src/cpu/x86/vm/macroAssembler_x86.hpp

Mon, 26 Jun 2017 02:04:40 -0700

author
kevinw
date
Mon, 26 Jun 2017 02:04:40 -0700
changeset 8987
9ffa0d7ed932
parent 8877
f04097176542
child 8997
f8a45a60bc6b
permissions
-rw-r--r--

8161598: Kitchensink fails: assert(nm->insts_contains(original_pc)) failed: original PC must be in nmethod/CompiledMethod
Reviewed-by: dlong

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
    28 #include "asm/assembler.hpp"
    29 #include "utilities/macros.hpp"
    30 #include "runtime/rtmLocking.hpp"
    33 // MacroAssembler extends Assembler by frequently used macros.
    34 //
    35 // Instructions for which a 'better' code sequence exists depending
    36 // on arguments should also go in here.
    38 class MacroAssembler: public Assembler {
    39   friend class LIR_Assembler;
    40   friend class Runtime1;      // as_Address()
    42  protected:
    44   Address as_Address(AddressLiteral adr);
    45   Address as_Address(ArrayAddress adr);
    47   // Support for VM calls
    48   //
    49   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
    50   // may customize this version by overriding it for its purposes (e.g., to save/restore
    51   // additional registers when doing a VM call).
    52 #ifdef CC_INTERP
    53   // c++ interpreter never wants to use interp_masm version of call_VM
    54   #define VIRTUAL
    55 #else
    56   #define VIRTUAL virtual
    57 #endif
    59   VIRTUAL void call_VM_leaf_base(
    60     address entry_point,               // the entry point
    61     int     number_of_arguments        // the number of arguments to pop after the call
    62   );
    64   // This is the base routine called by the different versions of call_VM. The interpreter
    65   // may customize this version by overriding it for its purposes (e.g., to save/restore
    66   // additional registers when doing a VM call).
    67   //
    68   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
    69   // returns the register which contains the thread upon return. If a thread register has been
    70   // specified, the return value will correspond to that register. If no last_java_sp is specified
    71   // (noreg) than rsp will be used instead.
    72   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
    73     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
    74     Register java_thread,              // the thread if computed before     ; use noreg otherwise
    75     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
    76     address  entry_point,              // the entry point
    77     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
    78     bool     check_exceptions          // whether to check for pending exceptions after return
    79   );
    81   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
    82   // The implementation is only non-empty for the InterpreterMacroAssembler,
    83   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
    84   virtual void check_and_handle_popframe(Register java_thread);
    85   virtual void check_and_handle_earlyret(Register java_thread);
    87   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
    89   // helpers for FPU flag access
    90   // tmp is a temporary register, if none is available use noreg
    91   void save_rax   (Register tmp);
    92   void restore_rax(Register tmp);
    94  public:
    95   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
    97   // Support for NULL-checks
    98   //
    99   // Generates code that causes a NULL OS exception if the content of reg is NULL.
   100   // If the accessed location is M[reg + offset] and the offset is known, provide the
   101   // offset. No explicit code generation is needed if the offset is within a certain
   102   // range (0 <= offset <= page_size).
   104   void null_check(Register reg, int offset = -1);
   105   static bool needs_explicit_null_check(intptr_t offset);
   107   // Required platform-specific helpers for Label::patch_instructions.
   108   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
   109   void pd_patch_instruction(address branch, address target) {
   110     unsigned char op = branch[0];
   111     assert(op == 0xE8 /* call */ ||
   112         op == 0xE9 /* jmp */ ||
   113         op == 0xEB /* short jmp */ ||
   114         (op & 0xF0) == 0x70 /* short jcc */ ||
   115         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
   116         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
   117         "Invalid opcode at patch point");
   119     if (op == 0xEB || (op & 0xF0) == 0x70) {
   120       // short offset operators (jmp and jcc)
   121       char* disp = (char*) &branch[1];
   122       int imm8 = target - (address) &disp[1];
   123       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
   124       *disp = imm8;
   125     } else {
   126       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
   127       int imm32 = target - (address) &disp[1];
   128       *disp = imm32;
   129     }
   130   }
   132   // The following 4 methods return the offset of the appropriate move instruction
   134   // Support for fast byte/short loading with zero extension (depending on particular CPU)
   135   int load_unsigned_byte(Register dst, Address src);
   136   int load_unsigned_short(Register dst, Address src);
   138   // Support for fast byte/short loading with sign extension (depending on particular CPU)
   139   int load_signed_byte(Register dst, Address src);
   140   int load_signed_short(Register dst, Address src);
   142   // Support for sign-extension (hi:lo = extend_sign(lo))
   143   void extend_sign(Register hi, Register lo);
   145   // Load and store values by size and signed-ness
   146   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
   147   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
   149   // Support for inc/dec with optimal instruction selection depending on value
   151   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
   152   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
   154   void decrementl(Address dst, int value = 1);
   155   void decrementl(Register reg, int value = 1);
   157   void decrementq(Register reg, int value = 1);
   158   void decrementq(Address dst, int value = 1);
   160   void incrementl(Address dst, int value = 1);
   161   void incrementl(Register reg, int value = 1);
   163   void incrementq(Register reg, int value = 1);
   164   void incrementq(Address dst, int value = 1);
   166   // Support optimal SSE move instructions.
