src/cpu/x86/vm/assembler_x86.hpp

Fri, 07 Nov 2008 09:29:38 -0800

author
kvn
date
Fri, 07 Nov 2008 09:29:38 -0800
changeset 855
a1980da045cc
parent 840
2649e5276dd7
child 1057
56aae7be60d4
permissions
-rw-r--r--

6462850: generate biased locking code in C2 ideal graph
Summary: Inline biased locking code in C2 ideal graph during macro nodes expansion
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BiasedLockingCounters;
    27 // Contains all the definitions needed for x86 assembly code generation.
    29 // Calling convention
    30 class Argument VALUE_OBJ_CLASS_SPEC {
    31  public:
    32   enum {
    33 #ifdef _LP64
    34 #ifdef _WIN64
    35     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    36     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    37 #else
    38     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    40 #endif // _WIN64
    41     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    42     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    43 #else
    44     n_register_parameters = 0   // 0 registers used to pass arguments
    45 #endif // _LP64
    46   };
    47 };
    50 #ifdef _LP64
    51 // Symbolically name the register arguments used by the c calling convention.
    52 // Windows is different from linux/solaris. So much for standards...
    54 #ifdef _WIN64
    56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    58 REGISTER_DECLARATION(Register, c_rarg2, r8);
    59 REGISTER_DECLARATION(Register, c_rarg3, r9);
    61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    66 #else
    68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    72 REGISTER_DECLARATION(Register, c_rarg4, r8);
    73 REGISTER_DECLARATION(Register, c_rarg5, r9);
    75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    84 #endif // _WIN64
    86 // Symbolically name the register arguments used by the Java calling convention.
    87 // We have control over the convention for java so we can do what we please.
    88 // What pleases us is to offset the java calling convention so that when
    89 // we call a suitable jni method the arguments are lined up and we don't
    90 // have to do little shuffling. A suitable jni method is non-static and a
    91 // small number of arguments (two fewer args on windows)
    92 //
    93 //        |-------------------------------------------------------|
    94 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    95 //        |-------------------------------------------------------|
    96 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
    97 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
    98 //        |-------------------------------------------------------|
    99 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   100 //        |-------------------------------------------------------|
   102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   105 // Windows runs out of register args here
   106 #ifdef _WIN64
   107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   109 #else
   110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   112 #endif /* _WIN64 */
   113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   124 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   125 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   130 #else
   131 // rscratch1 will apear in 32bit code that is dead but of course must compile
   132 // Using noreg ensures if the dead code is incorrectly live and executed it
   133 // will cause an assertion failure
   134 #define rscratch1 noreg
   136 #endif // _LP64
   138 // Address is an abstraction used to represent a memory location
   139 // using any of the amd64 addressing modes with one object.
   140 //
   141 // Note: A register location is represented via a Register, not
   142 //       via an address for efficiency & simplicity reasons.
   144 class ArrayAddress;
   146 class Address VALUE_OBJ_CLASS_SPEC {
   147  public:
   148   enum ScaleFactor {
   149     no_scale = -1,
   150     times_1  =  0,
   151     times_2  =  1,
   152     times_4  =  2,
   153     times_8  =  3,
   154     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   155   };
   157  private:
   158   Register         _base;
   159   Register         _index;
   160   ScaleFactor      _scale;
   161   int              _disp;
   162   RelocationHolder _rspec;
   164   // Easily misused constructors make them private
   165   // %%% can we make these go away?
   166   NOT_LP64(Address(address loc, RelocationHolder spec);)
   167   Address(int disp, address loc, relocInfo::relocType rtype);
   168   Address(int disp, address loc, RelocationHolder spec);
   170  public:
   172  int disp() { return _disp; }
   173   // creation
   174   Address()
   175     : _base(noreg),
   176       _index(noreg),
   177       _scale(no_scale),
   178       _disp(0) {
   179   }
   181   // No default displacement otherwise Register can be implicitly
   182   // converted to 0(Register) which is quite a different animal.
   184   Address(Register base, int disp)
   185     : _base(base),
   186       _index(noreg),
   187       _scale(no_scale),
   188       _disp(disp) {
   189   }
   191   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   192     : _base (base),
   193       _index(index),
   194       _scale(scale),
   195       _disp (disp) {
   196     assert(!index->is_valid() == (scale == Address::no_scale),
   197            "inconsistent address");
   198   }
   200   // The following two overloads are used in connection with the
   201   // ByteSize type (see sizes.hpp).  They simplify the use of
   202   // ByteSize'd arguments in assembly code. Note that their equivalent
   203   // for the optimized build are the member functions with int disp
   204   // argument since ByteSize is mapped to an int type in that case.
   205   //
   206   // Note: DO NOT introduce similar overloaded functions for WordSize
   207   // arguments as in the optimized mode, both ByteSize and WordSize
   208   // are mapped to the same type and thus the compiler cannot make a
   209   // distinction anymore (=> compiler errors).
   211 #ifdef ASSERT
   212   Address(Register base, ByteSize disp)
   213     : _base(base),
   214       _index(noreg),
   215       _scale(no_scale),
   216       _disp(in_bytes(disp)) {
   217   }
   219   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   220     : _base(base),
   221       _index(index),
   222       _scale(scale),
   223       _disp(in_bytes(disp)) {
   224     assert(!index->is_valid() == (scale == Address::no_scale),
   225            "inconsistent address");
   226   }
   227 #endif // ASSERT
   229   // accessors
   230   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   231   Register    base()             const { return _base;  }
   232   Register    index()            const { return _index; }
   233   ScaleFactor scale()            const { return _scale; }
   234   int         disp()             const { return _disp;  }
   236   // Convert the raw encoding form into the form expected by the constructor for
   237   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   238   // that to noreg for the Address constructor.
   239   static Address make_raw(int base, int index, int scale, int disp);
   241   static Address make_array(ArrayAddress);
   244  private:
   245   bool base_needs_rex() const {
   246     return _base != noreg && _base->encoding() >= 8;
   247   }
   249   bool index_needs_rex() const {
   250     return _index != noreg &&_index->encoding() >= 8;
   251   }
   253   relocInfo::relocType reloc() const { return _rspec.type(); }
   255   friend class Assembler;
   256   friend class MacroAssembler;
   257   friend class LIR_Assembler; // base/index/scale/disp
   258 };
   260 //
   261 // AddressLiteral has been split out from Address because operands of this type
   262 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   263 // the few instructions that need to deal with address literals are unique and the
   264 // MacroAssembler does not have to implement every instruction in the Assembler
   265 // in order to search for address literals that may need special handling depending
   266 // on the instruction and the platform. As small step on the way to merging i486/amd64
   267 // directories.
   268 //
   269 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   270   friend class ArrayAddress;
   271   RelocationHolder _rspec;
   272   // Typically we use AddressLiterals we want to use their rval
   273   // However in some situations we want the lval (effect address) of the item.
   274   // We provide a special factory for making those lvals.
   275   bool _is_lval;
   277   // If the target is far we'll need to load the ea of this to
   278   // a register to reach it. Otherwise if near we can do rip
   279   // relative addressing.
