src/share/vm/runtime/deoptimization.cpp

Tue, 29 Jul 2014 13:56:29 +0200

author
thartmann
date
Tue, 29 Jul 2014 13:56:29 +0200
changeset 7002
a073be2ce5c2
parent 6957
e0c6fadce66e
child 7153
f6f9aec27858
permissions
-rw-r--r--

8049043: Load variable through a pointer of an incompatible type in hotspot/src/share/vm/runtime/sharedRuntimeMath.hpp
Summary: Fixed parfait warnings caused by __HI and __LO macros in sharedRuntimeMath.hpp by using a union.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/method.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc_32
    85 # include "adfiles/ad_ppc_32.hpp"
    86 #endif
    87 #ifdef TARGET_ARCH_MODEL_ppc_64
    88 # include "adfiles/ad_ppc_64.hpp"
    89 #endif
    90 #endif // COMPILER2
    92 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    94 bool DeoptimizationMarker::_is_active = false;
    96 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    97                                          int  caller_adjustment,
    98                                          int  caller_actual_parameters,
    99                                          int  number_of_frames,
   100                                          intptr_t* frame_sizes,
   101                                          address* frame_pcs,
   102                                          BasicType return_type) {
   103   _size_of_deoptimized_frame = size_of_deoptimized_frame;
   104   _caller_adjustment         = caller_adjustment;
   105   _caller_actual_parameters  = caller_actual_parameters;
   106   _number_of_frames          = number_of_frames;
   107   _frame_sizes               = frame_sizes;
   108   _frame_pcs                 = frame_pcs;
   109   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
   110   _return_type               = return_type;
   111   _initial_info              = 0;
   112   // PD (x86 only)
   113   _counter_temp              = 0;
   114   _unpack_kind               = 0;
   115   _sender_sp_temp            = 0;
   117   _total_frame_sizes         = size_of_frames();
   118 }
   121 Deoptimization::UnrollBlock::~UnrollBlock() {
   122   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
   123   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
   124   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
   125 }
   128 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   129   assert(register_number < RegisterMap::reg_count, "checking register number");
   130   return &_register_block[register_number * 2];
   131 }
   135 int Deoptimization::UnrollBlock::size_of_frames() const {
   136   // Acount first for the adjustment of the initial frame
   137   int result = _caller_adjustment;
   138   for (int index = 0; index < number_of_frames(); index++) {
   139     result += frame_sizes()[index];
   140   }
   141   return result;
   142 }
   145 void Deoptimization::UnrollBlock::print() {
   146   ttyLocker ttyl;
   147   tty->print_cr("UnrollBlock");
   148   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   149   tty->print(   "  frame_sizes: ");
   150   for (int index = 0; index < number_of_frames(); index++) {
   151     tty->print("%d ", frame_sizes()[index]);
   152   }
   153   tty->cr();
   154 }
   157 // In order to make fetch_unroll_info work properly with escape
   158 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   159 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   160 // of previously eliminated objects occurs in realloc_objects, which is
   161 // called from the method fetch_unroll_info_helper below.
   162 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   163   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   164   // but makes the entry a little slower. There is however a little dance we have to
   165   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   167   // fetch_unroll_info() is called at the beginning of the deoptimization
   168   // handler. Note this fact before we start generating temporary frames
   169   // that can confuse an asynchronous stack walker. This counter is
   170   // decremented at the end of unpack_frames().
   171   thread->inc_in_deopt_handler();
   173   return fetch_unroll_info_helper(thread);
   174 JRT_END
   177 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   178 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   180   // Note: there is a safepoint safety issue here. No matter whether we enter
   181   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   182   // the vframeArray is created.
   183   //
   185   // Allocate our special deoptimization ResourceMark
   186   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   187   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   188   thread->set_deopt_mark(dmark);
   190   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   191   RegisterMap map(thread, true);
   192   RegisterMap dummy_map(thread, false);
   193   // Now get the deoptee with a valid map
   194   frame deoptee = stub_frame.sender(&map);
   195   // Set the deoptee nmethod
   196   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   197   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   199   if (VerifyStack) {
   200     thread->validate_frame_layout();
   201   }
   203   // Create a growable array of VFrames where each VFrame represents an inlined
   204   // Java frame.  This storage is allocated with the usual system arena.
   205   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   206   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   207   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   208   while (!vf->is_top()) {
   209     assert(vf->is_compiled_frame(), "Wrong frame type");
   210     chunk->push(compiledVFrame::cast(vf));
   211     vf = vf->sender();
   212   }
   213   assert(vf->is_compiled_frame(), "Wrong frame type");
   214   chunk->push(compiledVFrame::cast(vf));
   216 #ifdef COMPILER2
   217   // Reallocate the non-escaping objects and restore their fields. Then
   218   // relock objects if synchronization on them was eliminated.
   219   if (DoEscapeAnalysis || EliminateNestedLocks) {
   220     if (EliminateAllocations) {
   221       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   222       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   224       // The flag return_oop() indicates call sites which return oop
   225       // in compiled code. Such sites include java method calls,
   226       // runtime calls (for example, used to allocate new objects/arrays
   227       // on slow code path) and any other calls generated in compiled code.
   228       // It is not guaranteed that we can get such information here only
   229       // by analyzing bytecode in deoptimized frames. This is why this flag
   230       // is set during method compilation (see Compile::Process_OopMap_Node()).
   231       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   232       Handle return_value;
   233       if (save_oop_result) {
   234         // Reallocation may trigger GC. If deoptimization happened on return from
   235         // call which returns oop we need to save it since it is not in oopmap.
   236         oop result = deoptee.saved_oop_result(&map);
   237         assert(result == NULL || result->is_oop(), "must be oop");
   238         return_value = Handle(thread, result);
   239         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   240         if (TraceDeoptimization) {
   241           ttyLocker ttyl;
   242           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, (void *)result, thread);
   243         }
   244       }
   245       bool reallocated = false;
   246       if (objects != NULL) {
   247         JRT_BLOCK
   248           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   249         JRT_END
   250       }
   251       if (reallocated) {
   252         reassign_fields(&deoptee, &map, objects);
   253 #ifndef PRODUCT
   254         if (TraceDeoptimization) {
   255           ttyLocker ttyl;
   256           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   257           print_objects(objects);
   258         }
   259 #endif
   260       }
   261       if (save_oop_result) {
   262         // Restore result.
   263         deoptee.set_saved_oop_result(&map, return_value());
   264       }
   265     }
   266     if (EliminateLocks) {
   267 #ifndef PRODUCT
   268       bool first = true;
   269 #endif
   270       for (int i = 0; i < chunk->length(); i++) {
   271         compiledVFrame* cvf = chunk->at(i);
   272         assert (cvf->scope() != NULL,"expect only compiled java frames");
   273         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   274         if (monitors->is_nonempty()) {
   275           relock_objects(monitors, thread);
   276 #ifndef PRODUCT
   277           if (TraceDeoptimization) {
   278             ttyLocker ttyl;
   279             for (int j = 0; j < monitors->length(); j++) {
   280               MonitorInfo* mi = monitors->at(j);
   281               if (mi->eliminated()) {
   282                 if (first) {
   283                   first = false;
   284                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   285                 }
   286                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", (void *)mi->owner());
   287               }
   288             }
   289           }
   290 #endif
   291         }
   292       }
   293     }
   294   }
   295 #endif // COMPILER2
   296   // Ensure that no safepoint is taken after pointers have been stored
   297   // in fields of rematerialized objects.  If a safepoint occurs from here on
   298   // out the java state residing in the vframeArray will be missed.
