     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
    57   }
    58   _content_bytes = NULL;
    59   _size_in_bytes = (size_t)-1;
    61   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
    62 }
    64 void Dependencies::assert_evol_method(ciMethod* m) {
    65   assert_common_1(evol_method, m);
    66 }
    68 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
    69   if (ctxk->is_array_klass()) {
    70     // As a special case, support this assertion on an array type,
    71     // which reduces to an assertion on its element type.
    72     // Note that this cannot be done with assertions that
    73     // relate to concreteness or abstractness.
    74     ciType* elemt = ctxk->as_array_klass()->base_element_type();
    75     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
    76     ctxk = elemt->as_instance_klass();
    77     //if (ctxk->is_final())  return;            // Ex:  String[][]
    78   }
    79   check_ctxk(ctxk);
    80   assert_common_1(leaf_type, ctxk);
    81 }
    83 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
    84   check_ctxk_abstract(ctxk);
    85   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
    86 }
    88 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
    89   check_ctxk_abstract(ctxk);
    90   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
    91 }
    93 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
    94   check_ctxk_concrete(ctxk);
    95   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
    96 }
    98 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
    99   check_ctxk(ctxk);
   100   assert_common_2(unique_concrete_method, ctxk, uniqm);
   101 }
   103 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
   104   check_ctxk(ctxk);
   105   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
   106 }
   108 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
   109   check_ctxk(ctxk);
   110   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
   111 }
   113 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
   114   check_ctxk(ctxk);
   115   assert_common_1(no_finalizable_subclasses, ctxk);
   116 }
   118 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
   119   check_ctxk(call_site->klass());
   120   assert_common_2(call_site_target_value, call_site, method_handle);
   121 }
   123 // Helper function.  If we are adding a new dep. under ctxk2,
   124 // try to find an old dep. under a broader* ctxk1.  If there is
   125 //
   126 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
   127                                     int ctxk_i, ciKlass* ctxk2) {
   128   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
   129   if (ctxk2->is_subtype_of(ctxk1)) {
   130     return true;  // success, and no need to change
   131   } else if (ctxk1->is_subtype_of(ctxk2)) {
   132     // new context class fully subsumes previous one
   133     deps->at_put(ctxk_i, ctxk2);
   134     return true;
   135   } else {
   136     return false;
   137   }
   138 }
   140 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
   141   assert(dep_args(dept) == 1, "sanity");
   142   log_dependency(dept, x);
   143   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   145   // see if the same (or a similar) dep is already recorded
   146   if (note_dep_seen(dept, x)) {
   147     assert(deps->find(x) >= 0, "sanity");
   148   } else {
   149     deps->append(x);
   150   }
   151 }
   153 void Dependencies::assert_common_2(DepType dept,
   154                                    ciBaseObject* x0, ciBaseObject* x1) {
   155   assert(dep_args(dept) == 2, "sanity");
   156   log_dependency(dept, x0, x1);
   157   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   159   // see if the same (or a similar) dep is already recorded
   160   bool has_ctxk = has_explicit_context_arg(dept);
   161   if (has_ctxk) {
   162     assert(dep_context_arg(dept) == 0, "sanity");
   163     if (note_dep_seen(dept, x1)) {
   164       // look in this bucket for redundant assertions
   165       const int stride = 2;
   166       for (int i = deps->length(); (i -= stride) >= 0; ) {
   167         ciBaseObject* y1 = deps->at(i+1);
   168         if (x1 == y1) {  // same subject; check the context
   169           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
   170             return;
   171           }
   172         }
   173       }
   174     }
   175   } else {
   176     assert(dep_implicit_context_arg(dept) == 0, "sanity");
   177     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
   178       // look in this bucket for redundant assertions
   179       const int stride = 2;
   180       for (int i = deps->length(); (i -= stride) >= 0; ) {
   181         ciBaseObject* y0 = deps->at(i+0);
   182         ciBaseObject* y1 = deps->at(i+1);
   183         if (x0 == y0 && x1 == y1) {
   184           return;
   185         }
   186       }
   187     }
   188   }
   190   // append the assertion in the correct bucket:
   191   deps->append(x0);
   192   deps->append(x1);
   193 }
   195 void Dependencies::assert_common_3(DepType dept,
   196                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
   197   assert(dep_context_arg(dept) == 0, "sanity");
   198   assert(dep_args(dept) == 3, "sanity");
   199   log_dependency(dept, ctxk, x, x2);
   200   GrowableArray<ciBaseObject*>* deps = _deps[dept];
   202   // try to normalize an unordered pair:
   203   bool swap = false;
   204   switch (dept) {
   205   case abstract_with_exclusive_concrete_subtypes_2:
   206     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
   207     break;
   208   case exclusive_concrete_methods_2:
   209     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
   210     break;
   211   }
   212   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
   214   // see if the same (or a similar) dep is already recorded
   215   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
   216     // look in this bucket for redundant assertions
   217     const int stride = 3;
   218     for (int i = deps->length(); (i -= stride) >= 0; ) {
   219       ciBaseObject* y  = deps->at(i+1);
   220       ciBaseObject* y2 = deps->at(i+2);
   221       if (x == y && x2 == y2) {  // same subjects; check the context
   222         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
   223           return;
   224         }
   225       }
   226     }
   227   }
   228   // append the assertion in the correct bucket:
   229   deps->append(ctxk);
   230   deps->append(x);
   231   deps->append(x2);
   232 }
   234 /// Support for encoding dependencies into an nmethod:
   236 void Dependencies::copy_to(nmethod* nm) {
   237   address beg = nm->dependencies_begin();
   238   address end = nm->dependencies_end();
   239   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
   240   Copy::disjoint_words((HeapWord*) content_bytes(),
   241                        (HeapWord*) beg,
   242                        size_in_bytes() / sizeof(HeapWord));
   243   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
   244 }
   246 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
   247   for (int i = 0; i < narg; i++) {
   248     int diff = p1[i]->ident() - p2[i]->ident();
   249     if (diff != 0)  return diff;
   250   }
   251   return 0;
   252 }
   253 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
   254 { return sort_dep(p1, p2, 1); }
   255 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
   256 { return sort_dep(p1, p2, 2); }
   257 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
   258 { return sort_dep(p1, p2, 3); }
   260 void Dependencies::sort_all_deps() {
   261   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   262     DepType dept = (DepType)deptv;
   263     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   264     if (deps->length() <= 1)  continue;
   265     switch (dep_args(dept)) {
   266     case 1: deps->sort(sort_dep_arg_1, 1); break;
   267     case 2: deps->sort(sort_dep_arg_2, 2); break;
   268     case 3: deps->sort(sort_dep_arg_3, 3); break;