   167   void movflt(XMMRegister dst, XMMRegister src) {
   168     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
   169     else                       { movss (dst, src); return; }
   170   }
   171   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
   172   void movflt(XMMRegister dst, AddressLiteral src);
   173   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
   175   void movdbl(XMMRegister dst, XMMRegister src) {
   176     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
   177     else                       { movsd (dst, src); return; }
   178   }
   180   void movdbl(XMMRegister dst, AddressLiteral src);
   182   void movdbl(XMMRegister dst, Address src) {
   183     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
   184     else                         { movlpd(dst, src); return; }
   185   }
   186   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
   188   void incrementl(AddressLiteral dst);
   189   void incrementl(ArrayAddress dst);
   191   void incrementq(AddressLiteral dst);
   193   // Alignment
   194   void align(int modulus);
   196   // A 5 byte nop that is safe for patching (see patch_verified_entry)
   197   void fat_nop();
   199   // Stack frame creation/removal
   200   void enter();
   201   void leave();
   203   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
   204   // The pointer will be loaded into the thread register.
   205   void get_thread(Register thread);
   208   // Support for VM calls
   209   //
   210   // It is imperative that all calls into the VM are handled via the call_VM macros.
   211   // They make sure that the stack linkage is setup correctly. call_VM's correspond
   212   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
   215   void call_VM(Register oop_result,
   216                address entry_point,
   217                bool check_exceptions = true);
   218   void call_VM(Register oop_result,
   219                address entry_point,
   220                Register arg_1,
   221                bool check_exceptions = true);
   222   void call_VM(Register oop_result,
   223                address entry_point,
   224                Register arg_1, Register arg_2,
   225                bool check_exceptions = true);
   226   void call_VM(Register oop_result,
   227                address entry_point,
   228                Register arg_1, Register arg_2, Register arg_3,
   229                bool check_exceptions = true);
   231   // Overloadings with last_Java_sp
   232   void call_VM(Register oop_result,
   233                Register last_java_sp,
   234                address entry_point,
   235                int number_of_arguments = 0,
   236                bool check_exceptions = true);
   237   void call_VM(Register oop_result,
   238                Register last_java_sp,
   239                address entry_point,
   240                Register arg_1, bool
   241                check_exceptions = true);
   242   void call_VM(Register oop_result,
   243                Register last_java_sp,
   244                address entry_point,
   245                Register arg_1, Register arg_2,
   246                bool check_exceptions = true);
   247   void call_VM(Register oop_result,
   248                Register last_java_sp,
   249                address entry_point,
   250                Register arg_1, Register arg_2, Register arg_3,
   251                bool check_exceptions = true);
   253   void get_vm_result  (Register oop_result, Register thread);
   254   void get_vm_result_2(Register metadata_result, Register thread);
   256   // These always tightly bind to MacroAssembler::call_VM_base
   257   // bypassing the virtual implementation
   258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
   259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
   260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
   261   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
   262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
   264   void call_VM_leaf(address entry_point,
   265                     int number_of_arguments = 0);
   266   void call_VM_leaf(address entry_point,
   267                     Register arg_1);
   268   void call_VM_leaf(address entry_point,
   269                     Register arg_1, Register arg_2);
   270   void call_VM_leaf(address entry_point,
   271                     Register arg_1, Register arg_2, Register arg_3);
   273   // These always tightly bind to MacroAssembler::call_VM_leaf_base
   274   // bypassing the virtual implementation
   275   void super_call_VM_leaf(address entry_point);
   276   void super_call_VM_leaf(address entry_point, Register arg_1);
   277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
   278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
   279   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
   281   // last Java Frame (fills frame anchor)
   282   void set_last_Java_frame(Register thread,
   283                            Register last_java_sp,
   284                            Register last_java_fp,
   285                            address last_java_pc);
   287   // thread in the default location (r15_thread on 64bit)
   288   void set_last_Java_frame(Register last_java_sp,
   289                            Register last_java_fp,
   290                            address last_java_pc);
   292   void reset_last_Java_frame(Register thread, bool clear_fp);
   294   // thread in the default location (r15_thread on 64bit)
   295   void reset_last_Java_frame(bool clear_fp);
   297   // Stores
   298   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
   299   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
   301 #if INCLUDE_ALL_GCS
   303   void g1_write_barrier_pre(Register obj,
   304                             Register pre_val,
   305                             Register thread,
   306                             Register tmp,
   307                             bool tosca_live,
   308                             bool expand_call);
   310   void g1_write_barrier_post(Register store_addr,
   311                              Register new_val,
   312                              Register thread,
   313                              Register tmp,
   314                              Register tmp2);
   316 #endif // INCLUDE_ALL_GCS
   318   // split store_check(Register obj) to enhance instruction interleaving
   319   void store_check_part_1(Register obj);
   320   void store_check_part_2(Register obj);
   322   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
   323   void c2bool(Register x);
   325   // C++ bool manipulation
   327   void movbool(Register dst, Address src);
   328   void movbool(Address dst, bool boolconst);
   329   void movbool(Address dst, Register src);
   330   void testbool(Register dst);
   332   // oop manipulations
   333   void load_klass(Register dst, Register src);
   334   void store_klass(Register dst, Register src);
   336   void load_heap_oop(Register dst, Address src);
   337   void load_heap_oop_not_null(Register dst, Address src);
   338   void store_heap_oop(Address dst, Register src);
   339   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
   341   // Used for storing NULL. All other oop constants should be
   342   // stored using routines that take a jobject.