   299   No_Safepoint_Verifier no_safepoint;
   301   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   303   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   304   thread->set_vframe_array_head(array);
   306   // Now that the vframeArray has been created if we have any deferred local writes
   307   // added by jvmti then we can free up that structure as the data is now in the
   308   // vframeArray
   310   if (thread->deferred_locals() != NULL) {
   311     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   312     int i = 0;
   313     do {
   314       // Because of inlining we could have multiple vframes for a single frame
   315       // and several of the vframes could have deferred writes. Find them all.
   316       if (list->at(i)->id() == array->original().id()) {
   317         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   318         list->remove_at(i);
   319         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   320         delete dlv;
   321       } else {
   322         i++;
   323       }
   324     } while ( i < list->length() );
   325     if (list->length() == 0) {
   326       thread->set_deferred_locals(NULL);
   327       // free the list and elements back to C heap.
   328       delete list;
   329     }
   331   }
   333 #ifndef SHARK
   334   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   335   CodeBlob* cb = stub_frame.cb();
   336   // Verify we have the right vframeArray
   337   assert(cb->frame_size() >= 0, "Unexpected frame size");
   338   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   340   // If the deopt call site is a MethodHandle invoke call site we have
   341   // to adjust the unpack_sp.
   342   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   343   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   344     unpack_sp = deoptee.unextended_sp();
   346 #ifdef ASSERT
   347   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   348 #endif
   349 #else
   350   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   351 #endif // !SHARK
   353   // This is a guarantee instead of an assert because if vframe doesn't match
   354   // we will unpack the wrong deoptimized frame and wind up in strange places
   355   // where it will be very difficult to figure out what went wrong. Better
   356   // to die an early death here than some very obscure death later when the
   357   // trail is cold.
   358   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   359   // in that it will fail to detect a problem when there is one. This needs
   360   // more work in tiger timeframe.
   361   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   363   int number_of_frames = array->frames();
   365   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   366   // virtual activation, which is the reverse of the elements in the vframes array.
   367   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
   368   // +1 because we always have an interpreter return address for the final slot.
   369   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
   370   int popframe_extra_args = 0;
   371   // Create an interpreter return address for the stub to use as its return
   372   // address so the skeletal frames are perfectly walkable
   373   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   375   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   376   // activation be put back on the expression stack of the caller for reexecution
   377   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   378     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   379   }
   381   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   382   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   383   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   384   //
   385   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   386   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   388   // It's possible that the number of paramters at the call site is
   389   // different than number of arguments in the callee when method
   390   // handles are used.  If the caller is interpreted get the real
   391   // value so that the proper amount of space can be added to it's
   392   // frame.
   393   bool caller_was_method_handle = false;
   394   if (deopt_sender.is_interpreted_frame()) {
   395     methodHandle method = deopt_sender.interpreter_frame_method();
   396     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
   397     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
   398       // Method handle invokes may involve fairly arbitrary chains of
   399       // calls so it's impossible to know how much actual space the
   400       // caller has for locals.
   401       caller_was_method_handle = true;
   402     }
   403   }
   405   //
   406   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   407   // frame_sizes/frame_pcs[1] next oldest frame (int)
   408   // frame_sizes/frame_pcs[n] youngest frame (int)
   409   //
   410   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   411   // owns the space for the return address to it's caller).  Confusing ain't it.
   412   //
   413   // The vframe array can address vframes with indices running from
   414   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   415   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   416   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   417   // so things look a little strange in this loop.
   418   //
   419   int callee_parameters = 0;
   420   int callee_locals = 0;
   421   for (int index = 0; index < array->frames(); index++ ) {
   422     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   423     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   424     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   425     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
   426                                                                                                     callee_locals,
   427                                                                                                     index == 0,
   428                                                                                                     popframe_extra_args);
   429     // This pc doesn't have to be perfect just good enough to identify the frame
   430     // as interpreted so the skeleton frame will be walkable
   431     // The correct pc will be set when the skeleton frame is completely filled out
   432     // The final pc we store in the loop is wrong and will be overwritten below
   433     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   435     callee_parameters = array->element(index)->method()->size_of_parameters();
   436     callee_locals = array->element(index)->method()->max_locals();
   437     popframe_extra_args = 0;
   438   }
   440   // Compute whether the root vframe returns a float or double value.
   441   BasicType return_type;
   442   {
   443     HandleMark hm;
   444     methodHandle method(thread, array->element(0)->method());
   445     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   446     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   447   }
   449   // Compute information for handling adapters and adjusting the frame size of the caller.
   450   int caller_adjustment = 0;
   452   // Compute the amount the oldest interpreter frame will have to adjust
   453   // its caller's stack by. If the caller is a compiled frame then
   454   // we pretend that the callee has no parameters so that the
   455   // extension counts for the full amount of locals and not just
   456   // locals-parms. This is because without a c2i adapter the parm
   457   // area as created by the compiled frame will not be usable by
   458   // the interpreter. (Depending on the calling convention there
   459   // may not even be enough space).
   461   // QQQ I'd rather see this pushed down into last_frame_adjust
   462   // and have it take the sender (aka caller).
   464   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
   465     caller_adjustment = last_frame_adjust(0, callee_locals);
   466   } else if (callee_locals > callee_parameters) {
   467     // The caller frame may need extending to accommodate
   468     // non-parameter locals of the first unpacked interpreted frame.
   469     // Compute that adjustment.
   470     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   471   }
   473   // If the sender is deoptimized the we must retrieve the address of the handler
   474   // since the frame will "magically" show the original pc before the deopt
   475   // and we'd undo the deopt.
   477   frame_pcs[0] = deopt_sender.raw_pc();
   479 #ifndef SHARK
   480   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   481 #endif // SHARK
   483   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   484                                       caller_adjustment * BytesPerWord,
   485                                       caller_was_method_handle ? 0 : callee_parameters,
   486                                       number_of_frames,
   487                                       frame_sizes,
   488                                       frame_pcs,
   489                                       return_type);
   490   // On some platforms, we need a way to pass some platform dependent
   491   // information to the unpacking code so the skeletal frames come out
   492   // correct (initial fp value, unextended sp, ...)
   493   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
   495   if (array->frames() > 1) {
   496     if (VerifyStack && TraceDeoptimization) {
   497       ttyLocker ttyl;
   498       tty->print_cr("Deoptimizing method containing inlining");
   499     }
   500   }
   502   array->set_unroll_block(info);
   503   return info;
   504 }
   506 // Called to cleanup deoptimization data structures in normal case
   507 // after unpacking to stack and when stack overflow error occurs
   508 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   509                                         vframeArray *array) {
   511   // Get array if coming from exception
   512   if (array == NULL) {
   513     array = thread->vframe_array_head();
   514   }
   515   thread->set_vframe_array_head(NULL);
   517   // Free the previous UnrollBlock
   518   vframeArray* old_array = thread->vframe_array_last();
   519   thread->set_vframe_array_last(array);
   521   if (old_array != NULL) {
   522     UnrollBlock* old_info = old_array->unroll_block();
   523     old_array->set_unroll_block(NULL);
   524     delete old_info;
   525     delete old_array;
   526   }
   528   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   529   // inside the vframeArray (StackValueCollections)
   531   delete thread->deopt_mark();
   532   thread->set_deopt_mark(NULL);
   533   thread->set_deopt_nmethod(NULL);
   536   if (JvmtiExport::can_pop_frame()) {
   537 #ifndef CC_INTERP
   538     // Regardless of whether we entered this routine with the pending
   539     // popframe condition bit set, we should always clear it now
   540     thread->clear_popframe_condition();
   541 #else
   542     // C++ interpeter will clear has_pending_popframe when it enters
   543     // with method_resume. For deopt_resume2 we clear it now.
   544     if (thread->popframe_forcing_deopt_reexecution())
   545         thread->clear_popframe_condition();
   546 #endif /* CC_INTERP */
   547   }
   549   // unpack_frames() is called at the end of the deoptimization handler
   550   // and (in C2) at the end of the uncommon trap handler. Note this fact
   551   // so that an asynchronous stack walker can work again. This counter is
   552   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   553   // the beginning of uncommon_trap().
