src/cpu/x86/vm/macroAssembler_x86.cpp

Mon, 26 Jun 2017 02:04:40 -0700

author
kevinw
date
Mon, 26 Jun 2017 02:04:40 -0700
changeset 8987
9ffa0d7ed932
parent 8877
f04097176542
child 8997
f8a45a60bc6b
permissions
-rw-r--r--

8161598: Kitchensink fails: assert(nm->insts_contains(original_pc)) failed: original PC must be in nmethod/CompiledMethod
Reviewed-by: dlong

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "compiler/disassembler.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "memory/resourceArea.hpp"
    33 #include "memory/universe.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/biasedLocking.hpp"
    36 #include "runtime/interfaceSupport.hpp"
    37 #include "runtime/objectMonitor.hpp"
    38 #include "runtime/os.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    40 #include "runtime/stubRoutines.hpp"
    41 #include "utilities/macros.hpp"
    42 #if INCLUDE_ALL_GCS
    43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    45 #include "gc_implementation/g1/heapRegion.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 #ifdef PRODUCT
    49 #define BLOCK_COMMENT(str) /* nothing */
    50 #define STOP(error) stop(error)
    51 #else
    52 #define BLOCK_COMMENT(str) block_comment(str)
    53 #define STOP(error) block_comment(error); stop(error)
    54 #endif
    56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    60 #ifdef ASSERT
    61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
    62 #endif
    64 static Assembler::Condition reverse[] = {
    65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
    66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
    67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
    68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
    69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
    70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
    71     Assembler::above          /* belowEqual    = 0x6 */ ,
    72     Assembler::belowEqual     /* above         = 0x7 */ ,
    73     Assembler::positive       /* negative      = 0x8 */ ,
    74     Assembler::negative       /* positive      = 0x9 */ ,
    75     Assembler::noParity       /* parity        = 0xa */ ,
    76     Assembler::parity         /* noParity      = 0xb */ ,
    77     Assembler::greaterEqual   /* less          = 0xc */ ,
    78     Assembler::less           /* greaterEqual  = 0xd */ ,
    79     Assembler::greater        /* lessEqual     = 0xe */ ,
    80     Assembler::lessEqual      /* greater       = 0xf, */
    82 };
    85 // Implementation of MacroAssembler
    87 // First all the versions that have distinct versions depending on 32/64 bit
    88 // Unless the difference is trivial (1 line or so).
    90 #ifndef _LP64
    92 // 32bit versions
    94 Address MacroAssembler::as_Address(AddressLiteral adr) {
    95   return Address(adr.target(), adr.rspec());
    96 }
    98 Address MacroAssembler::as_Address(ArrayAddress adr) {
    99   return Address::make_array(adr);
   100 }
   102 void MacroAssembler::call_VM_leaf_base(address entry_point,
   103                                        int number_of_arguments) {
   104   call(RuntimeAddress(entry_point));
   105   increment(rsp, number_of_arguments * wordSize);
   106 }
   108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
   109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   110 }
   112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
   113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   114 }
   116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
   117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   118 }
   120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
   121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
   122 }
   124 void MacroAssembler::extend_sign(Register hi, Register lo) {
   125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
   126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
   127     cdql();
   128   } else {
   129     movl(hi, lo);
   130     sarl(hi, 31);
   131   }
   132 }
   134 void MacroAssembler::jC2(Register tmp, Label& L) {
   135   // set parity bit if FPU flag C2 is set (via rax)
   136   save_rax(tmp);
   137   fwait(); fnstsw_ax();
   138   sahf();
   139   restore_rax(tmp);
   140   // branch
   141   jcc(Assembler::parity, L);
   142 }
   144 void MacroAssembler::jnC2(Register tmp, Label& L) {
   145   // set parity bit if FPU flag C2 is set (via rax)
   146   save_rax(tmp);
   147   fwait(); fnstsw_ax();
   148   sahf();
   149   restore_rax(tmp);
   150   // branch
   151   jcc(Assembler::noParity, L);
   152 }
   154 // 32bit can do a case table jump in one instruction but we no longer allow the base
   155 // to be installed in the Address class
   156 void MacroAssembler::jump(ArrayAddress entry) {
   157   jmp(as_Address(entry));
   158 }
   160 // Note: y_lo will be destroyed
   161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   162   // Long compare for Java (semantics as described in JVM spec.)
   163   Label high, low, done;
   165   cmpl(x_hi, y_hi);
   166   jcc(Assembler::less, low);
   167   jcc(Assembler::greater, high);
   168   // x_hi is the return register
   169   xorl(x_hi, x_hi);
   170   cmpl(x_lo, y_lo);
   171   jcc(Assembler::below, low);
   172   jcc(Assembler::equal, done);
   174   bind(high);
   175   xorl(x_hi, x_hi);
   176   increment(x_hi);
   177   jmp(done);
   179   bind(low);
   180   xorl(x_hi, x_hi);
   181   decrementl(x_hi);
   183   bind(done);
   184 }
   186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
   188 }
   190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   191   // leal(dst, as_Address(adr));
   192   // see note in movl as to why we must use a move
   193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
   194 }
   196 void MacroAssembler::leave() {
   197   mov(rsp, rbp);
   198   pop(rbp);
   199 }
   201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
   202   // Multiplication of two Java long values stored on the stack
   203   // as illustrated below. Result is in rdx:rax.
   204   //
   205   // rsp ---> [  ??  ] \               \
   206   //            ....    | y_rsp_offset  |
   207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
   208   //          [ y_hi ]                  | (in bytes)
   209   //            ....                    |
   210   //          [ x_lo ]                 /
   211   //          [ x_hi ]
   212   //            ....
   213   //
   214   // Basic idea: lo(result) = lo(x_lo * y_lo)
   215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
   216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
   217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
   218   Label quick;
   219   // load x_hi, y_hi and check if quick
   220   // multiplication is possible
   221   movl(rbx, x_hi);
   222   movl(rcx, y_hi);
   223   movl(rax, rbx);
   224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
   225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
   226   // do full multiplication
   227   // 1st step
   228   mull(y_lo);                                    // x_hi * y_lo
   229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
   230   // 2nd step
   231   movl(rax, x_lo);
   232   mull(rcx);                                     // x_lo * y_hi
   233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
   234   // 3rd step
   235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
   236   movl(rax, x_lo);
   237   mull(y_lo);                                    // x_lo * y_lo
   238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
   239 }
   241 void MacroAssembler::lneg(Register hi, Register lo) {
   242   negl(lo);
   243   adcl(hi, 0);
   244   negl(hi);
   245 }
   247 void MacroAssembler::lshl(Register hi, Register lo) {
   248   // Java shift left long support (semantics as described in JVM spec., p.305)
   249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
   250   // shift value is in rcx !
   251   assert(hi != rcx, "must not use rcx");
   252   assert(lo != rcx, "must not use rcx");
   253   const Register s = rcx;                        // shift count
   254   const int      n = BitsPerWord;
   255   Label L;
   256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   257   cmpl(s, n);                                    // if (s < n)
   258   jcc(Assembler::less, L);                       // else (s >= n)
   259   movl(hi, lo);                                  // x := x << n
   260   xorl(lo, lo);
   261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   262   bind(L);                                       // s (mod n) < n
   263   shldl(hi, lo);                                 // x := x << s
   264   shll(lo);
   265 }
   268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
   269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
   270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
   271   assert(hi != rcx, "must not use rcx");
   272   assert(lo != rcx, "must not use rcx");
   273   const Register s = rcx;                        // shift count
   274   const int      n = BitsPerWord;
   275   Label L;
   276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
   277   cmpl(s, n);                                    // if (s < n)
   278   jcc(Assembler::less, L);                       // else (s >= n)
   279   movl(lo, hi);                                  // x := x >> n
   280   if (sign_extension) sarl(hi, 31);
   281   else                xorl(hi, hi);
   282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
   283   bind(L);                                       // s (mod n) < n
   284   shrdl(lo, hi);                                 // x := x >> s
   285   if (sign_extension) sarl(hi);
   286   else                shrl(hi);
   287 }
   289 void MacroAssembler::movoop(Register dst, jobject obj) {
   290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   291 }
   293 void MacroAssembler::movoop(Address dst, jobject obj) {
   294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
   295 }
   297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   299 }
   301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
   303 }
   305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
   306   // scratch register is not used,
   307   // it is defined to match parameters of 64-bit version of this method.
   308   if (src.is_lval()) {
   309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
   310   } else {
   311     movl(dst, as_Address(src));
   312   }
   313 }
   315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   316   movl(as_Address(dst), src);
   317 }
   319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   320   movl(dst, as_Address(src));
   321 }
   323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   324 void MacroAssembler::movptr(Address dst, intptr_t src) {
   325   movl(dst, src);
   326 }
   329 void MacroAssembler::pop_callee_saved_registers() {
   330   pop(rcx);
   331   pop(rdx);
   332   pop(rdi);
   333   pop(rsi);
   334 }
   336 void MacroAssembler::pop_fTOS() {
   337   fld_d(Address(rsp, 0));
   338   addl(rsp, 2 * wordSize);
   339 }
   341 void MacroAssembler::push_callee_saved_registers() {
   342   push(rsi);
   343   push(rdi);
   344   push(rdx);
   345   push(rcx);
   346 }
   348 void MacroAssembler::push_fTOS() {
   349   subl(rsp, 2 * wordSize);
   350   fstp_d(Address(rsp, 0));
   351 }
   354 void MacroAssembler::pushoop(jobject obj) {
   355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
   356 }
   358 void MacroAssembler::pushklass(Metadata* obj) {
   359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
   360 }
   362 void MacroAssembler::pushptr(AddressLiteral src) {
   363   if (src.is_lval()) {
   364     push_literal32((int32_t)src.target(), src.rspec());
   365   } else {
   366     pushl(as_Address(src));
   367   }
   368 }
   370 void MacroAssembler::set_word_if_not_zero(Register dst) {
   371   xorl(dst, dst);
   372   set_byte_if_not_zero(dst);
   373 }
   375 static void pass_arg0(MacroAssembler* masm, Register arg) {
   376   masm->push(arg);
   377 }
   379 static void pass_arg1(MacroAssembler* masm, Register arg) {
   380   masm->push(arg);
   381 }
   383 static void pass_arg2(MacroAssembler* masm, Register arg) {
   384   masm->push(arg);
   385 }
   387 static void pass_arg3(MacroAssembler* masm, Register arg) {
   388   masm->push(arg);
   389 }
   391 #ifndef PRODUCT
   392 extern "C" void findpc(intptr_t x);
   393 #endif
   395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   396   // In order to get locks to work, we need to fake a in_VM state
   397   JavaThread* thread = JavaThread::current();
   398   JavaThreadState saved_state = thread->thread_state();
   399   thread->set_thread_state(_thread_in_vm);
   400   if (ShowMessageBoxOnError) {
   401     JavaThread* thread = JavaThread::current();
   402     JavaThreadState saved_state = thread->thread_state();
   403     thread->set_thread_state(_thread_in_vm);
   404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   405       ttyLocker ttyl;
   406       BytecodeCounter::print();
   407     }
   408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   409     // This is the value of eip which points to where verify_oop will return.
