src/share/vm/adlc/formssel.cpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 850
4d9884b01ba6
child 910
284d0af00d53
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena) {
    34       _ftype = Form::INS;
    36       _matrule   = NULL;
    37       _insencode = NULL;
    38       _opcode    = NULL;
    39       _size      = NULL;
    40       _attribs   = NULL;
    41       _predicate = NULL;
    42       _exprule   = NULL;
    43       _rewrule   = NULL;
    44       _format    = NULL;
    45       _peephole  = NULL;
    46       _ins_pipe  = NULL;
    47       _uniq_idx  = NULL;
    48       _num_uniq  = 0;
    49       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    50       _cisc_spill_alternate = NULL;            // possible cisc replacement
    51       _cisc_reg_mask_name = NULL;
    52       _is_cisc_alternate = false;
    53       _is_short_branch = false;
    54       _short_branch_form = NULL;
    55       _alignment = 1;
    56 }
    58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    59   : _ident(id), _ideal_only(false),
    60     _localNames(instr->_localNames),
    61     _effects(instr->_effects) {
    62       _ftype = Form::INS;
    64       _matrule   = rule;
    65       _insencode = instr->_insencode;
    66       _opcode    = instr->_opcode;
    67       _size      = instr->_size;
    68       _attribs   = instr->_attribs;
    69       _predicate = instr->_predicate;
    70       _exprule   = instr->_exprule;
    71       _rewrule   = instr->_rewrule;
    72       _format    = instr->_format;
    73       _peephole  = instr->_peephole;
    74       _ins_pipe  = instr->_ins_pipe;
    75       _uniq_idx  = instr->_uniq_idx;
    76       _num_uniq  = instr->_num_uniq;
    77       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    78       _cisc_spill_alternate = NULL;            // possible cisc replacement
    79       _cisc_reg_mask_name = NULL;
    80       _is_cisc_alternate = false;
    81       _is_short_branch = false;
    82       _short_branch_form = NULL;
    83       _alignment = 1;
    84      // Copy parameters
    85      const char *name;
    86      instr->_parameters.reset();
    87      for (; (name = instr->_parameters.iter()) != NULL;)
    88        _parameters.addName(name);
    89 }
    91 InstructForm::~InstructForm() {
    92 }
    94 InstructForm *InstructForm::is_instruction() const {
    95   return (InstructForm*)this;
    96 }
    98 bool InstructForm::ideal_only() const {
    99   return _ideal_only;
   100 }
   102 bool InstructForm::sets_result() const {
   103   return (_matrule != NULL && _matrule->sets_result());
   104 }
   106 bool InstructForm::needs_projections() {
   107   _components.reset();
   108   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   109     if (comp->isa(Component::KILL)) {
   110       return true;
   111     }
   112   }
   113   return false;
   114 }
   117 bool InstructForm::has_temps() {
   118   if (_matrule) {
   119     // Examine each component to see if it is a TEMP
   120     _components.reset();
   121     // Skip the first component, if already handled as (SET dst (...))
   122     Component *comp = NULL;
   123     if (sets_result())  comp = _components.iter();
   124     while ((comp = _components.iter()) != NULL) {
   125       if (comp->isa(Component::TEMP)) {
   126         return true;
   127       }
   128     }
   129   }
   131   return false;
   132 }
   134 uint InstructForm::num_defs_or_kills() {
   135   uint   defs_or_kills = 0;
   137   _components.reset();
   138   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   139     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   140       ++defs_or_kills;
   141     }
   142   }
   144   return  defs_or_kills;
   145 }
   147 // This instruction has an expand rule?
   148 bool InstructForm::expands() const {
   149   return ( _exprule != NULL );
   150 }
   152 // This instruction has a peephole rule?
   153 Peephole *InstructForm::peepholes() const {
   154   return _peephole;
   155 }
   157 // This instruction has a peephole rule?
   158 void InstructForm::append_peephole(Peephole *peephole) {
   159   if( _peephole == NULL ) {
   160     _peephole = peephole;
   161   } else {
   162     _peephole->append_peephole(peephole);
   163   }
   164 }
   167 // ideal opcode enumeration
   168 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   169   if( !_matrule ) return "Node"; // Something weird
   170   // Chain rules do not really have ideal Opcodes; use their source
   171   // operand ideal Opcode instead.
   172   if( is_simple_chain_rule(globalNames) ) {
   173     const char *src = _matrule->_rChild->_opType;
   174     OperandForm *src_op = globalNames[src]->is_operand();
   175     assert( src_op, "Not operand class of chain rule" );
   176     if( !src_op->_matrule ) return "Node";
   177     return src_op->_matrule->_opType;
   178   }
   179   // Operand chain rules do not really have ideal Opcodes
   180   if( _matrule->is_chain_rule(globalNames) )
   181     return "Node";
   182   return strcmp(_matrule->_opType,"Set")
   183     ? _matrule->_opType
   184     : _matrule->_rChild->_opType;
   185 }
   187 // Recursive check on all operands' match rules in my match rule
   188 bool InstructForm::is_pinned(FormDict &globals) {
   189   if ( ! _matrule)  return false;
   191   int  index   = 0;
   192   if (_matrule->find_type("Goto",          index)) return true;
   193   if (_matrule->find_type("If",            index)) return true;
   194   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   195   if (_matrule->find_type("Return",        index)) return true;
   196   if (_matrule->find_type("Rethrow",       index)) return true;
   197   if (_matrule->find_type("TailCall",      index)) return true;
   198   if (_matrule->find_type("TailJump",      index)) return true;
   199   if (_matrule->find_type("Halt",          index)) return true;
   200   if (_matrule->find_type("Jump",          index)) return true;
   202   return is_parm(globals);
   203 }
   205 // Recursive check on all operands' match rules in my match rule
   206 bool InstructForm::is_projection(FormDict &globals) {
   207   if ( ! _matrule)  return false;
   209   int  index   = 0;
   210   if (_matrule->find_type("Goto",    index)) return true;
   211   if (_matrule->find_type("Return",  index)) return true;
   212   if (_matrule->find_type("Rethrow", index)) return true;
   213   if (_matrule->find_type("TailCall",index)) return true;
   214   if (_matrule->find_type("TailJump",index)) return true;
   215   if (_matrule->find_type("Halt",    index)) return true;
   217   return false;
   218 }
   220 // Recursive check on all operands' match rules in my match rule
   221 bool InstructForm::is_parm(FormDict &globals) {
   222   if ( ! _matrule)  return false;
   224   int  index   = 0;
   225   if (_matrule->find_type("Parm",index)) return true;
   227   return false;
   228 }
   231 // Return 'true' if this instruction matches an ideal 'Copy*' node
   232 int InstructForm::is_ideal_copy() const {
   233   return _matrule ? _matrule->is_ideal_copy() : 0;
   234 }
   236 // Return 'true' if this instruction is too complex to rematerialize.
   237 int InstructForm::is_expensive() const {
   238   // We can prove it is cheap if it has an empty encoding.
   239   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   240   if (is_empty_encoding())
   241     return 0;
   243   if (is_tls_instruction())
   244     return 1;
   246   if (_matrule == NULL)  return 0;
   248   return _matrule->is_expensive();
   249 }
   251 // Has an empty encoding if _size is a constant zero or there
   252 // are no ins_encode tokens.
   253 int InstructForm::is_empty_encoding() const {
   254   if (_insencode != NULL) {
   255     _insencode->reset();
   256     if (_insencode->encode_class_iter() == NULL) {
   257       return 1;
   258     }
   259   }
   260   if (_size != NULL && strcmp(_size, "0") == 0) {
   261     return 1;
   262   }
   263   return 0;
   264 }
   266 int InstructForm::is_tls_instruction() const {
   267   if (_ident != NULL &&
   268       ( ! strcmp( _ident,"tlsLoadP") ||
   269         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   270     return 1;
   271   }
   273   if (_matrule != NULL && _insencode != NULL) {
   274     const char* opType = _matrule->_opType;
   275     if (strcmp(opType, "Set")==0)
   276       opType = _matrule->_rChild->_opType;
   277     if (strcmp(opType,"ThreadLocal")==0) {
   278       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   279               (_ident == NULL ? "NULL" : _ident));
   280       return 1;
   281     }
   282   }
   284   return 0;
   285 }
   288 // Return 'true' if this instruction matches an ideal 'Copy*' node
   289 bool InstructForm::is_ideal_unlock() const {
   290   return _matrule ? _matrule->is_ideal_unlock() : false;
   291 }
   293 bool InstructForm::is_ideal_call_leaf() const {
   294   return _matrule ? _matrule->is_ideal_call_leaf() : false;
   295 }
   297 // Return 'true' if this instruction matches an ideal 'If' node
   298 bool InstructForm::is_ideal_if() const {
   299   if( _matrule == NULL ) return false;
   301   return _matrule->is_ideal_if();
   302 }
   304 // Return 'true' if this instruction matches an ideal 'FastLock' node
   305 bool InstructForm::is_ideal_fastlock() const {
   306   if( _matrule == NULL ) return false;
   308   return _matrule->is_ideal_fastlock();
   309 }
   311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   312 bool InstructForm::is_ideal_membar() const {
   313   if( _matrule == NULL ) return false;
   315   return _matrule->is_ideal_membar();
   316 }
   318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   319 bool InstructForm::is_ideal_loadPC() const {
   320   if( _matrule == NULL ) return false;
   322   return _matrule->is_ideal_loadPC();
   323 }
   325 // Return 'true' if this instruction matches an ideal 'Box' node
   326 bool InstructForm::is_ideal_box() const {
   327   if( _matrule == NULL ) return false;
   329   return _matrule->is_ideal_box();
   330 }
   332 // Return 'true' if this instruction matches an ideal 'Goto' node
   333 bool InstructForm::is_ideal_goto() const {
   334   if( _matrule == NULL ) return false;
   336   return _matrule->is_ideal_goto();
   337 }
   339 // Return 'true' if this instruction matches an ideal 'Jump' node
   340 bool InstructForm::is_ideal_jump() const {
   341   if( _matrule == NULL ) return false;
   343   return _matrule->is_ideal_jump();
   344 }
   346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
   347 //                    'CountedLoopEnd' | 'Jump'
   348 bool InstructForm::is_ideal_branch() const {
   349   if( _matrule == NULL ) return false;
   351   return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
   352 }
   355 // Return 'true' if this instruction matches an ideal 'Return' node
   356 bool InstructForm::is_ideal_return() const {
   357   if( _matrule == NULL ) return false;
   359   // Check MatchRule to see if the first entry is the ideal "Return" node
   360   int  index   = 0;
   361   if (_matrule->find_type("Return",index)) return true;
   362   if (_matrule->find_type("Rethrow",index)) return true;
   363   if (_matrule->find_type("TailCall",index)) return true;
   364   if (_matrule->find_type("TailJump",index)) return true;
   366   return false;
   367 }
   369 // Return 'true' if this instruction matches an ideal 'Halt' node
   370 bool InstructForm::is_ideal_halt() const {
   371   int  index   = 0;
   372   return _matrule && _matrule->find_type("Halt",index);
   373 }
   375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   376 bool InstructForm::is_ideal_safepoint() const {
   377   int  index   = 0;
   378   return _matrule && _matrule->find_type("SafePoint",index);
   379 }
   381 // Return 'true' if this instruction matches an ideal 'Nop' node
   382 bool InstructForm::is_ideal_nop() const {
   383   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   384 }
   386 bool InstructForm::is_ideal_control() const {
   387   if ( ! _matrule)  return false;
   389   return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
   390 }
   392 // Return 'true' if this instruction matches an ideal 'Call' node
   393 Form::CallType InstructForm::is_ideal_call() const {
   394   if( _matrule == NULL ) return Form::invalid_type;
   396   // Check MatchRule to see if the first entry is the ideal "Call" node
   397   int  idx   = 0;
   398   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   399   idx = 0;
   400   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   401   idx = 0;
   402   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   403   idx = 0;
   404   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   405   idx = 0;
   406   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   407   idx = 0;
   408   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   409   idx = 0;
   410   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   411   idx = 0;
   413   return Form::invalid_type;
   414 }
   416 // Return 'true' if this instruction matches an ideal 'Load?' node
   417 Form::DataType InstructForm::is_ideal_load() const {
   418   if( _matrule == NULL ) return Form::none;
   420   return  _matrule->is_ideal_load();
   421 }
   423 // Return 'true' if this instruction matches an ideal 'Load?' node
   424 Form::DataType InstructForm::is_ideal_store() const {
   425   if( _matrule == NULL ) return Form::none;
   427   return  _matrule->is_ideal_store();
   428 }
   430 // Return the input register that must match the output register
   431 // If this is not required, return 0
   432 uint InstructForm::two_address(FormDict &globals) {
   433   uint  matching_input = 0;
   434   if(_components.count() == 0) return 0;
   436   _components.reset();
   437   Component *comp = _components.iter();
   438   // Check if there is a DEF
   439   if( comp->isa(Component::DEF) ) {
   440     // Check that this is a register
   441     const char  *def_type = comp->_type;
   442     const Form  *form     = globals[def_type];
   443     OperandForm *op       = form->is_operand();
   444     if( op ) {
   445       if( op->constrained_reg_class() != NULL &&
   446           op->interface_type(globals) == Form::register_interface ) {
   447         // Remember the local name for equality test later
   448         const char *def_name = comp->_name;
   449         // Check if a component has the same name and is a USE
   450         do {
   451           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   452             return operand_position_format(def_name);
   453           }
   454         } while( (comp = _components.iter()) != NULL);
   455       }
   456     }
   457   }
   459   return 0;
   460 }
   463 // when chaining a constant to an instruction, returns 'true' and sets opType
   464 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   465   const char *dummy  = NULL;
   466   const char *dummy2 = NULL;
   467   return is_chain_of_constant(globals, dummy, dummy2);
   468 }
   469 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   470                 const char * &opTypeParam) {
   471   const char *result = NULL;
   473   return is_chain_of_constant(globals, opTypeParam, result);
   474 }
   476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   477                 const char * &opTypeParam, const char * &resultParam) {
   478   Form::DataType  data_type = Form::none;
   479   if ( ! _matrule)  return data_type;
   481   // !!!!!
   482   // The source of the chain rule is 'position = 1'
   483   uint         position = 1;
   484   const char  *result   = NULL;
   485   const char  *name     = NULL;
   486   const char  *opType   = NULL;
   487   // Here base_operand is looking for an ideal type to be returned (opType).
   488   if ( _matrule->is_chain_rule(globals)
   489        && _matrule->base_operand(position, globals, result, name, opType) ) {
   490     data_type = ideal_to_const_type(opType);
   492     // if it isn't an ideal constant type, just return
   493     if ( data_type == Form::none ) return data_type;
   495     // Ideal constant types also adjust the opType parameter.