   269     default: ShouldNotReachHere();
   270     }
   271   }
   272 }
   274 size_t Dependencies::estimate_size_in_bytes() {
   275   size_t est_size = 100;
   276   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   277     DepType dept = (DepType)deptv;
   278     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   279     est_size += deps->length()*2;  // tags and argument(s)
   280   }
   281   return est_size;
   282 }
   284 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
   285   switch (dept) {
   286   case abstract_with_exclusive_concrete_subtypes_2:
   287     return x->as_metadata()->as_klass();
   288   case unique_concrete_method:
   289   case exclusive_concrete_methods_2:
   290     return x->as_metadata()->as_method()->holder();
   291   }
   292   return NULL;  // let NULL be NULL
   293 }
   295 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
   296   assert(must_be_in_vm(), "raw oops here");
   297   switch (dept) {
   298   case abstract_with_exclusive_concrete_subtypes_2:
   299     assert(x->is_klass(), "sanity");
   300     return (Klass*) x;
   301   case unique_concrete_method:
   302   case exclusive_concrete_methods_2:
   303     assert(x->is_method(), "sanity");
   304     return ((Method*)x)->method_holder();
   305   }
   306   return NULL;  // let NULL be NULL
   307 }
   309 void Dependencies::encode_content_bytes() {
   310   sort_all_deps();
   312   // cast is safe, no deps can overflow INT_MAX
   313   CompressedWriteStream bytes((int)estimate_size_in_bytes());
   315   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   316     DepType dept = (DepType)deptv;
   317     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   318     if (deps->length() == 0)  continue;
   319     int stride = dep_args(dept);
   320     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
   321     assert(stride > 0, "sanity");
   322     for (int i = 0; i < deps->length(); i += stride) {
   323       jbyte code_byte = (jbyte)dept;
   324       int skipj = -1;
   325       if (ctxkj >= 0 && ctxkj+1 < stride) {
   326         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
   327         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
   328         if (ctxk == ctxk_encoded_as_null(dept, x)) {
   329           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
   330           code_byte |= default_context_type_bit;
   331         }
   332       }
   333       bytes.write_byte(code_byte);
   334       for (int j = 0; j < stride; j++) {
   335         if (j == skipj)  continue;
   336         ciBaseObject* v = deps->at(i+j);
   337         int idx;
   338         if (v->is_object()) {
   339           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
   340         } else {
   341           ciMetadata* meta = v->as_metadata();
   342           idx = _oop_recorder->find_index(meta->constant_encoding());
   343         }
   344         bytes.write_int(idx);
   345       }
   346     }
   347   }
   349   // write a sentinel byte to mark the end
   350   bytes.write_byte(end_marker);
   352   // round it out to a word boundary
   353   while (bytes.position() % sizeof(HeapWord) != 0) {
   354     bytes.write_byte(end_marker);
   355   }
   357   // check whether the dept byte encoding really works
   358   assert((jbyte)default_context_type_bit != 0, "byte overflow");
   360   _content_bytes = bytes.buffer();
   361   _size_in_bytes = bytes.position();
   362 }
   365 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
   366   "end_marker",
   367   "evol_method",
   368   "leaf_type",
   369   "abstract_with_unique_concrete_subtype",
   370   "abstract_with_no_concrete_subtype",
   371   "concrete_with_no_concrete_subtype",
   372   "unique_concrete_method",
   373   "abstract_with_exclusive_concrete_subtypes_2",
   374   "exclusive_concrete_methods_2",
   375   "no_finalizable_subclasses",
   376   "call_site_target_value"
   377 };
   379 int Dependencies::_dep_args[TYPE_LIMIT] = {
   380   -1,// end_marker
   381   1, // evol_method m
   382   1, // leaf_type ctxk
   383   2, // abstract_with_unique_concrete_subtype ctxk, k
   384   1, // abstract_with_no_concrete_subtype ctxk
   385   1, // concrete_with_no_concrete_subtype ctxk
   386   2, // unique_concrete_method ctxk, m
   387   3, // unique_concrete_subtypes_2 ctxk, k1, k2
   388   3, // unique_concrete_methods_2 ctxk, m1, m2
   389   1, // no_finalizable_subclasses ctxk
   390   2  // call_site_target_value call_site, method_handle
   391 };
   393 const char* Dependencies::dep_name(Dependencies::DepType dept) {
   394   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
   395   return _dep_name[dept];
   396 }
   398 int Dependencies::dep_args(Dependencies::DepType dept) {
   399   if (!dept_in_mask(dept, all_types))  return -1;
   400   return _dep_args[dept];
   401 }
   403 void Dependencies::check_valid_dependency_type(DepType dept) {
   404   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
   405 }
   407 // for the sake of the compiler log, print out current dependencies:
   408 void Dependencies::log_all_dependencies() {
   409   if (log() == NULL)  return;
   410   ResourceMark rm;
   411   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
   412     DepType dept = (DepType)deptv;
   413     GrowableArray<ciBaseObject*>* deps = _deps[dept];
   414     int deplen = deps->length();
   415     if (deplen == 0) {
   416       continue;
   417     }
   418     int stride = dep_args(dept);
   419     GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
   420     for (int i = 0; i < deps->length(); i += stride) {
   421       for (int j = 0; j < stride; j++) {
   422         // flush out the identities before printing
   423         ciargs->push(deps->at(i+j));
   424       }
   425       write_dependency_to(log(), dept, ciargs);
   426       ciargs->clear();
   427     }
   428     guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
   429   }
   430 }
   432 void Dependencies::write_dependency_to(CompileLog* log,
   433                                        DepType dept,
   434                                        GrowableArray<DepArgument>* args,
   435                                        Klass* witness) {
   436   if (log == NULL) {
   437     return;
   438   }
   439   ResourceMark rm;
   440   ciEnv* env = ciEnv::current();
   441   GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
   442   for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
   443     DepArgument arg = *it;
   444     if (arg.is_oop()) {
   445       ciargs->push(env->get_object(arg.oop_value()));
   446     } else {
   447       ciargs->push(env->get_metadata(arg.metadata_value()));
   448     }
   449   }
   450   int argslen = ciargs->length();
   451   Dependencies::write_dependency_to(log, dept, ciargs, witness);
   452   guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
   453 }
   455 void Dependencies::write_dependency_to(CompileLog* log,
   456                                        DepType dept,
   457                                        GrowableArray<ciBaseObject*>* args,
   458                                        Klass* witness) {
   459   if (log == NULL) {
   460     return;
   461   }
   462   ResourceMark rm;
   463   GrowableArray<int>* argids = new GrowableArray<int>(args->length());
   464   for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
   465     ciBaseObject* obj = *it;
   466     if (obj->is_object()) {
   467       argids->push(log->identify(obj->as_object()));
   468     } else {
   469       argids->push(log->identify(obj->as_metadata()));
   470     }
   471   }
   472   if (witness != NULL) {
   473     log->begin_elem("dependency_failed");
   474   } else {
   475     log->begin_elem("dependency");
   476   }
   477   log->print(" type='%s'", dep_name(dept));
   478   const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   479   if (ctxkj >= 0 && ctxkj < argids->length()) {
   480     log->print(" ctxk='%d'", argids->at(ctxkj));
   481   }
   482   // write remaining arguments, if any.