   410     if (os::message_box(msg, "Execution stopped, print registers?")) {
   411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
   412       BREAKPOINT;
   413     }
   414   } else {
   415     ttyLocker ttyl;
   416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   417   }
   418   // Don't assert holding the ttyLock
   419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   421 }
   423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
   424   ttyLocker ttyl;
   425   FlagSetting fs(Debugging, true);
   426   tty->print_cr("eip = 0x%08x", eip);
   427 #ifndef PRODUCT
   428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
   429     tty->cr();
   430     findpc(eip);
   431     tty->cr();
   432   }
   433 #endif
   434 #define PRINT_REG(rax) \
   435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
   436   PRINT_REG(rax);
   437   PRINT_REG(rbx);
   438   PRINT_REG(rcx);
   439   PRINT_REG(rdx);
   440   PRINT_REG(rdi);
   441   PRINT_REG(rsi);
   442   PRINT_REG(rbp);
   443   PRINT_REG(rsp);
   444 #undef PRINT_REG
   445   // Print some words near top of staack.
   446   int* dump_sp = (int*) rsp;
   447   for (int col1 = 0; col1 < 8; col1++) {
   448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   449     os::print_location(tty, *dump_sp++);
   450   }
   451   for (int row = 0; row < 16; row++) {
   452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
   453     for (int col = 0; col < 8; col++) {
   454       tty->print(" 0x%08x", *dump_sp++);
   455     }
   456     tty->cr();
   457   }
   458   // Print some instructions around pc:
   459   Disassembler::decode((address)eip-64, (address)eip);
   460   tty->print_cr("--------");
   461   Disassembler::decode((address)eip, (address)eip+32);
   462 }
   464 void MacroAssembler::stop(const char* msg) {
   465   ExternalAddress message((address)msg);
   466   // push address of message
   467   pushptr(message.addr());
   468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   469   pusha();                                            // push registers
   470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   471   hlt();
   472 }
   474 void MacroAssembler::warn(const char* msg) {
   475   push_CPU_state();
   477   ExternalAddress message((address) msg);
   478   // push address of message
   479   pushptr(message.addr());
   481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
   482   addl(rsp, wordSize);       // discard argument
   483   pop_CPU_state();
   484 }
   486 void MacroAssembler::print_state() {
   487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
   488   pusha();                                            // push registers
   490   push_CPU_state();
   491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
   492   pop_CPU_state();
   494   popa();
   495   addl(rsp, wordSize);
   496 }
   498 #else // _LP64
   500 // 64 bit versions
   502 Address MacroAssembler::as_Address(AddressLiteral adr) {
   503   // amd64 always does this as a pc-rel
   504   // we can be absolute or disp based on the instruction type
   505   // jmp/call are displacements others are absolute
   506   assert(!adr.is_lval(), "must be rval");
   507   assert(reachable(adr), "must be");
   508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
   510 }
   512 Address MacroAssembler::as_Address(ArrayAddress adr) {
   513   AddressLiteral base = adr.base();
   514   lea(rscratch1, base);
   515   Address index = adr.index();
   516   assert(index._disp == 0, "must not have disp"); // maybe it can?
   517   Address array(rscratch1, index._index, index._scale, index._disp);
   518   return array;
   519 }
   521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
   522   Label L, E;
   524 #ifdef _WIN64
   525   // Windows always allocates space for it's register args
   526   assert(num_args <= 4, "only register arguments supported");
   527   subq(rsp,  frame::arg_reg_save_area_bytes);
   528 #endif
   530   // Align stack if necessary
   531   testl(rsp, 15);
   532   jcc(Assembler::zero, L);
   534   subq(rsp, 8);
   535   {
   536     call(RuntimeAddress(entry_point));
   537   }
   538   addq(rsp, 8);
   539   jmp(E);
   541   bind(L);
   542   {
   543     call(RuntimeAddress(entry_point));
   544   }
   546   bind(E);
   548 #ifdef _WIN64
   549   // restore stack pointer
   550   addq(rsp, frame::arg_reg_save_area_bytes);
   551 #endif
   553 }
   555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
   556   assert(!src2.is_lval(), "should use cmpptr");
   558   if (reachable(src2)) {
   559     cmpq(src1, as_Address(src2));
   560   } else {
   561     lea(rscratch1, src2);
   562     Assembler::cmpq(src1, Address(rscratch1, 0));
   563   }
   564 }
   566 int MacroAssembler::corrected_idivq(Register reg) {
   567   // Full implementation of Java ldiv and lrem; checks for special
   568   // case as described in JVM spec., p.243 & p.271.  The function
   569   // returns the (pc) offset of the idivl instruction - may be needed
   570   // for implicit exceptions.
   571   //
   572   //         normal case                           special case
   573   //
   574   // input : rax: dividend                         min_long
   575   //         reg: divisor   (may not be eax/edx)   -1
   576   //
   577   // output: rax: quotient  (= rax idiv reg)       min_long
   578   //         rdx: remainder (= rax irem reg)       0
   579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
   580   static const int64_t min_long = 0x8000000000000000;
   581   Label normal_case, special_case;
   583   // check for special case
   584   cmp64(rax, ExternalAddress((address) &min_long));
   585   jcc(Assembler::notEqual, normal_case);
   586   xorl(rdx, rdx); // prepare rdx for possible special case (where
   587                   // remainder = 0)
   588   cmpq(reg, -1);
   589   jcc(Assembler::equal, special_case);
   591   // handle normal case
   592   bind(normal_case);
   593   cdqq();
   594   int idivq_offset = offset();
   595   idivq(reg);
   597   // normal and special case exit
   598   bind(special_case);
   600   return idivq_offset;
   601 }
   603 void MacroAssembler::decrementq(Register reg, int value) {
   604   if (value == min_jint) { subq(reg, value); return; }
   605   if (value <  0) { incrementq(reg, -value); return; }
   606   if (value == 0) {                        ; return; }
   607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
   608   /* else */      { subq(reg, value)       ; return; }
   609 }
   611 void MacroAssembler::decrementq(Address dst, int value) {
   612   if (value == min_jint) { subq(dst, value); return; }
   613   if (value <  0) { incrementq(dst, -value); return; }
   614   if (value == 0) {                        ; return; }
   615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
   616   /* else */      { subq(dst, value)       ; return; }
   617 }
   619 void MacroAssembler::incrementq(AddressLiteral dst) {
   620   if (reachable(dst)) {
   621     incrementq(as_Address(dst));
   622   } else {
   623     lea(rscratch1, dst);
   624     incrementq(Address(rscratch1, 0));
   625   }
   626 }
   628 void MacroAssembler::incrementq(Register reg, int value) {
   629   if (value == min_jint) { addq(reg, value); return; }
   630   if (value <  0) { decrementq(reg, -value); return; }
   631   if (value == 0) {                        ; return; }
   632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
   633   /* else */      { addq(reg, value)       ; return; }
   634 }
   636 void MacroAssembler::incrementq(Address dst, int value) {
   637   if (value == min_jint) { addq(dst, value); return; }
   638   if (value <  0) { decrementq(dst, -value); return; }
   639   if (value == 0) {                        ; return; }
   640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
   641   /* else */      { addq(dst, value)       ; return; }
   642 }
   644 // 32bit can do a case table jump in one instruction but we no longer allow the base
   645 // to be installed in the Address class
   646 void MacroAssembler::jump(ArrayAddress entry) {
   647   lea(rscratch1, entry.base());
   648   Address dispatch = entry.index();
   649   assert(dispatch._base == noreg, "must be");
   650   dispatch._base = rscratch1;
   651   jmp(dispatch);
   652 }
   654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
   655   ShouldNotReachHere(); // 64bit doesn't use two regs
   656   cmpq(x_lo, y_lo);
   657 }
   659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
   660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
   661 }
   663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
   664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
   665   movptr(dst, rscratch1);
   666 }
   668 void MacroAssembler::leave() {
   669   // %%% is this really better? Why not on 32bit too?
