src/share/vm/utilities/taskqueue.hpp

Wed, 12 Oct 2016 02:29:05 -0400

author
fujie
date
Wed, 12 Oct 2016 02:29:05 -0400
changeset 133
a087cf8abe24
parent 25
873fd82b133d
child 415
8d48e8755036
permissions
-rw-r--r--

Sync during TaskSteal for 3A2000.

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
    26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "runtime/mutex.hpp"
    31 #include "utilities/stack.hpp"
    32 #ifdef TARGET_OS_ARCH_linux_x86
    33 # include "orderAccess_linux_x86.inline.hpp"
    34 #endif
    35 #ifdef TARGET_OS_ARCH_linux_sparc
    36 # include "orderAccess_linux_sparc.inline.hpp"
    37 #endif
    38 #ifdef TARGET_OS_ARCH_linux_zero
    39 # include "orderAccess_linux_zero.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_ARCH_solaris_x86
    42 # include "orderAccess_solaris_x86.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_ARCH_solaris_sparc
    45 # include "orderAccess_solaris_sparc.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_ARCH_windows_x86
    48 # include "orderAccess_windows_x86.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_ARCH_linux_arm
    51 # include "orderAccess_linux_arm.inline.hpp"
    52 #endif
    53 #ifdef TARGET_OS_ARCH_linux_ppc
    54 # include "orderAccess_linux_ppc.inline.hpp"
    55 #endif
    56 #ifdef TARGET_OS_ARCH_aix_ppc
    57 # include "orderAccess_aix_ppc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_ARCH_bsd_x86
    60 # include "orderAccess_bsd_x86.inline.hpp"
    61 #endif
    62 #ifdef TARGET_OS_ARCH_bsd_zero
    63 # include "orderAccess_bsd_zero.inline.hpp"
    64 #endif
    66 // Simple TaskQueue stats that are collected by default in debug builds.
    68 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
    69 #define TASKQUEUE_STATS 1
    70 #elif !defined(TASKQUEUE_STATS)
    71 #define TASKQUEUE_STATS 0
    72 #endif
    74 #if TASKQUEUE_STATS
    75 #define TASKQUEUE_STATS_ONLY(code) code
    76 #else
    77 #define TASKQUEUE_STATS_ONLY(code)
    78 #endif // TASKQUEUE_STATS
    80 #if TASKQUEUE_STATS
    81 class TaskQueueStats {
    82 public:
    83   enum StatId {
    84     push,             // number of taskqueue pushes
    85     pop,              // number of taskqueue pops
    86     pop_slow,         // subset of taskqueue pops that were done slow-path
    87     steal_attempt,    // number of taskqueue steal attempts
    88     steal,            // number of taskqueue steals
    89     overflow,         // number of overflow pushes
    90     overflow_max_len, // max length of overflow stack
    91     last_stat_id
    92   };
    94 public:
    95   inline TaskQueueStats()       { reset(); }
    97   inline void record_push()     { ++_stats[push]; }
    98   inline void record_pop()      { ++_stats[pop]; }
    99   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
   100   inline void record_steal(bool success);
   101   inline void record_overflow(size_t new_length);
   103   TaskQueueStats & operator +=(const TaskQueueStats & addend);
   105   inline size_t get(StatId id) const { return _stats[id]; }
   106   inline const size_t* get() const   { return _stats; }
   108   inline void reset();
   110   // Print the specified line of the header (does not include a line separator).
   111   static void print_header(unsigned int line, outputStream* const stream = tty,
   112                            unsigned int width = 10);
   113   // Print the statistics (does not include a line separator).