   281   address          _target;
   283  protected:
   284   // creation
   285   AddressLiteral()
   286     : _is_lval(false),
   287       _target(NULL)
   288   {}
   290   public:
   293   AddressLiteral(address target, relocInfo::relocType rtype);
   295   AddressLiteral(address target, RelocationHolder const& rspec)
   296     : _rspec(rspec),
   297       _is_lval(false),
   298       _target(target)
   299   {}
   301   AddressLiteral addr() {
   302     AddressLiteral ret = *this;
   303     ret._is_lval = true;
   304     return ret;
   305   }
   308  private:
   310   address target() { return _target; }
   311   bool is_lval() { return _is_lval; }
   313   relocInfo::relocType reloc() const { return _rspec.type(); }
   314   const RelocationHolder& rspec() const { return _rspec; }
   316   friend class Assembler;
   317   friend class MacroAssembler;
   318   friend class Address;
   319   friend class LIR_Assembler;
   320 };
   322 // Convience classes
   323 class RuntimeAddress: public AddressLiteral {
   325   public:
   327   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   329 };
   331 class OopAddress: public AddressLiteral {
   333   public:
   335   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   337 };
   339 class ExternalAddress: public AddressLiteral {
   341   public:
   343   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
   345 };
   347 class InternalAddress: public AddressLiteral {
   349   public:
   351   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   353 };
   355 // x86 can do array addressing as a single operation since disp can be an absolute
   356 // address amd64 can't. We create a class that expresses the concept but does extra
   357 // magic on amd64 to get the final result
   359 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   360   private:
   362   AddressLiteral _base;
   363   Address        _index;
   365   public:
   367   ArrayAddress() {};
   368   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   369   AddressLiteral base() { return _base; }
   370   Address index() { return _index; }
   372 };
   374 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   376 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   377 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   378 // is what you get. The Assembler is generating code into a CodeBuffer.
   380 class Assembler : public AbstractAssembler  {
   381   friend class AbstractAssembler; // for the non-virtual hack
   382   friend class LIR_Assembler; // as_Address()
   383   friend class StubGenerator;
   385  public:
   386   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   387     zero          = 0x4,
   388     notZero       = 0x5,
   389     equal         = 0x4,
   390     notEqual      = 0x5,
   391     less          = 0xc,
   392     lessEqual     = 0xe,
   393     greater       = 0xf,
   394     greaterEqual  = 0xd,
   395     below         = 0x2,
   396     belowEqual    = 0x6,
   397     above         = 0x7,
   398     aboveEqual    = 0x3,
   399     overflow      = 0x0,
   400     noOverflow    = 0x1,
   401     carrySet      = 0x2,
   402     carryClear    = 0x3,
   403     negative      = 0x8,
   404     positive      = 0x9,
   405     parity        = 0xa,
   406     noParity      = 0xb
   407   };
   409   enum Prefix {
   410     // segment overrides
   411     CS_segment = 0x2e,
   412     SS_segment = 0x36,
   413     DS_segment = 0x3e,
   414     ES_segment = 0x26,
   415     FS_segment = 0x64,
   416     GS_segment = 0x65,
   418     REX        = 0x40,
   420     REX_B      = 0x41,
   421     REX_X      = 0x42,
   422     REX_XB     = 0x43,
   423     REX_R      = 0x44,
   424     REX_RB     = 0x45,
   425     REX_RX     = 0x46,
   426     REX_RXB    = 0x47,
   428     REX_W      = 0x48,
   430     REX_WB     = 0x49,
   431     REX_WX     = 0x4A,
   432     REX_WXB    = 0x4B,
   433     REX_WR     = 0x4C,
   434     REX_WRB    = 0x4D,
   435     REX_WRX    = 0x4E,
   436     REX_WRXB   = 0x4F
   437   };
   439   enum WhichOperand {
   440     // input to locate_operand, and format code for relocations
   441     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   442     disp32_operand = 1,          // embedded 32-bit displacement or address
   443     call32_operand = 2,          // embedded 32-bit self-relative displacement
   444 #ifndef _LP64
   445     _WhichOperand_limit = 3
   446 #else
   447      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   448     _WhichOperand_limit = 4
   449 #endif
   450   };
   454   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   455   // of instructions are freely declared without the need for wrapping them an ifdef.
   456   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   457   // In the .cpp file the implementations are wrapped so that they are dropped out
   458   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   459   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   460   //
   461   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   462   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   464 private:
   467   // 64bit prefixes
   468   int prefix_and_encode(int reg_enc, bool byteinst = false);
   469   int prefixq_and_encode(int reg_enc);
   471   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   472   int prefixq_and_encode(int dst_enc, int src_enc);
   474   void prefix(Register reg);
   475   void prefix(Address adr);
   476   void prefixq(Address adr);
   478   void prefix(Address adr, Register reg,  bool byteinst = false);
   479   void prefixq(Address adr, Register reg);
   481   void prefix(Address adr, XMMRegister reg);
   483   void prefetch_prefix(Address src);
   485   // Helper functions for groups of instructions
   486   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   488   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   489   // only 32bit??
   490   void emit_arith(int op1, int op2, Register dst, jobject obj);
   491   void emit_arith(int op1, int op2, Register dst, Register src);
   493   void emit_operand(Register reg,
   494                     Register base, Register index, Address::ScaleFactor scale,
   495                     int disp,
   496                     RelocationHolder const& rspec,
   497                     int rip_relative_correction = 0);
   499   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   501   // operands that only take the original 32bit registers
   502   void emit_operand32(Register reg, Address adr);
   504   void emit_operand(XMMRegister reg,
   505                     Register base, Register index, Address::ScaleFactor scale,
   506                     int disp,
   507                     RelocationHolder const& rspec);
   509   void emit_operand(XMMRegister reg, Address adr);
   511   void emit_operand(MMXRegister reg, Address adr);
   513   // workaround gcc (3.2.1-7) bug
   514   void emit_operand(Address adr, MMXRegister reg);
   517   // Immediate-to-memory forms
   518   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   520   void emit_farith(int b1, int b2, int i);
   523  protected:
   524   #ifdef ASSERT
   525   void check_relocation(RelocationHolder const& rspec, int format);
   526   #endif
   528   inline void emit_long64(jlong x);
   530   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   531   void emit_data(jint data, RelocationHolder const& rspec, int format);
   532   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   533   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   536   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   538   // These are all easily abused and hence protected
   540   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format = 0);
   542   // 32BIT ONLY SECTION
   543 #ifndef _LP64
   544   // Make these disappear in 64bit mode since they would never be correct
   545   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   546   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   548   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   550   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   551 #else
   552   // 64BIT ONLY SECTION
   553   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   554 #endif // _LP64
   556   // These are unique in that we are ensured by the caller that the 32bit
   557   // relative in these instructions will always be able to reach the potentially
   558   // 64bit address described by entry. Since they can take a 64bit address they
   559   // don't have the 32 suffix like the other instructions in this class.
   561   void call_literal(address entry, RelocationHolder const& rspec);
   562   void jmp_literal(address entry, RelocationHolder const& rspec);
   564   // Avoid using directly section
   565   // Instructions in this section are actually usable by anyone without danger
   566   // of failure but have performance issues that are addressed my enhanced
   567   // instructions which will do the proper thing base on the particular cpu.
   568   // We protect them because we don't trust you...
   570   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   571   // could cause a partial flag stall since they don't set CF flag.
   572   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   573   // which call inc() & dec() or add() & sub() in accordance with
   574   // the product flag UseIncDec value.