   483   for (int j = 0; j < argids->length(); j++) {
   484     if (j == ctxkj)  continue;  // already logged
   485     if (j == 1) {
   486       log->print(  " x='%d'",    argids->at(j));
   487     } else {
   488       log->print(" x%d='%d'", j, argids->at(j));
   489     }
   490   }
   491   if (witness != NULL) {
   492     log->object("witness", witness);
   493     log->stamp();
   494   }
   495   log->end_elem();
   496 }
   498 void Dependencies::write_dependency_to(xmlStream* xtty,
   499                                        DepType dept,
   500                                        GrowableArray<DepArgument>* args,
   501                                        Klass* witness) {
   502   if (xtty == NULL) {
   503     return;
   504   }
   505   ResourceMark rm;
   506   ttyLocker ttyl;
   507   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   508   if (witness != NULL) {
   509     xtty->begin_elem("dependency_failed");
   510   } else {
   511     xtty->begin_elem("dependency");
   512   }
   513   xtty->print(" type='%s'", dep_name(dept));
   514   if (ctxkj >= 0) {
   515     xtty->object("ctxk", args->at(ctxkj).metadata_value());
   516   }
   517   // write remaining arguments, if any.
   518   for (int j = 0; j < args->length(); j++) {
   519     if (j == ctxkj)  continue;  // already logged
   520     DepArgument arg = args->at(j);
   521     if (j == 1) {
   522       if (arg.is_oop()) {
   523         xtty->object("x", arg.oop_value());
   524       } else {
   525         xtty->object("x", arg.metadata_value());
   526       }
   527     } else {
   528       char xn[12]; sprintf(xn, "x%d", j);
   529       if (arg.is_oop()) {
   530         xtty->object(xn, arg.oop_value());
   531       } else {
   532         xtty->object(xn, arg.metadata_value());
   533       }
   534     }
   535   }
   536   if (witness != NULL) {
   537     xtty->object("witness", witness);
   538     xtty->stamp();
   539   }
   540   xtty->end_elem();
   541 }
   543 void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
   544                                     Klass* witness) {
   545   ResourceMark rm;
   546   ttyLocker ttyl;   // keep the following output all in one block
   547   tty->print_cr("%s of type %s",
   548                 (witness == NULL)? "Dependency": "Failed dependency",
   549                 dep_name(dept));
   550   // print arguments
   551   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
   552   for (int j = 0; j < args->length(); j++) {
   553     DepArgument arg = args->at(j);
   554     bool put_star = false;
   555     if (arg.is_null())  continue;
   556     const char* what;
   557     if (j == ctxkj) {
   558       assert(arg.is_metadata(), "must be");
   559       what = "context";
   560       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
   561     } else if (arg.is_method()) {
   562       what = "method ";
   563       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), NULL);
   564     } else if (arg.is_klass()) {
   565       what = "class  ";
   566     } else {
   567       what = "object ";
   568     }
   569     tty->print("  %s = %s", what, (put_star? "*": ""));
   570     if (arg.is_klass())
   571       tty->print("%s", ((Klass*)arg.metadata_value())->external_name());
   572     else if (arg.is_method())
   573       ((Method*)arg.metadata_value())->print_value();
   574     else
   575       ShouldNotReachHere(); // Provide impl for this type.
   576     tty->cr();
   577   }
   578   if (witness != NULL) {
   579     bool put_star = !Dependencies::is_concrete_klass(witness);
   580     tty->print_cr("  witness = %s%s",
   581                   (put_star? "*": ""),
   582                   witness->external_name());
   583   }
   584 }
   586 void Dependencies::DepStream::log_dependency(Klass* witness) {
   587   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
   588   ResourceMark rm;
   589   const int nargs = argument_count();
   590   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
   591   for (int j = 0; j < nargs; j++) {
   592     if (type() == call_site_target_value) {
   593       args->push(argument_oop(j));
   594     } else {
   595       args->push(argument(j));
   596     }
   597   }
   598   int argslen = args->length();
   599   if (_deps != NULL && _deps->log() != NULL) {
   600     Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
   601   } else {
   602     Dependencies::write_dependency_to(xtty, type(), args, witness);
   603   }
   604   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
   605 }
   607 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
   608   ResourceMark rm;
   609   int nargs = argument_count();
   610   GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
   611   for (int j = 0; j < nargs; j++) {
   612     args->push(argument(j));
   613   }
   614   int argslen = args->length();
   615   Dependencies::print_dependency(type(), args, witness);
   616   if (verbose) {
   617     if (_code != NULL) {
   618       tty->print("  code: ");
   619       _code->print_value_on(tty);
   620       tty->cr();
   621     }
   622   }
   623   guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
   624 }
   627 /// Dependency stream support (decodes dependencies from an nmethod):
   629 #ifdef ASSERT
   630 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
   631   assert(must_be_in_vm(), "raw oops here");
   632   _byte_limit = byte_limit;
   633   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
   634   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
   635 }
   636 #endif //ASSERT
   638 bool Dependencies::DepStream::next() {
   639   assert(_type != end_marker, "already at end");
   640   if (_bytes.position() == 0 && _code != NULL
   641       && _code->dependencies_size() == 0) {
   642     // Method has no dependencies at all.
   643     return false;
   644   }
   645   int code_byte = (_bytes.read_byte() & 0xFF);
   646   if (code_byte == end_marker) {
   647     DEBUG_ONLY(_type = end_marker);
   648     return false;
   649   } else {
   650     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
   651     code_byte -= ctxk_bit;
   652     DepType dept = (DepType)code_byte;
   653     _type = dept;
   654     Dependencies::check_valid_dependency_type(dept);
   655     int stride = _dep_args[dept];
   656     assert(stride == dep_args(dept), "sanity");
   657     int skipj = -1;
   658     if (ctxk_bit != 0) {
   659       skipj = 0;  // currently the only context argument is at zero
   660       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
   661     }
   662     for (int j = 0; j < stride; j++) {
   663       _xi[j] = (j == skipj)? 0: _bytes.read_int();
   664     }
   665     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
   666     return true;
   667   }
   668 }
   670 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
   671   Metadata* o = NULL;
   672   if (_code != NULL) {
   673     o = _code->metadata_at(i);
   674   } else {
   675     o = _deps->oop_recorder()->metadata_at(i);
   676   }
   677   return o;
   678 }
   680 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
   681   return (_code != NULL)
   682          ? _code->oop_at(i)
   683     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
   684 }
   686 Metadata* Dependencies::DepStream::argument(int i) {
   687   Metadata* result = recorded_metadata_at(argument_index(i));
   689   if (result == NULL) { // Explicit context argument can be compressed
   690     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
   691     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
   692       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
   693     }
   694   }
   696   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
   697   return result;
   698 }
   700 oop Dependencies::DepStream::argument_oop(int i) {
   701   oop result = recorded_oop_at(argument_index(i));
   702   assert(result == NULL || result->is_oop(), "must be");
   703   return result;
   704 }
   706 Klass* Dependencies::DepStream::context_type() {
   707   assert(must_be_in_vm(), "raw oops here");
   709   // Most dependencies have an explicit context type argument.