   114   void print(outputStream* const stream = tty, unsigned int width = 10) const;
   116   DEBUG_ONLY(void verify() const;)
   118 private:
   119   size_t                    _stats[last_stat_id];
   120   static const char * const _names[last_stat_id];
   121 };
   123 void TaskQueueStats::record_steal(bool success) {
   124   ++_stats[steal_attempt];
   125   if (success) ++_stats[steal];
   126 }
   128 void TaskQueueStats::record_overflow(size_t new_len) {
   129   ++_stats[overflow];
   130   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
   131 }
   133 void TaskQueueStats::reset() {
   134   memset(_stats, 0, sizeof(_stats));
   135 }
   136 #endif // TASKQUEUE_STATS
   138 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
   140 template <unsigned int N, MEMFLAGS F>
   141 class TaskQueueSuper: public CHeapObj<F> {
   142 protected:
   143   // Internal type for indexing the queue; also used for the tag.
   144   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
   146   // The first free element after the last one pushed (mod N).
   147   volatile uint _bottom;
   149   enum { MOD_N_MASK = N - 1 };
   151   class Age {
   152   public:
   153     Age(size_t data = 0)         { _data = data; }
   154     Age(const Age& age)          { _data = age._data; }
   155     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
   157     Age   get()        const volatile { return _data; }
   158     void  set(Age age) volatile       { _data = age._data; }
   160     idx_t top()        const volatile { return _fields._top; }
   161     idx_t tag()        const volatile { return _fields._tag; }
   163     // Increment top; if it wraps, increment tag also.
   164     void increment() {
   165       _fields._top = increment_index(_fields._top);
   166       if (_fields._top == 0) ++_fields._tag;
   167     }
   169     Age cmpxchg(const Age new_age, const Age old_age) volatile {
   170       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
   171                                           (volatile intptr_t *)&_data,
   172                                           (intptr_t)old_age._data);
   173     }
   175     bool operator ==(const Age& other) const { return _data == other._data; }
   177   private:
   178     struct fields {
   179       idx_t _top;
   180       idx_t _tag;
   181     };
   182     union {
   183       size_t _data;
   184       fields _fields;
   185     };
   186   };
   188   volatile Age _age;
   190   // These both operate mod N.
   191   static uint increment_index(uint ind) {
   192     return (ind + 1) & MOD_N_MASK;
   193   }
   194   static uint decrement_index(uint ind) {
   195     return (ind - 1) & MOD_N_MASK;
   196   }
   198   // Returns a number in the range [0..N).  If the result is "N-1", it should be
   199   // interpreted as 0.
   200   uint dirty_size(uint bot, uint top) const {
   201     return (bot - top) & MOD_N_MASK;
   202   }
   204   // Returns the size corresponding to the given "bot" and "top".
   205   uint size(uint bot, uint top) const {
   206     uint sz = dirty_size(bot, top);
   207     // Has the queue "wrapped", so that bottom is less than top?  There's a
   208     // complicated special case here.  A pair of threads could perform pop_local
   209     // and pop_global operations concurrently, starting from a state in which
   210     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
   211     // and the pop_global in incrementing _top (in which case the pop_global
   212     // will be awarded the contested queue element.)  The resulting state must
   213     // be interpreted as an empty queue.  (We only need to worry about one such
   214     // event: only the queue owner performs pop_local's, and several concurrent
   215     // threads attempting to perform the pop_global will all perform the same
   216     // CAS, and only one can succeed.)  Any stealing thread that reads after
   217     // either the increment or decrement will see an empty queue, and will not
   218     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
   219     // modified by concurrent queues, so the owner thread can reset the state to
   220     // _bottom == top so subsequent pushes will be performed normally.
   221     return (sz == N - 1) ? 0 : sz;
   222   }
   224 public:
   225   TaskQueueSuper() : _bottom(0), _age() {}
   227   // Return true if the TaskQueue contains/does not contain any tasks.
   228   bool peek()     const { return _bottom != _age.top(); }
   229   bool is_empty() const { return size() == 0; }
   231   // Return an estimate of the number of elements in the queue.
   232   // The "careful" version admits the possibility of pop_local/pop_global
   233   // races.
   234   uint size() const {
   235     return size(_bottom, _age.top());
   236   }
   238   uint dirty_size() const {
   239     return dirty_size(_bottom, _age.top());
   240   }
   242   void set_empty() {
   243     _bottom = 0;
   244     _age.set(0);
   245   }
   247   // Maximum number of elements allowed in the queue.  This is two less
   248   // than the actual queue size, for somewhat complicated reasons.