   576   void decl(Register dst);
   577   void decl(Address dst);
   578   void decq(Register dst);
   579   void decq(Address dst);
   581   void incl(Register dst);
   582   void incl(Address dst);
   583   void incq(Register dst);
   584   void incq(Address dst);
   586   // New cpus require use of movsd and movss to avoid partial register stall
   587   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   588   // The selection is done in MacroAssembler::movdbl() and movflt().
   590   // Move Scalar Single-Precision Floating-Point Values
   591   void movss(XMMRegister dst, Address src);
   592   void movss(XMMRegister dst, XMMRegister src);
   593   void movss(Address dst, XMMRegister src);
   595   // Move Scalar Double-Precision Floating-Point Values
   596   void movsd(XMMRegister dst, Address src);
   597   void movsd(XMMRegister dst, XMMRegister src);
   598   void movsd(Address dst, XMMRegister src);
   599   void movlpd(XMMRegister dst, Address src);
   601   // New cpus require use of movaps and movapd to avoid partial register stall
   602   // when moving between registers.
   603   void movaps(XMMRegister dst, XMMRegister src);
   604   void movapd(XMMRegister dst, XMMRegister src);
   606   // End avoid using directly
   609   // Instruction prefixes
   610   void prefix(Prefix p);
   612   public:
   614   // Creation
   615   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   617   // Decoding
   618   static address locate_operand(address inst, WhichOperand which);
   619   static address locate_next_instruction(address inst);
   621   // Utilities
   623 #ifdef _LP64
   624  static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) )  <= x   &&   x  <  ( CONST64(1) << (nbits-1) ); }
   625  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
   626 #else
   627  static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) )  <= x   &&   x  <  ( 1 << (nbits-1) ); }
   628  static bool is_simm32(int32_t x) { return true; }
   629 #endif // LP64
   631   // Generic instructions
   632   // Does 32bit or 64bit as needed for the platform. In some sense these
   633   // belong in macro assembler but there is no need for both varieties to exist
   635   void lea(Register dst, Address src);
   637   void mov(Register dst, Register src);
   639   void pusha();
   640   void popa();
   642   void pushf();
   643   void popf();
   645   void push(int32_t imm32);
   647   void push(Register src);
   649   void pop(Register dst);
   651   // These are dummies to prevent surprise implicit conversions to Register
   652   void push(void* v);
   653   void pop(void* v);
   656   // These do register sized moves/scans
   657   void rep_mov();
   658   void rep_set();
   659   void repne_scan();
   660 #ifdef _LP64
   661   void repne_scanl();
   662 #endif
   664   // Vanilla instructions in lexical order
   666   void adcl(Register dst, int32_t imm32);
   667   void adcl(Register dst, Address src);
   668   void adcl(Register dst, Register src);
   670   void adcq(Register dst, int32_t imm32);
   671   void adcq(Register dst, Address src);
   672   void adcq(Register dst, Register src);
   675   void addl(Address dst, int32_t imm32);
   676   void addl(Address dst, Register src);
   677   void addl(Register dst, int32_t imm32);
   678   void addl(Register dst, Address src);
   679   void addl(Register dst, Register src);
   681   void addq(Address dst, int32_t imm32);
   682   void addq(Address dst, Register src);
   683   void addq(Register dst, int32_t imm32);
   684   void addq(Register dst, Address src);
   685   void addq(Register dst, Register src);
   688   void addr_nop_4();
   689   void addr_nop_5();
   690   void addr_nop_7();
   691   void addr_nop_8();
   693   // Add Scalar Double-Precision Floating-Point Values
   694   void addsd(XMMRegister dst, Address src);
   695   void addsd(XMMRegister dst, XMMRegister src);
   697   // Add Scalar Single-Precision Floating-Point Values
   698   void addss(XMMRegister dst, Address src);
   699   void addss(XMMRegister dst, XMMRegister src);
   701   void andl(Register dst, int32_t imm32);
   702   void andl(Register dst, Address src);
   703   void andl(Register dst, Register src);
   705   void andq(Register dst, int32_t imm32);
   706   void andq(Register dst, Address src);
   707   void andq(Register dst, Register src);
   710   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
   711   void andpd(XMMRegister dst, Address src);
   712   void andpd(XMMRegister dst, XMMRegister src);
   714   void bswapl(Register reg);
   716   void bswapq(Register reg);
   718   void call(Label& L, relocInfo::relocType rtype);
   719   void call(Register reg);  // push pc; pc <- reg
   720   void call(Address adr);   // push pc; pc <- adr
   722   void cdql();
   724   void cdqq();
   726   void cld() { emit_byte(0xfc); }
   728   void clflush(Address adr);
   730   void cmovl(Condition cc, Register dst, Register src);
   731   void cmovl(Condition cc, Register dst, Address src);
   733   void cmovq(Condition cc, Register dst, Register src);
   734   void cmovq(Condition cc, Register dst, Address src);
   737   void cmpb(Address dst, int imm8);
   739   void cmpl(Address dst, int32_t imm32);
   741   void cmpl(Register dst, int32_t imm32);
   742   void cmpl(Register dst, Register src);
   743   void cmpl(Register dst, Address src);
   745   void cmpq(Address dst, int32_t imm32);
   746   void cmpq(Address dst, Register src);
   748   void cmpq(Register dst, int32_t imm32);
   749   void cmpq(Register dst, Register src);
   750   void cmpq(Register dst, Address src);
   752   // these are dummies used to catch attempting to convert NULL to Register
   753   void cmpl(Register dst, void* junk); // dummy
   754   void cmpq(Register dst, void* junk); // dummy
   756   void cmpw(Address dst, int imm16);
   758   void cmpxchg8 (Address adr);
   760   void cmpxchgl(Register reg, Address adr);
   762   void cmpxchgq(Register reg, Address adr);
   764   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   765   void comisd(XMMRegister dst, Address src);
   767   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   768   void comiss(XMMRegister dst, Address src);
   770   // Identify processor type and features
   771   void cpuid() {
   772     emit_byte(0x0F);
   773     emit_byte(0xA2);
   774   }
   776   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   777   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   779   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   780   void cvtsi2sdl(XMMRegister dst, Register src);
