src/share/vm/opto/output.cpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 853
72c5366e5d86
child 895
424f9bfe6b96
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_output.cpp.incl"
    28 extern uint size_java_to_interp();
    29 extern uint reloc_java_to_interp();
    30 extern uint size_exception_handler();
    31 extern uint size_deopt_handler();
    33 #ifndef PRODUCT
    34 #define DEBUG_ARG(x) , x
    35 #else
    36 #define DEBUG_ARG(x)
    37 #endif
    39 extern int emit_exception_handler(CodeBuffer &cbuf);
    40 extern int emit_deopt_handler(CodeBuffer &cbuf);
    42 //------------------------------Output-----------------------------------------
    43 // Convert Nodes to instruction bits and pass off to the VM
    44 void Compile::Output() {
    45   // RootNode goes
    46   assert( _cfg->_broot->_nodes.size() == 0, "" );
    48   // Initialize the space for the BufferBlob used to find and verify
    49   // instruction size in MachNode::emit_size()
    50   init_scratch_buffer_blob();
    51   if (failing())  return; // Out of memory
    53   // Make sure I can find the Start Node
    54   Block_Array& bbs = _cfg->_bbs;
    55   Block *entry = _cfg->_blocks[1];
    56   Block *broot = _cfg->_broot;
    58   const StartNode *start = entry->_nodes[0]->as_Start();
    60   // Replace StartNode with prolog
    61   MachPrologNode *prolog = new (this) MachPrologNode();
    62   entry->_nodes.map( 0, prolog );
    63   bbs.map( prolog->_idx, entry );
    64   bbs.map( start->_idx, NULL ); // start is no longer in any block
    66   // Virtual methods need an unverified entry point
    68   if( is_osr_compilation() ) {
    69     if( PoisonOSREntry ) {
    70       // TODO: Should use a ShouldNotReachHereNode...
    71       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    72     }
    73   } else {
    74     if( _method && !_method->flags().is_static() ) {
    75       // Insert unvalidated entry point
    76       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    77     }
    79   }
    82   // Break before main entry point
    83   if( (_method && _method->break_at_execute())
    84 #ifndef PRODUCT
    85     ||(OptoBreakpoint && is_method_compilation())
    86     ||(OptoBreakpointOSR && is_osr_compilation())
    87     ||(OptoBreakpointC2R && !_method)
    88 #endif
    89     ) {
    90     // checking for _method means that OptoBreakpoint does not apply to
    91     // runtime stubs or frame converters
    92     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
    93   }
    95   // Insert epilogs before every return
    96   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
    97     Block *b = _cfg->_blocks[i];
    98     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
    99       Node *m = b->end();
   100       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
   101         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   102         b->add_inst( epilog );
   103         bbs.map(epilog->_idx, b);
   104         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
   105       }
   106     }
   107   }
   109 # ifdef ENABLE_ZAP_DEAD_LOCALS
   110   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
   111 # endif
   113   ScheduleAndBundle();
   115 #ifndef PRODUCT
   116   if (trace_opto_output()) {
   117     tty->print("\n---- After ScheduleAndBundle ----\n");
   118     for (uint i = 0; i < _cfg->_num_blocks; i++) {
   119       tty->print("\nBB#%03d:\n", i);
   120       Block *bb = _cfg->_blocks[i];
   121       for (uint j = 0; j < bb->_nodes.size(); j++) {
   122         Node *n = bb->_nodes[j];
   123         OptoReg::Name reg = _regalloc->get_reg_first(n);
   124         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   125         n->dump();
   126       }
   127     }
   128   }
   129 #endif
   131   if (failing())  return;
   133   BuildOopMaps();
   135   if (failing())  return;
   137   Fill_buffer();
   138 }
   140 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   141   // Determine if we need to generate a stack overflow check.
   142   // Do it if the method is not a stub function and
   143   // has java calls or has frame size > vm_page_size/8.
   144   return (stub_function() == NULL &&
   145           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
   146 }
   148 bool Compile::need_register_stack_bang() const {
   149   // Determine if we need to generate a register stack overflow check.
   150   // This is only used on architectures which have split register
   151   // and memory stacks (ie. IA64).
   152   // Bang if the method is not a stub function and has java calls
   153   return (stub_function() == NULL && has_java_calls());
   154 }
   156 # ifdef ENABLE_ZAP_DEAD_LOCALS
   159 // In order to catch compiler oop-map bugs, we have implemented
   160 // a debugging mode called ZapDeadCompilerLocals.
   161 // This mode causes the compiler to insert a call to a runtime routine,
   162 // "zap_dead_locals", right before each place in compiled code
   163 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   164 // The runtime routine checks that locations mapped as oops are really
   165 // oops, that locations mapped as values do not look like oops,
   166 // and that locations mapped as dead are not used later
   167 // (by zapping them to an invalid address).
   169 int Compile::_CompiledZap_count = 0;
   171 void Compile::Insert_zap_nodes() {
   172   bool skip = false;
   175   // Dink with static counts because code code without the extra
   176   // runtime calls is MUCH faster for debugging purposes
   178        if ( CompileZapFirst  ==  0  ) ; // nothing special
   179   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   180   else if ( CompileZapFirst  == CompiledZap_count() )
   181     warning("starting zap compilation after skipping");
   183        if ( CompileZapLast  ==  -1  ) ; // nothing special
   184   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   185   else if ( CompileZapLast  ==  CompiledZap_count() )
   186     warning("about to compile last zap");
   188   ++_CompiledZap_count; // counts skipped zaps, too
   190   if ( skip )  return;
   193   if ( _method == NULL )
   194     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   196   // Insert call to zap runtime stub before every node with an oop map
   197   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
   198     Block *b = _cfg->_blocks[i];
   199     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
   200       Node *n = b->_nodes[j];
   202       // Determining if we should insert a zap-a-lot node in output.
   203       // We do that for all nodes that has oopmap info, except for calls
   204       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   205       // and expect the C code to reset it.  Hence, there can be no safepoints between
   206       // the inlined-allocation and the call to new_Java, etc.
   207       // We also cannot zap monitor calls, as they must hold the microlock
   208       // during the call to Zap, which also wants to grab the microlock.
   209       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   210       if ( insert ) { // it is MachSafePoint
   211         if ( !n->is_MachCall() ) {
   212           insert = false;
   213         } else if ( n->is_MachCall() ) {
   214           MachCallNode* call = n->as_MachCall();
   215           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   216               call->entry_point() == OptoRuntime::new_array_Java() ||
   217               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   218               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   219               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   220               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   221               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   222               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   223               ) {
   224             insert = false;
   225           }
   226         }
   227         if (insert) {
   228           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   229           b->_nodes.insert( j, zap );
   230           _cfg->_bbs.map( zap->_idx, b );
   231           ++j;
   232         }
   233       }
   234     }
   235   }
   236 }
   239 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   240   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   241   CallStaticJavaNode* ideal_node =
   242     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
   243          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   244                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
   245   // We need to copy the OopMap from the site we're zapping at.
   246   // We have to make a copy, because the zap site might not be
   247   // a call site, and zap_dead is a call site.
   248   OopMap* clone = node_to_check->oop_map()->deep_copy();
   250   // Add the cloned OopMap to the zap node
   251   ideal_node->set_oop_map(clone);
   252   return _matcher->match_sfpt(ideal_node);
   253 }
   255 //------------------------------is_node_getting_a_safepoint--------------------
   256 bool Compile::is_node_getting_a_safepoint( Node* n) {
   257   // This code duplicates the logic prior to the call of add_safepoint
   258   // below in this file.
   259   if( n->is_MachSafePoint() ) return true;
   260   return false;
   261 }
   263 # endif // ENABLE_ZAP_DEAD_LOCALS
   265 //------------------------------compute_loop_first_inst_sizes------------------
   266 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   267 // of a loop. When aligning a loop we need to provide enough instructions
   268 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   269 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   270 // By default, the size is set to 999999 by Block's constructor so that
   271 // a loop will be aligned if the size is not reset here.
   272 //
   273 // Note: Mach instructions could contain several HW instructions
   274 // so the size is estimated only.
   275 //
   276 void Compile::compute_loop_first_inst_sizes() {
   277   // The next condition is used to gate the loop alignment optimization.
   278   // Don't aligned a loop if there are enough instructions at the head of a loop
   279   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   280   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   281   // equal to 11 bytes which is the largest address NOP instruction.
   282   if( MaxLoopPad < OptoLoopAlignment-1 ) {
   283     uint last_block = _cfg->_num_blocks-1;
   284     for( uint i=1; i <= last_block; i++ ) {
   285       Block *b = _cfg->_blocks[i];
   286       // Check the first loop's block which requires an alignment.
   287       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
   288         uint sum_size = 0;
   289         uint inst_cnt = NumberOfLoopInstrToAlign;
   290         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   292         // Check subsequent fallthrough blocks if the loop's first
   293         // block(s) does not have enough instructions.
   294         Block *nb = b;
   295         while( inst_cnt > 0 &&
   296                i < last_block &&
   297                !_cfg->_blocks[i+1]->has_loop_alignment() &&
   298                !nb->has_successor(b) ) {
   299           i++;
   300           nb = _cfg->_blocks[i];
   301           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   302         } // while( inst_cnt > 0 && i < last_block  )
   304         b->set_first_inst_size(sum_size);
   305       } // f( b->head()->is_Loop() )
   306     } // for( i <= last_block )
   307   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   308 }
   310 //----------------------Shorten_branches---------------------------------------
   311 // The architecture description provides short branch variants for some long
   312 // branch instructions. Replace eligible long branches with short branches.
   313 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
   315   // fill in the nop array for bundling computations
   316   MachNode *_nop_list[Bundle::_nop_count];
   317   Bundle::initialize_nops(_nop_list, this);
   319   // ------------------
   320   // Compute size of each block, method size, and relocation information size
   321   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
   322   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
   323   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   324   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
   325   blk_starts[0]    = 0;
   327   // Initialize the sizes to 0
   328   code_size  = 0;          // Size in bytes of generated code
   329   stub_size  = 0;          // Size in bytes of all stub entries
   330   // Size in bytes of all relocation entries, including those in local stubs.
   331   // Start with 2-bytes of reloc info for the unvalidated entry point
   332   reloc_size = 1;          // Number of relocation entries
   333   const_size = 0;          // size of fp constants in words
   335   // Make three passes.  The first computes pessimistic blk_starts,
   336   // relative jmp_end, reloc_size and const_size information.
   337   // The second performs short branch substitution using the pessimistic
   338   // sizing. The third inserts nops where needed.
   340   Node *nj; // tmp
   342   // Step one, perform a pessimistic sizing pass.