   249   uint max_elems() const { return N - 2; }
   251   // Total size of queue.
   252   static const uint total_size() { return N; }
   254   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
   255 };
   257 //
   258 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
   259 // ended-queue (deque), intended for use in work stealing. Queue operations
   260 // are non-blocking.
   261 //
   262 // A queue owner thread performs push() and pop_local() operations on one end
   263 // of the queue, while other threads may steal work using the pop_global()
   264 // method.
   265 //
   266 // The main difference to the original algorithm is that this
   267 // implementation allows wrap-around at the end of its allocated
   268 // storage, which is an array.
   269 //
   270 // The original paper is:
   271 //
   272 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
   273 // Thread scheduling for multiprogrammed multiprocessors.
   274 // Theory of Computing Systems 34, 2 (2001), 115-144.
   275 //
   276 // The following paper provides an correctness proof and an
   277 // implementation for weakly ordered memory models including (pseudo-)
   278 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
   279 // similar to ABP, with the main difference that it allows resizing of the
   280 // underlying storage:
   281 //
   282 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
   283 // Correct and efficient work-stealing for weak memory models
   284 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
   285 // practice of parallel programming (PPoPP 2013), 69-80
   286 //
   288 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   289 class GenericTaskQueue: public TaskQueueSuper<N, F> {
   290   ArrayAllocator<E, F> _array_allocator;
   291 protected:
   292   typedef typename TaskQueueSuper<N, F>::Age Age;
   293   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
   295   using TaskQueueSuper<N, F>::_bottom;
   296   using TaskQueueSuper<N, F>::_age;
   297   using TaskQueueSuper<N, F>::increment_index;
   298   using TaskQueueSuper<N, F>::decrement_index;
   299   using TaskQueueSuper<N, F>::dirty_size;
   301 public:
   302   using TaskQueueSuper<N, F>::max_elems;
   303   using TaskQueueSuper<N, F>::size;
   305 #if  TASKQUEUE_STATS
   306   using TaskQueueSuper<N, F>::stats;
   307 #endif
   309 private:
   310   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   311   bool push_slow(E t, uint dirty_n_elems);
   312   bool pop_local_slow(uint localBot, Age oldAge);
   314 public:
   315   typedef E element_type;
   317   // Initializes the queue to empty.
   318   GenericTaskQueue();
   320   void initialize();
   322   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
   323   inline bool push(E t);
   325   // Attempts to claim a task from the "local" end of the queue (the most
   326   // recently pushed).  If successful, returns true and sets t to the task;
   327   // otherwise, returns false (the queue is empty).
   328   inline bool pop_local(volatile E& t);
   330   // Like pop_local(), but uses the "global" end of the queue (the least
   331   // recently pushed).
   332   bool pop_global(volatile E& t);
   334   // Delete any resource associated with the queue.
   335   ~GenericTaskQueue();
   337   // apply the closure to all elements in the task queue
   338   void oops_do(OopClosure* f);
   340 private:
   341   // Element array.
   342   volatile E* _elems;
   343 };
   345 template<class E, MEMFLAGS F, unsigned int N>
   346 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
   347   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
   348 }
   350 template<class E, MEMFLAGS F, unsigned int N>
   351 void GenericTaskQueue<E, F, N>::initialize() {
   352   _elems = _array_allocator.allocate(N);
   353 }
   355 template<class E, MEMFLAGS F, unsigned int N>
   356 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
   357   // tty->print_cr("START OopTaskQueue::oops_do");
   358   uint iters = size();
   359   uint index = _bottom;
   360   for (uint i = 0; i < iters; ++i) {
   361     index = decrement_index(index);
   362     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   363     //            index, &_elems[index], _elems[index]);
   364     E* t = (E*)&_elems[index];      // cast away volatility
   365     oop* p = (oop*)t;
   366     assert((*t)->is_oop_or_null(), "Not an oop or null");
   367     f->do_oop(p);
   368   }
   369   // tty->print_cr("END OopTaskQueue::oops_do");
   370 }
   372 template<class E, MEMFLAGS F, unsigned int N>
   373 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
   374   if (dirty_n_elems == N - 1) {
   375     // Actually means 0, so do the push.