   781   void cvtsi2sdq(XMMRegister dst, Register src);
   783   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   784   void cvtsi2ssl(XMMRegister dst, Register src);
   785   void cvtsi2ssq(XMMRegister dst, Register src);
   787   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   788   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   790   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   791   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   793   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   794   void cvtss2sd(XMMRegister dst, XMMRegister src);
   796   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   797   void cvttsd2sil(Register dst, Address src);
   798   void cvttsd2sil(Register dst, XMMRegister src);
   799   void cvttsd2siq(Register dst, XMMRegister src);
   801   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
   802   void cvttss2sil(Register dst, XMMRegister src);
   803   void cvttss2siq(Register dst, XMMRegister src);
   805   // Divide Scalar Double-Precision Floating-Point Values
   806   void divsd(XMMRegister dst, Address src);
   807   void divsd(XMMRegister dst, XMMRegister src);
   809   // Divide Scalar Single-Precision Floating-Point Values
   810   void divss(XMMRegister dst, Address src);
   811   void divss(XMMRegister dst, XMMRegister src);
   813   void emms();
   815   void fabs();
   817   void fadd(int i);
   819   void fadd_d(Address src);
   820   void fadd_s(Address src);
   822   // "Alternate" versions of x87 instructions place result down in FPU
   823   // stack instead of on TOS
   825   void fadda(int i); // "alternate" fadd
   826   void faddp(int i = 1);
   828   void fchs();
   830   void fcom(int i);
   832   void fcomp(int i = 1);
   833   void fcomp_d(Address src);
   834   void fcomp_s(Address src);
   836   void fcompp();
   838   void fcos();
   840   void fdecstp();
   842   void fdiv(int i);
   843   void fdiv_d(Address src);
   844   void fdivr_s(Address src);
   845   void fdiva(int i);  // "alternate" fdiv
   846   void fdivp(int i = 1);
   848   void fdivr(int i);
   849   void fdivr_d(Address src);
   850   void fdiv_s(Address src);
   852   void fdivra(int i); // "alternate" reversed fdiv
   854   void fdivrp(int i = 1);
   856   void ffree(int i = 0);
   858   void fild_d(Address adr);
   859   void fild_s(Address adr);
   861   void fincstp();
   863   void finit();
   865   void fist_s (Address adr);
   866   void fistp_d(Address adr);
   867   void fistp_s(Address adr);
   869   void fld1();
   871   void fld_d(Address adr);
   872   void fld_s(Address adr);
   873   void fld_s(int index);
   874   void fld_x(Address adr);  // extended-precision (80-bit) format
   876   void fldcw(Address src);
   878   void fldenv(Address src);
   880   void fldlg2();
   882   void fldln2();
   884   void fldz();
   886   void flog();
   887   void flog10();
   889   void fmul(int i);
   891   void fmul_d(Address src);
   892   void fmul_s(Address src);
   894   void fmula(int i);  // "alternate" fmul
   896   void fmulp(int i = 1);
   898   void fnsave(Address dst);
   900   void fnstcw(Address src);
   902   void fnstsw_ax();
   904   void fprem();
   905   void fprem1();
   907   void frstor(Address src);
   909   void fsin();
   911   void fsqrt();
   913   void fst_d(Address adr);
   914   void fst_s(Address adr);
   916   void fstp_d(Address adr);
   917   void fstp_d(int index);
   918   void fstp_s(Address adr);
   919   void fstp_x(Address adr); // extended-precision (80-bit) format
   921   void fsub(int i);
   922   void fsub_d(Address src);
   923   void fsub_s(Address src);
   925   void fsuba(int i);  // "alternate" fsub
   927   void fsubp(int i = 1);
   929   void fsubr(int i);
   930   void fsubr_d(Address src);
   931   void fsubr_s(Address src);
   933   void fsubra(int i); // "alternate" reversed fsub
   935   void fsubrp(int i = 1);
   937   void ftan();
   939   void ftst();
   941   void fucomi(int i = 1);
   942   void fucomip(int i = 1);
   944   void fwait();
   946   void fxch(int i = 1);
   948   void fxrstor(Address src);
   950   void fxsave(Address dst);
   952   void fyl2x();
   954   void hlt();
   956   void idivl(Register src);
   958   void idivq(Register src);
   960   void imull(Register dst, Register src);
   961   void imull(Register dst, Register src, int value);
   963   void imulq(Register dst, Register src);
   964   void imulq(Register dst, Register src, int value);
   967   // jcc is the generic conditional branch generator to run-
   968   // time routines, jcc is used for branches to labels. jcc
   969   // takes a branch opcode (cc) and a label (L) and generates
   970   // either a backward branch or a forward branch and links it
   971   // to the label fixup chain. Usage:
   972   //
   973   // Label L;      // unbound label
   974   // jcc(cc, L);   // forward branch to unbound label
   975   // bind(L);      // bind label to the current pc
   976   // jcc(cc, L);   // backward branch to bound label
   977   // bind(L);      // illegal: a label may be bound only once
   978   //
   979   // Note: The same Label can be used for forward and backward branches
   980   // but it may be bound only once.
   982   void jcc(Condition cc, Label& L,
   983            relocInfo::relocType rtype = relocInfo::none);
   985   // Conditional jump to a 8-bit offset to L.
   986   // WARNING: be very careful using this for forward jumps.  If the label is
   987   // not bound within an 8-bit offset of this instruction, a run-time error
   988   // will occur.
   989   void jccb(Condition cc, Label& L);
   991   void jmp(Address entry);    // pc <- entry
   993   // Label operations & relative jumps (PPUM Appendix D)
   994   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
   996   void jmp(Register entry); // pc <- entry
   998   // Unconditional 8-bit offset jump to L.
   999   // WARNING: be very careful using this for forward jumps.  If the label is
  1000   // not bound within an 8-bit offset of this instruction, a run-time error
  1001   // will occur.
  1002   void jmpb(Label& L);
  1004   void ldmxcsr( Address src );
  1006   void leal(Register dst, Address src);
  1008   void leaq(Register dst, Address src);
  1010   void lfence() {
  1011     emit_byte(0x0F);
  1012     emit_byte(0xAE);
  1013     emit_byte(0xE8);
  1016   void lock();
  1018   enum Membar_mask_bits {
  1019     StoreStore = 1 << 3,
  1020     LoadStore  = 1 << 2,
  1021     StoreLoad  = 1 << 1,
  1022     LoadLoad   = 1 << 0
  1023   };
  1025   // Serializes memory.