   710   {
   711     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
   712     if (ctxkj >= 0) {
   713       Metadata* k = argument(ctxkj);
   714       assert(k != NULL && k->is_klass(), "type check");
   715       return (Klass*)k;
   716     }
   717   }
   719   // Some dependencies are using the klass of the first object
   720   // argument as implicit context type (e.g. call_site_target_value).
   721   {
   722     int ctxkj = dep_implicit_context_arg(type());
   723     if (ctxkj >= 0) {
   724       Klass* k = argument_oop(ctxkj)->klass();
   725       assert(k != NULL && k->is_klass(), "type check");
   726       return (Klass*) k;
   727     }
   728   }
   730   // And some dependencies don't have a context type at all,
   731   // e.g. evol_method.
   732   return NULL;
   733 }
   735 /// Checking dependencies:
   737 // This hierarchy walker inspects subtypes of a given type,
   738 // trying to find a "bad" class which breaks a dependency.
   739 // Such a class is called a "witness" to the broken dependency.
   740 // While searching around, we ignore "participants", which
   741 // are already known to the dependency.
   742 class ClassHierarchyWalker {
   743  public:
   744   enum { PARTICIPANT_LIMIT = 3 };
   746  private:
   747   // optional method descriptor to check for:
   748   Symbol* _name;
   749   Symbol* _signature;
   751   // special classes which are not allowed to be witnesses:
   752   Klass*    _participants[PARTICIPANT_LIMIT+1];
   753   int       _num_participants;
   755   // cache of method lookups
   756   Method* _found_methods[PARTICIPANT_LIMIT+1];
   758   // if non-zero, tells how many witnesses to convert to participants
   759   int       _record_witnesses;
   761   void initialize(Klass* participant) {
   762     _record_witnesses = 0;
   763     _participants[0]  = participant;
   764     _found_methods[0] = NULL;
   765     _num_participants = 0;
   766     if (participant != NULL) {
   767       // Terminating NULL.
   768       _participants[1] = NULL;
   769       _found_methods[1] = NULL;
   770       _num_participants = 1;
   771     }
   772   }
   774   void initialize_from_method(Method* m) {
   775     assert(m != NULL && m->is_method(), "sanity");
   776     _name      = m->name();
   777     _signature = m->signature();
   778   }
   780  public:
   781   // The walker is initialized to recognize certain methods and/or types
   782   // as friendly participants.
   783   ClassHierarchyWalker(Klass* participant, Method* m) {
   784     initialize_from_method(m);
   785     initialize(participant);
   786   }
   787   ClassHierarchyWalker(Method* m) {
   788     initialize_from_method(m);
   789     initialize(NULL);
   790   }
   791   ClassHierarchyWalker(Klass* participant = NULL) {
   792     _name      = NULL;
   793     _signature = NULL;
   794     initialize(participant);
   795   }
   796   ClassHierarchyWalker(Klass* participants[], int num_participants) {
   797     _name      = NULL;
   798     _signature = NULL;
   799     initialize(NULL);
   800     for (int i = 0; i < num_participants; ++i) {
   801       add_participant(participants[i]);
   802     }
   803   }
   805   // This is common code for two searches:  One for concrete subtypes,
   806   // the other for concrete method implementations and overrides.
   807   bool doing_subtype_search() {
   808     return _name == NULL;
   809   }
   811   int num_participants() { return _num_participants; }
   812   Klass* participant(int n) {
   813     assert((uint)n <= (uint)_num_participants, "oob");
   814     return _participants[n];
   815   }
   817   // Note:  If n==num_participants, returns NULL.
   818   Method* found_method(int n) {
   819     assert((uint)n <= (uint)_num_participants, "oob");
   820     Method* fm = _found_methods[n];
   821     assert(n == _num_participants || fm != NULL, "proper usage");
   822     if (fm != NULL && fm->method_holder() != _participants[n]) {
   823       // Default methods from interfaces can be added to classes. In
   824       // that case the holder of the method is not the class but the
   825       // interface where it's defined.
   826       assert(fm->is_default_method(), "sanity");
   827       return NULL;
   828     }
   829     return fm;
   830   }
   832 #ifdef ASSERT
   833   // Assert that m is inherited into ctxk, without intervening overrides.
   834   // (May return true even if this is not true, in corner cases where we punt.)
   835   bool check_method_context(Klass* ctxk, Method* m) {
   836     if (m->method_holder() == ctxk)
   837       return true;  // Quick win.
   838     if (m->is_private())
   839       return false; // Quick lose.  Should not happen.
   840     if (!(m->is_public() || m->is_protected()))
   841       // The override story is complex when packages get involved.
   842       return true;  // Must punt the assertion to true.
   843     Klass* k = ctxk;
   844     Method* lm = k->lookup_method(m->name(), m->signature());
   845     if (lm == NULL && k->oop_is_instance()) {
   846       // It might be an interface method
   847         lm = ((InstanceKlass*)k)->lookup_method_in_ordered_interfaces(m->name(),
   848                                                                 m->signature());
   849     }
   850     if (lm == m)
   851       // Method m is inherited into ctxk.
   852       return true;
   853     if (lm != NULL) {
   854       if (!(lm->is_public() || lm->is_protected())) {
   855         // Method is [package-]private, so the override story is complex.
   856         return true;  // Must punt the assertion to true.
   857       }
   858       if (lm->is_static()) {
   859         // Static methods don't override non-static so punt
   860         return true;
   861       }
   862       if (   !Dependencies::is_concrete_method(lm, k)
   863           && !Dependencies::is_concrete_method(m, ctxk)
   864           && lm->method_holder()->is_subtype_of(m->method_holder()))
   865         // Method m is overridden by lm, but both are non-concrete.
   866         return true;
   867     }
   868     ResourceMark rm;
   869     tty->print_cr("Dependency method not found in the associated context:");
   870     tty->print_cr("  context = %s", ctxk->external_name());
   871     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
   872     if (lm != NULL) {
   873       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
   874     }
   875     return false;
   876   }
   877 #endif
   879   void add_participant(Klass* participant) {
   880     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
   881     int np = _num_participants++;
   882     _participants[np] = participant;
   883     _participants[np+1] = NULL;
   884     _found_methods[np+1] = NULL;
   885   }
   887   void record_witnesses(int add) {
   888     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
   889     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
   890     _record_witnesses = add;
   891   }
   893   bool is_witness(Klass* k) {
   894     if (doing_subtype_search()) {
   895       return Dependencies::is_concrete_klass(k);
   896     } else if (!k->oop_is_instance()) {
   897       return false; // no methods to find in an array type
   898     } else {
   899       // Search class hierarchy first.
   900       Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature);
   901       if (!Dependencies::is_concrete_method(m, k)) {
   902         // Check for re-abstraction of method
   903         if (!k->is_interface() && m != NULL && m->is_abstract()) {
   904           // Found a matching abstract method 'm' in the class hierarchy.
   905           // This is fine iff 'k' is an abstract class and all concrete subtypes
   906           // of 'k' override 'm' and are participates of the current search.
   907           ClassHierarchyWalker wf(_participants, _num_participants);
   908           Klass* w = wf.find_witness_subtype(k);
   909           if (w != NULL) {
   910             Method* wm = InstanceKlass::cast(w)->find_instance_method(_name, _signature);
   911             if (!Dependencies::is_concrete_method(wm, w)) {
   912               // Found a concrete subtype 'w' which does not override abstract method 'm'.