   496     resultParam = result;
   497     opTypeParam = opType;
   498     return data_type;
   499   }
   501   return data_type;
   502 }
   504 // Check if a simple chain rule
   505 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   506   if( _matrule && _matrule->sets_result()
   507       && _matrule->_rChild->_lChild == NULL
   508       && globals[_matrule->_rChild->_opType]
   509       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   510     return true;
   511   }
   512   return false;
   513 }
   515 // check for structural rematerialization
   516 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   517   bool   rematerialize = false;
   519   Form::DataType data_type = is_chain_of_constant(globals);
   520   if( data_type != Form::none )
   521     rematerialize = true;
   523   // Constants
   524   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   525     rematerialize = true;
   527   // Pseudo-constants (values easily available to the runtime)
   528   if (is_empty_encoding() && is_tls_instruction())
   529     rematerialize = true;
   531   // 1-input, 1-output, such as copies or increments.
   532   if( _components.count() == 2 &&
   533       _components[0]->is(Component::DEF) &&
   534       _components[1]->isa(Component::USE) )
   535     rematerialize = true;
   537   // Check for an ideal 'Load?' and eliminate rematerialize option
   538   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   539        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   540        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   541     rematerialize = false;
   542   }
   544   // Always rematerialize the flags.  They are more expensive to save &
   545   // restore than to recompute (and possibly spill the compare's inputs).
   546   if( _components.count() >= 1 ) {
   547     Component *c = _components[0];
   548     const Form *form = globals[c->_type];
   549     OperandForm *opform = form->is_operand();
   550     if( opform ) {
   551       // Avoid the special stack_slots register classes
   552       const char *rc_name = opform->constrained_reg_class();
   553       if( rc_name ) {
   554         if( strcmp(rc_name,"stack_slots") ) {
   555           // Check for ideal_type of RegFlags
   556           const char *type = opform->ideal_type( globals, registers );
   557           if( !strcmp(type,"RegFlags") )
   558             rematerialize = true;
   559         } else
   560           rematerialize = false; // Do not rematerialize things target stk
   561       }
   562     }
   563   }
   565   return rematerialize;
   566 }
   568 // loads from memory, so must check for anti-dependence
   569 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   570   // Machine independent loads must be checked for anti-dependences
   571   if( is_ideal_load() != Form::none )  return true;
   573   // !!!!! !!!!! !!!!!
   574   // TEMPORARY
   575   // if( is_simple_chain_rule(globals) )  return false;
   577   // String-compare uses many memorys edges, but writes none
   578   if( _matrule && _matrule->_rChild &&
   579       strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
   580     return true;
   582   // Check if instruction has a USE of a memory operand class, but no defs
   583   bool USE_of_memory  = false;
   584   bool DEF_of_memory  = false;
   585   Component     *comp = NULL;
   586   ComponentList &components = (ComponentList &)_components;
   588   components.reset();
   589   while( (comp = components.iter()) != NULL ) {
   590     const Form  *form = globals[comp->_type];
   591     if( !form ) continue;
   592     OpClassForm *op   = form->is_opclass();
   593     if( !op ) continue;
   594     if( form->interface_type(globals) == Form::memory_interface ) {
   595       if( comp->isa(Component::USE) ) USE_of_memory = true;
   596       if( comp->isa(Component::DEF) ) {
   597         OperandForm *oper = form->is_operand();
   598         if( oper && oper->is_user_name_for_sReg() ) {
   599           // Stack slots are unaliased memory handled by allocator
   600           oper = oper;  // debug stopping point !!!!!
   601         } else {
   602           DEF_of_memory = true;
   603         }
   604       }
   605     }
   606   }
   607   return (USE_of_memory && !DEF_of_memory);
   608 }
   611 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   612   if( _matrule == NULL ) return false;
   613   if( !_matrule->_opType ) return false;
   615   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   616   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   618   return false;
   619 }
   621 int InstructForm::memory_operand(FormDict &globals) const {
   622   // Machine independent loads must be checked for anti-dependences
   623   // Check if instruction has a USE of a memory operand class, or a def.
   624   int USE_of_memory  = 0;
   625   int DEF_of_memory  = 0;
   626   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   627   Component     *unique          = NULL;
   628   Component     *comp            = NULL;
   629   ComponentList &components      = (ComponentList &)_components;
   631   components.reset();
   632   while( (comp = components.iter()) != NULL ) {
   633     const Form  *form = globals[comp->_type];
   634     if( !form ) continue;
   635     OpClassForm *op   = form->is_opclass();
   636     if( !op ) continue;
   637     if( op->stack_slots_only(globals) )  continue;
   638     if( form->interface_type(globals) == Form::memory_interface ) {
   639       if( comp->isa(Component::DEF) ) {
   640         last_memory_DEF = comp->_name;
   641         DEF_of_memory++;
   642         unique = comp;
   643       } else if( comp->isa(Component::USE) ) {
   644         if( last_memory_DEF != NULL ) {
   645           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   646           last_memory_DEF = NULL;
   647         }
   648         USE_of_memory++;
   649         if (DEF_of_memory == 0)  // defs take precedence
   650           unique = comp;
   651       } else {
   652         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   653       }
   654     }
   655   }
   656   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   657   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   658   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   659   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   660     if( is_simple_chain_rule(globals) ) {
   661       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   662       //((InstructForm*)this)->dump();
   663       // Preceding code prints nothing on sparc and these insns on intel:
   664       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   665       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   666       return NO_MEMORY_OPERAND;
   667     }
   669     if( DEF_of_memory == 1 ) {
   670       assert(unique != NULL, "");
   671       if( USE_of_memory == 0 ) {
   672         // unique def, no uses
   673       } else {
   674         // // unique def, some uses
   675         // // must return bottom unless all uses match def
   676         // unique = NULL;
   677       }
   678     } else if( DEF_of_memory > 0 ) {
   679       // multiple defs, don't care about uses
   680       unique = NULL;
   681     } else if( USE_of_memory == 1) {
   682       // unique use, no defs
   683       assert(unique != NULL, "");
   684     } else if( USE_of_memory > 0 ) {
   685       // multiple uses, no defs
   686       unique = NULL;
   687     } else {
   688       assert(false, "bad case analysis");
   689     }
   690     // process the unique DEF or USE, if there is one
   691     if( unique == NULL ) {
   692       return MANY_MEMORY_OPERANDS;
   693     } else {
   694       int pos = components.operand_position(unique->_name);
   695       if( unique->isa(Component::DEF) ) {
   696         pos += 1;                // get corresponding USE from DEF
   697       }
   698       assert(pos >= 1, "I was just looking at it!");
   699       return pos;
   700     }
   701   }
   703   // missed the memory op??
   704   if( true ) {  // %%% should not be necessary
   705     if( is_ideal_store() != Form::none ) {
   706       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   707       ((InstructForm*)this)->dump();
   708       // pretend it has multiple defs and uses
   709       return MANY_MEMORY_OPERANDS;
   710     }
   711     if( is_ideal_load()  != Form::none ) {
   712       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   713       ((InstructForm*)this)->dump();
   714       // pretend it has multiple uses and no defs
   715       return MANY_MEMORY_OPERANDS;
   716     }
   717   }
   719   return NO_MEMORY_OPERAND;
   720 }
   723 // This instruction captures the machine-independent bottom_type
   724 // Expected use is for pointer vs oop determination for LoadP
   725 bool InstructForm::captures_bottom_type() const {
   726   if( _matrule && _matrule->_rChild &&
   727        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
   728         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
   729         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
   730         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
   731         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
   732         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
   733         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
   734         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
   735   else if ( is_ideal_load() == Form::idealP )                return true;
   736   else if ( is_ideal_store() != Form::none  )                return true;
   738   return  false;
   739 }
   742 // Access instr_cost attribute or return NULL.
   743 const char* InstructForm::cost() {
   744   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   745     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   746       return cur->_val;
   747     }
   748   }
   749   return NULL;
   750 }
   752 // Return count of top-level operands.
   753 uint InstructForm::num_opnds() {
   754   int  num_opnds = _components.num_operands();
   756   // Need special handling for matching some ideal nodes
   757   // i.e. Matching a return node
   758   /*
   759   if( _matrule ) {
   760     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   761         strcmp(_matrule->_opType,"Halt"     )==0 )
   762       return 3;
   763   }
   764     */
   765   return num_opnds;
   766 }
   768 // Return count of unmatched operands.
   769 uint InstructForm::num_post_match_opnds() {
   770   uint  num_post_match_opnds = _components.count();
   771   uint  num_match_opnds = _components.match_count();
   772   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   774   return num_post_match_opnds;
   775 }
   777 // Return the number of leaves below this complex operand
   778 uint InstructForm::num_consts(FormDict &globals) const {
   779   if ( ! _matrule) return 0;
   781   // This is a recursive invocation on all operands in the matchrule
   782   return _matrule->num_consts(globals);
   783 }
   785 // Constants in match rule with specified type
   786 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   787   if ( ! _matrule) return 0;
   789   // This is a recursive invocation on all operands in the matchrule
   790   return _matrule->num_consts(globals, type);
   791 }
   794 // Return the register class associated with 'leaf'.
   795 const char *InstructForm::out_reg_class(FormDict &globals) {
   796   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   798   return NULL;
   799 }
   803 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   804 uint InstructForm::oper_input_base(FormDict &globals) {
   805   if( !_matrule ) return 1;     // Skip control for most nodes
   807   // Need special handling for matching some ideal nodes
   808   // i.e. Matching a return node
   809   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   810       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   811       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   812       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   813       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   814       strcmp(_matrule->_opType,"Halt"      )==0 )
   815     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   817   if( _matrule->_rChild &&
   818           strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
   819         // String compare takes 1 control and 4 memory edges.
   820     return 5;
   821   }
   823   // Check for handling of 'Memory' input/edge in the ideal world.
   824   // The AD file writer is shielded from knowledge of these edges.
   825   int base = 1;                 // Skip control
   826   base += _matrule->needs_ideal_memory_edge(globals);
   828   // Also skip the base-oop value for uses of derived oops.
   829   // The AD file writer is shielded from knowledge of these edges.
   830   base += needs_base_oop_edge(globals);
   832   return base;
   833 }
   835 // Implementation does not modify state of internal structures
   836 void InstructForm::build_components() {
   837   // Add top-level operands to the components
   838   if (_matrule)  _matrule->append_components(_localNames, _components);
   840   // Add parameters that "do not appear in match rule".
   841   bool has_temp = false;
   842   const char *name;
   843   const char *kill_name = NULL;
   844   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   845     OperandForm *opForm = (OperandForm*)_localNames[name];
   847     const Form *form = _effects[name];
   848     Effect     *e    = form ? form->is_effect() : NULL;
   849     if (e != NULL) {
   850       has_temp |= e->is(Component::TEMP);
   852       // KILLs must be declared after any TEMPs because TEMPs are real
   853       // uses so their operand numbering must directly follow the real
   854       // inputs from the match rule.  Fixing the numbering seems
   855       // complex so simply enforce the restriction during parse.
   856       if (kill_name != NULL &&
   857           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   858         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   859         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   860                              _ident, kill->_ident, kill_name);
   861       } else if (e->isa(Component::KILL)) {
   862         kill_name = name;
   863       }
   865       // TEMPs are real uses and need to be among the first parameters
   866       // listed, otherwise the numbering of operands and inputs gets
   867       // screwy, so enforce this restriction during parse.
   868       if (kill_name != NULL &&
   869           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   870         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   871         globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
   872                              _ident, kill->_ident, kill_name, opForm->_ident, name);
   873       } else if (e->isa(Component::KILL)) {
   874         kill_name = name;
   875       }
   876     }
   878     const Component *component  = _components.search(name);
   879     if ( component  == NULL ) {
   880       if (e) {
   881         _components.insert(name, opForm->_ident, e->_use_def, false);
   882         component = _components.search(name);
   883         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   884           const Form *form = globalAD->globalNames()[component->_type];
   885           assert( form, "component type must be a defined form");
   886           OperandForm *op   = form->is_operand();
   887           if (op->_interface && op->_interface->is_RegInterface()) {
   888             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   889                                  _ident, opForm->_ident, name);
   890           }
   891         }
   892       } else {
   893         // This would be a nice warning but it triggers in a few places in a benign way
   894         // if (_matrule != NULL && !expands()) {
   895         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   896         //                        _ident, opForm->_ident, name);
   897         // }
   898         _components.insert(name, opForm->_ident, Component::INVALID, false);
   899       }
   900     }
   901     else if (e) {
   902       // Component was found in the list
   903       // Check if there is a new effect that requires an extra component.
   904       // This happens when adding 'USE' to a component that is not yet one.
   905       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   906         if (component->isa(Component::USE) && _matrule) {
   907           const Form *form = globalAD->globalNames()[component->_type];
   908           assert( form, "component type must be a defined form");
   909           OperandForm *op   = form->is_operand();
   910           if (op->_interface && op->_interface->is_RegInterface()) {
   911             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   912                                  _ident, opForm->_ident, name);
   913           }
   914         }
   915         _components.insert(name, opForm->_ident, e->_use_def, false);
   916       } else {
   917         Component  *comp = (Component*)component;
   918         comp->promote_use_def_info(e->_use_def);
   919       }
   920       // Component positions are zero based.
   921       int  pos  = _components.operand_position(name);
   922       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   923               "Component::DEF can only occur in the first position");
   924     }
   925   }
   927   // Resolving the interactions between expand rules and TEMPs would
   928   // be complex so simply disallow it.
   929   if (_matrule == NULL && has_temp) {
   930     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   931   }
   933   return;
   934 }
   936 // Return zero-based position in component list;  -1 if not in list.
   937 int   InstructForm::operand_position(const char *name, int usedef) {
   938   return unique_opnds_idx(_components.operand_position(name, usedef));
   939 }
   941 int   InstructForm::operand_position_format(const char *name) {
   942   return unique_opnds_idx(_components.operand_position_format(name));
   943 }
   945 // Return zero-based position in component list; -1 if not in list.
   946 int   InstructForm::label_position() {
   947   return unique_opnds_idx(_components.label_position());
   948 }
   950 int   InstructForm::method_position() {
   951   return unique_opnds_idx(_components.method_position());
   952 }
   954 // Return number of relocation entries needed for this instruction.
   955 uint  InstructForm::reloc(FormDict &globals) {
   956   uint reloc_entries  = 0;
   957   // Check for "Call" nodes
   958   if ( is_ideal_call() )      ++reloc_entries;
   959   if ( is_ideal_return() )    ++reloc_entries;
   960   if ( is_ideal_safepoint() ) ++reloc_entries;
   963   // Check if operands MAYBE oop pointers, by checking for ConP elements
   964   // Proceed through the leaves of the match-tree and check for ConPs
   965   if ( _matrule != NULL ) {
   966     uint         position = 0;
   967     const char  *result   = NULL;
   968     const char  *name     = NULL;
   969     const char  *opType   = NULL;
   970     while (_matrule->base_operand(position, globals, result, name, opType)) {
   971       if ( strcmp(opType,"ConP") == 0 ) {
   972 #ifdef SPARC
   973         reloc_entries += 2; // 1 for sethi + 1 for setlo
   974 #else
   975         ++reloc_entries;
   976 #endif
   977       }
   978       ++position;
   979     }
   980   }
   982   // Above is only a conservative estimate
   983   // because it did not check contents of operand classes.
