src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Mon, 21 Jul 2014 09:41:06 +0200

author
tschatzl
date
Mon, 21 Jul 2014 09:41:06 +0200
changeset 6938
a2328cbebb23
parent 6937
b0c374311c4e
child 6968
9fec19bb0659
permissions
-rw-r--r--

8035401: Fix visibility of G1ParScanThreadState members
Summary: After JDK-8035400 there were several opportunities to fix the visibility of several members of the G1ParScanThreadState class.
Reviewed-by: brutisso, mgerdin

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #if !defined(__clang_major__) && defined(__GNUC__)
    26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
    27 #endif
    29 #include "precompiled.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "code/icBuffer.hpp"
    32 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    33 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    34 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    35 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    36 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
    37 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    38 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    39 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
    40 #include "gc_implementation/g1/g1EvacFailure.hpp"
    41 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
    42 #include "gc_implementation/g1/g1Log.hpp"
    43 #include "gc_implementation/g1/g1MarkSweep.hpp"
    44 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    45 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
    46 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    47 #include "gc_implementation/g1/g1StringDedup.hpp"
    48 #include "gc_implementation/g1/g1YCTypes.hpp"
    49 #include "gc_implementation/g1/heapRegion.inline.hpp"
    50 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    51 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    52 #include "gc_implementation/g1/vm_operations_g1.hpp"
    53 #include "gc_implementation/shared/gcHeapSummary.hpp"
    54 #include "gc_implementation/shared/gcTimer.hpp"
    55 #include "gc_implementation/shared/gcTrace.hpp"
    56 #include "gc_implementation/shared/gcTraceTime.hpp"
    57 #include "gc_implementation/shared/isGCActiveMark.hpp"
    58 #include "memory/gcLocker.inline.hpp"
    59 #include "memory/generationSpec.hpp"
    60 #include "memory/iterator.hpp"
    61 #include "memory/referenceProcessor.hpp"
    62 #include "oops/oop.inline.hpp"
    63 #include "oops/oop.pcgc.inline.hpp"
    64 #include "runtime/orderAccess.inline.hpp"
    65 #include "runtime/vmThread.hpp"
    67 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    69 // turn it on so that the contents of the young list (scan-only /
    70 // to-be-collected) are printed at "strategic" points before / during
    71 // / after the collection --- this is useful for debugging
    72 #define YOUNG_LIST_VERBOSE 0
    73 // CURRENT STATUS
    74 // This file is under construction.  Search for "FIXME".
    76 // INVARIANTS/NOTES
    77 //
    78 // All allocation activity covered by the G1CollectedHeap interface is
    79 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    80 // and allocate_new_tlab, which are the "entry" points to the
    81 // allocation code from the rest of the JVM.  (Note that this does not
    82 // apply to TLAB allocation, which is not part of this interface: it
    83 // is done by clients of this interface.)
    85 // Notes on implementation of parallelism in different tasks.
    86 //
    87 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
    88 // The number of GC workers is passed to heap_region_par_iterate_chunked().
    89 // It does use run_task() which sets _n_workers in the task.
    90 // G1ParTask executes g1_process_strong_roots() ->
    91 // SharedHeap::process_strong_roots() which calls eventually to
    92 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
    93 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
    94 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
    95 //
    97 // Local to this file.
    99 class RefineCardTableEntryClosure: public CardTableEntryClosure {
   100   bool _concurrent;
   101 public:
   102   RefineCardTableEntryClosure() : _concurrent(true) { }
   104   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   105     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
   106     // This path is executed by the concurrent refine or mutator threads,
   107     // concurrently, and so we do not care if card_ptr contains references
   108     // that point into the collection set.
   109     assert(!oops_into_cset, "should be");
   111     if (_concurrent && SuspendibleThreadSet::should_yield()) {
   112       // Caller will actually yield.
   113       return false;
   114     }
   115     // Otherwise, we finished successfully; return true.
   116     return true;
   117   }
   119   void set_concurrent(bool b) { _concurrent = b; }
   120 };
   123 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
   124   size_t _num_processed;
   125   CardTableModRefBS* _ctbs;
   126   int _histo[256];
   128  public:
   129   ClearLoggedCardTableEntryClosure() :
   130     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
   131   {
   132     for (int i = 0; i < 256; i++) _histo[i] = 0;
   133   }
   135   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   136     unsigned char* ujb = (unsigned char*)card_ptr;
   137     int ind = (int)(*ujb);
   138     _histo[ind]++;
   140     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
   141     _num_processed++;
   143     return true;
   144   }
   146   size_t num_processed() { return _num_processed; }
   148   void print_histo() {
   149     gclog_or_tty->print_cr("Card table value histogram:");
   150     for (int i = 0; i < 256; i++) {
   151       if (_histo[i] != 0) {
   152         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   153       }
   154     }
   155   }
   156 };
   158 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
   159  private:
   160   size_t _num_processed;
   162  public:
   163   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
   165   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
   166     *card_ptr = CardTableModRefBS::dirty_card_val();
   167     _num_processed++;
   168     return true;
   169   }
   171   size_t num_processed() const { return _num_processed; }
   172 };
   174 YoungList::YoungList(G1CollectedHeap* g1h) :
   175     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
   176     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
   177   guarantee(check_list_empty(false), "just making sure...");
   178 }
   180 void YoungList::push_region(HeapRegion *hr) {
   181   assert(!hr->is_young(), "should not already be young");
   182   assert(hr->get_next_young_region() == NULL, "cause it should!");
   184   hr->set_next_young_region(_head);
   185   _head = hr;
   187   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
   188   ++_length;
   189 }
   191 void YoungList::add_survivor_region(HeapRegion* hr) {
   192   assert(hr->is_survivor(), "should be flagged as survivor region");
   193   assert(hr->get_next_young_region() == NULL, "cause it should!");
   195   hr->set_next_young_region(_survivor_head);
   196   if (_survivor_head == NULL) {
   197     _survivor_tail = hr;
   198   }
   199   _survivor_head = hr;
   200   ++_survivor_length;
   201 }
   203 void YoungList::empty_list(HeapRegion* list) {
   204   while (list != NULL) {
   205     HeapRegion* next = list->get_next_young_region();
   206     list->set_next_young_region(NULL);
   207     list->uninstall_surv_rate_group();
   208     list->set_not_young();
   209     list = next;
   210   }
   211 }
   213 void YoungList::empty_list() {
   214   assert(check_list_well_formed(), "young list should be well formed");
   216   empty_list(_head);
   217   _head = NULL;
   218   _length = 0;
   220   empty_list(_survivor_head);
   221   _survivor_head = NULL;
   222   _survivor_tail = NULL;
   223   _survivor_length = 0;
   225   _last_sampled_rs_lengths = 0;
   227   assert(check_list_empty(false), "just making sure...");
   228 }
   230 bool YoungList::check_list_well_formed() {
   231   bool ret = true;
   233   uint length = 0;
   234   HeapRegion* curr = _head;
   235   HeapRegion* last = NULL;
   236   while (curr != NULL) {
   237     if (!curr->is_young()) {
   238       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   239                              "incorrectly tagged (y: %d, surv: %d)",
   240                              curr->bottom(), curr->end(),
   241                              curr->is_young(), curr->is_survivor());
   242       ret = false;
   243     }
   244     ++length;
   245     last = curr;
   246     curr = curr->get_next_young_region();
   247   }
   248   ret = ret && (length == _length);
   250   if (!ret) {
   251     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   252     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
   253                            length, _length);
   254   }
   256   return ret;
   257 }
   259 bool YoungList::check_list_empty(bool check_sample) {
   260   bool ret = true;
   262   if (_length != 0) {
   263     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
   264                   _length);
   265     ret = false;
   266   }
   267   if (check_sample && _last_sampled_rs_lengths != 0) {
   268     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   269     ret = false;
   270   }
   271   if (_head != NULL) {
   272     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   273     ret = false;
   274   }
   275   if (!ret) {
   276     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   277   }
   279   return ret;
   280 }
   282 void
   283 YoungList::rs_length_sampling_init() {
   284   _sampled_rs_lengths = 0;
   285   _curr               = _head;
   286 }
   288 bool
   289 YoungList::rs_length_sampling_more() {
   290   return _curr != NULL;
   291 }
   293 void
   294 YoungList::rs_length_sampling_next() {
   295   assert( _curr != NULL, "invariant" );
   296   size_t rs_length = _curr->rem_set()->occupied();
   298   _sampled_rs_lengths += rs_length;
   300   // The current region may not yet have been added to the
   301   // incremental collection set (it gets added when it is
   302   // retired as the current allocation region).
   303   if (_curr->in_collection_set()) {
   304     // Update the collection set policy information for this region
   305     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   306   }
   308   _curr = _curr->get_next_young_region();
   309   if (_curr == NULL) {
   310     _last_sampled_rs_lengths = _sampled_rs_lengths;
   311     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   312   }
   313 }
   315 void
   316 YoungList::reset_auxilary_lists() {
   317   guarantee( is_empty(), "young list should be empty" );
   318   assert(check_list_well_formed(), "young list should be well formed");
   320   // Add survivor regions to SurvRateGroup.
   321   _g1h->g1_policy()->note_start_adding_survivor_regions();
   322   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   324   int young_index_in_cset = 0;
   325   for (HeapRegion* curr = _survivor_head;
   326        curr != NULL;
   327        curr = curr->get_next_young_region()) {
   328     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
   330     // The region is a non-empty survivor so let's add it to
   331     // the incremental collection set for the next evacuation
   332     // pause.
   333     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   334     young_index_in_cset += 1;
   335   }
   336   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
   337   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   339   _head   = _survivor_head;
   340   _length = _survivor_length;
   341   if (_survivor_head != NULL) {
   342     assert(_survivor_tail != NULL, "cause it shouldn't be");
   343     assert(_survivor_length > 0, "invariant");
   344     _survivor_tail->set_next_young_region(NULL);
   345   }
   347   // Don't clear the survivor list handles until the start of
   348   // the next evacuation pause - we need it in order to re-tag
   349   // the survivor regions from this evacuation pause as 'young'
   350   // at the start of the next.
   352   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   354   assert(check_list_well_formed(), "young list should be well formed");
   355 }
   357 void YoungList::print() {
   358   HeapRegion* lists[] = {_head,   _survivor_head};
   359   const char* names[] = {"YOUNG", "SURVIVOR"};
   361   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   362     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   363     HeapRegion *curr = lists[list];
   364     if (curr == NULL)
   365       gclog_or_tty->print_cr("  empty");
   366     while (curr != NULL) {
   367       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
   368                              HR_FORMAT_PARAMS(curr),
   369                              curr->prev_top_at_mark_start(),
   370                              curr->next_top_at_mark_start(),
   371                              curr->age_in_surv_rate_group_cond());
   372       curr = curr->get_next_young_region();
   373     }
   374   }
   376   gclog_or_tty->cr();
   377 }
   379 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   380 {
   381   // Claim the right to put the region on the dirty cards region list
   382   // by installing a self pointer.
   383   HeapRegion* next = hr->get_next_dirty_cards_region();
   384   if (next == NULL) {
   385     HeapRegion* res = (HeapRegion*)
   386       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   387                           NULL);
   388     if (res == NULL) {
   389       HeapRegion* head;
   390       do {
   391         // Put the region to the dirty cards region list.
   392         head = _dirty_cards_region_list;
   393         next = (HeapRegion*)
   394           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   395         if (next == head) {
   396           assert(hr->get_next_dirty_cards_region() == hr,
   397                  "hr->get_next_dirty_cards_region() != hr");
   398           if (next == NULL) {
   399             // The last region in the list points to itself.
   400             hr->set_next_dirty_cards_region(hr);
   401           } else {
   402             hr->set_next_dirty_cards_region(next);
   403           }
   404         }
   405       } while (next != head);
   406     }
   407   }
   408 }
   410 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   411 {
   412   HeapRegion* head;
   413   HeapRegion* hr;
   414   do {
   415     head = _dirty_cards_region_list;
   416     if (head == NULL) {
   417       return NULL;
   418     }
   419     HeapRegion* new_head = head->get_next_dirty_cards_region();
   420     if (head == new_head) {
   421       // The last region.
   422       new_head = NULL;
   423     }
   424     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   425                                           head);
   426   } while (hr != head);
   427   assert(hr != NULL, "invariant");
   428   hr->set_next_dirty_cards_region(NULL);
   429   return hr;
   430 }
   432 #ifdef ASSERT
   433 // A region is added to the collection set as it is retired
   434 // so an address p can point to a region which will be in the
   435 // collection set but has not yet been retired.  This method
   436 // therefore is only accurate during a GC pause after all
   437 // regions have been retired.  It is used for debugging
   438 // to check if an nmethod has references to objects that can
   439 // be move during a partial collection.  Though it can be
   440 // inaccurate, it is sufficient for G1 because the conservative
   441 // implementation of is_scavengable() for G1 will indicate that
   442 // all nmethods must be scanned during a partial collection.
   443 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
   444   HeapRegion* hr = heap_region_containing(p);
   445   return hr != NULL && hr->in_collection_set();
   446 }
   447 #endif
   449 // Returns true if the reference points to an object that
   450 // can move in an incremental collection.
   451 bool G1CollectedHeap::is_scavengable(const void* p) {
   452   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   453   G1CollectorPolicy* g1p = g1h->g1_policy();
   454   HeapRegion* hr = heap_region_containing(p);
   455   if (hr == NULL) {
   456      // null
   457      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
   458      return false;
   459   } else {
   460     return !hr->isHumongous();
   461   }
   462 }
   464 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   465   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   466   CardTableModRefBS* ct_bs = g1_barrier_set();
   468   // Count the dirty cards at the start.
   469   CountNonCleanMemRegionClosure count1(this);
   470   ct_bs->mod_card_iterate(&count1);
   471   int orig_count = count1.n();
   473   // First clear the logged cards.
   474   ClearLoggedCardTableEntryClosure clear;
   475   dcqs.apply_closure_to_all_completed_buffers(&clear);
   476   dcqs.iterate_closure_all_threads(&clear, false);
   477   clear.print_histo();
   479   // Now ensure that there's no dirty cards.
   480   CountNonCleanMemRegionClosure count2(this);
   481   ct_bs->mod_card_iterate(&count2);
   482   if (count2.n() != 0) {
   483     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   484                            count2.n(), orig_count);
   485   }
   486   guarantee(count2.n() == 0, "Card table should be clean.");
   488   RedirtyLoggedCardTableEntryClosure redirty;
   489   dcqs.apply_closure_to_all_completed_buffers(&redirty);
   490   dcqs.iterate_closure_all_threads(&redirty, false);
   491   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   492                          clear.num_processed(), orig_count);
   493   guarantee(redirty.num_processed() == clear.num_processed(),
   494             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
   495                     redirty.num_processed(), clear.num_processed()));
   497   CountNonCleanMemRegionClosure count3(this);
   498   ct_bs->mod_card_iterate(&count3);
   499   if (count3.n() != orig_count) {
   500     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   501                            orig_count, count3.n());
   502     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   503   }
   504 }
   506 // Private class members.
   508 G1CollectedHeap* G1CollectedHeap::_g1h;
   510 // Private methods.
   512 HeapRegion*
   513 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
   514   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   515   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   516     if (!_secondary_free_list.is_empty()) {
   517       if (G1ConcRegionFreeingVerbose) {
   518         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   519                                "secondary_free_list has %u entries",
   520                                _secondary_free_list.length());
   521       }
   522       // It looks as if there are free regions available on the
   523       // secondary_free_list. Let's move them to the free_list and try
   524       // again to allocate from it.
   525       append_secondary_free_list();
   527       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   528              "empty we should have moved at least one entry to the free_list");
   529       HeapRegion* res = _free_list.remove_region(is_old);
   530       if (G1ConcRegionFreeingVerbose) {
   531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   532                                "allocated "HR_FORMAT" from secondary_free_list",
   533                                HR_FORMAT_PARAMS(res));
   534       }
   535       return res;
   536     }
   538     // Wait here until we get notified either when (a) there are no
   539     // more free regions coming or (b) some regions have been moved on
   540     // the secondary_free_list.
   541     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   542   }
   544   if (G1ConcRegionFreeingVerbose) {
   545     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   546                            "could not allocate from secondary_free_list");
   547   }
   548   return NULL;
   549 }
   551 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
   552   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
   553          "the only time we use this to allocate a humongous region is "
   554          "when we are allocating a single humongous region");
   556   HeapRegion* res;
   557   if (G1StressConcRegionFreeing) {
   558     if (!_secondary_free_list.is_empty()) {
   559       if (G1ConcRegionFreeingVerbose) {
   560         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   561                                "forced to look at the secondary_free_list");
   562       }
   563       res = new_region_try_secondary_free_list(is_old);
   564       if (res != NULL) {
   565         return res;
   566       }
   567     }
   568   }
   570   res = _free_list.remove_region(is_old);
   572   if (res == NULL) {
   573     if (G1ConcRegionFreeingVerbose) {
   574       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   575                              "res == NULL, trying the secondary_free_list");
   576     }
   577     res = new_region_try_secondary_free_list(is_old);
   578   }
   579   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
   580     // Currently, only attempts to allocate GC alloc regions set
   581     // do_expand to true. So, we should only reach here during a
   582     // safepoint. If this assumption changes we might have to
   583     // reconsider the use of _expand_heap_after_alloc_failure.
   584     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
   586     ergo_verbose1(ErgoHeapSizing,
   587                   "attempt heap expansion",
   588                   ergo_format_reason("region allocation request failed")
   589                   ergo_format_byte("allocation request"),
   590                   word_size * HeapWordSize);
   591     if (expand(word_size * HeapWordSize)) {
   592       // Given that expand() succeeded in expanding the heap, and we
   593       // always expand the heap by an amount aligned to the heap
   594       // region size, the free list should in theory not be empty.
   595       // In either case remove_region() will check for NULL.
   596       res = _free_list.remove_region(is_old);
   597     } else {
   598       _expand_heap_after_alloc_failure = false;
   599     }
   600   }
   601   return res;
   602 }
   604 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
   605                                                         size_t word_size) {
   606   assert(isHumongous(word_size), "word_size should be humongous");
   607   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   609   uint first = G1_NULL_HRS_INDEX;
   610   if (num_regions == 1) {
   611     // Only one region to allocate, no need to go through the slower
   612     // path. The caller will attempt the expansion if this fails, so
   613     // let's not try to expand here too.
   614     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
   615     if (hr != NULL) {
   616       first = hr->hrs_index();
   617     } else {
   618       first = G1_NULL_HRS_INDEX;
   619     }
   620   } else {
   621     // We can't allocate humongous regions while cleanupComplete() is
   622     // running, since some of the regions we find to be empty might not
   623     // yet be added to the free list and it is not straightforward to
   624     // know which list they are on so that we can remove them. Note
   625     // that we only need to do this if we need to allocate more than
   626     // one region to satisfy the current humongous allocation
   627     // request. If we are only allocating one region we use the common
   628     // region allocation code (see above).
   629     wait_while_free_regions_coming();
   630     append_secondary_free_list_if_not_empty_with_lock();
   632     if (free_regions() >= num_regions) {
   633       first = _hrs.find_contiguous(num_regions);
   634       if (first != G1_NULL_HRS_INDEX) {
   635         for (uint i = first; i < first + num_regions; ++i) {
   636           HeapRegion* hr = region_at(i);
   637           assert(hr->is_empty(), "sanity");
   638           assert(is_on_master_free_list(hr), "sanity");
   639           hr->set_pending_removal(true);
   640         }
   641         _free_list.remove_all_pending(num_regions);
   642       }
   643     }
   644   }
   645   return first;
   646 }
   648 HeapWord*
   649 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
   650                                                            uint num_regions,
   651                                                            size_t word_size) {
   652   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
   653   assert(isHumongous(word_size), "word_size should be humongous");
   654   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
   656   // Index of last region in the series + 1.
   657   uint last = first + num_regions;
   659   // We need to initialize the region(s) we just discovered. This is
   660   // a bit tricky given that it can happen concurrently with
   661   // refinement threads refining cards on these regions and
   662   // potentially wanting to refine the BOT as they are scanning
   663   // those cards (this can happen shortly after a cleanup; see CR
   664   // 6991377). So we have to set up the region(s) carefully and in
   665   // a specific order.
   667   // The word size sum of all the regions we will allocate.
   668   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
   669   assert(word_size <= word_size_sum, "sanity");
   671   // This will be the "starts humongous" region.
   672   HeapRegion* first_hr = region_at(first);
   673   // The header of the new object will be placed at the bottom of
   674   // the first region.
   675   HeapWord* new_obj = first_hr->bottom();
   676   // This will be the new end of the first region in the series that
   677   // should also match the end of the last region in the series.
   678   HeapWord* new_end = new_obj + word_size_sum;
   679   // This will be the new top of the first region that will reflect
   680   // this allocation.
   681   HeapWord* new_top = new_obj + word_size;
   683   // First, we need to zero the header of the space that we will be
   684   // allocating. When we update top further down, some refinement
   685   // threads might try to scan the region. By zeroing the header we
   686   // ensure that any thread that will try to scan the region will
   687   // come across the zero klass word and bail out.
   688   //
   689   // NOTE: It would not have been correct to have used
   690   // CollectedHeap::fill_with_object() and make the space look like
   691   // an int array. The thread that is doing the allocation will
   692   // later update the object header to a potentially different array
   693   // type and, for a very short period of time, the klass and length
   694   // fields will be inconsistent. This could cause a refinement
   695   // thread to calculate the object size incorrectly.
   696   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   698   // We will set up the first region as "starts humongous". This
   699   // will also update the BOT covering all the regions to reflect
   700   // that there is a single object that starts at the bottom of the
   701   // first region.
   702   first_hr->set_startsHumongous(new_top, new_end);
   704   // Then, if there are any, we will set up the "continues
   705   // humongous" regions.
   706   HeapRegion* hr = NULL;
   707   for (uint i = first + 1; i < last; ++i) {
   708     hr = region_at(i);
   709     hr->set_continuesHumongous(first_hr);
   710   }
   711   // If we have "continues humongous" regions (hr != NULL), then the
   712   // end of the last one should match new_end.
   713   assert(hr == NULL || hr->end() == new_end, "sanity");
   715   // Up to this point no concurrent thread would have been able to
   716   // do any scanning on any region in this series. All the top
   717   // fields still point to bottom, so the intersection between
   718   // [bottom,top] and [card_start,card_end] will be empty. Before we
   719   // update the top fields, we'll do a storestore to make sure that
   720   // no thread sees the update to top before the zeroing of the
   721   // object header and the BOT initialization.
   722   OrderAccess::storestore();
   724   // Now that the BOT and the object header have been initialized,
   725   // we can update top of the "starts humongous" region.
   726   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   727          "new_top should be in this region");
   728   first_hr->set_top(new_top);
   729   if (_hr_printer.is_active()) {
   730     HeapWord* bottom = first_hr->bottom();
   731     HeapWord* end = first_hr->orig_end();
   732     if ((first + 1) == last) {
   733       // the series has a single humongous region
   734       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
   735     } else {
   736       // the series has more than one humongous regions
   737       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
   738     }
   739   }
   741   // Now, we will update the top fields of the "continues humongous"
   742   // regions. The reason we need to do this is that, otherwise,
   743   // these regions would look empty and this will confuse parts of
   744   // G1. For example, the code that looks for a consecutive number
   745   // of empty regions will consider them empty and try to
   746   // re-allocate them. We can extend is_empty() to also include
   747   // !continuesHumongous(), but it is easier to just update the top
   748   // fields here. The way we set top for all regions (i.e., top ==
   749   // end for all regions but the last one, top == new_top for the
   750   // last one) is actually used when we will free up the humongous
   751   // region in free_humongous_region().
   752   hr = NULL;
   753   for (uint i = first + 1; i < last; ++i) {
   754     hr = region_at(i);
   755     if ((i + 1) == last) {
   756       // last continues humongous region
   757       assert(hr->bottom() < new_top && new_top <= hr->end(),
   758              "new_top should fall on this region");
   759       hr->set_top(new_top);
   760       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
   761     } else {
   762       // not last one
   763       assert(new_top > hr->end(), "new_top should be above this region");
   764       hr->set_top(hr->end());
   765       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
   766     }
   767   }
   768   // If we have continues humongous regions (hr != NULL), then the
   769   // end of the last one should match new_end and its top should
   770   // match new_top.
   771   assert(hr == NULL ||
   772          (hr->end() == new_end && hr->top() == new_top), "sanity");
   774   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   775   _summary_bytes_used += first_hr->used();
   776   _humongous_set.add(first_hr);
   778   return new_obj;
   779 }
   781 // If could fit into free regions w/o expansion, try.
   782 // Otherwise, if can expand, do so.
   783 // Otherwise, if using ex regions might help, try with ex given back.
   784 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   785   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   787   verify_region_sets_optional();
   789   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
   790   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
   791   uint x_num = expansion_regions();
   792   uint fs = _hrs.free_suffix();
   793   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
   794   if (first == G1_NULL_HRS_INDEX) {
   795     // The only thing we can do now is attempt expansion.
   796     if (fs + x_num >= num_regions) {
   797       // If the number of regions we're trying to allocate for this
   798       // object is at most the number of regions in the free suffix,
   799       // then the call to humongous_obj_allocate_find_first() above
   800       // should have succeeded and we wouldn't be here.
   801       //
   802       // We should only be trying to expand when the free suffix is
   803       // not sufficient for the object _and_ we have some expansion
   804       // room available.
   805       assert(num_regions > fs, "earlier allocation should have succeeded");
   807       ergo_verbose1(ErgoHeapSizing,
   808                     "attempt heap expansion",
   809                     ergo_format_reason("humongous allocation request failed")
   810                     ergo_format_byte("allocation request"),
   811                     word_size * HeapWordSize);
   812       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   813         // Even though the heap was expanded, it might not have
   814         // reached the desired size. So, we cannot assume that the
   815         // allocation will succeed.
   816         first = humongous_obj_allocate_find_first(num_regions, word_size);
   817       }
   818     }
   819   }
   821   HeapWord* result = NULL;
   822   if (first != G1_NULL_HRS_INDEX) {
   823     result =
   824       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
   825     assert(result != NULL, "it should always return a valid result");
   827     // A successful humongous object allocation changes the used space
   828     // information of the old generation so we need to recalculate the
   829     // sizes and update the jstat counters here.