   670   emit_int8((unsigned char)0xC9); // LEAVE
   671 }
   673 void MacroAssembler::lneg(Register hi, Register lo) {
   674   ShouldNotReachHere(); // 64bit doesn't use two regs
   675   negq(lo);
   676 }
   678 void MacroAssembler::movoop(Register dst, jobject obj) {
   679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
   680 }
   682 void MacroAssembler::movoop(Address dst, jobject obj) {
   683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
   684   movq(dst, rscratch1);
   685 }
   687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
   689 }
   691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
   693   movq(dst, rscratch1);
   694 }
   696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
   697   if (src.is_lval()) {
   698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
   699   } else {
   700     if (reachable(src)) {
   701       movq(dst, as_Address(src));
   702     } else {
   703       lea(scratch, src);
   704       movq(dst, Address(scratch, 0));
   705     }
   706   }
   707 }
   709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
   710   movq(as_Address(dst), src);
   711 }
   713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
   714   movq(dst, as_Address(src));
   715 }
   717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
   718 void MacroAssembler::movptr(Address dst, intptr_t src) {
   719   mov64(rscratch1, src);
   720   movq(dst, rscratch1);
   721 }
   723 // These are mostly for initializing NULL
   724 void MacroAssembler::movptr(Address dst, int32_t src) {
   725   movslq(dst, src);
   726 }
   728 void MacroAssembler::movptr(Register dst, int32_t src) {
   729   mov64(dst, (intptr_t)src);
   730 }
   732 void MacroAssembler::pushoop(jobject obj) {
   733   movoop(rscratch1, obj);
   734   push(rscratch1);
   735 }
   737 void MacroAssembler::pushklass(Metadata* obj) {
   738   mov_metadata(rscratch1, obj);
   739   push(rscratch1);
   740 }
   742 void MacroAssembler::pushptr(AddressLiteral src) {
   743   lea(rscratch1, src);
   744   if (src.is_lval()) {
   745     push(rscratch1);
   746   } else {
   747     pushq(Address(rscratch1, 0));
   748   }
   749 }
   751 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
   752   // we must set sp to zero to clear frame
   753   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
   754   // must clear fp, so that compiled frames are not confused; it is
   755   // possible that we need it only for debugging
   756   if (clear_fp) {
   757     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
   758   }
   760   // Always clear the pc because it could have been set by make_walkable()
   761   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
   762 }
   764 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
   765                                          Register last_java_fp,
   766                                          address  last_java_pc) {
   767   // determine last_java_sp register
   768   if (!last_java_sp->is_valid()) {
   769     last_java_sp = rsp;
   770   }
   772   // last_java_fp is optional
   773   if (last_java_fp->is_valid()) {
   774     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
   775            last_java_fp);
   776   }
   778   // last_java_pc is optional
   779   if (last_java_pc != NULL) {
   780     Address java_pc(r15_thread,
   781                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
   782     lea(rscratch1, InternalAddress(last_java_pc));
   783     movptr(java_pc, rscratch1);
   784   }
   786   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
   787 }
   789 static void pass_arg0(MacroAssembler* masm, Register arg) {
   790   if (c_rarg0 != arg ) {
   791     masm->mov(c_rarg0, arg);
   792   }
   793 }
   795 static void pass_arg1(MacroAssembler* masm, Register arg) {
   796   if (c_rarg1 != arg ) {
   797     masm->mov(c_rarg1, arg);
   798   }
   799 }
   801 static void pass_arg2(MacroAssembler* masm, Register arg) {
   802   if (c_rarg2 != arg ) {
   803     masm->mov(c_rarg2, arg);
   804   }
   805 }
   807 static void pass_arg3(MacroAssembler* masm, Register arg) {
   808   if (c_rarg3 != arg ) {
   809     masm->mov(c_rarg3, arg);
   810   }
   811 }
   813 void MacroAssembler::stop(const char* msg) {
   814   address rip = pc();
   815   pusha(); // get regs on stack
   816   lea(c_rarg0, ExternalAddress((address) msg));
   817   lea(c_rarg1, InternalAddress(rip));
   818   movq(c_rarg2, rsp); // pass pointer to regs array
   819   andq(rsp, -16); // align stack as required by ABI
   820   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
   821   hlt();
   822 }
   824 void MacroAssembler::warn(const char* msg) {
   825   push(rbp);
   826   movq(rbp, rsp);
   827   andq(rsp, -16);     // align stack as required by push_CPU_state and call
   828   push_CPU_state();   // keeps alignment at 16 bytes
   829   lea(c_rarg0, ExternalAddress((address) msg));
   830   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
   831   pop_CPU_state();
   832   mov(rsp, rbp);
   833   pop(rbp);
   834 }
   836 void MacroAssembler::print_state() {
   837   address rip = pc();
   838   pusha();            // get regs on stack
   839   push(rbp);
   840   movq(rbp, rsp);
   841   andq(rsp, -16);     // align stack as required by push_CPU_state and call
   842   push_CPU_state();   // keeps alignment at 16 bytes
   844   lea(c_rarg0, InternalAddress(rip));
   845   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
   846   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
   848   pop_CPU_state();
   849   mov(rsp, rbp);
   850   pop(rbp);
   851   popa();
   852 }
   854 #ifndef PRODUCT
   855 extern "C" void findpc(intptr_t x);
   856 #endif
   858 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
   859   // In order to get locks to work, we need to fake a in_VM state
   860   if (ShowMessageBoxOnError) {
   861     JavaThread* thread = JavaThread::current();
   862     JavaThreadState saved_state = thread->thread_state();
   863     thread->set_thread_state(_thread_in_vm);
   864 #ifndef PRODUCT
   865     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   866       ttyLocker ttyl;
   867       BytecodeCounter::print();
   868     }
   869 #endif
   870     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   871     // XXX correct this offset for amd64
   872     // This is the value of eip which points to where verify_oop will return.
   873     if (os::message_box(msg, "Execution stopped, print registers?")) {
   874       print_state64(pc, regs);
   875       BREAKPOINT;
   876       assert(false, "start up GDB");
   877     }
   878     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   879   } else {
   880     ttyLocker ttyl;
   881     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
   882                     msg);
   883     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
   884   }
   885 }
   887 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
   888   ttyLocker ttyl;
   889   FlagSetting fs(Debugging, true);
   890   tty->print_cr("rip = 0x%016lx", pc);
   891 #ifndef PRODUCT
   892   tty->cr();
   893   findpc(pc);
   894   tty->cr();
   895 #endif
   896 #define PRINT_REG(rax, value) \
   897   { tty->print("%s = ", #rax); os::print_location(tty, value); }
   898   PRINT_REG(rax, regs[15]);
   899   PRINT_REG(rbx, regs[12]);
   900   PRINT_REG(rcx, regs[14]);
   901   PRINT_REG(rdx, regs[13]);
   902   PRINT_REG(rdi, regs[8]);
   903   PRINT_REG(rsi, regs[9]);
   904   PRINT_REG(rbp, regs[10]);
   905   PRINT_REG(rsp, regs[11]);
   906   PRINT_REG(r8 , regs[7]);
   907   PRINT_REG(r9 , regs[6]);
   908   PRINT_REG(r10, regs[5]);
   909   PRINT_REG(r11, regs[4]);
   910   PRINT_REG(r12, regs[3]);
   911   PRINT_REG(r13, regs[2]);
   912   PRINT_REG(r14, regs[1]);
   913   PRINT_REG(r15, regs[0]);
   914 #undef PRINT_REG
   915   // Print some words near top of staack.
   916   int64_t* rsp = (int64_t*) regs[11];
   917   int64_t* dump_sp = rsp;
   918   for (int col1 = 0; col1 < 8; col1++) {
   919     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
   920     os::print_location(tty, *dump_sp++);
   921   }
   922   for (int row = 0; row < 25; row++) {
   923     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
   924     for (int col = 0; col < 4; col++) {
   925       tty->print(" 0x%016lx", *dump_sp++);
   926     }
   927     tty->cr();
   928   }
   929   // Print some instructions around pc:
   930   Disassembler::decode((address)pc-64, (address)pc);
   931   tty->print_cr("--------");
   932   Disassembler::decode((address)pc, (address)pc+32);
   933 }
   935 #endif // _LP64
   937 // Now versions that are common to 32/64 bit
   939 void MacroAssembler::addptr(Register dst, int32_t imm32) {
   940   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
   941 }
   943 void MacroAssembler::addptr(Register dst, Register src) {
   944   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
   945 }
   947 void MacroAssembler::addptr(Address dst, Register src) {
   948   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
   949 }
   951 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
   952   if (reachable(src)) {
   953     Assembler::addsd(dst, as_Address(src));
   954   } else {
   955     lea(rscratch1, src);
   956     Assembler::addsd(dst, Address(rscratch1, 0));
   957   }
   958 }
   960 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
   961   if (reachable(src)) {
   962     addss(dst, as_Address(src));
   963   } else {
   964     lea(rscratch1, src);
   965     addss(dst, Address(rscratch1, 0));
   966   }
   967 }
   969 void MacroAssembler::align(int modulus) {
   970   if (offset() % modulus != 0) {
   971     nop(modulus - (offset() % modulus));
   972   }
   973 }
   975 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
   976   // Used in sign-masking with aligned address.
   977   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
   978   if (reachable(src)) {
   979     Assembler::andpd(dst, as_Address(src));
   980   } else {
   981     lea(rscratch1, src);
   982     Assembler::andpd(dst, Address(rscratch1, 0));
   983   }
   984 }
   986 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
   987   // Used in sign-masking with aligned address.
   988   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
   989   if (reachable(src)) {
   990     Assembler::andps(dst, as_Address(src));
   991   } else {
   992     lea(rscratch1, src);
   993     Assembler::andps(dst, Address(rscratch1, 0));
   994   }
   995 }
   997 void MacroAssembler::andptr(Register dst, int32_t imm32) {
   998   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
   999 }
  1001 void MacroAssembler::atomic_incl(Address counter_addr) {
  1002   if (os::is_MP())
  1003     lock();
  1004   incrementl(counter_addr);
  1007 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
  1008   if (reachable(counter_addr)) {
  1009     atomic_incl(as_Address(counter_addr));
  1010   } else {
  1011     lea(scr, counter_addr);
  1012     atomic_incl(Address(scr, 0));
  1016 #ifdef _LP64
  1017 void MacroAssembler::atomic_incq(Address counter_addr) {
  1018   if (os::is_MP())
  1019     lock();
  1020   incrementq(counter_addr);
  1023 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
  1024   if (reachable(counter_addr)) {
  1025     atomic_incq(as_Address(counter_addr));
  1026   } else {
  1027     lea(scr, counter_addr);
  1028     atomic_incq(Address(scr, 0));
  1031 #endif
  1033 // Writes to stack successive pages until offset reached to check for
  1034 // stack overflow + shadow pages.  This clobbers tmp.
  1035 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  1036   movptr(tmp, rsp);
  1037   // Bang stack for total size given plus shadow page size.
  1038   // Bang one page at a time because large size can bang beyond yellow and
  1039   // red zones.
  1040   Label loop;
  1041   bind(loop);
  1042   movl(Address(tmp, (-os::vm_page_size())), size );
  1043   subptr(tmp, os::vm_page_size());
  1044   subl(size, os::vm_page_size());
  1045   jcc(Assembler::greater, loop);
  1047   // Bang down shadow pages too.
  1048   // At this point, (tmp-0) is the last address touched, so don't
  1049   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
  1050   // was post-decremented.)  Skip this address by starting at i=1, and
  1051   // touch a few more pages below.  N.B.  It is important to touch all
  1052   // the way down to and including i=StackShadowPages.
  1053   for (int i = 1; i < StackShadowPages; i++) {
  1054     // this could be any sized move but this is can be a debugging crumb
  1055     // so the bigger the better.