   554   thread->dec_in_deopt_handler();
   555 }
   558 // Return BasicType of value being returned
   559 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   561   // We are already active int he special DeoptResourceMark any ResourceObj's we
   562   // allocate will be freed at the end of the routine.
   564   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   565   // but makes the entry a little slower. There is however a little dance we have to
   566   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   567   ResetNoHandleMark rnhm; // No-op in release/product versions
   568   HandleMark hm;
   570   frame stub_frame = thread->last_frame();
   572   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   573   // must point to the vframeArray for the unpack frame.
   574   vframeArray* array = thread->vframe_array_head();
   576 #ifndef PRODUCT
   577   if (TraceDeoptimization) {
   578     ttyLocker ttyl;
   579     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   580   }
   581 #endif
   582   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
   583               stub_frame.pc(), stub_frame.sp(), exec_mode);
   585   UnrollBlock* info = array->unroll_block();
   587   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   588   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
   590   BasicType bt = info->return_type();
   592   // If we have an exception pending, claim that the return type is an oop
   593   // so the deopt_blob does not overwrite the exception_oop.
   595   if (exec_mode == Unpack_exception)
   596     bt = T_OBJECT;
   598   // Cleanup thread deopt data
   599   cleanup_deopt_info(thread, array);
   601 #ifndef PRODUCT
   602   if (VerifyStack) {
   603     ResourceMark res_mark;
   605     thread->validate_frame_layout();
   607     // Verify that the just-unpacked frames match the interpreter's
   608     // notions of expression stack and locals
   609     vframeArray* cur_array = thread->vframe_array_last();
   610     RegisterMap rm(thread, false);
   611     rm.set_include_argument_oops(false);
   612     bool is_top_frame = true;
   613     int callee_size_of_parameters = 0;
   614     int callee_max_locals = 0;
   615     for (int i = 0; i < cur_array->frames(); i++) {
   616       vframeArrayElement* el = cur_array->element(i);
   617       frame* iframe = el->iframe();
   618       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   620       // Get the oop map for this bci
   621       InterpreterOopMap mask;
   622       int cur_invoke_parameter_size = 0;
   623       bool try_next_mask = false;
   624       int next_mask_expression_stack_size = -1;
   625       int top_frame_expression_stack_adjustment = 0;
   626       methodHandle mh(thread, iframe->interpreter_frame_method());
   627       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   628       BytecodeStream str(mh);
   629       str.set_start(iframe->interpreter_frame_bci());
   630       int max_bci = mh->code_size();
   631       // Get to the next bytecode if possible
   632       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   633       // Check to see if we can grab the number of outgoing arguments
   634       // at an uncommon trap for an invoke (where the compiler
   635       // generates debug info before the invoke has executed)
   636       Bytecodes::Code cur_code = str.next();
   637       if (cur_code == Bytecodes::_invokevirtual   ||
   638           cur_code == Bytecodes::_invokespecial   ||
   639           cur_code == Bytecodes::_invokestatic    ||
   640           cur_code == Bytecodes::_invokeinterface ||
   641           cur_code == Bytecodes::_invokedynamic) {
   642         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   643         Symbol* signature = invoke.signature();
   644         ArgumentSizeComputer asc(signature);
   645         cur_invoke_parameter_size = asc.size();
   646         if (invoke.has_receiver()) {
   647           // Add in receiver
   648           ++cur_invoke_parameter_size;
   649         }
   650         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
   651           callee_size_of_parameters++;
   652         }
   653       }
   654       if (str.bci() < max_bci) {
   655         Bytecodes::Code bc = str.next();
   656         if (bc >= 0) {
   657           // The interpreter oop map generator reports results before
   658           // the current bytecode has executed except in the case of
   659           // calls. It seems to be hard to tell whether the compiler
   660           // has emitted debug information matching the "state before"
   661           // a given bytecode or the state after, so we try both
   662           switch (cur_code) {
   663             case Bytecodes::_invokevirtual:
   664             case Bytecodes::_invokespecial:
   665             case Bytecodes::_invokestatic:
   666             case Bytecodes::_invokeinterface:
   667             case Bytecodes::_invokedynamic:
   668             case Bytecodes::_athrow:
   669               break;
   670             default: {
   671               InterpreterOopMap next_mask;
   672               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   673               next_mask_expression_stack_size = next_mask.expression_stack_size();
   674               // Need to subtract off the size of the result type of
   675               // the bytecode because this is not described in the
   676               // debug info but returned to the interpreter in the TOS
   677               // caching register
   678               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   679               if (bytecode_result_type != T_ILLEGAL) {
   680                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   681               }
   682               assert(top_frame_expression_stack_adjustment >= 0, "");
   683               try_next_mask = true;
   684               break;
   685             }
   686           }
   687         }
   688       }
   690       // Verify stack depth and oops in frame
   691       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   692       if (!(
   693             /* SPARC */
   694             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   695             /* x86 */
   696             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   697             (try_next_mask &&
   698              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   699                                                                     top_frame_expression_stack_adjustment))) ||
   700             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   701             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
   702              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   703             )) {
   704         ttyLocker ttyl;
   706         // Print out some information that will help us debug the problem
   707         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   708         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   709         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   710                       iframe->interpreter_frame_expression_stack_size());
   711         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   712         tty->print_cr("  try_next_mask = %d", try_next_mask);
   713         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   714         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   715         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   716         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   717         tty->print_cr("  exec_mode = %d", exec_mode);
   718         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   719         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   720         tty->print_cr("  Interpreted frames:");
   721         for (int k = 0; k < cur_array->frames(); k++) {
   722           vframeArrayElement* el = cur_array->element(k);
   723           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   724         }
   725         cur_array->print_on_2(tty);
   726         guarantee(false, "wrong number of expression stack elements during deopt");
   727       }
   728       VerifyOopClosure verify;
   729       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
   730       callee_size_of_parameters = mh->size_of_parameters();
   731       callee_max_locals = mh->max_locals();
   732       is_top_frame = false;
   733     }
   734   }
   735 #endif /* !PRODUCT */
   738   return bt;
   739 JRT_END
   742 int Deoptimization::deoptimize_dependents() {
   743   Threads::deoptimized_wrt_marked_nmethods();
   744   return 0;
   745 }
   748 #ifdef COMPILER2
   749 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   750   Handle pending_exception(thread->pending_exception());
   751   const char* exception_file = thread->exception_file();
   752   int exception_line = thread->exception_line();
   753   thread->clear_pending_exception();
   755   for (int i = 0; i < objects->length(); i++) {
   756     assert(objects->at(i)->is_object(), "invalid debug information");
   757     ObjectValue* sv = (ObjectValue*) objects->at(i);
   759     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   760     oop obj = NULL;
   762     if (k->oop_is_instance()) {
   763       InstanceKlass* ik = InstanceKlass::cast(k());
   764       obj = ik->allocate_instance(CHECK_(false));
   765     } else if (k->oop_is_typeArray()) {
   766       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   767       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   768       int len = sv->field_size() / type2size[ak->element_type()];
   769       obj = ak->allocate(len, CHECK_(false));
   770     } else if (k->oop_is_objArray()) {
   771       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
   772       obj = ak->allocate(sv->field_size(), CHECK_(false));
   773     }
   775     assert(obj != NULL, "allocation failed");
   776     assert(sv->value().is_null(), "redundant reallocation");
   777     sv->set_value(obj);
   778   }
   780   if (pending_exception.not_null()) {
   781     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   782   }
   784   return true;
   785 }
   787 // This assumes that the fields are stored in ObjectValue in the same order
   788 // they are yielded by do_nonstatic_fields.