   343   uint i;
   344   uint min_offset_from_last_call = 1;  // init to a positive value
   345   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   346   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   347     Block *b = _cfg->_blocks[i];
   349     // Sum all instruction sizes to compute block size
   350     uint last_inst = b->_nodes.size();
   351     uint blk_size = 0;
   352     for( uint j = 0; j<last_inst; j++ ) {
   353       nj = b->_nodes[j];
   354       uint inst_size = nj->size(_regalloc);
   355       blk_size += inst_size;
   356       // Handle machine instruction nodes
   357       if( nj->is_Mach() ) {
   358         MachNode *mach = nj->as_Mach();
   359         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   360         reloc_size += mach->reloc();
   361         const_size += mach->const_size();
   362         if( mach->is_MachCall() ) {
   363           MachCallNode *mcall = mach->as_MachCall();
   364           // This destination address is NOT PC-relative
   366           mcall->method_set((intptr_t)mcall->entry_point());
   368           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
   369             stub_size  += size_java_to_interp();
   370             reloc_size += reloc_java_to_interp();
   371           }
   372         } else if (mach->is_MachSafePoint()) {
   373           // If call/safepoint are adjacent, account for possible
   374           // nop to disambiguate the two safepoints.
   375           if (min_offset_from_last_call == 0) {
   376             blk_size += nop_size;
   377           }
   378         }
   379       }
   380       min_offset_from_last_call += inst_size;
   381       // Remember end of call offset
   382       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   383         min_offset_from_last_call = 0;
   384       }
   385     }
   387     // During short branch replacement, we store the relative (to blk_starts)
   388     // end of jump in jmp_end, rather than the absolute end of jump.  This
   389     // is so that we do not need to recompute sizes of all nodes when we compute
   390     // correct blk_starts in our next sizing pass.
   391     jmp_end[i] = blk_size;
   392     DEBUG_ONLY( jmp_target[i] = 0; )
   394     // When the next block starts a loop, we may insert pad NOP
   395     // instructions.  Since we cannot know our future alignment,
   396     // assume the worst.
   397     if( i<_cfg->_num_blocks-1 ) {
   398       Block *nb = _cfg->_blocks[i+1];
   399       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   400       if( max_loop_pad > 0 ) {
   401         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   402         blk_size += max_loop_pad;
   403       }
   404     }
   406     // Save block size; update total method size
   407     blk_starts[i+1] = blk_starts[i]+blk_size;
   408   }
   410   // Step two, replace eligible long jumps.
   412   // Note: this will only get the long branches within short branch
   413   //   range. Another pass might detect more branches that became
   414   //   candidates because the shortening in the first pass exposed
   415   //   more opportunities. Unfortunately, this would require
   416   //   recomputing the starting and ending positions for the blocks
   417   for( i=0; i<_cfg->_num_blocks; i++ ) {
   418     Block *b = _cfg->_blocks[i];
   420     int j;
   421     // Find the branch; ignore trailing NOPs.
   422     for( j = b->_nodes.size()-1; j>=0; j-- ) {
   423       nj = b->_nodes[j];
   424       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
   425         break;
   426     }
   428     if (j >= 0) {
   429       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
   430         MachNode *mach = nj->as_Mach();
   431         // This requires the TRUE branch target be in succs[0]
   432         uint bnum = b->non_connector_successor(0)->_pre_order;
   433         uintptr_t target = blk_starts[bnum];
   434         if( mach->is_pc_relative() ) {
   435           int offset = target-(blk_starts[i] + jmp_end[i]);
   436           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
   437             // We've got a winner.  Replace this branch.
   438             MachNode* replacement = mach->short_branch_version(this);
   439             b->_nodes.map(j, replacement);
   440             mach->subsume_by(replacement);
   442             // Update the jmp_end size to save time in our
   443             // next pass.
   444             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
   445             DEBUG_ONLY( jmp_target[i] = bnum; );
   446             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   447           }
   448         } else {
   449 #ifndef PRODUCT
   450           mach->dump(3);
   451 #endif
   452           Unimplemented();
   453         }
   454       }
   455     }
   456   }
   458   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
   459   // of a loop. It is used to determine the padding for loop alignment.
   460   compute_loop_first_inst_sizes();
   462   // Step 3, compute the offsets of all the labels
   463   uint last_call_adr = max_uint;
   464   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   465     // copy the offset of the beginning to the corresponding label
   466     assert(labels[i].is_unused(), "cannot patch at this point");
   467     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
   469     // insert padding for any instructions that need it
   470     Block *b = _cfg->_blocks[i];
   471     uint last_inst = b->_nodes.size();
   472     uint adr = blk_starts[i];
   473     for( uint j = 0; j<last_inst; j++ ) {
   474       nj = b->_nodes[j];
   475       if( nj->is_Mach() ) {
   476         int padding = nj->as_Mach()->compute_padding(adr);
   477         // If call/safepoint are adjacent insert a nop (5010568)
   478         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
   479             adr == last_call_adr ) {
   480           padding = nop_size;
   481         }
   482         if(padding > 0) {
   483           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
   484           int nops_cnt = padding / nop_size;
   485           MachNode *nop = new (this) MachNopNode(nops_cnt);
   486           b->_nodes.insert(j++, nop);
   487           _cfg->_bbs.map( nop->_idx, b );
   488           adr += padding;
   489           last_inst++;
   490         }
   491       }
   492       adr += nj->size(_regalloc);
   494       // Remember end of call offset
   495       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
   496         last_call_adr = adr;
   497       }
   498     }
   500     if ( i != _cfg->_num_blocks-1) {
   501       // Get the size of the block
   502       uint blk_size = adr - blk_starts[i];
   504       // When the next block is the top of a loop, we may insert pad NOP
   505       // instructions.
   506       Block *nb = _cfg->_blocks[i+1];
   507       int current_offset = blk_starts[i] + blk_size;
   508       current_offset += nb->alignment_padding(current_offset);
   509       // Save block size; update total method size
   510       blk_starts[i+1] = current_offset;
   511     }
   512   }
   514 #ifdef ASSERT
   515   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
   516     if( jmp_target[i] != 0 ) {
   517       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
   518       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
   519         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
   520       }
   521       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
   522     }
   523   }
   524 #endif
   526   // ------------------
   527   // Compute size for code buffer
   528   code_size   = blk_starts[i-1] + jmp_end[i-1];
   530   // Relocation records
   531   reloc_size += 1;              // Relo entry for exception handler
   533   // Adjust reloc_size to number of record of relocation info
   534   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   535   // a relocation index.
   536   // The CodeBuffer will expand the locs array if this estimate is too low.
   537   reloc_size   *= 10 / sizeof(relocInfo);
   539   // Adjust const_size to number of bytes
   540   const_size   *= 2*jintSize; // both float and double take two words per entry
   542 }
   544 //------------------------------FillLocArray-----------------------------------
   545 // Create a bit of debug info and append it to the array.  The mapping is from
   546 // Java local or expression stack to constant, register or stack-slot.  For
   547 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   548 // entry has been taken care of and caller should skip it).
   549 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   550   // This should never have accepted Bad before
   551   assert(OptoReg::is_valid(regnum), "location must be valid");
   552   return (OptoReg::is_reg(regnum))
   553     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   554     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   555 }
   558 ObjectValue*
   559 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   560   for (int i = 0; i < objs->length(); i++) {
   561     assert(objs->at(i)->is_object(), "corrupt object cache");
   562     ObjectValue* sv = (ObjectValue*) objs->at(i);
   563     if (sv->id() == id) {
   564       return sv;
   565     }
   566   }
   567   // Otherwise..
   568   return NULL;
   569 }
   571 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   572                                      ObjectValue* sv ) {
   573   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   574   objs->append(sv);
   575 }
   578 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   579                             GrowableArray<ScopeValue*> *array,
   580                             GrowableArray<ScopeValue*> *objs ) {
   581   assert( local, "use _top instead of null" );
   582   if (array->length() != idx) {
   583     assert(array->length() == idx + 1, "Unexpected array count");
   584     // Old functionality:
   585     //   return
   586     // New functionality:
   587     //   Assert if the local is not top. In product mode let the new node
   588     //   override the old entry.
   589     assert(local == top(), "LocArray collision");
   590     if (local == top()) {
   591       return;
   592     }
   593     array->pop();
   594   }
   595   const Type *t = local->bottom_type();
   597   // Is it a safepoint scalar object node?
   598   if (local->is_SafePointScalarObject()) {
   599     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   601     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   602     if (sv == NULL) {
   603       ciKlass* cik = t->is_oopptr()->klass();
   604       assert(cik->is_instance_klass() ||
   605              cik->is_array_klass(), "Not supported allocation.");
   606       sv = new ObjectValue(spobj->_idx,
   607                            new ConstantOopWriteValue(cik->encoding()));
   608       Compile::set_sv_for_object_node(objs, sv);
   610       uint first_ind = spobj->first_index();
   611       for (uint i = 0; i < spobj->n_fields(); i++) {
   612         Node* fld_node = sfpt->in(first_ind+i);
   613         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   614       }
   615     }
   616     array->append(sv);
   617     return;
   618   }
   620   // Grab the register number for the local
   621   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   622   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   623     // Record the double as two float registers.
   624     // The register mask for such a value always specifies two adjacent
   625     // float registers, with the lower register number even.
   626     // Normally, the allocation of high and low words to these registers
   627     // is irrelevant, because nearly all operations on register pairs
   628     // (e.g., StoreD) treat them as a single unit.
   629     // Here, we assume in addition that the words in these two registers
   630     // stored "naturally" (by operations like StoreD and double stores
   631     // within the interpreter) such that the lower-numbered register
   632     // is written to the lower memory address.  This may seem like
   633     // a machine dependency, but it is not--it is a requirement on
   634     // the author of the <arch>.ad file to ensure that, for every
   635     // even/odd double-register pair to which a double may be allocated,
   636     // the word in the even single-register is stored to the first
   637     // memory word.  (Note that register numbers are completely
   638     // arbitrary, and are not tied to any machine-level encodings.)
   639 #ifdef _LP64
   640     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   641       array->append(new ConstantIntValue(0));
   642       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   643     } else if ( t->base() == Type::Long ) {
   644       array->append(new ConstantIntValue(0));
   645       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   646     } else if ( t->base() == Type::RawPtr ) {
   647       // jsr/ret return address which must be restored into a the full
   648       // width 64-bit stack slot.
   649       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   650     }
   651 #else //_LP64
   652 #ifdef SPARC
   653     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   654       // For SPARC we have to swap high and low words for
   655       // long values stored in a single-register (g0-g7).
   656       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   657       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   658     } else
   659 #endif //SPARC
   660     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   661       // Repack the double/long as two jints.
   662       // The convention the interpreter uses is that the second local
   663       // holds the first raw word of the native double representation.
   664       // This is actually reasonable, since locals and stack arrays
   665       // grow downwards in all implementations.
   666       // (If, on some machine, the interpreter's Java locals or stack
   667       // were to grow upwards, the embedded doubles would be word-swapped.)
   668       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   669       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   670     }
   671 #endif //_LP64
   672     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   673                OptoReg::is_reg(regnum) ) {
   674       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
   675                                    ? Location::float_in_dbl : Location::normal ));
   676     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   677       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   678                                    ? Location::int_in_long : Location::normal ));
   679     } else if( t->base() == Type::NarrowOop ) {
   680       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   681     } else {
   682       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   683     }
   684     return;
   685   }
   687   // No register.  It must be constant data.