  1026   void membar(Membar_mask_bits order_constraint) {
  1027     // We only have to handle StoreLoad and LoadLoad
  1028     if (order_constraint & StoreLoad) {
  1029       // MFENCE subsumes LFENCE
  1030       mfence();
  1031     } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
  1032          lfence();
  1033     } */
  1036   void mfence();
  1038   // Moves
  1040   void mov64(Register dst, int64_t imm64);
  1042   void movb(Address dst, Register src);
  1043   void movb(Address dst, int imm8);
  1044   void movb(Register dst, Address src);
  1046   void movdl(XMMRegister dst, Register src);
  1047   void movdl(Register dst, XMMRegister src);
  1049   // Move Double Quadword
  1050   void movdq(XMMRegister dst, Register src);
  1051   void movdq(Register dst, XMMRegister src);
  1053   // Move Aligned Double Quadword
  1054   void movdqa(Address     dst, XMMRegister src);
  1055   void movdqa(XMMRegister dst, Address src);
  1056   void movdqa(XMMRegister dst, XMMRegister src);
  1058   // Move Unaligned Double Quadword
  1059   void movdqu(Address     dst, XMMRegister src);
  1060   void movdqu(XMMRegister dst, Address src);
  1061   void movdqu(XMMRegister dst, XMMRegister src);
  1063   void movl(Register dst, int32_t imm32);
  1064   void movl(Address dst, int32_t imm32);
  1065   void movl(Register dst, Register src);
  1066   void movl(Register dst, Address src);
  1067   void movl(Address dst, Register src);
  1069   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1070   // by giving the compiler two choices it can't resolve
  1072   void movl(Address  dst, void* junk);
  1073   void movl(Register dst, void* junk);
  1075 #ifdef _LP64
  1076   void movq(Register dst, Register src);
  1077   void movq(Register dst, Address src);
  1078   void movq(Address dst, Register src);
  1079 #endif
  1081   void movq(Address     dst, MMXRegister src );
  1082   void movq(MMXRegister dst, Address src );
  1084 #ifdef _LP64
  1085   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1086   // by giving the compiler two choices it can't resolve
  1088   void movq(Address  dst, void* dummy);
  1089   void movq(Register dst, void* dummy);
  1090 #endif
  1092   // Move Quadword
  1093   void movq(Address     dst, XMMRegister src);
  1094   void movq(XMMRegister dst, Address src);
  1096   void movsbl(Register dst, Address src);
  1097   void movsbl(Register dst, Register src);
  1099 #ifdef _LP64
  1100   // Move signed 32bit immediate to 64bit extending sign
  1101   void movslq(Address dst, int32_t imm64);
  1102   void movslq(Register dst, int32_t imm64);
  1104   void movslq(Register dst, Address src);
  1105   void movslq(Register dst, Register src);
  1106   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1107 #endif
  1109   void movswl(Register dst, Address src);
  1110   void movswl(Register dst, Register src);
  1112   void movw(Address dst, int imm16);
  1113   void movw(Register dst, Address src);
  1114   void movw(Address dst, Register src);
  1116   void movzbl(Register dst, Address src);
  1117   void movzbl(Register dst, Register src);
  1119   void movzwl(Register dst, Address src);
  1120   void movzwl(Register dst, Register src);
  1122   void mull(Address src);
  1123   void mull(Register src);
  1125   // Multiply Scalar Double-Precision Floating-Point Values
  1126   void mulsd(XMMRegister dst, Address src);
  1127   void mulsd(XMMRegister dst, XMMRegister src);
  1129   // Multiply Scalar Single-Precision Floating-Point Values
  1130   void mulss(XMMRegister dst, Address src);
  1131   void mulss(XMMRegister dst, XMMRegister src);
  1133   void negl(Register dst);
  1135 #ifdef _LP64
  1136   void negq(Register dst);
  1137 #endif
  1139   void nop(int i = 1);
  1141   void notl(Register dst);
  1143 #ifdef _LP64
  1144   void notq(Register dst);
  1145 #endif
  1147   void orl(Address dst, int32_t imm32);
  1148   void orl(Register dst, int32_t imm32);
  1149   void orl(Register dst, Address src);
  1150   void orl(Register dst, Register src);
  1152   void orq(Address dst, int32_t imm32);
  1153   void orq(Register dst, int32_t imm32);
  1154   void orq(Register dst, Address src);
  1155   void orq(Register dst, Register src);
  1157   void popl(Address dst);
  1159 #ifdef _LP64
  1160   void popq(Address dst);
  1161 #endif
  1163   // Prefetches (SSE, SSE2, 3DNOW only)
  1165   void prefetchnta(Address src);
  1166   void prefetchr(Address src);
  1167   void prefetcht0(Address src);
  1168   void prefetcht1(Address src);
  1169   void prefetcht2(Address src);
  1170   void prefetchw(Address src);
  1172   // Shuffle Packed Doublewords
  1173   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1174   void pshufd(XMMRegister dst, Address src,     int mode);
  1176   // Shuffle Packed Low Words
  1177   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1178   void pshuflw(XMMRegister dst, Address src,     int mode);
  1180   // Shift Right Logical Quadword Immediate
  1181   void psrlq(XMMRegister dst, int shift);
  1183   // Interleave Low Bytes
  1184   void punpcklbw(XMMRegister dst, XMMRegister src);
  1186   void pushl(Address src);
  1188   void pushq(Address src);
  1190   // Xor Packed Byte Integer Values
  1191   void pxor(XMMRegister dst, Address src);
  1192   void pxor(XMMRegister dst, XMMRegister src);
  1194   void rcll(Register dst, int imm8);
  1196   void rclq(Register dst, int imm8);
  1198   void ret(int imm16);
  1200   void sahf();
  1202   void sarl(Register dst, int imm8);
  1203   void sarl(Register dst);
  1205   void sarq(Register dst, int imm8);
  1206   void sarq(Register dst);
  1208   void sbbl(Address dst, int32_t imm32);
  1209   void sbbl(Register dst, int32_t imm32);
  1210   void sbbl(Register dst, Address src);
  1211   void sbbl(Register dst, Register src);
  1213   void sbbq(Address dst, int32_t imm32);
  1214   void sbbq(Register dst, int32_t imm32);
  1215   void sbbq(Register dst, Address src);
  1216   void sbbq(Register dst, Register src);
  1218   void setb(Condition cc, Register dst);
  1220   void shldl(Register dst, Register src);
  1222   void shll(Register dst, int imm8);
  1223   void shll(Register dst);
  1225   void shlq(Register dst, int imm8);
  1226   void shlq(Register dst);
  1228   void shrdl(Register dst, Register src);
  1230   void shrl(Register dst, int imm8);
  1231   void shrl(Register dst);
  1233   void shrq(Register dst, int imm8);
  1234   void shrq(Register dst);
  1236   void smovl(); // QQQ generic?
  1238   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1239   void sqrtsd(XMMRegister dst, Address src);
  1240   void sqrtsd(XMMRegister dst, XMMRegister src);
  1242   void std() { emit_byte(0xfd); }
  1244   void stmxcsr( Address dst );
  1246   void subl(Address dst, int32_t imm32);
  1247   void subl(Address dst, Register src);
  1248   void subl(Register dst, int32_t imm32);
  1249   void subl(Register dst, Address src);
  1250   void subl(Register dst, Register src);
  1252   void subq(Address dst, int32_t imm32);
  1253   void subq(Address dst, Register src);
  1254   void subq(Register dst, int32_t imm32);
  1255   void subq(Register dst, Address src);
  1256   void subq(Register dst, Register src);
  1259   // Subtract Scalar Double-Precision Floating-Point Values
  1260   void subsd(XMMRegister dst, Address src);
  1261   void subsd(XMMRegister dst, XMMRegister src);
  1263   // Subtract Scalar Single-Precision Floating-Point Values
  1264   void subss(XMMRegister dst, Address src);
  1265   void subss(XMMRegister dst, XMMRegister src);
  1267   void testb(Register dst, int imm8);
  1269   void testl(Register dst, int32_t imm32);
  1270   void testl(Register dst, Register src);
  1271   void testl(Register dst, Address src);
  1273   void testq(Register dst, int32_t imm32);
  1274   void testq(Register dst, Register src);
  1277   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1278   void ucomisd(XMMRegister dst, Address src);
  1279   void ucomisd(XMMRegister dst, XMMRegister src);
  1281   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1282   void ucomiss(XMMRegister dst, Address src);
  1283   void ucomiss(XMMRegister dst, XMMRegister src);
  1285   void xaddl(Address dst, Register src);
  1287   void xaddq(Address dst, Register src);
  1289   void xchgl(Register reg, Address adr);
  1290   void xchgl(Register dst, Register src);
  1292   void xchgq(Register reg, Address adr);
  1293   void xchgq(Register dst, Register src);
  1295   void xorl(Register dst, int32_t imm32);
  1296   void xorl(Register dst, Address src);
  1297   void xorl(Register dst, Register src);
  1299   void xorq(Register dst, Address src);
  1300   void xorq(Register dst, Register src);
  1302   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1303   void xorpd(XMMRegister dst, Address src);
  1304   void xorpd(XMMRegister dst, XMMRegister src);
  1306   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1307   void xorps(XMMRegister dst, Address src);
  1308   void xorps(XMMRegister dst, XMMRegister src);
  1310   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1311 };
  1314 // MacroAssembler extends Assembler by frequently used macros.