  1056     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  1060 int MacroAssembler::biased_locking_enter(Register lock_reg,
  1061                                          Register obj_reg,
  1062                                          Register swap_reg,
  1063                                          Register tmp_reg,
  1064                                          bool swap_reg_contains_mark,
  1065                                          Label& done,
  1066                                          Label* slow_case,
  1067                                          BiasedLockingCounters* counters) {
  1068   assert(UseBiasedLocking, "why call this otherwise?");
  1069   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  1070   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
  1071   bool need_tmp_reg = false;
  1072   if (tmp_reg == noreg) {
  1073     need_tmp_reg = true;
  1074     tmp_reg = lock_reg;
  1075     assert_different_registers(lock_reg, obj_reg, swap_reg);
  1076   } else {
  1077     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  1079   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  1080   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  1081   Address saved_mark_addr(lock_reg, 0);
  1083   if (PrintBiasedLockingStatistics && counters == NULL) {
  1084     counters = BiasedLocking::counters();
  1086   // Biased locking
  1087   // See whether the lock is currently biased toward our thread and
  1088   // whether the epoch is still valid
  1089   // Note that the runtime guarantees sufficient alignment of JavaThread
  1090   // pointers to allow age to be placed into low bits
  1091   // First check to see whether biasing is even enabled for this object
  1092   Label cas_label;
  1093   int null_check_offset = -1;
  1094   if (!swap_reg_contains_mark) {
  1095     null_check_offset = offset();
  1096     movptr(swap_reg, mark_addr);
  1098   if (need_tmp_reg) {
  1099     push(tmp_reg);
  1101   movptr(tmp_reg, swap_reg);
  1102   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  1103   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
  1104   if (need_tmp_reg) {
  1105     pop(tmp_reg);
  1107   jcc(Assembler::notEqual, cas_label);
  1108   // The bias pattern is present in the object's header. Need to check
  1109   // whether the bias owner and the epoch are both still current.
  1110 #ifndef _LP64
  1111   // Note that because there is no current thread register on x86_32 we
  1112   // need to store off the mark word we read out of the object to
  1113   // avoid reloading it and needing to recheck invariants below. This
  1114   // store is unfortunate but it makes the overall code shorter and
  1115   // simpler.
  1116   movptr(saved_mark_addr, swap_reg);
  1117 #endif
  1118   if (need_tmp_reg) {
  1119     push(tmp_reg);
  1121   if (swap_reg_contains_mark) {
  1122     null_check_offset = offset();
  1124   load_prototype_header(tmp_reg, obj_reg);
  1125 #ifdef _LP64
  1126   orptr(tmp_reg, r15_thread);
  1127   xorptr(tmp_reg, swap_reg);
  1128   Register header_reg = tmp_reg;
  1129 #else
  1130   xorptr(tmp_reg, swap_reg);
  1131   get_thread(swap_reg);
  1132   xorptr(swap_reg, tmp_reg);
  1133   Register header_reg = swap_reg;
  1134 #endif
  1135   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
  1136   if (need_tmp_reg) {
  1137     pop(tmp_reg);
  1139   if (counters != NULL) {
  1140     cond_inc32(Assembler::zero,
  1141                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
  1143   jcc(Assembler::equal, done);
  1145   Label try_revoke_bias;
  1146   Label try_rebias;
  1148   // At this point we know that the header has the bias pattern and
  1149   // that we are not the bias owner in the current epoch. We need to
  1150   // figure out more details about the state of the header in order to
  1151   // know what operations can be legally performed on the object's
  1152   // header.
  1154   // If the low three bits in the xor result aren't clear, that means
  1155   // the prototype header is no longer biased and we have to revoke
  1156   // the bias on this object.
  1157   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
  1158   jccb(Assembler::notZero, try_revoke_bias);
  1160   // Biasing is still enabled for this data type. See whether the
  1161   // epoch of the current bias is still valid, meaning that the epoch
  1162   // bits of the mark word are equal to the epoch bits of the
  1163   // prototype header. (Note that the prototype header's epoch bits
  1164   // only change at a safepoint.) If not, attempt to rebias the object
  1165   // toward the current thread. Note that we must be absolutely sure
  1166   // that the current epoch is invalid in order to do this because
  1167   // otherwise the manipulations it performs on the mark word are
  1168   // illegal.
  1169   testptr(header_reg, markOopDesc::epoch_mask_in_place);
  1170   jccb(Assembler::notZero, try_rebias);
  1172   // The epoch of the current bias is still valid but we know nothing
  1173   // about the owner; it might be set or it might be clear. Try to
  1174   // acquire the bias of the object using an atomic operation. If this
  1175   // fails we will go in to the runtime to revoke the object's bias.
  1176   // Note that we first construct the presumed unbiased header so we
  1177   // don't accidentally blow away another thread's valid bias.
  1178   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
  1179   andptr(swap_reg,
  1180          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  1181   if (need_tmp_reg) {
  1182     push(tmp_reg);
  1184 #ifdef _LP64
  1185   movptr(tmp_reg, swap_reg);
  1186   orptr(tmp_reg, r15_thread);
  1187 #else
  1188   get_thread(tmp_reg);
  1189   orptr(tmp_reg, swap_reg);
  1190 #endif
  1191   if (os::is_MP()) {
  1192     lock();
  1194   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1195   if (need_tmp_reg) {
  1196     pop(tmp_reg);
  1198   // If the biasing toward our thread failed, this means that
  1199   // another thread succeeded in biasing it toward itself and we
  1200   // need to revoke that bias. The revocation will occur in the
  1201   // interpreter runtime in the slow case.
  1202   if (counters != NULL) {
  1203     cond_inc32(Assembler::zero,
  1204                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  1206   if (slow_case != NULL) {
  1207     jcc(Assembler::notZero, *slow_case);
  1209   jmp(done);
  1211   bind(try_rebias);
  1212   // At this point we know the epoch has expired, meaning that the
  1213   // current "bias owner", if any, is actually invalid. Under these
  1214   // circumstances _only_, we are allowed to use the current header's
  1215   // value as the comparison value when doing the cas to acquire the
  1216   // bias in the current epoch. In other words, we allow transfer of
  1217   // the bias from one thread to another directly in this situation.
  1218   //
  1219   // FIXME: due to a lack of registers we currently blow away the age
  1220   // bits in this situation. Should attempt to preserve them.
  1221   if (need_tmp_reg) {
  1222     push(tmp_reg);
  1224   load_prototype_header(tmp_reg, obj_reg);
  1225 #ifdef _LP64
  1226   orptr(tmp_reg, r15_thread);
  1227 #else
  1228   get_thread(swap_reg);
  1229   orptr(tmp_reg, swap_reg);
  1230   movptr(swap_reg, saved_mark_addr);
  1231 #endif
  1232   if (os::is_MP()) {
  1233     lock();
  1235   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1236   if (need_tmp_reg) {
  1237     pop(tmp_reg);
  1239   // If the biasing toward our thread failed, then another thread
  1240   // succeeded in biasing it toward itself and we need to revoke that
  1241   // bias. The revocation will occur in the runtime in the slow case.
  1242   if (counters != NULL) {
  1243     cond_inc32(Assembler::zero,
  1244                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  1246   if (slow_case != NULL) {
  1247     jcc(Assembler::notZero, *slow_case);
  1249   jmp(done);
  1251   bind(try_revoke_bias);
  1252   // The prototype mark in the klass doesn't have the bias bit set any
  1253   // more, indicating that objects of this data type are not supposed
  1254   // to be biased any more. We are going to try to reset the mark of
  1255   // this object to the prototype value and fall through to the
  1256   // CAS-based locking scheme. Note that if our CAS fails, it means
  1257   // that another thread raced us for the privilege of revoking the
  1258   // bias of this particular object, so it's okay to continue in the
  1259   // normal locking code.
  1260   //
  1261   // FIXME: due to a lack of registers we currently blow away the age
  1262   // bits in this situation. Should attempt to preserve them.
  1263   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
  1264   if (need_tmp_reg) {
  1265     push(tmp_reg);
  1267   load_prototype_header(tmp_reg, obj_reg);
  1268   if (os::is_MP()) {
  1269     lock();
  1271   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
  1272   if (need_tmp_reg) {
  1273     pop(tmp_reg);
  1275   // Fall through to the normal CAS-based lock, because no matter what
  1276   // the result of the above CAS, some thread must have succeeded in
  1277   // removing the bias bit from the object's header.
  1278   if (counters != NULL) {
  1279     cond_inc32(Assembler::zero,
  1280                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  1283   bind(cas_label);
  1285   return null_check_offset;
  1288 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  1289   assert(UseBiasedLocking, "why call this otherwise?");
  1291   // Check for biased locking unlock case, which is a no-op
  1292   // Note: we do not have to check the thread ID for two reasons.
  1293   // First, the interpreter checks for IllegalMonitorStateException at
  1294   // a higher level. Second, if the bias was revoked while we held the
  1295   // lock, the object could not be rebiased toward another thread, so
  1296   // the bias bit would be clear.
  1297   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  1298   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  1299   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  1300   jcc(Assembler::equal, done);
  1303 #ifdef COMPILER2
  1305 #if INCLUDE_RTM_OPT
  1307 // Update rtm_counters based on abort status
  1308 // input: abort_status
  1309 //        rtm_counters (RTMLockingCounters*)
  1310 // flags are killed
  1311 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
  1313   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
  1314   if (PrintPreciseRTMLockingStatistics) {
  1315     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
  1316       Label check_abort;
  1317       testl(abort_status, (1<<i));
  1318       jccb(Assembler::equal, check_abort);
  1319       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
  1320       bind(check_abort);
  1325 // Branch if (random & (count-1) != 0), count is 2^n
  1326 // tmp, scr and flags are killed
  1327 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
  1328   assert(tmp == rax, "");
  1329   assert(scr == rdx, "");
  1330   rdtsc(); // modifies EDX:EAX
  1331   andptr(tmp, count-1);
  1332   jccb(Assembler::notZero, brLabel);
  1335 // Perform abort ratio calculation, set no_rtm bit if high ratio
  1336 // input:  rtm_counters_Reg (RTMLockingCounters* address)
  1337 // tmpReg, rtm_counters_Reg and flags are killed
  1338 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
  1339                                                  Register rtm_counters_Reg,
  1340                                                  RTMLockingCounters* rtm_counters,
  1341                                                  Metadata* method_data) {
  1342   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
  1344   if (RTMLockingCalculationDelay > 0) {
  1345     // Delay calculation
  1346     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
  1347     testptr(tmpReg, tmpReg);
  1348     jccb(Assembler::equal, L_done);
  1350   // Abort ratio calculation only if abort_count > RTMAbortThreshold
  1351   //   Aborted transactions = abort_count * 100
  1352   //   All transactions = total_count *  RTMTotalCountIncrRate
  1353   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
  1355   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
  1356   cmpptr(tmpReg, RTMAbortThreshold);
  1357   jccb(Assembler::below, L_check_always_rtm2);
  1358   imulptr(tmpReg, tmpReg, 100);
  1360   Register scrReg = rtm_counters_Reg;
  1361   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
  1362   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
  1363   imulptr(scrReg, scrReg, RTMAbortRatio);
  1364   cmpptr(tmpReg, scrReg);
  1365   jccb(Assembler::below, L_check_always_rtm1);
  1366   if (method_data != NULL) {
  1367     // set rtm_state to "no rtm" in MDO
  1368     mov_metadata(tmpReg, method_data);
  1369     if (os::is_MP()) {
  1370       lock();
  1372     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
  1374   jmpb(L_done);
  1375   bind(L_check_always_rtm1);
  1376   // Reload RTMLockingCounters* address
  1377   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
  1378   bind(L_check_always_rtm2);
  1379   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
  1380   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
  1381   jccb(Assembler::below, L_done);
  1382   if (method_data != NULL) {
  1383     // set rtm_state to "always rtm" in MDO
  1384     mov_metadata(tmpReg, method_data);
  1385     if (os::is_MP()) {
  1386       lock();
  1388     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
  1390   bind(L_done);
  1393 // Update counters and perform abort ratio calculation
  1394 // input:  abort_status_Reg
  1395 // rtm_counters_Reg, flags are killed
  1396 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
  1397                                    Register rtm_counters_Reg,
  1398                                    RTMLockingCounters* rtm_counters,
  1399                                    Metadata* method_data,
  1400                                    bool profile_rtm) {
  1402   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1403   // update rtm counters based on rax value at abort
  1404   // reads abort_status_Reg, updates flags
  1405   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
  1406   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
  1407   if (profile_rtm) {
  1408     // Save abort status because abort_status_Reg is used by following code.