   984   // !!!!! !!!!!
   985   // Add 1 to reloc info for each operand class in the component list.
   986   Component  *comp;
   987   _components.reset();
   988   while ( (comp = _components.iter()) != NULL ) {
   989     const Form        *form = globals[comp->_type];
   990     assert( form, "Did not find component's type in global names");
   991     const OpClassForm *opc  = form->is_opclass();
   992     const OperandForm *oper = form->is_operand();
   993     if ( opc && (oper == NULL) ) {
   994       ++reloc_entries;
   995     } else if ( oper ) {
   996       // floats and doubles loaded out of method's constant pool require reloc info
   997       Form::DataType type = oper->is_base_constant(globals);
   998       if ( (type == Form::idealF) || (type == Form::idealD) ) {
   999         ++reloc_entries;
  1004   // Float and Double constants may come from the CodeBuffer table
  1005   // and require relocatable addresses for access
  1006   // !!!!!
  1007   // Check for any component being an immediate float or double.
  1008   Form::DataType data_type = is_chain_of_constant(globals);
  1009   if( data_type==idealD || data_type==idealF ) {
  1010 #ifdef SPARC
  1011     // sparc required more relocation entries for floating constants
  1012     // (expires 9/98)
  1013     reloc_entries += 6;
  1014 #else
  1015     reloc_entries++;
  1016 #endif
  1019   return reloc_entries;
  1022 // Utility function defined in archDesc.cpp
  1023 extern bool is_def(int usedef);
  1025 // Return the result of reducing an instruction
  1026 const char *InstructForm::reduce_result() {
  1027   const char* result = "Universe";  // default
  1028   _components.reset();
  1029   Component *comp = _components.iter();
  1030   if (comp != NULL && comp->isa(Component::DEF)) {
  1031     result = comp->_type;
  1032     // Override this if the rule is a store operation:
  1033     if (_matrule && _matrule->_rChild &&
  1034         is_store_to_memory(_matrule->_rChild->_opType))
  1035       result = "Universe";
  1037   return result;
  1040 // Return the name of the operand on the right hand side of the binary match
  1041 // Return NULL if there is no right hand side
  1042 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1043   if( _matrule == NULL ) return NULL;
  1044   return  _matrule->reduce_right(globals);
  1047 // Similar for left
  1048 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1049   if( _matrule == NULL ) return NULL;
  1050   return  _matrule->reduce_left(globals);
  1054 // Base class for this instruction, MachNode except for calls
  1055 const char *InstructForm::mach_base_class()  const {
  1056   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1057     return "MachCallStaticJavaNode";
  1059   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1060     return "MachCallDynamicJavaNode";
  1062   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1063     return "MachCallRuntimeNode";
  1065   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1066     return "MachCallLeafNode";
  1068   else if (is_ideal_return()) {
  1069     return "MachReturnNode";
  1071   else if (is_ideal_halt()) {
  1072     return "MachHaltNode";
  1074   else if (is_ideal_safepoint()) {
  1075     return "MachSafePointNode";
  1077   else if (is_ideal_if()) {
  1078     return "MachIfNode";
  1080   else if (is_ideal_fastlock()) {
  1081     return "MachFastLockNode";
  1083   else if (is_ideal_nop()) {
  1084     return "MachNopNode";
  1086   else if (captures_bottom_type()) {
  1087     return "MachTypeNode";
  1088   } else {
  1089     return "MachNode";
  1091   assert( false, "ShouldNotReachHere()");
  1092   return NULL;
  1095 // Compare the instruction predicates for textual equality
  1096 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1097   const Predicate *pred1  = instr1->_predicate;
  1098   const Predicate *pred2  = instr2->_predicate;
  1099   if( pred1 == NULL && pred2 == NULL ) {
  1100     // no predicates means they are identical
  1101     return true;
  1103   if( pred1 != NULL && pred2 != NULL ) {
  1104     // compare the predicates
  1105     const char *str1 = pred1->_pred;
  1106     const char *str2 = pred2->_pred;
  1107     if( (str1 == NULL && str2 == NULL)
  1108         || (str1 != NULL && str2 != NULL && strcmp(str1,str2) == 0) ) {
  1109       return true;
  1113   return false;
  1116 // Check if this instruction can cisc-spill to 'alternate'
  1117 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1118   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1119   // Do not replace if a cisc-version has been found.
  1120   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1122   int         cisc_spill_operand = Maybe_cisc_spillable;
  1123   char       *result             = NULL;
  1124   char       *result2            = NULL;
  1125   const char *op_name            = NULL;
  1126   const char *reg_type           = NULL;
  1127   FormDict   &globals            = AD.globalNames();
  1128   cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1129   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1130     cisc_spill_operand = operand_position(op_name, Component::USE);
  1131     int def_oper  = operand_position(op_name, Component::DEF);
  1132     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1133       // Do not support cisc-spilling for destination operands and
  1134       // make sure they have the same number of operands.
  1135       _cisc_spill_alternate = instr;
  1136       instr->set_cisc_alternate(true);
  1137       if( AD._cisc_spill_debug ) {
  1138         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1139         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1141       // Record that a stack-version of the reg_mask is needed
  1142       // !!!!!
  1143       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1144       assert( oper != NULL, "cisc-spilling non operand");
  1145       const char *reg_class_name = oper->constrained_reg_class();
  1146       AD.set_stack_or_reg(reg_class_name);
  1147       const char *reg_mask_name  = AD.reg_mask(*oper);
  1148       set_cisc_reg_mask_name(reg_mask_name);
  1149       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1150     } else {
  1151       cisc_spill_operand = Not_cisc_spillable;
  1153   } else {
  1154     cisc_spill_operand = Not_cisc_spillable;
  1157   set_cisc_spill_operand(cisc_spill_operand);
  1158   return (cisc_spill_operand != Not_cisc_spillable);
  1161 // Check to see if this instruction can be replaced with the short branch
  1162 // instruction `short-branch'
  1163 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1164   if (_matrule != NULL &&
  1165       this != short_branch &&   // Don't match myself
  1166       !is_short_branch() &&     // Don't match another short branch variant
  1167       reduce_result() != NULL &&
  1168       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1169       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1170     // The instructions are equivalent.
  1171     if (AD._short_branch_debug) {
  1172       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1174     _short_branch_form = short_branch;
  1175     return true;
  1177   return false;
  1181 // --------------------------- FILE *output_routines
  1182 //
  1183 // Generate the format call for the replacement variable
  1184 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1185   // Find replacement variable's type
  1186   const Form *form   = _localNames[rep_var];
  1187   if (form == NULL) {
  1188     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
  1189     assert(false, "ShouldNotReachHere()");
  1191   OpClassForm *opc   = form->is_opclass();
  1192   assert( opc, "replacement variable was not found in local names");
  1193   // Lookup the index position of the replacement variable
  1194   int idx  = operand_position_format(rep_var);
  1195   if ( idx == -1 ) {
  1196     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
  1197     assert( false, "ShouldNotReachHere()");
  1200   if (is_noninput_operand(idx)) {
  1201     // This component isn't in the input array.  Print out the static
  1202     // name of the register.
  1203     OperandForm* oper = form->is_operand();
  1204     if (oper != NULL && oper->is_bound_register()) {
  1205       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1206       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
  1207     } else {
  1208       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1210   } else {
  1211     // Output the format call for this operand
  1212     fprintf(fp,"opnd_array(%d)->",idx);
  1213     if (idx == 0)
  1214       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1215     else
  1216       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1220 // Seach through operands to determine parameters unique positions.
  1221 void InstructForm::set_unique_opnds() {
  1222   uint* uniq_idx = NULL;
  1223   uint  nopnds = num_opnds();
  1224   uint  num_uniq = nopnds;
  1225   uint i;
  1226   if ( nopnds > 0 ) {
  1227     // Allocate index array with reserve.
  1228     uniq_idx = (uint*) malloc(sizeof(uint)*(nopnds + 2));
  1229     for( i = 0; i < nopnds+2; i++ ) {
  1230       uniq_idx[i] = i;
  1233   // Do it only if there is a match rule and no expand rule.  With an
  1234   // expand rule it is done by creating new mach node in Expand()
  1235   // method.
  1236   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
  1237     const char *name;
  1238     uint count;
  1239     bool has_dupl_use = false;
  1241     _parameters.reset();
  1242     while( (name = _parameters.iter()) != NULL ) {
  1243       count = 0;
  1244       uint position = 0;
  1245       uint uniq_position = 0;
  1246       _components.reset();
  1247       Component *comp = NULL;
  1248       if( sets_result() ) {
  1249         comp = _components.iter();
  1250         position++;
  1252       // The next code is copied from the method operand_position().
  1253       for (; (comp = _components.iter()) != NULL; ++position) {
  1254         // When the first component is not a DEF,
  1255         // leave space for the result operand!
  1256         if ( position==0 && (! comp->isa(Component::DEF)) ) {
  1257           ++position;
  1259         if( strcmp(name, comp->_name)==0 ) {
  1260           if( ++count > 1 ) {
  1261             uniq_idx[position] = uniq_position;
  1262             has_dupl_use = true;
  1263           } else {
  1264             uniq_position = position;
  1267         if( comp->isa(Component::DEF)
  1268             && comp->isa(Component::USE) ) {
  1269           ++position;
  1270           if( position != 1 )
  1271             --position;   // only use two slots for the 1st USE_DEF
  1275     if( has_dupl_use ) {
  1276       for( i = 1; i < nopnds; i++ )
  1277         if( i != uniq_idx[i] )
  1278           break;
  1279       int  j = i;
  1280       for( ; i < nopnds; i++ )
  1281         if( i == uniq_idx[i] )
  1282           uniq_idx[i] = j++;
  1283       num_uniq = j;
  1286   _uniq_idx = uniq_idx;
  1287   _num_uniq = num_uniq;
  1290 // Generate index values needed for determing the operand position
  1291 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1292   uint  idx = 0;                  // position of operand in match rule
  1293   int   cur_num_opnds = num_opnds();
  1295   // Compute the index into vector of operand pointers:
  1296   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1297   // idx1 starts at oper_input_base()
  1298   if ( cur_num_opnds >= 1 ) {
  1299     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
  1300     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1301     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
  1303     // Generate starting points for other unique operands if they exist
  1304     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1305       if( *receiver == 0 ) {
  1306         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
  1307                 prefix, idx, prefix, idx-1, idx-1 );
  1308       } else {
  1309         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
  1310                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1314   if( *receiver != 0 ) {
  1315     // This value is used by generate_peepreplace when copying a node.
  1316     // Don't emit it in other cases since it can hide bugs with the
  1317     // use invalid idx's.
  1318     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1323 // ---------------------------
  1324 bool InstructForm::verify() {
  1325   // !!!!! !!!!!
  1326   // Check that a "label" operand occurs last in the operand list, if present
  1327   return true;
  1330 void InstructForm::dump() {
  1331   output(stderr);
  1334 void InstructForm::output(FILE *fp) {
  1335   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1336   if (_matrule)   _matrule->output(fp);
  1337   if (_insencode) _insencode->output(fp);
  1338   if (_opcode)    _opcode->output(fp);
  1339   if (_attribs)   _attribs->output(fp);
  1340   if (_predicate) _predicate->output(fp);
  1341   if (_effects.Size()) {
  1342     fprintf(fp,"Effects\n");
  1343     _effects.dump();
  1345   if (_exprule)   _exprule->output(fp);
  1346   if (_rewrule)   _rewrule->output(fp);
  1347   if (_format)    _format->output(fp);
  1348   if (_peephole)  _peephole->output(fp);
  1351 void MachNodeForm::dump() {
  1352   output(stderr);
  1355 void MachNodeForm::output(FILE *fp) {
  1356   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1359 //------------------------------build_predicate--------------------------------
  1360 // Build instruction predicates.  If the user uses the same operand name
  1361 // twice, we need to check that the operands are pointer-eequivalent in
  1362 // the DFA during the labeling process.
  1363 Predicate *InstructForm::build_predicate() {
  1364   char buf[1024], *s=buf;
  1365   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1367   MatchNode *mnode =
  1368     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1369   mnode->count_instr_names(names);
  1371   uint first = 1;
  1372   // Start with the predicate supplied in the .ad file.
  1373   if( _predicate ) {
  1374     if( first ) first=0;
  1375     strcpy(s,"("); s += strlen(s);
  1376     strcpy(s,_predicate->_pred);
  1377     s += strlen(s);
  1378     strcpy(s,")"); s += strlen(s);
  1380   for( DictI i(&names); i.test(); ++i ) {
  1381     uintptr_t cnt = (uintptr_t)i._value;
  1382     if( cnt > 1 ) {             // Need a predicate at all?
  1383       assert( cnt == 2, "Unimplemented" );
  1384       // Handle many pairs
  1385       if( first ) first=0;
  1386       else {                    // All tests must pass, so use '&&'
  1387         strcpy(s," && ");
  1388         s += strlen(s);
  1390       // Add predicate to working buffer
  1391       sprintf(s,"/*%s*/(",(char*)i._key);
  1392       s += strlen(s);
  1393       mnode->build_instr_pred(s,(char*)i._key,0);
  1394       s += strlen(s);
  1395       strcpy(s," == "); s += strlen(s);
  1396       mnode->build_instr_pred(s,(char*)i._key,1);
  1397       s += strlen(s);
  1398       strcpy(s,")"); s += strlen(s);
  1401   if( s == buf ) s = NULL;
  1402   else {
  1403     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1404     s = strdup(buf);
  1406   return new Predicate(s);
  1409 //------------------------------EncodeForm-------------------------------------
  1410 // Constructor
  1411 EncodeForm::EncodeForm()
  1412   : _encClass(cmpstr,hashstr, Form::arena) {
  1414 EncodeForm::~EncodeForm() {
  1417 // record a new register class
  1418 EncClass *EncodeForm::add_EncClass(const char *className) {
  1419   EncClass *encClass = new EncClass(className);
  1420   _eclasses.addName(className);
  1421   _encClass.Insert(className,encClass);
  1422   return encClass;
  1425 // Lookup the function body for an encoding class
  1426 EncClass  *EncodeForm::encClass(const char *className) {
  1427   assert( className != NULL, "Must provide a defined encoding name");
  1429   EncClass *encClass = (EncClass*)_encClass[className];
  1430   return encClass;
  1433 // Lookup the function body for an encoding class
  1434 const char *EncodeForm::encClassBody(const char *className) {
  1435   if( className == NULL ) return NULL;
  1437   EncClass *encClass = (EncClass*)_encClass[className];
  1438   assert( encClass != NULL, "Encode Class is missing.");
  1439   encClass->_code.reset();
  1440   const char *code = (const char*)encClass->_code.iter();
  1441   assert( code != NULL, "Found an empty encode class body.");
  1443   return code;
  1446 // Lookup the function body for an encoding class
  1447 const char *EncodeForm::encClassPrototype(const char *className) {
  1448   assert( className != NULL, "Encode class name must be non NULL.");
  1450   return className;
  1453 void EncodeForm::dump() {                  // Debug printer
  1454   output(stderr);
  1457 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1458   const char *name;
  1459   fprintf(fp,"\n");
  1460   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1461   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1462     ((EncClass*)_encClass[name])->output(fp);
  1464   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1466 //------------------------------EncClass---------------------------------------
  1467 EncClass::EncClass(const char *name)
  1468   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1470 EncClass::~EncClass() {
  1473 // Add a parameter <type,name> pair
  1474 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1475   _parameter_type.addName( parameter_type );
  1476   _parameter_name.addName( parameter_name );
  1479 // Verify operand types in parameter list
  1480 bool EncClass::check_parameter_types(FormDict &globals) {
  1481   // !!!!!