   376     uint localBot = _bottom;
   377     // g++ complains if the volatile result of the assignment is
   378     // unused, so we cast the volatile away.  We cannot cast directly
   379     // to void, because gcc treats that as not using the result of the
   380     // assignment.  However, casting to E& means that we trigger an
   381     // unused-value warning.  So, we cast the E& to void.
   382     (void)const_cast<E&>(_elems[localBot] = t);
   383     OrderAccess::release_store(&_bottom, increment_index(localBot));
   384     TASKQUEUE_STATS_ONLY(stats.record_push());
   385 #ifdef MIPS64
   386     if (Use3A2000) OrderAccess::fence();
   387 #endif
   388     return true;
   389   }
   390   return false;
   391 }
   393 // pop_local_slow() is done by the owning thread and is trying to
   394 // get the last task in the queue.  It will compete with pop_global()
   395 // that will be used by other threads.  The tag age is incremented
   396 // whenever the queue goes empty which it will do here if this thread
   397 // gets the last task or in pop_global() if the queue wraps (top == 0
   398 // and pop_global() succeeds, see pop_global()).
   399 template<class E, MEMFLAGS F, unsigned int N>
   400 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
   401   // This queue was observed to contain exactly one element; either this
   402   // thread will claim it, or a competing "pop_global".  In either case,
   403   // the queue will be logically empty afterwards.  Create a new Age value
   404   // that represents the empty queue for the given value of "_bottom".  (We
   405   // must also increment "tag" because of the case where "bottom == 1",
   406   // "top == 0".  A pop_global could read the queue element in that case,
   407   // then have the owner thread do a pop followed by another push.  Without
   408   // the incrementing of "tag", the pop_global's CAS could succeed,
   409   // allowing it to believe it has claimed the stale element.)
   410   Age newAge((idx_t)localBot, oldAge.tag() + 1);
   411   // Perhaps a competing pop_global has already incremented "top", in which
   412   // case it wins the element.
   413   if (localBot == oldAge.top()) {
   414     // No competing pop_global has yet incremented "top"; we'll try to
   415     // install new_age, thus claiming the element.
   416     Age tempAge = _age.cmpxchg(newAge, oldAge);
   417     if (tempAge == oldAge) {
   418       // We win.
   419       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   420       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
   421       return true;
   422     }
   423   }
   424   // We lose; a completing pop_global gets the element.  But the queue is empty
   425   // and top is greater than bottom.  Fix this representation of the empty queue
   426   // to become the canonical one.
   427   _age.set(newAge);
   428   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
   429   return false;
   430 }
   432 template<class E, MEMFLAGS F, unsigned int N>
   433 bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) {
   434   Age oldAge = _age.get();
   435   // Architectures with weak memory model require a barrier here
   436   // to guarantee that bottom is not older than age,
   437   // which is crucial for the correctness of the algorithm.
   438 #if !(defined SPARC || defined IA32 || defined AMD64)
   439   OrderAccess::fence();
   440 #endif
   441   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
   442   uint n_elems = size(localBot, oldAge.top());
   443   if (n_elems == 0) {
   444     return false;
   445   }
   447   // g++ complains if the volatile result of the assignment is
   448   // unused, so we cast the volatile away.  We cannot cast directly
   449   // to void, because gcc treats that as not using the result of the
   450   // assignment.  However, casting to E& means that we trigger an
   451   // unused-value warning.  So, we cast the E& to void.
   452   (void) const_cast<E&>(t = _elems[oldAge.top()]);
   453   Age newAge(oldAge);
   454   newAge.increment();
   455   Age resAge = _age.cmpxchg(newAge, oldAge);
   457   // Note that using "_bottom" here might fail, since a pop_local might
   458   // have decremented it.