   789 class FieldReassigner: public FieldClosure {
   790   frame* _fr;
   791   RegisterMap* _reg_map;
   792   ObjectValue* _sv;
   793   InstanceKlass* _ik;
   794   oop _obj;
   796   int _i;
   797 public:
   798   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   799     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   801   int i() const { return _i; }
   804   void do_field(fieldDescriptor* fd) {
   805     intptr_t val;
   806     StackValue* value =
   807       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   808     int offset = fd->offset();
   809     switch (fd->field_type()) {
   810     case T_OBJECT: case T_ARRAY:
   811       assert(value->type() == T_OBJECT, "Agreement.");
   812       _obj->obj_field_put(offset, value->get_obj()());
   813       break;
   815     case T_LONG: case T_DOUBLE: {
   816       assert(value->type() == T_INT, "Agreement.");
   817       StackValue* low =
   818         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   819 #ifdef _LP64
   820       jlong res = (jlong)low->get_int();
   821 #else
   822 #ifdef SPARC
   823       // For SPARC we have to swap high and low words.
   824       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   825 #else
   826       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   827 #endif //SPARC
   828 #endif
   829       _obj->long_field_put(offset, res);
   830       break;
   831     }
   832     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   833     case T_INT: case T_FLOAT: // 4 bytes.
   834       assert(value->type() == T_INT, "Agreement.");
   835       val = value->get_int();
   836       _obj->int_field_put(offset, (jint)*((jint*)&val));
   837       break;
   839     case T_SHORT: case T_CHAR: // 2 bytes
   840       assert(value->type() == T_INT, "Agreement.");
   841       val = value->get_int();
   842       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   843       break;
   845     case T_BOOLEAN: case T_BYTE: // 1 byte
   846       assert(value->type() == T_INT, "Agreement.");
   847       val = value->get_int();
   848       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   849       break;
   851     default:
   852       ShouldNotReachHere();
   853     }
   854     _i++;
   855   }
   856 };
   858 // restore elements of an eliminated type array
   859 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   860   int index = 0;
   861   intptr_t val;
   863   for (int i = 0; i < sv->field_size(); i++) {
   864     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   865     switch(type) {
   866     case T_LONG: case T_DOUBLE: {
   867       assert(value->type() == T_INT, "Agreement.");
   868       StackValue* low =
   869         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   870 #ifdef _LP64
   871       jlong res = (jlong)low->get_int();
   872 #else
   873 #ifdef SPARC
   874       // For SPARC we have to swap high and low words.
   875       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   876 #else
   877       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   878 #endif //SPARC
   879 #endif
   880       obj->long_at_put(index, res);
   881       break;
   882     }
   884     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   885     case T_INT: case T_FLOAT: // 4 bytes.
   886       assert(value->type() == T_INT, "Agreement.");
   887       val = value->get_int();
   888       obj->int_at_put(index, (jint)*((jint*)&val));
   889       break;
   891     case T_SHORT: case T_CHAR: // 2 bytes
   892       assert(value->type() == T_INT, "Agreement.");
   893       val = value->get_int();
   894       obj->short_at_put(index, (jshort)*((jint*)&val));
   895       break;
   897     case T_BOOLEAN: case T_BYTE: // 1 byte
   898       assert(value->type() == T_INT, "Agreement.");
   899       val = value->get_int();
   900       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   901       break;
   903       default:
   904         ShouldNotReachHere();
   905     }
   906     index++;
   907   }
   908 }
   911 // restore fields of an eliminated object array
   912 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   913   for (int i = 0; i < sv->field_size(); i++) {
   914     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   915     assert(value->type() == T_OBJECT, "object element expected");
   916     obj->obj_at_put(i, value->get_obj()());
   917   }
   918 }
   921 // restore fields of all eliminated objects and arrays
   922 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   923   for (int i = 0; i < objects->length(); i++) {
   924     ObjectValue* sv = (ObjectValue*) objects->at(i);
   925     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   926     Handle obj = sv->value();
   927     assert(obj.not_null(), "reallocation was missed");
   929     if (k->oop_is_instance()) {
   930       InstanceKlass* ik = InstanceKlass::cast(k());
   931       FieldReassigner reassign(fr, reg_map, sv, obj());
   932       ik->do_nonstatic_fields(&reassign);
   933     } else if (k->oop_is_typeArray()) {
   934       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   935       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   936     } else if (k->oop_is_objArray()) {
   937       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   938     }
   939   }
   940 }
   943 // relock objects for which synchronization was eliminated
   944 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   945   for (int i = 0; i < monitors->length(); i++) {
   946     MonitorInfo* mon_info = monitors->at(i);
   947     if (mon_info->eliminated()) {
   948       assert(mon_info->owner() != NULL, "reallocation was missed");
   949       Handle obj = Handle(mon_info->owner());
   950       markOop mark = obj->mark();
   951       if (UseBiasedLocking && mark->has_bias_pattern()) {
   952         // New allocated objects may have the mark set to anonymously biased.
   953         // Also the deoptimized method may called methods with synchronization
   954         // where the thread-local object is bias locked to the current thread.
   955         assert(mark->is_biased_anonymously() ||
   956                mark->biased_locker() == thread, "should be locked to current thread");
   957         // Reset mark word to unbiased prototype.
   958         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   959         obj->set_mark(unbiased_prototype);
   960       }
   961       BasicLock* lock = mon_info->lock();
   962       ObjectSynchronizer::slow_enter(obj, lock, thread);
   963     }
   964     assert(mon_info->owner()->is_locked(), "object must be locked now");
   965   }
   966 }
   969 #ifndef PRODUCT
   970 // print information about reallocated objects
   971 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   972   fieldDescriptor fd;
   974   for (int i = 0; i < objects->length(); i++) {
   975     ObjectValue* sv = (ObjectValue*) objects->at(i);
   976     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   977     Handle obj = sv->value();
   979     tty->print("     object <" INTPTR_FORMAT "> of type ", (void *)sv->value()());
   980     k->print_value();
   981     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   982     tty->cr();
   984     if (Verbose) {
   985       k->oop_print_on(obj(), tty);
   986     }
   987   }
   988 }
   989 #endif
   990 #endif // COMPILER2
   992 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   993   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
   995 #ifndef PRODUCT
   996   if (TraceDeoptimization) {
   997     ttyLocker ttyl;
   998     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   999     fr.print_on(tty);
  1000     tty->print_cr("     Virtual frames (innermost first):");
  1001     for (int index = 0; index < chunk->length(); index++) {
  1002       compiledVFrame* vf = chunk->at(index);
  1003       tty->print("       %2d - ", index);
  1004       vf->print_value();
  1005       int bci = chunk->at(index)->raw_bci();
  1006       const char* code_name;
  1007       if (bci == SynchronizationEntryBCI) {
  1008         code_name = "sync entry";
  1009       } else {
  1010         Bytecodes::Code code = vf->method()->code_at(bci);
  1011         code_name = Bytecodes::name(code);
  1013       tty->print(" - %s", code_name);
  1014       tty->print_cr(" @ bci %d ", bci);
  1015       if (Verbose) {
  1016         vf->print();
  1017         tty->cr();
  1021 #endif
  1023   // Register map for next frame (used for stack crawl).  We capture
  1024   // the state of the deopt'ing frame's caller.  Thus if we need to
  1025   // stuff a C2I adapter we can properly fill in the callee-save
  1026   // register locations.
  1027   frame caller = fr.sender(reg_map);
  1028   int frame_size = caller.sp() - fr.sp();
  1030   frame sender = caller;
  1032   // Since the Java thread being deoptimized will eventually adjust it's own stack,
  1033   // the vframeArray containing the unpacking information is allocated in the C heap.