   343   void store_heap_oop_null(Address dst);
   345   void load_prototype_header(Register dst, Register src);
   347 #ifdef _LP64
   348   void store_klass_gap(Register dst, Register src);
   350   // This dummy is to prevent a call to store_heap_oop from
   351   // converting a zero (like NULL) into a Register by giving
   352   // the compiler two choices it can't resolve
   354   void store_heap_oop(Address dst, void* dummy);
   356   void encode_heap_oop(Register r);
   357   void decode_heap_oop(Register r);
   358   void encode_heap_oop_not_null(Register r);
   359   void decode_heap_oop_not_null(Register r);
   360   void encode_heap_oop_not_null(Register dst, Register src);
   361   void decode_heap_oop_not_null(Register dst, Register src);
   363   void set_narrow_oop(Register dst, jobject obj);
   364   void set_narrow_oop(Address dst, jobject obj);
   365   void cmp_narrow_oop(Register dst, jobject obj);
   366   void cmp_narrow_oop(Address dst, jobject obj);
   368   void encode_klass_not_null(Register r);
   369   void decode_klass_not_null(Register r);
   370   void encode_klass_not_null(Register dst, Register src);
   371   void decode_klass_not_null(Register dst, Register src);
   372   void set_narrow_klass(Register dst, Klass* k);
   373   void set_narrow_klass(Address dst, Klass* k);
   374   void cmp_narrow_klass(Register dst, Klass* k);
   375   void cmp_narrow_klass(Address dst, Klass* k);
   377   // Returns the byte size of the instructions generated by decode_klass_not_null()
   378   // when compressed klass pointers are being used.
   379   static int instr_size_for_decode_klass_not_null();
   381   // if heap base register is used - reinit it with the correct value
   382   void reinit_heapbase();
   384   DEBUG_ONLY(void verify_heapbase(const char* msg);)
   386 #endif // _LP64
   388   // Int division/remainder for Java
   389   // (as idivl, but checks for special case as described in JVM spec.)
   390   // returns idivl instruction offset for implicit exception handling
   391   int corrected_idivl(Register reg);
   393   // Long division/remainder for Java
   394   // (as idivq, but checks for special case as described in JVM spec.)
   395   // returns idivq instruction offset for implicit exception handling
   396   int corrected_idivq(Register reg);
   398   void int3();
   400   // Long operation macros for a 32bit cpu
   401   // Long negation for Java
   402   void lneg(Register hi, Register lo);
   404   // Long multiplication for Java
   405   // (destroys contents of eax, ebx, ecx and edx)
   406   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
   408   // Long shifts for Java
   409   // (semantics as described in JVM spec.)
   410   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
   411   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
   413   // Long compare for Java
   414   // (semantics as described in JVM spec.)
   415   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
   418   // misc
   420   // Sign extension
   421   void sign_extend_short(Register reg);
   422   void sign_extend_byte(Register reg);
   424   // Division by power of 2, rounding towards 0
   425   void division_with_shift(Register reg, int shift_value);
   427   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
   428   //
   429   // CF (corresponds to C0) if x < y
   430   // PF (corresponds to C2) if unordered
   431   // ZF (corresponds to C3) if x = y
   432   //
   433   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   434   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
   435   void fcmp(Register tmp);
   436   // Variant of the above which allows y to be further down the stack
   437   // and which only pops x and y if specified. If pop_right is
   438   // specified then pop_left must also be specified.
   439   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
   441   // Floating-point comparison for Java
   442   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
   443   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
   444   // (semantics as described in JVM spec.)
   445   void fcmp2int(Register dst, bool unordered_is_less);
   446   // Variant of the above which allows y to be further down the stack
   447   // and which only pops x and y if specified. If pop_right is
   448   // specified then pop_left must also be specified.