   459   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
   460   return resAge == oldAge;
   461 }
   463 template<class E, MEMFLAGS F, unsigned int N>
   464 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
   465   FREE_C_HEAP_ARRAY(E, _elems, F);
   466 }
   468 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
   469 // elements that do not fit in the TaskQueue.
   470 //
   471 // This class hides two methods from super classes:
   472 //
   473 // push() - push onto the task queue or, if that fails, onto the overflow stack
   474 // is_empty() - return true if both the TaskQueue and overflow stack are empty
   475 //
   476 // Note that size() is not hidden--it returns the number of elements in the
   477 // TaskQueue, and does not include the size of the overflow stack.  This
   478 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
   479 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
   480 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
   481 {
   482 public:
   483   typedef Stack<E, F>               overflow_t;
   484   typedef GenericTaskQueue<E, F, N> taskqueue_t;
   486   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
   488   // Push task t onto the queue or onto the overflow stack.  Return true.
   489   inline bool push(E t);
   491   // Attempt to pop from the overflow stack; return true if anything was popped.
   492   inline bool pop_overflow(E& t);
   494   inline overflow_t* overflow_stack() { return &_overflow_stack; }
   496   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
   497   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
   498   inline bool is_empty()        const {
   499     return taskqueue_empty() && overflow_empty();
   500   }
   502 private:
   503   overflow_t _overflow_stack;
   504 };
   506 template <class E, MEMFLAGS F, unsigned int N>
   507 bool OverflowTaskQueue<E, F, N>::push(E t)
   508 {
   509   if (!taskqueue_t::push(t)) {
   510     overflow_stack()->push(t);
   511     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
   512 #ifdef MIPS64
   513     if (Use3A2000) OrderAccess::fence();
   514 #endif
   515   }
   516   return true;
   517 }
   519 template <class E, MEMFLAGS F, unsigned int N>
   520 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
   521 {
   522   if (overflow_empty()) return false;
   523   t = overflow_stack()->pop();
   524   return true;
   525 }
   527 class TaskQueueSetSuper {
   528 protected:
   529   static int randomParkAndMiller(int* seed0);
   530 public:
   531   // Returns "true" if some TaskQueue in the set contains a task.
   532   virtual bool peek() = 0;
   533 };
   535 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
   536 };
   538 template<class T, MEMFLAGS F>
   539 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
   540 private:
   541   uint _n;
   542   T** _queues;
   544 public:
   545   typedef typename T::element_type E;
   547   GenericTaskQueueSet(int n) : _n(n) {
   548     typedef T* GenericTaskQueuePtr;
   549     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
   550     for (int i = 0; i < n; i++) {
   551       _queues[i] = NULL;
   552     }
   553   }
   555   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   557   void register_queue(uint i, T* q);
   559   T* queue(uint n);
   561   // The thread with queue number "queue_num" (and whose random number seed is
   562   // at "seed") is trying to steal a task from some other queue.  (It may try
   563   // several queues, according to some configuration parameter.)  If some steal
   564   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
   565   // false.
   566   bool steal(uint queue_num, int* seed, E& t);
   568   bool peek();
   569 };
   571 template<class T, MEMFLAGS F> void
   572 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
   573   assert(i < _n, "index out of range.");
   574   _queues[i] = q;
   575 }
   577 template<class T, MEMFLAGS F> T*
   578 GenericTaskQueueSet<T, F>::queue(uint i) {
   579   return _queues[i];
   580 }
   582 template<class T, MEMFLAGS F> bool
   583 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
   584   for (uint i = 0; i < 2 * _n; i++) {
   585     if (steal_best_of_2(queue_num, seed, t)) {
   586       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
   587 #ifdef MIPS64
   588       if (Use3A2000) OrderAccess::fence();
   589 #endif
   590       return true;
   591     }
   592   }
   593   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
   594 #ifdef MIPS64
   595   if (Use3A2000) OrderAccess::fence();
   596 #endif
   597   return false;
   598 }
   600 template<class T, MEMFLAGS F> bool
   601 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   602   if (_n > 2) {
   603     uint k1 = queue_num;
   604     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   605     uint k2 = queue_num;
   606     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
   607     // Sample both and try the larger.