  1315 //
  1316 // Instructions for which a 'better' code sequence exists depending
  1317 // on arguments should also go in here.
  1319 class MacroAssembler: public Assembler {
  1320   friend class LIR_Assembler;
  1321   friend class Runtime1;      // as_Address()
  1322  protected:
  1324   Address as_Address(AddressLiteral adr);
  1325   Address as_Address(ArrayAddress adr);
  1327   // Support for VM calls
  1328   //
  1329   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1330   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1331   // additional registers when doing a VM call).
  1332 #ifdef CC_INTERP
  1333   // c++ interpreter never wants to use interp_masm version of call_VM
  1334   #define VIRTUAL
  1335 #else
  1336   #define VIRTUAL virtual
  1337 #endif
  1339   VIRTUAL void call_VM_leaf_base(
  1340     address entry_point,               // the entry point
  1341     int     number_of_arguments        // the number of arguments to pop after the call
  1342   );
  1344   // This is the base routine called by the different versions of call_VM. The interpreter
  1345   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1346   // additional registers when doing a VM call).
  1347   //
  1348   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1349   // returns the register which contains the thread upon return. If a thread register has been
  1350   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1351   // (noreg) than rsp will be used instead.
  1352   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1353     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1354     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1355     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1356     address  entry_point,              // the entry point
  1357     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1358     bool     check_exceptions          // whether to check for pending exceptions after return
  1359   );
  1361   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1362   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1363   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1364   virtual void check_and_handle_popframe(Register java_thread);
  1365   virtual void check_and_handle_earlyret(Register java_thread);
  1367   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1369   // helpers for FPU flag access
  1370   // tmp is a temporary register, if none is available use noreg
  1371   void save_rax   (Register tmp);
  1372   void restore_rax(Register tmp);
  1374  public:
  1375   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1377   // Support for NULL-checks
  1378   //
  1379   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1380   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1381   // offset. No explicit code generation is needed if the offset is within a certain
  1382   // range (0 <= offset <= page_size).
  1384   void null_check(Register reg, int offset = -1);
  1385   static bool needs_explicit_null_check(intptr_t offset);
  1387   // Required platform-specific helpers for Label::patch_instructions.
  1388   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1389   void pd_patch_instruction(address branch, address target);
  1390 #ifndef PRODUCT
  1391   static void pd_print_patched_instruction(address branch);
  1392 #endif
  1394   // The following 4 methods return the offset of the appropriate move instruction
  1396   // Support for fast byte/word loading with zero extension (depending on particular CPU)
  1397   int load_unsigned_byte(Register dst, Address src);
  1398   int load_unsigned_word(Register dst, Address src);
  1400   // Support for fast byte/word loading with sign extension (depending on particular CPU)
  1401   int load_signed_byte(Register dst, Address src);
  1402   int load_signed_word(Register dst, Address src);
  1404   // Support for sign-extension (hi:lo = extend_sign(lo))
  1405   void extend_sign(Register hi, Register lo);
  1407   // Support for inc/dec with optimal instruction selection depending on value
  1409   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1410   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1412   void decrementl(Address dst, int value = 1);
  1413   void decrementl(Register reg, int value = 1);
  1415   void decrementq(Register reg, int value = 1);
  1416   void decrementq(Address dst, int value = 1);
  1418   void incrementl(Address dst, int value = 1);
  1419   void incrementl(Register reg, int value = 1);
  1421   void incrementq(Register reg, int value = 1);
  1422   void incrementq(Address dst, int value = 1);
  1425   // Support optimal SSE move instructions.
  1426   void movflt(XMMRegister dst, XMMRegister src) {
  1427     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1428     else                       { movss (dst, src); return; }
  1430   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1431   void movflt(XMMRegister dst, AddressLiteral src);
  1432   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1434   void movdbl(XMMRegister dst, XMMRegister src) {
  1435     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1436     else                       { movsd (dst, src); return; }
  1439   void movdbl(XMMRegister dst, AddressLiteral src);
  1441   void movdbl(XMMRegister dst, Address src) {
  1442     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1443     else                         { movlpd(dst, src); return; }
  1445   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1447   void incrementl(AddressLiteral dst);
  1448   void incrementl(ArrayAddress dst);
  1450   // Alignment
  1451   void align(int modulus);
  1453   // Misc
  1454   void fat_nop(); // 5 byte nop
  1456   // Stack frame creation/removal
  1457   void enter();
  1458   void leave();
  1460   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1461   // The pointer will be loaded into the thread register.
  1462   void get_thread(Register thread);
  1465   // Support for VM calls
  1466   //
  1467   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1468   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1469   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1472   void call_VM(Register oop_result,
  1473                address entry_point,
  1474                bool check_exceptions = true);
  1475   void call_VM(Register oop_result,
  1476                address entry_point,
  1477                Register arg_1,
  1478                bool check_exceptions = true);
  1479   void call_VM(Register oop_result,
  1480                address entry_point,
  1481                Register arg_1, Register arg_2,
  1482                bool check_exceptions = true);
  1483   void call_VM(Register oop_result,
  1484                address entry_point,
  1485                Register arg_1, Register arg_2, Register arg_3,
  1486                bool check_exceptions = true);
  1488   // Overloadings with last_Java_sp
  1489   void call_VM(Register oop_result,
  1490                Register last_java_sp,
  1491                address entry_point,
  1492                int number_of_arguments = 0,
  1493                bool check_exceptions = true);
  1494   void call_VM(Register oop_result,
  1495                Register last_java_sp,
  1496                address entry_point,
  1497                Register arg_1, bool
  1498                check_exceptions = true);
  1499   void call_VM(Register oop_result,
  1500                Register last_java_sp,
  1501                address entry_point,
  1502                Register arg_1, Register arg_2,
  1503                bool check_exceptions = true);
  1504   void call_VM(Register oop_result,
  1505                Register last_java_sp,
  1506                address entry_point,
  1507                Register arg_1, Register arg_2, Register arg_3,
  1508                bool check_exceptions = true);
  1510   void call_VM_leaf(address entry_point,
  1511                     int number_of_arguments = 0);
  1512   void call_VM_leaf(address entry_point,
  1513                     Register arg_1);
  1514   void call_VM_leaf(address entry_point,
  1515                     Register arg_1, Register arg_2);
  1516   void call_VM_leaf(address entry_point,
  1517                     Register arg_1, Register arg_2, Register arg_3);
  1519   // last Java Frame (fills frame anchor)
  1520   void set_last_Java_frame(Register thread,
  1521                            Register last_java_sp,
  1522                            Register last_java_fp,
  1523                            address last_java_pc);
  1525   // thread in the default location (r15_thread on 64bit)
  1526   void set_last_Java_frame(Register last_java_sp,
  1527                            Register last_java_fp,
  1528                            address last_java_pc);
  1530   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  1532   // thread in the default location (r15_thread on 64bit)
  1533   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  1535   // Stores
  1536   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  1537   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  1539   void g1_write_barrier_pre(Register obj,
  1540 #ifndef _LP64
  1541                             Register thread,
  1542 #endif
  1543                             Register tmp,
  1544                             Register tmp2,
  1545                             bool     tosca_live);
  1546   void g1_write_barrier_post(Register store_addr,
  1547                              Register new_val,
  1548 #ifndef _LP64
  1549                              Register thread,
  1550 #endif
  1551                              Register tmp,
  1552                              Register tmp2);
  1555   // split store_check(Register obj) to enhance instruction interleaving
  1556   void store_check_part_1(Register obj);
  1557   void store_check_part_2(Register obj);
  1559   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  1560   void c2bool(Register x);
  1562   // C++ bool manipulation
  1564   void movbool(Register dst, Address src);
  1565   void movbool(Address dst, bool boolconst);
  1566   void movbool(Address dst, Register src);
  1567   void testbool(Register dst);
  1569   // oop manipulations
  1570   void load_klass(Register dst, Register src);
  1571   void store_klass(Register dst, Register src);
  1573   void load_prototype_header(Register dst, Register src);
  1575 #ifdef _LP64
  1576   void store_klass_gap(Register dst, Register src);
  1578   void load_heap_oop(Register dst, Address src);
  1579   void store_heap_oop(Address dst, Register src);
  1580   void encode_heap_oop(Register r);
  1581   void decode_heap_oop(Register r);
  1582   void encode_heap_oop_not_null(Register r);
  1583   void decode_heap_oop_not_null(Register r);
  1584   void encode_heap_oop_not_null(Register dst, Register src);
  1585   void decode_heap_oop_not_null(Register dst, Register src);
  1587   void set_narrow_oop(Register dst, jobject obj);
  1589   // if heap base register is used - reinit it with the correct value
  1590   void reinit_heapbase();
  1591 #endif // _LP64
  1593   // Int division/remainder for Java
  1594   // (as idivl, but checks for special case as described in JVM spec.)