   449   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
   451   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
   452   // tmp is a temporary register, if none is available use noreg
   453   void fremr(Register tmp);
   456   // same as fcmp2int, but using SSE2
   457   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   458   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
   460   // Inlined sin/cos generator for Java; must not use CPU instruction
   461   // directly on Intel as it does not have high enough precision
   462   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
   463   // number of FPU stack slots in use; all but the topmost will
   464   // require saving if a slow case is necessary. Assumes argument is
   465   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
   466   // this code.
   467   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
   469   // branch to L if FPU flag C2 is set/not set
   470   // tmp is a temporary register, if none is available use noreg
   471   void jC2 (Register tmp, Label& L);
   472   void jnC2(Register tmp, Label& L);
   474   // Pop ST (ffree & fincstp combined)
   475   void fpop();
   477   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
   478   void push_fTOS();
   480   // pops double TOS element from CPU stack and pushes on FPU stack
   481   void pop_fTOS();
   483   void empty_FPU_stack();
   485   void push_IU_state();
   486   void pop_IU_state();
   488   void push_FPU_state();
   489   void pop_FPU_state();
   491   void push_CPU_state();
   492   void pop_CPU_state();
   494   // Round up to a power of two
   495   void round_to(Register reg, int modulus);
   497   // Callee saved registers handling
   498   void push_callee_saved_registers();
   499   void pop_callee_saved_registers();
   501   // allocation
   502   void eden_allocate(
   503     Register obj,                      // result: pointer to object after successful allocation
   504     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   505     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   506     Register t1,                       // temp register
   507     Label&   slow_case                 // continuation point if fast allocation fails
   508   );
   509   void tlab_allocate(
   510     Register obj,                      // result: pointer to object after successful allocation
   511     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
   512     int      con_size_in_bytes,        // object size in bytes if   known at compile time
   513     Register t1,                       // temp register
   514     Register t2,                       // temp register
   515     Label&   slow_case                 // continuation point if fast allocation fails
   516   );
   517   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
   518   void incr_allocated_bytes(Register thread,
   519                             Register var_size_in_bytes, int con_size_in_bytes,
   520                             Register t1 = noreg);
   522   // interface method calling
   523   void lookup_interface_method(Register recv_klass,
   524                                Register intf_klass,
   525                                RegisterOrConstant itable_index,
   526                                Register method_result,
   527                                Register scan_temp,
   528                                Label& no_such_interface);
   530   // virtual method calling
   531   void lookup_virtual_method(Register recv_klass,
   532                              RegisterOrConstant vtable_index,
   533                              Register method_result);
   535   // Test sub_klass against super_klass, with fast and slow paths.
   537   // The fast path produces a tri-state answer: yes / no / maybe-slow.
   538   // One of the three labels can be NULL, meaning take the fall-through.
   539   // If super_check_offset is -1, the value is loaded up from super_klass.
   540   // No registers are killed, except temp_reg.
   541   void check_klass_subtype_fast_path(Register sub_klass,
   542                                      Register super_klass,
   543                                      Register temp_reg,
   544                                      Label* L_success,
   545                                      Label* L_failure,
   546                                      Label* L_slow_path,
   547                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
   549   // The rest of the type check; must be wired to a corresponding fast path.
   550   // It does not repeat the fast path logic, so don't use it standalone.
   551   // The temp_reg and temp2_reg can be noreg, if no temps are available.
   552   // Updates the sub's secondary super cache as necessary.
   553   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
   554   void check_klass_subtype_slow_path(Register sub_klass,
   555                                      Register super_klass,
   556                                      Register temp_reg,
   557                                      Register temp2_reg,
   558                                      Label* L_success,
   559                                      Label* L_failure,
   560                                      bool set_cond_codes = false);
   562   // Simplified, combined version, good for typical uses.
   563   // Falls through on failure.
   564   void check_klass_subtype(Register sub_klass,
   565                            Register super_klass,
   566                            Register temp_reg,
   567                            Label& L_success);
   569   // method handles (JSR 292)
   570   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
   572   //----
   573   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
   575   // Debugging
   577   // only if +VerifyOops
   578   // TODO: Make these macros with file and line like sparc version!
   579   void verify_oop(Register reg, const char* s = "broken oop");
   580   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
   582   // TODO: verify method and klass metadata (compare against vptr?)
   583   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
   584   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
   586 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
   587 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
   589   // only if +VerifyFPU
   590   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
   592   // Verify or restore cpu control state after JNI call
   593   void restore_cpu_control_state_after_jni();
   595   // prints msg, dumps registers and stops execution
   596   void stop(const char* msg);
   598   // prints msg and continues
   599   void warn(const char* msg);
   601   // dumps registers and other state
   602   void print_state();
   604   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
   605   static void debug64(char* msg, int64_t pc, int64_t regs[]);
   606   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
   607   static void print_state64(int64_t pc, int64_t regs[]);
   609   void os_breakpoint();
   611   void untested()                                { stop("untested"); }
   613   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
   615   void should_not_reach_here()                   { stop("should not reach here"); }
   617   void print_CPU_state();
   619   // Stack overflow checking
   620   void bang_stack_with_offset(int offset) {
   621     // stack grows down, caller passes positive offset
   622     assert(offset > 0, "must bang with negative offset");
   623     movl(Address(rsp, (-offset)), rax);
   624   }
   626   // Writes to stack successive pages until offset reached to check for
   627   // stack overflow + shadow pages.  Also, clobbers tmp
   628   void bang_stack_size(Register size, Register tmp);
   630   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
   631                                                 Register tmp,
   632                                                 int offset);
   634   // Support for serializing memory accesses between threads
   635   void serialize_memory(Register thread, Register tmp);
   637   void verify_tlab();
   639   // Biased locking support
   640   // lock_reg and obj_reg must be loaded up with the appropriate values.