  1482   return false;
  1485 // Add the decomposed "code" sections of an encoding's code-block
  1486 void EncClass::add_code(const char *code) {
  1487   _code.addName(code);
  1490 // Add the decomposed "replacement variables" of an encoding's code-block
  1491 void EncClass::add_rep_var(char *replacement_var) {
  1492   _code.addName(NameList::_signal);
  1493   _rep_vars.addName(replacement_var);
  1496 // Lookup the function body for an encoding class
  1497 int EncClass::rep_var_index(const char *rep_var) {
  1498   uint        position = 0;
  1499   const char *name     = NULL;
  1501   _parameter_name.reset();
  1502   while ( (name = _parameter_name.iter()) != NULL ) {
  1503     if ( strcmp(rep_var,name) == 0 ) return position;
  1504     ++position;
  1507   return -1;
  1510 // Check after parsing
  1511 bool EncClass::verify() {
  1512   // 1!!!!
  1513   // Check that each replacement variable, '$name' in architecture description
  1514   // is actually a local variable for this encode class, or a reserved name
  1515   // "primary, secondary, tertiary"
  1516   return true;
  1519 void EncClass::dump() {
  1520   output(stderr);
  1523 // Write info to output files
  1524 void EncClass::output(FILE *fp) {
  1525   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1527   // Output the parameter list
  1528   _parameter_type.reset();
  1529   _parameter_name.reset();
  1530   const char *type = _parameter_type.iter();
  1531   const char *name = _parameter_name.iter();
  1532   fprintf(fp, " ( ");
  1533   for ( ; (type != NULL) && (name != NULL);
  1534         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1535     fprintf(fp, " %s %s,", type, name);
  1537   fprintf(fp, " ) ");
  1539   // Output the code block
  1540   _code.reset();
  1541   _rep_vars.reset();
  1542   const char *code;
  1543   while ( (code = _code.iter()) != NULL ) {
  1544     if ( _code.is_signal(code) ) {
  1545       // A replacement variable
  1546       const char *rep_var = _rep_vars.iter();
  1547       fprintf(fp,"($%s)", rep_var);
  1548     } else {
  1549       // A section of code
  1550       fprintf(fp,"%s", code);
  1556 //------------------------------Opcode-----------------------------------------
  1557 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1558   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1561 Opcode::~Opcode() {
  1564 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1565   if( strcmp(param,"primary") == 0 ) {
  1566     return Opcode::PRIMARY;
  1568   else if( strcmp(param,"secondary") == 0 ) {
  1569     return Opcode::SECONDARY;
  1571   else if( strcmp(param,"tertiary") == 0 ) {
  1572     return Opcode::TERTIARY;
  1574   return Opcode::NOT_AN_OPCODE;
  1577 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1578   // Default values previously provided by MachNode::primary()...
  1579   const char *description = NULL;
  1580   const char *value       = NULL;
  1581   // Check if user provided any opcode definitions
  1582   if( this != NULL ) {
  1583     // Update 'value' if user provided a definition in the instruction
  1584     switch (desired_opcode) {
  1585     case PRIMARY:
  1586       description = "primary()";
  1587       if( _primary   != NULL)  { value = _primary;     }
  1588       break;
  1589     case SECONDARY:
  1590       description = "secondary()";
  1591       if( _secondary != NULL ) { value = _secondary;   }
  1592       break;
  1593     case TERTIARY:
  1594       description = "tertiary()";
  1595       if( _tertiary  != NULL ) { value = _tertiary;    }
  1596       break;
  1597     default:
  1598       assert( false, "ShouldNotReachHere();");
  1599       break;
  1602   if (value != NULL) {
  1603     fprintf(fp, "(%s /*%s*/)", value, description);
  1605   return value != NULL;
  1608 void Opcode::dump() {
  1609   output(stderr);
  1612 // Write info to output files
  1613 void Opcode::output(FILE *fp) {
  1614   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1615   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1616   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1619 //------------------------------InsEncode--------------------------------------
  1620 InsEncode::InsEncode() {
  1622 InsEncode::~InsEncode() {
  1625 // Add "encode class name" and its parameters
  1626 NameAndList *InsEncode::add_encode(char *encoding) {
  1627   assert( encoding != NULL, "Must provide name for encoding");
  1629   // add_parameter(NameList::_signal);
  1630   NameAndList *encode = new NameAndList(encoding);
  1631   _encoding.addName((char*)encode);
  1633   return encode;
  1636 // Access the list of encodings
  1637 void InsEncode::reset() {
  1638   _encoding.reset();
  1639   // _parameter.reset();
  1641 const char* InsEncode::encode_class_iter() {
  1642   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1643   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1645 // Obtain parameter name from zero based index
  1646 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1647   NameAndList *params = (NameAndList*)_encoding.current();
  1648   assert( params != NULL, "Internal Error");
  1649   const char *param = (*params)[param_no];
  1651   // Remove '$' if parser placed it there.
  1652   return ( param != NULL && *param == '$') ? (param+1) : param;
  1655 void InsEncode::dump() {
  1656   output(stderr);
  1659 // Write info to output files
  1660 void InsEncode::output(FILE *fp) {
  1661   NameAndList *encoding  = NULL;
  1662   const char  *parameter = NULL;
  1664   fprintf(fp,"InsEncode: ");
  1665   _encoding.reset();
  1667   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1668     // Output the encoding being used
  1669     fprintf(fp,"%s(", encoding->name() );
  1671     // Output its parameter list, if any
  1672     bool first_param = true;
  1673     encoding->reset();
  1674     while (  (parameter = encoding->iter()) != 0 ) {
  1675       // Output the ',' between parameters
  1676       if ( ! first_param )  fprintf(fp,", ");
  1677       first_param = false;
  1678       // Output the parameter
  1679       fprintf(fp,"%s", parameter);
  1680     } // done with parameters
  1681     fprintf(fp,")  ");
  1682   } // done with encodings
  1684   fprintf(fp,"\n");
  1687 //------------------------------Effect-----------------------------------------
  1688 static int effect_lookup(const char *name) {
  1689   if(!strcmp(name, "USE")) return Component::USE;
  1690   if(!strcmp(name, "DEF")) return Component::DEF;
  1691   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1692   if(!strcmp(name, "KILL")) return Component::KILL;
  1693   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1694   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1695   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1696   assert( false,"Invalid effect name specified\n");
  1697   return Component::INVALID;
  1700 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1701   _ftype = Form::EFF;
  1703 Effect::~Effect() {
  1706 // Dynamic type check
  1707 Effect *Effect::is_effect() const {
  1708   return (Effect*)this;
  1712 // True if this component is equal to the parameter.
  1713 bool Effect::is(int use_def_kill_enum) const {
  1714   return (_use_def == use_def_kill_enum ? true : false);
  1716 // True if this component is used/def'd/kill'd as the parameter suggests.
  1717 bool Effect::isa(int use_def_kill_enum) const {
  1718   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1721 void Effect::dump() {
  1722   output(stderr);
  1725 void Effect::output(FILE *fp) {          // Write info to output files
  1726   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1729 //------------------------------ExpandRule-------------------------------------
  1730 ExpandRule::ExpandRule() : _expand_instrs(),
  1731                            _newopconst(cmpstr, hashstr, Form::arena) {
  1732   _ftype = Form::EXP;
  1735 ExpandRule::~ExpandRule() {                  // Destructor
  1738 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1739   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1742 void ExpandRule::reset_instructions() {
  1743   _expand_instrs.reset();
  1746 NameAndList* ExpandRule::iter_instructions() {
  1747   return (NameAndList*)_expand_instrs.iter();
  1751 void ExpandRule::dump() {
  1752   output(stderr);
  1755 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1756   NameAndList *expand_instr = NULL;
  1757   const char *opid = NULL;
  1759   fprintf(fp,"\nExpand Rule:\n");
  1761   // Iterate over the instructions 'node' expands into
  1762   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1763     fprintf(fp,"%s(", expand_instr->name());
  1765     // iterate over the operand list
  1766     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1767       fprintf(fp,"%s ", opid);
  1769     fprintf(fp,");\n");
  1773 //------------------------------RewriteRule------------------------------------
  1774 RewriteRule::RewriteRule(char* params, char* block)
  1775   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1776 RewriteRule::~RewriteRule() {                 // Destructor
  1779 void RewriteRule::dump() {
  1780   output(stderr);
  1783 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1784   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1785           (_tempParams?_tempParams:""),
  1786           (_tempBlock?_tempBlock:""));
  1790 //==============================MachNodes======================================
  1791 //------------------------------MachNodeForm-----------------------------------
  1792 MachNodeForm::MachNodeForm(char *id)
  1793   : _ident(id) {
  1796 MachNodeForm::~MachNodeForm() {
  1799 MachNodeForm *MachNodeForm::is_machnode() const {
  1800   return (MachNodeForm*)this;
  1803 //==============================Operand Classes================================
  1804 //------------------------------OpClassForm------------------------------------
  1805 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1806   _ftype = Form::OPCLASS;
  1809 OpClassForm::~OpClassForm() {
  1812 bool OpClassForm::ideal_only() const { return 0; }
  1814 OpClassForm *OpClassForm::is_opclass() const {
  1815   return (OpClassForm*)this;
  1818 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1819   if( _oplst.count() == 0 ) return Form::no_interface;
  1821   // Check that my operands have the same interface type
  1822   Form::InterfaceType  interface;
  1823   bool  first = true;
  1824   NameList &op_list = (NameList &)_oplst;
  1825   op_list.reset();
  1826   const char *op_name;
  1827   while( (op_name = op_list.iter()) != NULL ) {
  1828     const Form  *form    = globals[op_name];
  1829     OperandForm *operand = form->is_operand();
  1830     assert( operand, "Entry in operand class that is not an operand");
  1831     if( first ) {
  1832       first     = false;
  1833       interface = operand->interface_type(globals);
  1834     } else {
  1835       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1838   return interface;
  1841 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1842   if( _oplst.count() == 0 ) return false;  // how?
  1844   NameList &op_list = (NameList &)_oplst;
  1845   op_list.reset();
  1846   const char *op_name;
  1847   while( (op_name = op_list.iter()) != NULL ) {
  1848     const Form  *form    = globals[op_name];
  1849     OperandForm *operand = form->is_operand();
  1850     assert( operand, "Entry in operand class that is not an operand");
  1851     if( !operand->stack_slots_only(globals) )  return false;
  1853   return true;
  1857 void OpClassForm::dump() {
  1858   output(stderr);
  1861 void OpClassForm::output(FILE *fp) {
  1862   const char *name;
  1863   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  1864   fprintf(fp,"\nCount = %d\n", _oplst.count());
  1865   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  1866     fprintf(fp,"%s, ",name);
  1868   fprintf(fp,"\n");
  1872 //==============================Operands=======================================
  1873 //------------------------------OperandForm------------------------------------
  1874 OperandForm::OperandForm(const char* id)
  1875   : OpClassForm(id), _ideal_only(false),
  1876     _localNames(cmpstr, hashstr, Form::arena) {
  1877       _ftype = Form::OPER;
  1879       _matrule   = NULL;
  1880       _interface = NULL;
  1881       _attribs   = NULL;
  1882       _predicate = NULL;
  1883       _constraint= NULL;
  1884       _construct = NULL;
  1885       _format    = NULL;
  1887 OperandForm::OperandForm(const char* id, bool ideal_only)
  1888   : OpClassForm(id), _ideal_only(ideal_only),
  1889     _localNames(cmpstr, hashstr, Form::arena) {
  1890       _ftype = Form::OPER;
  1892       _matrule   = NULL;
  1893       _interface = NULL;
  1894       _attribs   = NULL;
  1895       _predicate = NULL;
  1896       _constraint= NULL;
  1897       _construct = NULL;
  1898       _format    = NULL;
  1900 OperandForm::~OperandForm() {
  1904 OperandForm *OperandForm::is_operand() const {
  1905   return (OperandForm*)this;
  1908 bool OperandForm::ideal_only() const {
  1909   return _ideal_only;
  1912 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  1913   if( _interface == NULL )  return Form::no_interface;
  1915   return _interface->interface_type(globals);
  1919 bool OperandForm::stack_slots_only(FormDict &globals) const {
  1920   if( _constraint == NULL )  return false;
  1921   return _constraint->stack_slots_only();
  1925 // Access op_cost attribute or return NULL.
  1926 const char* OperandForm::cost() {
  1927   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  1928     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  1929       return cur->_val;
  1932   return NULL;
  1935 // Return the number of leaves below this complex operand
  1936 uint OperandForm::num_leaves() const {
  1937   if ( ! _matrule) return 0;
  1939   int num_leaves = _matrule->_numleaves;
  1940   return num_leaves;
  1943 // Return the number of constants contained within this complex operand
  1944 uint OperandForm::num_consts(FormDict &globals) const {
  1945   if ( ! _matrule) return 0;
  1947   // This is a recursive invocation on all operands in the matchrule
  1948   return _matrule->num_consts(globals);
  1951 // Return the number of constants in match rule with specified type
  1952 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  1953   if ( ! _matrule) return 0;
  1955   // This is a recursive invocation on all operands in the matchrule
  1956   return _matrule->num_consts(globals, type);
  1959 // Return the number of pointer constants contained within this complex operand
  1960 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  1961   if ( ! _matrule) return 0;
  1963   // This is a recursive invocation on all operands in the matchrule
  1964   return _matrule->num_const_ptrs(globals);
  1967 uint OperandForm::num_edges(FormDict &globals) const {
  1968   uint edges  = 0;
  1969   uint leaves = num_leaves();
  1970   uint consts = num_consts(globals);
  1972   // If we are matching a constant directly, there are no leaves.