  1409     if (RTMRetryCount > 0) {
  1410       push(abort_status_Reg);
  1412     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1413     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
  1414     // restore abort status
  1415     if (RTMRetryCount > 0) {
  1416       pop(abort_status_Reg);
  1421 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
  1422 // inputs: retry_count_Reg
  1423 //       : abort_status_Reg
  1424 // output: retry_count_Reg decremented by 1
  1425 // flags are killed
  1426 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
  1427   Label doneRetry;
  1428   assert(abort_status_Reg == rax, "");
  1429   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
  1430   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
  1431   // if reason is in 0x6 and retry count != 0 then retry
  1432   andptr(abort_status_Reg, 0x6);
  1433   jccb(Assembler::zero, doneRetry);
  1434   testl(retry_count_Reg, retry_count_Reg);
  1435   jccb(Assembler::zero, doneRetry);
  1436   pause();
  1437   decrementl(retry_count_Reg);
  1438   jmp(retryLabel);
  1439   bind(doneRetry);
  1442 // Spin and retry if lock is busy,
  1443 // inputs: box_Reg (monitor address)
  1444 //       : retry_count_Reg
  1445 // output: retry_count_Reg decremented by 1
  1446 //       : clear z flag if retry count exceeded
  1447 // tmp_Reg, scr_Reg, flags are killed
  1448 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
  1449                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
  1450   Label SpinLoop, SpinExit, doneRetry;
  1451   // Clean monitor_value bit to get valid pointer
  1452   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  1454   testl(retry_count_Reg, retry_count_Reg);
  1455   jccb(Assembler::zero, doneRetry);
  1456   decrementl(retry_count_Reg);
  1457   movptr(scr_Reg, RTMSpinLoopCount);
  1459   bind(SpinLoop);
  1460   pause();
  1461   decrementl(scr_Reg);
  1462   jccb(Assembler::lessEqual, SpinExit);
  1463   movptr(tmp_Reg, Address(box_Reg, owner_offset));
  1464   testptr(tmp_Reg, tmp_Reg);
  1465   jccb(Assembler::notZero, SpinLoop);
  1467   bind(SpinExit);
  1468   jmp(retryLabel);
  1469   bind(doneRetry);
  1470   incrementl(retry_count_Reg); // clear z flag
  1473 // Use RTM for normal stack locks
  1474 // Input: objReg (object to lock)
  1475 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
  1476                                        Register retry_on_abort_count_Reg,
  1477                                        RTMLockingCounters* stack_rtm_counters,
  1478                                        Metadata* method_data, bool profile_rtm,
  1479                                        Label& DONE_LABEL, Label& IsInflated) {
  1480   assert(UseRTMForStackLocks, "why call this otherwise?");
  1481   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
  1482   assert(tmpReg == rax, "");
  1483   assert(scrReg == rdx, "");
  1484   Label L_rtm_retry, L_decrement_retry, L_on_abort;
  1486   if (RTMRetryCount > 0) {
  1487     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
  1488     bind(L_rtm_retry);
  1490   movptr(tmpReg, Address(objReg, 0));
  1491   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
  1492   jcc(Assembler::notZero, IsInflated);
  1494   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1495     Label L_noincrement;
  1496     if (RTMTotalCountIncrRate > 1) {
  1497       // tmpReg, scrReg and flags are killed
  1498       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
  1500     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
  1501     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
  1502     bind(L_noincrement);
  1504   xbegin(L_on_abort);
  1505   movptr(tmpReg, Address(objReg, 0));       // fetch markword
  1506   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
  1507   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
  1508   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
  1510   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
  1511   if (UseRTMXendForLockBusy) {
  1512     xend();
  1513     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
  1514     jmp(L_decrement_retry);
  1516   else {
  1517     xabort(0);
  1519   bind(L_on_abort);
  1520   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1521     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
  1523   bind(L_decrement_retry);
  1524   if (RTMRetryCount > 0) {
  1525     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
  1526     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  1530 // Use RTM for inflating locks
  1531 // inputs: objReg (object to lock)
  1532 //         boxReg (on-stack box address (displaced header location) - KILLED)
  1533 //         tmpReg (ObjectMonitor address + 2(monitor_value))
  1534 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
  1535                                           Register scrReg, Register retry_on_busy_count_Reg,
  1536                                           Register retry_on_abort_count_Reg,
  1537                                           RTMLockingCounters* rtm_counters,
  1538                                           Metadata* method_data, bool profile_rtm,
  1539                                           Label& DONE_LABEL) {
  1540   assert(UseRTMLocking, "why call this otherwise?");
  1541   assert(tmpReg == rax, "");
  1542   assert(scrReg == rdx, "");
  1543   Label L_rtm_retry, L_decrement_retry, L_on_abort;
  1544   // Clean monitor_value bit to get valid pointer
  1545   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  1547   // Without cast to int32_t a movptr will destroy r10 which is typically obj
  1548   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1549   movptr(boxReg, tmpReg); // Save ObjectMonitor address
  1551   if (RTMRetryCount > 0) {
  1552     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
  1553     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
  1554     bind(L_rtm_retry);
  1556   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1557     Label L_noincrement;
  1558     if (RTMTotalCountIncrRate > 1) {
  1559       // tmpReg, scrReg and flags are killed
  1560       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
  1562     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
  1563     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
  1564     bind(L_noincrement);
  1566   xbegin(L_on_abort);
  1567   movptr(tmpReg, Address(objReg, 0));
  1568   movptr(tmpReg, Address(tmpReg, owner_offset));
  1569   testptr(tmpReg, tmpReg);
  1570   jcc(Assembler::zero, DONE_LABEL);
  1571   if (UseRTMXendForLockBusy) {
  1572     xend();
  1573     jmp(L_decrement_retry);
  1575   else {
  1576     xabort(0);
  1578   bind(L_on_abort);
  1579   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
  1580   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
  1581     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
  1583   if (RTMRetryCount > 0) {
  1584     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
  1585     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
  1588   movptr(tmpReg, Address(boxReg, owner_offset)) ;
  1589   testptr(tmpReg, tmpReg) ;
  1590   jccb(Assembler::notZero, L_decrement_retry) ;
  1592   // Appears unlocked - try to swing _owner from null to non-null.
  1593   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1594 #ifdef _LP64
  1595   Register threadReg = r15_thread;
  1596 #else
  1597   get_thread(scrReg);
  1598   Register threadReg = scrReg;
  1599 #endif
  1600   if (os::is_MP()) {
  1601     lock();
  1603   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
  1605   if (RTMRetryCount > 0) {
  1606     // success done else retry
  1607     jccb(Assembler::equal, DONE_LABEL) ;
  1608     bind(L_decrement_retry);
  1609     // Spin and retry if lock is busy.
  1610     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
  1612   else {
  1613     bind(L_decrement_retry);
  1617 #endif //  INCLUDE_RTM_OPT
  1619 // Fast_Lock and Fast_Unlock used by C2
  1621 // Because the transitions from emitted code to the runtime
  1622 // monitorenter/exit helper stubs are so slow it's critical that
  1623 // we inline both the stack-locking fast-path and the inflated fast path.
  1624 //
  1625 // See also: cmpFastLock and cmpFastUnlock.
  1626 //
  1627 // What follows is a specialized inline transliteration of the code
  1628 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  1629 // another option would be to emit TrySlowEnter and TrySlowExit methods
  1630 // at startup-time.  These methods would accept arguments as
  1631 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  1632 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  1633 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  1634 // In practice, however, the # of lock sites is bounded and is usually small.
  1635 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  1636 // if the processor uses simple bimodal branch predictors keyed by EIP
  1637 // Since the helper routines would be called from multiple synchronization
  1638 // sites.
  1639 //
  1640 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  1641 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  1642 // to those specialized methods.  That'd give us a mostly platform-independent
  1643 // implementation that the JITs could optimize and inline at their pleasure.
  1644 // Done correctly, the only time we'd need to cross to native could would be
  1645 // to park() or unpark() threads.  We'd also need a few more unsafe operators
  1646 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  1647 // (b) explicit barriers or fence operations.
  1648 //
  1649 // TODO:
  1650 //
  1651 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  1652 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  1653 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  1654 //    the lock operators would typically be faster than reifying Self.
  1655 //
  1656 // *  Ideally I'd define the primitives as:
  1657 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  1658 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  1659 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  1660 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  1661 //    Furthermore the register assignments are overconstrained, possibly resulting in
  1662 //    sub-optimal code near the synchronization site.
  1663 //
  1664 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  1665 //    Alternately, use a better sp-proximity test.
  1666 //
  1667 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  1668 //    Either one is sufficient to uniquely identify a thread.
  1669 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  1670 //
  1671 // *  Intrinsify notify() and notifyAll() for the common cases where the
  1672 //    object is locked by the calling thread but the waitlist is empty.
  1673 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  1674 //
  1675 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  1676 //    But beware of excessive branch density on AMD Opterons.
  1677 //
  1678 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  1679 //    or failure of the fast-path.  If the fast-path fails then we pass
  1680 //    control to the slow-path, typically in C.  In Fast_Lock and
  1681 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  1682 //    will emit a conditional branch immediately after the node.
  1683 //    So we have branches to branches and lots of ICC.ZF games.
  1684 //    Instead, it might be better to have C2 pass a "FailureLabel"
  1685 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  1686 //    will drop through the node.  ICC.ZF is undefined at exit.