   608     uint sz1 = _queues[k1]->size();
   609     uint sz2 = _queues[k2]->size();
   610     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   611     else return _queues[k1]->pop_global(t);
   612   } else if (_n == 2) {
   613     // Just try the other one.
   614     uint k = (queue_num + 1) % 2;
   615     return _queues[k]->pop_global(t);
   616   } else {
   617     assert(_n == 1, "can't be zero.");
   618     return false;
   619   }
   620 }
   622 template<class T, MEMFLAGS F>
   623 bool GenericTaskQueueSet<T, F>::peek() {
   624   // Try all the queues.
   625   for (uint j = 0; j < _n; j++) {
   626     if (_queues[j]->peek())
   627       return true;
   628   }
   629   return false;
   630 }
   632 // When to terminate from the termination protocol.
   633 class TerminatorTerminator: public CHeapObj<mtInternal> {
   634 public:
   635   virtual bool should_exit_termination() = 0;
   636 };
   638 // A class to aid in the termination of a set of parallel tasks using
   639 // TaskQueueSet's for work stealing.
   641 #undef TRACESPINNING
   643 class ParallelTaskTerminator: public StackObj {
   644 private:
   645   int _n_threads;
   646   TaskQueueSetSuper* _queue_set;
   647   int _offered_termination;
   649 #ifdef TRACESPINNING
   650   static uint _total_yields;
   651   static uint _total_spins;
   652   static uint _total_peeks;
   653 #endif
   655   bool peek_in_queue_set();
   656 protected:
   657   virtual void yield();
   658   void sleep(uint millis);
   660 public:
   662   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   663   // queue sets of work queues of other threads.
   664   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   666   // The current thread has no work, and is ready to terminate if everyone
   667   // else is.  If returns "true", all threads are terminated.  If returns
   668   // "false", available work has been observed in one of the task queues,
   669   // so the global task is not complete.
   670   bool offer_termination() {
   671     return offer_termination(NULL);
   672   }
   674   // As above, but it also terminates if the should_exit_termination()
   675   // method of the terminator parameter returns true. If terminator is
   676   // NULL, then it is ignored.
   677   bool offer_termination(TerminatorTerminator* terminator);
   679   // Reset the terminator, so that it may be reused again.
   680   // The caller is responsible for ensuring that this is done
   681   // in an MT-safe manner, once the previous round of use of
   682   // the terminator is finished.
   683   void reset_for_reuse();
   684   // Same as above but the number of parallel threads is set to the
   685   // given number.
   686   void reset_for_reuse(int n_threads);
   688 #ifdef TRACESPINNING
   689   static uint total_yields() { return _total_yields; }
   690   static uint total_spins() { return _total_spins; }
   691   static uint total_peeks() { return _total_peeks; }
   692   static void print_termination_counts();
   693 #endif
   694 };
   696 template<class E, MEMFLAGS F, unsigned int N> inline bool
   697 GenericTaskQueue<E, F, N>::push(E t) {
   698   uint localBot = _bottom;
   699   assert(localBot < N, "_bottom out of range.");
   700   idx_t top = _age.top();
   701   uint dirty_n_elems = dirty_size(localBot, top);
   702   assert(dirty_n_elems < N, "n_elems out of range.");
   703   if (dirty_n_elems < max_elems()) {
   704     // g++ complains if the volatile result of the assignment is
   705     // unused, so we cast the volatile away.  We cannot cast directly
   706     // to void, because gcc treats that as not using the result of the
   707     // assignment.  However, casting to E& means that we trigger an
   708     // unused-value warning.  So, we cast the E& to void.