  1973   edges = ( leaves > consts ) ? leaves - consts : 0;
  1975   // !!!!!
  1976   // Special case operands that do not have a corresponding ideal node.
  1977   if( (edges == 0) && (consts == 0) ) {
  1978     if( constrained_reg_class() != NULL ) {
  1979       edges = 1;
  1980     } else {
  1981       if( _matrule
  1982           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  1983         const Form *form = globals[_matrule->_opType];
  1984         OperandForm *oper = form ? form->is_operand() : NULL;
  1985         if( oper ) {
  1986           return oper->num_edges(globals);
  1992   return edges;
  1996 // Check if this operand is usable for cisc-spilling
  1997 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  1998   const char *ideal = ideal_type(globals);
  1999   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2000   return is_cisc_reg;
  2003 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2004   Form::InterfaceType my_interface = interface_type(globals);
  2005   return (my_interface == memory_interface);
  2009 // node matches ideal 'Bool'
  2010 bool OperandForm::is_ideal_bool() const {
  2011   if( _matrule == NULL ) return false;
  2013   return _matrule->is_ideal_bool();
  2016 // Require user's name for an sRegX to be stackSlotX
  2017 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2018   DataType data_type = none;
  2019   if( _ident != NULL ) {
  2020     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2021     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2022     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2023     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2024     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2026   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2028   return data_type;
  2032 // Return ideal type, if there is a single ideal type for this operand
  2033 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2034   const char *type = NULL;
  2035   if (ideal_only()) type = _ident;
  2036   else if( _matrule == NULL ) {
  2037     // Check for condition code register
  2038     const char *rc_name = constrained_reg_class();
  2039     // !!!!!
  2040     if (rc_name == NULL) return NULL;
  2041     // !!!!! !!!!!
  2042     // Check constraints on result's register class
  2043     if( registers ) {
  2044       RegClass *reg_class  = registers->getRegClass(rc_name);
  2045       assert( reg_class != NULL, "Register class is not defined");
  2047       // Check for ideal type of entries in register class, all are the same type
  2048       reg_class->reset();
  2049       RegDef *reg_def = reg_class->RegDef_iter();
  2050       assert( reg_def != NULL, "No entries in register class");
  2051       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2052       // Return substring that names the register's ideal type
  2053       type = reg_def->_idealtype + 3;
  2054       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2055       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2056       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2059   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2060     // This operand matches a single type, at the top level.
  2061     // Check for ideal type
  2062     type = _matrule->_opType;
  2063     if( strcmp(type,"Bool") == 0 )
  2064       return "Bool";
  2065     // transitive lookup
  2066     const Form *frm = globals[type];
  2067     OperandForm *op = frm->is_operand();
  2068     type = op->ideal_type(globals, registers);
  2070   return type;
  2074 // If there is a single ideal type for this interface field, return it.
  2075 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2076                                               const char *field) const {
  2077   const char  *ideal_type = NULL;
  2078   const char  *value      = NULL;
  2080   // Check if "field" is valid for this operand's interface
  2081   if ( ! is_interface_field(field, value) )   return ideal_type;
  2083   // !!!!! !!!!! !!!!!
  2084   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2086   // Else, lookup type of field's replacement variable
  2088   return ideal_type;
  2092 RegClass* OperandForm::get_RegClass() const {
  2093   if (_interface && !_interface->is_RegInterface()) return NULL;
  2094   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2098 bool OperandForm::is_bound_register() const {
  2099   RegClass *reg_class  = get_RegClass();
  2100   if (reg_class == NULL) return false;
  2102   const char * name = ideal_type(globalAD->globalNames());
  2103   if (name == NULL) return false;
  2105   int size = 0;
  2106   if (strcmp(name,"RegFlags")==0) size =  1;
  2107   if (strcmp(name,"RegI")==0) size =  1;
  2108   if (strcmp(name,"RegF")==0) size =  1;
  2109   if (strcmp(name,"RegD")==0) size =  2;
  2110   if (strcmp(name,"RegL")==0) size =  2;
  2111   if (strcmp(name,"RegN")==0) size =  1;
  2112   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2113   if (size == 0) return false;
  2114   return size == reg_class->size();
  2118 // Check if this is a valid field for this operand,
  2119 // Return 'true' if valid, and set the value to the string the user provided.
  2120 bool  OperandForm::is_interface_field(const char *field,
  2121                                       const char * &value) const {
  2122   return false;
  2126 // Return register class name if a constraint specifies the register class.
  2127 const char *OperandForm::constrained_reg_class() const {
  2128   const char *reg_class  = NULL;
  2129   if ( _constraint ) {
  2130     // !!!!!
  2131     Constraint *constraint = _constraint;
  2132     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2133       reg_class = _constraint->_arg;
  2137   return reg_class;
  2141 // Return the register class associated with 'leaf'.
  2142 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2143   const char *reg_class = NULL; // "RegMask::Empty";
  2145   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2146     reg_class = constrained_reg_class();
  2147     return reg_class;
  2149   const char *result   = NULL;
  2150   const char *name     = NULL;
  2151   const char *type     = NULL;
  2152   // iterate through all base operands
  2153   // until we reach the register that corresponds to "leaf"
  2154   // This function is not looking for an ideal type.  It needs the first
  2155   // level user type associated with the leaf.
  2156   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2157     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2158     OperandForm *oper = form ? form->is_operand() : NULL;
  2159     if( oper ) {
  2160       reg_class = oper->constrained_reg_class();
  2161       if( reg_class ) {
  2162         reg_class = reg_class;
  2163       } else {
  2164         // ShouldNotReachHere();
  2166     } else {
  2167       // ShouldNotReachHere();
  2170     // Increment our target leaf position if current leaf is not a candidate.
  2171     if( reg_class == NULL)    ++leaf;
  2172     // Exit the loop with the value of reg_class when at the correct index
  2173     if( idx == leaf )         break;
  2174     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2176   return reg_class;
  2180 // Recursive call to construct list of top-level operands.
  2181 // Implementation does not modify state of internal structures
  2182 void OperandForm::build_components() {
  2183   if (_matrule)  _matrule->append_components(_localNames, _components);
  2185   // Add parameters that "do not appear in match rule".
  2186   const char *name;
  2187   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2188     OperandForm *opForm = (OperandForm*)_localNames[name];
  2190     if ( _components.operand_position(name) == -1 ) {
  2191       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2195   return;
  2198 int OperandForm::operand_position(const char *name, int usedef) {
  2199   return _components.operand_position(name, usedef);
  2203 // Return zero-based position in component list, only counting constants;
  2204 // Return -1 if not in list.
  2205 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2206   // Iterate through components and count constants preceeding 'constant'
  2207   uint  position = 0;
  2208   Component *comp;
  2209   _components.reset();
  2210   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2211     // Special case for operands that take a single user-defined operand
  2212     // Skip the initial definition in the component list.
  2213     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2215     const char *type = comp->_type;
  2216     // Lookup operand form for replacement variable's type
  2217     const Form *form = globals[type];
  2218     assert( form != NULL, "Component's type not found");
  2219     OperandForm *oper = form ? form->is_operand() : NULL;
  2220     if( oper ) {
  2221       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2222         ++position;
  2227   // Check for being passed a component that was not in the list
  2228   if( comp != last )  position = -1;
  2230   return position;
  2232 // Provide position of constant by "name"
  2233 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2234   const Component *comp = _components.search(name);
  2235   int idx = constant_position( globals, comp );
  2237   return idx;
  2241 // Return zero-based position in component list, only counting constants;
  2242 // Return -1 if not in list.
  2243 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2244   // Iterate through components and count registers preceeding 'last'
  2245   uint  position = 0;
  2246   Component *comp;
  2247   _components.reset();
  2248   while( (comp = _components.iter()) != NULL
  2249          && (strcmp(comp->_name,reg_name) != 0) ) {
  2250     // Special case for operands that take a single user-defined operand
  2251     // Skip the initial definition in the component list.
  2252     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2254     const char *type = comp->_type;
  2255     // Lookup operand form for component's type
  2256     const Form *form = globals[type];
  2257     assert( form != NULL, "Component's type not found");
  2258     OperandForm *oper = form ? form->is_operand() : NULL;
  2259     if( oper ) {
  2260       if( oper->_matrule->is_base_register(globals) ) {
  2261         ++position;
  2266   return position;
  2270 const char *OperandForm::reduce_result()  const {
  2271   return _ident;
  2273 // Return the name of the operand on the right hand side of the binary match
  2274 // Return NULL if there is no right hand side
  2275 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2276   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2279 // Similar for left
  2280 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2281   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2285 // --------------------------- FILE *output_routines
  2286 //
  2287 // Output code for disp_is_oop, if true.
  2288 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2289   //  Check it is a memory interface with a non-user-constant disp field
  2290   if ( this->_interface == NULL ) return;
  2291   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2292   if ( mem_interface == NULL )    return;
  2293   const char   *disp  = mem_interface->_disp;
  2294   if ( *disp != '$' )             return;
  2296   // Lookup replacement variable in operand's component list
  2297   const char   *rep_var = disp + 1;
  2298   const Component *comp = this->_components.search(rep_var);
  2299   assert( comp != NULL, "Replacement variable not found in components");
  2300   // Lookup operand form for replacement variable's type
  2301   const char      *type = comp->_type;
  2302   Form            *form = (Form*)globals[type];
  2303   assert( form != NULL, "Replacement variable's type not found");
  2304   OperandForm     *op   = form->is_operand();
  2305   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2306   // Check if this is a ConP, which may require relocation
  2307   if ( op->is_base_constant(globals) == Form::idealP ) {
  2308     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2309     uint idx  = op->constant_position( globals, rep_var);
  2310     fprintf(fp,"  virtual bool disp_is_oop() const {", _ident);
  2311     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
  2312     fprintf(fp, " }\n");
  2316 // Generate code for internal and external format methods
  2317 //
  2318 // internal access to reg# node->_idx
  2319 // access to subsumed constant _c0, _c1,
  2320 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2321   Form::DataType dtype;
  2322   if (_matrule && (_matrule->is_base_register(globals) ||
  2323                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2324     // !!!!! !!!!!
  2325     fprintf(fp,    "{ char reg_str[128];\n");
  2326     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2327     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2328     fprintf(fp,"    }\n");
  2329   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2330     format_constant( fp, index, dtype );
  2331   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2332     // Special format for Stack Slot Register
  2333     fprintf(fp,    "{ char reg_str[128];\n");
  2334     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2335     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2336     fprintf(fp,"    }\n");
  2337   } else {
  2338     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2339     fflush(fp);
  2340     fprintf(stderr,"No format defined for %s\n", _ident);
  2341     dump();
  2342     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2346 // Similar to "int_format" but for cases where data is external to operand
  2347 // external access to reg# node->in(idx)->_idx,
  2348 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2349   Form::DataType dtype;
  2350   if (_matrule && (_matrule->is_base_register(globals) ||
  2351                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2352     fprintf(fp,    "{ char reg_str[128];\n");
  2353     fprintf(fp,"      ra->dump_register(node->in(idx");
  2354     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2355     fprintf(fp,                                       "),reg_str);\n");
  2356     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2357     fprintf(fp,"    }\n");
  2358   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2359     format_constant( fp, index, dtype );
  2360   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2361     // Special format for Stack Slot Register
  2362     fprintf(fp,    "{ char reg_str[128];\n");
  2363     fprintf(fp,"      ra->dump_register(node->in(idx");
  2364     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2365     fprintf(fp,                                       "),reg_str);\n");
  2366     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2367     fprintf(fp,"    }\n");
  2368   } else {
  2369     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2370     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2374 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2375   switch(const_type) {
  2376   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
  2377   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2378   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2379   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2380   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2381   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2382   default:
  2383     assert( false, "ShouldNotReachHere()");
  2387 // Return the operand form corresponding to the given index, else NULL.
  2388 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2389                                            uint      index) {
  2390   // !!!!!
  2391   // Check behavior on complex operands
  2392   uint n_consts = num_consts(globals);
  2393   if( n_consts > 0 ) {
  2394     uint i = 0;
  2395     const char *type;
  2396     Component  *comp;
  2397     _components.reset();
  2398     if ((comp = _components.iter()) == NULL) {
  2399       assert(n_consts == 1, "Bad component list detected.\n");
  2400       // Current operand is THE operand
  2401       if ( index == 0 ) {
  2402         return this;
  2404     } // end if NULL
  2405     else {
  2406       // Skip the first component, it can not be a DEF of a constant
  2407       do {
  2408         type = comp->base_type(globals);
  2409         // Check that "type" is a 'ConI', 'ConP', ...
  2410         if ( ideal_to_const_type(type) != Form::none ) {
  2411           // When at correct component, get corresponding Operand
  2412           if ( index == 0 ) {
  2413             return globals[comp->_type]->is_operand();
  2415           // Decrement number of constants to go
  2416           --index;
  2418       } while((comp = _components.iter()) != NULL);
  2422   // Did not find a constant for this index.