   830     g1mm()->update_sizes();
   831   }
   833   verify_region_sets_optional();
   835   return result;
   836 }
   838 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
   839   assert_heap_not_locked_and_not_at_safepoint();
   840   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
   842   unsigned int dummy_gc_count_before;
   843   int dummy_gclocker_retry_count = 0;
   844   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
   845 }
   847 HeapWord*
   848 G1CollectedHeap::mem_allocate(size_t word_size,
   849                               bool*  gc_overhead_limit_was_exceeded) {
   850   assert_heap_not_locked_and_not_at_safepoint();
   852   // Loop until the allocation is satisfied, or unsatisfied after GC.
   853   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
   854     unsigned int gc_count_before;
   856     HeapWord* result = NULL;
   857     if (!isHumongous(word_size)) {
   858       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
   859     } else {
   860       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
   861     }
   862     if (result != NULL) {
   863       return result;
   864     }
   866     // Create the garbage collection operation...
   867     VM_G1CollectForAllocation op(gc_count_before, word_size);
   868     // ...and get the VM thread to execute it.
   869     VMThread::execute(&op);
   871     if (op.prologue_succeeded() && op.pause_succeeded()) {
   872       // If the operation was successful we'll return the result even
   873       // if it is NULL. If the allocation attempt failed immediately
   874       // after a Full GC, it's unlikely we'll be able to allocate now.
   875       HeapWord* result = op.result();
   876       if (result != NULL && !isHumongous(word_size)) {
   877         // Allocations that take place on VM operations do not do any
   878         // card dirtying and we have to do it here. We only have to do
   879         // this for non-humongous allocations, though.
   880         dirty_young_block(result, word_size);
   881       }
   882       return result;
   883     } else {
   884       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
   885         return NULL;
   886       }
   887       assert(op.result() == NULL,
   888              "the result should be NULL if the VM op did not succeed");
   889     }
   891     // Give a warning if we seem to be looping forever.
   892     if ((QueuedAllocationWarningCount > 0) &&
   893         (try_count % QueuedAllocationWarningCount == 0)) {
   894       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
   895     }
   896   }
   898   ShouldNotReachHere();
   899   return NULL;
   900 }
   902 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
   903                                            unsigned int *gc_count_before_ret,
   904                                            int* gclocker_retry_count_ret) {
   905   // Make sure you read the note in attempt_allocation_humongous().
   907   assert_heap_not_locked_and_not_at_safepoint();
   908   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
   909          "be called for humongous allocation requests");
   911   // We should only get here after the first-level allocation attempt
   912   // (attempt_allocation()) failed to allocate.
   914   // We will loop until a) we manage to successfully perform the
   915   // allocation or b) we successfully schedule a collection which
   916   // fails to perform the allocation. b) is the only case when we'll
   917   // return NULL.
   918   HeapWord* result = NULL;
   919   for (int try_count = 1; /* we'll return */; try_count += 1) {
   920     bool should_try_gc;
   921     unsigned int gc_count_before;
   923     {
   924       MutexLockerEx x(Heap_lock);
   926       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
   927                                                       false /* bot_updates */);
   928       if (result != NULL) {
   929         return result;
   930       }
   932       // If we reach here, attempt_allocation_locked() above failed to
   933       // allocate a new region. So the mutator alloc region should be NULL.
   934       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
   936       if (GC_locker::is_active_and_needs_gc()) {
   937         if (g1_policy()->can_expand_young_list()) {
   938           // No need for an ergo verbose message here,
   939           // can_expand_young_list() does this when it returns true.
   940           result = _mutator_alloc_region.attempt_allocation_force(word_size,
   941                                                       false /* bot_updates */);
   942           if (result != NULL) {
   943             return result;
   944           }
   945         }
   946         should_try_gc = false;
   947       } else {
   948         // The GCLocker may not be active but the GCLocker initiated
   949         // GC may not yet have been performed (GCLocker::needs_gc()
   950         // returns true). In this case we do not try this GC and
   951         // wait until the GCLocker initiated GC is performed, and
   952         // then retry the allocation.
   953         if (GC_locker::needs_gc()) {
   954           should_try_gc = false;
   955         } else {
   956           // Read the GC count while still holding the Heap_lock.
   957           gc_count_before = total_collections();
   958           should_try_gc = true;
   959         }
   960       }
   961     }
   963     if (should_try_gc) {
   964       bool succeeded;
   965       result = do_collection_pause(word_size, gc_count_before, &succeeded,
   966           GCCause::_g1_inc_collection_pause);
   967       if (result != NULL) {
   968         assert(succeeded, "only way to get back a non-NULL result");
   969         return result;
   970       }
   972       if (succeeded) {
   973         // If we get here we successfully scheduled a collection which
   974         // failed to allocate. No point in trying to allocate
   975         // further. We'll just return NULL.
   976         MutexLockerEx x(Heap_lock);
   977         *gc_count_before_ret = total_collections();
   978         return NULL;
   979       }
   980     } else {
   981       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
   982         MutexLockerEx x(Heap_lock);
   983         *gc_count_before_ret = total_collections();
   984         return NULL;
   985       }
   986       // The GCLocker is either active or the GCLocker initiated
   987       // GC has not yet been performed. Stall until it is and
   988       // then retry the allocation.
   989       GC_locker::stall_until_clear();
   990       (*gclocker_retry_count_ret) += 1;
   991     }
   993     // We can reach here if we were unsuccessful in scheduling a
   994     // collection (because another thread beat us to it) or if we were
   995     // stalled due to the GC locker. In either can we should retry the
   996     // allocation attempt in case another thread successfully
   997     // performed a collection and reclaimed enough space. We do the
   998     // first attempt (without holding the Heap_lock) here and the
   999     // follow-on attempt will be at the start of the next loop
  1000     // iteration (after taking the Heap_lock).
  1001     result = _mutator_alloc_region.attempt_allocation(word_size,
  1002                                                       false /* bot_updates */);
  1003     if (result != NULL) {
  1004       return result;
  1007     // Give a warning if we seem to be looping forever.
  1008     if ((QueuedAllocationWarningCount > 0) &&
  1009         (try_count % QueuedAllocationWarningCount == 0)) {
  1010       warning("G1CollectedHeap::attempt_allocation_slow() "
  1011               "retries %d times", try_count);
  1015   ShouldNotReachHere();
  1016   return NULL;
  1019 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1020                                           unsigned int * gc_count_before_ret,
  1021                                           int* gclocker_retry_count_ret) {
  1022   // The structure of this method has a lot of similarities to
  1023   // attempt_allocation_slow(). The reason these two were not merged
  1024   // into a single one is that such a method would require several "if
  1025   // allocation is not humongous do this, otherwise do that"
  1026   // conditional paths which would obscure its flow. In fact, an early
  1027   // version of this code did use a unified method which was harder to
  1028   // follow and, as a result, it had subtle bugs that were hard to
  1029   // track down. So keeping these two methods separate allows each to
  1030   // be more readable. It will be good to keep these two in sync as
  1031   // much as possible.
  1033   assert_heap_not_locked_and_not_at_safepoint();
  1034   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1035          "should only be called for humongous allocations");
  1037   // Humongous objects can exhaust the heap quickly, so we should check if we
  1038   // need to start a marking cycle at each humongous object allocation. We do
  1039   // the check before we do the actual allocation. The reason for doing it
  1040   // before the allocation is that we avoid having to keep track of the newly
  1041   // allocated memory while we do a GC.
  1042   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
  1043                                            word_size)) {
  1044     collect(GCCause::_g1_humongous_allocation);
  1047   // We will loop until a) we manage to successfully perform the
  1048   // allocation or b) we successfully schedule a collection which
  1049   // fails to perform the allocation. b) is the only case when we'll
  1050   // return NULL.
  1051   HeapWord* result = NULL;
  1052   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1053     bool should_try_gc;
  1054     unsigned int gc_count_before;
  1057       MutexLockerEx x(Heap_lock);
  1059       // Given that humongous objects are not allocated in young
  1060       // regions, we'll first try to do the allocation without doing a
  1061       // collection hoping that there's enough space in the heap.
  1062       result = humongous_obj_allocate(word_size);
  1063       if (result != NULL) {
  1064         return result;
  1067       if (GC_locker::is_active_and_needs_gc()) {
  1068         should_try_gc = false;
  1069       } else {
  1070          // The GCLocker may not be active but the GCLocker initiated
  1071         // GC may not yet have been performed (GCLocker::needs_gc()
  1072         // returns true). In this case we do not try this GC and
  1073         // wait until the GCLocker initiated GC is performed, and
  1074         // then retry the allocation.
  1075         if (GC_locker::needs_gc()) {
  1076           should_try_gc = false;
  1077         } else {
  1078           // Read the GC count while still holding the Heap_lock.
  1079           gc_count_before = total_collections();
  1080           should_try_gc = true;
  1085     if (should_try_gc) {
  1086       // If we failed to allocate the humongous object, we should try to
  1087       // do a collection pause (if we're allowed) in case it reclaims
  1088       // enough space for the allocation to succeed after the pause.
  1090       bool succeeded;
  1091       result = do_collection_pause(word_size, gc_count_before, &succeeded,
  1092           GCCause::_g1_humongous_allocation);
  1093       if (result != NULL) {
  1094         assert(succeeded, "only way to get back a non-NULL result");
  1095         return result;
  1098       if (succeeded) {
  1099         // If we get here we successfully scheduled a collection which
  1100         // failed to allocate. No point in trying to allocate
  1101         // further. We'll just return NULL.
  1102         MutexLockerEx x(Heap_lock);
  1103         *gc_count_before_ret = total_collections();
  1104         return NULL;
  1106     } else {
  1107       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
  1108         MutexLockerEx x(Heap_lock);
  1109         *gc_count_before_ret = total_collections();
  1110         return NULL;
  1112       // The GCLocker is either active or the GCLocker initiated
  1113       // GC has not yet been performed. Stall until it is and
  1114       // then retry the allocation.
  1115       GC_locker::stall_until_clear();
  1116       (*gclocker_retry_count_ret) += 1;
  1119     // We can reach here if we were unsuccessful in scheduling a
  1120     // collection (because another thread beat us to it) or if we were
  1121     // stalled due to the GC locker. In either can we should retry the
  1122     // allocation attempt in case another thread successfully
  1123     // performed a collection and reclaimed enough space.  Give a
  1124     // warning if we seem to be looping forever.
  1126     if ((QueuedAllocationWarningCount > 0) &&
  1127         (try_count % QueuedAllocationWarningCount == 0)) {
  1128       warning("G1CollectedHeap::attempt_allocation_humongous() "
  1129               "retries %d times", try_count);
  1133   ShouldNotReachHere();
  1134   return NULL;
  1137 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1138                                        bool expect_null_mutator_alloc_region) {
  1139   assert_at_safepoint(true /* should_be_vm_thread */);
  1140   assert(_mutator_alloc_region.get() == NULL ||
  1141                                              !expect_null_mutator_alloc_region,
  1142          "the current alloc region was unexpectedly found to be non-NULL");
  1144   if (!isHumongous(word_size)) {
  1145     return _mutator_alloc_region.attempt_allocation_locked(word_size,
  1146                                                       false /* bot_updates */);
  1147   } else {
  1148     HeapWord* result = humongous_obj_allocate(word_size);
  1149     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
  1150       g1_policy()->set_initiate_conc_mark_if_possible();
  1152     return result;
  1155   ShouldNotReachHere();
  1158 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1159   G1CollectedHeap* _g1h;
  1160   ModRefBarrierSet* _mr_bs;
  1161 public:
  1162   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
  1163     _g1h(g1h), _mr_bs(mr_bs) {}
  1165   bool doHeapRegion(HeapRegion* r) {
  1166     HeapRegionRemSet* hrrs = r->rem_set();
  1168     if (r->continuesHumongous()) {
  1169       // We'll assert that the strong code root list and RSet is empty
  1170       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
  1171       assert(hrrs->occupied() == 0, "RSet should be empty");
  1172       return false;
  1175     _g1h->reset_gc_time_stamps(r);
  1176     hrrs->clear();
  1177     // You might think here that we could clear just the cards
  1178     // corresponding to the used region.  But no: if we leave a dirty card
  1179     // in a region we might allocate into, then it would prevent that card
  1180     // from being enqueued, and cause it to be missed.
  1181     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1182     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1184     return false;
  1186 };
  1188 void G1CollectedHeap::clear_rsets_post_compaction() {
  1189   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
  1190   heap_region_iterate(&rs_clear);
  1193 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1194   G1CollectedHeap*   _g1h;
  1195   UpdateRSOopClosure _cl;
  1196   int                _worker_i;
  1197 public:
  1198   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1199     _cl(g1->g1_rem_set(), worker_i),
  1200     _worker_i(worker_i),
  1201     _g1h(g1)
  1202   { }
  1204   bool doHeapRegion(HeapRegion* r) {
  1205     if (!r->continuesHumongous()) {
  1206       _cl.set_from(r);
  1207       r->oop_iterate(&_cl);
  1209     return false;
  1211 };
  1213 class ParRebuildRSTask: public AbstractGangTask {
  1214   G1CollectedHeap* _g1;
  1215 public:
  1216   ParRebuildRSTask(G1CollectedHeap* g1)
  1217     : AbstractGangTask("ParRebuildRSTask"),
  1218       _g1(g1)
  1219   { }
  1221   void work(uint worker_id) {
  1222     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
  1223     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
  1224                                           _g1->workers()->active_workers(),
  1225                                          HeapRegion::RebuildRSClaimValue);
  1227 };
  1229 class PostCompactionPrinterClosure: public HeapRegionClosure {
  1230 private:
  1231   G1HRPrinter* _hr_printer;
  1232 public:
  1233   bool doHeapRegion(HeapRegion* hr) {
  1234     assert(!hr->is_young(), "not expecting to find young regions");
  1235     // We only generate output for non-empty regions.
  1236     if (!hr->is_empty()) {
  1237       if (!hr->isHumongous()) {
  1238         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
  1239       } else if (hr->startsHumongous()) {
  1240         if (hr->region_num() == 1) {
  1241           // single humongous region
  1242           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
  1243         } else {
  1244           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
  1246       } else {
  1247         assert(hr->continuesHumongous(), "only way to get here");
  1248         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
  1251     return false;
  1254   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
  1255     : _hr_printer(hr_printer) { }
  1256 };
  1258 void G1CollectedHeap::print_hrs_post_compaction() {
  1259   PostCompactionPrinterClosure cl(hr_printer());
  1260   heap_region_iterate(&cl);
  1263 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1264                                     bool clear_all_soft_refs,
  1265                                     size_t word_size) {
  1266   assert_at_safepoint(true /* should_be_vm_thread */);
  1268   if (GC_locker::check_active_before_gc()) {
  1269     return false;
  1272   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
  1273   gc_timer->register_gc_start();
  1275   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
  1276   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
  1278   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1279   ResourceMark rm;
  1281   print_heap_before_gc();
  1282   trace_heap_before_gc(gc_tracer);
  1284   size_t metadata_prev_used = MetaspaceAux::used_bytes();
  1286   verify_region_sets_optional();
  1288   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1289                            collector_policy()->should_clear_all_soft_refs();
  1291   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1294     IsGCActiveMark x;
  1296     // Timing
  1297     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
  1298     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
  1299     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  1302       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
  1303       TraceCollectorStats tcs(g1mm()->full_collection_counters());
  1304       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
  1306       double start = os::elapsedTime();
  1307       g1_policy()->record_full_collection_start();
  1309       // Note: When we have a more flexible GC logging framework that
  1310       // allows us to add optional attributes to a GC log record we
  1311       // could consider timing and reporting how long we wait in the
  1312       // following two methods.
  1313       wait_while_free_regions_coming();
  1314       // If we start the compaction before the CM threads finish
  1315       // scanning the root regions we might trip them over as we'll
  1316       // be moving objects / updating references. So let's wait until
  1317       // they are done. By telling them to abort, they should complete
  1318       // early.
  1319       _cm->root_regions()->abort();
  1320       _cm->root_regions()->wait_until_scan_finished();
  1321       append_secondary_free_list_if_not_empty_with_lock();
  1323       gc_prologue(true);
  1324       increment_total_collections(true /* full gc */);
  1325       increment_old_marking_cycles_started();
  1327       assert(used() == recalculate_used(), "Should be equal");
  1329       verify_before_gc();
  1331       pre_full_gc_dump(gc_timer);
  1333       COMPILER2_PRESENT(DerivedPointerTable::clear());
  1335       // Disable discovery and empty the discovered lists
  1336       // for the CM ref processor.
  1337       ref_processor_cm()->disable_discovery();
  1338       ref_processor_cm()->abandon_partial_discovery();
  1339       ref_processor_cm()->verify_no_references_recorded();
  1341       // Abandon current iterations of concurrent marking and concurrent
  1342       // refinement, if any are in progress. We have to do this before
  1343       // wait_until_scan_finished() below.
  1344       concurrent_mark()->abort();
  1346       // Make sure we'll choose a new allocation region afterwards.
  1347       release_mutator_alloc_region();
  1348       abandon_gc_alloc_regions();
  1349       g1_rem_set()->cleanupHRRS();
  1351       // We should call this after we retire any currently active alloc
  1352       // regions so that all the ALLOC / RETIRE events are generated
  1353       // before the start GC event.
  1354       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
  1356       // We may have added regions to the current incremental collection
  1357       // set between the last GC or pause and now. We need to clear the
  1358       // incremental collection set and then start rebuilding it afresh
  1359       // after this full GC.
  1360       abandon_collection_set(g1_policy()->inc_cset_head());
  1361       g1_policy()->clear_incremental_cset();
  1362       g1_policy()->stop_incremental_cset_building();
  1364       tear_down_region_sets(false /* free_list_only */);
  1365       g1_policy()->set_gcs_are_young(true);
  1367       // See the comments in g1CollectedHeap.hpp and
  1368       // G1CollectedHeap::ref_processing_init() about
  1369       // how reference processing currently works in G1.
  1371       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
  1372       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
  1374       // Temporarily clear the STW ref processor's _is_alive_non_header field.
  1375       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
  1377       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
  1378       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
  1380       // Do collection work
  1382         HandleMark hm;  // Discard invalid handles created during gc
  1383         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
  1386       assert(free_regions() == 0, "we should not have added any free regions");
  1387       rebuild_region_sets(false /* free_list_only */);
  1389       // Enqueue any discovered reference objects that have
  1390       // not been removed from the discovered lists.
  1391       ref_processor_stw()->enqueue_discovered_references();
  1393       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1395       MemoryService::track_memory_usage();
  1397       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  1398       ref_processor_stw()->verify_no_references_recorded();
  1400       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
  1401       ClassLoaderDataGraph::purge();
  1402       MetaspaceAux::verify_metrics();
  1404       // Note: since we've just done a full GC, concurrent
  1405       // marking is no longer active. Therefore we need not
  1406       // re-enable reference discovery for the CM ref processor.
  1407       // That will be done at the start of the next marking cycle.
  1408       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
  1409       ref_processor_cm()->verify_no_references_recorded();
  1411       reset_gc_time_stamp();
  1412       // Since everything potentially moved, we will clear all remembered
  1413       // sets, and clear all cards.  Later we will rebuild remembered
  1414       // sets. We will also reset the GC time stamps of the regions.
  1415       clear_rsets_post_compaction();
  1416       check_gc_time_stamps();
  1418       // Resize the heap if necessary.
  1419       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1421       if (_hr_printer.is_active()) {
  1422         // We should do this after we potentially resize the heap so
  1423         // that all the COMMIT / UNCOMMIT events are generated before
  1424         // the end GC event.
  1426         print_hrs_post_compaction();
  1427         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
  1430       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  1431       if (hot_card_cache->use_cache()) {
  1432         hot_card_cache->reset_card_counts();
  1433         hot_card_cache->reset_hot_cache();
  1436       // Rebuild remembered sets of all regions.
  1437       if (G1CollectedHeap::use_parallel_gc_threads()) {
  1438         uint n_workers =
  1439           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  1440                                                   workers()->active_workers(),
  1441                                                   Threads::number_of_non_daemon_threads());
  1442         assert(UseDynamicNumberOfGCThreads ||
  1443                n_workers == workers()->total_workers(),
  1444                "If not dynamic should be using all the  workers");
  1445         workers()->set_active_workers(n_workers);
  1446         // Set parallel threads in the heap (_n_par_threads) only
  1447         // before a parallel phase and always reset it to 0 after
  1448         // the phase so that the number of parallel threads does
  1449         // no get carried forward to a serial phase where there
  1450         // may be code that is "possibly_parallel".
  1451         set_par_threads(n_workers);
  1453         ParRebuildRSTask rebuild_rs_task(this);
  1454         assert(check_heap_region_claim_values(
  1455                HeapRegion::InitialClaimValue), "sanity check");
  1456         assert(UseDynamicNumberOfGCThreads ||
  1457                workers()->active_workers() == workers()->total_workers(),
  1458                "Unless dynamic should use total workers");
  1459         // Use the most recent number of  active workers
  1460         assert(workers()->active_workers() > 0,
  1461                "Active workers not properly set");
  1462         set_par_threads(workers()->active_workers());
  1463         workers()->run_task(&rebuild_rs_task);
  1464         set_par_threads(0);
  1465         assert(check_heap_region_claim_values(
  1466                HeapRegion::RebuildRSClaimValue), "sanity check");
  1467         reset_heap_region_claim_values();
  1468       } else {
  1469         RebuildRSOutOfRegionClosure rebuild_rs(this);
  1470         heap_region_iterate(&rebuild_rs);
  1473       // Rebuild the strong code root lists for each region
  1474       rebuild_strong_code_roots();
  1476       if (true) { // FIXME
  1477         MetaspaceGC::compute_new_size();
  1480 #ifdef TRACESPINNING
  1481       ParallelTaskTerminator::print_termination_counts();
  1482 #endif
  1484       // Discard all rset updates
  1485       JavaThread::dirty_card_queue_set().abandon_logs();
  1486       assert(!G1DeferredRSUpdate
  1487              || (G1DeferredRSUpdate &&
  1488                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1490       _young_list->reset_sampled_info();
  1491       // At this point there should be no regions in the
  1492       // entire heap tagged as young.
  1493       assert(check_young_list_empty(true /* check_heap */),
  1494              "young list should be empty at this point");
  1496       // Update the number of full collections that have been completed.
  1497       increment_old_marking_cycles_completed(false /* concurrent */);
  1499       _hrs.verify_optional();
  1500       verify_region_sets_optional();
  1502       verify_after_gc();
  1504       // Start a new incremental collection set for the next pause
  1505       assert(g1_policy()->collection_set() == NULL, "must be");
  1506       g1_policy()->start_incremental_cset_building();
  1508       clear_cset_fast_test();
  1510       init_mutator_alloc_region();
  1512       double end = os::elapsedTime();
  1513       g1_policy()->record_full_collection_end();
  1515       if (G1Log::fine()) {
  1516         g1_policy()->print_heap_transition();
  1519       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  1520       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  1521       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  1522       // before any GC notifications are raised.
  1523       g1mm()->update_sizes();
  1525       gc_epilogue(true);
  1528     if (G1Log::finer()) {
  1529       g1_policy()->print_detailed_heap_transition(true /* full */);
  1532     print_heap_after_gc();
  1533     trace_heap_after_gc(gc_tracer);
  1535     post_full_gc_dump(gc_timer);
  1537     gc_timer->register_gc_end();
  1538     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  1541   return true;
  1544 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1545   // do_collection() will return whether it succeeded in performing
  1546   // the GC. Currently, there is no facility on the
  1547   // do_full_collection() API to notify the caller than the collection
  1548   // did not succeed (e.g., because it was locked out by the GC
  1549   // locker). So, right now, we'll ignore the return value.
  1550   bool dummy = do_collection(true,                /* explicit_gc */
  1551                              clear_all_soft_refs,
  1552                              0                    /* word_size */);
  1555 // This code is mostly copied from TenuredGeneration.
  1556 void
  1557 G1CollectedHeap::
  1558 resize_if_necessary_after_full_collection(size_t word_size) {
  1559   // Include the current allocation, if any, and bytes that will be
  1560   // pre-allocated to support collections, as "used".
  1561   const size_t used_after_gc = used();
  1562   const size_t capacity_after_gc = capacity();
  1563   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1565   // This is enforced in arguments.cpp.
  1566   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1567          "otherwise the code below doesn't make sense");
  1569   // We don't have floating point command-line arguments
  1570   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1571   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1572   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1573   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1575   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1576   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1578   // We have to be careful here as these two calculations can overflow
  1579   // 32-bit size_t's.
  1580   double used_after_gc_d = (double) used_after_gc;
  1581   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1582   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1584   // Let's make sure that they are both under the max heap size, which
  1585   // by default will make them fit into a size_t.
  1586   double desired_capacity_upper_bound = (double) max_heap_size;
  1587   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1588                                     desired_capacity_upper_bound);
  1589   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1590                                     desired_capacity_upper_bound);
  1592   // We can now safely turn them into size_t's.
  1593   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1594   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1596   // This assert only makes sense here, before we adjust them
  1597   // with respect to the min and max heap size.
  1598   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1599          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1600                  "maximum_desired_capacity = "SIZE_FORMAT,
  1601                  minimum_desired_capacity, maximum_desired_capacity));
  1603   // Should not be greater than the heap max size. No need to adjust
  1604   // it with respect to the heap min size as it's a lower bound (i.e.,
  1605   // we'll try to make the capacity larger than it, not smaller).
  1606   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1607   // Should not be less than the heap min size. No need to adjust it
  1608   // with respect to the heap max size as it's an upper bound (i.e.,
  1609   // we'll try to make the capacity smaller than it, not greater).