  1034   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  1035   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
  1037   // Compare the vframeArray to the collected vframes
  1038   assert(array->structural_compare(thread, chunk), "just checking");
  1040 #ifndef PRODUCT
  1041   if (TraceDeoptimization) {
  1042     ttyLocker ttyl;
  1043     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1045 #endif // PRODUCT
  1047   return array;
  1051 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1052   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1053   for (int i = 0; i < monitors->length(); i++) {
  1054     MonitorInfo* mon_info = monitors->at(i);
  1055     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1056       objects_to_revoke->append(Handle(mon_info->owner()));
  1062 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1063   if (!UseBiasedLocking) {
  1064     return;
  1067   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1069   // Unfortunately we don't have a RegisterMap available in most of
  1070   // the places we want to call this routine so we need to walk the
  1071   // stack again to update the register map.
  1072   if (map == NULL || !map->update_map()) {
  1073     StackFrameStream sfs(thread, true);
  1074     bool found = false;
  1075     while (!found && !sfs.is_done()) {
  1076       frame* cur = sfs.current();
  1077       sfs.next();
  1078       found = cur->id() == fr.id();
  1080     assert(found, "frame to be deoptimized not found on target thread's stack");
  1081     map = sfs.register_map();
  1084   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1085   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1086   // Revoke monitors' biases in all scopes
  1087   while (!cvf->is_top()) {
  1088     collect_monitors(cvf, objects_to_revoke);
  1089     cvf = compiledVFrame::cast(cvf->sender());
  1091   collect_monitors(cvf, objects_to_revoke);
  1093   if (SafepointSynchronize::is_at_safepoint()) {
  1094     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1095   } else {
  1096     BiasedLocking::revoke(objects_to_revoke);
  1101 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1102   if (!UseBiasedLocking) {
  1103     return;
  1106   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1107   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1108   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1109     if (jt->has_last_Java_frame()) {
  1110       StackFrameStream sfs(jt, true);
  1111       while (!sfs.is_done()) {
  1112         frame* cur = sfs.current();
  1113         if (cb->contains(cur->pc())) {
  1114           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1115           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1116           // Revoke monitors' biases in all scopes
  1117           while (!cvf->is_top()) {
  1118             collect_monitors(cvf, objects_to_revoke);
  1119             cvf = compiledVFrame::cast(cvf->sender());
  1121           collect_monitors(cvf, objects_to_revoke);
  1123         sfs.next();
  1127   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1131 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1132   assert(fr.can_be_deoptimized(), "checking frame type");
  1134   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1136   // Patch the nmethod so that when execution returns to it we will
  1137   // deopt the execution state and return to the interpreter.
  1138   fr.deoptimize(thread);
  1141 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1142   // Deoptimize only if the frame comes from compile code.
  1143   // Do not deoptimize the frame which is already patched
  1144   // during the execution of the loops below.
  1145   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1146     return;
  1148   ResourceMark rm;
  1149   DeoptimizationMarker dm;
  1150   if (UseBiasedLocking) {
  1151     revoke_biases_of_monitors(thread, fr, map);
  1153   deoptimize_single_frame(thread, fr);
  1158 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1159   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1160          "can only deoptimize other thread at a safepoint");
  1161   // Compute frame and register map based on thread and sp.
  1162   RegisterMap reg_map(thread, UseBiasedLocking);
  1163   frame fr = thread->last_frame();
  1164   while (fr.id() != id) {
  1165     fr = fr.sender(&reg_map);
  1167   deoptimize(thread, fr, &reg_map);
  1171 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1172   if (thread == Thread::current()) {
  1173     Deoptimization::deoptimize_frame_internal(thread, id);
  1174   } else {
  1175     VM_DeoptimizeFrame deopt(thread, id);
  1176     VMThread::execute(&deopt);
  1181 // JVMTI PopFrame support
  1182 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1184   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1186 JRT_END
  1189 #if defined(COMPILER2) || defined(SHARK)
  1190 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1191   // in case of an unresolved klass entry, load the class.
  1192   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1193     Klass* tk = constant_pool->klass_at(index, CHECK);
  1194     return;
  1197   if (!constant_pool->tag_at(index).is_symbol()) return;
  1199   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
  1200   Symbol*  symbol  = constant_pool->symbol_at(index);
  1202   // class name?
  1203   if (symbol->byte_at(0) != '(') {
  1204     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1205     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1206     return;
  1209   // then it must be a signature!
  1210   ResourceMark rm(THREAD);
  1211   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1212     if (ss.is_object()) {
  1213       Symbol* class_name = ss.as_symbol(CHECK);
  1214       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1215       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1221 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1222   EXCEPTION_MARK;
  1223   load_class_by_index(constant_pool, index, THREAD);
  1224   if (HAS_PENDING_EXCEPTION) {
  1225     // Exception happened during classloading. We ignore the exception here, since it
  1226     // is going to be rethrown since the current activation is going to be deoptimized and
  1227     // the interpreter will re-execute the bytecode.
  1228     CLEAR_PENDING_EXCEPTION;
  1229     // Class loading called java code which may have caused a stack
  1230     // overflow. If the exception was thrown right before the return
  1231     // to the runtime the stack is no longer guarded. Reguard the
  1232     // stack otherwise if we return to the uncommon trap blob and the
  1233     // stack bang causes a stack overflow we crash.
  1234     assert(THREAD->is_Java_thread(), "only a java thread can be here");
  1235     JavaThread* thread = (JavaThread*)THREAD;
  1236     bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
  1237     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
  1238     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
  1242 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1243   HandleMark hm;
  1245   // uncommon_trap() is called at the beginning of the uncommon trap
  1246   // handler. Note this fact before we start generating temporary frames
  1247   // that can confuse an asynchronous stack walker. This counter is
  1248   // decremented at the end of unpack_frames().
  1249   thread->inc_in_deopt_handler();
  1251   // We need to update the map if we have biased locking.
  1252   RegisterMap reg_map(thread, UseBiasedLocking);
  1253   frame stub_frame = thread->last_frame();
  1254   frame fr = stub_frame.sender(&reg_map);
  1255   // Make sure the calling nmethod is not getting deoptimized and removed
  1256   // before we are done with it.
  1257   nmethodLocker nl(fr.pc());
  1259   // Log a message
  1260   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
  1261               trap_request, fr.pc());
  1264     ResourceMark rm;
  1266     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1267     revoke_biases_of_monitors(thread, fr, &reg_map);
  1269     DeoptReason reason = trap_request_reason(trap_request);
  1270     DeoptAction action = trap_request_action(trap_request);
  1271     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1273     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1274     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1276     nmethod* nm = cvf->code();
  1278     ScopeDesc*      trap_scope  = cvf->scope();
  1279     methodHandle    trap_method = trap_scope->method();
  1280     int             trap_bci    = trap_scope->bci();
  1281     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1283     // Record this event in the histogram.
  1284     gather_statistics(reason, action, trap_bc);
  1286     // Ensure that we can record deopt. history:
  1287     // Need MDO to record RTM code generation state.
  1288     bool create_if_missing = ProfileTraps RTM_OPT_ONLY( || UseRTMLocking );
  1290     MethodData* trap_mdo =
  1291       get_method_data(thread, trap_method, create_if_missing);
  1293     // Log a message
  1294     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
  1295                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
  1296                               trap_method->name_and_sig_as_C_string(), trap_bci);
  1298     // Print a bunch of diagnostics, if requested.
  1299     if (TraceDeoptimization || LogCompilation) {
  1300       ResourceMark rm;
  1301       ttyLocker ttyl;
  1302       char buf[100];
  1303       if (xtty != NULL) {
  1304         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1305                          os::current_thread_id(),
  1306                          format_trap_request(buf, sizeof(buf), trap_request));
  1307         nm->log_identity(xtty);
  1309       Symbol* class_name = NULL;
  1310       bool unresolved = false;
  1311       if (unloaded_class_index >= 0) {
  1312         constantPoolHandle constants (THREAD, trap_method->constants());
  1313         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1314           class_name = constants->klass_name_at(unloaded_class_index);
  1315           unresolved = true;
  1316           if (xtty != NULL)
  1317             xtty->print(" unresolved='1'");
  1318         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1319           class_name = constants->symbol_at(unloaded_class_index);
  1321         if (xtty != NULL)
  1322           xtty->name(class_name);
  1324       if (xtty != NULL && trap_mdo != NULL) {
  1325         // Dump the relevant MDO state.