   641   // swap_reg must be rax, and is killed.
   642   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
   643   // be killed; if not supplied, push/pop will be used internally to
   644   // allocate a temporary (inefficient, avoid if possible).
   645   // Optional slow case is for implementations (interpreter and C1) which branch to
   646   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
   647   // Returns offset of first potentially-faulting instruction for null
   648   // check info (currently consumed only by C1). If
   649   // swap_reg_contains_mark is true then returns -1 as it is assumed
   650   // the calling code has already passed any potential faults.
   651   int biased_locking_enter(Register lock_reg, Register obj_reg,
   652                            Register swap_reg, Register tmp_reg,
   653                            bool swap_reg_contains_mark,
   654                            Label& done, Label* slow_case = NULL,
   655                            BiasedLockingCounters* counters = NULL);
   656   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
   657 #ifdef COMPILER2
   658   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
   659   // See full desription in macroAssembler_x86.cpp.
   660   void fast_lock(Register obj, Register box, Register tmp,
   661                  Register scr, Register cx1, Register cx2,
   662                  BiasedLockingCounters* counters,
   663                  RTMLockingCounters* rtm_counters,
   664                  RTMLockingCounters* stack_rtm_counters,
   665                  Metadata* method_data,
   666                  bool use_rtm, bool profile_rtm);
   667   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
   668 #if INCLUDE_RTM_OPT
   669   void rtm_counters_update(Register abort_status, Register rtm_counters);
   670   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
   671   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
   672                                    RTMLockingCounters* rtm_counters,
   673                                    Metadata* method_data);
   674   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
   675                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
   676   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
   677   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
   678   void rtm_stack_locking(Register obj, Register tmp, Register scr,
   679                          Register retry_on_abort_count,
   680                          RTMLockingCounters* stack_rtm_counters,
   681                          Metadata* method_data, bool profile_rtm,
   682                          Label& DONE_LABEL, Label& IsInflated);
   683   void rtm_inflated_locking(Register obj, Register box, Register tmp,
   684                             Register scr, Register retry_on_busy_count,
   685                             Register retry_on_abort_count,
   686                             RTMLockingCounters* rtm_counters,
   687                             Metadata* method_data, bool profile_rtm,
   688                             Label& DONE_LABEL);
   689 #endif
   690 #endif
   692   Condition negate_condition(Condition cond);
   694   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
   695   // operands. In general the names are modified to avoid hiding the instruction in Assembler
   696   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
   697   // here in MacroAssembler. The major exception to this rule is call
   699   // Arithmetics
   702   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
   703   void addptr(Address dst, Register src);
   705   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
   706   void addptr(Register dst, int32_t src);
   707   void addptr(Register dst, Register src);
   708   void addptr(Register dst, RegisterOrConstant src) {
   709     if (src.is_constant()) addptr(dst, (int) src.as_constant());
   710     else                   addptr(dst,       src.as_register());
   711   }
   713   void andptr(Register dst, int32_t src);
   714   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
   716   void cmp8(AddressLiteral src1, int imm);
   718   // renamed to drag out the casting of address to int32_t/intptr_t
   719   void cmp32(Register src1, int32_t imm);
   721   void cmp32(AddressLiteral src1, int32_t imm);
   722   // compare reg - mem, or reg - &mem
   723   void cmp32(Register src1, AddressLiteral src2);
   725   void cmp32(Register src1, Address src2);
   727 #ifndef _LP64
   728   void cmpklass(Address dst, Metadata* obj);
   729   void cmpklass(Register dst, Metadata* obj);
   730   void cmpoop(Address dst, jobject obj);
   731   void cmpoop(Register dst, jobject obj);
   732 #endif // _LP64
   734   // NOTE src2 must be the lval. This is NOT an mem-mem compare
   735   void cmpptr(Address src1, AddressLiteral src2);
   737   void cmpptr(Register src1, AddressLiteral src2);
   739   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   740   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   741   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   743   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   744   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
   746   // cmp64 to avoild hiding cmpq
   747   void cmp64(Register src1, AddressLiteral src);
   749   void cmpxchgptr(Register reg, Address adr);
   751   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
   754   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
   755   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
   758   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
   760   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
   762   void shlptr(Register dst, int32_t shift);
   763   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
   765   void shrptr(Register dst, int32_t shift);
   766   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
   768   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
   769   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
   771   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   773   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
   774   void subptr(Register dst, int32_t src);
   775   // Force generation of a 4 byte immediate value even if it fits into 8bit
   776   void subptr_imm32(Register dst, int32_t src);
   777   void subptr(Register dst, Register src);
   778   void subptr(Register dst, RegisterOrConstant src) {
   779     if (src.is_constant()) subptr(dst, (int) src.as_constant());
   780     else                   subptr(dst,       src.as_register());
   781   }
   783   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   784   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
   786   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   787   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
   789   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
   793   // Helper functions for statistics gathering.