   913               // Bail out because 'm' could be called with 'w' as receiver (leading to an
   914               // AbstractMethodError) and thus the method we are looking for is not unique.
   915               _found_methods[_num_participants] = m;
   916               return true;
   917             }
   918           }
   919         }
   920         // Check interface defaults also, if any exist.
   921         Array<Method*>* default_methods = InstanceKlass::cast(k)->default_methods();
   922         if (default_methods == NULL)
   923             return false;
   924         m = InstanceKlass::cast(k)->find_method(default_methods, _name, _signature);
   925         if (!Dependencies::is_concrete_method(m, NULL))
   926             return false;
   927       }
   928       _found_methods[_num_participants] = m;
   929       // Note:  If add_participant(k) is called,
   930       // the method m will already be memoized for it.
   931       return true;
   932     }
   933   }
   935   bool is_participant(Klass* k) {
   936     if (k == _participants[0]) {
   937       return true;
   938     } else if (_num_participants <= 1) {
   939       return false;
   940     } else {
   941       return in_list(k, &_participants[1]);
   942     }
   943   }
   944   bool ignore_witness(Klass* witness) {
   945     if (_record_witnesses == 0) {
   946       return false;
   947     } else {
   948       --_record_witnesses;
   949       add_participant(witness);
   950       return true;
   951     }
   952   }
   953   static bool in_list(Klass* x, Klass** list) {
   954     for (int i = 0; ; i++) {
   955       Klass* y = list[i];
   956       if (y == NULL)  break;
   957       if (y == x)  return true;
   958     }
   959     return false;  // not in list
   960   }
   962  private:
   963   // the actual search method:
   964   Klass* find_witness_anywhere(Klass* context_type,
   965                                  bool participants_hide_witnesses,
   966                                  bool top_level_call = true);
   967   // the spot-checking version:
   968   Klass* find_witness_in(KlassDepChange& changes,
   969                          Klass* context_type,
   970                            bool participants_hide_witnesses);
   971  public:
   972   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
   973     assert(doing_subtype_search(), "must set up a subtype search");
   974     // When looking for unexpected concrete types,
   975     // do not look beneath expected ones.
   976     const bool participants_hide_witnesses = true;
   977     // CX > CC > C' is OK, even if C' is new.
   978     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
   979     if (changes != NULL) {
   980       return find_witness_in(*changes, context_type, participants_hide_witnesses);
   981     } else {
   982       return find_witness_anywhere(context_type, participants_hide_witnesses);
   983     }
   984   }
   985   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
   986     assert(!doing_subtype_search(), "must set up a method definer search");
   987     // When looking for unexpected concrete methods,
   988     // look beneath expected ones, to see if there are overrides.
   989     const bool participants_hide_witnesses = true;
   990     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
   991     if (changes != NULL) {
   992       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
   993     } else {
   994       return find_witness_anywhere(context_type, !participants_hide_witnesses);
   995     }
   996   }
   997 };
   999 #ifndef PRODUCT
  1000 static int deps_find_witness_calls = 0;
  1001 static int deps_find_witness_steps = 0;
  1002 static int deps_find_witness_recursions = 0;
  1003 static int deps_find_witness_singles = 0;
  1004 static int deps_find_witness_print = 0; // set to -1 to force a final print
  1005 static bool count_find_witness_calls() {
  1006   if (TraceDependencies || LogCompilation) {
  1007     int pcount = deps_find_witness_print + 1;
  1008     bool final_stats      = (pcount == 0);
  1009     bool initial_call     = (pcount == 1);
  1010     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
  1011     if (pcount < 0)  pcount = 1; // crude overflow protection
  1012     deps_find_witness_print = pcount;
  1013     if (VerifyDependencies && initial_call) {
  1014       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
  1016     if (occasional_print || final_stats) {
  1017       // Every now and then dump a little info about dependency searching.
  1018       if (xtty != NULL) {
  1019        ttyLocker ttyl;
  1020        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
  1021                    deps_find_witness_calls,
  1022                    deps_find_witness_steps,
  1023                    deps_find_witness_recursions,
  1024                    deps_find_witness_singles);
  1026       if (final_stats || (TraceDependencies && WizardMode)) {
  1027         ttyLocker ttyl;
  1028         tty->print_cr("Dependency check (find_witness) "
  1029                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
  1030                       deps_find_witness_calls,
  1031                       deps_find_witness_steps,
  1032                       (double)deps_find_witness_steps / deps_find_witness_calls,
  1033                       deps_find_witness_recursions,
  1034                       deps_find_witness_singles);
  1037     return true;
  1039   return false;
  1041 #else
  1042 #define count_find_witness_calls() (0)
  1043 #endif //PRODUCT
  1046 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
  1047                                                Klass* context_type,
  1048                                                bool participants_hide_witnesses) {
  1049   assert(changes.involves_context(context_type), "irrelevant dependency");
  1050   Klass* new_type = changes.new_type();
  1052   (void)count_find_witness_calls();
  1053   NOT_PRODUCT(deps_find_witness_singles++);
  1055   // Current thread must be in VM (not native mode, as in CI):
  1056   assert(must_be_in_vm(), "raw oops here");
  1057   // Must not move the class hierarchy during this check:
  1058   assert_locked_or_safepoint(Compile_lock);
  1060   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1061   if (nof_impls > 1) {
  1062     // Avoid this case: *I.m > { A.m, C }; B.m > C
  1063     // %%% Until this is fixed more systematically, bail out.
  1064     // See corresponding comment in find_witness_anywhere.
  1065     return context_type;
  1068   assert(!is_participant(new_type), "only old classes are participants");
  1069   if (participants_hide_witnesses) {
  1070     // If the new type is a subtype of a participant, we are done.
  1071     for (int i = 0; i < num_participants(); i++) {
  1072       Klass* part = participant(i);
  1073       if (part == NULL)  continue;
  1074       assert(changes.involves_context(part) == new_type->is_subtype_of(part),
  1075              "correct marking of participants, b/c new_type is unique");
  1076       if (changes.involves_context(part)) {
  1077         // new guy is protected from this check by previous participant
  1078         return NULL;
  1083   if (is_witness(new_type) &&
  1084       !ignore_witness(new_type)) {
  1085     return new_type;
  1088   return NULL;
  1092 // Walk hierarchy under a context type, looking for unexpected types.
  1093 // Do not report participant types, and recursively walk beneath
  1094 // them only if participants_hide_witnesses is false.
  1095 // If top_level_call is false, skip testing the context type,
  1096 // because the caller has already considered it.
  1097 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
  1098                                                      bool participants_hide_witnesses,
  1099                                                      bool top_level_call) {
  1100   // Current thread must be in VM (not native mode, as in CI):
  1101   assert(must_be_in_vm(), "raw oops here");
  1102   // Must not move the class hierarchy during this check:
  1103   assert_locked_or_safepoint(Compile_lock);
  1105   bool do_counts = count_find_witness_calls();
  1107   // Check the root of the sub-hierarchy first.