  1610   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1612   if (capacity_after_gc < minimum_desired_capacity) {
  1613     // Don't expand unless it's significant
  1614     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1615     ergo_verbose4(ErgoHeapSizing,
  1616                   "attempt heap expansion",
  1617                   ergo_format_reason("capacity lower than "
  1618                                      "min desired capacity after Full GC")
  1619                   ergo_format_byte("capacity")
  1620                   ergo_format_byte("occupancy")
  1621                   ergo_format_byte_perc("min desired capacity"),
  1622                   capacity_after_gc, used_after_gc,
  1623                   minimum_desired_capacity, (double) MinHeapFreeRatio);
  1624     expand(expand_bytes);
  1626     // No expansion, now see if we want to shrink
  1627   } else if (capacity_after_gc > maximum_desired_capacity) {
  1628     // Capacity too large, compute shrinking size
  1629     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1630     ergo_verbose4(ErgoHeapSizing,
  1631                   "attempt heap shrinking",
  1632                   ergo_format_reason("capacity higher than "
  1633                                      "max desired capacity after Full GC")
  1634                   ergo_format_byte("capacity")
  1635                   ergo_format_byte("occupancy")
  1636                   ergo_format_byte_perc("max desired capacity"),
  1637                   capacity_after_gc, used_after_gc,
  1638                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
  1639     shrink(shrink_bytes);
  1644 HeapWord*
  1645 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1646                                            bool* succeeded) {
  1647   assert_at_safepoint(true /* should_be_vm_thread */);
  1649   *succeeded = true;
  1650   // Let's attempt the allocation first.
  1651   HeapWord* result =
  1652     attempt_allocation_at_safepoint(word_size,
  1653                                  false /* expect_null_mutator_alloc_region */);
  1654   if (result != NULL) {
  1655     assert(*succeeded, "sanity");
  1656     return result;
  1659   // In a G1 heap, we're supposed to keep allocation from failing by
  1660   // incremental pauses.  Therefore, at least for now, we'll favor
  1661   // expansion over collection.  (This might change in the future if we can
  1662   // do something smarter than full collection to satisfy a failed alloc.)
  1663   result = expand_and_allocate(word_size);
  1664   if (result != NULL) {
  1665     assert(*succeeded, "sanity");
  1666     return result;
  1669   // Expansion didn't work, we'll try to do a Full GC.
  1670   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1671                                     false, /* clear_all_soft_refs */
  1672                                     word_size);
  1673   if (!gc_succeeded) {
  1674     *succeeded = false;
  1675     return NULL;
  1678   // Retry the allocation
  1679   result = attempt_allocation_at_safepoint(word_size,
  1680                                   true /* expect_null_mutator_alloc_region */);
  1681   if (result != NULL) {
  1682     assert(*succeeded, "sanity");
  1683     return result;
  1686   // Then, try a Full GC that will collect all soft references.
  1687   gc_succeeded = do_collection(false, /* explicit_gc */
  1688                                true,  /* clear_all_soft_refs */
  1689                                word_size);
  1690   if (!gc_succeeded) {
  1691     *succeeded = false;
  1692     return NULL;
  1695   // Retry the allocation once more
  1696   result = attempt_allocation_at_safepoint(word_size,
  1697                                   true /* expect_null_mutator_alloc_region */);
  1698   if (result != NULL) {
  1699     assert(*succeeded, "sanity");
  1700     return result;
  1703   assert(!collector_policy()->should_clear_all_soft_refs(),
  1704          "Flag should have been handled and cleared prior to this point");
  1706   // What else?  We might try synchronous finalization later.  If the total
  1707   // space available is large enough for the allocation, then a more
  1708   // complete compaction phase than we've tried so far might be
  1709   // appropriate.
  1710   assert(*succeeded, "sanity");
  1711   return NULL;
  1714 // Attempting to expand the heap sufficiently
  1715 // to support an allocation of the given "word_size".  If
  1716 // successful, perform the allocation and return the address of the
  1717 // allocated block, or else "NULL".
  1719 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1720   assert_at_safepoint(true /* should_be_vm_thread */);
  1722   verify_region_sets_optional();
  1724   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1725   ergo_verbose1(ErgoHeapSizing,
  1726                 "attempt heap expansion",
  1727                 ergo_format_reason("allocation request failed")
  1728                 ergo_format_byte("allocation request"),
  1729                 word_size * HeapWordSize);
  1730   if (expand(expand_bytes)) {
  1731     _hrs.verify_optional();
  1732     verify_region_sets_optional();
  1733     return attempt_allocation_at_safepoint(word_size,
  1734                                  false /* expect_null_mutator_alloc_region */);
  1736   return NULL;
  1739 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
  1740                                              HeapWord* new_end) {
  1741   assert(old_end != new_end, "don't call this otherwise");
  1742   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
  1744   // Update the committed mem region.
  1745   _g1_committed.set_end(new_end);
  1746   // Tell the card table about the update.
  1747   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1748   // Tell the BOT about the update.
  1749   _bot_shared->resize(_g1_committed.word_size());
  1750   // Tell the hot card cache about the update
  1751   _cg1r->hot_card_cache()->resize_card_counts(capacity());
  1754 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1755   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1756   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1757                                        HeapRegion::GrainBytes);
  1758   ergo_verbose2(ErgoHeapSizing,
  1759                 "expand the heap",
  1760                 ergo_format_byte("requested expansion amount")
  1761                 ergo_format_byte("attempted expansion amount"),
  1762                 expand_bytes, aligned_expand_bytes);
  1764   if (_g1_storage.uncommitted_size() == 0) {
  1765     ergo_verbose0(ErgoHeapSizing,
  1766                       "did not expand the heap",
  1767                       ergo_format_reason("heap already fully expanded"));
  1768     return false;
  1771   // First commit the memory.
  1772   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1773   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1774   if (successful) {
  1775     // Then propagate this update to the necessary data structures.
  1776     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1777     update_committed_space(old_end, new_end);
  1779     FreeRegionList expansion_list("Local Expansion List");
  1780     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
  1781     assert(mr.start() == old_end, "post-condition");
  1782     // mr might be a smaller region than what was requested if
  1783     // expand_by() was unable to allocate the HeapRegion instances
  1784     assert(mr.end() <= new_end, "post-condition");
  1786     size_t actual_expand_bytes = mr.byte_size();
  1787     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
  1788     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
  1789            "post-condition");
  1790     if (actual_expand_bytes < aligned_expand_bytes) {
  1791       // We could not expand _hrs to the desired size. In this case we
  1792       // need to shrink the committed space accordingly.
  1793       assert(mr.end() < new_end, "invariant");
  1795       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
  1796       // First uncommit the memory.
  1797       _g1_storage.shrink_by(diff_bytes);
  1798       // Then propagate this update to the necessary data structures.
  1799       update_committed_space(new_end, mr.end());
  1801     _free_list.add_as_tail(&expansion_list);
  1803     if (_hr_printer.is_active()) {
  1804       HeapWord* curr = mr.start();
  1805       while (curr < mr.end()) {
  1806         HeapWord* curr_end = curr + HeapRegion::GrainWords;
  1807         _hr_printer.commit(curr, curr_end);
  1808         curr = curr_end;
  1810       assert(curr == mr.end(), "post-condition");
  1812     g1_policy()->record_new_heap_size(n_regions());
  1813   } else {
  1814     ergo_verbose0(ErgoHeapSizing,
  1815                   "did not expand the heap",
  1816                   ergo_format_reason("heap expansion operation failed"));
  1817     // The expansion of the virtual storage space was unsuccessful.
  1818     // Let's see if it was because we ran out of swap.
  1819     if (G1ExitOnExpansionFailure &&
  1820         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1821       // We had head room...
  1822       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
  1825   return successful;
  1828 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
  1829   size_t aligned_shrink_bytes =
  1830     ReservedSpace::page_align_size_down(shrink_bytes);
  1831   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1832                                          HeapRegion::GrainBytes);
  1833   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
  1835   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
  1836   HeapWord* old_end = (HeapWord*) _g1_storage.high();
  1837   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
  1839   ergo_verbose3(ErgoHeapSizing,
  1840                 "shrink the heap",
  1841                 ergo_format_byte("requested shrinking amount")
  1842                 ergo_format_byte("aligned shrinking amount")
  1843                 ergo_format_byte("attempted shrinking amount"),
  1844                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
  1845   if (num_regions_removed > 0) {
  1846     _g1_storage.shrink_by(shrunk_bytes);
  1847     HeapWord* new_end = (HeapWord*) _g1_storage.high();
  1849     if (_hr_printer.is_active()) {
  1850       HeapWord* curr = old_end;
  1851       while (curr > new_end) {
  1852         HeapWord* curr_end = curr;
  1853         curr -= HeapRegion::GrainWords;
  1854         _hr_printer.uncommit(curr, curr_end);
  1858     _expansion_regions += num_regions_removed;
  1859     update_committed_space(old_end, new_end);
  1860     HeapRegionRemSet::shrink_heap(n_regions());
  1861     g1_policy()->record_new_heap_size(n_regions());
  1862   } else {
  1863     ergo_verbose0(ErgoHeapSizing,
  1864                   "did not shrink the heap",
  1865                   ergo_format_reason("heap shrinking operation failed"));
  1869 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1870   verify_region_sets_optional();
  1872   // We should only reach here at the end of a Full GC which means we
  1873   // should not not be holding to any GC alloc regions. The method
  1874   // below will make sure of that and do any remaining clean up.
  1875   abandon_gc_alloc_regions();
  1877   // Instead of tearing down / rebuilding the free lists here, we
  1878   // could instead use the remove_all_pending() method on free_list to
  1879   // remove only the ones that we need to remove.
  1880   tear_down_region_sets(true /* free_list_only */);
  1881   shrink_helper(shrink_bytes);
  1882   rebuild_region_sets(true /* free_list_only */);
  1884   _hrs.verify_optional();
  1885   verify_region_sets_optional();
  1888 // Public methods.
  1890 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1891 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1892 #endif // _MSC_VER
  1895 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1896   SharedHeap(policy_),
  1897   _g1_policy(policy_),
  1898   _dirty_card_queue_set(false),
  1899   _into_cset_dirty_card_queue_set(false),
  1900   _is_alive_closure_cm(this),
  1901   _is_alive_closure_stw(this),
  1902   _ref_processor_cm(NULL),
  1903   _ref_processor_stw(NULL),
  1904   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1905   _bot_shared(NULL),
  1906   _evac_failure_scan_stack(NULL),
  1907   _mark_in_progress(false),
  1908   _cg1r(NULL), _summary_bytes_used(0),
  1909   _g1mm(NULL),
  1910   _refine_cte_cl(NULL),
  1911   _full_collection(false),
  1912   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
  1913   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
  1914   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
  1915   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
  1916   _free_regions_coming(false),
  1917   _young_list(new YoungList(this)),
  1918   _gc_time_stamp(0),
  1919   _retained_old_gc_alloc_region(NULL),
  1920   _survivor_plab_stats(YoungPLABSize, PLABWeight),
  1921   _old_plab_stats(OldPLABSize, PLABWeight),
  1922   _expand_heap_after_alloc_failure(true),
  1923   _surviving_young_words(NULL),
  1924   _old_marking_cycles_started(0),
  1925   _old_marking_cycles_completed(0),
  1926   _concurrent_cycle_started(false),
  1927   _in_cset_fast_test(),
  1928   _dirty_cards_region_list(NULL),
  1929   _worker_cset_start_region(NULL),
  1930   _worker_cset_start_region_time_stamp(NULL),
  1931   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
  1932   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
  1933   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
  1934   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
  1936   _g1h = this;
  1937   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1938     vm_exit_during_initialization("Failed necessary allocation.");
  1941   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1943   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1944   _task_queues = new RefToScanQueueSet(n_queues);
  1946   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1947   assert(n_rem_sets > 0, "Invariant.");
  1949   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
  1950   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
  1951   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
  1953   for (int i = 0; i < n_queues; i++) {
  1954     RefToScanQueue* q = new RefToScanQueue();
  1955     q->initialize();
  1956     _task_queues->register_queue(i, q);
  1957     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
  1959   clear_cset_start_regions();
  1961   // Initialize the G1EvacuationFailureALot counters and flags.
  1962   NOT_PRODUCT(reset_evacuation_should_fail();)
  1964   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1967 jint G1CollectedHeap::initialize() {
  1968   CollectedHeap::pre_initialize();
  1969   os::enable_vtime();
  1971   G1Log::init();
  1973   // Necessary to satisfy locking discipline assertions.
  1975   MutexLocker x(Heap_lock);
  1977   // We have to initialize the printer before committing the heap, as
  1978   // it will be used then.
  1979   _hr_printer.set_active(G1PrintHeapRegions);
  1981   // While there are no constraints in the GC code that HeapWordSize
  1982   // be any particular value, there are multiple other areas in the
  1983   // system which believe this to be true (e.g. oop->object_size in some
  1984   // cases incorrectly returns the size in wordSize units rather than
  1985   // HeapWordSize).
  1986   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1988   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1989   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  1990   size_t heap_alignment = collector_policy()->heap_alignment();
  1992   // Ensure that the sizes are properly aligned.
  1993   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1994   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  1995   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
  1997   _refine_cte_cl = new RefineCardTableEntryClosure();
  1999   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
  2001   // Reserve the maximum.
  2003   // When compressed oops are enabled, the preferred heap base
  2004   // is calculated by subtracting the requested size from the
  2005   // 32Gb boundary and using the result as the base address for
  2006   // heap reservation. If the requested size is not aligned to
  2007   // HeapRegion::GrainBytes (i.e. the alignment that is passed
  2008   // into the ReservedHeapSpace constructor) then the actual
  2009   // base of the reserved heap may end up differing from the
  2010   // address that was requested (i.e. the preferred heap base).
  2011   // If this happens then we could end up using a non-optimal
  2012   // compressed oops mode.
  2014   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
  2015                                                  heap_alignment);
  2017   // It is important to do this in a way such that concurrent readers can't
  2018   // temporarily think something is in the heap.  (I've actually seen this
  2019   // happen in asserts: DLD.)
  2020   _reserved.set_word_size(0);
  2021   _reserved.set_start((HeapWord*)heap_rs.base());
  2022   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2024   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
  2026   // Create the gen rem set (and barrier set) for the entire reserved region.
  2027   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2028   set_barrier_set(rem_set()->bs());
  2029   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
  2030     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
  2031     return JNI_ENOMEM;
  2034   // Also create a G1 rem set.
  2035   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
  2037   // Carve out the G1 part of the heap.
  2039   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2040   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2041                            g1_rs.size()/HeapWordSize);
  2043   _g1_storage.initialize(g1_rs, 0);
  2044   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2045   _hrs.initialize((HeapWord*) _g1_reserved.start(),
  2046                   (HeapWord*) _g1_reserved.end());
  2047   assert(_hrs.max_length() == _expansion_regions,
  2048          err_msg("max length: %u expansion regions: %u",
  2049                  _hrs.max_length(), _expansion_regions));
  2051   // Do later initialization work for concurrent refinement.
  2052   _cg1r->init();
  2054   // 6843694 - ensure that the maximum region index can fit
  2055   // in the remembered set structures.
  2056   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2057   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2059   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2060   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2061   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
  2062             "too many cards per region");
  2064   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
  2066   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2067                                              heap_word_size(init_byte_size));
  2069   _g1h = this;
  2071   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
  2073   // Create the ConcurrentMark data structure and thread.
  2074   // (Must do this late, so that "max_regions" is defined.)
  2075   _cm = new ConcurrentMark(this, heap_rs);
  2076   if (_cm == NULL || !_cm->completed_initialization()) {
  2077     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
  2078     return JNI_ENOMEM;
  2080   _cmThread = _cm->cmThread();
  2082   // Initialize the from_card cache structure of HeapRegionRemSet.
  2083   HeapRegionRemSet::init_heap(max_regions());
  2085   // Now expand into the initial heap size.
  2086   if (!expand(init_byte_size)) {
  2087     vm_shutdown_during_initialization("Failed to allocate initial heap.");
  2088     return JNI_ENOMEM;
  2091   // Perform any initialization actions delegated to the policy.
  2092   g1_policy()->init();
  2094   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2095                                                SATB_Q_FL_lock,
  2096                                                G1SATBProcessCompletedThreshold,
  2097                                                Shared_SATB_Q_lock);
  2099   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
  2100                                                 DirtyCardQ_CBL_mon,
  2101                                                 DirtyCardQ_FL_lock,
  2102                                                 concurrent_g1_refine()->yellow_zone(),
  2103                                                 concurrent_g1_refine()->red_zone(),
  2104                                                 Shared_DirtyCardQ_lock);
  2106   if (G1DeferredRSUpdate) {
  2107     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
  2108                                       DirtyCardQ_CBL_mon,
  2109                                       DirtyCardQ_FL_lock,
  2110                                       -1, // never trigger processing
  2111                                       -1, // no limit on length
  2112                                       Shared_DirtyCardQ_lock,
  2113                                       &JavaThread::dirty_card_queue_set());
  2116   // Initialize the card queue set used to hold cards containing
  2117   // references into the collection set.
  2118   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
  2119                                              DirtyCardQ_CBL_mon,
  2120                                              DirtyCardQ_FL_lock,
  2121                                              -1, // never trigger processing
  2122                                              -1, // no limit on length
  2123                                              Shared_DirtyCardQ_lock,
  2124                                              &JavaThread::dirty_card_queue_set());
  2126   // In case we're keeping closure specialization stats, initialize those
  2127   // counts and that mechanism.
  2128   SpecializationStats::clear();
  2130   // Here we allocate the dummy full region that is required by the
  2131   // G1AllocRegion class. If we don't pass an address in the reserved
  2132   // space here, lots of asserts fire.
  2134   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
  2135                                              _g1_reserved.start());
  2136   // We'll re-use the same region whether the alloc region will
  2137   // require BOT updates or not and, if it doesn't, then a non-young
  2138   // region will complain that it cannot support allocations without
  2139   // BOT updates. So we'll tag the dummy region as young to avoid that.
  2140   dummy_region->set_young();
  2141   // Make sure it's full.
  2142   dummy_region->set_top(dummy_region->end());
  2143   G1AllocRegion::setup(this, dummy_region);
  2145   init_mutator_alloc_region();
  2147   // Do create of the monitoring and management support so that
  2148   // values in the heap have been properly initialized.
  2149   _g1mm = new G1MonitoringSupport(this);
  2151   G1StringDedup::initialize();
  2153   return JNI_OK;
  2156 void G1CollectedHeap::stop() {
  2157   // Stop all concurrent threads. We do this to make sure these threads
  2158   // do not continue to execute and access resources (e.g. gclog_or_tty)
  2159   // that are destroyed during shutdown.
  2160   _cg1r->stop();
  2161   _cmThread->stop();
  2162   if (G1StringDedup::is_enabled()) {
  2163     G1StringDedup::stop();
  2167 size_t G1CollectedHeap::conservative_max_heap_alignment() {
  2168   return HeapRegion::max_region_size();
  2171 void G1CollectedHeap::ref_processing_init() {
  2172   // Reference processing in G1 currently works as follows:
  2173   //
  2174   // * There are two reference processor instances. One is
  2175   //   used to record and process discovered references
  2176   //   during concurrent marking; the other is used to
  2177   //   record and process references during STW pauses
  2178   //   (both full and incremental).
  2179   // * Both ref processors need to 'span' the entire heap as
  2180   //   the regions in the collection set may be dotted around.
  2181   //
  2182   // * For the concurrent marking ref processor:
  2183   //   * Reference discovery is enabled at initial marking.
  2184   //   * Reference discovery is disabled and the discovered
  2185   //     references processed etc during remarking.
  2186   //   * Reference discovery is MT (see below).
  2187   //   * Reference discovery requires a barrier (see below).
  2188   //   * Reference processing may or may not be MT
  2189   //     (depending on the value of ParallelRefProcEnabled
  2190   //     and ParallelGCThreads).
  2191   //   * A full GC disables reference discovery by the CM
  2192   //     ref processor and abandons any entries on it's
  2193   //     discovered lists.
  2194   //
  2195   // * For the STW processor:
  2196   //   * Non MT discovery is enabled at the start of a full GC.
  2197   //   * Processing and enqueueing during a full GC is non-MT.
  2198   //   * During a full GC, references are processed after marking.
  2199   //
  2200   //   * Discovery (may or may not be MT) is enabled at the start
  2201   //     of an incremental evacuation pause.
  2202   //   * References are processed near the end of a STW evacuation pause.
  2203   //   * For both types of GC:
  2204   //     * Discovery is atomic - i.e. not concurrent.
  2205   //     * Reference discovery will not need a barrier.
  2207   SharedHeap::ref_processing_init();
  2208   MemRegion mr = reserved_region();
  2210   // Concurrent Mark ref processor
  2211   _ref_processor_cm =
  2212     new ReferenceProcessor(mr,    // span
  2213                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2214                                 // mt processing
  2215                            (int) ParallelGCThreads,
  2216                                 // degree of mt processing
  2217                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
  2218                                 // mt discovery
  2219                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
  2220                                 // degree of mt discovery
  2221                            false,
  2222                                 // Reference discovery is not atomic
  2223                            &_is_alive_closure_cm);
  2224                                 // is alive closure
  2225                                 // (for efficiency/performance)
  2227   // STW ref processor
  2228   _ref_processor_stw =
  2229     new ReferenceProcessor(mr,    // span
  2230                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
  2231                                 // mt processing
  2232                            MAX2((int)ParallelGCThreads, 1),
  2233                                 // degree of mt processing
  2234                            (ParallelGCThreads > 1),
  2235                                 // mt discovery
  2236                            MAX2((int)ParallelGCThreads, 1),
  2237                                 // degree of mt discovery
  2238                            true,
  2239                                 // Reference discovery is atomic
  2240                            &_is_alive_closure_stw);
  2241                                 // is alive closure
  2242                                 // (for efficiency/performance)
  2245 size_t G1CollectedHeap::capacity() const {
  2246   return _g1_committed.byte_size();
  2249 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
  2250   assert(!hr->continuesHumongous(), "pre-condition");
  2251   hr->reset_gc_time_stamp();
  2252   if (hr->startsHumongous()) {
  2253     uint first_index = hr->hrs_index() + 1;
  2254     uint last_index = hr->last_hc_index();
  2255     for (uint i = first_index; i < last_index; i += 1) {
  2256       HeapRegion* chr = region_at(i);
  2257       assert(chr->continuesHumongous(), "sanity");
  2258       chr->reset_gc_time_stamp();
  2263 #ifndef PRODUCT
  2264 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
  2265 private:
  2266   unsigned _gc_time_stamp;
  2267   bool _failures;
  2269 public:
  2270   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
  2271     _gc_time_stamp(gc_time_stamp), _failures(false) { }
  2273   virtual bool doHeapRegion(HeapRegion* hr) {
  2274     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
  2275     if (_gc_time_stamp != region_gc_time_stamp) {
  2276       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
  2277                              "expected %d", HR_FORMAT_PARAMS(hr),
  2278                              region_gc_time_stamp, _gc_time_stamp);
  2279       _failures = true;
  2281     return false;
  2284   bool failures() { return _failures; }
  2285 };
  2287 void G1CollectedHeap::check_gc_time_stamps() {
  2288   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
  2289   heap_region_iterate(&cl);
  2290   guarantee(!cl.failures(), "all GC time stamps should have been reset");
  2292 #endif // PRODUCT
  2294 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2295                                                  DirtyCardQueue* into_cset_dcq,
  2296                                                  bool concurrent,
  2297                                                  uint worker_i) {
  2298   // Clean cards in the hot card cache
  2299   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  2300   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
  2302   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2303   int n_completed_buffers = 0;
  2304   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2305     n_completed_buffers++;
  2307   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
  2308   dcqs.clear_n_completed_buffers();
  2309   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2313 // Computes the sum of the storage used by the various regions.
  2315 size_t G1CollectedHeap::used() const {
  2316   assert(Heap_lock->owner() != NULL,
  2317          "Should be owned on this thread's behalf.");
  2318   size_t result = _summary_bytes_used;
  2319   // Read only once in case it is set to NULL concurrently
  2320   HeapRegion* hr = _mutator_alloc_region.get();
  2321   if (hr != NULL)
  2322     result += hr->used();
  2323   return result;
  2326 size_t G1CollectedHeap::used_unlocked() const {
  2327   size_t result = _summary_bytes_used;
  2328   return result;
  2331 class SumUsedClosure: public HeapRegionClosure {
  2332   size_t _used;
  2333 public:
  2334   SumUsedClosure() : _used(0) {}
  2335   bool doHeapRegion(HeapRegion* r) {
  2336     if (!r->continuesHumongous()) {
  2337       _used += r->used();
  2339     return false;
  2341   size_t result() { return _used; }
  2342 };
  2344 size_t G1CollectedHeap::recalculate_used() const {
  2345   double recalculate_used_start = os::elapsedTime();
  2347   SumUsedClosure blk;
  2348   heap_region_iterate(&blk);
  2350   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
  2351   return blk.result();
  2354 size_t G1CollectedHeap::unsafe_max_alloc() {
  2355   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2356   // otherwise, is there space in the current allocation region?
  2358   // We need to store the current allocation region in a local variable
  2359   // here. The problem is that this method doesn't take any locks and
  2360   // there may be other threads which overwrite the current allocation
  2361   // region field. attempt_allocation(), for example, sets it to NULL
  2362   // and this can happen *after* the NULL check here but before the call
  2363   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2364   // to be a problem in the optimized build, since the two loads of the
  2365   // current allocation region field are optimized away.
  2366   HeapRegion* hr = _mutator_alloc_region.get();
  2367   if (hr == NULL) {
  2368     return 0;
  2370   return hr->free();
  2373 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2374   switch (cause) {
  2375     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
  2376     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
  2377     case GCCause::_g1_humongous_allocation: return true;
  2378     default:                                return false;
  2382 #ifndef PRODUCT
  2383 void G1CollectedHeap::allocate_dummy_regions() {
  2384   // Let's fill up most of the region
  2385   size_t word_size = HeapRegion::GrainWords - 1024;
  2386   // And as a result the region we'll allocate will be humongous.
  2387   guarantee(isHumongous(word_size), "sanity");
  2389   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
  2390     // Let's use the existing mechanism for the allocation
  2391     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
  2392     if (dummy_obj != NULL) {
  2393       MemRegion mr(dummy_obj, word_size);
  2394       CollectedHeap::fill_with_object(mr);
  2395     } else {
  2396       // If we can't allocate once, we probably cannot allocate
  2397       // again. Let's get out of the loop.
  2398       break;
  2402 #endif // !PRODUCT
  2404 void G1CollectedHeap::increment_old_marking_cycles_started() {
  2405   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
  2406     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
  2407     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
  2408     _old_marking_cycles_started, _old_marking_cycles_completed));
  2410   _old_marking_cycles_started++;
  2413 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
  2414   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2416   // We assume that if concurrent == true, then the caller is a
  2417   // concurrent thread that was joined the Suspendible Thread
  2418   // Set. If there's ever a cheap way to check this, we should add an
  2419   // assert here.