   794   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
   795   void cond_inc32(Condition cond, AddressLiteral counter_addr);
   796   // Unconditional atomic increment.
   797   void atomic_incl(Address counter_addr);
   798   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
   799 #ifdef _LP64
   800   void atomic_incq(Address counter_addr);
   801   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
   802 #endif
   803   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
   804   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
   806   void lea(Register dst, AddressLiteral adr);
   807   void lea(Address dst, AddressLiteral adr);
   808   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
   810   void leal32(Register dst, Address src) { leal(dst, src); }
   812   // Import other testl() methods from the parent class or else
   813   // they will be hidden by the following overriding declaration.
   814   using Assembler::testl;
   815   void testl(Register dst, AddressLiteral src);
   817   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   818   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   819   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
   820   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
   822   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
   823   void testptr(Register src1, Register src2);
   825   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   826   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
   828   // Calls
   830   void call(Label& L, relocInfo::relocType rtype);
   831   void call(Register entry);
   833   // NOTE: this call tranfers to the effective address of entry NOT
   834   // the address contained by entry. This is because this is more natural
   835   // for jumps/calls.
   836   void call(AddressLiteral entry);
   838   // Emit the CompiledIC call idiom
   839   void ic_call(address entry);
   841   // Jumps
   843   // NOTE: these jumps tranfer to the effective address of dst NOT
   844   // the address contained by dst. This is because this is more natural
   845   // for jumps/calls.
   846   void jump(AddressLiteral dst);
   847   void jump_cc(Condition cc, AddressLiteral dst);
   849   // 32bit can do a case table jump in one instruction but we no longer allow the base
   850   // to be installed in the Address class. This jump will tranfers to the address
   851   // contained in the location described by entry (not the address of entry)
   852   void jump(ArrayAddress entry);
   854   // Floating
   856   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
   857   void andpd(XMMRegister dst, AddressLiteral src);
   859   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
   860   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
   861   void andps(XMMRegister dst, AddressLiteral src);
   863   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
   864   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
   865   void comiss(XMMRegister dst, AddressLiteral src);
   867   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
   868   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
   869   void comisd(XMMRegister dst, AddressLiteral src);
   871   void fadd_s(Address src)        { Assembler::fadd_s(src); }
   872   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
   874   void fldcw(Address src) { Assembler::fldcw(src); }
   875   void fldcw(AddressLiteral src);
   877   void fld_s(int index)   { Assembler::fld_s(index); }
   878   void fld_s(Address src) { Assembler::fld_s(src); }
   879   void fld_s(AddressLiteral src);
   881   void fld_d(Address src) { Assembler::fld_d(src); }
   882   void fld_d(AddressLiteral src);
   884   void fld_x(Address src) { Assembler::fld_x(src); }
   885   void fld_x(AddressLiteral src);
   887   void fmul_s(Address src)        { Assembler::fmul_s(src); }
   888   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
   890   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
   891   void ldmxcsr(AddressLiteral src);
   893   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
   894   // all corner cases and may result in NaN and require fallback to a
   895   // runtime call.
   896   void fast_pow();
   897   void fast_exp();
   898   void increase_precision();
   899   void restore_precision();
   901   // computes exp(x). Fallback to runtime call included.
   902   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
   903   // computes pow(x,y). Fallback to runtime call included.
   904   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
   906 private:
   908   // call runtime as a fallback for trig functions and pow/exp.
   909   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
   911   // computes 2^(Ylog2X); Ylog2X in ST(0)
   912   void pow_exp_core_encoding();
   914   // computes pow(x,y) or exp(x). Fallback to runtime call included.