  1108   if (top_level_call) {
  1109     if (do_counts) {
  1110       NOT_PRODUCT(deps_find_witness_calls++);
  1111       NOT_PRODUCT(deps_find_witness_steps++);
  1113     if (is_participant(context_type)) {
  1114       if (participants_hide_witnesses)  return NULL;
  1115       // else fall through to search loop...
  1116     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
  1117       // The context is an abstract class or interface, to start with.
  1118       return context_type;
  1122   // Now we must check each implementor and each subclass.
  1123   // Use a short worklist to avoid blowing the stack.
  1124   // Each worklist entry is a *chain* of subklass siblings to process.
  1125   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
  1126   Klass* chains[CHAINMAX];
  1127   int    chaini = 0;  // index into worklist
  1128   Klass* chain;       // scratch variable
  1129 #define ADD_SUBCLASS_CHAIN(k)                     {  \
  1130     assert(chaini < CHAINMAX, "oob");                \
  1131     chain = k->subklass();                           \
  1132     if (chain != NULL)  chains[chaini++] = chain;    }
  1134   // Look for non-abstract subclasses.
  1135   // (Note:  Interfaces do not have subclasses.)
  1136   ADD_SUBCLASS_CHAIN(context_type);
  1138   // If it is an interface, search its direct implementors.
  1139   // (Their subclasses are additional indirect implementors.
  1140   // See InstanceKlass::add_implementor.)
  1141   // (Note:  nof_implementors is always zero for non-interfaces.)
  1142   if (top_level_call) {
  1143     int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
  1144     if (nof_impls > 1) {
  1145       // Avoid this case: *I.m > { A.m, C }; B.m > C
  1146       // Here, I.m has 2 concrete implementations, but m appears unique
  1147       // as A.m, because the search misses B.m when checking C.
  1148       // The inherited method B.m was getting missed by the walker
  1149       // when interface 'I' was the starting point.
  1150       // %%% Until this is fixed more systematically, bail out.
  1151       // (Old CHA had the same limitation.)
  1152       return context_type;
  1154     if (nof_impls > 0) {
  1155       Klass* impl = InstanceKlass::cast(context_type)->implementor();
  1156       assert(impl != NULL, "just checking");
  1157       // If impl is the same as the context_type, then more than one
  1158       // implementor has seen. No exact info in this case.
  1159       if (impl == context_type) {
  1160         return context_type;  // report an inexact witness to this sad affair
  1162       if (do_counts)
  1163         { NOT_PRODUCT(deps_find_witness_steps++); }
  1164       if (is_participant(impl)) {
  1165         if (!participants_hide_witnesses) {
  1166           ADD_SUBCLASS_CHAIN(impl);
  1168       } else if (is_witness(impl) && !ignore_witness(impl)) {
  1169         return impl;
  1170       } else {
  1171         ADD_SUBCLASS_CHAIN(impl);
  1176   // Recursively process each non-trivial sibling chain.
  1177   while (chaini > 0) {
  1178     Klass* chain = chains[--chaini];
  1179     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
  1180       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
  1181       if (is_participant(sub)) {
  1182         if (participants_hide_witnesses)  continue;
  1183         // else fall through to process this guy's subclasses
  1184       } else if (is_witness(sub) && !ignore_witness(sub)) {
  1185         return sub;
  1187       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
  1188         // Fast path.  (Partially disabled if VerifyDependencies.)
  1189         ADD_SUBCLASS_CHAIN(sub);
  1190       } else {
  1191         // Worklist overflow.  Do a recursive call.  Should be rare.
  1192         // The recursive call will have its own worklist, of course.
  1193         // (Note that sub has already been tested, so that there is
  1194         // no need for the recursive call to re-test.  That's handy,
  1195         // since the recursive call sees sub as the context_type.)
  1196         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
  1197         Klass* witness = find_witness_anywhere(sub,
  1198                                                  participants_hide_witnesses,
  1199                                                  /*top_level_call=*/ false);
  1200         if (witness != NULL)  return witness;
  1205   // No witness found.  The dependency remains unbroken.
  1206   return NULL;
  1207 #undef ADD_SUBCLASS_CHAIN
  1211 bool Dependencies::is_concrete_klass(Klass* k) {
  1212   if (k->is_abstract())  return false;
  1213   // %%% We could treat classes which are concrete but
  1214   // have not yet been instantiated as virtually abstract.
  1215   // This would require a deoptimization barrier on first instantiation.
  1216   //if (k->is_not_instantiated())  return false;
  1217   return true;
  1220 bool Dependencies::is_concrete_method(Method* m, Klass * k) {
  1221   // NULL is not a concrete method,
  1222   // statics are irrelevant to virtual call sites,
  1223   // abstract methods are not concrete,
  1224   // overpass (error) methods are not concrete if k is abstract
  1225   //
  1226   // note "true" is conservative answer --
  1227   //     overpass clause is false if k == NULL, implies return true if
  1228   //     answer depends on overpass clause.
  1229   return ! ( m == NULL || m -> is_static() || m -> is_abstract() ||
  1230              m->is_overpass() && k != NULL && k -> is_abstract() );
  1234 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
  1235   if (k->is_interface())  return NULL;
  1236   if (k->has_finalizer()) return k;
  1237   k = k->subklass();
  1238   while (k != NULL) {
  1239     Klass* result = find_finalizable_subclass(k);
  1240     if (result != NULL) return result;
  1241     k = k->next_sibling();
  1243   return NULL;
  1247 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
  1248   if (k->is_abstract())  return false;
  1249   // We could also return false if k does not yet appear to be
  1250   // instantiated, if the VM version supports this distinction also.
  1251   //if (k->is_not_instantiated())  return false;
  1252   return true;
  1255 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
  1256   return k->has_finalizable_subclass();
  1260 // Any use of the contents (bytecodes) of a method must be
  1261 // marked by an "evol_method" dependency, if those contents
  1262 // can change.  (Note: A method is always dependent on itself.)
  1263 Klass* Dependencies::check_evol_method(Method* m) {
  1264   assert(must_be_in_vm(), "raw oops here");
  1265   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
  1266   // Or is there a now a breakpoint?
  1267   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
  1268   if (m->is_old()
  1269       || m->number_of_breakpoints() > 0) {
  1270     return m->method_holder();
  1271   } else {
  1272     return NULL;
  1276 // This is a strong assertion:  It is that the given type
  1277 // has no subtypes whatever.  It is most useful for
  1278 // optimizing checks on reflected types or on array types.
  1279 // (Checks on types which are derived from real instances
  1280 // can be optimized more strongly than this, because we
  1281 // know that the checked type comes from a concrete type,
  1282 // and therefore we can disregard abstract types.)