  2423   return NULL;
  2426 // If this operand has a single ideal type, return its type
  2427 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2428   const char *type_name = ideal_type(globals);
  2429   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2430                                     : Form::none;
  2431   return type;
  2434 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2435   if ( _matrule == NULL )    return Form::none;
  2437   return _matrule->is_base_constant(globals);
  2440 // "true" if this operand is a simple type that is swallowed
  2441 bool  OperandForm::swallowed(FormDict &globals) const {
  2442   Form::DataType type   = simple_type(globals);
  2443   if( type != Form::none ) {
  2444     return true;
  2447   return false;
  2450 // Output code to access the value of the index'th constant
  2451 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2452                                   uint const_index) {
  2453   OperandForm *oper = constant_operand(globals, const_index);
  2454   assert( oper, "Index exceeds number of constants in operand");
  2455   Form::DataType dtype = oper->is_base_constant(globals);
  2457   switch(dtype) {
  2458   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2459   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2460   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2461   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2462   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2463   default:
  2464     assert( false, "ShouldNotReachHere()");
  2469 void OperandForm::dump() {
  2470   output(stderr);
  2473 void OperandForm::output(FILE *fp) {
  2474   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2475   if (_matrule)    _matrule->dump();
  2476   if (_interface)  _interface->dump();
  2477   if (_attribs)    _attribs->dump();
  2478   if (_predicate)  _predicate->dump();
  2479   if (_constraint) _constraint->dump();
  2480   if (_construct)  _construct->dump();
  2481   if (_format)     _format->dump();
  2484 //------------------------------Constraint-------------------------------------
  2485 Constraint::Constraint(const char *func, const char *arg)
  2486   : _func(func), _arg(arg) {
  2488 Constraint::~Constraint() { /* not owner of char* */
  2491 bool Constraint::stack_slots_only() const {
  2492   return strcmp(_func, "ALLOC_IN_RC") == 0
  2493       && strcmp(_arg,  "stack_slots") == 0;
  2496 void Constraint::dump() {
  2497   output(stderr);
  2500 void Constraint::output(FILE *fp) {           // Write info to output files
  2501   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2502   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2505 //------------------------------Predicate--------------------------------------
  2506 Predicate::Predicate(char *pr)
  2507   : _pred(pr) {
  2509 Predicate::~Predicate() {
  2512 void Predicate::dump() {
  2513   output(stderr);
  2516 void Predicate::output(FILE *fp) {
  2517   fprintf(fp,"Predicate");  // Write to output files
  2519 //------------------------------Interface--------------------------------------
  2520 Interface::Interface(const char *name) : _name(name) {
  2522 Interface::~Interface() {
  2525 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2526   Interface *thsi = (Interface*)this;
  2527   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2528   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2529   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2530   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2532   return Form::no_interface;
  2535 RegInterface   *Interface::is_RegInterface() {
  2536   if ( strcmp(_name,"REG_INTER") != 0 )
  2537     return NULL;
  2538   return (RegInterface*)this;
  2540 MemInterface   *Interface::is_MemInterface() {
  2541   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2542   return (MemInterface*)this;
  2544 ConstInterface *Interface::is_ConstInterface() {
  2545   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2546   return (ConstInterface*)this;
  2548 CondInterface  *Interface::is_CondInterface() {
  2549   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2550   return (CondInterface*)this;
  2554 void Interface::dump() {
  2555   output(stderr);
  2558 // Write info to output files
  2559 void Interface::output(FILE *fp) {
  2560   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2563 //------------------------------RegInterface-----------------------------------
  2564 RegInterface::RegInterface() : Interface("REG_INTER") {
  2566 RegInterface::~RegInterface() {
  2569 void RegInterface::dump() {
  2570   output(stderr);
  2573 // Write info to output files
  2574 void RegInterface::output(FILE *fp) {
  2575   Interface::output(fp);
  2578 //------------------------------ConstInterface---------------------------------
  2579 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2581 ConstInterface::~ConstInterface() {
  2584 void ConstInterface::dump() {
  2585   output(stderr);
  2588 // Write info to output files
  2589 void ConstInterface::output(FILE *fp) {
  2590   Interface::output(fp);
  2593 //------------------------------MemInterface-----------------------------------
  2594 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2595   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2597 MemInterface::~MemInterface() {
  2598   // not owner of any character arrays
  2601 void MemInterface::dump() {
  2602   output(stderr);
  2605 // Write info to output files
  2606 void MemInterface::output(FILE *fp) {
  2607   Interface::output(fp);
  2608   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2609   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2610   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2611   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2612   // fprintf(fp,"\n");
  2615 //------------------------------CondInterface----------------------------------
  2616 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2617                              const char* not_equal,     const char* not_equal_format,
  2618                              const char* less,          const char* less_format,
  2619                              const char* greater_equal, const char* greater_equal_format,
  2620                              const char* less_equal,    const char* less_equal_format,
  2621                              const char* greater,       const char* greater_format)
  2622   : Interface("COND_INTER"),
  2623     _equal(equal),                 _equal_format(equal_format),
  2624     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2625     _less(less),                   _less_format(less_format),
  2626     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2627     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2628     _greater(greater),             _greater_format(greater_format) {
  2630 CondInterface::~CondInterface() {
  2631   // not owner of any character arrays
  2634 void CondInterface::dump() {
  2635   output(stderr);
  2638 // Write info to output files
  2639 void CondInterface::output(FILE *fp) {
  2640   Interface::output(fp);
  2641   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
  2642   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
  2643   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
  2644   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
  2645   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
  2646   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
  2647   // fprintf(fp,"\n");
  2650 //------------------------------ConstructRule----------------------------------
  2651 ConstructRule::ConstructRule(char *cnstr)
  2652   : _construct(cnstr) {
  2654 ConstructRule::~ConstructRule() {
  2657 void ConstructRule::dump() {
  2658   output(stderr);
  2661 void ConstructRule::output(FILE *fp) {
  2662   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2666 //==============================Shared Forms===================================
  2667 //------------------------------AttributeForm----------------------------------
  2668 int         AttributeForm::_insId   = 0;           // start counter at 0
  2669 int         AttributeForm::_opId    = 0;           // start counter at 0
  2670 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2671 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
  2672 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2674 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2675   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2676     if (type==OP_ATTR) {
  2677       id = ++_opId;
  2679     else if (type==INS_ATTR) {
  2680       id = ++_insId;
  2682     else assert( false,"");
  2684 AttributeForm::~AttributeForm() {
  2687 // Dynamic type check
  2688 AttributeForm *AttributeForm::is_attribute() const {
  2689   return (AttributeForm*)this;
  2693 // inlined  // int  AttributeForm::type() { return id;}
  2695 void AttributeForm::dump() {
  2696   output(stderr);
  2699 void AttributeForm::output(FILE *fp) {
  2700   if( _attrname && _attrdef ) {
  2701     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2702             _attrname, _attrdef);
  2704   else {
  2705     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2706             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2710 //------------------------------Component--------------------------------------
  2711 Component::Component(const char *name, const char *type, int usedef)
  2712   : _name(name), _type(type), _usedef(usedef) {
  2713     _ftype = Form::COMP;
  2715 Component::~Component() {
  2718 // True if this component is equal to the parameter.
  2719 bool Component::is(int use_def_kill_enum) const {
  2720   return (_usedef == use_def_kill_enum ? true : false);
  2722 // True if this component is used/def'd/kill'd as the parameter suggests.
  2723 bool Component::isa(int use_def_kill_enum) const {
  2724   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2727 // Extend this component with additional use/def/kill behavior
  2728 int Component::promote_use_def_info(int new_use_def) {
  2729   _usedef |= new_use_def;
  2731   return _usedef;
  2734 // Check the base type of this component, if it has one
  2735 const char *Component::base_type(FormDict &globals) {
  2736   const Form *frm = globals[_type];
  2737   if (frm == NULL) return NULL;
  2738   OperandForm *op = frm->is_operand();
  2739   if (op == NULL) return NULL;
  2740   if (op->ideal_only()) return op->_ident;
  2741   return (char *)op->ideal_type(globals);
  2744 void Component::dump() {
  2745   output(stderr);
  2748 void Component::output(FILE *fp) {
  2749   fprintf(fp,"Component:");  // Write to output files
  2750   fprintf(fp, "  name = %s", _name);
  2751   fprintf(fp, ", type = %s", _type);
  2752   const char * usedef = "Undefined Use/Def info";
  2753   switch (_usedef) {
  2754     case USE:      usedef = "USE";      break;
  2755     case USE_DEF:  usedef = "USE_DEF";  break;
  2756     case USE_KILL: usedef = "USE_KILL"; break;
  2757     case KILL:     usedef = "KILL";     break;
  2758     case TEMP:     usedef = "TEMP";     break;
  2759     case DEF:      usedef = "DEF";      break;
  2760     default: assert(false, "unknown effect");
  2762   fprintf(fp, ", use/def = %s\n", usedef);
  2766 //------------------------------ComponentList---------------------------------
  2767 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2769 ComponentList::~ComponentList() {
  2770   // // This list may not own its elements if copied via assignment
  2771   // Component *component;
  2772   // for (reset(); (component = iter()) != NULL;) {
  2773   //   delete component;
  2774   // }
  2777 void   ComponentList::insert(Component *component, bool mflag) {
  2778   NameList::addName((char *)component);
  2779   if(mflag) _matchcnt++;
  2781 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2782                              bool mflag) {
  2783   Component * component = new Component(name, opType, usedef);
  2784   insert(component, mflag);
  2786 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2787 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2788 Component *ComponentList::match_iter() {
  2789   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2790   return NULL;
  2792 Component *ComponentList::post_match_iter() {
  2793   Component *comp = iter();
  2794   // At end of list?
  2795   if ( comp == NULL ) {
  2796     return comp;
  2798   // In post-match components?
  2799   if (_iter > match_count()-1) {
  2800     return comp;
  2803   return post_match_iter();
  2806 void       ComponentList::reset()   { NameList::reset(); }
  2807 int        ComponentList::count()   { return NameList::count(); }
  2809 Component *ComponentList::operator[](int position) {
  2810   // Shortcut complete iteration if there are not enough entries
  2811   if (position >= count()) return NULL;
  2813   int        index     = 0;
  2814   Component *component = NULL;
  2815   for (reset(); (component = iter()) != NULL;) {
  2816     if (index == position) {
  2817       return component;
  2819     ++index;
  2822   return NULL;
  2825 const Component *ComponentList::search(const char *name) {
  2826   PreserveIter pi(this);
  2827   reset();
  2828   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2829     if( strcmp(comp->_name,name) == 0 ) return comp;
  2832   return NULL;
  2835 // Return number of USEs + number of DEFs
  2836 // When there are no components, or the first component is a USE,
  2837 // then we add '1' to hold a space for the 'result' operand.
  2838 int ComponentList::num_operands() {
  2839   PreserveIter pi(this);
  2840   uint       count = 1;           // result operand
  2841   uint       position = 0;
  2843   Component *component  = NULL;
  2844   for( reset(); (component = iter()) != NULL; ++position ) {
  2845     if( component->isa(Component::USE) ||
  2846         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2847       ++count;
  2851   return count;
  2854 // Return zero-based position in list;  -1 if not in list.
  2855 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2856 int ComponentList::operand_position(const char *name, int usedef) {
  2857   PreserveIter pi(this);
  2858   int position = 0;
  2859   int num_opnds = num_operands();
  2860   Component *component;
  2861   Component* preceding_non_use = NULL;
  2862   Component* first_def = NULL;
  2863   for (reset(); (component = iter()) != NULL; ++position) {
  2864     // When the first component is not a DEF,
  2865     // leave space for the result operand!
  2866     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2867       ++position;
  2868       ++num_opnds;
  2870     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  2871       // When the first entry in the component list is a DEF and a USE
  2872       // Treat them as being separate, a DEF first, then a USE
  2873       if( position==0
  2874           && usedef==Component::USE && component->isa(Component::DEF) ) {
  2875         assert(position+1 < num_opnds, "advertised index in bounds");
  2876         return position+1;
  2877       } else {
  2878         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  2879           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
  2881         if( position >= num_opnds ) {
  2882           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
  2884         assert(position < num_opnds, "advertised index in bounds");
  2885         return position;
  2888     if( component->isa(Component::DEF)
  2889         && component->isa(Component::USE) ) {
  2890       ++position;
  2891       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2893     if( component->isa(Component::DEF) && !first_def ) {
  2894       first_def = component;
  2896     if( !component->isa(Component::USE) && component != first_def ) {
  2897       preceding_non_use = component;
  2898     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  2899       preceding_non_use = NULL;
  2902   return Not_in_list;
  2905 // Find position for this name, regardless of use/def information
  2906 int ComponentList::operand_position(const char *name) {
  2907   PreserveIter pi(this);
  2908   int position = 0;
  2909   Component *component;
  2910   for (reset(); (component = iter()) != NULL; ++position) {
  2911     // When the first component is not a DEF,
  2912     // leave space for the result operand!
  2913     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2914       ++position;
  2916     if (strcmp(name, component->_name)==0) {
  2917       return position;
  2919     if( component->isa(Component::DEF)
  2920         && component->isa(Component::USE) ) {
  2921       ++position;
  2922       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2925   return Not_in_list;
  2928 int ComponentList::operand_position_format(const char *name) {
  2929   PreserveIter pi(this);
  2930   int  first_position = operand_position(name);
  2931   int  use_position   = operand_position(name, Component::USE);
  2933   return ((first_position < use_position) ? use_position : first_position);
  2936 int ComponentList::label_position() {
  2937   PreserveIter pi(this);
  2938   int position = 0;
  2939   reset();
  2940   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2941     // When the first component is not a DEF,
  2942     // leave space for the result operand!
  2943     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2944       ++position;
  2946     if (strcmp(comp->_type, "label")==0) {
  2947       return position;
  2949     if( comp->isa(Component::DEF)
  2950         && comp->isa(Component::USE) ) {
  2951       ++position;
  2952       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2956   return -1;
  2959 int ComponentList::method_position() {
  2960   PreserveIter pi(this);
  2961   int position = 0;
  2962   reset();
  2963   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2964     // When the first component is not a DEF,
  2965     // leave space for the result operand!
  2966     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2967       ++position;
  2969     if (strcmp(comp->_type, "method")==0) {
  2970       return position;
  2972     if( comp->isa(Component::DEF)
  2973         && comp->isa(Component::USE) ) {
  2974       ++position;
  2975       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2979   return -1;
  2982 void ComponentList::dump() { output(stderr); }
  2984 void ComponentList::output(FILE *fp) {
  2985   PreserveIter pi(this);
  2986   fprintf(fp, "\n");
  2987   Component *component;
  2988   for (reset(); (component = iter()) != NULL;) {
  2989     component->output(fp);
  2991   fprintf(fp, "\n");
  2994 //------------------------------MatchNode--------------------------------------
  2995 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  2996                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  2997   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  2998     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  2999     _commutative_id(0) {
  3000   _numleaves = (lChild ? lChild->_numleaves : 0)
  3001                + (rChild ? rChild->_numleaves : 0);
  3004 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3005   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3006     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3007     _internalop(0), _numleaves(mnode._numleaves),
  3008     _commutative_id(mnode._commutative_id) {
  3011 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3012   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3013     _opType(mnode._opType),
  3014     _internalop(0), _numleaves(mnode._numleaves),
  3015     _commutative_id(mnode._commutative_id) {
  3016   if (mnode._lChild) {
  3017     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3018   } else {
  3019     _lChild = NULL;
  3021   if (mnode._rChild) {
  3022     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3023   } else {
  3024     _rChild = NULL;
  3028 MatchNode::~MatchNode() {
  3029   // // This node may not own its children if copied via assignment
  3030   // if( _lChild ) delete _lChild;
  3031   // if( _rChild ) delete _rChild;
  3034 bool  MatchNode::find_type(const char *type, int &position) const {
  3035   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3036   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3038   if (strcmp(type,_opType)==0)  {
  3039     return true;
  3040   } else {
  3041     ++position;
  3043   return false;
  3046 // Recursive call collecting info on top-level operands, not transitive.
  3047 // Implementation does not modify state of internal structures.