   688   switch (t->base()) {
   689   case Type::Half:              // Second half of a double
   690     ShouldNotReachHere();       // Caller should skip 2nd halves
   691     break;
   692   case Type::AnyPtr:
   693     array->append(new ConstantOopWriteValue(NULL));
   694     break;
   695   case Type::AryPtr:
   696   case Type::InstPtr:
   697   case Type::KlassPtr:          // fall through
   698     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
   699     break;
   700   case Type::NarrowOop:
   701     if (t == TypeNarrowOop::NULL_PTR) {
   702       array->append(new ConstantOopWriteValue(NULL));
   703     } else {
   704       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->encoding()));
   705     }
   706     break;
   707   case Type::Int:
   708     array->append(new ConstantIntValue(t->is_int()->get_con()));
   709     break;
   710   case Type::RawPtr:
   711     // A return address (T_ADDRESS).
   712     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   713 #ifdef _LP64
   714     // Must be restored to the full-width 64-bit stack slot.
   715     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   716 #else
   717     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   718 #endif
   719     break;
   720   case Type::FloatCon: {
   721     float f = t->is_float_constant()->getf();
   722     array->append(new ConstantIntValue(jint_cast(f)));
   723     break;
   724   }
   725   case Type::DoubleCon: {
   726     jdouble d = t->is_double_constant()->getd();
   727 #ifdef _LP64
   728     array->append(new ConstantIntValue(0));
   729     array->append(new ConstantDoubleValue(d));
   730 #else
   731     // Repack the double as two jints.
   732     // The convention the interpreter uses is that the second local
   733     // holds the first raw word of the native double representation.
   734     // This is actually reasonable, since locals and stack arrays
   735     // grow downwards in all implementations.
   736     // (If, on some machine, the interpreter's Java locals or stack
   737     // were to grow upwards, the embedded doubles would be word-swapped.)
   738     jint   *dp = (jint*)&d;
   739     array->append(new ConstantIntValue(dp[1]));
   740     array->append(new ConstantIntValue(dp[0]));
   741 #endif
   742     break;
   743   }
   744   case Type::Long: {
   745     jlong d = t->is_long()->get_con();
   746 #ifdef _LP64
   747     array->append(new ConstantIntValue(0));
   748     array->append(new ConstantLongValue(d));
   749 #else
   750     // Repack the long as two jints.
   751     // The convention the interpreter uses is that the second local
   752     // holds the first raw word of the native double representation.
   753     // This is actually reasonable, since locals and stack arrays
   754     // grow downwards in all implementations.
   755     // (If, on some machine, the interpreter's Java locals or stack
   756     // were to grow upwards, the embedded doubles would be word-swapped.)
   757     jint *dp = (jint*)&d;
   758     array->append(new ConstantIntValue(dp[1]));
   759     array->append(new ConstantIntValue(dp[0]));
   760 #endif
   761     break;
   762   }
   763   case Type::Top:               // Add an illegal value here
   764     array->append(new LocationValue(Location()));
   765     break;
   766   default:
   767     ShouldNotReachHere();
   768     break;
   769   }
   770 }
   772 // Determine if this node starts a bundle
   773 bool Compile::starts_bundle(const Node *n) const {
   774   return (_node_bundling_limit > n->_idx &&
   775           _node_bundling_base[n->_idx].starts_bundle());
   776 }
   778 //--------------------------Process_OopMap_Node--------------------------------
   779 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   781   // Handle special safepoint nodes for synchronization
   782   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   783   MachCallNode      *mcall;
   785 #ifdef ENABLE_ZAP_DEAD_LOCALS
   786   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   787 #endif
   789   int safepoint_pc_offset = current_offset;
   791   // Add the safepoint in the DebugInfoRecorder
   792   if( !mach->is_MachCall() ) {
   793     mcall = NULL;
   794     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   795   } else {
   796     mcall = mach->as_MachCall();
   797     safepoint_pc_offset += mcall->ret_addr_offset();
   798     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   799   }
   801   // Loop over the JVMState list to add scope information
   802   // Do not skip safepoints with a NULL method, they need monitor info
   803   JVMState* youngest_jvms = sfn->jvms();
   804   int max_depth = youngest_jvms->depth();
   806   // Allocate the object pool for scalar-replaced objects -- the map from
   807   // small-integer keys (which can be recorded in the local and ostack
   808   // arrays) to descriptions of the object state.
   809   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   811   // Visit scopes from oldest to youngest.
   812   for (int depth = 1; depth <= max_depth; depth++) {
   813     JVMState* jvms = youngest_jvms->of_depth(depth);
   814     int idx;
   815     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   816     // Safepoints that do not have method() set only provide oop-map and monitor info
   817     // to support GC; these do not support deoptimization.
   818     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   819     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   820     int num_mon  = jvms->nof_monitors();
   821     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   822            "JVMS local count must match that of the method");
   824     // Add Local and Expression Stack Information
   826     // Insert locals into the locarray
   827     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   828     for( idx = 0; idx < num_locs; idx++ ) {
   829       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   830     }
   832     // Insert expression stack entries into the exparray
   833     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   834     for( idx = 0; idx < num_exps; idx++ ) {
   835       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   836     }
   838     // Add in mappings of the monitors
   839     assert( !method ||
   840             !method->is_synchronized() ||
   841             method->is_native() ||
   842             num_mon > 0 ||
   843             !GenerateSynchronizationCode,
   844             "monitors must always exist for synchronized methods");
   846     // Build the growable array of ScopeValues for exp stack
   847     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   849     // Loop over monitors and insert into array
   850     for(idx = 0; idx < num_mon; idx++) {
   851       // Grab the node that defines this monitor
   852       Node* box_node;
   853       Node* obj_node;
   854       box_node = sfn->monitor_box(jvms, idx);
   855       obj_node = sfn->monitor_obj(jvms, idx);
   857       // Create ScopeValue for object
   858       ScopeValue *scval = NULL;
   860       if( obj_node->is_SafePointScalarObject() ) {
   861         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   862         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   863         if (scval == NULL) {
   864           const Type *t = obj_node->bottom_type();
   865           ciKlass* cik = t->is_oopptr()->klass();
   866           assert(cik->is_instance_klass() ||
   867                  cik->is_array_klass(), "Not supported allocation.");
   868           ObjectValue* sv = new ObjectValue(spobj->_idx,
   869                                 new ConstantOopWriteValue(cik->encoding()));
   870           Compile::set_sv_for_object_node(objs, sv);
   872           uint first_ind = spobj->first_index();
   873           for (uint i = 0; i < spobj->n_fields(); i++) {
   874             Node* fld_node = sfn->in(first_ind+i);
   875             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   876           }
   877           scval = sv;
   878         }
   879       } else if( !obj_node->is_Con() ) {
   880         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   881         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   882           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   883         } else {
   884           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   885         }
   886       } else {
   887         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
   888         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->encoding());
   889       }
   891       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
   892       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   893       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
   894     }
   896     // We dump the object pool first, since deoptimization reads it in first.
   897     debug_info()->dump_object_pool(objs);
   899     // Build first class objects to pass to scope
   900     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   901     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   902     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   904     // Make method available for all Safepoints
   905     ciMethod* scope_method = method ? method : _method;
   906     // Describe the scope here
   907     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   908     // Now we can describe the scope.
   909     debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals);
   910   } // End jvms loop
   912   // Mark the end of the scope set.
   913   debug_info()->end_safepoint(safepoint_pc_offset);
   914 }
   918 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   919 class NonSafepointEmitter {
   920   Compile*  C;
   921   JVMState* _pending_jvms;
   922   int       _pending_offset;
   924   void emit_non_safepoint();
   926  public:
   927   NonSafepointEmitter(Compile* compile) {
   928     this->C = compile;
   929     _pending_jvms = NULL;
   930     _pending_offset = 0;
   931   }
   933   void observe_instruction(Node* n, int pc_offset) {
   934     if (!C->debug_info()->recording_non_safepoints())  return;
   936     Node_Notes* nn = C->node_notes_at(n->_idx);
   937     if (nn == NULL || nn->jvms() == NULL)  return;
   938     if (_pending_jvms != NULL &&
   939         _pending_jvms->same_calls_as(nn->jvms())) {
   940       // Repeated JVMS?  Stretch it up here.
   941       _pending_offset = pc_offset;
   942     } else {
   943       if (_pending_jvms != NULL &&
   944           _pending_offset < pc_offset) {
   945         emit_non_safepoint();
   946       }
   947       _pending_jvms = NULL;
   948       if (pc_offset > C->debug_info()->last_pc_offset()) {
   949         // This is the only way _pending_jvms can become non-NULL:
   950         _pending_jvms = nn->jvms();
   951         _pending_offset = pc_offset;
   952       }
   953     }
   954   }
   956   // Stay out of the way of real safepoints:
   957   void observe_safepoint(JVMState* jvms, int pc_offset) {
   958     if (_pending_jvms != NULL &&
   959         !_pending_jvms->same_calls_as(jvms) &&
   960         _pending_offset < pc_offset) {
   961       emit_non_safepoint();
   962     }
   963     _pending_jvms = NULL;
   964   }
   966   void flush_at_end() {
   967     if (_pending_jvms != NULL) {
   968       emit_non_safepoint();
   969     }
   970     _pending_jvms = NULL;
   971   }
   972 };
   974 void NonSafepointEmitter::emit_non_safepoint() {
   975   JVMState* youngest_jvms = _pending_jvms;
   976   int       pc_offset     = _pending_offset;
   978   // Clear it now:
   979   _pending_jvms = NULL;
   981   DebugInformationRecorder* debug_info = C->debug_info();
   982   assert(debug_info->recording_non_safepoints(), "sanity");
   984   debug_info->add_non_safepoint(pc_offset);
   985   int max_depth = youngest_jvms->depth();
   987   // Visit scopes from oldest to youngest.
   988   for (int depth = 1; depth <= max_depth; depth++) {
   989     JVMState* jvms = youngest_jvms->of_depth(depth);
   990     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   991     debug_info->describe_scope(pc_offset, method, jvms->bci());
   992   }
   994   // Mark the end of the scope set.
   995   debug_info->end_non_safepoint(pc_offset);
   996 }
  1000 // helper for Fill_buffer bailout logic
  1001 static void turn_off_compiler(Compile* C) {
  1002   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
  1003     // Do not turn off compilation if a single giant method has
  1004     // blown the code cache size.
  1005     C->record_failure("excessive request to CodeCache");
  1006   } else {
  1007     // Let CompilerBroker disable further compilations.