  1283 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
  1284   assert(must_be_in_vm(), "raw oops here");
  1285   assert_locked_or_safepoint(Compile_lock);
  1286   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
  1287   Klass* sub = ctx->subklass();
  1288   if (sub != NULL) {
  1289     return sub;
  1290   } else if (ctx->nof_implementors() != 0) {
  1291     // if it is an interface, it must be unimplemented
  1292     // (if it is not an interface, nof_implementors is always zero)
  1293     Klass* impl = ctx->implementor();
  1294     assert(impl != NULL, "must be set");
  1295     return impl;
  1296   } else {
  1297     return NULL;
  1301 // Test the assertion that conck is the only concrete subtype* of ctxk.
  1302 // The type conck itself is allowed to have have further concrete subtypes.
  1303 // This allows the compiler to narrow occurrences of ctxk by conck,
  1304 // when dealing with the types of actual instances.
  1305 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
  1306                                                                    Klass* conck,
  1307                                                                    KlassDepChange* changes) {
  1308   ClassHierarchyWalker wf(conck);
  1309   return wf.find_witness_subtype(ctxk, changes);
  1312 // If a non-concrete class has no concrete subtypes, it is not (yet)
  1313 // instantiatable.  This can allow the compiler to make some paths go
  1314 // dead, if they are gated by a test of the type.
  1315 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
  1316                                                                KlassDepChange* changes) {
  1317   // Find any concrete subtype, with no participants:
  1318   ClassHierarchyWalker wf;
  1319   return wf.find_witness_subtype(ctxk, changes);
  1323 // If a concrete class has no concrete subtypes, it can always be
  1324 // exactly typed.  This allows the use of a cheaper type test.
  1325 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
  1326                                                                KlassDepChange* changes) {
  1327   // Find any concrete subtype, with only the ctxk as participant:
  1328   ClassHierarchyWalker wf(ctxk);
  1329   return wf.find_witness_subtype(ctxk, changes);
  1333 // Find the unique concrete proper subtype of ctxk, or NULL if there
  1334 // is more than one concrete proper subtype.  If there are no concrete
  1335 // proper subtypes, return ctxk itself, whether it is concrete or not.
  1336 // The returned subtype is allowed to have have further concrete subtypes.
  1337 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
  1338 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
  1339   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
  1340   wf.record_witnesses(1);          // Record one other witness when walking.
  1341   Klass* wit = wf.find_witness_subtype(ctxk);
  1342   if (wit != NULL)  return NULL;   // Too many witnesses.
  1343   Klass* conck = wf.participant(0);
  1344   if (conck == NULL) {
  1345 #ifndef PRODUCT
  1346     // Make sure the dependency mechanism will pass this discovery:
  1347     if (VerifyDependencies) {
  1348       // Turn off dependency tracing while actually testing deps.
  1349       FlagSetting fs(TraceDependencies, false);
  1350       if (!Dependencies::is_concrete_klass(ctxk)) {
  1351         guarantee(NULL ==
  1352                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1353                   "verify dep.");
  1354       } else {
  1355         guarantee(NULL ==
  1356                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
  1357                   "verify dep.");
  1360 #endif //PRODUCT
  1361     return ctxk;                   // Return ctxk as a flag for "no subtypes".
  1362   } else {
  1363 #ifndef PRODUCT
  1364     // Make sure the dependency mechanism will pass this discovery:
  1365     if (VerifyDependencies) {
  1366       // Turn off dependency tracing while actually testing deps.
  1367       FlagSetting fs(TraceDependencies, false);
  1368       if (!Dependencies::is_concrete_klass(ctxk)) {
  1369         guarantee(NULL == (void *)
  1370                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
  1371                   "verify dep.");
  1374 #endif //PRODUCT
  1375     return conck;
  1379 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
  1380 // except possibly for further subtypes of k[12] themselves.
  1381 // The context type must be abstract.  The types k1 and k2 are themselves
  1382 // allowed to have further concrete subtypes.
  1383 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
  1384                                                 Klass* ctxk,
  1385                                                 Klass* k1,
  1386                                                 Klass* k2,
  1387                                                 KlassDepChange* changes) {
  1388   ClassHierarchyWalker wf;
  1389   wf.add_participant(k1);
  1390   wf.add_participant(k2);
  1391   return wf.find_witness_subtype(ctxk, changes);
  1394 // Search ctxk for concrete implementations.  If there are klen or fewer,
  1395 // pack them into the given array and return the number.
  1396 // Otherwise, return -1, meaning the given array would overflow.
  1397 // (Note that a return of 0 means there are exactly no concrete subtypes.)
  1398 // In this search, if ctxk is concrete, it will be reported alone.
  1399 // For any type CC reported, no proper subtypes of CC will be reported.
  1400 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
  1401                                                    int klen,
  1402                                                    Klass* karray[]) {
  1403   ClassHierarchyWalker wf;
  1404   wf.record_witnesses(klen);
  1405   Klass* wit = wf.find_witness_subtype(ctxk);
  1406   if (wit != NULL)  return -1;  // Too many witnesses.
  1407   int num = wf.num_participants();
  1408   assert(num <= klen, "oob");
  1409   // Pack the result array with the good news.
  1410   for (int i = 0; i < num; i++)
  1411     karray[i] = wf.participant(i);
  1412 #ifndef PRODUCT
  1413   // Make sure the dependency mechanism will pass this discovery:
  1414   if (VerifyDependencies) {
  1415     // Turn off dependency tracing while actually testing deps.
  1416     FlagSetting fs(TraceDependencies, false);
  1417     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
  1418     case -1: // ctxk was itself concrete
  1419       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
  1420       break;
  1421     case 0:
  1422       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
  1423                 "verify dep.");
  1424       break;
  1425     case 1:
  1426       guarantee(NULL == (void *)
  1427                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
  1428                 "verify dep.");
  1429       break;
  1430     case 2:
  1431       guarantee(NULL == (void *)
  1432                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
  1433                                                                 karray[0],
  1434                                                                 karray[1]),
  1435                 "verify dep.");
  1436       break;
  1437     default:
  1438       ShouldNotReachHere();  // klen > 2 yet supported
  1441 #endif //PRODUCT
  1442   return num;
  1445 // If a class (or interface) has a unique concrete method uniqm, return NULL.
  1446 // Otherwise, return a class that contains an interfering method.
  1447 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
  1448                                                     KlassDepChange* changes) {
  1449   // Here is a missing optimization:  If uniqm->is_final(),
  1450   // we don't really need to search beneath it for overrides.
  1451   // This is probably not important, since we don't use dependencies
  1452   // to track final methods.  (They can't be "definalized".)
  1453   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
  1454   return wf.find_witness_definer(ctxk, changes);
  1457 // Find the set of all non-abstract methods under ctxk that match m.
  1458 // (The method m must be defined or inherited in ctxk.)
  1459 // Include m itself in the set, unless it is abstract.
  1460 // If this set has exactly one element, return that element.
  1461 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
  1462   ClassHierarchyWalker wf(m);
  1463   assert(wf.check_method_context(ctxk, m), "proper context");
  1464   wf.record_witnesses(1);
  1465   Klass* wit = wf.find_witness_definer(ctxk);
  1466   if (wit != NULL)  return NULL;  // Too many witnesses.
  1467   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
  1468   if (Dependencies::is_concrete_method(m, ctxk)) {
  1469     if (fm == NULL) {
  1470       // It turns out that m was always the only implementation.