  1687 //    In the case of failure, the node will branch directly to the
  1688 //    FailureLabel
  1691 // obj: object to lock
  1692 // box: on-stack box address (displaced header location) - KILLED
  1693 // rax,: tmp -- KILLED
  1694 // scr: tmp -- KILLED
  1695 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
  1696                                Register scrReg, Register cx1Reg, Register cx2Reg,
  1697                                BiasedLockingCounters* counters,
  1698                                RTMLockingCounters* rtm_counters,
  1699                                RTMLockingCounters* stack_rtm_counters,
  1700                                Metadata* method_data,
  1701                                bool use_rtm, bool profile_rtm) {
  1702   // Ensure the register assignents are disjoint
  1703   assert(tmpReg == rax, "");
  1705   if (use_rtm) {
  1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
  1707   } else {
  1708     assert(cx1Reg == noreg, "");
  1709     assert(cx2Reg == noreg, "");
  1710     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
  1713   if (counters != NULL) {
  1714     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
  1716   if (EmitSync & 1) {
  1717       // set box->dhw = unused_mark (3)
  1718       // Force all sync thru slow-path: slow_enter() and slow_exit()
  1719       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1720       cmpptr (rsp, (int32_t)NULL_WORD);
  1721   } else
  1722   if (EmitSync & 2) {
  1723       Label DONE_LABEL ;
  1724       if (UseBiasedLocking) {
  1725          // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  1726          biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
  1729       movptr(tmpReg, Address(objReg, 0));           // fetch markword
  1730       orptr (tmpReg, 0x1);
  1731       movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
  1732       if (os::is_MP()) {
  1733         lock();
  1735       cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
  1736       jccb(Assembler::equal, DONE_LABEL);
  1737       // Recursive locking
  1738       subptr(tmpReg, rsp);
  1739       andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
  1740       movptr(Address(boxReg, 0), tmpReg);
  1741       bind(DONE_LABEL);
  1742   } else {
  1743     // Possible cases that we'll encounter in fast_lock
  1744     // ------------------------------------------------
  1745     // * Inflated
  1746     //    -- unlocked
  1747     //    -- Locked
  1748     //       = by self
  1749     //       = by other
  1750     // * biased
  1751     //    -- by Self
  1752     //    -- by other
  1753     // * neutral
  1754     // * stack-locked
  1755     //    -- by self
  1756     //       = sp-proximity test hits
  1757     //       = sp-proximity test generates false-negative
  1758     //    -- by other
  1759     //
  1761     Label IsInflated, DONE_LABEL;
  1763     // it's stack-locked, biased or neutral
  1764     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  1765     // order to reduce the number of conditional branches in the most common cases.
  1766     // Beware -- there's a subtle invariant that fetch of the markword
  1767     // at [FETCH], below, will never observe a biased encoding (*101b).
  1768     // If this invariant is not held we risk exclusion (safety) failure.
  1769     if (UseBiasedLocking && !UseOptoBiasInlining) {
  1770       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
  1773 #if INCLUDE_RTM_OPT
  1774     if (UseRTMForStackLocks && use_rtm) {
  1775       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
  1776                         stack_rtm_counters, method_data, profile_rtm,
  1777                         DONE_LABEL, IsInflated);
  1779 #endif // INCLUDE_RTM_OPT
  1781     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
  1782     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
  1783     jccb(Assembler::notZero, IsInflated);
  1785     // Attempt stack-locking ...
  1786     orptr (tmpReg, markOopDesc::unlocked_value);
  1787     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
  1788     if (os::is_MP()) {
  1789       lock();
  1791     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
  1792     if (counters != NULL) {
  1793       cond_inc32(Assembler::equal,
  1794                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
  1796     jcc(Assembler::equal, DONE_LABEL);           // Success
  1798     // Recursive locking.
  1799     // The object is stack-locked: markword contains stack pointer to BasicLock.
  1800     // Locked by current thread if difference with current SP is less than one page.
  1801     subptr(tmpReg, rsp);
  1802     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
  1803     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
  1804     movptr(Address(boxReg, 0), tmpReg);
  1805     if (counters != NULL) {
  1806       cond_inc32(Assembler::equal,
  1807                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
  1809     jmp(DONE_LABEL);
  1811     bind(IsInflated);
  1812     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)
  1814 #if INCLUDE_RTM_OPT
  1815     // Use the same RTM locking code in 32- and 64-bit VM.
  1816     if (use_rtm) {
  1817       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
  1818                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
  1819     } else {
  1820 #endif // INCLUDE_RTM_OPT
  1822 #ifndef _LP64
  1823     // The object is inflated.
  1824     //
  1825     // TODO-FIXME: eliminate the ugly use of manifest constants:
  1826     //   Use markOopDesc::monitor_value instead of "2".
  1827     //   use markOop::unused_mark() instead of "3".
  1828     // The tmpReg value is an objectMonitor reference ORed with
  1829     // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
  1830     // objectmonitor pointer by masking off the "2" bit or we can just
  1831     // use tmpReg as an objectmonitor pointer but bias the objectmonitor
  1832     // field offsets with "-2" to compensate for and annul the low-order tag bit.
  1833     //
  1834     // I use the latter as it avoids AGI stalls.
  1835     // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
  1836     // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
  1837     //
  1838     #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
  1840     // boxReg refers to the on-stack BasicLock in the current frame.
  1841     // We'd like to write:
  1842     //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
  1843     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
  1844     // additional latency as we have another ST in the store buffer that must drain.
  1846     if (EmitSync & 8192) {
  1847        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
  1848        get_thread (scrReg);
  1849        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
  1850        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
  1851        if (os::is_MP()) {
  1852          lock();
  1854        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1855     } else
  1856     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
  1857        movptr(scrReg, boxReg);
  1858        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
  1860        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  1861        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  1862           // prefetchw [eax + Offset(_owner)-2]
  1863           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1866        if ((EmitSync & 64) == 0) {
  1867          // Optimistic form: consider XORL tmpReg,tmpReg
  1868          movptr(tmpReg, NULL_WORD);
  1869        } else {
  1870          // Can suffer RTS->RTO upgrades on shared or cold $ lines
  1871          // Test-And-CAS instead of CAS
  1872          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
  1873          testptr(tmpReg, tmpReg);                   // Locked ?
  1874          jccb  (Assembler::notZero, DONE_LABEL);
  1877        // Appears unlocked - try to swing _owner from null to non-null.
  1878        // Ideally, I'd manifest "Self" with get_thread and then attempt
  1879        // to CAS the register containing Self into m->Owner.
  1880        // But we don't have enough registers, so instead we can either try to CAS
  1881        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
  1882        // we later store "Self" into m->Owner.  Transiently storing a stack address
  1883        // (rsp or the address of the box) into  m->owner is harmless.
  1884        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1885        if (os::is_MP()) {
  1886          lock();
  1888        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1889        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
  1890        jccb  (Assembler::notZero, DONE_LABEL);
  1891        get_thread (scrReg);                    // beware: clobbers ICCs
  1892        movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg);
  1893        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
  1895        // If the CAS fails we can either retry or pass control to the slow-path.
  1896        // We use the latter tactic.
  1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  1898        // If the CAS was successful ...
  1899        //   Self has acquired the lock
  1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  1901        // Intentional fall-through into DONE_LABEL ...
  1902     } else {
  1903        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
  1904        movptr(boxReg, tmpReg);
  1906        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
  1907        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  1908           // prefetchw [eax + Offset(_owner)-2]
  1909           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1912        if ((EmitSync & 64) == 0) {
  1913          // Optimistic form
  1914          xorptr  (tmpReg, tmpReg);
  1915        } else {
  1916          // Can suffer RTS->RTO upgrades on shared or cold $ lines
  1917          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
  1918          testptr(tmpReg, tmpReg);                   // Locked ?
  1919          jccb  (Assembler::notZero, DONE_LABEL);
  1922        // Appears unlocked - try to swing _owner from null to non-null.
  1923        // Use either "Self" (in scr) or rsp as thread identity in _owner.
  1924        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
  1925        get_thread (scrReg);
  1926        if (os::is_MP()) {
  1927          lock();
  1929        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1931        // If the CAS fails we can either retry or pass control to the slow-path.
  1932        // We use the latter tactic.
  1933        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
  1934        // If the CAS was successful ...
  1935        //   Self has acquired the lock
  1936        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
  1937        // Intentional fall-through into DONE_LABEL ...
  1939 #else // _LP64
  1940     // It's inflated
  1942     // TODO: someday avoid the ST-before-CAS penalty by
  1943     // relocating (deferring) the following ST.
  1944     // We should also think about trying a CAS without having
  1945     // fetched _owner.  If the CAS is successful we may
  1946     // avoid an RTO->RTS upgrade on the $line.
  1948     // Without cast to int32_t a movptr will destroy r10 which is typically obj
  1949     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
  1951     movptr (boxReg, tmpReg);
  1952     movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1953     testptr(tmpReg, tmpReg);
  1954     jccb   (Assembler::notZero, DONE_LABEL);
  1956     // It's inflated and appears unlocked
  1957     if (os::is_MP()) {
  1958       lock();
  1960     cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
  1961     // Intentional fall-through into DONE_LABEL ...
  1962 #endif // _LP64
  1964 #if INCLUDE_RTM_OPT
  1965     } // use_rtm()
  1966 #endif
  1967     // DONE_LABEL is a hot target - we'd really like to place it at the
  1968     // start of cache line by padding with NOPs.
  1969     // See the AMD and Intel software optimization manuals for the
  1970     // most efficient "long" NOP encodings.
  1971     // Unfortunately none of our alignment mechanisms suffice.
  1972     bind(DONE_LABEL);
  1974     // At DONE_LABEL the icc ZFlag is set as follows ...
  1975     // Fast_Unlock uses the same protocol.
  1976     // ZFlag == 1 -> Success
  1977     // ZFlag == 0 -> Failure - force control through the slow-path
  1981 // obj: object to unlock
  1982 // box: box address (displaced header location), killed.  Must be EAX.
  1983 // tmp: killed, cannot be obj nor box.
  1984 //
  1985 // Some commentary on balanced locking:
  1986 //
  1987 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  1988 // Methods that don't have provably balanced locking are forced to run in the
  1989 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  1990 // The interpreter provides two properties:
  1991 // I1:  At return-time the interpreter automatically and quietly unlocks any
  1992 //      objects acquired the current activation (frame).  Recall that the
  1993 //      interpreter maintains an on-stack list of locks currently held by
  1994 //      a frame.
  1995 // I2:  If a method attempts to unlock an object that is not held by the
  1996 //      the frame the interpreter throws IMSX.