  1008     C->record_failure("CodeCache is full");
  1013 //------------------------------Fill_buffer------------------------------------
  1014 void Compile::Fill_buffer() {
  1016   // Set the initially allocated size
  1017   int  code_req   = initial_code_capacity;
  1018   int  locs_req   = initial_locs_capacity;
  1019   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1020   int  const_req  = initial_const_capacity;
  1021   bool labels_not_set = true;
  1023   int  pad_req    = NativeCall::instruction_size;
  1024   // The extra spacing after the code is necessary on some platforms.
  1025   // Sometimes we need to patch in a jump after the last instruction,
  1026   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1028   uint i;
  1029   // Compute the byte offset where we can store the deopt pc.
  1030   if (fixed_slots() != 0) {
  1031     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1034   // Compute prolog code size
  1035   _method_size = 0;
  1036   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1037 #ifdef IA64
  1038   if (save_argument_registers()) {
  1039     // 4815101: this is a stub with implicit and unknown precision fp args.
  1040     // The usual spill mechanism can only generate stfd's in this case, which
  1041     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1042     // Instead, we hack around the normal spill mechanism using stfspill's and
  1043     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1044     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1045     //
  1046     // If we ever implement 16-byte 'registers' == stack slots, we can
  1047     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1048     // instead of stfd/stfs/ldfd/ldfs.
  1049     _frame_slots += 8*(16/BytesPerInt);
  1051 #endif
  1052   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
  1054   // Create an array of unused labels, one for each basic block
  1055   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
  1057   for( i=0; i <= _cfg->_num_blocks; i++ ) {
  1058     blk_labels[i].init();
  1061   // If this machine supports different size branch offsets, then pre-compute
  1062   // the length of the blocks
  1063   if( _matcher->is_short_branch_offset(-1, 0) ) {
  1064     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
  1065     labels_not_set = false;
  1068   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1069   int exception_handler_req = size_exception_handler();
  1070   int deopt_handler_req = size_deopt_handler();
  1071   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
  1072   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
  1073   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1074   code_req += MAX_inst_size;    // ensure per-instruction margin
  1075   if (StressCodeBuffers)
  1076     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1077   int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
  1078   CodeBuffer* cb = code_buffer();
  1079   cb->initialize(total_req, locs_req);
  1081   // Have we run out of code space?
  1082   if (cb->blob() == NULL) {
  1083     turn_off_compiler(this);
  1084     return;
  1086   // Configure the code buffer.
  1087   cb->initialize_consts_size(const_req);
  1088   cb->initialize_stubs_size(stub_req);
  1089   cb->initialize_oop_recorder(env()->oop_recorder());
  1091   // fill in the nop array for bundling computations
  1092   MachNode *_nop_list[Bundle::_nop_count];
  1093   Bundle::initialize_nops(_nop_list, this);
  1095   // Create oopmap set.
  1096   _oop_map_set = new OopMapSet();
  1098   // !!!!! This preserves old handling of oopmaps for now
  1099   debug_info()->set_oopmaps(_oop_map_set);
  1101   // Count and start of implicit null check instructions
  1102   uint inct_cnt = 0;
  1103   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1105   // Count and start of calls
  1106   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
  1108   uint  return_offset = 0;
  1109   MachNode *nop = new (this) MachNopNode();
  1111   int previous_offset = 0;
  1112   int current_offset  = 0;
  1113   int last_call_offset = -1;
  1115   // Create an array of unused labels, one for each basic block, if printing is enabled
  1116 #ifndef PRODUCT
  1117   int *node_offsets      = NULL;
  1118   uint  node_offset_limit = unique();
  1121   if ( print_assembly() )
  1122     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1123 #endif
  1125   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1127   // ------------------
  1128   // Now fill in the code buffer
  1129   Node *delay_slot = NULL;
  1131   for( i=0; i < _cfg->_num_blocks; i++ ) {
  1132     Block *b = _cfg->_blocks[i];
  1134     Node *head = b->head();
  1136     // If this block needs to start aligned (i.e, can be reached other
  1137     // than by falling-thru from the previous block), then force the
  1138     // start of a new bundle.
  1139     if( Pipeline::requires_bundling() && starts_bundle(head) )
  1140       cb->flush_bundle(true);
  1142     // Define the label at the beginning of the basic block
  1143     if( labels_not_set )
  1144       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
  1146     else
  1147       assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
  1148               "label position does not match code offset" );
  1150     uint last_inst = b->_nodes.size();
  1152     // Emit block normally, except for last instruction.
  1153     // Emit means "dump code bits into code buffer".
  1154     for( uint j = 0; j<last_inst; j++ ) {
  1156       // Get the node
  1157       Node* n = b->_nodes[j];
  1159       // See if delay slots are supported
  1160       if (valid_bundle_info(n) &&
  1161           node_bundling(n)->used_in_unconditional_delay()) {
  1162         assert(delay_slot == NULL, "no use of delay slot node");
  1163         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1165         delay_slot = n;
  1166         continue;
  1169       // If this starts a new instruction group, then flush the current one
  1170       // (but allow split bundles)
  1171       if( Pipeline::requires_bundling() && starts_bundle(n) )
  1172         cb->flush_bundle(false);
  1174       // The following logic is duplicated in the code ifdeffed for
  1175       // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file.  It
  1176       // should be factored out.  Or maybe dispersed to the nodes?
  1178       // Special handling for SafePoint/Call Nodes
  1179       bool is_mcall = false;
  1180       if( n->is_Mach() ) {
  1181         MachNode *mach = n->as_Mach();
  1182         is_mcall = n->is_MachCall();
  1183         bool is_sfn = n->is_MachSafePoint();
  1185         // If this requires all previous instructions be flushed, then do so
  1186         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
  1187           cb->flush_bundle(true);
  1188           current_offset = cb->code_size();
  1191         // align the instruction if necessary
  1192         int nop_size = nop->size(_regalloc);
  1193         int padding = mach->compute_padding(current_offset);
  1194         // Make sure safepoint node for polling is distinct from a call's
  1195         // return by adding a nop if needed.
  1196         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
  1197           padding = nop_size;
  1199         assert( labels_not_set || padding == 0, "instruction should already be aligned")
  1201         if(padding > 0) {
  1202           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1203           int nops_cnt = padding / nop_size;
  1204           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1205           b->_nodes.insert(j++, nop);
  1206           last_inst++;
  1207           _cfg->_bbs.map( nop->_idx, b );
  1208           nop->emit(*cb, _regalloc);
  1209           cb->flush_bundle(true);
  1210           current_offset = cb->code_size();
  1213         // Remember the start of the last call in a basic block
  1214         if (is_mcall) {
  1215           MachCallNode *mcall = mach->as_MachCall();
  1217           // This destination address is NOT PC-relative
  1218           mcall->method_set((intptr_t)mcall->entry_point());
  1220           // Save the return address
  1221           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
  1223           if (!mcall->is_safepoint_node()) {
  1224             is_mcall = false;
  1225             is_sfn = false;
  1229         // sfn will be valid whenever mcall is valid now because of inheritance
  1230         if( is_sfn || is_mcall ) {
  1232           // Handle special safepoint nodes for synchronization
  1233           if( !is_mcall ) {
  1234             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1235             // !!!!! Stubs only need an oopmap right now, so bail out
  1236             if( sfn->jvms()->method() == NULL) {
  1237               // Write the oopmap directly to the code blob??!!
  1238 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1239               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1240 #             endif
  1241               continue;
  1243           } // End synchronization
  1245           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1246                                            current_offset);
  1247           Process_OopMap_Node(mach, current_offset);
  1248         } // End if safepoint
  1250         // If this is a null check, then add the start of the previous instruction to the list
  1251         else if( mach->is_MachNullCheck() ) {
  1252           inct_starts[inct_cnt++] = previous_offset;
  1255         // If this is a branch, then fill in the label with the target BB's label
  1256         else if ( mach->is_Branch() ) {
  1258           if ( mach->ideal_Opcode() == Op_Jump ) {
  1259             for (uint h = 0; h < b->_num_succs; h++ ) {
  1260               Block* succs_block = b->_succs[h];
  1261               for (uint j = 1; j < succs_block->num_preds(); j++) {
  1262                 Node* jpn = succs_block->pred(j);
  1263                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
  1264                   uint block_num = succs_block->non_connector()->_pre_order;
  1265                   Label *blkLabel = &blk_labels[block_num];
  1266                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1270           } else {
  1271             // For Branchs
  1272             // This requires the TRUE branch target be in succs[0]
  1273             uint block_num = b->non_connector_successor(0)->_pre_order;
  1274             mach->label_set( blk_labels[block_num], block_num );
  1278 #ifdef ASSERT
  1279         // Check that oop-store preceeds the card-mark
  1280         else if( mach->ideal_Opcode() == Op_StoreCM ) {
  1281           uint storeCM_idx = j;
  1282           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
  1283           assert( oop_store != NULL, "storeCM expects a precedence edge");
  1284           uint i4;
  1285           for( i4 = 0; i4 < last_inst; ++i4 ) {
  1286             if( b->_nodes[i4] == oop_store ) break;
  1288           // Note: This test can provide a false failure if other precedence
  1289           // edges have been added to the storeCMNode.
  1290           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1292 #endif
  1294         else if( !n->is_Proj() ) {
  1295           // Remember the begining of the previous instruction, in case
  1296           // it's followed by a flag-kill and a null-check.  Happens on
  1297           // Intel all the time, with add-to-memory kind of opcodes.
  1298           previous_offset = current_offset;
  1302       // Verify that there is sufficient space remaining
  1303       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1304       if (cb->blob() == NULL) {
  1305         turn_off_compiler(this);
  1306         return;
  1309       // Save the offset for the listing
  1310 #ifndef PRODUCT
  1311       if( node_offsets && n->_idx < node_offset_limit )
  1312         node_offsets[n->_idx] = cb->code_size();
  1313 #endif
  1315       // "Normal" instruction case
  1316       n->emit(*cb, _regalloc);
  1317       current_offset  = cb->code_size();
  1318       non_safepoints.observe_instruction(n, current_offset);
  1320       // mcall is last "call" that can be a safepoint
  1321       // record it so we can see if a poll will directly follow it
  1322       // in which case we'll need a pad to make the PcDesc sites unique
  1323       // see  5010568. This can be slightly inaccurate but conservative
  1324       // in the case that return address is not actually at current_offset.
  1325       // This is a small price to pay.
  1327       if (is_mcall) {
  1328         last_call_offset = current_offset;
  1331       // See if this instruction has a delay slot
  1332       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1333         assert(delay_slot != NULL, "expecting delay slot node");
  1335         // Back up 1 instruction
  1336         cb->set_code_end(
  1337           cb->code_end()-Pipeline::instr_unit_size());
  1339         // Save the offset for the listing
  1340 #ifndef PRODUCT
  1341         if( node_offsets && delay_slot->_idx < node_offset_limit )
  1342           node_offsets[delay_slot->_idx] = cb->code_size();
  1343 #endif
  1345         // Support a SafePoint in the delay slot
  1346         if( delay_slot->is_MachSafePoint() ) {
  1347           MachNode *mach = delay_slot->as_Mach();
  1348           // !!!!! Stubs only need an oopmap right now, so bail out
  1349           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
  1350             // Write the oopmap directly to the code blob??!!