  2421   // Given that this method is called at the end of a Full GC or of a
  2422   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2423   // interrupt a concurrent cycle), the number of full collections
  2424   // completed should be either one (in the case where there was no
  2425   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2426   // behind the number of full collections started.
  2428   // This is the case for the inner caller, i.e. a Full GC.
  2429   assert(concurrent ||
  2430          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
  2431          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
  2432          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
  2433                  "is inconsistent with _old_marking_cycles_completed = %u",
  2434                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2436   // This is the case for the outer caller, i.e. the concurrent cycle.
  2437   assert(!concurrent ||
  2438          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
  2439          err_msg("for outer caller (concurrent cycle): "
  2440                  "_old_marking_cycles_started = %u "
  2441                  "is inconsistent with _old_marking_cycles_completed = %u",
  2442                  _old_marking_cycles_started, _old_marking_cycles_completed));
  2444   _old_marking_cycles_completed += 1;
  2446   // We need to clear the "in_progress" flag in the CM thread before
  2447   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2448   // is set) so that if a waiter requests another System.gc() it doesn't
  2449   // incorrectly see that a marking cycle is still in progress.
  2450   if (concurrent) {
  2451     _cmThread->clear_in_progress();
  2454   // This notify_all() will ensure that a thread that called
  2455   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2456   // and it's waiting for a full GC to finish will be woken up. It is
  2457   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2458   FullGCCount_lock->notify_all();
  2461 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
  2462   _concurrent_cycle_started = true;
  2463   _gc_timer_cm->register_gc_start(start_time);
  2465   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
  2466   trace_heap_before_gc(_gc_tracer_cm);
  2469 void G1CollectedHeap::register_concurrent_cycle_end() {
  2470   if (_concurrent_cycle_started) {
  2471     if (_cm->has_aborted()) {
  2472       _gc_tracer_cm->report_concurrent_mode_failure();
  2475     _gc_timer_cm->register_gc_end();
  2476     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2478     _concurrent_cycle_started = false;
  2482 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
  2483   if (_concurrent_cycle_started) {
  2484     trace_heap_after_gc(_gc_tracer_cm);
  2488 G1YCType G1CollectedHeap::yc_type() {
  2489   bool is_young = g1_policy()->gcs_are_young();
  2490   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
  2491   bool is_during_mark = mark_in_progress();
  2493   if (is_initial_mark) {
  2494     return InitialMark;
  2495   } else if (is_during_mark) {
  2496     return DuringMark;
  2497   } else if (is_young) {
  2498     return Normal;
  2499   } else {
  2500     return Mixed;
  2504 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2505   assert_heap_not_locked();
  2507   unsigned int gc_count_before;
  2508   unsigned int old_marking_count_before;
  2509   bool retry_gc;
  2511   do {
  2512     retry_gc = false;
  2515       MutexLocker ml(Heap_lock);
  2517       // Read the GC count while holding the Heap_lock
  2518       gc_count_before = total_collections();
  2519       old_marking_count_before = _old_marking_cycles_started;
  2522     if (should_do_concurrent_full_gc(cause)) {
  2523       // Schedule an initial-mark evacuation pause that will start a
  2524       // concurrent cycle. We're setting word_size to 0 which means that
  2525       // we are not requesting a post-GC allocation.
  2526       VM_G1IncCollectionPause op(gc_count_before,
  2527                                  0,     /* word_size */
  2528                                  true,  /* should_initiate_conc_mark */
  2529                                  g1_policy()->max_pause_time_ms(),
  2530                                  cause);
  2532       VMThread::execute(&op);
  2533       if (!op.pause_succeeded()) {
  2534         if (old_marking_count_before == _old_marking_cycles_started) {
  2535           retry_gc = op.should_retry_gc();
  2536         } else {
  2537           // A Full GC happened while we were trying to schedule the
  2538           // initial-mark GC. No point in starting a new cycle given
  2539           // that the whole heap was collected anyway.
  2542         if (retry_gc) {
  2543           if (GC_locker::is_active_and_needs_gc()) {
  2544             GC_locker::stall_until_clear();
  2548     } else {
  2549       if (cause == GCCause::_gc_locker
  2550           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2552         // Schedule a standard evacuation pause. We're setting word_size
  2553         // to 0 which means that we are not requesting a post-GC allocation.
  2554         VM_G1IncCollectionPause op(gc_count_before,
  2555                                    0,     /* word_size */
  2556                                    false, /* should_initiate_conc_mark */
  2557                                    g1_policy()->max_pause_time_ms(),
  2558                                    cause);
  2559         VMThread::execute(&op);
  2560       } else {
  2561         // Schedule a Full GC.
  2562         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
  2563         VMThread::execute(&op);
  2566   } while (retry_gc);
  2569 bool G1CollectedHeap::is_in(const void* p) const {
  2570   if (_g1_committed.contains(p)) {
  2571     // Given that we know that p is in the committed space,
  2572     // heap_region_containing_raw() should successfully
  2573     // return the containing region.
  2574     HeapRegion* hr = heap_region_containing_raw(p);
  2575     return hr->is_in(p);
  2576   } else {
  2577     return false;
  2581 // Iteration functions.
  2583 // Iterates an OopClosure over all ref-containing fields of objects
  2584 // within a HeapRegion.
  2586 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2587   MemRegion _mr;
  2588   ExtendedOopClosure* _cl;
  2589 public:
  2590   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
  2591     : _mr(mr), _cl(cl) {}
  2592   bool doHeapRegion(HeapRegion* r) {
  2593     if (!r->continuesHumongous()) {
  2594       r->oop_iterate(_cl);
  2596     return false;
  2598 };
  2600 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  2601   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2602   heap_region_iterate(&blk);
  2605 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  2606   IterateOopClosureRegionClosure blk(mr, cl);
  2607   heap_region_iterate(&blk);
  2610 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2612 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2613   ObjectClosure* _cl;
  2614 public:
  2615   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2616   bool doHeapRegion(HeapRegion* r) {
  2617     if (! r->continuesHumongous()) {
  2618       r->object_iterate(_cl);
  2620     return false;
  2622 };
  2624 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
  2625   IterateObjectClosureRegionClosure blk(cl);
  2626   heap_region_iterate(&blk);
  2629 // Calls a SpaceClosure on a HeapRegion.
  2631 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2632   SpaceClosure* _cl;
  2633 public:
  2634   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2635   bool doHeapRegion(HeapRegion* r) {
  2636     _cl->do_space(r);
  2637     return false;
  2639 };
  2641 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2642   SpaceClosureRegionClosure blk(cl);
  2643   heap_region_iterate(&blk);
  2646 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
  2647   _hrs.iterate(cl);
  2650 void
  2651 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2652                                                  uint worker_id,
  2653                                                  uint no_of_par_workers,
  2654                                                  jint claim_value) {
  2655   const uint regions = n_regions();
  2656   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  2657                              no_of_par_workers :
  2658                              1);
  2659   assert(UseDynamicNumberOfGCThreads ||
  2660          no_of_par_workers == workers()->total_workers(),
  2661          "Non dynamic should use fixed number of workers");
  2662   // try to spread out the starting points of the workers
  2663   const HeapRegion* start_hr =
  2664                         start_region_for_worker(worker_id, no_of_par_workers);
  2665   const uint start_index = start_hr->hrs_index();
  2667   // each worker will actually look at all regions
  2668   for (uint count = 0; count < regions; ++count) {
  2669     const uint index = (start_index + count) % regions;
  2670     assert(0 <= index && index < regions, "sanity");
  2671     HeapRegion* r = region_at(index);
  2672     // we'll ignore "continues humongous" regions (we'll process them
  2673     // when we come across their corresponding "start humongous"
  2674     // region) and regions already claimed
  2675     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2676       continue;
  2678     // OK, try to claim it
  2679     if (r->claimHeapRegion(claim_value)) {
  2680       // success!
  2681       assert(!r->continuesHumongous(), "sanity");
  2682       if (r->startsHumongous()) {
  2683         // If the region is "starts humongous" we'll iterate over its
  2684         // "continues humongous" first; in fact we'll do them
  2685         // first. The order is important. In on case, calling the
  2686         // closure on the "starts humongous" region might de-allocate
  2687         // and clear all its "continues humongous" regions and, as a
  2688         // result, we might end up processing them twice. So, we'll do
  2689         // them first (notice: most closures will ignore them anyway) and
  2690         // then we'll do the "starts humongous" region.
  2691         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
  2692           HeapRegion* chr = region_at(ch_index);
  2694           // if the region has already been claimed or it's not
  2695           // "continues humongous" we're done
  2696           if (chr->claim_value() == claim_value ||
  2697               !chr->continuesHumongous()) {
  2698             break;
  2701           // No one should have claimed it directly. We can given
  2702           // that we claimed its "starts humongous" region.
  2703           assert(chr->claim_value() != claim_value, "sanity");
  2704           assert(chr->humongous_start_region() == r, "sanity");
  2706           if (chr->claimHeapRegion(claim_value)) {
  2707             // we should always be able to claim it; no one else should
  2708             // be trying to claim this region
  2710             bool res2 = cl->doHeapRegion(chr);
  2711             assert(!res2, "Should not abort");
  2713             // Right now, this holds (i.e., no closure that actually
  2714             // does something with "continues humongous" regions
  2715             // clears them). We might have to weaken it in the future,
  2716             // but let's leave these two asserts here for extra safety.
  2717             assert(chr->continuesHumongous(), "should still be the case");
  2718             assert(chr->humongous_start_region() == r, "sanity");
  2719           } else {
  2720             guarantee(false, "we should not reach here");
  2725       assert(!r->continuesHumongous(), "sanity");
  2726       bool res = cl->doHeapRegion(r);
  2727       assert(!res, "Should not abort");
  2732 class ResetClaimValuesClosure: public HeapRegionClosure {
  2733 public:
  2734   bool doHeapRegion(HeapRegion* r) {
  2735     r->set_claim_value(HeapRegion::InitialClaimValue);
  2736     return false;
  2738 };
  2740 void G1CollectedHeap::reset_heap_region_claim_values() {
  2741   ResetClaimValuesClosure blk;
  2742   heap_region_iterate(&blk);
  2745 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
  2746   ResetClaimValuesClosure blk;
  2747   collection_set_iterate(&blk);
  2750 #ifdef ASSERT
  2751 // This checks whether all regions in the heap have the correct claim
  2752 // value. I also piggy-backed on this a check to ensure that the
  2753 // humongous_start_region() information on "continues humongous"
  2754 // regions is correct.
  2756 class CheckClaimValuesClosure : public HeapRegionClosure {
  2757 private:
  2758   jint _claim_value;
  2759   uint _failures;
  2760   HeapRegion* _sh_region;
  2762 public:
  2763   CheckClaimValuesClosure(jint claim_value) :
  2764     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2765   bool doHeapRegion(HeapRegion* r) {
  2766     if (r->claim_value() != _claim_value) {
  2767       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2768                              "claim value = %d, should be %d",
  2769                              HR_FORMAT_PARAMS(r),
  2770                              r->claim_value(), _claim_value);
  2771       ++_failures;
  2773     if (!r->isHumongous()) {
  2774       _sh_region = NULL;
  2775     } else if (r->startsHumongous()) {
  2776       _sh_region = r;
  2777     } else if (r->continuesHumongous()) {
  2778       if (r->humongous_start_region() != _sh_region) {
  2779         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
  2780                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2781                                HR_FORMAT_PARAMS(r),
  2782                                r->humongous_start_region(),
  2783                                _sh_region);
  2784         ++_failures;
  2787     return false;
  2789   uint failures() { return _failures; }
  2790 };
  2792 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2793   CheckClaimValuesClosure cl(claim_value);
  2794   heap_region_iterate(&cl);
  2795   return cl.failures() == 0;
  2798 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
  2799 private:
  2800   jint _claim_value;
  2801   uint _failures;
  2803 public:
  2804   CheckClaimValuesInCSetHRClosure(jint claim_value) :
  2805     _claim_value(claim_value), _failures(0) { }
  2807   uint failures() { return _failures; }
  2809   bool doHeapRegion(HeapRegion* hr) {
  2810     assert(hr->in_collection_set(), "how?");
  2811     assert(!hr->isHumongous(), "H-region in CSet");
  2812     if (hr->claim_value() != _claim_value) {
  2813       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
  2814                              "claim value = %d, should be %d",
  2815                              HR_FORMAT_PARAMS(hr),
  2816                              hr->claim_value(), _claim_value);
  2817       _failures += 1;
  2819     return false;
  2821 };
  2823 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
  2824   CheckClaimValuesInCSetHRClosure cl(claim_value);
  2825   collection_set_iterate(&cl);
  2826   return cl.failures() == 0;
  2828 #endif // ASSERT
  2830 // Clear the cached CSet starting regions and (more importantly)
  2831 // the time stamps. Called when we reset the GC time stamp.
  2832 void G1CollectedHeap::clear_cset_start_regions() {
  2833   assert(_worker_cset_start_region != NULL, "sanity");
  2834   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
  2836   int n_queues = MAX2((int)ParallelGCThreads, 1);
  2837   for (int i = 0; i < n_queues; i++) {
  2838     _worker_cset_start_region[i] = NULL;
  2839     _worker_cset_start_region_time_stamp[i] = 0;
  2843 // Given the id of a worker, obtain or calculate a suitable
  2844 // starting region for iterating over the current collection set.
  2845 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
  2846   assert(get_gc_time_stamp() > 0, "should have been updated by now");
  2848   HeapRegion* result = NULL;
  2849   unsigned gc_time_stamp = get_gc_time_stamp();
  2851   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
  2852     // Cached starting region for current worker was set
  2853     // during the current pause - so it's valid.
  2854     // Note: the cached starting heap region may be NULL
  2855     // (when the collection set is empty).
  2856     result = _worker_cset_start_region[worker_i];
  2857     assert(result == NULL || result->in_collection_set(), "sanity");
  2858     return result;
  2861   // The cached entry was not valid so let's calculate
  2862   // a suitable starting heap region for this worker.
  2864   // We want the parallel threads to start their collection
  2865   // set iteration at different collection set regions to
  2866   // avoid contention.
  2867   // If we have:
  2868   //          n collection set regions
  2869   //          p threads
  2870   // Then thread t will start at region floor ((t * n) / p)
  2872   result = g1_policy()->collection_set();
  2873   if (G1CollectedHeap::use_parallel_gc_threads()) {
  2874     uint cs_size = g1_policy()->cset_region_length();
  2875     uint active_workers = workers()->active_workers();
  2876     assert(UseDynamicNumberOfGCThreads ||
  2877              active_workers == workers()->total_workers(),
  2878              "Unless dynamic should use total workers");
  2880     uint end_ind   = (cs_size * worker_i) / active_workers;
  2881     uint start_ind = 0;
  2883     if (worker_i > 0 &&
  2884         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
  2885       // Previous workers starting region is valid
  2886       // so let's iterate from there
  2887       start_ind = (cs_size * (worker_i - 1)) / active_workers;
  2888       result = _worker_cset_start_region[worker_i - 1];
  2891     for (uint i = start_ind; i < end_ind; i++) {
  2892       result = result->next_in_collection_set();
  2896   // Note: the calculated starting heap region may be NULL
  2897   // (when the collection set is empty).
  2898   assert(result == NULL || result->in_collection_set(), "sanity");
  2899   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
  2900          "should be updated only once per pause");
  2901   _worker_cset_start_region[worker_i] = result;
  2902   OrderAccess::storestore();
  2903   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
  2904   return result;
  2907 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
  2908                                                      uint no_of_par_workers) {
  2909   uint worker_num =
  2910            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
  2911   assert(UseDynamicNumberOfGCThreads ||
  2912          no_of_par_workers == workers()->total_workers(),
  2913          "Non dynamic should use fixed number of workers");
  2914   const uint start_index = n_regions() * worker_i / worker_num;
  2915   return region_at(start_index);
  2918 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2919   HeapRegion* r = g1_policy()->collection_set();
  2920   while (r != NULL) {
  2921     HeapRegion* next = r->next_in_collection_set();
  2922     if (cl->doHeapRegion(r)) {
  2923       cl->incomplete();
  2924       return;
  2926     r = next;
  2930 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2931                                                   HeapRegionClosure *cl) {
  2932   if (r == NULL) {
  2933     // The CSet is empty so there's nothing to do.
  2934     return;
  2937   assert(r->in_collection_set(),
  2938          "Start region must be a member of the collection set.");
  2939   HeapRegion* cur = r;
  2940   while (cur != NULL) {
  2941     HeapRegion* next = cur->next_in_collection_set();
  2942     if (cl->doHeapRegion(cur) && false) {
  2943       cl->incomplete();
  2944       return;
  2946     cur = next;
  2948   cur = g1_policy()->collection_set();
  2949   while (cur != r) {
  2950     HeapRegion* next = cur->next_in_collection_set();
  2951     if (cl->doHeapRegion(cur) && false) {
  2952       cl->incomplete();
  2953       return;
  2955     cur = next;
  2959 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2960   return n_regions() > 0 ? region_at(0) : NULL;
  2964 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2965   Space* res = heap_region_containing(addr);
  2966   return res;
  2969 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2970   Space* sp = space_containing(addr);
  2971   if (sp != NULL) {
  2972     return sp->block_start(addr);
  2974   return NULL;
  2977 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2978   Space* sp = space_containing(addr);
  2979   assert(sp != NULL, "block_size of address outside of heap");
  2980   return sp->block_size(addr);
  2983 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2984   Space* sp = space_containing(addr);
  2985   return sp->block_is_obj(addr);
  2988 bool G1CollectedHeap::supports_tlab_allocation() const {
  2989   return true;
  2992 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2993   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
  2996 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
  2997   return young_list()->eden_used_bytes();
  3000 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
  3001 // must be smaller than the humongous object limit.
  3002 size_t G1CollectedHeap::max_tlab_size() const {
  3003   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
  3006 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  3007   // Return the remaining space in the cur alloc region, but not less than
  3008   // the min TLAB size.
  3010   // Also, this value can be at most the humongous object threshold,
  3011   // since we can't allow tlabs to grow big enough to accommodate
  3012   // humongous objects.
  3014   HeapRegion* hr = _mutator_alloc_region.get();
  3015   size_t max_tlab = max_tlab_size() * wordSize;
  3016   if (hr == NULL) {
  3017     return max_tlab;
  3018   } else {
  3019     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
  3023 size_t G1CollectedHeap::max_capacity() const {
  3024   return _g1_reserved.byte_size();
  3027 jlong G1CollectedHeap::millis_since_last_gc() {
  3028   // assert(false, "NYI");
  3029   return 0;
  3032 void G1CollectedHeap::prepare_for_verify() {
  3033   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  3034     ensure_parsability(false);
  3036   g1_rem_set()->prepare_for_verify();
  3039 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
  3040                                               VerifyOption vo) {
  3041   switch (vo) {
  3042   case VerifyOption_G1UsePrevMarking:
  3043     return hr->obj_allocated_since_prev_marking(obj);
  3044   case VerifyOption_G1UseNextMarking:
  3045     return hr->obj_allocated_since_next_marking(obj);
  3046   case VerifyOption_G1UseMarkWord:
  3047     return false;
  3048   default:
  3049     ShouldNotReachHere();
  3051   return false; // keep some compilers happy
  3054 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
  3055   switch (vo) {
  3056   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
  3057   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
  3058   case VerifyOption_G1UseMarkWord:    return NULL;
  3059   default:                            ShouldNotReachHere();
  3061   return NULL; // keep some compilers happy
  3064 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
  3065   switch (vo) {
  3066   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
  3067   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
  3068   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
  3069   default:                            ShouldNotReachHere();
  3071   return false; // keep some compilers happy
  3074 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
  3075   switch (vo) {
  3076   case VerifyOption_G1UsePrevMarking: return "PTAMS";
  3077   case VerifyOption_G1UseNextMarking: return "NTAMS";
  3078   case VerifyOption_G1UseMarkWord:    return "NONE";
  3079   default:                            ShouldNotReachHere();
  3081   return NULL; // keep some compilers happy
  3084 class VerifyRootsClosure: public OopClosure {
  3085 private:
  3086   G1CollectedHeap* _g1h;
  3087   VerifyOption     _vo;
  3088   bool             _failures;
  3089 public:
  3090   // _vo == UsePrevMarking -> use "prev" marking information,
  3091   // _vo == UseNextMarking -> use "next" marking information,
  3092   // _vo == UseMarkWord    -> use mark word from object header.
  3093   VerifyRootsClosure(VerifyOption vo) :
  3094     _g1h(G1CollectedHeap::heap()),
  3095     _vo(vo),
  3096     _failures(false) { }
  3098   bool failures() { return _failures; }
  3100   template <class T> void do_oop_nv(T* p) {
  3101     T heap_oop = oopDesc::load_heap_oop(p);
  3102     if (!oopDesc::is_null(heap_oop)) {
  3103       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3104       if (_g1h->is_obj_dead_cond(obj, _vo)) {
  3105         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  3106                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  3107         if (_vo == VerifyOption_G1UseMarkWord) {
  3108           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
  3110         obj->print_on(gclog_or_tty);
  3111         _failures = true;
  3116   void do_oop(oop* p)       { do_oop_nv(p); }
  3117   void do_oop(narrowOop* p) { do_oop_nv(p); }
  3118 };
  3120 class G1VerifyCodeRootOopClosure: public OopClosure {
  3121   G1CollectedHeap* _g1h;
  3122   OopClosure* _root_cl;
  3123   nmethod* _nm;
  3124   VerifyOption _vo;
  3125   bool _failures;
  3127   template <class T> void do_oop_work(T* p) {
  3128     // First verify that this root is live
  3129     _root_cl->do_oop(p);
  3131     if (!G1VerifyHeapRegionCodeRoots) {
  3132       // We're not verifying the code roots attached to heap region.
  3133       return;
  3136     // Don't check the code roots during marking verification in a full GC
  3137     if (_vo == VerifyOption_G1UseMarkWord) {
  3138       return;
  3141     // Now verify that the current nmethod (which contains p) is
  3142     // in the code root list of the heap region containing the
  3143     // object referenced by p.
  3145     T heap_oop = oopDesc::load_heap_oop(p);
  3146     if (!oopDesc::is_null(heap_oop)) {
  3147       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  3149       // Now fetch the region containing the object
  3150       HeapRegion* hr = _g1h->heap_region_containing(obj);
  3151       HeapRegionRemSet* hrrs = hr->rem_set();
  3152       // Verify that the strong code root list for this region
  3153       // contains the nmethod
  3154       if (!hrrs->strong_code_roots_list_contains(_nm)) {
  3155         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
  3156                               "from nmethod "PTR_FORMAT" not in strong "
  3157                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
  3158                               p, _nm, hr->bottom(), hr->end());
  3159         _failures = true;
  3164 public:
  3165   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
  3166     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
  3168   void do_oop(oop* p) { do_oop_work(p); }
  3169   void do_oop(narrowOop* p) { do_oop_work(p); }
  3171   void set_nmethod(nmethod* nm) { _nm = nm; }
  3172   bool failures() { return _failures; }
  3173 };
  3175 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
  3176   G1VerifyCodeRootOopClosure* _oop_cl;
  3178 public:
  3179   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
  3180     _oop_cl(oop_cl) {}
  3182   void do_code_blob(CodeBlob* cb) {
  3183     nmethod* nm = cb->as_nmethod_or_null();
  3184     if (nm != NULL) {
  3185       _oop_cl->set_nmethod(nm);
  3186       nm->oops_do(_oop_cl);
  3189 };
  3191 class YoungRefCounterClosure : public OopClosure {
  3192   G1CollectedHeap* _g1h;
  3193   int              _count;
  3194  public:
  3195   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
  3196   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
  3197   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3199   int count() { return _count; }
  3200   void reset_count() { _count = 0; };
  3201 };
  3203 class VerifyKlassClosure: public KlassClosure {
  3204   YoungRefCounterClosure _young_ref_counter_closure;
  3205   OopClosure *_oop_closure;
  3206  public:
  3207   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
  3208   void do_klass(Klass* k) {
  3209     k->oops_do(_oop_closure);
  3211     _young_ref_counter_closure.reset_count();
  3212     k->oops_do(&_young_ref_counter_closure);
  3213     if (_young_ref_counter_closure.count() > 0) {
  3214       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
  3217 };
  3219 class VerifyLivenessOopClosure: public OopClosure {
  3220   G1CollectedHeap* _g1h;
  3221   VerifyOption _vo;
  3222 public:
  3223   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
  3224     _g1h(g1h), _vo(vo)
  3225   { }
  3226   void do_oop(narrowOop *p) { do_oop_work(p); }
  3227   void do_oop(      oop *p) { do_oop_work(p); }
  3229   template <class T> void do_oop_work(T *p) {
  3230     oop obj = oopDesc::load_decode_heap_oop(p);
  3231     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
  3232               "Dead object referenced by a not dead object");
  3234 };
  3236 class VerifyObjsInRegionClosure: public ObjectClosure {
  3237 private:
  3238   G1CollectedHeap* _g1h;
  3239   size_t _live_bytes;
  3240   HeapRegion *_hr;
  3241   VerifyOption _vo;
  3242 public:
  3243   // _vo == UsePrevMarking -> use "prev" marking information,
  3244   // _vo == UseNextMarking -> use "next" marking information,
  3245   // _vo == UseMarkWord    -> use mark word from object header.
  3246   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
  3247     : _live_bytes(0), _hr(hr), _vo(vo) {
  3248     _g1h = G1CollectedHeap::heap();
  3250   void do_object(oop o) {
  3251     VerifyLivenessOopClosure isLive(_g1h, _vo);
  3252     assert(o != NULL, "Huh?");
  3253     if (!_g1h->is_obj_dead_cond(o, _vo)) {
  3254       // If the object is alive according to the mark word,
  3255       // then verify that the marking information agrees.
  3256       // Note we can't verify the contra-positive of the
  3257       // above: if the object is dead (according to the mark
  3258       // word), it may not be marked, or may have been marked
  3259       // but has since became dead, or may have been allocated
  3260       // since the last marking.