   709     (void) const_cast<E&>(_elems[localBot] = t);
   710     OrderAccess::release_store(&_bottom, increment_index(localBot));
   711     TASKQUEUE_STATS_ONLY(stats.record_push());
   712 #ifdef MIPS64
   713     if (Use3A2000) OrderAccess::fence();
   714 #endif
   715     return true;
   716   } else {
   717     return push_slow(t, dirty_n_elems);
   718   }
   719 }
   721 template<class E, MEMFLAGS F, unsigned int N> inline bool
   722 GenericTaskQueue<E, F, N>::pop_local(volatile E& t) {
   723   uint localBot = _bottom;
   724   // This value cannot be N-1.  That can only occur as a result of
   725   // the assignment to bottom in this method.  If it does, this method
   726   // resets the size to 0 before the next call (which is sequential,
   727   // since this is pop_local.)
   728   uint dirty_n_elems = dirty_size(localBot, _age.top());
   729   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
   730   if (dirty_n_elems == 0) return false;
   731   localBot = decrement_index(localBot);
   732   _bottom = localBot;
   733   // This is necessary to prevent any read below from being reordered
   734   // before the store just above.
   735   OrderAccess::fence();
   736   // g++ complains if the volatile result of the assignment is
   737   // unused, so we cast the volatile away.  We cannot cast directly
   738   // to void, because gcc treats that as not using the result of the
   739   // assignment.  However, casting to E& means that we trigger an
   740   // unused-value warning.  So, we cast the E& to void.
   741   (void) const_cast<E&>(t = _elems[localBot]);
   742   // This is a second read of "age"; the "size()" above is the first.
   743   // If there's still at least one element in the queue, based on the
   744   // "_bottom" and "age" we've read, then there can be no interference with
   745   // a "pop_global" operation, and we're done.
   746   idx_t tp = _age.top();    // XXX
   747   if (size(localBot, tp) > 0) {
   748     assert(dirty_size(localBot, tp) != N - 1, "sanity");
   749     TASKQUEUE_STATS_ONLY(stats.record_pop());
   750     return true;
   751   } else {
   752     // Otherwise, the queue contained exactly one element; we take the slow
   753     // path.
   754     return pop_local_slow(localBot, _age.get());
   755   }
   756 }
   758 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
   759 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
   761 #ifdef _MSC_VER
   762 #pragma warning(push)
   763 // warning C4522: multiple assignment operators specified
   764 #pragma warning(disable:4522)
   765 #endif
   767 // This is a container class for either an oop* or a narrowOop*.
   768 // Both are pushed onto a task queue and the consumer will test is_narrow()
   769 // to determine which should be processed.
   770 class StarTask {
   771   void*  _holder;        // either union oop* or narrowOop*
   773   enum { COMPRESSED_OOP_MASK = 1 };
   775  public:
   776   StarTask(narrowOop* p) {
   777     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   778     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
   779   }
   780   StarTask(oop* p)       {
   781     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
   782     _holder = (void*)p;
   783   }
   784   StarTask()             { _holder = NULL; }
   785   operator oop*()        { return (oop*)_holder; }
   786   operator narrowOop*()  {
   787     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   788   }
   790   StarTask& operator=(const StarTask& t) {
   791     _holder = t._holder;
   792     return *this;
   793   }
   794   volatile StarTask& operator=(const volatile StarTask& t) volatile {
   795     _holder = t._holder;
   796     return *this;
   797   }
   799   bool is_narrow() const {
   800     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   801   }
   802 };
   804 class ObjArrayTask
   805 {
   806 public:
   807   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
   808   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
   809     assert(idx <= size_t(max_jint), "too big");
   810   }
   811   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
   813   ObjArrayTask& operator =(const ObjArrayTask& t) {
   814     _obj = t._obj;
   815     _index = t._index;
   816     return *this;
   817   }
   818   volatile ObjArrayTask&
   819   operator =(const volatile ObjArrayTask& t) volatile {
   820     (void)const_cast<oop&>(_obj = t._obj);
   821     _index = t._index;
   822     return *this;
   823   }
   825   inline oop obj()   const { return _obj; }
   826   inline int index() const { return _index; }
   828   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
   830 private:
   831   oop _obj;
   832   int _index;
   833 };
   835 #ifdef _MSC_VER
   836 #pragma warning(pop)
   837 #endif
   839 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
   840 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
   842 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
   843 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
   846 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP

mercurial