  1351 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1352             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1353 #           endif
  1354             delay_slot = NULL;
  1355             continue;
  1358           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1359           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1360                                            adjusted_offset);
  1361           // Generate an OopMap entry
  1362           Process_OopMap_Node(mach, adjusted_offset);
  1365         // Insert the delay slot instruction
  1366         delay_slot->emit(*cb, _regalloc);
  1368         // Don't reuse it
  1369         delay_slot = NULL;
  1372     } // End for all instructions in block
  1374     // If the next block is the top of a loop, pad this block out to align
  1375     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1376     int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1377     if( i<_cfg->_num_blocks-1 ) {
  1378       Block *nb = _cfg->_blocks[i+1];
  1379       uint padding = nb->alignment_padding(current_offset);
  1380       if( padding > 0 ) {
  1381         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1382         b->_nodes.insert( b->_nodes.size(), nop );
  1383         _cfg->_bbs.map( nop->_idx, b );
  1384         nop->emit(*cb, _regalloc);
  1385         current_offset = cb->code_size();
  1389   } // End of for all blocks
  1391   non_safepoints.flush_at_end();
  1393   // Offset too large?
  1394   if (failing())  return;
  1396   // Define a pseudo-label at the end of the code
  1397   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
  1399   // Compute the size of the first block
  1400   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1402   assert(cb->code_size() < 500000, "method is unreasonably large");
  1404   // ------------------
  1406 #ifndef PRODUCT
  1407   // Information on the size of the method, without the extraneous code
  1408   Scheduling::increment_method_size(cb->code_size());
  1409 #endif
  1411   // ------------------
  1412   // Fill in exception table entries.
  1413   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1415   // Only java methods have exception handlers and deopt handlers
  1416   if (_method) {
  1417     // Emit the exception handler code.
  1418     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
  1419     // Emit the deopt handler code.
  1420     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
  1423   // One last check for failed CodeBuffer::expand:
  1424   if (cb->blob() == NULL) {
  1425     turn_off_compiler(this);
  1426     return;
  1429 #ifndef PRODUCT
  1430   // Dump the assembly code, including basic-block numbers
  1431   if (print_assembly()) {
  1432     ttyLocker ttyl;  // keep the following output all in one block
  1433     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1434       // This output goes directly to the tty, not the compiler log.
  1435       // To enable tools to match it up with the compilation activity,
  1436       // be sure to tag this tty output with the compile ID.
  1437       if (xtty != NULL) {
  1438         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1439                    is_osr_compilation()    ? " compile_kind='osr'" :
  1440                    "");
  1442       if (method() != NULL) {
  1443         method()->print_oop();
  1444         print_codes();
  1446       dump_asm(node_offsets, node_offset_limit);
  1447       if (xtty != NULL) {
  1448         xtty->tail("opto_assembly");
  1452 #endif
  1456 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1457   _inc_table.set_size(cnt);
  1459   uint inct_cnt = 0;
  1460   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1461     Block *b = _cfg->_blocks[i];
  1462     Node *n = NULL;
  1463     int j;
  1465     // Find the branch; ignore trailing NOPs.
  1466     for( j = b->_nodes.size()-1; j>=0; j-- ) {
  1467       n = b->_nodes[j];
  1468       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
  1469         break;
  1472     // If we didn't find anything, continue
  1473     if( j < 0 ) continue;
  1475     // Compute ExceptionHandlerTable subtable entry and add it
  1476     // (skip empty blocks)
  1477     if( n->is_Catch() ) {
  1479       // Get the offset of the return from the call
  1480       uint call_return = call_returns[b->_pre_order];
  1481 #ifdef ASSERT
  1482       assert( call_return > 0, "no call seen for this basic block" );
  1483       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
  1484       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
  1485 #endif
  1486       // last instruction is a CatchNode, find it's CatchProjNodes
  1487       int nof_succs = b->_num_succs;
  1488       // allocate space
  1489       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1490       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1491       // iterate through all successors
  1492       for (int j = 0; j < nof_succs; j++) {
  1493         Block* s = b->_succs[j];
  1494         bool found_p = false;
  1495         for( uint k = 1; k < s->num_preds(); k++ ) {
  1496           Node *pk = s->pred(k);
  1497           if( pk->is_CatchProj() && pk->in(0) == n ) {
  1498             const CatchProjNode* p = pk->as_CatchProj();
  1499             found_p = true;
  1500             // add the corresponding handler bci & pco information
  1501             if( p->_con != CatchProjNode::fall_through_index ) {
  1502               // p leads to an exception handler (and is not fall through)
  1503               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
  1504               // no duplicates, please
  1505               if( !handler_bcis.contains(p->handler_bci()) ) {
  1506                 uint block_num = s->non_connector()->_pre_order;
  1507                 handler_bcis.append(p->handler_bci());
  1508                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1513         assert(found_p, "no matching predecessor found");
  1514         // Note:  Due to empty block removal, one block may have
  1515         // several CatchProj inputs, from the same Catch.
  1518       // Set the offset of the return from the call
  1519       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1520       continue;
  1523     // Handle implicit null exception table updates
  1524     if( n->is_MachNullCheck() ) {
  1525       uint block_num = b->non_connector_successor(0)->_pre_order;
  1526       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
  1527       continue;
  1529   } // End of for all blocks fill in exception table entries
  1532 // Static Variables
  1533 #ifndef PRODUCT
  1534 uint Scheduling::_total_nop_size = 0;
  1535 uint Scheduling::_total_method_size = 0;
  1536 uint Scheduling::_total_branches = 0;
  1537 uint Scheduling::_total_unconditional_delays = 0;
  1538 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1539 #endif
  1541 // Initializer for class Scheduling
  1543 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1544   : _arena(arena),
  1545     _cfg(compile.cfg()),
  1546     _bbs(compile.cfg()->_bbs),
  1547     _regalloc(compile.regalloc()),
  1548     _reg_node(arena),
  1549     _bundle_instr_count(0),
  1550     _bundle_cycle_number(0),
  1551     _scheduled(arena),
  1552     _available(arena),
  1553     _next_node(NULL),
  1554     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1555     _pinch_free_list(arena)
  1556 #ifndef PRODUCT
  1557   , _branches(0)
  1558   , _unconditional_delays(0)
  1559 #endif
  1561   // Create a MachNopNode
  1562   _nop = new (&compile) MachNopNode();
  1564   // Now that the nops are in the array, save the count
  1565   // (but allow entries for the nops)
  1566   _node_bundling_limit = compile.unique();
  1567   uint node_max = _regalloc->node_regs_max_index();
  1569   compile.set_node_bundling_limit(_node_bundling_limit);
  1571   // This one is persistant within the Compile class
  1572   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1574   // Allocate space for fixed-size arrays
  1575   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1576   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1577   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1579   // Clear the arrays
  1580   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1581   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1582   memset(_uses,               0, node_max * sizeof(short));
  1583   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1585   // Clear the bundling information
  1586   memcpy(_bundle_use_elements,
  1587     Pipeline_Use::elaborated_elements,
  1588     sizeof(Pipeline_Use::elaborated_elements));
  1590   // Get the last node
  1591   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
  1593   _next_node = bb->_nodes[bb->_nodes.size()-1];
  1596 #ifndef PRODUCT
  1597 // Scheduling destructor
  1598 Scheduling::~Scheduling() {
  1599   _total_branches             += _branches;
  1600   _total_unconditional_delays += _unconditional_delays;
  1602 #endif
  1604 // Step ahead "i" cycles
  1605 void Scheduling::step(uint i) {
  1607   Bundle *bundle = node_bundling(_next_node);
  1608   bundle->set_starts_bundle();
  1610   // Update the bundle record, but leave the flags information alone
  1611   if (_bundle_instr_count > 0) {
  1612     bundle->set_instr_count(_bundle_instr_count);
  1613     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1616   // Update the state information
  1617   _bundle_instr_count = 0;
  1618   _bundle_cycle_number += i;
  1619   _bundle_use.step(i);
  1622 void Scheduling::step_and_clear() {
  1623   Bundle *bundle = node_bundling(_next_node);
  1624   bundle->set_starts_bundle();
  1626   // Update the bundle record
  1627   if (_bundle_instr_count > 0) {
  1628     bundle->set_instr_count(_bundle_instr_count);
  1629     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1631     _bundle_cycle_number += 1;
  1634   // Clear the bundling information
  1635   _bundle_instr_count = 0;
  1636   _bundle_use.reset();
  1638   memcpy(_bundle_use_elements,
  1639     Pipeline_Use::elaborated_elements,
  1640     sizeof(Pipeline_Use::elaborated_elements));
  1643 //------------------------------ScheduleAndBundle------------------------------
  1644 // Perform instruction scheduling and bundling over the sequence of
  1645 // instructions in backwards order.
  1646 void Compile::ScheduleAndBundle() {
  1648   // Don't optimize this if it isn't a method
  1649   if (!_method)
  1650     return;
  1652   // Don't optimize this if scheduling is disabled
  1653   if (!do_scheduling())
  1654     return;
  1656   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1658   // Create a data structure for all the scheduling information
  1659   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1661   // Walk backwards over each basic block, computing the needed alignment
  1662   // Walk over all the basic blocks
  1663   scheduling.DoScheduling();
  1666 //------------------------------ComputeLocalLatenciesForward-------------------
  1667 // Compute the latency of all the instructions.  This is fairly simple,
  1668 // because we already have a legal ordering.  Walk over the instructions
  1669 // from first to last, and compute the latency of the instruction based
  1670 // on the latency of the preceeding instruction(s).
  1671 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1672 #ifndef PRODUCT
  1673   if (_cfg->C->trace_opto_output())
  1674     tty->print("# -> ComputeLocalLatenciesForward\n");
  1675 #endif
  1677   // Walk over all the schedulable instructions
  1678   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1680     // This is a kludge, forcing all latency calculations to start at 1.