  3261       if (_vo == VerifyOption_G1UseMarkWord) {
  3262         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
  3265       o->oop_iterate_no_header(&isLive);
  3266       if (!_hr->obj_allocated_since_prev_marking(o)) {
  3267         size_t obj_size = o->size();    // Make sure we don't overflow
  3268         _live_bytes += (obj_size * HeapWordSize);
  3272   size_t live_bytes() { return _live_bytes; }
  3273 };
  3275 class PrintObjsInRegionClosure : public ObjectClosure {
  3276   HeapRegion *_hr;
  3277   G1CollectedHeap *_g1;
  3278 public:
  3279   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  3280     _g1 = G1CollectedHeap::heap();
  3281   };
  3283   void do_object(oop o) {
  3284     if (o != NULL) {
  3285       HeapWord *start = (HeapWord *) o;
  3286       size_t word_sz = o->size();
  3287       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  3288                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  3289                           (void*) o, word_sz,
  3290                           _g1->isMarkedPrev(o),
  3291                           _g1->isMarkedNext(o),
  3292                           _hr->obj_allocated_since_prev_marking(o));
  3293       HeapWord *end = start + word_sz;
  3294       HeapWord *cur;
  3295       int *val;
  3296       for (cur = start; cur < end; cur++) {
  3297         val = (int *) cur;
  3298         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  3302 };
  3304 class VerifyRegionClosure: public HeapRegionClosure {
  3305 private:
  3306   bool             _par;
  3307   VerifyOption     _vo;
  3308   bool             _failures;
  3309 public:
  3310   // _vo == UsePrevMarking -> use "prev" marking information,
  3311   // _vo == UseNextMarking -> use "next" marking information,
  3312   // _vo == UseMarkWord    -> use mark word from object header.
  3313   VerifyRegionClosure(bool par, VerifyOption vo)
  3314     : _par(par),
  3315       _vo(vo),
  3316       _failures(false) {}
  3318   bool failures() {
  3319     return _failures;
  3322   bool doHeapRegion(HeapRegion* r) {
  3323     if (!r->continuesHumongous()) {
  3324       bool failures = false;
  3325       r->verify(_vo, &failures);
  3326       if (failures) {
  3327         _failures = true;
  3328       } else {
  3329         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
  3330         r->object_iterate(&not_dead_yet_cl);
  3331         if (_vo != VerifyOption_G1UseNextMarking) {
  3332           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  3333             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  3334                                    "max_live_bytes "SIZE_FORMAT" "
  3335                                    "< calculated "SIZE_FORMAT,
  3336                                    r->bottom(), r->end(),
  3337                                    r->max_live_bytes(),
  3338                                  not_dead_yet_cl.live_bytes());
  3339             _failures = true;
  3341         } else {
  3342           // When vo == UseNextMarking we cannot currently do a sanity
  3343           // check on the live bytes as the calculation has not been
  3344           // finalized yet.
  3348     return false; // stop the region iteration if we hit a failure
  3350 };
  3352 // This is the task used for parallel verification of the heap regions
  3354 class G1ParVerifyTask: public AbstractGangTask {
  3355 private:
  3356   G1CollectedHeap* _g1h;
  3357   VerifyOption     _vo;
  3358   bool             _failures;
  3360 public:
  3361   // _vo == UsePrevMarking -> use "prev" marking information,
  3362   // _vo == UseNextMarking -> use "next" marking information,
  3363   // _vo == UseMarkWord    -> use mark word from object header.
  3364   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
  3365     AbstractGangTask("Parallel verify task"),
  3366     _g1h(g1h),
  3367     _vo(vo),
  3368     _failures(false) { }
  3370   bool failures() {
  3371     return _failures;
  3374   void work(uint worker_id) {
  3375     HandleMark hm;
  3376     VerifyRegionClosure blk(true, _vo);
  3377     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
  3378                                           _g1h->workers()->active_workers(),
  3379                                           HeapRegion::ParVerifyClaimValue);
  3380     if (blk.failures()) {
  3381       _failures = true;
  3384 };
  3386 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
  3387   if (SafepointSynchronize::is_at_safepoint()) {
  3388     assert(Thread::current()->is_VM_thread(),
  3389            "Expected to be executed serially by the VM thread at this point");
  3391     if (!silent) { gclog_or_tty->print("Roots "); }
  3392     VerifyRootsClosure rootsCl(vo);
  3393     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
  3394     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
  3395     VerifyKlassClosure klassCl(this, &rootsCl);
  3397     // We apply the relevant closures to all the oops in the
  3398     // system dictionary, the string table and the code cache.
  3399     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
  3401     // Need cleared claim bits for the strong roots processing
  3402     ClassLoaderDataGraph::clear_claimed_marks();
  3404     process_strong_roots(true,      // activate StrongRootsScope
  3405                          false,     // we set "is scavenging" to false,
  3406                                     // so we don't reset the dirty cards.
  3407                          ScanningOption(so),  // roots scanning options
  3408                          &rootsCl,
  3409                          &blobsCl,
  3410                          &klassCl
  3411                          );
  3413     bool failures = rootsCl.failures() || codeRootsCl.failures();
  3415     if (vo != VerifyOption_G1UseMarkWord) {
  3416       // If we're verifying during a full GC then the region sets
  3417       // will have been torn down at the start of the GC. Therefore
  3418       // verifying the region sets will fail. So we only verify
  3419       // the region sets when not in a full GC.
  3420       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3421       verify_region_sets();
  3424     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3425     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3426       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3427              "sanity check");
  3429       G1ParVerifyTask task(this, vo);
  3430       assert(UseDynamicNumberOfGCThreads ||
  3431         workers()->active_workers() == workers()->total_workers(),
  3432         "If not dynamic should be using all the workers");
  3433       int n_workers = workers()->active_workers();
  3434       set_par_threads(n_workers);
  3435       workers()->run_task(&task);
  3436       set_par_threads(0);
  3437       if (task.failures()) {
  3438         failures = true;
  3441       // Checks that the expected amount of parallel work was done.
  3442       // The implication is that n_workers is > 0.
  3443       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3444              "sanity check");
  3446       reset_heap_region_claim_values();
  3448       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3449              "sanity check");
  3450     } else {
  3451       VerifyRegionClosure blk(false, vo);
  3452       heap_region_iterate(&blk);
  3453       if (blk.failures()) {
  3454         failures = true;
  3457     if (!silent) gclog_or_tty->print("RemSet ");
  3458     rem_set()->verify();
  3460     if (G1StringDedup::is_enabled()) {
  3461       if (!silent) gclog_or_tty->print("StrDedup ");
  3462       G1StringDedup::verify();
  3465     if (failures) {
  3466       gclog_or_tty->print_cr("Heap:");
  3467       // It helps to have the per-region information in the output to
  3468       // help us track down what went wrong. This is why we call
  3469       // print_extended_on() instead of print_on().
  3470       print_extended_on(gclog_or_tty);
  3471       gclog_or_tty->cr();
  3472 #ifndef PRODUCT
  3473       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3474         concurrent_mark()->print_reachable("at-verification-failure",
  3475                                            vo, false /* all */);
  3477 #endif
  3478       gclog_or_tty->flush();
  3480     guarantee(!failures, "there should not have been any failures");
  3481   } else {
  3482     if (!silent) {
  3483       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
  3484       if (G1StringDedup::is_enabled()) {
  3485         gclog_or_tty->print(", StrDedup");
  3487       gclog_or_tty->print(") ");
  3492 void G1CollectedHeap::verify(bool silent) {
  3493   verify(silent, VerifyOption_G1UsePrevMarking);
  3496 double G1CollectedHeap::verify(bool guard, const char* msg) {
  3497   double verify_time_ms = 0.0;
  3499   if (guard && total_collections() >= VerifyGCStartAt) {
  3500     double verify_start = os::elapsedTime();
  3501     HandleMark hm;  // Discard invalid handles created during verification
  3502     prepare_for_verify();
  3503     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
  3504     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
  3507   return verify_time_ms;
  3510 void G1CollectedHeap::verify_before_gc() {
  3511   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
  3512   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
  3515 void G1CollectedHeap::verify_after_gc() {
  3516   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
  3517   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
  3520 class PrintRegionClosure: public HeapRegionClosure {
  3521   outputStream* _st;
  3522 public:
  3523   PrintRegionClosure(outputStream* st) : _st(st) {}
  3524   bool doHeapRegion(HeapRegion* r) {
  3525     r->print_on(_st);
  3526     return false;
  3528 };
  3530 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3531                                        const HeapRegion* hr,
  3532                                        const VerifyOption vo) const {
  3533   switch (vo) {
  3534   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
  3535   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
  3536   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3537   default:                            ShouldNotReachHere();
  3539   return false; // keep some compilers happy
  3542 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
  3543                                        const VerifyOption vo) const {
  3544   switch (vo) {
  3545   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
  3546   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
  3547   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
  3548   default:                            ShouldNotReachHere();
  3550   return false; // keep some compilers happy
  3553 void G1CollectedHeap::print_on(outputStream* st) const {
  3554   st->print(" %-20s", "garbage-first heap");
  3555   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3556             capacity()/K, used_unlocked()/K);
  3557   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3558             _g1_storage.low_boundary(),
  3559             _g1_storage.high(),
  3560             _g1_storage.high_boundary());
  3561   st->cr();
  3562   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
  3563   uint young_regions = _young_list->length();
  3564   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
  3565             (size_t) young_regions * HeapRegion::GrainBytes / K);
  3566   uint survivor_regions = g1_policy()->recorded_survivor_regions();
  3567   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
  3568             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
  3569   st->cr();
  3570   MetaspaceAux::print_on(st);
  3573 void G1CollectedHeap::print_extended_on(outputStream* st) const {
  3574   print_on(st);
  3576   // Print the per-region information.
  3577   st->cr();
  3578   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
  3579                "HS=humongous(starts), HC=humongous(continues), "
  3580                "CS=collection set, F=free, TS=gc time stamp, "
  3581                "PTAMS=previous top-at-mark-start, "
  3582                "NTAMS=next top-at-mark-start)");
  3583   PrintRegionClosure blk(st);
  3584   heap_region_iterate(&blk);
  3587 void G1CollectedHeap::print_on_error(outputStream* st) const {
  3588   this->CollectedHeap::print_on_error(st);
  3590   if (_cm != NULL) {
  3591     st->cr();
  3592     _cm->print_on_error(st);
  3596 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3597   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3598     workers()->print_worker_threads_on(st);
  3600   _cmThread->print_on(st);
  3601   st->cr();
  3602   _cm->print_worker_threads_on(st);
  3603   _cg1r->print_worker_threads_on(st);
  3604   if (G1StringDedup::is_enabled()) {
  3605     G1StringDedup::print_worker_threads_on(st);
  3609 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3610   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3611     workers()->threads_do(tc);
  3613   tc->do_thread(_cmThread);
  3614   _cg1r->threads_do(tc);
  3615   if (G1StringDedup::is_enabled()) {
  3616     G1StringDedup::threads_do(tc);
  3620 void G1CollectedHeap::print_tracing_info() const {
  3621   // We'll overload this to mean "trace GC pause statistics."
  3622   if (TraceGen0Time || TraceGen1Time) {
  3623     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3624     // to that.
  3625     g1_policy()->print_tracing_info();
  3627   if (G1SummarizeRSetStats) {
  3628     g1_rem_set()->print_summary_info();
  3630   if (G1SummarizeConcMark) {
  3631     concurrent_mark()->print_summary_info();
  3633   g1_policy()->print_yg_surv_rate_info();
  3634   SpecializationStats::print();
  3637 #ifndef PRODUCT
  3638 // Helpful for debugging RSet issues.
  3640 class PrintRSetsClosure : public HeapRegionClosure {
  3641 private:
  3642   const char* _msg;
  3643   size_t _occupied_sum;
  3645 public:
  3646   bool doHeapRegion(HeapRegion* r) {
  3647     HeapRegionRemSet* hrrs = r->rem_set();
  3648     size_t occupied = hrrs->occupied();
  3649     _occupied_sum += occupied;
  3651     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
  3652                            HR_FORMAT_PARAMS(r));
  3653     if (occupied == 0) {
  3654       gclog_or_tty->print_cr("  RSet is empty");
  3655     } else {
  3656       hrrs->print();
  3658     gclog_or_tty->print_cr("----------");
  3659     return false;
  3662   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
  3663     gclog_or_tty->cr();
  3664     gclog_or_tty->print_cr("========================================");
  3665     gclog_or_tty->print_cr("%s", msg);
  3666     gclog_or_tty->cr();
  3669   ~PrintRSetsClosure() {
  3670     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
  3671     gclog_or_tty->print_cr("========================================");
  3672     gclog_or_tty->cr();
  3674 };
  3676 void G1CollectedHeap::print_cset_rsets() {
  3677   PrintRSetsClosure cl("Printing CSet RSets");
  3678   collection_set_iterate(&cl);
  3681 void G1CollectedHeap::print_all_rsets() {
  3682   PrintRSetsClosure cl("Printing All RSets");;
  3683   heap_region_iterate(&cl);
  3685 #endif // PRODUCT
  3687 G1CollectedHeap* G1CollectedHeap::heap() {
  3688   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3689          "not a garbage-first heap");
  3690   return _g1h;
  3693 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3694   // always_do_update_barrier = false;
  3695   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3696   // Fill TLAB's and such
  3697   accumulate_statistics_all_tlabs();
  3698   ensure_parsability(true);
  3700   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
  3701       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3702     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
  3706 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3708   if (G1SummarizeRSetStats &&
  3709       (G1SummarizeRSetStatsPeriod > 0) &&
  3710       // we are at the end of the GC. Total collections has already been increased.
  3711       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
  3712     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
  3715   // FIXME: what is this about?
  3716   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3717   // is set.
  3718   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3719                         "derived pointer present"));
  3720   // always_do_update_barrier = true;
  3722   resize_all_tlabs();
  3724   // We have just completed a GC. Update the soft reference
  3725   // policy with the new heap occupancy
  3726   Universe::update_heap_info_at_gc();
  3729 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3730                                                unsigned int gc_count_before,
  3731                                                bool* succeeded,
  3732                                                GCCause::Cause gc_cause) {
  3733   assert_heap_not_locked_and_not_at_safepoint();
  3734   g1_policy()->record_stop_world_start();
  3735   VM_G1IncCollectionPause op(gc_count_before,
  3736                              word_size,
  3737                              false, /* should_initiate_conc_mark */
  3738                              g1_policy()->max_pause_time_ms(),
  3739                              gc_cause);
  3740   VMThread::execute(&op);
  3742   HeapWord* result = op.result();
  3743   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3744   assert(result == NULL || ret_succeeded,
  3745          "the result should be NULL if the VM did not succeed");
  3746   *succeeded = ret_succeeded;
  3748   assert_heap_not_locked();
  3749   return result;
  3752 void
  3753 G1CollectedHeap::doConcurrentMark() {
  3754   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3755   if (!_cmThread->in_progress()) {
  3756     _cmThread->set_started();
  3757     CGC_lock->notify();
  3761 size_t G1CollectedHeap::pending_card_num() {
  3762   size_t extra_cards = 0;
  3763   JavaThread *curr = Threads::first();
  3764   while (curr != NULL) {
  3765     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3766     extra_cards += dcq.size();
  3767     curr = curr->next();
  3769   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3770   size_t buffer_size = dcqs.buffer_size();
  3771   size_t buffer_num = dcqs.completed_buffers_num();
  3773   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
  3774   // in bytes - not the number of 'entries'. We need to convert
  3775   // into a number of cards.
  3776   return (buffer_size * buffer_num + extra_cards) / oopSize;
  3779 size_t G1CollectedHeap::cards_scanned() {
  3780   return g1_rem_set()->cardsScanned();
  3783 void
  3784 G1CollectedHeap::setup_surviving_young_words() {
  3785   assert(_surviving_young_words == NULL, "pre-condition");
  3786   uint array_length = g1_policy()->young_cset_region_length();
  3787   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
  3788   if (_surviving_young_words == NULL) {
  3789     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
  3790                           "Not enough space for young surv words summary.");
  3792   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
  3793 #ifdef ASSERT
  3794   for (uint i = 0;  i < array_length; ++i) {
  3795     assert( _surviving_young_words[i] == 0, "memset above" );
  3797 #endif // !ASSERT
  3800 void
  3801 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3802   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3803   uint array_length = g1_policy()->young_cset_region_length();
  3804   for (uint i = 0; i < array_length; ++i) {
  3805     _surviving_young_words[i] += surv_young_words[i];
  3809 void
  3810 G1CollectedHeap::cleanup_surviving_young_words() {
  3811   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3812   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
  3813   _surviving_young_words = NULL;
  3816 #ifdef ASSERT
  3817 class VerifyCSetClosure: public HeapRegionClosure {
  3818 public:
  3819   bool doHeapRegion(HeapRegion* hr) {
  3820     // Here we check that the CSet region's RSet is ready for parallel
  3821     // iteration. The fields that we'll verify are only manipulated
  3822     // when the region is part of a CSet and is collected. Afterwards,
  3823     // we reset these fields when we clear the region's RSet (when the
  3824     // region is freed) so they are ready when the region is
  3825     // re-allocated. The only exception to this is if there's an
  3826     // evacuation failure and instead of freeing the region we leave
  3827     // it in the heap. In that case, we reset these fields during
  3828     // evacuation failure handling.
  3829     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
  3831     // Here's a good place to add any other checks we'd like to
  3832     // perform on CSet regions.
  3833     return false;
  3835 };
  3836 #endif // ASSERT
  3838 #if TASKQUEUE_STATS
  3839 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3840   st->print_raw_cr("GC Task Stats");
  3841   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3842   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3845 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3846   print_taskqueue_stats_hdr(st);
  3848   TaskQueueStats totals;
  3849   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3850   for (int i = 0; i < n; ++i) {
  3851     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3852     totals += task_queue(i)->stats;
  3854   st->print_raw("tot "); totals.print(st); st->cr();
  3856   DEBUG_ONLY(totals.verify());
  3859 void G1CollectedHeap::reset_taskqueue_stats() {
  3860   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3861   for (int i = 0; i < n; ++i) {
  3862     task_queue(i)->stats.reset();
  3865 #endif // TASKQUEUE_STATS
  3867 void G1CollectedHeap::log_gc_header() {
  3868   if (!G1Log::fine()) {
  3869     return;
  3872   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
  3874   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
  3875     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
  3876     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
  3878   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
  3881 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
  3882   if (!G1Log::fine()) {
  3883     return;
  3886   if (G1Log::finer()) {
  3887     if (evacuation_failed()) {
  3888       gclog_or_tty->print(" (to-space exhausted)");
  3890     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3891     g1_policy()->phase_times()->note_gc_end();
  3892     g1_policy()->phase_times()->print(pause_time_sec);
  3893     g1_policy()->print_detailed_heap_transition();
  3894   } else {
  3895     if (evacuation_failed()) {
  3896       gclog_or_tty->print("--");
  3898     g1_policy()->print_heap_transition();
  3899     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
  3901   gclog_or_tty->flush();
  3904 bool
  3905 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3906   assert_at_safepoint(true /* should_be_vm_thread */);
  3907   guarantee(!is_gc_active(), "collection is not reentrant");
  3909   if (GC_locker::check_active_before_gc()) {
  3910     return false;
  3913   _gc_timer_stw->register_gc_start();
  3915   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
  3917   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3918   ResourceMark rm;
  3920   print_heap_before_gc();
  3921   trace_heap_before_gc(_gc_tracer_stw);
  3923   verify_region_sets_optional();
  3924   verify_dirty_young_regions();
  3926   // This call will decide whether this pause is an initial-mark
  3927   // pause. If it is, during_initial_mark_pause() will return true
  3928   // for the duration of this pause.
  3929   g1_policy()->decide_on_conc_mark_initiation();
  3931   // We do not allow initial-mark to be piggy-backed on a mixed GC.
  3932   assert(!g1_policy()->during_initial_mark_pause() ||
  3933           g1_policy()->gcs_are_young(), "sanity");
  3935   // We also do not allow mixed GCs during marking.
  3936   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
  3938   // Record whether this pause is an initial mark. When the current
  3939   // thread has completed its logging output and it's safe to signal
  3940   // the CM thread, the flag's value in the policy has been reset.
  3941   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
  3943   // Inner scope for scope based logging, timers, and stats collection
  3945     EvacuationInfo evacuation_info;
  3947     if (g1_policy()->during_initial_mark_pause()) {
  3948       // We are about to start a marking cycle, so we increment the
  3949       // full collection counter.
  3950       increment_old_marking_cycles_started();
  3951       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
  3954     _gc_tracer_stw->report_yc_type(yc_type());
  3956     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
  3958     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  3959                                 workers()->active_workers() : 1);
  3960     double pause_start_sec = os::elapsedTime();
  3961     g1_policy()->phase_times()->note_gc_start(active_workers);
  3962     log_gc_header();
  3964     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
  3965     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
  3967     // If the secondary_free_list is not empty, append it to the
  3968     // free_list. No need to wait for the cleanup operation to finish;
  3969     // the region allocation code will check the secondary_free_list
  3970     // and wait if necessary. If the G1StressConcRegionFreeing flag is
  3971     // set, skip this step so that the region allocation code has to
  3972     // get entries from the secondary_free_list.
  3973     if (!G1StressConcRegionFreeing) {
  3974       append_secondary_free_list_if_not_empty_with_lock();
  3977     assert(check_young_list_well_formed(), "young list should be well formed");
  3978     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3979            "sanity check");
  3981     // Don't dynamically change the number of GC threads this early.  A value of
  3982     // 0 is used to indicate serial work.  When parallel work is done,
  3983     // it will be set.
  3985     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3986       IsGCActiveMark x;
  3988       gc_prologue(false);
  3989       increment_total_collections(false /* full gc */);
  3990       increment_gc_time_stamp();
  3992       verify_before_gc();
  3994       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3996       // Please see comment in g1CollectedHeap.hpp and
  3997       // G1CollectedHeap::ref_processing_init() to see how
  3998       // reference processing currently works in G1.
  4000       // Enable discovery in the STW reference processor
  4001       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
  4002                                             true /*verify_no_refs*/);
  4005         // We want to temporarily turn off discovery by the
  4006         // CM ref processor, if necessary, and turn it back on
  4007         // on again later if we do. Using a scoped
  4008         // NoRefDiscovery object will do this.
  4009         NoRefDiscovery no_cm_discovery(ref_processor_cm());
  4011         // Forget the current alloc region (we might even choose it to be part
  4012         // of the collection set!).
  4013         release_mutator_alloc_region();
  4015         // We should call this after we retire the mutator alloc
  4016         // region(s) so that all the ALLOC / RETIRE events are generated
  4017         // before the start GC event.
  4018         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
  4020         // This timing is only used by the ergonomics to handle our pause target.
  4021         // It is unclear why this should not include the full pause. We will
  4022         // investigate this in CR 7178365.
  4023         //
  4024         // Preserving the old comment here if that helps the investigation:
  4025         //
  4026         // The elapsed time induced by the start time below deliberately elides
  4027         // the possible verification above.
  4028         double sample_start_time_sec = os::elapsedTime();
  4030 #if YOUNG_LIST_VERBOSE
  4031         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  4032         _young_list->print();
  4033         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4034 #endif // YOUNG_LIST_VERBOSE
  4036         g1_policy()->record_collection_pause_start(sample_start_time_sec);
  4038         double scan_wait_start = os::elapsedTime();
  4039         // We have to wait until the CM threads finish scanning the
  4040         // root regions as it's the only way to ensure that all the
  4041         // objects on them have been correctly scanned before we start
  4042         // moving them during the GC.
  4043         bool waited = _cm->root_regions()->wait_until_scan_finished();
  4044         double wait_time_ms = 0.0;
  4045         if (waited) {
  4046           double scan_wait_end = os::elapsedTime();
  4047           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
  4049         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
  4051 #if YOUNG_LIST_VERBOSE
  4052         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  4053         _young_list->print();
  4054 #endif // YOUNG_LIST_VERBOSE
  4056         if (g1_policy()->during_initial_mark_pause()) {
  4057           concurrent_mark()->checkpointRootsInitialPre();
  4060 #if YOUNG_LIST_VERBOSE
  4061         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  4062         _young_list->print();
  4063         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4064 #endif // YOUNG_LIST_VERBOSE
  4066         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
  4068         _cm->note_start_of_gc();
  4069         // We should not verify the per-thread SATB buffers given that
  4070         // we have not filtered them yet (we'll do so during the
  4071         // GC). We also call this after finalize_cset() to
  4072         // ensure that the CSet has been finalized.
  4073         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4074                                  true  /* verify_enqueued_buffers */,
  4075                                  false /* verify_thread_buffers */,
  4076                                  true  /* verify_fingers */);
  4078         if (_hr_printer.is_active()) {
  4079           HeapRegion* hr = g1_policy()->collection_set();
  4080           while (hr != NULL) {
  4081             G1HRPrinter::RegionType type;
  4082             if (!hr->is_young()) {
  4083               type = G1HRPrinter::Old;
  4084             } else if (hr->is_survivor()) {
  4085               type = G1HRPrinter::Survivor;
  4086             } else {
  4087               type = G1HRPrinter::Eden;
  4089             _hr_printer.cset(hr);
  4090             hr = hr->next_in_collection_set();
  4094 #ifdef ASSERT
  4095         VerifyCSetClosure cl;
  4096         collection_set_iterate(&cl);
  4097 #endif // ASSERT
  4099         setup_surviving_young_words();
  4101         // Initialize the GC alloc regions.
  4102         init_gc_alloc_regions(evacuation_info);
  4104         // Actually do the work...
  4105         evacuate_collection_set(evacuation_info);
  4107         // We do this to mainly verify the per-thread SATB buffers
  4108         // (which have been filtered by now) since we didn't verify
  4109         // them earlier. No point in re-checking the stacks / enqueued
  4110         // buffers given that the CSet has not changed since last time
  4111         // we checked.
  4112         _cm->verify_no_cset_oops(false /* verify_stacks */,
  4113                                  false /* verify_enqueued_buffers */,
  4114                                  true  /* verify_thread_buffers */,
  4115                                  true  /* verify_fingers */);
  4117         free_collection_set(g1_policy()->collection_set(), evacuation_info);
  4118         g1_policy()->clear_collection_set();
  4120         cleanup_surviving_young_words();
  4122         // Start a new incremental collection set for the next pause.