   915   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
   917   // these are private because users should be doing movflt/movdbl
   919   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
   920   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
   921   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
   922   void movss(XMMRegister dst, AddressLiteral src);
   924   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
   925   void movlpd(XMMRegister dst, AddressLiteral src);
   927 public:
   929   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
   930   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
   931   void addsd(XMMRegister dst, AddressLiteral src);
   933   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
   934   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
   935   void addss(XMMRegister dst, AddressLiteral src);
   937   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
   938   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
   939   void divsd(XMMRegister dst, AddressLiteral src);
   941   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
   942   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
   943   void divss(XMMRegister dst, AddressLiteral src);
   945   // Move Unaligned Double Quadword
   946   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   947   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
   948   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
   949   void movdqu(XMMRegister dst, AddressLiteral src);
   951   // Move Aligned Double Quadword
   952   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
   953   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
   954   void movdqa(XMMRegister dst, AddressLiteral src);
   956   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
   957   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
   958   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
   959   void movsd(XMMRegister dst, AddressLiteral src);
   961   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
   962   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
   963   void mulsd(XMMRegister dst, AddressLiteral src);
   965   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
   966   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
   967   void mulss(XMMRegister dst, AddressLiteral src);
   969   // Carry-Less Multiplication Quadword
   970   void pclmulldq(XMMRegister dst, XMMRegister src) {
   971     // 0x00 - multiply lower 64 bits [0:63]
   972     Assembler::pclmulqdq(dst, src, 0x00);
   973   }
   974   void pclmulhdq(XMMRegister dst, XMMRegister src) {
   975     // 0x11 - multiply upper 64 bits [64:127]
   976     Assembler::pclmulqdq(dst, src, 0x11);
   977   }
   979   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
   980   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
   981   void sqrtsd(XMMRegister dst, AddressLiteral src);
   983   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
   984   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
   985   void sqrtss(XMMRegister dst, AddressLiteral src);
   987   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
   988   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
   989   void subsd(XMMRegister dst, AddressLiteral src);
   991   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
   992   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
   993   void subss(XMMRegister dst, AddressLiteral src);
   995   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
   996   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
   997   void ucomiss(XMMRegister dst, AddressLiteral src);
   999   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  1000   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
  1001   void ucomisd(XMMRegister dst, AddressLiteral src);
  1003   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  1004   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  1005   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  1006   void xorpd(XMMRegister dst, AddressLiteral src);
  1008   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  1009   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  1010   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  1011   void xorps(XMMRegister dst, AddressLiteral src);
  1013   // Shuffle Bytes
  1014   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
  1015   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
  1016   void pshufb(XMMRegister dst, AddressLiteral src);
  1017   // AVX 3-operands instructions
  1019   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
  1020   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
  1021   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1023   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
  1024   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
  1025   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1027   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
  1028   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
  1029   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1031   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
  1032   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
  1033   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1035   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
  1036   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
  1037   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1039   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
  1040   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
  1041   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1043   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
  1044   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
  1045   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1047   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
  1048   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
  1049   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1051   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
  1052   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
  1053   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1055   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
  1056   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
  1057   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  1059   // AVX Vector instructions
  1061   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  1062   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  1063   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1065   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  1066   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  1067   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  1069   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  1070     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1071       Assembler::vpxor(dst, nds, src, vector256);
  1072     else
  1073       Assembler::vxorpd(dst, nds, src, vector256);
  1075   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  1076     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  1077       Assembler::vpxor(dst, nds, src, vector256);
  1078     else
  1079       Assembler::vxorpd(dst, nds, src, vector256);
  1082   // Simple version for AVX2 256bit vectors
  1083   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
  1084   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
  1086   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  1087   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1088     if (UseAVX > 1) // vinserti128h is available only in AVX2
  1089       Assembler::vinserti128h(dst, nds, src);
  1090     else
  1091       Assembler::vinsertf128h(dst, nds, src);
  1094   // Carry-Less Multiplication Quadword
  1095   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1096     // 0x00 - multiply lower 64 bits [0:63]
  1097     Assembler::vpclmulqdq(dst, nds, src, 0x00);
  1099   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  1100     // 0x11 - multiply upper 64 bits [64:127]
  1101     Assembler::vpclmulqdq(dst, nds, src, 0x11);
  1104   // Data
  1106   void cmov32( Condition cc, Register dst, Address  src);
  1107   void cmov32( Condition cc, Register dst, Register src);
  1109   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
  1111   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1112   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  1114   void movoop(Register dst, jobject obj);
  1115   void movoop(Address dst, jobject obj);
  1117   void mov_metadata(Register dst, Metadata* obj);
  1118   void mov_metadata(Address dst, Metadata* obj);
  1120   void movptr(ArrayAddress dst, Register src);
  1121   // can this do an lea?
  1122   void movptr(Register dst, ArrayAddress src);
  1124   void movptr(Register dst, Address src);
  1126 #ifdef _LP64
  1127   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
  1128 #else
  1129   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
  1130 #endif
  1132   void movptr(Register dst, intptr_t src);
  1133   void movptr(Register dst, Register src);
  1134   void movptr(Address dst, intptr_t src);
  1136   void movptr(Address dst, Register src);
  1138   void movptr(Register dst, RegisterOrConstant src) {
  1139     if (src.is_constant()) movptr(dst, src.as_constant());
  1140     else                   movptr(dst, src.as_register());
  1143 #ifdef _LP64
  1144   // Generally the next two are only used for moving NULL
  1145   // Although there are situations in initializing the mark word where
  1146   // they could be used. They are dangerous.