  1681     // Used to allow latency 0 to force an instruction to the beginning
  1682     // of the bb
  1683     uint latency = 1;
  1684     Node *use = bb->_nodes[j];
  1685     uint nlen = use->len();
  1687     // Walk over all the inputs
  1688     for ( uint k=0; k < nlen; k++ ) {
  1689       Node *def = use->in(k);
  1690       if (!def)
  1691         continue;
  1693       uint l = _node_latency[def->_idx] + use->latency(k);
  1694       if (latency < l)
  1695         latency = l;
  1698     _node_latency[use->_idx] = latency;
  1700 #ifndef PRODUCT
  1701     if (_cfg->C->trace_opto_output()) {
  1702       tty->print("# latency %4d: ", latency);
  1703       use->dump();
  1705 #endif
  1708 #ifndef PRODUCT
  1709   if (_cfg->C->trace_opto_output())
  1710     tty->print("# <- ComputeLocalLatenciesForward\n");
  1711 #endif
  1713 } // end ComputeLocalLatenciesForward
  1715 // See if this node fits into the present instruction bundle
  1716 bool Scheduling::NodeFitsInBundle(Node *n) {
  1717   uint n_idx = n->_idx;
  1719   // If this is the unconditional delay instruction, then it fits
  1720   if (n == _unconditional_delay_slot) {
  1721 #ifndef PRODUCT
  1722     if (_cfg->C->trace_opto_output())
  1723       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1724 #endif
  1725     return (true);
  1728   // If the node cannot be scheduled this cycle, skip it
  1729   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1730 #ifndef PRODUCT
  1731     if (_cfg->C->trace_opto_output())
  1732       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1733         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1734 #endif
  1735     return (false);
  1738   const Pipeline *node_pipeline = n->pipeline();
  1740   uint instruction_count = node_pipeline->instructionCount();
  1741   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1742     instruction_count = 0;
  1743   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1744     instruction_count++;
  1746   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1747 #ifndef PRODUCT
  1748     if (_cfg->C->trace_opto_output())
  1749       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1750         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1751 #endif
  1752     return (false);
  1755   // Don't allow non-machine nodes to be handled this way
  1756   if (!n->is_Mach() && instruction_count == 0)
  1757     return (false);
  1759   // See if there is any overlap
  1760   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1762   if (delay > 0) {
  1763 #ifndef PRODUCT
  1764     if (_cfg->C->trace_opto_output())
  1765       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1766 #endif
  1767     return false;
  1770 #ifndef PRODUCT
  1771   if (_cfg->C->trace_opto_output())
  1772     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  1773 #endif
  1775   return true;
  1778 Node * Scheduling::ChooseNodeToBundle() {
  1779   uint siz = _available.size();
  1781   if (siz == 0) {
  1783 #ifndef PRODUCT
  1784     if (_cfg->C->trace_opto_output())
  1785       tty->print("#   ChooseNodeToBundle: NULL\n");
  1786 #endif
  1787     return (NULL);
  1790   // Fast path, if only 1 instruction in the bundle
  1791   if (siz == 1) {
  1792 #ifndef PRODUCT
  1793     if (_cfg->C->trace_opto_output()) {
  1794       tty->print("#   ChooseNodeToBundle (only 1): ");
  1795       _available[0]->dump();
  1797 #endif
  1798     return (_available[0]);
  1801   // Don't bother, if the bundle is already full
  1802   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  1803     for ( uint i = 0; i < siz; i++ ) {
  1804       Node *n = _available[i];
  1806       // Skip projections, we'll handle them another way
  1807       if (n->is_Proj())
  1808         continue;
  1810       // This presupposed that instructions are inserted into the
  1811       // available list in a legality order; i.e. instructions that
  1812       // must be inserted first are at the head of the list
  1813       if (NodeFitsInBundle(n)) {
  1814 #ifndef PRODUCT
  1815         if (_cfg->C->trace_opto_output()) {
  1816           tty->print("#   ChooseNodeToBundle: ");
  1817           n->dump();
  1819 #endif
  1820         return (n);
  1825   // Nothing fits in this bundle, choose the highest priority
  1826 #ifndef PRODUCT
  1827   if (_cfg->C->trace_opto_output()) {
  1828     tty->print("#   ChooseNodeToBundle: ");
  1829     _available[0]->dump();
  1831 #endif
  1833   return _available[0];
  1836 //------------------------------AddNodeToAvailableList-------------------------
  1837 void Scheduling::AddNodeToAvailableList(Node *n) {
  1838   assert( !n->is_Proj(), "projections never directly made available" );
  1839 #ifndef PRODUCT
  1840   if (_cfg->C->trace_opto_output()) {
  1841     tty->print("#   AddNodeToAvailableList: ");
  1842     n->dump();
  1844 #endif
  1846   int latency = _current_latency[n->_idx];
  1848   // Insert in latency order (insertion sort)
  1849   uint i;
  1850   for ( i=0; i < _available.size(); i++ )
  1851     if (_current_latency[_available[i]->_idx] > latency)
  1852       break;
  1854   // Special Check for compares following branches
  1855   if( n->is_Mach() && _scheduled.size() > 0 ) {
  1856     int op = n->as_Mach()->ideal_Opcode();
  1857     Node *last = _scheduled[0];
  1858     if( last->is_MachIf() && last->in(1) == n &&
  1859         ( op == Op_CmpI ||
  1860           op == Op_CmpU ||
  1861           op == Op_CmpP ||
  1862           op == Op_CmpF ||
  1863           op == Op_CmpD ||
  1864           op == Op_CmpL ) ) {
  1866       // Recalculate position, moving to front of same latency
  1867       for ( i=0 ; i < _available.size(); i++ )
  1868         if (_current_latency[_available[i]->_idx] >= latency)
  1869           break;
  1873   // Insert the node in the available list
  1874   _available.insert(i, n);
  1876 #ifndef PRODUCT
  1877   if (_cfg->C->trace_opto_output())
  1878     dump_available();
  1879 #endif
  1882 //------------------------------DecrementUseCounts-----------------------------
  1883 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  1884   for ( uint i=0; i < n->len(); i++ ) {
  1885     Node *def = n->in(i);
  1886     if (!def) continue;
  1887     if( def->is_Proj() )        // If this is a machine projection, then
  1888       def = def->in(0);         // propagate usage thru to the base instruction
  1890     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
  1891       continue;
  1893     // Compute the latency
  1894     uint l = _bundle_cycle_number + n->latency(i);
  1895     if (_current_latency[def->_idx] < l)
  1896       _current_latency[def->_idx] = l;
  1898     // If this does not have uses then schedule it
  1899     if ((--_uses[def->_idx]) == 0)
  1900       AddNodeToAvailableList(def);
  1904 //------------------------------AddNodeToBundle--------------------------------
  1905 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  1906 #ifndef PRODUCT
  1907   if (_cfg->C->trace_opto_output()) {
  1908     tty->print("#   AddNodeToBundle: ");
  1909     n->dump();
  1911 #endif
  1913   // Remove this from the available list
  1914   uint i;
  1915   for (i = 0; i < _available.size(); i++)
  1916     if (_available[i] == n)
  1917       break;
  1918   assert(i < _available.size(), "entry in _available list not found");
  1919   _available.remove(i);
  1921   // See if this fits in the current bundle
  1922   const Pipeline *node_pipeline = n->pipeline();
  1923   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  1925   // Check for instructions to be placed in the delay slot. We
  1926   // do this before we actually schedule the current instruction,
  1927   // because the delay slot follows the current instruction.
  1928   if (Pipeline::_branch_has_delay_slot &&
  1929       node_pipeline->hasBranchDelay() &&
  1930       !_unconditional_delay_slot) {
  1932     uint siz = _available.size();
  1934     // Conditional branches can support an instruction that
  1935     // is unconditionally executed and not dependant by the
  1936     // branch, OR a conditionally executed instruction if
  1937     // the branch is taken.  In practice, this means that
  1938     // the first instruction at the branch target is
  1939     // copied to the delay slot, and the branch goes to
  1940     // the instruction after that at the branch target
  1941     if ( n->is_Mach() && n->is_Branch() ) {
  1943       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  1944       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  1946 #ifndef PRODUCT
  1947       _branches++;
  1948 #endif
  1950       // At least 1 instruction is on the available list
  1951       // that is not dependant on the branch
  1952       for (uint i = 0; i < siz; i++) {
  1953         Node *d = _available[i];
  1954         const Pipeline *avail_pipeline = d->pipeline();
  1956         // Don't allow safepoints in the branch shadow, that will
  1957         // cause a number of difficulties
  1958         if ( avail_pipeline->instructionCount() == 1 &&
  1959             !avail_pipeline->hasMultipleBundles() &&
  1960             !avail_pipeline->hasBranchDelay() &&
  1961             Pipeline::instr_has_unit_size() &&
  1962             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  1963             NodeFitsInBundle(d) &&
  1964             !node_bundling(d)->used_in_delay()) {
  1966           if (d->is_Mach() && !d->is_MachSafePoint()) {
  1967             // A node that fits in the delay slot was found, so we need to
  1968             // set the appropriate bits in the bundle pipeline information so
  1969             // that it correctly indicates resource usage.  Later, when we
  1970             // attempt to add this instruction to the bundle, we will skip
  1971             // setting the resource usage.
  1972             _unconditional_delay_slot = d;
  1973             node_bundling(n)->set_use_unconditional_delay();
  1974             node_bundling(d)->set_used_in_unconditional_delay();
  1975             _bundle_use.add_usage(avail_pipeline->resourceUse());
  1976             _current_latency[d->_idx] = _bundle_cycle_number;
  1977             _next_node = d;
  1978             ++_bundle_instr_count;
  1979 #ifndef PRODUCT
  1980             _unconditional_delays++;
  1981 #endif
  1982             break;
  1988     // No delay slot, add a nop to the usage
  1989     if (!_unconditional_delay_slot) {
  1990       // See if adding an instruction in the delay slot will overflow
  1991       // the bundle.
  1992       if (!NodeFitsInBundle(_nop)) {
  1993 #ifndef PRODUCT
  1994         if (_cfg->C->trace_opto_output())
  1995           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  1996 #endif
  1997         step(1);
  2000       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2001       _next_node = _nop;
  2002       ++_bundle_instr_count;
  2005     // See if the instruction in the delay slot requires a
  2006     // step of the bundles
  2007     if (!NodeFitsInBundle(n)) {
  2008 #ifndef PRODUCT
  2009         if (_cfg->C->trace_opto_output())
  2010           tty->print("#  *** STEP(branch won't fit) ***\n");
  2011 #endif
  2012         // Update the state information
  2013         _bundle_instr_count = 0;
  2014         _bundle_cycle_number += 1;
  2015         _bundle_use.step(1);
  2019   // Get the number of instructions
  2020   uint instruction_count = node_pipeline->instructionCount();
  2021   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2022     instruction_count = 0;
  2024   // Compute the latency information
  2025   uint delay = 0;
  2027   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2028     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2029     if (relative_latency < 0)
  2030       relative_latency = 0;
  2032     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2034     // Does not fit in this bundle, start a new one
  2035     if (delay > 0) {
  2036       step(delay);
  2038 #ifndef PRODUCT
  2039       if (_cfg->C->trace_opto_output())
  2040         tty->print("#  *** STEP(%d) ***\n", delay);
  2041 #endif
  2045   // If this was placed in the delay slot, ignore it
  2046   if (n != _unconditional_delay_slot) {
  2048     if (delay == 0) {
  2049       if (node_pipeline->hasMultipleBundles()) {
  2050 #ifndef PRODUCT
  2051         if (_cfg->C->trace_opto_output())
  2052           tty->print("#  *** STEP(multiple instructions) ***\n");
  2053 #endif
  2054         step(1);
  2057       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2058 #ifndef PRODUCT
  2059         if (_cfg->C->trace_opto_output())
  2060           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2061             instruction_count + _bundle_instr_count,
  2062             Pipeline::_max_instrs_per_cycle);
  2063 #endif
  2064         step(1);
  2068     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2069       _bundle_instr_count++;
  2071     // Set the node's latency
  2072     _current_latency[n->_idx] = _bundle_cycle_number;
  2074     // Now merge the functional unit information
  2075     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2076       _bundle_use.add_usage(node_usage);
  2078     // Increment the number of instructions in this bundle
  2079     _bundle_instr_count += instruction_count;
  2081     // Remember this node for later
  2082     if (n->is_Mach())
  2083       _next_node = n;
  2086   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2087   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2088   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2089   // into the block.  All other scheduled nodes get put in the schedule here.