  4123         g1_policy()->start_incremental_cset_building();
  4125         clear_cset_fast_test();
  4127         _young_list->reset_sampled_info();
  4129         // Don't check the whole heap at this point as the
  4130         // GC alloc regions from this pause have been tagged
  4131         // as survivors and moved on to the survivor list.
  4132         // Survivor regions will fail the !is_young() check.
  4133         assert(check_young_list_empty(false /* check_heap */),
  4134           "young list should be empty");
  4136 #if YOUNG_LIST_VERBOSE
  4137         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  4138         _young_list->print();
  4139 #endif // YOUNG_LIST_VERBOSE
  4141         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  4142                                              _young_list->first_survivor_region(),
  4143                                              _young_list->last_survivor_region());
  4145         _young_list->reset_auxilary_lists();
  4147         if (evacuation_failed()) {
  4148           _summary_bytes_used = recalculate_used();
  4149           uint n_queues = MAX2((int)ParallelGCThreads, 1);
  4150           for (uint i = 0; i < n_queues; i++) {
  4151             if (_evacuation_failed_info_array[i].has_failed()) {
  4152               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
  4155         } else {
  4156           // The "used" of the the collection set have already been subtracted
  4157           // when they were freed.  Add in the bytes evacuated.
  4158           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
  4161         if (g1_policy()->during_initial_mark_pause()) {
  4162           // We have to do this before we notify the CM threads that
  4163           // they can start working to make sure that all the
  4164           // appropriate initialization is done on the CM object.
  4165           concurrent_mark()->checkpointRootsInitialPost();
  4166           set_marking_started();
  4167           // Note that we don't actually trigger the CM thread at
  4168           // this point. We do that later when we're sure that
  4169           // the current thread has completed its logging output.
  4172         allocate_dummy_regions();
  4174 #if YOUNG_LIST_VERBOSE
  4175         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  4176         _young_list->print();
  4177         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  4178 #endif // YOUNG_LIST_VERBOSE
  4180         init_mutator_alloc_region();
  4183           size_t expand_bytes = g1_policy()->expansion_amount();
  4184           if (expand_bytes > 0) {
  4185             size_t bytes_before = capacity();
  4186             // No need for an ergo verbose message here,
  4187             // expansion_amount() does this when it returns a value > 0.
  4188             if (!expand(expand_bytes)) {
  4189               // We failed to expand the heap so let's verify that
  4190               // committed/uncommitted amount match the backing store
  4191               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  4192               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  4197         // We redo the verification but now wrt to the new CSet which
  4198         // has just got initialized after the previous CSet was freed.
  4199         _cm->verify_no_cset_oops(true  /* verify_stacks */,
  4200                                  true  /* verify_enqueued_buffers */,
  4201                                  true  /* verify_thread_buffers */,
  4202                                  true  /* verify_fingers */);
  4203         _cm->note_end_of_gc();
  4205         // This timing is only used by the ergonomics to handle our pause target.
  4206         // It is unclear why this should not include the full pause. We will
  4207         // investigate this in CR 7178365.
  4208         double sample_end_time_sec = os::elapsedTime();
  4209         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
  4210         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
  4212         MemoryService::track_memory_usage();
  4214         // In prepare_for_verify() below we'll need to scan the deferred
  4215         // update buffers to bring the RSets up-to-date if
  4216         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
  4217         // the update buffers we'll probably need to scan cards on the
  4218         // regions we just allocated to (i.e., the GC alloc
  4219         // regions). However, during the last GC we called
  4220         // set_saved_mark() on all the GC alloc regions, so card
  4221         // scanning might skip the [saved_mark_word()...top()] area of
  4222         // those regions (i.e., the area we allocated objects into
  4223         // during the last GC). But it shouldn't. Given that
  4224         // saved_mark_word() is conditional on whether the GC time stamp
  4225         // on the region is current or not, by incrementing the GC time
  4226         // stamp here we invalidate all the GC time stamps on all the
  4227         // regions and saved_mark_word() will simply return top() for
  4228         // all the regions. This is a nicer way of ensuring this rather
  4229         // than iterating over the regions and fixing them. In fact, the
  4230         // GC time stamp increment here also ensures that
  4231         // saved_mark_word() will return top() between pauses, i.e.,
  4232         // during concurrent refinement. So we don't need the
  4233         // is_gc_active() check to decided which top to use when
  4234         // scanning cards (see CR 7039627).
  4235         increment_gc_time_stamp();
  4237         verify_after_gc();
  4239         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
  4240         ref_processor_stw()->verify_no_references_recorded();
  4242         // CM reference discovery will be re-enabled if necessary.
  4245       // We should do this after we potentially expand the heap so
  4246       // that all the COMMIT events are generated before the end GC
  4247       // event, and after we retire the GC alloc regions so that all
  4248       // RETIRE events are generated before the end GC event.
  4249       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
  4251       if (mark_in_progress()) {
  4252         concurrent_mark()->update_g1_committed();
  4255 #ifdef TRACESPINNING
  4256       ParallelTaskTerminator::print_termination_counts();
  4257 #endif
  4259       gc_epilogue(false);
  4262     // Print the remainder of the GC log output.
  4263     log_gc_footer(os::elapsedTime() - pause_start_sec);
  4265     // It is not yet to safe to tell the concurrent mark to
  4266     // start as we have some optional output below. We don't want the
  4267     // output from the concurrent mark thread interfering with this
  4268     // logging output either.
  4270     _hrs.verify_optional();
  4271     verify_region_sets_optional();
  4273     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  4274     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  4276     print_heap_after_gc();
  4277     trace_heap_after_gc(_gc_tracer_stw);
  4279     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
  4280     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
  4281     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
  4282     // before any GC notifications are raised.
  4283     g1mm()->update_sizes();
  4285     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
  4286     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
  4287     _gc_timer_stw->register_gc_end();
  4288     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
  4290   // It should now be safe to tell the concurrent mark thread to start
  4291   // without its logging output interfering with the logging output
  4292   // that came from the pause.
  4294   if (should_start_conc_mark) {
  4295     // CAUTION: after the doConcurrentMark() call below,
  4296     // the concurrent marking thread(s) could be running
  4297     // concurrently with us. Make sure that anything after
  4298     // this point does not assume that we are the only GC thread
  4299     // running. Note: of course, the actual marking work will
  4300     // not start until the safepoint itself is released in
  4301     // SuspendibleThreadSet::desynchronize().
  4302     doConcurrentMark();
  4305   return true;
  4308 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  4310   size_t gclab_word_size;
  4311   switch (purpose) {
  4312     case GCAllocForSurvived:
  4313       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
  4314       break;
  4315     case GCAllocForTenured:
  4316       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4317       break;
  4318     default:
  4319       assert(false, "unknown GCAllocPurpose");
  4320       gclab_word_size = _old_plab_stats.desired_plab_sz();
  4321       break;
  4324   // Prevent humongous PLAB sizes for two reasons:
  4325   // * PLABs are allocated using a similar paths as oops, but should
  4326   //   never be in a humongous region
  4327   // * Allowing humongous PLABs needlessly churns the region free lists
  4328   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
  4331 void G1CollectedHeap::init_mutator_alloc_region() {
  4332   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  4333   _mutator_alloc_region.init();
  4336 void G1CollectedHeap::release_mutator_alloc_region() {
  4337   _mutator_alloc_region.release();
  4338   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  4341 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
  4342   assert_at_safepoint(true /* should_be_vm_thread */);
  4344   _survivor_gc_alloc_region.init();
  4345   _old_gc_alloc_region.init();
  4346   HeapRegion* retained_region = _retained_old_gc_alloc_region;
  4347   _retained_old_gc_alloc_region = NULL;
  4349   // We will discard the current GC alloc region if:
  4350   // a) it's in the collection set (it can happen!),
  4351   // b) it's already full (no point in using it),
  4352   // c) it's empty (this means that it was emptied during
  4353   // a cleanup and it should be on the free list now), or
  4354   // d) it's humongous (this means that it was emptied
  4355   // during a cleanup and was added to the free list, but
  4356   // has been subsequently used to allocate a humongous
  4357   // object that may be less than the region size).
  4358   if (retained_region != NULL &&
  4359       !retained_region->in_collection_set() &&
  4360       !(retained_region->top() == retained_region->end()) &&
  4361       !retained_region->is_empty() &&
  4362       !retained_region->isHumongous()) {
  4363     retained_region->set_saved_mark();
  4364     // The retained region was added to the old region set when it was
  4365     // retired. We have to remove it now, since we don't allow regions
  4366     // we allocate to in the region sets. We'll re-add it later, when
  4367     // it's retired again.
  4368     _old_set.remove(retained_region);
  4369     bool during_im = g1_policy()->during_initial_mark_pause();
  4370     retained_region->note_start_of_copying(during_im);
  4371     _old_gc_alloc_region.set(retained_region);
  4372     _hr_printer.reuse(retained_region);
  4373     evacuation_info.set_alloc_regions_used_before(retained_region->used());
  4377 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
  4378   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
  4379                                          _old_gc_alloc_region.count());
  4380   _survivor_gc_alloc_region.release();
  4381   // If we have an old GC alloc region to release, we'll save it in
  4382   // _retained_old_gc_alloc_region. If we don't
  4383   // _retained_old_gc_alloc_region will become NULL. This is what we
  4384   // want either way so no reason to check explicitly for either
  4385   // condition.
  4386   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
  4388   if (ResizePLAB) {
  4389     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4390     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
  4394 void G1CollectedHeap::abandon_gc_alloc_regions() {
  4395   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
  4396   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
  4397   _retained_old_gc_alloc_region = NULL;
  4400 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  4401   _drain_in_progress = false;
  4402   set_evac_failure_closure(cl);
  4403   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
  4406 void G1CollectedHeap::finalize_for_evac_failure() {
  4407   assert(_evac_failure_scan_stack != NULL &&
  4408          _evac_failure_scan_stack->length() == 0,
  4409          "Postcondition");
  4410   assert(!_drain_in_progress, "Postcondition");
  4411   delete _evac_failure_scan_stack;
  4412   _evac_failure_scan_stack = NULL;
  4415 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4416   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4418   double remove_self_forwards_start = os::elapsedTime();
  4420   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
  4422   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4423     set_par_threads();
  4424     workers()->run_task(&rsfp_task);
  4425     set_par_threads(0);
  4426   } else {
  4427     rsfp_task.work(0);
  4430   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
  4432   // Reset the claim values in the regions in the collection set.
  4433   reset_cset_heap_region_claim_values();
  4435   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
  4437   // Now restore saved marks, if any.
  4438   assert(_objs_with_preserved_marks.size() ==
  4439             _preserved_marks_of_objs.size(), "Both or none.");
  4440   while (!_objs_with_preserved_marks.is_empty()) {
  4441     oop obj = _objs_with_preserved_marks.pop();
  4442     markOop m = _preserved_marks_of_objs.pop();
  4443     obj->set_mark(m);
  4445   _objs_with_preserved_marks.clear(true);
  4446   _preserved_marks_of_objs.clear(true);
  4448   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
  4451 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4452   _evac_failure_scan_stack->push(obj);
  4455 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4456   assert(_evac_failure_scan_stack != NULL, "precondition");
  4458   while (_evac_failure_scan_stack->length() > 0) {
  4459      oop obj = _evac_failure_scan_stack->pop();
  4460      _evac_failure_closure->set_region(heap_region_containing(obj));
  4461      obj->oop_iterate_backwards(_evac_failure_closure);
  4465 oop
  4466 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
  4467                                                oop old) {
  4468   assert(obj_in_cs(old),
  4469          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
  4470                  (HeapWord*) old));
  4471   markOop m = old->mark();
  4472   oop forward_ptr = old->forward_to_atomic(old);
  4473   if (forward_ptr == NULL) {
  4474     // Forward-to-self succeeded.
  4475     assert(_par_scan_state != NULL, "par scan state");
  4476     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4477     uint queue_num = _par_scan_state->queue_num();
  4479     _evacuation_failed = true;
  4480     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
  4481     if (_evac_failure_closure != cl) {
  4482       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4483       assert(!_drain_in_progress,
  4484              "Should only be true while someone holds the lock.");
  4485       // Set the global evac-failure closure to the current thread's.
  4486       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4487       set_evac_failure_closure(cl);
  4488       // Now do the common part.
  4489       handle_evacuation_failure_common(old, m);
  4490       // Reset to NULL.
  4491       set_evac_failure_closure(NULL);
  4492     } else {
  4493       // The lock is already held, and this is recursive.
  4494       assert(_drain_in_progress, "This should only be the recursive case.");
  4495       handle_evacuation_failure_common(old, m);
  4497     return old;
  4498   } else {
  4499     // Forward-to-self failed. Either someone else managed to allocate
  4500     // space for this object (old != forward_ptr) or they beat us in
  4501     // self-forwarding it (old == forward_ptr).
  4502     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
  4503            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
  4504                    "should not be in the CSet",
  4505                    (HeapWord*) old, (HeapWord*) forward_ptr));
  4506     return forward_ptr;
  4510 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4511   preserve_mark_if_necessary(old, m);
  4513   HeapRegion* r = heap_region_containing(old);
  4514   if (!r->evacuation_failed()) {
  4515     r->set_evacuation_failed(true);
  4516     _hr_printer.evac_failure(r);
  4519   push_on_evac_failure_scan_stack(old);
  4521   if (!_drain_in_progress) {
  4522     // prevent recursion in copy_to_survivor_space()
  4523     _drain_in_progress = true;
  4524     drain_evac_failure_scan_stack();
  4525     _drain_in_progress = false;
  4529 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4530   assert(evacuation_failed(), "Oversaving!");
  4531   // We want to call the "for_promotion_failure" version only in the
  4532   // case of a promotion failure.
  4533   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4534     _objs_with_preserved_marks.push(obj);
  4535     _preserved_marks_of_objs.push(m);
  4539 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4540                                                   size_t word_size) {
  4541   if (purpose == GCAllocForSurvived) {
  4542     HeapWord* result = survivor_attempt_allocation(word_size);
  4543     if (result != NULL) {
  4544       return result;
  4545     } else {
  4546       // Let's try to allocate in the old gen in case we can fit the
  4547       // object there.
  4548       return old_attempt_allocation(word_size);
  4550   } else {
  4551     assert(purpose ==  GCAllocForTenured, "sanity");
  4552     HeapWord* result = old_attempt_allocation(word_size);
  4553     if (result != NULL) {
  4554       return result;
  4555     } else {
  4556       // Let's try to allocate in the survivors in case we can fit the
  4557       // object there.
  4558       return survivor_attempt_allocation(word_size);
  4562   ShouldNotReachHere();
  4563   // Trying to keep some compilers happy.
  4564   return NULL;
  4567 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
  4568   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
  4570 void G1ParCopyHelper::mark_object(oop obj) {
  4571 #ifdef ASSERT
  4572   HeapRegion* hr = _g1->heap_region_containing(obj);
  4573   assert(hr != NULL, "sanity");
  4574   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
  4575 #endif // ASSERT
  4577   // We know that the object is not moving so it's safe to read its size.
  4578   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  4581 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
  4582 #ifdef ASSERT
  4583   assert(from_obj->is_forwarded(), "from obj should be forwarded");
  4584   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
  4585   assert(from_obj != to_obj, "should not be self-forwarded");
  4587   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
  4588   assert(from_hr != NULL, "sanity");
  4589   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
  4591   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
  4592   assert(to_hr != NULL, "sanity");
  4593   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
  4594 #endif // ASSERT
  4596   // The object might be in the process of being copied by another
  4597   // worker so we cannot trust that its to-space image is
  4598   // well-formed. So we have to read its size from its from-space
  4599   // image which we know should not be changing.
  4600   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
  4603 template <class T>
  4604 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
  4605   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
  4606     _scanned_klass->record_modified_oops();
  4610 template <G1Barrier barrier, bool do_mark_object>
  4611 template <class T>
  4612 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
  4613   T heap_oop = oopDesc::load_heap_oop(p);
  4615   if (oopDesc::is_null(heap_oop)) {
  4616     return;
  4619   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  4621   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
  4623   if (_g1->in_cset_fast_test(obj)) {
  4624     oop forwardee;
  4625     if (obj->is_forwarded()) {
  4626       forwardee = obj->forwardee();
  4627     } else {
  4628       forwardee = _par_scan_state->copy_to_survivor_space(obj);
  4630     assert(forwardee != NULL, "forwardee should not be NULL");
  4631     oopDesc::encode_store_heap_oop(p, forwardee);
  4632     if (do_mark_object && forwardee != obj) {
  4633       // If the object is self-forwarded we don't need to explicitly
  4634       // mark it, the evacuation failure protocol will do so.
  4635       mark_forwarded_object(obj, forwardee);
  4638     if (barrier == G1BarrierKlass) {
  4639       do_klass_barrier(p, forwardee);
  4641   } else {
  4642     // The object is not in collection set. If we're a root scanning
  4643     // closure during an initial mark pause (i.e. do_mark_object will
  4644     // be true) then attempt to mark the object.
  4645     if (do_mark_object) {
  4646       mark_object(obj);
  4650   if (barrier == G1BarrierEvac) {
  4651     _par_scan_state->update_rs(_from, p, _worker_id);
  4655 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
  4656 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4658 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4659 protected:
  4660   G1CollectedHeap*              _g1h;
  4661   G1ParScanThreadState*         _par_scan_state;
  4662   RefToScanQueueSet*            _queues;
  4663   ParallelTaskTerminator*       _terminator;
  4665   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4666   RefToScanQueueSet*      queues()         { return _queues; }
  4667   ParallelTaskTerminator* terminator()     { return _terminator; }
  4669 public:
  4670   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4671                                 G1ParScanThreadState* par_scan_state,
  4672                                 RefToScanQueueSet* queues,
  4673                                 ParallelTaskTerminator* terminator)
  4674     : _g1h(g1h), _par_scan_state(par_scan_state),
  4675       _queues(queues), _terminator(terminator) {}
  4677   void do_void();
  4679 private:
  4680   inline bool offer_termination();
  4681 };
  4683 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4684   G1ParScanThreadState* const pss = par_scan_state();
  4685   pss->start_term_time();
  4686   const bool res = terminator()->offer_termination();
  4687   pss->end_term_time();
  4688   return res;
  4691 void G1ParEvacuateFollowersClosure::do_void() {
  4692   G1ParScanThreadState* const pss = par_scan_state();
  4693   pss->trim_queue();
  4694   do {
  4695     pss->steal_and_trim_queue(queues());
  4696   } while (!offer_termination());
  4699 class G1KlassScanClosure : public KlassClosure {
  4700  G1ParCopyHelper* _closure;
  4701  bool             _process_only_dirty;
  4702  int              _count;
  4703  public:
  4704   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
  4705       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
  4706   void do_klass(Klass* klass) {
  4707     // If the klass has not been dirtied we know that there's
  4708     // no references into  the young gen and we can skip it.
  4709    if (!_process_only_dirty || klass->has_modified_oops()) {
  4710       // Clean the klass since we're going to scavenge all the metadata.
  4711       klass->clear_modified_oops();
  4713       // Tell the closure that this klass is the Klass to scavenge
  4714       // and is the one to dirty if oops are left pointing into the young gen.
  4715       _closure->set_scanned_klass(klass);
  4717       klass->oops_do(_closure);
  4719       _closure->set_scanned_klass(NULL);
  4721     _count++;
  4723 };
  4725 class G1ParTask : public AbstractGangTask {
  4726 protected:
  4727   G1CollectedHeap*       _g1h;
  4728   RefToScanQueueSet      *_queues;
  4729   ParallelTaskTerminator _terminator;
  4730   uint _n_workers;
  4732   Mutex _stats_lock;
  4733   Mutex* stats_lock() { return &_stats_lock; }
  4735   size_t getNCards() {
  4736     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4737       / G1BlockOffsetSharedArray::N_bytes;
  4740 public:
  4741   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
  4742     : AbstractGangTask("G1 collection"),
  4743       _g1h(g1h),
  4744       _queues(task_queues),
  4745       _terminator(0, _queues),
  4746       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
  4747   {}
  4749   RefToScanQueueSet* queues() { return _queues; }
  4751   RefToScanQueue *work_queue(int i) {
  4752     return queues()->queue(i);
  4755   ParallelTaskTerminator* terminator() { return &_terminator; }
  4757   virtual void set_for_termination(int active_workers) {
  4758     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
  4759     // in the young space (_par_seq_tasks) in the G1 heap
  4760     // for SequentialSubTasksDone.
  4761     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
  4762     // both of which need setting by set_n_termination().
  4763     _g1h->SharedHeap::set_n_termination(active_workers);
  4764     _g1h->set_n_termination(active_workers);
  4765     terminator()->reset_for_reuse(active_workers);
  4766     _n_workers = active_workers;
  4769   void work(uint worker_id) {
  4770     if (worker_id >= _n_workers) return;  // no work needed this round
  4772     double start_time_ms = os::elapsedTime() * 1000.0;
  4773     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
  4776       ResourceMark rm;
  4777       HandleMark   hm;
  4779       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
  4781       G1ParScanThreadState            pss(_g1h, worker_id, rp);
  4782       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
  4784       pss.set_evac_failure_closure(&evac_failure_cl);
  4786       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
  4787       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
  4789       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
  4790       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
  4792       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
  4793       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
  4794       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
  4796       OopClosure*                    scan_root_cl = &only_scan_root_cl;
  4797       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
  4799       if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4800         // We also need to mark copied objects.
  4801         scan_root_cl = &scan_mark_root_cl;
  4802         scan_klasses_cl = &scan_mark_klasses_cl_s;
  4805       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4807       // Don't scan the scavengable methods in the code cache as part
  4808       // of strong root scanning. The code roots that point into a
  4809       // region in the collection set are scanned when we scan the
  4810       // region's RSet.
  4811       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
  4813       pss.start_strong_roots();
  4814       _g1h->g1_process_strong_roots(/* is scavenging */ true,
  4815                                     SharedHeap::ScanningOption(so),
  4816                                     scan_root_cl,
  4817                                     &push_heap_rs_cl,
  4818                                     scan_klasses_cl,
  4819                                     worker_id);
  4820       pss.end_strong_roots();
  4823         double start = os::elapsedTime();
  4824         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4825         evac.do_void();
  4826         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4827         double term_ms = pss.term_time()*1000.0;
  4828         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
  4829         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
  4831       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4832       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4834       if (ParallelGCVerbose) {
  4835         MutexLocker x(stats_lock());
  4836         pss.print_termination_stats(worker_id);
  4839       assert(pss.queue_is_empty(), "should be empty");
  4841       // Close the inner scope so that the ResourceMark and HandleMark
  4842       // destructors are executed here and are included as part of the
  4843       // "GC Worker Time".
  4846     double end_time_ms = os::elapsedTime() * 1000.0;
  4847     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
  4849 };
  4851 // *** Common G1 Evacuation Stuff
  4853 // This method is run in a GC worker.
  4855 void
  4856 G1CollectedHeap::
  4857 g1_process_strong_roots(bool is_scavenging,
  4858                         ScanningOption so,
  4859                         OopClosure* scan_non_heap_roots,
  4860                         OopsInHeapRegionClosure* scan_rs,
  4861                         G1KlassScanClosure* scan_klasses,
  4862                         uint worker_i) {
  4864   // First scan the strong roots
  4865   double ext_roots_start = os::elapsedTime();
  4866   double closure_app_time_sec = 0.0;
  4868   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4870   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
  4871   // Walk the code cache/strong code roots w/o buffering, because StarTask
  4872   // cannot handle unaligned oop locations.
  4873   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
  4875   process_strong_roots(false, // no scoping; this is parallel code
  4876                        is_scavenging, so,
  4877                        &buf_scan_non_heap_roots,
  4878                        &eager_scan_code_roots,
  4879                        scan_klasses
  4880                        );
  4882   // Now the CM ref_processor roots.
  4883   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4884     // We need to treat the discovered reference lists of the
  4885     // concurrent mark ref processor as roots and keep entries
  4886     // (which are added by the marking threads) on them live
  4887     // until they can be processed at the end of marking.
  4888     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
  4891   // Finish up any enqueued closure apps (attributed as object copy time).
  4892   buf_scan_non_heap_roots.done();
  4894   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
  4896   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4898   double ext_root_time_ms =
  4899     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4901   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4903   // During conc marking we have to filter the per-thread SATB buffers
  4904   // to make sure we remove any oops into the CSet (which will show up
  4905   // as implicitly live).
  4906   double satb_filtering_ms = 0.0;
  4907   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
  4908     if (mark_in_progress()) {
  4909       double satb_filter_start = os::elapsedTime();
  4911       JavaThread::satb_mark_queue_set().filter_thread_buffers();
  4913       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
  4916   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
  4918   // If this is an initial mark pause, and we're not scanning
  4919   // the entire code cache, we need to mark the oops in the
  4920   // strong code root lists for the regions that are not in
  4921   // the collection set.
  4922   // Note all threads participate in this set of root tasks.
  4923   double mark_strong_code_roots_ms = 0.0;
  4924   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
  4925     double mark_strong_roots_start = os::elapsedTime();
  4926     mark_strong_code_roots(worker_i);
  4927     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
  4929   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
  4931   // Now scan the complement of the collection set.