  1326         // This is the deopt count for the current reason, any previous
  1327         // reasons or recompiles seen at this point.
  1328         int dcnt = trap_mdo->trap_count(reason);
  1329         if (dcnt != 0)
  1330           xtty->print(" count='%d'", dcnt);
  1331         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1332         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1333         if (dos != 0) {
  1334           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1335           if (trap_state_is_recompiled(dos)) {
  1336             int recnt2 = trap_mdo->overflow_recompile_count();
  1337             if (recnt2 != 0)
  1338               xtty->print(" recompiles2='%d'", recnt2);
  1342       if (xtty != NULL) {
  1343         xtty->stamp();
  1344         xtty->end_head();
  1346       if (TraceDeoptimization) {  // make noise on the tty
  1347         tty->print("Uncommon trap occurred in");
  1348         nm->method()->print_short_name(tty);
  1349         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
  1350                    fr.pc(),
  1351                    os::current_thread_id(),
  1352                    trap_reason_name(reason),
  1353                    trap_action_name(action),
  1354                    unloaded_class_index);
  1355         if (class_name != NULL) {
  1356           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1357           class_name->print_symbol_on(tty);
  1359         tty->cr();
  1361       if (xtty != NULL) {
  1362         // Log the precise location of the trap.
  1363         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1364           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1365           xtty->method(sd->method());
  1366           xtty->end_elem();
  1367           if (sd->is_top())  break;
  1369         xtty->tail("uncommon_trap");
  1372     // (End diagnostic printout.)
  1374     // Load class if necessary
  1375     if (unloaded_class_index >= 0) {
  1376       constantPoolHandle constants(THREAD, trap_method->constants());
  1377       load_class_by_index(constants, unloaded_class_index);
  1380     // Flush the nmethod if necessary and desirable.
  1381     //
  1382     // We need to avoid situations where we are re-flushing the nmethod
  1383     // because of a hot deoptimization site.  Repeated flushes at the same
  1384     // point need to be detected by the compiler and avoided.  If the compiler
  1385     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1386     // module must take measures to avoid an infinite cycle of recompilation
  1387     // and deoptimization.  There are several such measures:
  1388     //
  1389     //   1. If a recompilation is ordered a second time at some site X
  1390     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1391     //   to give the interpreter time to exercise the method more thoroughly.
  1392     //   If this happens, the method's overflow_recompile_count is incremented.
  1393     //
  1394     //   2. If the compiler fails to reduce the deoptimization rate, then
  1395     //   the method's overflow_recompile_count will begin to exceed the set
  1396     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1397     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1398     //   to the interpreter.  This is a performance hit for hot methods,
  1399     //   but is better than a disastrous infinite cycle of recompilations.
  1400     //   (Actually, only the method containing the site X is abandoned.)
  1401     //
  1402     //   3. In parallel with the previous measures, if the total number of
  1403     //   recompilations of a method exceeds the much larger set limit
  1404     //   PerMethodRecompilationCutoff, the method is abandoned.
  1405     //   This should only happen if the method is very large and has
  1406     //   many "lukewarm" deoptimizations.  The code which enforces this
  1407     //   limit is elsewhere (class nmethod, class Method).
  1408     //
  1409     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1410     // to recompile at each bytecode independently of the per-BCI cutoff.
  1411     //
  1412     // The decision to update code is up to the compiler, and is encoded
  1413     // in the Action_xxx code.  If the compiler requests Action_none
  1414     // no trap state is changed, no compiled code is changed, and the
  1415     // computation suffers along in the interpreter.
  1416     //
  1417     // The other action codes specify various tactics for decompilation
  1418     // and recompilation.  Action_maybe_recompile is the loosest, and
  1419     // allows the compiled code to stay around until enough traps are seen,
  1420     // and until the compiler gets around to recompiling the trapping method.
  1421     //
  1422     // The other actions cause immediate removal of the present code.
  1424     bool update_trap_state = true;
  1425     bool make_not_entrant = false;
  1426     bool make_not_compilable = false;
  1427     bool reprofile = false;
  1428     switch (action) {
  1429     case Action_none:
  1430       // Keep the old code.
  1431       update_trap_state = false;
  1432       break;
  1433     case Action_maybe_recompile:
  1434       // Do not need to invalidate the present code, but we can
  1435       // initiate another
  1436       // Start compiler without (necessarily) invalidating the nmethod.
  1437       // The system will tolerate the old code, but new code should be
  1438       // generated when possible.
  1439       break;
  1440     case Action_reinterpret:
  1441       // Go back into the interpreter for a while, and then consider
  1442       // recompiling form scratch.
  1443       make_not_entrant = true;
  1444       // Reset invocation counter for outer most method.
  1445       // This will allow the interpreter to exercise the bytecodes
  1446       // for a while before recompiling.
  1447       // By contrast, Action_make_not_entrant is immediate.
  1448       //
  1449       // Note that the compiler will track null_check, null_assert,
  1450       // range_check, and class_check events and log them as if they
  1451       // had been traps taken from compiled code.  This will update
  1452       // the MDO trap history so that the next compilation will
  1453       // properly detect hot trap sites.
  1454       reprofile = true;
  1455       break;
  1456     case Action_make_not_entrant:
  1457       // Request immediate recompilation, and get rid of the old code.
  1458       // Make them not entrant, so next time they are called they get
  1459       // recompiled.  Unloaded classes are loaded now so recompile before next
  1460       // time they are called.  Same for uninitialized.  The interpreter will
  1461       // link the missing class, if any.
  1462       make_not_entrant = true;
  1463       break;
  1464     case Action_make_not_compilable:
  1465       // Give up on compiling this method at all.
  1466       make_not_entrant = true;
  1467       make_not_compilable = true;
  1468       break;
  1469     default:
  1470       ShouldNotReachHere();
  1473     // Setting +ProfileTraps fixes the following, on all platforms:
  1474     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1475     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1476     // recompile relies on a MethodData* to record heroic opt failures.
  1478     // Whether the interpreter is producing MDO data or not, we also need
  1479     // to use the MDO to detect hot deoptimization points and control
  1480     // aggressive optimization.
  1481     bool inc_recompile_count = false;
  1482     ProfileData* pdata = NULL;
  1483     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
  1484       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
  1485       uint this_trap_count = 0;
  1486       bool maybe_prior_trap = false;
  1487       bool maybe_prior_recompile = false;
  1488       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1489                                    nm->method(),
  1490                                    //outputs:
  1491                                    this_trap_count,
  1492                                    maybe_prior_trap,
  1493                                    maybe_prior_recompile);
  1494       // Because the interpreter also counts null, div0, range, and class
  1495       // checks, these traps from compiled code are double-counted.
  1496       // This is harmless; it just means that the PerXTrapLimit values
  1497       // are in effect a little smaller than they look.
  1499       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1500       if (per_bc_reason != Reason_none) {
  1501         // Now take action based on the partially known per-BCI history.
  1502         if (maybe_prior_trap
  1503             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1504           // If there are too many traps at this BCI, force a recompile.
  1505           // This will allow the compiler to see the limit overflow, and
  1506           // take corrective action, if possible.  The compiler generally
  1507           // does not use the exact PerBytecodeTrapLimit value, but instead
  1508           // changes its tactics if it sees any traps at all.  This provides
  1509           // a little hysteresis, delaying a recompile until a trap happens
  1510           // several times.