  2090   int op = n->Opcode();
  2091   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2092       (op != Op_Node &&         // Not an unused antidepedence node and
  2093        // not an unallocated boxlock
  2094        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2096     // Push any trailing projections
  2097     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
  2098       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2099         Node *foi = n->fast_out(i);
  2100         if( foi->is_Proj() )
  2101           _scheduled.push(foi);
  2105     // Put the instruction in the schedule list
  2106     _scheduled.push(n);
  2109 #ifndef PRODUCT
  2110   if (_cfg->C->trace_opto_output())
  2111     dump_available();
  2112 #endif
  2114   // Walk all the definitions, decrementing use counts, and
  2115   // if a definition has a 0 use count, place it in the available list.
  2116   DecrementUseCounts(n,bb);
  2119 //------------------------------ComputeUseCount--------------------------------
  2120 // This method sets the use count within a basic block.  We will ignore all
  2121 // uses outside the current basic block.  As we are doing a backwards walk,
  2122 // any node we reach that has a use count of 0 may be scheduled.  This also
  2123 // avoids the problem of cyclic references from phi nodes, as long as phi
  2124 // nodes are at the front of the basic block.  This method also initializes
  2125 // the available list to the set of instructions that have no uses within this
  2126 // basic block.
  2127 void Scheduling::ComputeUseCount(const Block *bb) {
  2128 #ifndef PRODUCT
  2129   if (_cfg->C->trace_opto_output())
  2130     tty->print("# -> ComputeUseCount\n");
  2131 #endif
  2133   // Clear the list of available and scheduled instructions, just in case
  2134   _available.clear();
  2135   _scheduled.clear();
  2137   // No delay slot specified
  2138   _unconditional_delay_slot = NULL;
  2140 #ifdef ASSERT
  2141   for( uint i=0; i < bb->_nodes.size(); i++ )
  2142     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
  2143 #endif
  2145   // Force the _uses count to never go to zero for unscheduable pieces
  2146   // of the block
  2147   for( uint k = 0; k < _bb_start; k++ )
  2148     _uses[bb->_nodes[k]->_idx] = 1;
  2149   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
  2150     _uses[bb->_nodes[l]->_idx] = 1;
  2152   // Iterate backwards over the instructions in the block.  Don't count the
  2153   // branch projections at end or the block header instructions.
  2154   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2155     Node *n = bb->_nodes[j];
  2156     if( n->is_Proj() ) continue; // Projections handled another way
  2158     // Account for all uses
  2159     for ( uint k = 0; k < n->len(); k++ ) {
  2160       Node *inp = n->in(k);
  2161       if (!inp) continue;
  2162       assert(inp != n, "no cycles allowed" );
  2163       if( _bbs[inp->_idx] == bb ) { // Block-local use?
  2164         if( inp->is_Proj() )    // Skip through Proj's
  2165           inp = inp->in(0);
  2166         ++_uses[inp->_idx];     // Count 1 block-local use
  2170     // If this instruction has a 0 use count, then it is available
  2171     if (!_uses[n->_idx]) {
  2172       _current_latency[n->_idx] = _bundle_cycle_number;
  2173       AddNodeToAvailableList(n);
  2176 #ifndef PRODUCT
  2177     if (_cfg->C->trace_opto_output()) {
  2178       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2179       n->dump();
  2181 #endif
  2184 #ifndef PRODUCT
  2185   if (_cfg->C->trace_opto_output())
  2186     tty->print("# <- ComputeUseCount\n");
  2187 #endif
  2190 // This routine performs scheduling on each basic block in reverse order,
  2191 // using instruction latencies and taking into account function unit
  2192 // availability.
  2193 void Scheduling::DoScheduling() {
  2194 #ifndef PRODUCT
  2195   if (_cfg->C->trace_opto_output())
  2196     tty->print("# -> DoScheduling\n");
  2197 #endif
  2199   Block *succ_bb = NULL;
  2200   Block *bb;
  2202   // Walk over all the basic blocks in reverse order
  2203   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
  2204     bb = _cfg->_blocks[i];
  2206 #ifndef PRODUCT
  2207     if (_cfg->C->trace_opto_output()) {
  2208       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2209       for (uint j = 0; j < bb->_nodes.size(); j++)
  2210         bb->_nodes[j]->dump();
  2212 #endif
  2214     // On the head node, skip processing
  2215     if( bb == _cfg->_broot )
  2216       continue;
  2218     // Skip empty, connector blocks
  2219     if (bb->is_connector())
  2220       continue;
  2222     // If the following block is not the sole successor of
  2223     // this one, then reset the pipeline information
  2224     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2225 #ifndef PRODUCT
  2226       if (_cfg->C->trace_opto_output()) {
  2227         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2228                    _next_node->_idx, _bundle_instr_count);
  2230 #endif
  2231       step_and_clear();
  2234     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2235     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
  2236     _bb_end = bb->_nodes.size()-1;
  2237     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2238       Node *n = bb->_nodes[_bb_start];
  2239       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2240       // Also, MachIdealNodes do not get scheduled
  2241       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2242       MachNode *mach = n->as_Mach();
  2243       int iop = mach->ideal_Opcode();
  2244       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2245       if( iop == Op_Con ) continue;      // Do not schedule Top
  2246       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2247           mach->pipeline() == MachNode::pipeline_class() &&
  2248           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2249         continue;
  2250       break;                    // Funny loop structure to be sure...
  2252     // Compute last "interesting" instruction in block - last instruction we
  2253     // might schedule.  _bb_end points just after last schedulable inst.  We
  2254     // normally schedule conditional branches (despite them being forced last
  2255     // in the block), because they have delay slots we can fill.  Calls all
  2256     // have their delay slots filled in the template expansions, so we don't
  2257     // bother scheduling them.
  2258     Node *last = bb->_nodes[_bb_end];
  2259     if( last->is_Catch() ||
  2260        (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2261       // There must be a prior call.  Skip it.
  2262       while( !bb->_nodes[--_bb_end]->is_Call() ) {
  2263         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
  2265     } else if( last->is_MachNullCheck() ) {
  2266       // Backup so the last null-checked memory instruction is
  2267       // outside the schedulable range. Skip over the nullcheck,
  2268       // projection, and the memory nodes.
  2269       Node *mem = last->in(1);
  2270       do {
  2271         _bb_end--;
  2272       } while (mem != bb->_nodes[_bb_end]);
  2273     } else {
  2274       // Set _bb_end to point after last schedulable inst.
  2275       _bb_end++;
  2278     assert( _bb_start <= _bb_end, "inverted block ends" );
  2280     // Compute the register antidependencies for the basic block
  2281     ComputeRegisterAntidependencies(bb);
  2282     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2284     // Compute intra-bb latencies for the nodes
  2285     ComputeLocalLatenciesForward(bb);
  2287     // Compute the usage within the block, and set the list of all nodes
  2288     // in the block that have no uses within the block.
  2289     ComputeUseCount(bb);
  2291     // Schedule the remaining instructions in the block
  2292     while ( _available.size() > 0 ) {
  2293       Node *n = ChooseNodeToBundle();
  2294       AddNodeToBundle(n,bb);
  2297     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2298 #ifdef ASSERT
  2299     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2300       Node *n = bb->_nodes[l];
  2301       uint m;
  2302       for( m = 0; m < _bb_end-_bb_start; m++ )
  2303         if( _scheduled[m] == n )
  2304           break;
  2305       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2307 #endif
  2309     // Now copy the instructions (in reverse order) back to the block
  2310     for ( uint k = _bb_start; k < _bb_end; k++ )
  2311       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
  2313 #ifndef PRODUCT
  2314     if (_cfg->C->trace_opto_output()) {
  2315       tty->print("#  Schedule BB#%03d (final)\n", i);
  2316       uint current = 0;
  2317       for (uint j = 0; j < bb->_nodes.size(); j++) {
  2318         Node *n = bb->_nodes[j];
  2319         if( valid_bundle_info(n) ) {
  2320           Bundle *bundle = node_bundling(n);
  2321           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2322             tty->print("*** Bundle: ");
  2323             bundle->dump();
  2325           n->dump();
  2329 #endif
  2330 #ifdef ASSERT
  2331   verify_good_schedule(bb,"after block local scheduling");
  2332 #endif
  2335 #ifndef PRODUCT
  2336   if (_cfg->C->trace_opto_output())
  2337     tty->print("# <- DoScheduling\n");
  2338 #endif
  2340   // Record final node-bundling array location
  2341   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2343 } // end DoScheduling
  2345 //------------------------------verify_good_schedule---------------------------
  2346 // Verify that no live-range used in the block is killed in the block by a
  2347 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2349 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2350 static bool edge_from_to( Node *from, Node *to ) {
  2351   for( uint i=0; i<from->len(); i++ )
  2352     if( from->in(i) == to )
  2353       return true;
  2354   return false;
  2357 #ifdef ASSERT
  2358 //------------------------------verify_do_def----------------------------------
  2359 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2360   // Check for bad kills
  2361   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2362     Node *prior_use = _reg_node[def];
  2363     if( prior_use && !edge_from_to(prior_use,n) ) {
  2364       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2365       n->dump();
  2366       tty->print_cr("...");
  2367       prior_use->dump();
  2368       assert_msg(edge_from_to(prior_use,n),msg);
  2370     _reg_node.map(def,NULL); // Kill live USEs
  2374 //------------------------------verify_good_schedule---------------------------
  2375 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2377   // Zap to something reasonable for the verify code
  2378   _reg_node.clear();
  2380   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2381   // kill a live value (other than the one it's supposed to).  Add each
  2382   // USE to the live set.