  3048 void MatchNode::append_components(FormDict &locals, ComponentList &components,
  3049                                   bool deflag) const {
  3050   int   usedef = deflag ? Component::DEF : Component::USE;
  3051   FormDict &globals = _AD.globalNames();
  3053   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3054   // Base case
  3055   if (_lChild==NULL && _rChild==NULL) {
  3056     // If _opType is not an operation, do not build a component for it #####
  3057     const Form *f = globals[_opType];
  3058     if( f != NULL ) {
  3059       // Add non-ideals that are operands, operand-classes,
  3060       if( ! f->ideal_only()
  3061           && (f->is_opclass() || f->is_operand()) ) {
  3062         components.insert(_name, _opType, usedef, true);
  3065     return;
  3067   // Promote results of "Set" to DEF
  3068   bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
  3069   if (_lChild) _lChild->append_components(locals, components, def_flag);
  3070   def_flag = false;   // only applies to component immediately following 'Set'
  3071   if (_rChild) _rChild->append_components(locals, components, def_flag);
  3074 // Find the n'th base-operand in the match node,
  3075 // recursively investigates match rules of user-defined operands.
  3076 //
  3077 // Implementation does not modify state of internal structures since they
  3078 // can be shared.
  3079 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3080                              const char * &result, const char * &name,
  3081                              const char * &opType) const {
  3082   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3083   // Base case
  3084   if (_lChild==NULL && _rChild==NULL) {
  3085     // Check for special case: "Universe", "label"
  3086     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3087       if (position == 0) {
  3088         result = _result;
  3089         name   = _name;
  3090         opType = _opType;
  3091         return 1;
  3092       } else {
  3093         -- position;
  3094         return 0;
  3098     const Form *form = globals[_opType];
  3099     MatchNode *matchNode = NULL;
  3100     // Check for user-defined type
  3101     if (form) {
  3102       // User operand or instruction?
  3103       OperandForm  *opForm = form->is_operand();
  3104       InstructForm *inForm = form->is_instruction();
  3105       if ( opForm ) {
  3106         matchNode = (MatchNode*)opForm->_matrule;
  3107       } else if ( inForm ) {
  3108         matchNode = (MatchNode*)inForm->_matrule;
  3111     // if this is user-defined, recurse on match rule
  3112     // User-defined operand and instruction forms have a match-rule.
  3113     if (matchNode) {
  3114       return (matchNode->base_operand(position,globals,result,name,opType));
  3115     } else {
  3116       // Either not a form, or a system-defined form (no match rule).
  3117       if (position==0) {
  3118         result = _result;
  3119         name   = _name;
  3120         opType = _opType;
  3121         return 1;
  3122       } else {
  3123         --position;
  3124         return 0;
  3128   } else {
  3129     // Examine the left child and right child as well
  3130     if (_lChild) {
  3131       if (_lChild->base_operand(position, globals, result, name, opType))
  3132         return 1;
  3135     if (_rChild) {
  3136       if (_rChild->base_operand(position, globals, result, name, opType))
  3137         return 1;
  3141   return 0;
  3144 // Recursive call on all operands' match rules in my match rule.
  3145 uint  MatchNode::num_consts(FormDict &globals) const {
  3146   uint        index      = 0;
  3147   uint        num_consts = 0;
  3148   const char *result;
  3149   const char *name;
  3150   const char *opType;
  3152   for (uint position = index;
  3153        base_operand(position,globals,result,name,opType); position = index) {
  3154     ++index;
  3155     if( ideal_to_const_type(opType) )        num_consts++;
  3158   return num_consts;
  3161 // Recursive call on all operands' match rules in my match rule.
  3162 // Constants in match rule subtree with specified type
  3163 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3164   uint        index      = 0;
  3165   uint        num_consts = 0;
  3166   const char *result;
  3167   const char *name;
  3168   const char *opType;
  3170   for (uint position = index;
  3171        base_operand(position,globals,result,name,opType); position = index) {
  3172     ++index;
  3173     if( ideal_to_const_type(opType) == type ) num_consts++;
  3176   return num_consts;
  3179 // Recursive call on all operands' match rules in my match rule.
  3180 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3181   return  num_consts( globals, Form::idealP );
  3184 bool  MatchNode::sets_result() const {
  3185   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3188 const char *MatchNode::reduce_right(FormDict &globals) const {
  3189   // If there is no right reduction, return NULL.
  3190   const char      *rightStr    = NULL;
  3192   // If we are a "Set", start from the right child.
  3193   const MatchNode *const mnode = sets_result() ?
  3194     (const MatchNode *const)this->_rChild :
  3195     (const MatchNode *const)this;
  3197   // If our right child exists, it is the right reduction
  3198   if ( mnode->_rChild ) {
  3199     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3200       : mnode->_rChild->_opType;
  3202   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3203   return rightStr;
  3206 const char *MatchNode::reduce_left(FormDict &globals) const {
  3207   // If there is no left reduction, return NULL.
  3208   const char  *leftStr  = NULL;
  3210   // If we are a "Set", start from the right child.
  3211   const MatchNode *const mnode = sets_result() ?
  3212     (const MatchNode *const)this->_rChild :
  3213     (const MatchNode *const)this;
  3215   // If our left child exists, it is the left reduction
  3216   if ( mnode->_lChild ) {
  3217     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3218       : mnode->_lChild->_opType;
  3219   } else {
  3220     // May be simple chain rule: (Set dst operand_form_source)
  3221     if ( sets_result() ) {
  3222       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3223       if( oper ) {
  3224         leftStr = mnode->_opType;
  3228   return leftStr;
  3231 //------------------------------count_instr_names------------------------------
  3232 // Count occurrences of operands names in the leaves of the instruction
  3233 // match rule.
  3234 void MatchNode::count_instr_names( Dict &names ) {
  3235   if( !this ) return;
  3236   if( _lChild ) _lChild->count_instr_names(names);
  3237   if( _rChild ) _rChild->count_instr_names(names);
  3238   if( !_lChild && !_rChild ) {
  3239     uintptr_t cnt = (uintptr_t)names[_name];
  3240     cnt++;                      // One more name found
  3241     names.Insert(_name,(void*)cnt);
  3245 //------------------------------build_instr_pred-------------------------------
  3246 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3247 // can skip some leading instances of 'name'.
  3248 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3249   if( _lChild ) {
  3250     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3251     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3252     if( cnt < 0 ) return cnt;   // Found it, all done
  3254   if( _rChild ) {
  3255     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3256     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3257     if( cnt < 0 ) return cnt;   // Found it, all done
  3259   if( !_lChild && !_rChild ) {  // Found a leaf
  3260     // Wrong name?  Give up...
  3261     if( strcmp(name,_name) ) return cnt;
  3262     if( !cnt ) strcpy(buf,"_leaf");
  3263     return cnt-1;
  3265   return cnt;
  3269 //------------------------------build_internalop-------------------------------
  3270 // Build string representation of subtree
  3271 void MatchNode::build_internalop( ) {
  3272   char *iop, *subtree;
  3273   const char *lstr, *rstr;
  3274   // Build string representation of subtree
  3275   // Operation lchildType rchildType
  3276   int len = (int)strlen(_opType) + 4;
  3277   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3278                        _lChild->_internalop : _lChild->_opType) : "";
  3279   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3280                        _rChild->_internalop : _rChild->_opType) : "";
  3281   len += (int)strlen(lstr) + (int)strlen(rstr);
  3282   subtree = (char *)malloc(len);
  3283   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3284   // Hash the subtree string in _internalOps; if a name exists, use it
  3285   iop = (char *)_AD._internalOps[subtree];
  3286   // Else create a unique name, and add it to the hash table
  3287   if (iop == NULL) {
  3288     iop = subtree;
  3289     _AD._internalOps.Insert(subtree, iop);
  3290     _AD._internalOpNames.addName(iop);
  3291     _AD._internalMatch.Insert(iop, this);
  3293   // Add the internal operand name to the MatchNode
  3294   _internalop = iop;
  3295   _result = iop;
  3299 void MatchNode::dump() {
  3300   output(stderr);
  3303 void MatchNode::output(FILE *fp) {
  3304   if (_lChild==0 && _rChild==0) {
  3305     fprintf(fp," %s",_name);    // operand
  3307   else {
  3308     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3309     if(_lChild) _lChild->output(fp); //               left operand
  3310     if(_rChild) _rChild->output(fp); //                    right operand
  3311     fprintf(fp,")");                 //                                 ")"
  3315 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3316   static const char *needs_ideal_memory_list[] = {
  3317     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
  3318     "StoreB","StoreC","Store" ,"StoreFP",
  3319     "LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3320     "LoadB" ,"LoadC" ,"LoadS" ,"Load"   ,
  3321     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
  3322     "Store8B","Store4B","Store8C","Store4C","Store2C",
  3323     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
  3324     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
  3325     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3326     "LoadPLocked", "LoadLLocked",
  3327     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3328     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3329     "StoreCM",
  3330     "ClearArray"
  3331   };
  3332   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3333   if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
  3334     return 1;
  3335   if( _lChild ) {
  3336     const char *opType = _lChild->_opType;
  3337     for( int i=0; i<cnt; i++ )
  3338       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3339         return 1;
  3340     if( _lChild->needs_ideal_memory_edge(globals) )
  3341       return 1;
  3343   if( _rChild ) {
  3344     const char *opType = _rChild->_opType;
  3345     for( int i=0; i<cnt; i++ )
  3346       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3347         return 1;
  3348     if( _rChild->needs_ideal_memory_edge(globals) )
  3349       return 1;
  3352   return 0;
  3355 // TRUE if defines a derived oop, and so needs a base oop edge present
  3356 // post-matching.
  3357 int MatchNode::needs_base_oop_edge() const {
  3358   if( !strcmp(_opType,"AddP") ) return 1;
  3359   if( strcmp(_opType,"Set") ) return 0;
  3360   return !strcmp(_rChild->_opType,"AddP");
  3363 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3364   if( is_simple_chain_rule(globals) ) {
  3365     const char *src = _matrule->_rChild->_opType;
  3366     OperandForm *src_op = globals[src]->is_operand();
  3367     assert( src_op, "Not operand class of chain rule" );
  3368     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3369   }                             // Else check instruction
  3371   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3375 //-------------------------cisc spilling methods-------------------------------
  3376 // helper routines and methods for detecting cisc-spilling instructions
  3377 //-------------------------cisc_spill_merge------------------------------------
  3378 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3379   int cisc_spillable  = Maybe_cisc_spillable;
  3381   // Combine results of left and right checks
  3382   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3383     // neither side is spillable, nor prevents cisc spilling
  3384     cisc_spillable = Maybe_cisc_spillable;
  3386   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3387     // right side is spillable
  3388     cisc_spillable = right_spillable;
  3390   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3391     // left side is spillable
  3392     cisc_spillable = left_spillable;
  3394   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3395     // left or right prevents cisc spilling this instruction
  3396     cisc_spillable = Not_cisc_spillable;
  3398   else {
  3399     // Only allow one to spill
  3400     cisc_spillable = Not_cisc_spillable;
  3403   return cisc_spillable;
  3406 //-------------------------root_ops_match--------------------------------------
  3407 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3408   // Base Case: check that the current operands/operations match
  3409   assert( op1, "Must have op's name");
  3410   assert( op2, "Must have op's name");
  3411   const Form *form1 = globals[op1];
  3412   const Form *form2 = globals[op2];
  3414   return (form1 == form2);
  3417 //-------------------------cisc_spill_match------------------------------------
  3418 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3419 int  MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
  3420   int cisc_spillable  = Maybe_cisc_spillable;
  3421   int left_spillable  = Maybe_cisc_spillable;
  3422   int right_spillable = Maybe_cisc_spillable;
  3424   // Check that each has same number of operands at this level
  3425   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3426     return Not_cisc_spillable;
  3428   // Base Case: check that the current operands/operations match
  3429   // or are CISC spillable
  3430   assert( _opType, "Must have _opType");
  3431   assert( mRule2->_opType, "Must have _opType");
  3432   const Form *form  = globals[_opType];
  3433   const Form *form2 = globals[mRule2->_opType];
  3434   if( form == form2 ) {
  3435     cisc_spillable = Maybe_cisc_spillable;
  3436   } else {
  3437     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3438     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3439     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3440     // Detect reg vs (loadX memory)
  3441     if( form->is_cisc_reg(globals)
  3442         && form2_inst
  3443         && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
  3444         && (name_left != NULL)       // NOT (load)
  3445         && (name_right == NULL) ) {  // NOT (load memory foo)
  3446       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3447       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3448         cisc_spillable = Is_cisc_spillable;
  3449         operand        = _name;
  3450         reg_type       = _result;
  3451         return Is_cisc_spillable;
  3452       } else {
  3453         cisc_spillable = Not_cisc_spillable;
  3456     // Detect reg vs memory
  3457     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3458       cisc_spillable = Is_cisc_spillable;
  3459       operand        = _name;
  3460       reg_type       = _result;
  3461       return Is_cisc_spillable;
  3462     } else {
  3463       cisc_spillable = Not_cisc_spillable;
  3467   // If cisc is still possible, check rest of tree
  3468   if( cisc_spillable == Maybe_cisc_spillable ) {
  3469     // Check that each has same number of operands at this level
  3470     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3472     // Check left operands
  3473     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3474       left_spillable = Maybe_cisc_spillable;
  3475     } else {
  3476       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3479     // Check right operands
  3480     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3481       right_spillable =  Maybe_cisc_spillable;
  3482     } else {
  3483       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3486     // Combine results of left and right checks
  3487     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3490   return cisc_spillable;
  3493 //---------------------------cisc_spill_match----------------------------------
  3494 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3495 // This method handles the root of Match tree,
  3496 // general recursive checks done in MatchNode
  3497 int  MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers,
  3498                                  MatchRule *mRule2, const char * &operand,
  3499                                  const char * &reg_type) {
  3500   int cisc_spillable  = Maybe_cisc_spillable;
  3501   int left_spillable  = Maybe_cisc_spillable;
  3502   int right_spillable = Maybe_cisc_spillable;
  3504   // Check that each sets a result
  3505   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3506   // Check that each has same number of operands at this level
  3507   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3509   // Check left operands: at root, must be target of 'Set'
  3510   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3511     left_spillable = Not_cisc_spillable;
  3512   } else {
  3513     // Do not support cisc-spilling instruction's target location
  3514     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3515       left_spillable = Maybe_cisc_spillable;
  3516     } else {
  3517       left_spillable = Not_cisc_spillable;
  3521   // Check right operands: recursive walk to identify reg->mem operand
  3522   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3523     right_spillable =  Maybe_cisc_spillable;
  3524   } else {
  3525     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3528   // Combine results of left and right checks
  3529   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3531   return cisc_spillable;
  3534 //----------------------------- equivalent ------------------------------------
  3535 // Recursively check to see if two match rules are equivalent.
  3536 // This rule handles the root.
  3537 bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
  3538   // Check that each sets a result
  3539   if (sets_result() != mRule2->sets_result()) {
  3540     return false;
  3543   // Check that the current operands/operations match
  3544   assert( _opType, "Must have _opType");
  3545   assert( mRule2->_opType, "Must have _opType");
  3546   const Form *form  = globals[_opType];
  3547   const Form *form2 = globals[mRule2->_opType];
  3548   if( form != form2 ) {
  3549     return false;
  3552   if (_lChild ) {
  3553     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3554       return false;
  3555   } else if (mRule2->_lChild) {
  3556     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3559   if (_rChild ) {
  3560     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3561       return false;
  3562   } else if (mRule2->_rChild) {
  3563     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3566   // We've made it through the gauntlet.