  1511           //
  1512           // Actually, since there is only one bit of counter per BCI,
  1513           // the possible per-BCI counts are {0,1,(per-method count)}.
  1514           // This produces accurate results if in fact there is only
  1515           // one hot trap site, but begins to get fuzzy if there are
  1516           // many sites.  For example, if there are ten sites each
  1517           // trapping two or more times, they each get the blame for
  1518           // all of their traps.
  1519           make_not_entrant = true;
  1522         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1523         if (make_not_entrant && maybe_prior_recompile) {
  1524           // More than one recompile at this point.
  1525           inc_recompile_count = maybe_prior_trap;
  1527       } else {
  1528         // For reasons which are not recorded per-bytecode, we simply
  1529         // force recompiles unconditionally.
  1530         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1531         make_not_entrant = true;
  1534       // Go back to the compiler if there are too many traps in this method.
  1535       if (this_trap_count >= per_method_trap_limit(reason)) {
  1536         // If there are too many traps in this method, force a recompile.
  1537         // This will allow the compiler to see the limit overflow, and
  1538         // take corrective action, if possible.
  1539         // (This condition is an unlikely backstop only, because the
  1540         // PerBytecodeTrapLimit is more likely to take effect first,
  1541         // if it is applicable.)
  1542         make_not_entrant = true;
  1545       // Here's more hysteresis:  If there has been a recompile at
  1546       // this trap point already, run the method in the interpreter
  1547       // for a while to exercise it more thoroughly.
  1548       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1549         reprofile = true;
  1554     // Take requested actions on the method:
  1556     // Recompile
  1557     if (make_not_entrant) {
  1558       if (!nm->make_not_entrant()) {
  1559         return; // the call did not change nmethod's state
  1562       if (pdata != NULL) {
  1563         // Record the recompilation event, if any.
  1564         int tstate0 = pdata->trap_state();
  1565         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1566         if (tstate1 != tstate0)
  1567           pdata->set_trap_state(tstate1);
  1570 #if INCLUDE_RTM_OPT
  1571       // Restart collecting RTM locking abort statistic if the method
  1572       // is recompiled for a reason other than RTM state change.
  1573       // Assume that in new recompiled code the statistic could be different,
  1574       // for example, due to different inlining.
  1575       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
  1576           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
  1577         trap_mdo->atomic_set_rtm_state(ProfileRTM);
  1579 #endif
  1582     if (inc_recompile_count) {
  1583       trap_mdo->inc_overflow_recompile_count();
  1584       if ((uint)trap_mdo->overflow_recompile_count() >
  1585           (uint)PerBytecodeRecompilationCutoff) {
  1586         // Give up on the method containing the bad BCI.
  1587         if (trap_method() == nm->method()) {
  1588           make_not_compilable = true;
  1589         } else {
  1590           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
  1591           // But give grace to the enclosing nm->method().
  1596     // Reprofile
  1597     if (reprofile) {
  1598       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1601     // Give up compiling
  1602     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1603       assert(make_not_entrant, "consistent");
  1604       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1607   } // Free marked resources
  1610 JRT_END
  1612 MethodData*
  1613 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1614                                 bool create_if_missing) {
  1615   Thread* THREAD = thread;
  1616   MethodData* mdo = m()->method_data();
  1617   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1618     // Build an MDO.  Ignore errors like OutOfMemory;
  1619     // that simply means we won't have an MDO to update.
  1620     Method::build_interpreter_method_data(m, THREAD);
  1621     if (HAS_PENDING_EXCEPTION) {
  1622       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1623       CLEAR_PENDING_EXCEPTION;
  1625     mdo = m()->method_data();
  1627   return mdo;
  1630 ProfileData*
  1631 Deoptimization::query_update_method_data(MethodData* trap_mdo,
  1632                                          int trap_bci,
  1633                                          Deoptimization::DeoptReason reason,
  1634                                          Method* compiled_method,
  1635                                          //outputs:
  1636                                          uint& ret_this_trap_count,
  1637                                          bool& ret_maybe_prior_trap,
  1638                                          bool& ret_maybe_prior_recompile) {
  1639   uint prior_trap_count = trap_mdo->trap_count(reason);
  1640   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1642   // If the runtime cannot find a place to store trap history,
  1643   // it is estimated based on the general condition of the method.
  1644   // If the method has ever been recompiled, or has ever incurred
  1645   // a trap with the present reason , then this BCI is assumed
  1646   // (pessimistically) to be the culprit.
  1647   bool maybe_prior_trap      = (prior_trap_count != 0);
  1648   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1649   ProfileData* pdata = NULL;
  1652   // For reasons which are recorded per bytecode, we check per-BCI data.
  1653   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1654   if (per_bc_reason != Reason_none) {
  1655     // Find the profile data for this BCI.  If there isn't one,
  1656     // try to allocate one from the MDO's set of spares.
  1657     // This will let us detect a repeated trap at this point.
  1658     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
  1660     if (pdata != NULL) {
  1661       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
  1662         if (LogCompilation && xtty != NULL) {
  1663           ttyLocker ttyl;
  1664           // no more room for speculative traps in this MDO
  1665           xtty->elem("speculative_traps_oom");
  1668       // Query the trap state of this profile datum.
  1669       int tstate0 = pdata->trap_state();
  1670       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1671         maybe_prior_trap = false;
  1672       if (!trap_state_is_recompiled(tstate0))
  1673         maybe_prior_recompile = false;
  1675       // Update the trap state of this profile datum.
  1676       int tstate1 = tstate0;
  1677       // Record the reason.
  1678       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1679       // Store the updated state on the MDO, for next time.
  1680       if (tstate1 != tstate0)
  1681         pdata->set_trap_state(tstate1);
  1682     } else {
  1683       if (LogCompilation && xtty != NULL) {
  1684         ttyLocker ttyl;
  1685         // Missing MDP?  Leave a small complaint in the log.
  1686         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1691   // Return results:
  1692   ret_this_trap_count = this_trap_count;
  1693   ret_maybe_prior_trap = maybe_prior_trap;
  1694   ret_maybe_prior_recompile = maybe_prior_recompile;
  1695   return pdata;
  1698 void
  1699 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1700   ResourceMark rm;
  1701   // Ignored outputs:
  1702   uint ignore_this_trap_count;
  1703   bool ignore_maybe_prior_trap;
  1704   bool ignore_maybe_prior_recompile;
  1705   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
  1706   query_update_method_data(trap_mdo, trap_bci,
  1707                            (DeoptReason)reason,
  1708                            NULL,
  1709                            ignore_this_trap_count,
  1710                            ignore_maybe_prior_trap,
  1711                            ignore_maybe_prior_recompile);
  1714 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1716   // Still in Java no safepoints
  1718     // This enters VM and may safepoint
  1719     uncommon_trap_inner(thread, trap_request);
  1721   return fetch_unroll_info_helper(thread);
  1724 // Local derived constants.
  1725 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1726 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1727 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1729 //---------------------------trap_state_reason---------------------------------
  1730 Deoptimization::DeoptReason
  1731 Deoptimization::trap_state_reason(int trap_state) {
  1732   // This assert provides the link between the width of DataLayout::trap_bits
  1733   // and the encoding of "recorded" reasons.  It ensures there are enough
  1734   // bits to store all needed reasons in the per-BCI MDO profile.