  2383   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
  2384     Node *n = b->_nodes[i];
  2385     int n_op = n->Opcode();
  2386     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2387       // Fat-proj kills a slew of registers
  2388       RegMask rm = n->out_RegMask();// Make local copy
  2389       while( rm.is_NotEmpty() ) {
  2390         OptoReg::Name kill = rm.find_first_elem();
  2391         rm.Remove(kill);
  2392         verify_do_def( n, kill, msg );
  2394     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2395       // Get DEF'd registers the normal way
  2396       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2397       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2400     // Now make all USEs live
  2401     for( uint i=1; i<n->req(); i++ ) {
  2402       Node *def = n->in(i);
  2403       assert(def != 0, "input edge required");
  2404       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2405       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2406       if( OptoReg::is_valid(reg_lo) ) {
  2407         assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
  2408         _reg_node.map(reg_lo,n);
  2410       if( OptoReg::is_valid(reg_hi) ) {
  2411         assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
  2412         _reg_node.map(reg_hi,n);
  2418   // Zap to something reasonable for the Antidependence code
  2419   _reg_node.clear();
  2421 #endif
  2423 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2424 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2425   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2426     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2427     from = from->in(0);
  2429   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2430       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2431     from->add_prec(to);
  2434 //------------------------------anti_do_def------------------------------------
  2435 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2436   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2437     return;
  2439   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2440   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
  2441       is_def ) {    // Check for a true def (not a kill)
  2442     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2443     return;
  2446   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2447   debug_only( def = (Node*)0xdeadbeef; )
  2449   // After some number of kills there _may_ be a later def
  2450   Node *later_def = NULL;
  2452   // Finding a kill requires a real pinch-point.
  2453   // Check for not already having a pinch-point.
  2454   // Pinch points are Op_Node's.
  2455   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2456     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2457     if ( _pinch_free_list.size() > 0) {
  2458       pinch = _pinch_free_list.pop();
  2459     } else {
  2460       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
  2462     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2463       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2464       return;
  2466     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
  2467     _reg_node.map(def_reg,pinch); // Record pinch-point
  2468     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2469     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2470       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2471       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2472       later_def = NULL;           // and no later def
  2474     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2475   } else {                        // Else have valid pinch point
  2476     if( pinch->in(0) )            // If there is a later-def
  2477       later_def = pinch->in(0);   // Get it
  2480   // Add output-dependence edge from later def to kill
  2481   if( later_def )               // If there is some original def
  2482     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2484   // See if current kill is also a use, and so is forced to be the pinch-point.
  2485   if( pinch->Opcode() == Op_Node ) {
  2486     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2487     for( uint i=1; i<uses->req(); i++ ) {
  2488       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2489           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2490         // Yes, found a use/kill pinch-point
  2491         pinch->set_req(0,NULL);  //
  2492         pinch->replace_by(kill); // Move anti-dep edges up
  2493         pinch = kill;
  2494         _reg_node.map(def_reg,pinch);
  2495         return;
  2500   // Add edge from kill to pinch-point
  2501   add_prec_edge_from_to(kill,pinch);
  2504 //------------------------------anti_do_use------------------------------------
  2505 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2506   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2507     return;
  2508   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2509   // Check for no later def_reg/kill in block
  2510   if( pinch && _bbs[pinch->_idx] == b &&
  2511       // Use has to be block-local as well
  2512       _bbs[use->_idx] == b ) {
  2513     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2514         pinch->req() == 1 ) {   // pinch not yet in block?
  2515       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2516       // Insert the pinch-point in the block just after the last use
  2517       b->_nodes.insert(b->find_node(use)+1,pinch);
  2518       _bb_end++;                // Increase size scheduled region in block
  2521     add_prec_edge_from_to(pinch,use);
  2525 //------------------------------ComputeRegisterAntidependences-----------------
  2526 // We insert antidependences between the reads and following write of
  2527 // allocated registers to prevent illegal code motion. Hopefully, the
  2528 // number of added references should be fairly small, especially as we
  2529 // are only adding references within the current basic block.
  2530 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2532 #ifdef ASSERT
  2533   verify_good_schedule(b,"before block local scheduling");
  2534 #endif
  2536   // A valid schedule, for each register independently, is an endless cycle
  2537   // of: a def, then some uses (connected to the def by true dependencies),
  2538   // then some kills (defs with no uses), finally the cycle repeats with a new
  2539   // def.  The uses are allowed to float relative to each other, as are the
  2540   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2541   // antidependencies between all uses of a single def and all kills that
  2542   // follow, up to the next def.  More edges are redundant, because later defs
  2543   // & kills are already serialized with true or antidependencies.  To keep
  2544   // the edge count down, we add a 'pinch point' node if there's more than
  2545   // one use or more than one kill/def.
  2547   // We add dependencies in one bottom-up pass.
  2549   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2551   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2552   // register.  If not, we record the DEF/KILL in _reg_node, the
  2553   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2554   // "pinch point", a new Node that's in the graph but not in the block.
  2555   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2556   // We put the pinch point in _reg_node.  If there's already a pinch point
  2557   // we merely add an edge from the current DEF/KILL to the pinch point.
  2559   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2560   // put an edge from the pinch point to the USE.
  2562   // To be expedient, the _reg_node array is pre-allocated for the whole
  2563   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2564   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2565   // block.  Leftover node from some prior block is treated like a NULL (no
  2566   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2567   // it being in the current block.
  2568   bool fat_proj_seen = false;
  2569   uint last_safept = _bb_end-1;
  2570   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
  2571   Node* last_safept_node = end_node;
  2572   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2573     Node *n = b->_nodes[i];
  2574     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2575     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2576       // Fat-proj kills a slew of registers
  2577       // This can add edges to 'n' and obscure whether or not it was a def,
  2578       // hence the is_def flag.
  2579       fat_proj_seen = true;
  2580       RegMask rm = n->out_RegMask();// Make local copy
  2581       while( rm.is_NotEmpty() ) {
  2582         OptoReg::Name kill = rm.find_first_elem();
  2583         rm.Remove(kill);
  2584         anti_do_def( b, n, kill, is_def );
  2586     } else {
  2587       // Get DEF'd registers the normal way
  2588       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2589       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2592     // Check each register used by this instruction for a following DEF/KILL
  2593     // that must occur afterward and requires an anti-dependence edge.
  2594     for( uint j=0; j<n->req(); j++ ) {
  2595       Node *def = n->in(j);
  2596       if( def ) {
  2597         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2598         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2599         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2602     // Do not allow defs of new derived values to float above GC
  2603     // points unless the base is definitely available at the GC point.
  2605     Node *m = b->_nodes[i];
  2607     // Add precedence edge from following safepoint to use of derived pointer
  2608     if( last_safept_node != end_node &&
  2609         m != last_safept_node) {
  2610       for (uint k = 1; k < m->req(); k++) {
  2611         const Type *t = m->in(k)->bottom_type();
  2612         if( t->isa_oop_ptr() &&
  2613             t->is_ptr()->offset() != 0 ) {
  2614           last_safept_node->add_prec( m );
  2615           break;
  2620     if( n->jvms() ) {           // Precedence edge from derived to safept
  2621       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2622       if( b->_nodes[last_safept] != last_safept_node ) {
  2623         last_safept = b->find_node(last_safept_node);
  2625       for( uint j=last_safept; j > i; j-- ) {
  2626         Node *mach = b->_nodes[j];
  2627         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2628           mach->add_prec( n );
  2630       last_safept = i;
  2631       last_safept_node = m;
  2635   if (fat_proj_seen) {
  2636     // Garbage collect pinch nodes that were not consumed.
  2637     // They are usually created by a fat kill MachProj for a call.
  2638     garbage_collect_pinch_nodes();
  2642 //------------------------------garbage_collect_pinch_nodes-------------------------------
  2644 // Garbage collect pinch nodes for reuse by other blocks.
  2645 //
  2646 // The block scheduler's insertion of anti-dependence
  2647 // edges creates many pinch nodes when the block contains
  2648 // 2 or more Calls.  A pinch node is used to prevent a
  2649 // combinatorial explosion of edges.  If a set of kills for a
  2650 // register is anti-dependent on a set of uses (or defs), rather
  2651 // than adding an edge in the graph between each pair of kill
  2652 // and use (or def), a pinch is inserted between them:
  2653 //
  2654 //            use1   use2  use3
  2655 //                \   |   /
  2656 //                 \  |  /
  2657 //                  pinch
  2658 //                 /  |  \
  2659 //                /   |   \
  2660 //            kill1 kill2 kill3
  2661 //
  2662 // One pinch node is created per register killed when
  2663 // the second call is encountered during a backwards pass
  2664 // over the block.  Most of these pinch nodes are never
  2665 // wired into the graph because the register is never
  2666 // used or def'ed in the block.
  2667 //
  2668 void Scheduling::garbage_collect_pinch_nodes() {
  2669 #ifndef PRODUCT
  2670     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2671 #endif
  2672     int trace_cnt = 0;
  2673     for (uint k = 0; k < _reg_node.Size(); k++) {
  2674       Node* pinch = _reg_node[k];
  2675       if (pinch != NULL && pinch->Opcode() == Op_Node &&
  2676           // no predecence input edges
  2677           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2678         cleanup_pinch(pinch);
  2679         _pinch_free_list.push(pinch);
  2680         _reg_node.map(k, NULL);
  2681 #ifndef PRODUCT
  2682         if (_cfg->C->trace_opto_output()) {
  2683           trace_cnt++;
  2684           if (trace_cnt > 40) {
  2685             tty->print("\n");
  2686             trace_cnt = 0;
  2688           tty->print(" %d", pinch->_idx);
  2690 #endif
  2693 #ifndef PRODUCT
  2694     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2695 #endif
  2698 // Clean up a pinch node for reuse.
  2699 void Scheduling::cleanup_pinch( Node *pinch ) {
  2700   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2702   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2703     Node* use = pinch->last_out(i);
  2704     uint uses_found = 0;
  2705     for (uint j = use->req(); j < use->len(); j++) {
  2706       if (use->in(j) == pinch) {
  2707         use->rm_prec(j);
  2708         uses_found++;
  2711     assert(uses_found > 0, "must be a precedence edge");
  2712     i -= uses_found;    // we deleted 1 or more copies of this edge
  2714   // May have a later_def entry
  2715   pinch->set_req(0, NULL);
  2718 //------------------------------print_statistics-------------------------------
  2719 #ifndef PRODUCT
  2721 void Scheduling::dump_available() const {
  2722   tty->print("#Availist  ");
  2723   for (uint i = 0; i < _available.size(); i++)
  2724     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2725   tty->cr();
  2728 // Print Scheduling Statistics
  2729 void Scheduling::print_statistics() {
  2730   // Print the size added by nops for bundling
  2731   tty->print("Nops added %d bytes to total of %d bytes",
  2732     _total_nop_size, _total_method_size);
  2733   if (_total_method_size > 0)
  2734     tty->print(", for %.2f%%",
  2735       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2736   tty->print("\n");
  2738   // Print the number of branch shadows filled
  2739   if (Pipeline::_branch_has_delay_slot) {
  2740     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2741       _total_branches, _total_unconditional_delays);
  2742     if (_total_branches > 0)
  2743       tty->print(", for %.2f%%",
  2744         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2745     tty->print("\n");
  2748   uint total_instructions = 0, total_bundles = 0;
  2750   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2751     uint bundle_count   = _total_instructions_per_bundle[i];
  2752     total_instructions += bundle_count * i;
  2753     total_bundles      += bundle_count;
  2756   if (total_bundles > 0)
  2757     tty->print("Average ILP (excluding nops) is %.2f\n",
  2758       ((double)total_instructions) / ((double)total_bundles));
  2760 #endif

mercurial