  3567   return true;
  3570 //----------------------------- equivalent ------------------------------------
  3571 // Recursively check to see if two match rules are equivalent.
  3572 // This rule handles the operands.
  3573 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3574   if( !mNode2 )
  3575     return false;
  3577   // Check that the current operands/operations match
  3578   assert( _opType, "Must have _opType");
  3579   assert( mNode2->_opType, "Must have _opType");
  3580   const Form *form  = globals[_opType];
  3581   const Form *form2 = globals[mNode2->_opType];
  3582   return (form == form2);
  3585 //-------------------------- has_commutative_op -------------------------------
  3586 // Recursively check for commutative operations with subtree operands
  3587 // which could be swapped.
  3588 void MatchNode::count_commutative_op(int& count) {
  3589   static const char *commut_op_list[] = {
  3590     "AddI","AddL","AddF","AddD",
  3591     "AndI","AndL",
  3592     "MaxI","MinI",
  3593     "MulI","MulL","MulF","MulD",
  3594     "OrI" ,"OrL" ,
  3595     "XorI","XorL"
  3596   };
  3597   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3599   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3600     // Don't swap if right operand is an immediate constant.
  3601     bool is_const = false;
  3602     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3603       FormDict &globals = _AD.globalNames();
  3604       const Form *form = globals[_rChild->_opType];
  3605       if ( form ) {
  3606         OperandForm  *oper = form->is_operand();
  3607         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3608           is_const = true;
  3611     if( !is_const ) {
  3612       for( int i=0; i<cnt; i++ ) {
  3613         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3614           count++;
  3615           _commutative_id = count; // id should be > 0
  3616           break;
  3621   if( _lChild )
  3622     _lChild->count_commutative_op(count);
  3623   if( _rChild )
  3624     _rChild->count_commutative_op(count);
  3627 //-------------------------- swap_commutative_op ------------------------------
  3628 // Recursively swap specified commutative operation with subtree operands.
  3629 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3630   if( _commutative_id == id ) { // id should be > 0
  3631     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3632             "not swappable operation");
  3633     MatchNode* tmp = _lChild;
  3634     _lChild = _rChild;
  3635     _rChild = tmp;
  3636     // Don't exit here since we need to build internalop.
  3639   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3640   if( _lChild )
  3641     _lChild->swap_commutative_op(is_set, id);
  3642   if( _rChild )
  3643     _rChild->swap_commutative_op(is_set, id);
  3645   // If not the root, reduce this subtree to an internal operand
  3646   if( !atroot && (_lChild || _rChild) ) {
  3647     build_internalop();
  3651 //-------------------------- swap_commutative_op ------------------------------
  3652 // Recursively swap specified commutative operation with subtree operands.
  3653 void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3654   assert(match_rules_cnt < 100," too many match rule clones");
  3655   // Clone
  3656   MatchRule* clone = new MatchRule(_AD, this);
  3657   // Swap operands of commutative operation
  3658   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3659   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3660   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3661   clone->_result = buf;
  3663   clone->_next = this->_next;
  3664   this-> _next = clone;
  3665   if( (--count) > 0 ) {
  3666     this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
  3667     clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
  3671 //------------------------------MatchRule--------------------------------------
  3672 MatchRule::MatchRule(ArchDesc &ad)
  3673   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3674     _next = NULL;
  3677 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3678   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3679     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3680     _next = NULL;
  3683 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3684                      int numleaves)
  3685   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3686     _numchilds(0) {
  3687       _next = NULL;
  3688       mroot->_lChild = NULL;
  3689       mroot->_rChild = NULL;
  3690       delete mroot;
  3691       _numleaves = numleaves;
  3692       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3694 MatchRule::~MatchRule() {
  3697 // Recursive call collecting info on top-level operands, not transitive.
  3698 // Implementation does not modify state of internal structures.
  3699 void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
  3700   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3702   MatchNode::append_components(locals, components,
  3703                                false /* not necessarily a def */);
  3706 // Recursive call on all operands' match rules in my match rule.
  3707 // Implementation does not modify state of internal structures  since they
  3708 // can be shared.
  3709 // The MatchNode that is called first treats its
  3710 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3711                              const char *&result, const char * &name,
  3712                              const char * &opType)const{
  3713   uint position = position0;
  3715   return (MatchNode::base_operand( position, globals, result, name, opType));
  3719 bool MatchRule::is_base_register(FormDict &globals) const {
  3720   uint   position = 1;
  3721   const char  *result   = NULL;
  3722   const char  *name     = NULL;
  3723   const char  *opType   = NULL;
  3724   if (!base_operand(position, globals, result, name, opType)) {
  3725     position = 0;
  3726     if( base_operand(position, globals, result, name, opType) &&
  3727         (strcmp(opType,"RegI")==0 ||
  3728          strcmp(opType,"RegP")==0 ||
  3729          strcmp(opType,"RegN")==0 ||
  3730          strcmp(opType,"RegL")==0 ||
  3731          strcmp(opType,"RegF")==0 ||
  3732          strcmp(opType,"RegD")==0 ||
  3733          strcmp(opType,"Reg" )==0) ) {
  3734       return 1;
  3737   return 0;
  3740 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3741   uint         position = 1;
  3742   const char  *result   = NULL;
  3743   const char  *name     = NULL;
  3744   const char  *opType   = NULL;
  3745   if (!base_operand(position, globals, result, name, opType)) {
  3746     position = 0;
  3747     if (base_operand(position, globals, result, name, opType)) {
  3748       return ideal_to_const_type(opType);
  3751   return Form::none;
  3754 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3756   // Check for chain rule, and do not generate a match list for it
  3757   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3758     const Form *form = globals[_opType];
  3759     // If this is ideal, then it is a base match, not a chain rule.
  3760     if ( form && form->is_operand() && (!form->ideal_only())) {
  3761       return true;
  3764   // Check for "Set" form of chain rule, and do not generate a match list
  3765   if (_rChild) {
  3766     const char *rch = _rChild->_opType;
  3767     const Form *form = globals[rch];
  3768     if ((!strcmp(_opType,"Set") &&
  3769          ((form) && form->is_operand()))) {
  3770       return true;
  3773   return false;
  3776 int MatchRule::is_ideal_copy() const {
  3777   if( _rChild ) {
  3778     const char  *opType = _rChild->_opType;
  3779 #if 1
  3780     if( strcmp(opType,"CastIP")==0 )
  3781       return 1;
  3782 #else
  3783     if( strcmp(opType,"CastII")==0 )
  3784       return 1;
  3785     // Do not treat *CastPP this way, because it
  3786     // may transfer a raw pointer to an oop.
  3787     // If the register allocator were to coalesce this
  3788     // into a single LRG, the GC maps would be incorrect.
  3789     //if( strcmp(opType,"CastPP")==0 )
  3790     //  return 1;
  3791     //if( strcmp(opType,"CheckCastPP")==0 )
  3792     //  return 1;
  3793     //
  3794     // Do not treat CastX2P or CastP2X this way, because
  3795     // raw pointers and int types are treated differently
  3796     // when saving local & stack info for safepoints in
  3797     // Output().
  3798     //if( strcmp(opType,"CastX2P")==0 )
  3799     //  return 1;
  3800     //if( strcmp(opType,"CastP2X")==0 )
  3801     //  return 1;
  3802 #endif
  3804   if( is_chain_rule(_AD.globalNames()) &&
  3805       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3806     return 1;
  3807   return 0;
  3811 int MatchRule::is_expensive() const {
  3812   if( _rChild ) {
  3813     const char  *opType = _rChild->_opType;
  3814     if( strcmp(opType,"AtanD")==0 ||
  3815         strcmp(opType,"CosD")==0 ||
  3816         strcmp(opType,"DivD")==0 ||
  3817         strcmp(opType,"DivF")==0 ||
  3818         strcmp(opType,"DivI")==0 ||
  3819         strcmp(opType,"ExpD")==0 ||
  3820         strcmp(opType,"LogD")==0 ||
  3821         strcmp(opType,"Log10D")==0 ||
  3822         strcmp(opType,"ModD")==0 ||
  3823         strcmp(opType,"ModF")==0 ||
  3824         strcmp(opType,"ModI")==0 ||
  3825         strcmp(opType,"PowD")==0 ||
  3826         strcmp(opType,"SinD")==0 ||
  3827         strcmp(opType,"SqrtD")==0 ||
  3828         strcmp(opType,"TanD")==0 ||
  3829         strcmp(opType,"ConvD2F")==0 ||
  3830         strcmp(opType,"ConvD2I")==0 ||
  3831         strcmp(opType,"ConvD2L")==0 ||
  3832         strcmp(opType,"ConvF2D")==0 ||
  3833         strcmp(opType,"ConvF2I")==0 ||
  3834         strcmp(opType,"ConvF2L")==0 ||
  3835         strcmp(opType,"ConvI2D")==0 ||
  3836         strcmp(opType,"ConvI2F")==0 ||
  3837         strcmp(opType,"ConvI2L")==0 ||
  3838         strcmp(opType,"ConvL2D")==0 ||
  3839         strcmp(opType,"ConvL2F")==0 ||
  3840         strcmp(opType,"ConvL2I")==0 ||
  3841         strcmp(opType,"DecodeN")==0 ||
  3842         strcmp(opType,"EncodeP")==0 ||
  3843         strcmp(opType,"RoundDouble")==0 ||
  3844         strcmp(opType,"RoundFloat")==0 ||
  3845         strcmp(opType,"ReverseBytesI")==0 ||
  3846         strcmp(opType,"ReverseBytesL")==0 ||
  3847         strcmp(opType,"Replicate16B")==0 ||
  3848         strcmp(opType,"Replicate8B")==0 ||
  3849         strcmp(opType,"Replicate4B")==0 ||
  3850         strcmp(opType,"Replicate8C")==0 ||
  3851         strcmp(opType,"Replicate4C")==0 ||
  3852         strcmp(opType,"Replicate8S")==0 ||
  3853         strcmp(opType,"Replicate4S")==0 ||
  3854         strcmp(opType,"Replicate4I")==0 ||
  3855         strcmp(opType,"Replicate2I")==0 ||
  3856         strcmp(opType,"Replicate2L")==0 ||
  3857         strcmp(opType,"Replicate4F")==0 ||
  3858         strcmp(opType,"Replicate2F")==0 ||
  3859         strcmp(opType,"Replicate2D")==0 ||
  3860         0 /* 0 to line up columns nicely */ )
  3861       return 1;
  3863   return 0;
  3866 bool MatchRule::is_ideal_unlock() const {
  3867   if( !_opType ) return false;
  3868   return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
  3872 bool MatchRule::is_ideal_call_leaf() const {
  3873   if( !_opType ) return false;
  3874   return !strcmp(_opType,"CallLeaf")     ||
  3875          !strcmp(_opType,"CallLeafNoFP");
  3879 bool MatchRule::is_ideal_if() const {
  3880   if( !_opType ) return false;
  3881   return
  3882     !strcmp(_opType,"If"            ) ||
  3883     !strcmp(_opType,"CountedLoopEnd");
  3886 bool MatchRule::is_ideal_fastlock() const {
  3887   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3888     return (strcmp(_rChild->_opType,"FastLock") == 0);
  3890   return false;
  3893 bool MatchRule::is_ideal_membar() const {
  3894   if( !_opType ) return false;
  3895   return
  3896     !strcmp(_opType,"MemBarAcquire"  ) ||
  3897     !strcmp(_opType,"MemBarRelease"  ) ||
  3898     !strcmp(_opType,"MemBarVolatile" ) ||
  3899     !strcmp(_opType,"MemBarCPUOrder" ) ;
  3902 bool MatchRule::is_ideal_loadPC() const {
  3903   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3904     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  3906   return false;
  3909 bool MatchRule::is_ideal_box() const {
  3910   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3911     return (strcmp(_rChild->_opType,"Box") == 0);
  3913   return false;
  3916 bool MatchRule::is_ideal_goto() const {
  3917   bool   ideal_goto = false;
  3919   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  3920     ideal_goto = true;
  3922   return ideal_goto;
  3925 bool MatchRule::is_ideal_jump() const {
  3926   if( _opType ) {
  3927     if( !strcmp(_opType,"Jump") )
  3928       return true;
  3930   return false;
  3933 bool MatchRule::is_ideal_bool() const {
  3934   if( _opType ) {
  3935     if( !strcmp(_opType,"Bool") )
  3936       return true;
  3938   return false;
  3942 Form::DataType MatchRule::is_ideal_load() const {
  3943   Form::DataType ideal_load = Form::none;
  3945   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3946     const char *opType = _rChild->_opType;
  3947     ideal_load = is_load_from_memory(opType);
  3950   return ideal_load;
  3954 Form::DataType MatchRule::is_ideal_store() const {
  3955   Form::DataType ideal_store = Form::none;
  3957   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3958     const char *opType = _rChild->_opType;
  3959     ideal_store = is_store_to_memory(opType);
  3962   return ideal_store;
  3966 void MatchRule::dump() {
  3967   output(stderr);
  3970 void MatchRule::output(FILE *fp) {
  3971   fprintf(fp,"MatchRule: ( %s",_name);
  3972   if (_lChild) _lChild->output(fp);
  3973   if (_rChild) _rChild->output(fp);
  3974   fprintf(fp," )\n");
  3975   fprintf(fp,"   nesting depth = %d\n", _depth);
  3976   if (_result) fprintf(fp,"   Result Type = %s", _result);
  3977   fprintf(fp,"\n");
  3980 //------------------------------Attribute--------------------------------------
  3981 Attribute::Attribute(char *id, char* val, int type)
  3982   : _ident(id), _val(val), _atype(type) {
  3984 Attribute::~Attribute() {
  3987 int Attribute::int_val(ArchDesc &ad) {
  3988   // Make sure it is an integer constant:
  3989   int result = 0;
  3990   if (!_val || !ADLParser::is_int_token(_val, result)) {
  3991     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  3992                   _ident, _val ? _val : "");
  3994   return result;
  3997 void Attribute::dump() {
  3998   output(stderr);
  3999 } // Debug printer
  4001 // Write to output files
  4002 void Attribute::output(FILE *fp) {
  4003   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4006 //------------------------------FormatRule----------------------------------
  4007 FormatRule::FormatRule(char *temp)
  4008   : _temp(temp) {
  4010 FormatRule::~FormatRule() {
  4013 void FormatRule::dump() {
  4014   output(stderr);
  4017 // Write to output files
  4018 void FormatRule::output(FILE *fp) {
  4019   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4020   fprintf(fp,"\n");

mercurial