  1471       fm = m;
  1472     } else if (fm != m) {
  1473       // Two conflicting implementations after all.
  1474       // (This can happen if m is inherited into ctxk and fm overrides it.)
  1475       return NULL;
  1478 #ifndef PRODUCT
  1479   // Make sure the dependency mechanism will pass this discovery:
  1480   if (VerifyDependencies && fm != NULL) {
  1481     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
  1482               "verify dep.");
  1484 #endif //PRODUCT
  1485   return fm;
  1488 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
  1489                                                         Method* m1,
  1490                                                         Method* m2,
  1491                                                         KlassDepChange* changes) {
  1492   ClassHierarchyWalker wf(m1);
  1493   wf.add_participant(m1->method_holder());
  1494   wf.add_participant(m2->method_holder());
  1495   return wf.find_witness_definer(ctxk, changes);
  1498 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
  1499   Klass* search_at = ctxk;
  1500   if (changes != NULL)
  1501     search_at = changes->new_type(); // just look at the new bit
  1502   return find_finalizable_subclass(search_at);
  1505 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
  1506   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
  1507   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
  1508   if (changes == NULL) {
  1509     // Validate all CallSites
  1510     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
  1511       return call_site->klass();  // assertion failed
  1512   } else {
  1513     // Validate the given CallSite
  1514     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
  1515       assert(method_handle != changes->method_handle(), "must be");
  1516       return call_site->klass();  // assertion failed
  1519   return NULL;  // assertion still valid
  1523 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
  1524   if (witness != NULL) {
  1525     if (TraceDependencies) {
  1526       print_dependency(witness, /*verbose=*/ true);
  1528     // The following is a no-op unless logging is enabled:
  1529     log_dependency(witness);
  1534 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
  1535   assert_locked_or_safepoint(Compile_lock);
  1536   Dependencies::check_valid_dependency_type(type());
  1538   Klass* witness = NULL;
  1539   switch (type()) {
  1540   case evol_method:
  1541     witness = check_evol_method(method_argument(0));
  1542     break;
  1543   case leaf_type:
  1544     witness = check_leaf_type(context_type());
  1545     break;
  1546   case abstract_with_unique_concrete_subtype:
  1547     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
  1548     break;
  1549   case abstract_with_no_concrete_subtype:
  1550     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
  1551     break;
  1552   case concrete_with_no_concrete_subtype:
  1553     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
  1554     break;
  1555   case unique_concrete_method:
  1556     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
  1557     break;
  1558   case abstract_with_exclusive_concrete_subtypes_2:
  1559     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
  1560     break;
  1561   case exclusive_concrete_methods_2:
  1562     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
  1563     break;
  1564   case no_finalizable_subclasses:
  1565     witness = check_has_no_finalizable_subclasses(context_type(), changes);
  1566     break;
  1567   default:
  1568     witness = NULL;
  1569     break;
  1571   trace_and_log_witness(witness);
  1572   return witness;
  1576 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
  1577   assert_locked_or_safepoint(Compile_lock);
  1578   Dependencies::check_valid_dependency_type(type());
  1580   Klass* witness = NULL;
  1581   switch (type()) {
  1582   case call_site_target_value:
  1583     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
  1584     break;
  1585   default:
  1586     witness = NULL;
  1587     break;
  1589   trace_and_log_witness(witness);
  1590   return witness;
  1594 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
  1595   // Handle klass dependency
  1596   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
  1597     return check_klass_dependency(changes.as_klass_change());
  1599   // Handle CallSite dependency
  1600   if (changes.is_call_site_change())
  1601     return check_call_site_dependency(changes.as_call_site_change());
  1603   // irrelevant dependency; skip it
  1604   return NULL;
  1608 void DepChange::print() {
  1609   int nsup = 0, nint = 0;
  1610   for (ContextStream str(*this); str.next(); ) {
  1611     Klass* k = str.klass();
  1612     switch (str.change_type()) {
  1613     case Change_new_type:
  1614       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
  1615       break;
  1616     case Change_new_sub:
  1617       if (!WizardMode) {
  1618         ++nsup;
  1619       } else {
  1620         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
  1622       break;
  1623     case Change_new_impl:
  1624       if (!WizardMode) {
  1625         ++nint;
  1626       } else {
  1627         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
  1629       break;
  1632   if (nsup + nint != 0) {
  1633     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
  1637 void DepChange::ContextStream::start() {
  1638   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
  1639   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
  1640   _klass = new_type;
  1641   _ti_base = NULL;
  1642   _ti_index = 0;
  1643   _ti_limit = 0;
  1646 bool DepChange::ContextStream::next() {
  1647   switch (_change_type) {
  1648   case Start_Klass:             // initial state; _klass is the new type
  1649     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
  1650     _ti_index = 0;
  1651     _change_type = Change_new_type;
  1652     return true;
  1653   case Change_new_type:
  1654     // fall through:
  1655     _change_type = Change_new_sub;
  1656   case Change_new_sub:
  1657     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
  1659       _klass = InstanceKlass::cast(_klass)->super();
  1660       if (_klass != NULL) {
  1661         return true;
  1664     // else set up _ti_limit and fall through:
  1665     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
  1666     _change_type = Change_new_impl;
  1667   case Change_new_impl:
  1668     if (_ti_index < _ti_limit) {
  1669       _klass = _ti_base->at(_ti_index++);
  1670       return true;
  1672     // fall through:
  1673     _change_type = NO_CHANGE;  // iterator is exhausted
  1674   case NO_CHANGE:
  1675     break;
  1676   default:
  1677     ShouldNotReachHere();
  1679   return false;
  1682 void KlassDepChange::initialize() {
  1683   // entire transaction must be under this lock:
  1684   assert_lock_strong(Compile_lock);
  1686   // Mark all dependee and all its superclasses
  1687   // Mark transitive interfaces
  1688   for (ContextStream str(*this); str.next(); ) {
  1689     Klass* d = str.klass();
  1690     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
  1691     InstanceKlass::cast(d)->set_is_marked_dependent(true);
  1695 KlassDepChange::~KlassDepChange() {
  1696   // Unmark all dependee and all its superclasses
  1697   // Unmark transitive interfaces
  1698   for (ContextStream str(*this); str.next(); ) {
  1699     Klass* d = str.klass();
  1700     InstanceKlass::cast(d)->set_is_marked_dependent(false);
  1704 bool KlassDepChange::involves_context(Klass* k) {
  1705   if (k == NULL || !k->oop_is_instance()) {
  1706     return false;
  1708   InstanceKlass* ik = InstanceKlass::cast(k);
  1709   bool is_contained = ik->is_marked_dependent();
  1710   assert(is_contained == new_type()->is_subtype_of(k),
  1711          "correct marking of potential context types");
  1712   return is_contained;
  1715 #ifndef PRODUCT
  1716 void Dependencies::print_statistics() {
  1717   if (deps_find_witness_print != 0) {
  1718     // Call one final time, to flush out the data.
  1719     deps_find_witness_print = -1;
  1720     count_find_witness_calls();
  1723 #endif

mercurial