  1997 //
  1998 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  1999 // B() doesn't have provably balanced locking so it runs in the interpreter.
  2000 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  2001 // is still locked by A().
  2002 //
  2003 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  2004 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  2005 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  2006 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  2008 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
  2009   assert(boxReg == rax, "");
  2010   assert_different_registers(objReg, boxReg, tmpReg);
  2012   if (EmitSync & 4) {
  2013     // Disable - inhibit all inlining.  Force control through the slow-path
  2014     cmpptr (rsp, 0);
  2015   } else
  2016   if (EmitSync & 8) {
  2017     Label DONE_LABEL;
  2018     if (UseBiasedLocking) {
  2019        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2021     // Classic stack-locking code ...
  2022     // Check whether the displaced header is 0
  2023     //(=> recursive unlock)
  2024     movptr(tmpReg, Address(boxReg, 0));
  2025     testptr(tmpReg, tmpReg);
  2026     jccb(Assembler::zero, DONE_LABEL);
  2027     // If not recursive lock, reset the header to displaced header
  2028     if (os::is_MP()) {
  2029       lock();
  2031     cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
  2032     bind(DONE_LABEL);
  2033   } else {
  2034     Label DONE_LABEL, Stacked, CheckSucc;
  2036     // Critically, the biased locking test must have precedence over
  2037     // and appear before the (box->dhw == 0) recursive stack-lock test.
  2038     if (UseBiasedLocking && !UseOptoBiasInlining) {
  2039        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  2042 #if INCLUDE_RTM_OPT
  2043     if (UseRTMForStackLocks && use_rtm) {
  2044       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
  2045       Label L_regular_unlock;
  2046       movptr(tmpReg, Address(objReg, 0));           // fetch markword
  2047       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
  2048       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
  2049       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
  2050       xend();                                       // otherwise end...
  2051       jmp(DONE_LABEL);                              // ... and we're done
  2052       bind(L_regular_unlock);
  2054 #endif
  2056     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
  2057     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
  2058     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
  2059     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
  2060     jccb  (Assembler::zero, Stacked);
  2062     // It's inflated.
  2063 #if INCLUDE_RTM_OPT
  2064     if (use_rtm) {
  2065       Label L_regular_inflated_unlock;
  2066       // Clean monitor_value bit to get valid pointer
  2067       int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
  2068       movptr(boxReg, Address(tmpReg, owner_offset));
  2069       testptr(boxReg, boxReg);
  2070       jccb(Assembler::notZero, L_regular_inflated_unlock);
  2071       xend();
  2072       jmpb(DONE_LABEL);
  2073       bind(L_regular_inflated_unlock);
  2075 #endif
  2077     // Despite our balanced locking property we still check that m->_owner == Self
  2078     // as java routines or native JNI code called by this thread might
  2079     // have released the lock.
  2080     // Refer to the comments in synchronizer.cpp for how we might encode extra
  2081     // state in _succ so we can avoid fetching EntryList|cxq.
  2082     //
  2083     // I'd like to add more cases in fast_lock() and fast_unlock() --
  2084     // such as recursive enter and exit -- but we have to be wary of
  2085     // I$ bloat, T$ effects and BP$ effects.
  2086     //
  2087     // If there's no contention try a 1-0 exit.  That is, exit without
  2088     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  2089     // we detect and recover from the race that the 1-0 exit admits.
  2090     //
  2091     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  2092     // before it STs null into _owner, releasing the lock.  Updates
  2093     // to data protected by the critical section must be visible before
  2094     // we drop the lock (and thus before any other thread could acquire
  2095     // the lock and observe the fields protected by the lock).
  2096     // IA32's memory-model is SPO, so STs are ordered with respect to
  2097     // each other and there's no need for an explicit barrier (fence).
  2098     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  2099 #ifndef _LP64
  2100     get_thread (boxReg);
  2101     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
  2102       // prefetchw [ebx + Offset(_owner)-2]
  2103       prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2106     // Note that we could employ various encoding schemes to reduce
  2107     // the number of loads below (currently 4) to just 2 or 3.
  2108     // Refer to the comments in synchronizer.cpp.
  2109     // In practice the chain of fetches doesn't seem to impact performance, however.
  2110     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
  2111        // Attempt to reduce branch density - AMD's branch predictor.
  2112        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2113        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2114        orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2115        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2116        jccb  (Assembler::notZero, DONE_LABEL);
  2117        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2118        jmpb  (DONE_LABEL);
  2119     } else {
  2120        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2121        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2122        jccb  (Assembler::notZero, DONE_LABEL);
  2123        movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2124        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2125        jccb  (Assembler::notZero, CheckSucc);
  2126        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2127        jmpb  (DONE_LABEL);
  2130     // The Following code fragment (EmitSync & 65536) improves the performance of
  2131     // contended applications and contended synchronization microbenchmarks.
  2132     // Unfortunately the emission of the code - even though not executed - causes regressions
  2133     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
  2134     // with an equal number of never-executed NOPs results in the same regression.
  2135     // We leave it off by default.
  2137     if ((EmitSync & 65536) != 0) {
  2138        Label LSuccess, LGoSlowPath ;
  2140        bind  (CheckSucc);
  2142        // Optional pre-test ... it's safe to elide this
  2143        if ((EmitSync & 16) == 0) {
  2144           cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2145           jccb  (Assembler::zero, LGoSlowPath);
  2148        // We have a classic Dekker-style idiom:
  2149        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
  2150        // There are a number of ways to implement the barrier:
  2151        // (1) lock:andl &m->_owner, 0
  2152        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
  2153        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
  2154        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
  2155        // (2) If supported, an explicit MFENCE is appealing.
  2156        //     In older IA32 processors MFENCE is slower than lock:add or xchg
  2157        //     particularly if the write-buffer is full as might be the case if
  2158        //     if stores closely precede the fence or fence-equivalent instruction.
  2159        //     In more modern implementations MFENCE appears faster, however.
  2160        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
  2161        //     The $lines underlying the top-of-stack should be in M-state.
  2162        //     The locked add instruction is serializing, of course.
  2163        // (4) Use xchg, which is serializing
  2164        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
  2165        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
  2166        //     The integer condition codes will tell us if succ was 0.
  2167        //     Since _succ and _owner should reside in the same $line and
  2168        //     we just stored into _owner, it's likely that the $line
  2169        //     remains in M-state for the lock:orl.
  2170        //
  2171        // We currently use (3), although it's likely that switching to (2)
  2172        // is correct for the future.
  2174        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
  2175        if (os::is_MP()) {
  2176           if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
  2177             mfence();
  2178           } else {
  2179             lock (); addptr(Address(rsp, 0), 0);
  2182        // Ratify _succ remains non-null
  2183        cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0);
  2184        jccb  (Assembler::notZero, LSuccess);
  2186        xorptr(boxReg, boxReg);                  // box is really EAX
  2187        if (os::is_MP()) { lock(); }
  2188        cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2189        jccb  (Assembler::notEqual, LSuccess);
  2190        // Since we're low on registers we installed rsp as a placeholding in _owner.
  2191        // Now install Self over rsp.  This is safe as we're transitioning from
  2192        // non-null to non=null
  2193        get_thread (boxReg);
  2194        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg);
  2195        // Intentional fall-through into LGoSlowPath ...
  2197        bind  (LGoSlowPath);
  2198        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
  2199        jmpb  (DONE_LABEL);
  2201        bind  (LSuccess);
  2202        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
  2203        jmpb  (DONE_LABEL);
  2206     bind (Stacked);
  2207     // It's not inflated and it's not recursively stack-locked and it's not biased.
  2208     // It must be stack-locked.
  2209     // Try to reset the header to displaced header.
  2210     // The "box" value on the stack is stable, so we can reload
  2211     // and be assured we observe the same value as above.
  2212     movptr(tmpReg, Address(boxReg, 0));
  2213     if (os::is_MP()) {
  2214       lock();
  2216     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  2217     // Intention fall-thru into DONE_LABEL
  2219     // DONE_LABEL is a hot target - we'd really like to place it at the
  2220     // start of cache line by padding with NOPs.
  2221     // See the AMD and Intel software optimization manuals for the
  2222     // most efficient "long" NOP encodings.
  2223     // Unfortunately none of our alignment mechanisms suffice.
  2224     if ((EmitSync & 65536) == 0) {
  2225        bind (CheckSucc);
  2227 #else // _LP64
  2228     // It's inflated
  2229     movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2230     xorptr(boxReg, r15_thread);
  2231     orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
  2232     jccb  (Assembler::notZero, DONE_LABEL);
  2233     movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
  2234     orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
  2235     jccb  (Assembler::notZero, CheckSucc);
  2236     movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2237     jmpb  (DONE_LABEL);
  2239     if ((EmitSync & 65536) == 0) {
  2240       Label LSuccess, LGoSlowPath ;
  2241       bind  (CheckSucc);
  2242       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2243       jccb  (Assembler::zero, LGoSlowPath);
  2245       // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
  2246       // the explicit ST;MEMBAR combination, but masm doesn't currently support
  2247       // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
  2248       // are all faster when the write buffer is populated.