  1595   // returns idivl instruction offset for implicit exception handling
  1596   int corrected_idivl(Register reg);
  1598   // Long division/remainder for Java
  1599   // (as idivq, but checks for special case as described in JVM spec.)
  1600   // returns idivq instruction offset for implicit exception handling
  1601   int corrected_idivq(Register reg);
  1603   void int3();
  1605   // Long operation macros for a 32bit cpu
  1606   // Long negation for Java
  1607   void lneg(Register hi, Register lo);
  1609   // Long multiplication for Java
  1610   // (destroys contents of eax, ebx, ecx and edx)
  1611   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  1613   // Long shifts for Java
  1614   // (semantics as described in JVM spec.)
  1615   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  1616   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  1618   // Long compare for Java
  1619   // (semantics as described in JVM spec.)
  1620   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  1623   // misc
  1625   // Sign extension
  1626   void sign_extend_short(Register reg);
  1627   void sign_extend_byte(Register reg);
  1629   // Division by power of 2, rounding towards 0
  1630   void division_with_shift(Register reg, int shift_value);
  1632   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  1633   //
  1634   // CF (corresponds to C0) if x < y
  1635   // PF (corresponds to C2) if unordered
  1636   // ZF (corresponds to C3) if x = y
  1637   //
  1638   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1639   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  1640   void fcmp(Register tmp);
  1641   // Variant of the above which allows y to be further down the stack
  1642   // and which only pops x and y if specified. If pop_right is
  1643   // specified then pop_left must also be specified.
  1644   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  1646   // Floating-point comparison for Java
  1647   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  1648   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  1649   // (semantics as described in JVM spec.)
  1650   void fcmp2int(Register dst, bool unordered_is_less);
  1651   // Variant of the above which allows y to be further down the stack
  1652   // and which only pops x and y if specified. If pop_right is
  1653   // specified then pop_left must also be specified.
  1654   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  1656   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  1657   // tmp is a temporary register, if none is available use noreg
  1658   void fremr(Register tmp);
  1661   // same as fcmp2int, but using SSE2
  1662   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1663   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  1665   // Inlined sin/cos generator for Java; must not use CPU instruction
  1666   // directly on Intel as it does not have high enough precision
  1667   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  1668   // number of FPU stack slots in use; all but the topmost will
  1669   // require saving if a slow case is necessary. Assumes argument is
  1670   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  1671   // this code.
  1672   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  1674   // branch to L if FPU flag C2 is set/not set
  1675   // tmp is a temporary register, if none is available use noreg
  1676   void jC2 (Register tmp, Label& L);
  1677   void jnC2(Register tmp, Label& L);
  1679   // Pop ST (ffree & fincstp combined)
  1680   void fpop();
  1682   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1683   void push_fTOS();
  1685   // pops double TOS element from CPU stack and pushes on FPU stack
  1686   void pop_fTOS();
  1688   void empty_FPU_stack();
  1690   void push_IU_state();
  1691   void pop_IU_state();
  1693   void push_FPU_state();
  1694   void pop_FPU_state();
  1696   void push_CPU_state();
  1697   void pop_CPU_state();
  1699   // Round up to a power of two
  1700   void round_to(Register reg, int modulus);
  1702   // Callee saved registers handling
  1703   void push_callee_saved_registers();
  1704   void pop_callee_saved_registers();
  1706   // allocation
  1707   void eden_allocate(
  1708     Register obj,                      // result: pointer to object after successful allocation
  1709     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1710     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1711     Register t1,                       // temp register
  1712     Label&   slow_case                 // continuation point if fast allocation fails
  1713   );
  1714   void tlab_allocate(
  1715     Register obj,                      // result: pointer to object after successful allocation
  1716     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  1717     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  1718     Register t1,                       // temp register
  1719     Register t2,                       // temp register
  1720     Label&   slow_case                 // continuation point if fast allocation fails
  1721   );
  1722   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  1724   //----
  1725   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  1727   // Debugging
  1729   // only if +VerifyOops
  1730   void verify_oop(Register reg, const char* s = "broken oop");
  1731   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  1733   // only if +VerifyFPU
  1734   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  1736   // prints msg, dumps registers and stops execution
  1737   void stop(const char* msg);
  1739   // prints msg and continues
  1740   void warn(const char* msg);
  1742   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  1743   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  1745   void os_breakpoint();
  1747   void untested()                                { stop("untested"); }
  1749   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, sizeof(b), "unimplemented: %s", what);  stop(b); }
  1751   void should_not_reach_here()                   { stop("should not reach here"); }
  1753   void print_CPU_state();
  1755   // Stack overflow checking
  1756   void bang_stack_with_offset(int offset) {
  1757     // stack grows down, caller passes positive offset
  1758     assert(offset > 0, "must bang with negative offset");
  1759     movl(Address(rsp, (-offset)), rax);
  1762   // Writes to stack successive pages until offset reached to check for
  1763   // stack overflow + shadow pages.  Also, clobbers tmp
  1764   void bang_stack_size(Register size, Register tmp);
  1766   // Support for serializing memory accesses between threads
  1767   void serialize_memory(Register thread, Register tmp);
  1769   void verify_tlab();
  1771   // Biased locking support
  1772   // lock_reg and obj_reg must be loaded up with the appropriate values.
  1773   // swap_reg must be rax, and is killed.
  1774   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  1775   // be killed; if not supplied, push/pop will be used internally to
  1776   // allocate a temporary (inefficient, avoid if possible).
  1777   // Optional slow case is for implementations (interpreter and C1) which branch to
  1778   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  1779   // Returns offset of first potentially-faulting instruction for null
  1780   // check info (currently consumed only by C1). If
  1781   // swap_reg_contains_mark is true then returns -1 as it is assumed
  1782   // the calling code has already passed any potential faults.