  1735   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1736   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1737   trap_state -= recompile_bit;
  1738   if (trap_state == DS_REASON_MASK) {
  1739     return Reason_many;
  1740   } else {
  1741     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1742     return (DeoptReason)trap_state;
  1745 //-------------------------trap_state_has_reason-------------------------------
  1746 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1747   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1748   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1749   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1750   trap_state -= recompile_bit;
  1751   if (trap_state == DS_REASON_MASK) {
  1752     return -1;  // true, unspecifically (bottom of state lattice)
  1753   } else if (trap_state == reason) {
  1754     return 1;   // true, definitely
  1755   } else if (trap_state == 0) {
  1756     return 0;   // false, definitely (top of state lattice)
  1757   } else {
  1758     return 0;   // false, definitely
  1761 //-------------------------trap_state_add_reason-------------------------------
  1762 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1763   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1764   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1765   trap_state -= recompile_bit;
  1766   if (trap_state == DS_REASON_MASK) {
  1767     return trap_state + recompile_bit;     // already at state lattice bottom
  1768   } else if (trap_state == reason) {
  1769     return trap_state + recompile_bit;     // the condition is already true
  1770   } else if (trap_state == 0) {
  1771     return reason + recompile_bit;          // no condition has yet been true
  1772   } else {
  1773     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1776 //-----------------------trap_state_is_recompiled------------------------------
  1777 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1778   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1780 //-----------------------trap_state_set_recompiled-----------------------------
  1781 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1782   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1783   else    return trap_state & ~DS_RECOMPILE_BIT;
  1785 //---------------------------format_trap_state---------------------------------
  1786 // This is used for debugging and diagnostics, including LogFile output.
  1787 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1788                                               int trap_state) {
  1789   DeoptReason reason      = trap_state_reason(trap_state);
  1790   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1791   // Re-encode the state from its decoded components.
  1792   int decoded_state = 0;
  1793   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1794     decoded_state = trap_state_add_reason(decoded_state, reason);
  1795   if (recomp_flag)
  1796     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1797   // If the state re-encodes properly, format it symbolically.
  1798   // Because this routine is used for debugging and diagnostics,
  1799   // be robust even if the state is a strange value.
  1800   size_t len;
  1801   if (decoded_state != trap_state) {
  1802     // Random buggy state that doesn't decode??
  1803     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1804   } else {
  1805     len = jio_snprintf(buf, buflen, "%s%s",
  1806                        trap_reason_name(reason),
  1807                        recomp_flag ? " recompiled" : "");
  1809   if (len >= buflen)
  1810     buf[buflen-1] = '\0';
  1811   return buf;
  1815 //--------------------------------statics--------------------------------------
  1816 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1817   = Deoptimization::Action_reinterpret;
  1818 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1819   // Note:  Keep this in sync. with enum DeoptReason.
  1820   "none",
  1821   "null_check",
  1822   "null_assert",
  1823   "range_check",
  1824   "class_check",
  1825   "array_check",
  1826   "intrinsic",
  1827   "bimorphic",
  1828   "unloaded",
  1829   "uninitialized",
  1830   "unreached",
  1831   "unhandled",
  1832   "constraint",
  1833   "div0_check",
  1834   "age",
  1835   "predicate",
  1836   "loop_limit_check",
  1837   "speculate_class_check",
  1838   "rtm_state_change"
  1839 };
  1840 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1841   // Note:  Keep this in sync. with enum DeoptAction.
  1842   "none",
  1843   "maybe_recompile",
  1844   "reinterpret",
  1845   "make_not_entrant",
  1846   "make_not_compilable"
  1847 };
  1849 const char* Deoptimization::trap_reason_name(int reason) {
  1850   if (reason == Reason_many)  return "many";
  1851   if ((uint)reason < Reason_LIMIT)
  1852     return _trap_reason_name[reason];
  1853   static char buf[20];
  1854   sprintf(buf, "reason%d", reason);
  1855   return buf;
  1857 const char* Deoptimization::trap_action_name(int action) {
  1858   if ((uint)action < Action_LIMIT)
  1859     return _trap_action_name[action];
  1860   static char buf[20];
  1861   sprintf(buf, "action%d", action);
  1862   return buf;
  1865 // This is used for debugging and diagnostics, including LogFile output.
  1866 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1867                                                 int trap_request) {
  1868   jint unloaded_class_index = trap_request_index(trap_request);
  1869   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1870   const char* action = trap_action_name(trap_request_action(trap_request));
  1871   size_t len;
  1872   if (unloaded_class_index < 0) {
  1873     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1874                        reason, action);
  1875   } else {
  1876     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1877                        reason, action, unloaded_class_index);
  1879   if (len >= buflen)
  1880     buf[buflen-1] = '\0';
  1881   return buf;
  1884 juint Deoptimization::_deoptimization_hist
  1885         [Deoptimization::Reason_LIMIT]
  1886     [1 + Deoptimization::Action_LIMIT]
  1887         [Deoptimization::BC_CASE_LIMIT]
  1888   = {0};
  1890 enum {
  1891   LSB_BITS = 8,
  1892   LSB_MASK = right_n_bits(LSB_BITS)
  1893 };
  1895 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1896                                        Bytecodes::Code bc) {
  1897   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1898   assert(action >= 0 && action < Action_LIMIT, "oob");
  1899   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1900   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1901   juint* cases = _deoptimization_hist[reason][1+action];
  1902   juint* bc_counter_addr = NULL;
  1903   juint  bc_counter      = 0;
  1904   // Look for an unused counter, or an exact match to this BC.
  1905   if (bc != Bytecodes::_illegal) {
  1906     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1907       juint* counter_addr = &cases[bc_case];
  1908       juint  counter = *counter_addr;
  1909       if ((counter == 0 && bc_counter_addr == NULL)
  1910           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1911         // this counter is either free or is already devoted to this BC
  1912         bc_counter_addr = counter_addr;
  1913         bc_counter = counter | bc;
  1917   if (bc_counter_addr == NULL) {
  1918     // Overflow, or no given bytecode.
  1919     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1920     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1922   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1925 jint Deoptimization::total_deoptimization_count() {
  1926   return _deoptimization_hist[Reason_none][0][0];
  1929 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1930   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1931   return _deoptimization_hist[reason][0][0];
  1934 void Deoptimization::print_statistics() {
  1935   juint total = total_deoptimization_count();
  1936   juint account = total;
  1937   if (total != 0) {
  1938     ttyLocker ttyl;
  1939     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1940     tty->print_cr("Deoptimization traps recorded:");
  1941     #define PRINT_STAT_LINE(name, r) \
  1942       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1943     PRINT_STAT_LINE("total", total);
  1944     // For each non-zero entry in the histogram, print the reason,
  1945     // the action, and (if specifically known) the type of bytecode.
  1946     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1947       for (int action = 0; action < Action_LIMIT; action++) {
  1948         juint* cases = _deoptimization_hist[reason][1+action];
  1949         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1950           juint counter = cases[bc_case];
  1951           if (counter != 0) {
  1952             char name[1*K];
  1953             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1954             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1955               bc = Bytecodes::_illegal;
  1956             sprintf(name, "%s/%s/%s",
  1957                     trap_reason_name(reason),
  1958                     trap_action_name(action),
  1959                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1960             juint r = counter >> LSB_BITS;
  1961             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1962             account -= r;
  1967     if (account != 0) {
  1968       PRINT_STAT_LINE("unaccounted", account);
  1970     #undef PRINT_STAT_LINE
  1971     if (xtty != NULL)  xtty->tail("statistics");
  1974 #else // COMPILER2 || SHARK
  1977 // Stubs for C1 only system.
  1978 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1979   return false;
  1982 const char* Deoptimization::trap_reason_name(int reason) {
  1983   return "unknown";
  1986 void Deoptimization::print_statistics() {
  1987   // no output
  1990 void
  1991 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1992   // no udpate
  1995 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1996   return 0;
  1999 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  2000                                        Bytecodes::Code bc) {
  2001   // no update
  2004 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  2005                                               int trap_state) {
  2006   jio_snprintf(buf, buflen, "#%d", trap_state);
  2007   return buf;
  2010 #endif // COMPILER2 || SHARK

mercurial