  4932   if (scan_rs != NULL) {
  4933     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
  4935   _process_strong_tasks->all_tasks_completed();
  4938 void
  4939 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
  4940   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4941   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
  4944 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
  4945 private:
  4946   BoolObjectClosure* _is_alive;
  4947   int _initial_string_table_size;
  4948   int _initial_symbol_table_size;
  4950   bool  _process_strings;
  4951   int _strings_processed;
  4952   int _strings_removed;
  4954   bool  _process_symbols;
  4955   int _symbols_processed;
  4956   int _symbols_removed;
  4958   bool _do_in_parallel;
  4959 public:
  4960   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
  4961     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
  4962     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
  4963     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
  4964     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
  4966     _initial_string_table_size = StringTable::the_table()->table_size();
  4967     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
  4968     if (process_strings) {
  4969       StringTable::clear_parallel_claimed_index();
  4971     if (process_symbols) {
  4972       SymbolTable::clear_parallel_claimed_index();
  4976   ~G1StringSymbolTableUnlinkTask() {
  4977     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
  4978               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
  4979                       StringTable::parallel_claimed_index(), _initial_string_table_size));
  4980     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
  4981               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
  4982                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
  4985   void work(uint worker_id) {
  4986     if (_do_in_parallel) {
  4987       int strings_processed = 0;
  4988       int strings_removed = 0;
  4989       int symbols_processed = 0;
  4990       int symbols_removed = 0;
  4991       if (_process_strings) {
  4992         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
  4993         Atomic::add(strings_processed, &_strings_processed);
  4994         Atomic::add(strings_removed, &_strings_removed);
  4996       if (_process_symbols) {
  4997         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
  4998         Atomic::add(symbols_processed, &_symbols_processed);
  4999         Atomic::add(symbols_removed, &_symbols_removed);
  5001     } else {
  5002       if (_process_strings) {
  5003         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
  5005       if (_process_symbols) {
  5006         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
  5011   size_t strings_processed() const { return (size_t)_strings_processed; }
  5012   size_t strings_removed()   const { return (size_t)_strings_removed; }
  5014   size_t symbols_processed() const { return (size_t)_symbols_processed; }
  5015   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
  5016 };
  5018 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
  5019                                                      bool process_strings, bool process_symbols) {
  5020   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5021                    _g1h->workers()->active_workers() : 1);
  5023   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
  5024   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5025     set_par_threads(n_workers);
  5026     workers()->run_task(&g1_unlink_task);
  5027     set_par_threads(0);
  5028   } else {
  5029     g1_unlink_task.work(0);
  5031   if (G1TraceStringSymbolTableScrubbing) {
  5032     gclog_or_tty->print_cr("Cleaned string and symbol table, "
  5033                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
  5034                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
  5035                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
  5036                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
  5039   if (G1StringDedup::is_enabled()) {
  5040     G1StringDedup::unlink(is_alive);
  5044 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
  5045  private:
  5046   DirtyCardQueueSet* _queue;
  5047  public:
  5048   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
  5050   virtual void work(uint worker_id) {
  5051     double start_time = os::elapsedTime();
  5053     RedirtyLoggedCardTableEntryClosure cl;
  5054     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
  5055       _queue->par_apply_closure_to_all_completed_buffers(&cl);
  5056     } else {
  5057       _queue->apply_closure_to_all_completed_buffers(&cl);
  5060     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
  5061     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
  5062     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
  5064 };
  5066 void G1CollectedHeap::redirty_logged_cards() {
  5067   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
  5068   double redirty_logged_cards_start = os::elapsedTime();
  5070   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
  5071                    _g1h->workers()->active_workers() : 1);
  5073   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
  5074   dirty_card_queue_set().reset_for_par_iteration();
  5075   if (use_parallel_gc_threads()) {
  5076     set_par_threads(n_workers);
  5077     workers()->run_task(&redirty_task);
  5078     set_par_threads(0);
  5079   } else {
  5080     redirty_task.work(0);
  5083   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  5084   dcq.merge_bufferlists(&dirty_card_queue_set());
  5085   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  5087   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
  5090 // Weak Reference Processing support
  5092 // An always "is_alive" closure that is used to preserve referents.
  5093 // If the object is non-null then it's alive.  Used in the preservation
  5094 // of referent objects that are pointed to by reference objects
  5095 // discovered by the CM ref processor.
  5096 class G1AlwaysAliveClosure: public BoolObjectClosure {
  5097   G1CollectedHeap* _g1;
  5098 public:
  5099   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5100   bool do_object_b(oop p) {
  5101     if (p != NULL) {
  5102       return true;
  5104     return false;
  5106 };
  5108 bool G1STWIsAliveClosure::do_object_b(oop p) {
  5109   // An object is reachable if it is outside the collection set,
  5110   // or is inside and copied.
  5111   return !_g1->obj_in_cs(p) || p->is_forwarded();
  5114 // Non Copying Keep Alive closure
  5115 class G1KeepAliveClosure: public OopClosure {
  5116   G1CollectedHeap* _g1;
  5117 public:
  5118   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  5119   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  5120   void do_oop(      oop* p) {
  5121     oop obj = *p;
  5123     if (_g1->obj_in_cs(obj)) {
  5124       assert( obj->is_forwarded(), "invariant" );
  5125       *p = obj->forwardee();
  5128 };
  5130 // Copying Keep Alive closure - can be called from both
  5131 // serial and parallel code as long as different worker
  5132 // threads utilize different G1ParScanThreadState instances
  5133 // and different queues.
  5135 class G1CopyingKeepAliveClosure: public OopClosure {
  5136   G1CollectedHeap*         _g1h;
  5137   OopClosure*              _copy_non_heap_obj_cl;
  5138   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
  5139   G1ParScanThreadState*    _par_scan_state;
  5141 public:
  5142   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
  5143                             OopClosure* non_heap_obj_cl,
  5144                             OopsInHeapRegionClosure* metadata_obj_cl,
  5145                             G1ParScanThreadState* pss):
  5146     _g1h(g1h),
  5147     _copy_non_heap_obj_cl(non_heap_obj_cl),
  5148     _copy_metadata_obj_cl(metadata_obj_cl),
  5149     _par_scan_state(pss)
  5150   {}
  5152   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  5153   virtual void do_oop(      oop* p) { do_oop_work(p); }
  5155   template <class T> void do_oop_work(T* p) {
  5156     oop obj = oopDesc::load_decode_heap_oop(p);
  5158     if (_g1h->obj_in_cs(obj)) {
  5159       // If the referent object has been forwarded (either copied
  5160       // to a new location or to itself in the event of an
  5161       // evacuation failure) then we need to update the reference
  5162       // field and, if both reference and referent are in the G1
  5163       // heap, update the RSet for the referent.
  5164       //
  5165       // If the referent has not been forwarded then we have to keep
  5166       // it alive by policy. Therefore we have copy the referent.
  5167       //
  5168       // If the reference field is in the G1 heap then we can push
  5169       // on the PSS queue. When the queue is drained (after each
  5170       // phase of reference processing) the object and it's followers
  5171       // will be copied, the reference field set to point to the
  5172       // new location, and the RSet updated. Otherwise we need to
  5173       // use the the non-heap or metadata closures directly to copy
  5174       // the referent object and update the pointer, while avoiding
  5175       // updating the RSet.
  5177       if (_g1h->is_in_g1_reserved(p)) {
  5178         _par_scan_state->push_on_queue(p);
  5179       } else {
  5180         assert(!Metaspace::contains((const void*)p),
  5181                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
  5182                               PTR_FORMAT, p));
  5183           _copy_non_heap_obj_cl->do_oop(p);
  5187 };
  5189 // Serial drain queue closure. Called as the 'complete_gc'
  5190 // closure for each discovered list in some of the
  5191 // reference processing phases.
  5193 class G1STWDrainQueueClosure: public VoidClosure {
  5194 protected:
  5195   G1CollectedHeap* _g1h;
  5196   G1ParScanThreadState* _par_scan_state;
  5198   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  5200 public:
  5201   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
  5202     _g1h(g1h),
  5203     _par_scan_state(pss)
  5204   { }
  5206   void do_void() {
  5207     G1ParScanThreadState* const pss = par_scan_state();
  5208     pss->trim_queue();
  5210 };
  5212 // Parallel Reference Processing closures
  5214 // Implementation of AbstractRefProcTaskExecutor for parallel reference
  5215 // processing during G1 evacuation pauses.
  5217 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
  5218 private:
  5219   G1CollectedHeap*   _g1h;
  5220   RefToScanQueueSet* _queues;
  5221   FlexibleWorkGang*  _workers;
  5222   int                _active_workers;
  5224 public:
  5225   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
  5226                         FlexibleWorkGang* workers,
  5227                         RefToScanQueueSet *task_queues,
  5228                         int n_workers) :
  5229     _g1h(g1h),
  5230     _queues(task_queues),
  5231     _workers(workers),
  5232     _active_workers(n_workers)
  5234     assert(n_workers > 0, "shouldn't call this otherwise");
  5237   // Executes the given task using concurrent marking worker threads.
  5238   virtual void execute(ProcessTask& task);
  5239   virtual void execute(EnqueueTask& task);
  5240 };
  5242 // Gang task for possibly parallel reference processing
  5244 class G1STWRefProcTaskProxy: public AbstractGangTask {
  5245   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5246   ProcessTask&     _proc_task;
  5247   G1CollectedHeap* _g1h;
  5248   RefToScanQueueSet *_task_queues;
  5249   ParallelTaskTerminator* _terminator;
  5251 public:
  5252   G1STWRefProcTaskProxy(ProcessTask& proc_task,
  5253                      G1CollectedHeap* g1h,
  5254                      RefToScanQueueSet *task_queues,
  5255                      ParallelTaskTerminator* terminator) :
  5256     AbstractGangTask("Process reference objects in parallel"),
  5257     _proc_task(proc_task),
  5258     _g1h(g1h),
  5259     _task_queues(task_queues),
  5260     _terminator(terminator)
  5261   {}
  5263   virtual void work(uint worker_id) {
  5264     // The reference processing task executed by a single worker.
  5265     ResourceMark rm;
  5266     HandleMark   hm;
  5268     G1STWIsAliveClosure is_alive(_g1h);
  5270     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5271     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5273     pss.set_evac_failure_closure(&evac_failure_cl);
  5275     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5276     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5278     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5279     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5281     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5282     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5284     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5285       // We also need to mark copied objects.
  5286       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5287       copy_metadata_cl = &copy_mark_metadata_cl;
  5290     // Keep alive closure.
  5291     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5293     // Complete GC closure
  5294     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
  5296     // Call the reference processing task's work routine.
  5297     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
  5299     // Note we cannot assert that the refs array is empty here as not all
  5300     // of the processing tasks (specifically phase2 - pp2_work) execute
  5301     // the complete_gc closure (which ordinarily would drain the queue) so
  5302     // the queue may not be empty.
  5304 };
  5306 // Driver routine for parallel reference processing.
  5307 // Creates an instance of the ref processing gang
  5308 // task and has the worker threads execute it.
  5309 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
  5310   assert(_workers != NULL, "Need parallel worker threads.");
  5312   ParallelTaskTerminator terminator(_active_workers, _queues);
  5313   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
  5315   _g1h->set_par_threads(_active_workers);
  5316   _workers->run_task(&proc_task_proxy);
  5317   _g1h->set_par_threads(0);
  5320 // Gang task for parallel reference enqueueing.
  5322 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
  5323   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5324   EnqueueTask& _enq_task;
  5326 public:
  5327   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
  5328     AbstractGangTask("Enqueue reference objects in parallel"),
  5329     _enq_task(enq_task)
  5330   { }
  5332   virtual void work(uint worker_id) {
  5333     _enq_task.work(worker_id);
  5335 };
  5337 // Driver routine for parallel reference enqueueing.
  5338 // Creates an instance of the ref enqueueing gang
  5339 // task and has the worker threads execute it.
  5341 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
  5342   assert(_workers != NULL, "Need parallel worker threads.");
  5344   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
  5346   _g1h->set_par_threads(_active_workers);
  5347   _workers->run_task(&enq_task_proxy);
  5348   _g1h->set_par_threads(0);
  5351 // End of weak reference support closures
  5353 // Abstract task used to preserve (i.e. copy) any referent objects
  5354 // that are in the collection set and are pointed to by reference
  5355 // objects discovered by the CM ref processor.
  5357 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
  5358 protected:
  5359   G1CollectedHeap* _g1h;
  5360   RefToScanQueueSet      *_queues;
  5361   ParallelTaskTerminator _terminator;
  5362   uint _n_workers;
  5364 public:
  5365   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
  5366     AbstractGangTask("ParPreserveCMReferents"),
  5367     _g1h(g1h),
  5368     _queues(task_queues),
  5369     _terminator(workers, _queues),
  5370     _n_workers(workers)
  5371   { }
  5373   void work(uint worker_id) {
  5374     ResourceMark rm;
  5375     HandleMark   hm;
  5377     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
  5378     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
  5380     pss.set_evac_failure_closure(&evac_failure_cl);
  5382     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5384     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
  5385     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
  5387     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
  5388     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
  5390     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5391     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5393     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5394       // We also need to mark copied objects.
  5395       copy_non_heap_cl = &copy_mark_non_heap_cl;
  5396       copy_metadata_cl = &copy_mark_metadata_cl;
  5399     // Is alive closure
  5400     G1AlwaysAliveClosure always_alive(_g1h);
  5402     // Copying keep alive closure. Applied to referent objects that need
  5403     // to be copied.
  5404     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
  5406     ReferenceProcessor* rp = _g1h->ref_processor_cm();
  5408     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
  5409     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
  5411     // limit is set using max_num_q() - which was set using ParallelGCThreads.
  5412     // So this must be true - but assert just in case someone decides to
  5413     // change the worker ids.
  5414     assert(0 <= worker_id && worker_id < limit, "sanity");
  5415     assert(!rp->discovery_is_atomic(), "check this code");
  5417     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
  5418     for (uint idx = worker_id; idx < limit; idx += stride) {
  5419       DiscoveredList& ref_list = rp->discovered_refs()[idx];
  5421       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
  5422       while (iter.has_next()) {
  5423         // Since discovery is not atomic for the CM ref processor, we
  5424         // can see some null referent objects.
  5425         iter.load_ptrs(DEBUG_ONLY(true));
  5426         oop ref = iter.obj();
  5428         // This will filter nulls.
  5429         if (iter.is_referent_alive()) {
  5430           iter.make_referent_alive();
  5432         iter.move_to_next();
  5436     // Drain the queue - which may cause stealing
  5437     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
  5438     drain_queue.do_void();
  5439     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
  5440     assert(pss.queue_is_empty(), "should be");
  5442 };
  5444 // Weak Reference processing during an evacuation pause (part 1).
  5445 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
  5446   double ref_proc_start = os::elapsedTime();
  5448   ReferenceProcessor* rp = _ref_processor_stw;
  5449   assert(rp->discovery_enabled(), "should have been enabled");
  5451   // Any reference objects, in the collection set, that were 'discovered'
  5452   // by the CM ref processor should have already been copied (either by
  5453   // applying the external root copy closure to the discovered lists, or
  5454   // by following an RSet entry).
  5455   //
  5456   // But some of the referents, that are in the collection set, that these
  5457   // reference objects point to may not have been copied: the STW ref
  5458   // processor would have seen that the reference object had already
  5459   // been 'discovered' and would have skipped discovering the reference,
  5460   // but would not have treated the reference object as a regular oop.
  5461   // As a result the copy closure would not have been applied to the
  5462   // referent object.
  5463   //
  5464   // We need to explicitly copy these referent objects - the references
  5465   // will be processed at the end of remarking.
  5466   //
  5467   // We also need to do this copying before we process the reference
  5468   // objects discovered by the STW ref processor in case one of these
  5469   // referents points to another object which is also referenced by an
  5470   // object discovered by the STW ref processor.
  5472   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
  5473            no_of_gc_workers == workers()->active_workers(),
  5474            "Need to reset active GC workers");
  5476   set_par_threads(no_of_gc_workers);
  5477   G1ParPreserveCMReferentsTask keep_cm_referents(this,
  5478                                                  no_of_gc_workers,
  5479                                                  _task_queues);
  5481   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5482     workers()->run_task(&keep_cm_referents);
  5483   } else {
  5484     keep_cm_referents.work(0);
  5487   set_par_threads(0);
  5489   // Closure to test whether a referent is alive.
  5490   G1STWIsAliveClosure is_alive(this);
  5492   // Even when parallel reference processing is enabled, the processing
  5493   // of JNI refs is serial and performed serially by the current thread
  5494   // rather than by a worker. The following PSS will be used for processing
  5495   // JNI refs.
  5497   // Use only a single queue for this PSS.
  5498   G1ParScanThreadState            pss(this, 0, NULL);
  5500   // We do not embed a reference processor in the copying/scanning
  5501   // closures while we're actually processing the discovered
  5502   // reference objects.
  5503   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
  5505   pss.set_evac_failure_closure(&evac_failure_cl);
  5507   assert(pss.queue_is_empty(), "pre-condition");
  5509   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
  5510   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
  5512   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
  5513   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
  5515   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
  5516   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
  5518   if (_g1h->g1_policy()->during_initial_mark_pause()) {
  5519     // We also need to mark copied objects.
  5520     copy_non_heap_cl = &copy_mark_non_heap_cl;
  5521     copy_metadata_cl = &copy_mark_metadata_cl;
  5524   // Keep alive closure.
  5525   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
  5527   // Serial Complete GC closure
  5528   G1STWDrainQueueClosure drain_queue(this, &pss);
  5530   // Setup the soft refs policy...
  5531   rp->setup_policy(false);
  5533   ReferenceProcessorStats stats;
  5534   if (!rp->processing_is_mt()) {
  5535     // Serial reference processing...
  5536     stats = rp->process_discovered_references(&is_alive,
  5537                                               &keep_alive,
  5538                                               &drain_queue,
  5539                                               NULL,
  5540                                               _gc_timer_stw,
  5541                                               _gc_tracer_stw->gc_id());
  5542   } else {
  5543     // Parallel reference processing
  5544     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5545     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5547     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5548     stats = rp->process_discovered_references(&is_alive,
  5549                                               &keep_alive,
  5550                                               &drain_queue,
  5551                                               &par_task_executor,
  5552                                               _gc_timer_stw,
  5553                                               _gc_tracer_stw->gc_id());
  5556   _gc_tracer_stw->report_gc_reference_stats(stats);
  5558   // We have completed copying any necessary live referent objects.
  5559   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
  5561   double ref_proc_time = os::elapsedTime() - ref_proc_start;
  5562   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
  5565 // Weak Reference processing during an evacuation pause (part 2).
  5566 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
  5567   double ref_enq_start = os::elapsedTime();
  5569   ReferenceProcessor* rp = _ref_processor_stw;
  5570   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
  5572   // Now enqueue any remaining on the discovered lists on to
  5573   // the pending list.
  5574   if (!rp->processing_is_mt()) {
  5575     // Serial reference processing...
  5576     rp->enqueue_discovered_references();
  5577   } else {
  5578     // Parallel reference enqueueing
  5580     assert(no_of_gc_workers == workers()->active_workers(),
  5581            "Need to reset active workers");
  5582     assert(rp->num_q() == no_of_gc_workers, "sanity");
  5583     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
  5585     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
  5586     rp->enqueue_discovered_references(&par_task_executor);
  5589   rp->verify_no_references_recorded();
  5590   assert(!rp->discovery_enabled(), "should have been disabled");
  5592   // FIXME
  5593   // CM's reference processing also cleans up the string and symbol tables.
  5594   // Should we do that here also? We could, but it is a serial operation
  5595   // and could significantly increase the pause time.
  5597   double ref_enq_time = os::elapsedTime() - ref_enq_start;
  5598   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
  5601 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
  5602   _expand_heap_after_alloc_failure = true;
  5603   _evacuation_failed = false;
  5605   // Should G1EvacuationFailureALot be in effect for this GC?
  5606   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
  5608   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  5610   // Disable the hot card cache.
  5611   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
  5612   hot_card_cache->reset_hot_cache_claimed_index();
  5613   hot_card_cache->set_use_cache(false);
  5615   uint n_workers;
  5616   if (G1CollectedHeap::use_parallel_gc_threads()) {
  5617     n_workers =
  5618       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
  5619                                      workers()->active_workers(),
  5620                                      Threads::number_of_non_daemon_threads());
  5621     assert(UseDynamicNumberOfGCThreads ||
  5622            n_workers == workers()->total_workers(),
  5623            "If not dynamic should be using all the  workers");
  5624     workers()->set_active_workers(n_workers);
  5625     set_par_threads(n_workers);
  5626   } else {
  5627     assert(n_par_threads() == 0,
  5628            "Should be the original non-parallel value");
  5629     n_workers = 1;
  5632   G1ParTask g1_par_task(this, _task_queues);
  5634   init_for_evac_failure(NULL);
  5636   rem_set()->prepare_for_younger_refs_iterate(true);
  5638   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  5639   double start_par_time_sec = os::elapsedTime();
  5640   double end_par_time_sec;
  5643     StrongRootsScope srs(this);
  5645     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5646       // The individual threads will set their evac-failure closures.
  5647       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  5648       // These tasks use ShareHeap::_process_strong_tasks
  5649       assert(UseDynamicNumberOfGCThreads ||
  5650              workers()->active_workers() == workers()->total_workers(),
  5651              "If not dynamic should be using all the  workers");
  5652       workers()->run_task(&g1_par_task);
  5653     } else {
  5654       g1_par_task.set_for_termination(n_workers);
  5655       g1_par_task.work(0);
  5657     end_par_time_sec = os::elapsedTime();
  5659     // Closing the inner scope will execute the destructor
  5660     // for the StrongRootsScope object. We record the current
  5661     // elapsed time before closing the scope so that time
  5662     // taken for the SRS destructor is NOT included in the
  5663     // reported parallel time.
  5666   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
  5667   g1_policy()->phase_times()->record_par_time(par_time_ms);
  5669   double code_root_fixup_time_ms =
  5670         (os::elapsedTime() - end_par_time_sec) * 1000.0;
  5671   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
  5673   set_par_threads(0);
  5675   // Process any discovered reference objects - we have
  5676   // to do this _before_ we retire the GC alloc regions
  5677   // as we may have to copy some 'reachable' referent
  5678   // objects (and their reachable sub-graphs) that were
  5679   // not copied during the pause.
  5680   process_discovered_references(n_workers);
  5682   // Weak root processing.
  5684     G1STWIsAliveClosure is_alive(this);
  5685     G1KeepAliveClosure keep_alive(this);
  5686     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  5687     if (G1StringDedup::is_enabled()) {
  5688       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
  5692   release_gc_alloc_regions(n_workers, evacuation_info);
  5693   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  5695   // Reset and re-enable the hot card cache.
  5696   // Note the counts for the cards in the regions in the
  5697   // collection set are reset when the collection set is freed.
  5698   hot_card_cache->reset_hot_cache();
  5699   hot_card_cache->set_use_cache(true);
  5701   // Migrate the strong code roots attached to each region in
  5702   // the collection set. Ideally we would like to do this
  5703   // after we have finished the scanning/evacuation of the
  5704   // strong code roots for a particular heap region.
  5705   migrate_strong_code_roots();
  5707   purge_code_root_memory();
  5709   if (g1_policy()->during_initial_mark_pause()) {
  5710     // Reset the claim values set during marking the strong code roots
  5711     reset_heap_region_claim_values();
  5714   finalize_for_evac_failure();
  5716   if (evacuation_failed()) {
  5717     remove_self_forwarding_pointers();
  5719     // Reset the G1EvacuationFailureALot counters and flags
  5720     // Note: the values are reset only when an actual
  5721     // evacuation failure occurs.
  5722     NOT_PRODUCT(reset_evacuation_should_fail();)
  5725   // Enqueue any remaining references remaining on the STW
  5726   // reference processor's discovered lists. We need to do
  5727   // this after the card table is cleaned (and verified) as
  5728   // the act of enqueueing entries on to the pending list
  5729   // will log these updates (and dirty their associated
  5730   // cards). We need these updates logged to update any
  5731   // RSets.
  5732   enqueue_discovered_references(n_workers);
  5734   if (G1DeferredRSUpdate) {
  5735     redirty_logged_cards();
  5737   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  5740 void G1CollectedHeap::free_region(HeapRegion* hr,
  5741                                   FreeRegionList* free_list,
  5742                                   bool par,
  5743                                   bool locked) {
  5744   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  5745   assert(!hr->is_empty(), "the region should not be empty");
  5746   assert(free_list != NULL, "pre-condition");
  5748   // Clear the card counts for this region.
  5749   // Note: we only need to do this if the region is not young
  5750   // (since we don't refine cards in young regions).
  5751   if (!hr->is_young()) {
  5752     _cg1r->hot_card_cache()->reset_card_counts(hr);
  5754   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
  5755   free_list->add_ordered(hr);
  5758 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5759                                      FreeRegionList* free_list,
  5760                                      bool par) {
  5761   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5762   assert(free_list != NULL, "pre-condition");
  5764   size_t hr_capacity = hr->capacity();
  5765   // We need to read this before we make the region non-humongous,
  5766   // otherwise the information will be gone.
  5767   uint last_index = hr->last_hc_index();
  5768   hr->set_notHumongous();
  5769   free_region(hr, free_list, par);
  5771   uint i = hr->hrs_index() + 1;
  5772   while (i < last_index) {
  5773     HeapRegion* curr_hr = region_at(i);
  5774     assert(curr_hr->continuesHumongous(), "invariant");
  5775     curr_hr->set_notHumongous();
  5776     free_region(curr_hr, free_list, par);
  5777     i += 1;
  5781 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
  5782                                        const HeapRegionSetCount& humongous_regions_removed) {
  5783   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
  5784     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5785     _old_set.bulk_remove(old_regions_removed);
  5786     _humongous_set.bulk_remove(humongous_regions_removed);
  5791 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
  5792   assert(list != NULL, "list can't be null");
  5793   if (!list->is_empty()) {
  5794     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5795     _free_list.add_ordered(list);
  5799 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
  5800   assert(_summary_bytes_used >= bytes,
  5801          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
  5802                   _summary_bytes_used, bytes));
  5803   _summary_bytes_used -= bytes;
  5806 class G1ParCleanupCTTask : public AbstractGangTask {
  5807   G1SATBCardTableModRefBS* _ct_bs;
  5808   G1CollectedHeap* _g1h;
  5809   HeapRegion* volatile _su_head;
  5810 public:
  5811   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
  5812                      G1CollectedHeap* g1h) :
  5813     AbstractGangTask("G1 Par Cleanup CT Task"),
  5814     _ct_bs(ct_bs), _g1h(g1h) { }
  5816   void work(uint worker_id) {
  5817     HeapRegion* r;
  5818     while (r = _g1h->pop_dirty_cards_region()) {
  5819       clear_cards(r);
  5823   void clear_cards(HeapRegion* r) {
  5824     // Cards of the survivors should have already been dirtied.