  1148   // They only exist on LP64 so that int32_t and intptr_t are not the same
  1149   // and we have ambiguous declarations.
  1151   void movptr(Address dst, int32_t imm32);
  1152   void movptr(Register dst, int32_t imm32);
  1153 #endif // _LP64
  1155   // to avoid hiding movl
  1156   void mov32(AddressLiteral dst, Register src);
  1157   void mov32(Register dst, AddressLiteral src);
  1159   // to avoid hiding movb
  1160   void movbyte(ArrayAddress dst, int src);
  1162   // Import other mov() methods from the parent class or else
  1163   // they will be hidden by the following overriding declaration.
  1164   using Assembler::movdl;
  1165   using Assembler::movq;
  1166   void movdl(XMMRegister dst, AddressLiteral src);
  1167   void movq(XMMRegister dst, AddressLiteral src);
  1169   // Can push value or effective address
  1170   void pushptr(AddressLiteral src);
  1172   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  1173   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  1175   void pushoop(jobject obj);
  1176   void pushklass(Metadata* obj);
  1178   // sign extend as need a l to ptr sized element
  1179   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  1180   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  1182   // C2 compiled method's prolog code.
  1183   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
  1185   // clear memory of size 'cnt' qwords, starting at 'base'.
  1186   void clear_mem(Register base, Register cnt, Register rtmp);
  1188   // IndexOf strings.
  1189   // Small strings are loaded through stack if they cross page boundary.
  1190   void string_indexof(Register str1, Register str2,
  1191                       Register cnt1, Register cnt2,
  1192                       int int_cnt2,  Register result,
  1193                       XMMRegister vec, Register tmp);
  1195   // IndexOf for constant substrings with size >= 8 elements
  1196   // which don't need to be loaded through stack.
  1197   void string_indexofC8(Register str1, Register str2,
  1198                       Register cnt1, Register cnt2,
  1199                       int int_cnt2,  Register result,
  1200                       XMMRegister vec, Register tmp);
  1202     // Smallest code: we don't need to load through stack,
  1203     // check string tail.
  1205   // Compare strings.
  1206   void string_compare(Register str1, Register str2,
  1207                       Register cnt1, Register cnt2, Register result,
  1208                       XMMRegister vec1);
  1210   // Compare char[] arrays.
  1211   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  1212                           Register limit, Register result, Register chr,
  1213                           XMMRegister vec1, XMMRegister vec2);
  1215   // Fill primitive arrays
  1216   void generate_fill(BasicType t, bool aligned,
  1217                      Register to, Register value, Register count,
  1218                      Register rtmp, XMMRegister xtmp);
  1220   void encode_iso_array(Register src, Register dst, Register len,
  1221                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
  1222                         XMMRegister tmp4, Register tmp5, Register result);
  1224 #ifdef _LP64
  1225   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
  1226   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
  1227                              Register y, Register y_idx, Register z,
  1228                              Register carry, Register product,
  1229                              Register idx, Register kdx);
  1230   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
  1231                               Register yz_idx, Register idx,
  1232                               Register carry, Register product, int offset);
  1233   void multiply_128_x_128_bmi2_loop(Register y, Register z,
  1234                                     Register carry, Register carry2,
  1235                                     Register idx, Register jdx,
  1236                                     Register yz_idx1, Register yz_idx2,
  1237                                     Register tmp, Register tmp3, Register tmp4);
  1238   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
  1239                                Register yz_idx, Register idx, Register jdx,
  1240                                Register carry, Register product,
  1241                                Register carry2);
  1242   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
  1243                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
  1245   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
  1246                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
  1247   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
  1248                             Register tmp2);
  1249   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
  1250                        Register rdxReg, Register raxReg);
  1251   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
  1252   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
  1253                        Register tmp3, Register tmp4);
  1254   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
  1255                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
  1257   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
  1258                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
  1259                Register raxReg);
  1260   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
  1261                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
  1262                Register raxReg);
  1263 #endif
  1265   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
  1266   void update_byte_crc32(Register crc, Register val, Register table);
  1267   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
  1268   // Fold 128-bit data chunk
  1269   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
  1270   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
  1271   // Fold 8-bit data
  1272   void fold_8bit_crc32(Register crc, Register table, Register tmp);
  1273   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
  1275 #undef VIRTUAL
  1277 };
  1279 /**
  1280  * class SkipIfEqual:
  1282  * Instantiating this class will result in assembly code being output that will
  1283  * jump around any code emitted between the creation of the instance and it's
  1284  * automatic destruction at the end of a scope block, depending on the value of
  1285  * the flag passed to the constructor, which will be checked at run-time.
  1286  */
  1287 class SkipIfEqual {
  1288  private:
  1289   MacroAssembler* _masm;
  1290   Label _label;
  1292  public:
  1293    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  1294    ~SkipIfEqual();
  1295 };
  1297 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP

mercurial