  1783   int biased_locking_enter(Register lock_reg, Register obj_reg,
  1784                            Register swap_reg, Register tmp_reg,
  1785                            bool swap_reg_contains_mark,
  1786                            Label& done, Label* slow_case = NULL,
  1787                            BiasedLockingCounters* counters = NULL);
  1788   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  1791   Condition negate_condition(Condition cond);
  1793   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  1794   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  1795   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  1796   // here in MacroAssembler. The major exception to this rule is call
  1798   // Arithmetics
  1801   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  1802   void addptr(Address dst, Register src);
  1804   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  1805   void addptr(Register dst, int32_t src);
  1806   void addptr(Register dst, Register src);
  1808   void andptr(Register dst, int32_t src);
  1809   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  1811   void cmp8(AddressLiteral src1, int imm);
  1813   // renamed to drag out the casting of address to int32_t/intptr_t
  1814   void cmp32(Register src1, int32_t imm);
  1816   void cmp32(AddressLiteral src1, int32_t imm);
  1817   // compare reg - mem, or reg - &mem
  1818   void cmp32(Register src1, AddressLiteral src2);
  1820   void cmp32(Register src1, Address src2);
  1822 #ifndef _LP64
  1823   void cmpoop(Address dst, jobject obj);
  1824   void cmpoop(Register dst, jobject obj);
  1825 #endif // _LP64
  1827   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  1828   void cmpptr(Address src1, AddressLiteral src2);
  1830   void cmpptr(Register src1, AddressLiteral src2);
  1832   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1833   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1834   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1836   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1837   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  1839   // cmp64 to avoild hiding cmpq
  1840   void cmp64(Register src1, AddressLiteral src);
  1842   void cmpxchgptr(Register reg, Address adr);
  1844   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  1847   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  1850   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  1852   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  1854   void shlptr(Register dst, int32_t shift);
  1855   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  1857   void shrptr(Register dst, int32_t shift);
  1858   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  1860   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  1861   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  1863   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  1865   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  1866   void subptr(Register dst, int32_t src);
  1867   void subptr(Register dst, Register src);
  1870   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  1871   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  1873   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  1874   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  1876   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  1880   // Helper functions for statistics gathering.
  1881   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  1882   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  1883   // Unconditional atomic increment.
  1884   void atomic_incl(AddressLiteral counter_addr);
  1886   void lea(Register dst, AddressLiteral adr);
  1887   void lea(Address dst, AddressLiteral adr);
  1888   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  1890   void leal32(Register dst, Address src) { leal(dst, src); }
  1892   void test32(Register src1, AddressLiteral src2);
  1894   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1895   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1896   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  1898   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  1899   void testptr(Register src1, Register src2);
  1901   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  1902   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  1904   // Calls
  1906   void call(Label& L, relocInfo::relocType rtype);
  1907   void call(Register entry);
  1909   // NOTE: this call tranfers to the effective address of entry NOT
  1910   // the address contained by entry. This is because this is more natural
  1911   // for jumps/calls.
  1912   void call(AddressLiteral entry);
  1914   // Jumps
  1916   // NOTE: these jumps tranfer to the effective address of dst NOT
  1917   // the address contained by dst. This is because this is more natural
  1918   // for jumps/calls.
  1919   void jump(AddressLiteral dst);
  1920   void jump_cc(Condition cc, AddressLiteral dst);
  1922   // 32bit can do a case table jump in one instruction but we no longer allow the base
  1923   // to be installed in the Address class. This jump will tranfers to the address
  1924   // contained in the location described by entry (not the address of entry)
  1925   void jump(ArrayAddress entry);
  1927   // Floating
  1929   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  1930   void andpd(XMMRegister dst, AddressLiteral src);
  1932   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  1933   void comiss(XMMRegister dst, AddressLiteral src);
  1935   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  1936   void comisd(XMMRegister dst, AddressLiteral src);
  1938   void fldcw(Address src) { Assembler::fldcw(src); }
  1939   void fldcw(AddressLiteral src);
  1941   void fld_s(int index)   { Assembler::fld_s(index); }
  1942   void fld_s(Address src) { Assembler::fld_s(src); }
  1943   void fld_s(AddressLiteral src);
  1945   void fld_d(Address src) { Assembler::fld_d(src); }
  1946   void fld_d(AddressLiteral src);
  1948   void fld_x(Address src) { Assembler::fld_x(src); }
  1949   void fld_x(AddressLiteral src);
  1951   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  1952   void ldmxcsr(AddressLiteral src);
  1954 private:
  1955   // these are private because users should be doing movflt/movdbl
  1957   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  1958   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  1959   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  1960   void movss(XMMRegister dst, AddressLiteral src);
  1962   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
  1963   void movlpd(XMMRegister dst, AddressLiteral src);
  1965 public:
  1967   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  1968   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  1969   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  1970   void movsd(XMMRegister dst, AddressLiteral src);
  1972   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  1973   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
  1974   void ucomiss(XMMRegister dst, AddressLiteral src);
  1976   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  1977   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
  1978   void ucomisd(XMMRegister dst, AddressLiteral src);
  1980   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1981   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  1982   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  1983   void xorpd(XMMRegister dst, AddressLiteral src);
  1985   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1986   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  1987   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  1988   void xorps(XMMRegister dst, AddressLiteral src);
  1990   // Data
  1992   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  1994   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  1995   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
  1997   void movoop(Register dst, jobject obj);
  1998   void movoop(Address dst, jobject obj);
  2000   void movptr(ArrayAddress dst, Register src);
  2001   // can this do an lea?
  2002   void movptr(Register dst, ArrayAddress src);
  2004   void movptr(Register dst, Address src);
  2006   void movptr(Register dst, AddressLiteral src);
  2008   void movptr(Register dst, intptr_t src);
  2009   void movptr(Register dst, Register src);
  2010   void movptr(Address dst, intptr_t src);
  2012   void movptr(Address dst, Register src);
  2014 #ifdef _LP64
  2015   // Generally the next two are only used for moving NULL
  2016   // Although there are situations in initializing the mark word where
  2017   // they could be used. They are dangerous.
  2019   // They only exist on LP64 so that int32_t and intptr_t are not the same
  2020   // and we have ambiguous declarations.
  2022   void movptr(Address dst, int32_t imm32);
  2023   void movptr(Register dst, int32_t imm32);
  2024 #endif // _LP64
  2026   // to avoid hiding movl
  2027   void mov32(AddressLiteral dst, Register src);
  2028   void mov32(Register dst, AddressLiteral src);
  2030   // to avoid hiding movb
  2031   void movbyte(ArrayAddress dst, int src);
  2033   // Can push value or effective address
  2034   void pushptr(AddressLiteral src);
  2036   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2037   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2039   void pushoop(jobject obj);
  2041   // sign extend as need a l to ptr sized element
  2042   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2043   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2046 #undef VIRTUAL
  2048 };
  2050 /**
  2051  * class SkipIfEqual:
  2053  * Instantiating this class will result in assembly code being output that will
  2054  * jump around any code emitted between the creation of the instance and it's
  2055  * automatic destruction at the end of a scope block, depending on the value of
  2056  * the flag passed to the constructor, which will be checked at run-time.
  2057  */
  2058 class SkipIfEqual {
  2059  private:
  2060   MacroAssembler* _masm;
  2061   Label _label;
  2063  public:
  2064    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2065    ~SkipIfEqual();
  2066 };
  2068 #ifdef ASSERT
  2069 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2070 #endif

mercurial