  5825     if (!r->is_survivor()) {
  5826       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5829 };
  5831 #ifndef PRODUCT
  5832 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5833   G1CollectedHeap* _g1h;
  5834   G1SATBCardTableModRefBS* _ct_bs;
  5835 public:
  5836   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
  5837     : _g1h(g1h), _ct_bs(ct_bs) { }
  5838   virtual bool doHeapRegion(HeapRegion* r) {
  5839     if (r->is_survivor()) {
  5840       _g1h->verify_dirty_region(r);
  5841     } else {
  5842       _g1h->verify_not_dirty_region(r);
  5844     return false;
  5846 };
  5848 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
  5849   // All of the region should be clean.
  5850   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  5851   MemRegion mr(hr->bottom(), hr->end());
  5852   ct_bs->verify_not_dirty_region(mr);
  5855 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
  5856   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
  5857   // dirty allocated blocks as they allocate them. The thread that
  5858   // retires each region and replaces it with a new one will do a
  5859   // maximal allocation to fill in [pre_dummy_top(),end()] but will
  5860   // not dirty that area (one less thing to have to do while holding
  5861   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
  5862   // is dirty.
  5863   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  5864   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
  5865   if (hr->is_young()) {
  5866     ct_bs->verify_g1_young_region(mr);
  5867   } else {
  5868     ct_bs->verify_dirty_region(mr);
  5872 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
  5873   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  5874   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
  5875     verify_dirty_region(hr);
  5879 void G1CollectedHeap::verify_dirty_young_regions() {
  5880   verify_dirty_young_list(_young_list->first_region());
  5882 #endif
  5884 void G1CollectedHeap::cleanUpCardTable() {
  5885   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
  5886   double start = os::elapsedTime();
  5889     // Iterate over the dirty cards region list.
  5890     G1ParCleanupCTTask cleanup_task(ct_bs, this);
  5892     if (G1CollectedHeap::use_parallel_gc_threads()) {
  5893       set_par_threads();
  5894       workers()->run_task(&cleanup_task);
  5895       set_par_threads(0);
  5896     } else {
  5897       while (_dirty_cards_region_list) {
  5898         HeapRegion* r = _dirty_cards_region_list;
  5899         cleanup_task.clear_cards(r);
  5900         _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5901         if (_dirty_cards_region_list == r) {
  5902           // The last region.
  5903           _dirty_cards_region_list = NULL;
  5905         r->set_next_dirty_cards_region(NULL);
  5908 #ifndef PRODUCT
  5909     if (G1VerifyCTCleanup || VerifyAfterGC) {
  5910       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
  5911       heap_region_iterate(&cleanup_verifier);
  5913 #endif
  5916   double elapsed = os::elapsedTime() - start;
  5917   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
  5920 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
  5921   size_t pre_used = 0;
  5922   FreeRegionList local_free_list("Local List for CSet Freeing");
  5924   double young_time_ms     = 0.0;
  5925   double non_young_time_ms = 0.0;
  5927   // Since the collection set is a superset of the the young list,
  5928   // all we need to do to clear the young list is clear its
  5929   // head and length, and unlink any young regions in the code below
  5930   _young_list->clear();
  5932   G1CollectorPolicy* policy = g1_policy();
  5934   double start_sec = os::elapsedTime();
  5935   bool non_young = true;
  5937   HeapRegion* cur = cs_head;
  5938   int age_bound = -1;
  5939   size_t rs_lengths = 0;
  5941   while (cur != NULL) {
  5942     assert(!is_on_master_free_list(cur), "sanity");
  5943     if (non_young) {
  5944       if (cur->is_young()) {
  5945         double end_sec = os::elapsedTime();
  5946         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5947         non_young_time_ms += elapsed_ms;
  5949         start_sec = os::elapsedTime();
  5950         non_young = false;
  5952     } else {
  5953       if (!cur->is_young()) {
  5954         double end_sec = os::elapsedTime();
  5955         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5956         young_time_ms += elapsed_ms;
  5958         start_sec = os::elapsedTime();
  5959         non_young = true;
  5963     rs_lengths += cur->rem_set()->occupied_locked();
  5965     HeapRegion* next = cur->next_in_collection_set();
  5966     assert(cur->in_collection_set(), "bad CS");
  5967     cur->set_next_in_collection_set(NULL);
  5968     cur->set_in_collection_set(false);
  5970     if (cur->is_young()) {
  5971       int index = cur->young_index_in_cset();
  5972       assert(index != -1, "invariant");
  5973       assert((uint) index < policy->young_cset_region_length(), "invariant");
  5974       size_t words_survived = _surviving_young_words[index];
  5975       cur->record_surv_words_in_group(words_survived);
  5977       // At this point the we have 'popped' cur from the collection set
  5978       // (linked via next_in_collection_set()) but it is still in the
  5979       // young list (linked via next_young_region()). Clear the
  5980       // _next_young_region field.
  5981       cur->set_next_young_region(NULL);
  5982     } else {
  5983       int index = cur->young_index_in_cset();
  5984       assert(index == -1, "invariant");
  5987     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5988             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5989             "invariant" );
  5991     if (!cur->evacuation_failed()) {
  5992       MemRegion used_mr = cur->used_region();
  5994       // And the region is empty.
  5995       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
  5996       pre_used += cur->used();
  5997       free_region(cur, &local_free_list, false /* par */, true /* locked */);
  5998     } else {
  5999       cur->uninstall_surv_rate_group();
  6000       if (cur->is_young()) {
  6001         cur->set_young_index_in_cset(-1);
  6003       cur->set_not_young();
  6004       cur->set_evacuation_failed(false);
  6005       // The region is now considered to be old.
  6006       _old_set.add(cur);
  6007       evacuation_info.increment_collectionset_used_after(cur->used());
  6009     cur = next;
  6012   evacuation_info.set_regions_freed(local_free_list.length());
  6013   policy->record_max_rs_lengths(rs_lengths);
  6014   policy->cset_regions_freed();
  6016   double end_sec = os::elapsedTime();
  6017   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  6019   if (non_young) {
  6020     non_young_time_ms += elapsed_ms;
  6021   } else {
  6022     young_time_ms += elapsed_ms;
  6025   prepend_to_freelist(&local_free_list);
  6026   decrement_summary_bytes(pre_used);
  6027   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
  6028   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
  6031 // This routine is similar to the above but does not record
  6032 // any policy statistics or update free lists; we are abandoning
  6033 // the current incremental collection set in preparation of a
  6034 // full collection. After the full GC we will start to build up
  6035 // the incremental collection set again.
  6036 // This is only called when we're doing a full collection
  6037 // and is immediately followed by the tearing down of the young list.
  6039 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  6040   HeapRegion* cur = cs_head;
  6042   while (cur != NULL) {
  6043     HeapRegion* next = cur->next_in_collection_set();
  6044     assert(cur->in_collection_set(), "bad CS");
  6045     cur->set_next_in_collection_set(NULL);
  6046     cur->set_in_collection_set(false);
  6047     cur->set_young_index_in_cset(-1);
  6048     cur = next;
  6052 void G1CollectedHeap::set_free_regions_coming() {
  6053   if (G1ConcRegionFreeingVerbose) {
  6054     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6055                            "setting free regions coming");
  6058   assert(!free_regions_coming(), "pre-condition");
  6059   _free_regions_coming = true;
  6062 void G1CollectedHeap::reset_free_regions_coming() {
  6063   assert(free_regions_coming(), "pre-condition");
  6066     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6067     _free_regions_coming = false;
  6068     SecondaryFreeList_lock->notify_all();
  6071   if (G1ConcRegionFreeingVerbose) {
  6072     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  6073                            "reset free regions coming");
  6077 void G1CollectedHeap::wait_while_free_regions_coming() {
  6078   // Most of the time we won't have to wait, so let's do a quick test
  6079   // first before we take the lock.
  6080   if (!free_regions_coming()) {
  6081     return;
  6084   if (G1ConcRegionFreeingVerbose) {
  6085     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6086                            "waiting for free regions");
  6090     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6091     while (free_regions_coming()) {
  6092       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  6096   if (G1ConcRegionFreeingVerbose) {
  6097     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  6098                            "done waiting for free regions");
  6102 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  6103   assert(heap_lock_held_for_gc(),
  6104               "the heap lock should already be held by or for this thread");
  6105   _young_list->push_region(hr);
  6108 class NoYoungRegionsClosure: public HeapRegionClosure {
  6109 private:
  6110   bool _success;
  6111 public:
  6112   NoYoungRegionsClosure() : _success(true) { }
  6113   bool doHeapRegion(HeapRegion* r) {
  6114     if (r->is_young()) {
  6115       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  6116                              r->bottom(), r->end());
  6117       _success = false;
  6119     return false;
  6121   bool success() { return _success; }
  6122 };
  6124 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  6125   bool ret = _young_list->check_list_empty(check_sample);
  6127   if (check_heap) {
  6128     NoYoungRegionsClosure closure;
  6129     heap_region_iterate(&closure);
  6130     ret = ret && closure.success();
  6133   return ret;
  6136 class TearDownRegionSetsClosure : public HeapRegionClosure {
  6137 private:
  6138   HeapRegionSet *_old_set;
  6140 public:
  6141   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
  6143   bool doHeapRegion(HeapRegion* r) {
  6144     if (r->is_empty()) {
  6145       // We ignore empty regions, we'll empty the free list afterwards
  6146     } else if (r->is_young()) {
  6147       // We ignore young regions, we'll empty the young list afterwards
  6148     } else if (r->isHumongous()) {
  6149       // We ignore humongous regions, we're not tearing down the
  6150       // humongous region set
  6151     } else {
  6152       // The rest should be old
  6153       _old_set->remove(r);
  6155     return false;
  6158   ~TearDownRegionSetsClosure() {
  6159     assert(_old_set->is_empty(), "post-condition");
  6161 };
  6163 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
  6164   assert_at_safepoint(true /* should_be_vm_thread */);
  6166   if (!free_list_only) {
  6167     TearDownRegionSetsClosure cl(&_old_set);
  6168     heap_region_iterate(&cl);
  6170     // Note that emptying the _young_list is postponed and instead done as
  6171     // the first step when rebuilding the regions sets again. The reason for
  6172     // this is that during a full GC string deduplication needs to know if
  6173     // a collected region was young or old when the full GC was initiated.
  6175   _free_list.remove_all();
  6178 class RebuildRegionSetsClosure : public HeapRegionClosure {
  6179 private:
  6180   bool            _free_list_only;
  6181   HeapRegionSet*   _old_set;
  6182   FreeRegionList* _free_list;
  6183   size_t          _total_used;
  6185 public:
  6186   RebuildRegionSetsClosure(bool free_list_only,
  6187                            HeapRegionSet* old_set, FreeRegionList* free_list) :
  6188     _free_list_only(free_list_only),
  6189     _old_set(old_set), _free_list(free_list), _total_used(0) {
  6190     assert(_free_list->is_empty(), "pre-condition");
  6191     if (!free_list_only) {
  6192       assert(_old_set->is_empty(), "pre-condition");
  6196   bool doHeapRegion(HeapRegion* r) {
  6197     if (r->continuesHumongous()) {
  6198       return false;
  6201     if (r->is_empty()) {
  6202       // Add free regions to the free list
  6203       _free_list->add_as_tail(r);
  6204     } else if (!_free_list_only) {
  6205       assert(!r->is_young(), "we should not come across young regions");
  6207       if (r->isHumongous()) {
  6208         // We ignore humongous regions, we left the humongous set unchanged
  6209       } else {
  6210         // The rest should be old, add them to the old set
  6211         _old_set->add(r);
  6213       _total_used += r->used();
  6216     return false;
  6219   size_t total_used() {
  6220     return _total_used;
  6222 };
  6224 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
  6225   assert_at_safepoint(true /* should_be_vm_thread */);
  6227   if (!free_list_only) {
  6228     _young_list->empty_list();
  6231   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
  6232   heap_region_iterate(&cl);
  6234   if (!free_list_only) {
  6235     _summary_bytes_used = cl.total_used();
  6237   assert(_summary_bytes_used == recalculate_used(),
  6238          err_msg("inconsistent _summary_bytes_used, "
  6239                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
  6240                  _summary_bytes_used, recalculate_used()));
  6243 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  6244   _refine_cte_cl->set_concurrent(concurrent);
  6247 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  6248   HeapRegion* hr = heap_region_containing(p);
  6249   if (hr == NULL) {
  6250     return false;
  6251   } else {
  6252     return hr->is_in(p);
  6256 // Methods for the mutator alloc region
  6258 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
  6259                                                       bool force) {
  6260   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6261   assert(!force || g1_policy()->can_expand_young_list(),
  6262          "if force is true we should be able to expand the young list");
  6263   bool young_list_full = g1_policy()->is_young_list_full();
  6264   if (force || !young_list_full) {
  6265     HeapRegion* new_alloc_region = new_region(word_size,
  6266                                               false /* is_old */,
  6267                                               false /* do_expand */);
  6268     if (new_alloc_region != NULL) {
  6269       set_region_short_lived_locked(new_alloc_region);
  6270       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
  6271       return new_alloc_region;
  6274   return NULL;
  6277 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
  6278                                                   size_t allocated_bytes) {
  6279   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6280   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
  6282   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
  6283   _summary_bytes_used += allocated_bytes;
  6284   _hr_printer.retire(alloc_region);
  6285   // We update the eden sizes here, when the region is retired,
  6286   // instead of when it's allocated, since this is the point that its
  6287   // used space has been recored in _summary_bytes_used.
  6288   g1mm()->update_eden_size();
  6291 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
  6292                                                     bool force) {
  6293   return _g1h->new_mutator_alloc_region(word_size, force);
  6296 void G1CollectedHeap::set_par_threads() {
  6297   // Don't change the number of workers.  Use the value previously set
  6298   // in the workgroup.
  6299   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
  6300   uint n_workers = workers()->active_workers();
  6301   assert(UseDynamicNumberOfGCThreads ||
  6302            n_workers == workers()->total_workers(),
  6303       "Otherwise should be using the total number of workers");
  6304   if (n_workers == 0) {
  6305     assert(false, "Should have been set in prior evacuation pause.");
  6306     n_workers = ParallelGCThreads;
  6307     workers()->set_active_workers(n_workers);
  6309   set_par_threads(n_workers);
  6312 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
  6313                                        size_t allocated_bytes) {
  6314   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
  6317 // Methods for the GC alloc regions
  6319 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
  6320                                                  uint count,
  6321                                                  GCAllocPurpose ap) {
  6322   assert(FreeList_lock->owned_by_self(), "pre-condition");
  6324   if (count < g1_policy()->max_regions(ap)) {
  6325     bool survivor = (ap == GCAllocForSurvived);
  6326     HeapRegion* new_alloc_region = new_region(word_size,
  6327                                               !survivor,
  6328                                               true /* do_expand */);
  6329     if (new_alloc_region != NULL) {
  6330       // We really only need to do this for old regions given that we
  6331       // should never scan survivors. But it doesn't hurt to do it
  6332       // for survivors too.
  6333       new_alloc_region->set_saved_mark();
  6334       if (survivor) {
  6335         new_alloc_region->set_survivor();
  6336         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
  6337       } else {
  6338         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
  6340       bool during_im = g1_policy()->during_initial_mark_pause();
  6341       new_alloc_region->note_start_of_copying(during_im);
  6342       return new_alloc_region;
  6343     } else {
  6344       g1_policy()->note_alloc_region_limit_reached(ap);
  6347   return NULL;
  6350 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
  6351                                              size_t allocated_bytes,
  6352                                              GCAllocPurpose ap) {
  6353   bool during_im = g1_policy()->during_initial_mark_pause();
  6354   alloc_region->note_end_of_copying(during_im);
  6355   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
  6356   if (ap == GCAllocForSurvived) {
  6357     young_list()->add_survivor_region(alloc_region);
  6358   } else {
  6359     _old_set.add(alloc_region);
  6361   _hr_printer.retire(alloc_region);
  6364 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
  6365                                                        bool force) {
  6366   assert(!force, "not supported for GC alloc regions");
  6367   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
  6370 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6371                                           size_t allocated_bytes) {
  6372   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6373                                GCAllocForSurvived);
  6376 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
  6377                                                   bool force) {
  6378   assert(!force, "not supported for GC alloc regions");
  6379   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
  6382 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
  6383                                      size_t allocated_bytes) {
  6384   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
  6385                                GCAllocForTenured);
  6387 // Heap region set verification
  6389 class VerifyRegionListsClosure : public HeapRegionClosure {
  6390 private:
  6391   HeapRegionSet*   _old_set;
  6392   HeapRegionSet*   _humongous_set;
  6393   FreeRegionList*  _free_list;
  6395 public:
  6396   HeapRegionSetCount _old_count;
  6397   HeapRegionSetCount _humongous_count;
  6398   HeapRegionSetCount _free_count;
  6400   VerifyRegionListsClosure(HeapRegionSet* old_set,
  6401                            HeapRegionSet* humongous_set,
  6402                            FreeRegionList* free_list) :
  6403     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
  6404     _old_count(), _humongous_count(), _free_count(){ }
  6406   bool doHeapRegion(HeapRegion* hr) {
  6407     if (hr->continuesHumongous()) {
  6408       return false;
  6411     if (hr->is_young()) {
  6412       // TODO
  6413     } else if (hr->startsHumongous()) {
  6414       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
  6415       _humongous_count.increment(1u, hr->capacity());
  6416     } else if (hr->is_empty()) {
  6417       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
  6418       _free_count.increment(1u, hr->capacity());
  6419     } else {
  6420       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
  6421       _old_count.increment(1u, hr->capacity());
  6423     return false;
  6426   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
  6427     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
  6428     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6429         old_set->total_capacity_bytes(), _old_count.capacity()));
  6431     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
  6432     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6433         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
  6435     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
  6436     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
  6437         free_list->total_capacity_bytes(), _free_count.capacity()));
  6439 };
  6441 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
  6442                                              HeapWord* bottom) {
  6443   HeapWord* end = bottom + HeapRegion::GrainWords;
  6444   MemRegion mr(bottom, end);
  6445   assert(_g1_reserved.contains(mr), "invariant");
  6446   // This might return NULL if the allocation fails
  6447   return new HeapRegion(hrs_index, _bot_shared, mr);
  6450 void G1CollectedHeap::verify_region_sets() {
  6451   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  6453   // First, check the explicit lists.
  6454   _free_list.verify_list();
  6456     // Given that a concurrent operation might be adding regions to
  6457     // the secondary free list we have to take the lock before
  6458     // verifying it.
  6459     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  6460     _secondary_free_list.verify_list();
  6463   // If a concurrent region freeing operation is in progress it will
  6464   // be difficult to correctly attributed any free regions we come
  6465   // across to the correct free list given that they might belong to
  6466   // one of several (free_list, secondary_free_list, any local lists,
  6467   // etc.). So, if that's the case we will skip the rest of the
  6468   // verification operation. Alternatively, waiting for the concurrent
  6469   // operation to complete will have a non-trivial effect on the GC's
  6470   // operation (no concurrent operation will last longer than the
  6471   // interval between two calls to verification) and it might hide
  6472   // any issues that we would like to catch during testing.
  6473   if (free_regions_coming()) {
  6474     return;
  6477   // Make sure we append the secondary_free_list on the free_list so
  6478   // that all free regions we will come across can be safely
  6479   // attributed to the free_list.
  6480   append_secondary_free_list_if_not_empty_with_lock();
  6482   // Finally, make sure that the region accounting in the lists is
  6483   // consistent with what we see in the heap.
  6485   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
  6486   heap_region_iterate(&cl);
  6487   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
  6490 // Optimized nmethod scanning
  6492 class RegisterNMethodOopClosure: public OopClosure {
  6493   G1CollectedHeap* _g1h;
  6494   nmethod* _nm;
  6496   template <class T> void do_oop_work(T* p) {
  6497     T heap_oop = oopDesc::load_heap_oop(p);
  6498     if (!oopDesc::is_null(heap_oop)) {
  6499       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6500       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6501       assert(!hr->continuesHumongous(),
  6502              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6503                      " starting at "HR_FORMAT,
  6504                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6506       // HeapRegion::add_strong_code_root() avoids adding duplicate
  6507       // entries but having duplicates is  OK since we "mark" nmethods
  6508       // as visited when we scan the strong code root lists during the GC.
  6509       hr->add_strong_code_root(_nm);
  6510       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
  6511              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
  6512                      _nm, HR_FORMAT_PARAMS(hr)));
  6516 public:
  6517   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6518     _g1h(g1h), _nm(nm) {}
  6520   void do_oop(oop* p)       { do_oop_work(p); }
  6521   void do_oop(narrowOop* p) { do_oop_work(p); }
  6522 };
  6524 class UnregisterNMethodOopClosure: public OopClosure {
  6525   G1CollectedHeap* _g1h;
  6526   nmethod* _nm;
  6528   template <class T> void do_oop_work(T* p) {
  6529     T heap_oop = oopDesc::load_heap_oop(p);
  6530     if (!oopDesc::is_null(heap_oop)) {
  6531       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6532       HeapRegion* hr = _g1h->heap_region_containing(obj);
  6533       assert(!hr->continuesHumongous(),
  6534              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
  6535                      " starting at "HR_FORMAT,
  6536                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
  6538       hr->remove_strong_code_root(_nm);
  6539       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
  6540              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
  6541                      _nm, HR_FORMAT_PARAMS(hr)));
  6545 public:
  6546   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
  6547     _g1h(g1h), _nm(nm) {}
  6549   void do_oop(oop* p)       { do_oop_work(p); }
  6550   void do_oop(narrowOop* p) { do_oop_work(p); }
  6551 };
  6553 void G1CollectedHeap::register_nmethod(nmethod* nm) {
  6554   CollectedHeap::register_nmethod(nm);
  6556   guarantee(nm != NULL, "sanity");
  6557   RegisterNMethodOopClosure reg_cl(this, nm);
  6558   nm->oops_do(&reg_cl);
  6561 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
  6562   CollectedHeap::unregister_nmethod(nm);
  6564   guarantee(nm != NULL, "sanity");
  6565   UnregisterNMethodOopClosure reg_cl(this, nm);
  6566   nm->oops_do(&reg_cl, true);
  6569 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
  6570 public:
  6571   bool doHeapRegion(HeapRegion *hr) {
  6572     assert(!hr->isHumongous(),
  6573            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
  6574                    HR_FORMAT_PARAMS(hr)));
  6575     hr->migrate_strong_code_roots();
  6576     return false;
  6578 };
  6580 void G1CollectedHeap::migrate_strong_code_roots() {
  6581   MigrateCodeRootsHeapRegionClosure cl;
  6582   double migrate_start = os::elapsedTime();
  6583   collection_set_iterate(&cl);
  6584   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
  6585   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
  6588 void G1CollectedHeap::purge_code_root_memory() {
  6589   double purge_start = os::elapsedTime();
  6590   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
  6591   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
  6592   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
  6595 // Mark all the code roots that point into regions *not* in the
  6596 // collection set.
  6597 //
  6598 // Note we do not want to use a "marking" CodeBlobToOopClosure while
  6599 // walking the the code roots lists of regions not in the collection
  6600 // set. Suppose we have an nmethod (M) that points to objects in two
  6601 // separate regions - one in the collection set (R1) and one not (R2).
  6602 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
  6603 // nmethod M when walking the code roots for R1. When we come to scan
  6604 // the code roots for R2, we would see that M is already marked and it
  6605 // would be skipped and the objects in R2 that are referenced from M
  6606 // would not be evacuated.
  6608 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
  6610   class MarkStrongCodeRootOopClosure: public OopClosure {
  6611     ConcurrentMark* _cm;
  6612     HeapRegion* _hr;
  6613     uint _worker_id;
  6615     template <class T> void do_oop_work(T* p) {
  6616       T heap_oop = oopDesc::load_heap_oop(p);
  6617       if (!oopDesc::is_null(heap_oop)) {
  6618         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  6619         // Only mark objects in the region (which is assumed
  6620         // to be not in the collection set).
  6621         if (_hr->is_in(obj)) {
  6622           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
  6627   public:
  6628     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
  6629       _cm(cm), _hr(hr), _worker_id(worker_id) {
  6630       assert(!_hr->in_collection_set(), "sanity");
  6633     void do_oop(narrowOop* p) { do_oop_work(p); }
  6634     void do_oop(oop* p)       { do_oop_work(p); }
  6635   };
  6637   MarkStrongCodeRootOopClosure _oop_cl;
  6639 public:
  6640   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
  6641     _oop_cl(cm, hr, worker_id) {}
  6643   void do_code_blob(CodeBlob* cb) {
  6644     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
  6645     if (nm != NULL) {
  6646       nm->oops_do(&_oop_cl);
  6649 };
  6651 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
  6652   G1CollectedHeap* _g1h;
  6653   uint _worker_id;
  6655 public:
  6656   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
  6657     _g1h(g1h), _worker_id(worker_id) {}
  6659   bool doHeapRegion(HeapRegion *hr) {
  6660     HeapRegionRemSet* hrrs = hr->rem_set();
  6661     if (hr->continuesHumongous()) {
  6662       // Code roots should never be attached to a continuation of a humongous region
  6663       assert(hrrs->strong_code_roots_list_length() == 0,
  6664              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
  6665                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
  6666                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
  6667                      hrrs->strong_code_roots_list_length()));
  6668       return false;
  6671     if (hr->in_collection_set()) {
  6672       // Don't mark code roots into regions in the collection set here.
  6673       // They will be marked when we scan them.
  6674       return false;
  6677     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
  6678     hr->strong_code_roots_do(&cb_cl);
  6679     return false;
  6681 };
  6683 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
  6684   MarkStrongCodeRootsHRClosure cl(this, worker_id);
  6685   if (G1CollectedHeap::use_parallel_gc_threads()) {
  6686     heap_region_par_iterate_chunked(&cl,
  6687                                     worker_id,
  6688                                     workers()->active_workers(),
  6689                                     HeapRegion::ParMarkRootClaimValue);
  6690   } else {
  6691     heap_region_iterate(&cl);
  6695 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
  6696   G1CollectedHeap* _g1h;
  6698 public:
  6699   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
  6700     _g1h(g1h) {}
  6702   void do_code_blob(CodeBlob* cb) {
  6703     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
  6704     if (nm == NULL) {
  6705       return;
  6708     if (ScavengeRootsInCode) {
  6709       _g1h->register_nmethod(nm);
  6712 };
  6714 void G1CollectedHeap::rebuild_strong_code_roots() {
  6715   RebuildStrongCodeRootClosure blob_cl(this);
  6716   CodeCache::blobs_do(&blob_cl);

mercurial