  2249       movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2250       if (os::is_MP()) {
  2251          lock (); addl (Address(rsp, 0), 0);
  2253       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
  2254       jccb  (Assembler::notZero, LSuccess);
  2256       movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
  2257       if (os::is_MP()) { lock(); }
  2258       cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  2259       jccb  (Assembler::notEqual, LSuccess);
  2260       // Intentional fall-through into slow-path
  2262       bind  (LGoSlowPath);
  2263       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
  2264       jmpb  (DONE_LABEL);
  2266       bind  (LSuccess);
  2267       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
  2268       jmpb  (DONE_LABEL);
  2271     bind  (Stacked);
  2272     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
  2273     if (os::is_MP()) { lock(); }
  2274     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  2276     if (EmitSync & 65536) {
  2277        bind (CheckSucc);
  2279 #endif
  2280     bind(DONE_LABEL);
  2281     // Avoid branch to branch on AMD processors
  2282     if (EmitSync & 32768) {
  2283        nop();
  2287 #endif // COMPILER2
  2289 void MacroAssembler::c2bool(Register x) {
  2290   // implements x == 0 ? 0 : 1
  2291   // note: must only look at least-significant byte of x
  2292   //       since C-style booleans are stored in one byte
  2293   //       only! (was bug)
  2294   andl(x, 0xFF);
  2295   setb(Assembler::notZero, x);
  2298 // Wouldn't need if AddressLiteral version had new name
  2299 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  2300   Assembler::call(L, rtype);
  2303 void MacroAssembler::call(Register entry) {
  2304   Assembler::call(entry);
  2307 void MacroAssembler::call(AddressLiteral entry) {
  2308   if (reachable(entry)) {
  2309     Assembler::call_literal(entry.target(), entry.rspec());
  2310   } else {
  2311     lea(rscratch1, entry);
  2312     Assembler::call(rscratch1);
  2316 void MacroAssembler::ic_call(address entry) {
  2317   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2318   movptr(rax, (intptr_t)Universe::non_oop_word());
  2319   call(AddressLiteral(entry, rh));
  2322 // Implementation of call_VM versions
  2324 void MacroAssembler::call_VM(Register oop_result,
  2325                              address entry_point,
  2326                              bool check_exceptions) {
  2327   Label C, E;
  2328   call(C, relocInfo::none);
  2329   jmp(E);
  2331   bind(C);
  2332   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  2333   ret(0);
  2335   bind(E);
  2338 void MacroAssembler::call_VM(Register oop_result,
  2339                              address entry_point,
  2340                              Register arg_1,
  2341                              bool check_exceptions) {
  2342   Label C, E;
  2343   call(C, relocInfo::none);
  2344   jmp(E);
  2346   bind(C);
  2347   pass_arg1(this, arg_1);
  2348   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  2349   ret(0);
  2351   bind(E);
  2354 void MacroAssembler::call_VM(Register oop_result,
  2355                              address entry_point,
  2356                              Register arg_1,
  2357                              Register arg_2,
  2358                              bool check_exceptions) {
  2359   Label C, E;
  2360   call(C, relocInfo::none);
  2361   jmp(E);
  2363   bind(C);
  2365   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2367   pass_arg2(this, arg_2);
  2368   pass_arg1(this, arg_1);
  2369   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  2370   ret(0);
  2372   bind(E);
  2375 void MacroAssembler::call_VM(Register oop_result,
  2376                              address entry_point,
  2377                              Register arg_1,
  2378                              Register arg_2,
  2379                              Register arg_3,
  2380                              bool check_exceptions) {
  2381   Label C, E;
  2382   call(C, relocInfo::none);
  2383   jmp(E);
  2385   bind(C);
  2387   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2388   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2389   pass_arg3(this, arg_3);
  2391   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2392   pass_arg2(this, arg_2);
  2394   pass_arg1(this, arg_1);
  2395   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  2396   ret(0);
  2398   bind(E);
  2401 void MacroAssembler::call_VM(Register oop_result,
  2402                              Register last_java_sp,
  2403                              address entry_point,
  2404                              int number_of_arguments,
  2405                              bool check_exceptions) {
  2406   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  2407   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  2410 void MacroAssembler::call_VM(Register oop_result,
  2411                              Register last_java_sp,
  2412                              address entry_point,
  2413                              Register arg_1,
  2414                              bool check_exceptions) {
  2415   pass_arg1(this, arg_1);
  2416   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  2419 void MacroAssembler::call_VM(Register oop_result,
  2420                              Register last_java_sp,
  2421                              address entry_point,
  2422                              Register arg_1,
  2423                              Register arg_2,
  2424                              bool check_exceptions) {
  2426   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2427   pass_arg2(this, arg_2);
  2428   pass_arg1(this, arg_1);
  2429   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  2432 void MacroAssembler::call_VM(Register oop_result,
  2433                              Register last_java_sp,
  2434                              address entry_point,
  2435                              Register arg_1,
  2436                              Register arg_2,
  2437                              Register arg_3,
  2438                              bool check_exceptions) {
  2439   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2440   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2441   pass_arg3(this, arg_3);
  2442   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2443   pass_arg2(this, arg_2);
  2444   pass_arg1(this, arg_1);
  2445   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  2448 void MacroAssembler::super_call_VM(Register oop_result,
  2449                                    Register last_java_sp,
  2450                                    address entry_point,
  2451                                    int number_of_arguments,
  2452                                    bool check_exceptions) {
  2453   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  2454   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  2457 void MacroAssembler::super_call_VM(Register oop_result,
  2458                                    Register last_java_sp,
  2459                                    address entry_point,
  2460                                    Register arg_1,
  2461                                    bool check_exceptions) {
  2462   pass_arg1(this, arg_1);
  2463   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  2466 void MacroAssembler::super_call_VM(Register oop_result,
  2467                                    Register last_java_sp,
  2468                                    address entry_point,
  2469                                    Register arg_1,
  2470                                    Register arg_2,
  2471                                    bool check_exceptions) {
  2473   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2474   pass_arg2(this, arg_2);
  2475   pass_arg1(this, arg_1);
  2476   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  2479 void MacroAssembler::super_call_VM(Register oop_result,
  2480                                    Register last_java_sp,
  2481                                    address entry_point,
  2482                                    Register arg_1,
  2483                                    Register arg_2,
  2484                                    Register arg_3,
  2485                                    bool check_exceptions) {
  2486   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2487   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2488   pass_arg3(this, arg_3);
  2489   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2490   pass_arg2(this, arg_2);
  2491   pass_arg1(this, arg_1);
  2492   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  2495 void MacroAssembler::call_VM_base(Register oop_result,
  2496                                   Register java_thread,
  2497                                   Register last_java_sp,
  2498                                   address  entry_point,
  2499                                   int      number_of_arguments,
  2500                                   bool     check_exceptions) {
  2501   // determine java_thread register
  2502   if (!java_thread->is_valid()) {
  2503 #ifdef _LP64
  2504     java_thread = r15_thread;
  2505 #else
  2506     java_thread = rdi;
  2507     get_thread(java_thread);
  2508 #endif // LP64
  2510   // determine last_java_sp register
  2511   if (!last_java_sp->is_valid()) {
  2512     last_java_sp = rsp;
  2514   // debugging support
  2515   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  2516   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  2517 #ifdef ASSERT
  2518   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
  2519   // r12 is the heapbase.
  2520   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
  2521 #endif // ASSERT
  2523   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  2524   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  2526   // push java thread (becomes first argument of C function)
  2528   NOT_LP64(push(java_thread); number_of_arguments++);
  2529   LP64_ONLY(mov(c_rarg0, r15_thread));
  2531   // set last Java frame before call
  2532   assert(last_java_sp != rbp, "can't use ebp/rbp");
  2534   // Only interpreter should have to set fp
  2535   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  2537   // do the call, remove parameters
  2538   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  2540   // restore the thread (cannot use the pushed argument since arguments
  2541   // may be overwritten by C code generated by an optimizing compiler);
  2542   // however can use the register value directly if it is callee saved.
  2543   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  2544     // rdi & rsi (also r15) are callee saved -> nothing to do
  2545 #ifdef ASSERT
  2546     guarantee(java_thread != rax, "change this code");
  2547     push(rax);
  2548     { Label L;
  2549       get_thread(rax);
  2550       cmpptr(java_thread, rax);
  2551       jcc(Assembler::equal, L);
  2552       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
  2553       bind(L);
  2555     pop(rax);
  2556 #endif
  2557   } else {
  2558     get_thread(java_thread);
  2560   // reset last Java frame
  2561   // Only interpreter should have to clear fp
  2562   reset_last_Java_frame(java_thread, true);
  2564 #ifndef CC_INTERP
  2565    // C++ interp handles this in the interpreter
  2566   check_and_handle_popframe(java_thread);
  2567   check_and_handle_earlyret(java_thread);
  2568 #endif /* CC_INTERP */
  2570   if (check_exceptions) {
  2571     // check for pending exceptions (java_thread is set upon return)
  2572     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  2573 #ifndef _LP64
  2574     jump_cc(Assembler::notEqual,
  2575             RuntimeAddress(StubRoutines::forward_exception_entry()));
  2576 #else
  2577     // This used to conditionally jump to forward_exception however it is
  2578     // possible if we relocate that the branch will not reach. So we must jump
  2579     // around so we can always reach
  2581     Label ok;
  2582     jcc(Assembler::equal, ok);
  2583     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2584     bind(ok);
  2585 #endif // LP64
  2588   // get oop result if there is one and reset the value in the thread
  2589   if (oop_result->is_valid()) {
  2590     get_vm_result(oop_result, java_thread);
  2594 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  2596   // Calculate the value for last_Java_sp
  2597   // somewhat subtle. call_VM does an intermediate call
  2598   // which places a return address on the stack just under the
  2599   // stack pointer as the user finsihed with it. This allows
  2600   // use to retrieve last_Java_pc from last_Java_sp[-1].
  2601   // On 32bit we then have to push additional args on the stack to accomplish
  2602   // the actual requested call. On 64bit call_VM only can use register args
  2603   // so the only extra space is the return address that call_VM created.
  2604   // This hopefully explains the calculations here.
  2606 #ifdef _LP64
  2607   // We've pushed one address, correct last_Java_sp
  2608   lea(rax, Address(rsp, wordSize));
  2609 #else
  2610   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  2611 #endif // LP64
  2613   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  2617 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  2618   call_VM_leaf_base(entry_point, number_of_arguments);
  2621 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  2622   pass_arg0(this, arg_0);
  2623   call_VM_leaf(entry_point, 1);
  2626 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  2628   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2629   pass_arg1(this, arg_1);
  2630   pass_arg0(this, arg_0);
  2631   call_VM_leaf(entry_point, 2);
  2634 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  2635   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2636   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2637   pass_arg2(this, arg_2);
  2638   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2639   pass_arg1(this, arg_1);
  2640   pass_arg0(this, arg_0);
  2641   call_VM_leaf(entry_point, 3);
  2644 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
  2645   pass_arg0(this, arg_0);
  2646   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  2649 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  2651   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2652   pass_arg1(this, arg_1);
  2653   pass_arg0(this, arg_0);
  2654   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  2657 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  2658   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2659   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2660   pass_arg2(this, arg_2);
  2661   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2662   pass_arg1(this, arg_1);
  2663   pass_arg0(this, arg_0);
  2664   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  2667 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
  2668   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
  2669   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  2670   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  2671   pass_arg3(this, arg_3);
  2672   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  2673   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  2674   pass_arg2(this, arg_2);
  2675   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  2676   pass_arg1(this, arg_1);
  2677   pass_arg0(this, arg_0);
  2678   MacroAssembler::call_VM_leaf_base(entry_point, 4);
  2681 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  2682   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  2683   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  2684   verify_oop(oop_result, "broken oop in call_VM_base");
  2687 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  2688   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  2689   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
  2692 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  2695 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  2698 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  2699   if (reachable(src1)) {
  2700     cmpl(as_Address(src1), imm);
  2701   } else {
  2702     lea(rscratch1, src1);
  2703     cmpl(Address(rscratch1, 0), imm);
  2707 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  2708   assert(!src2.is_lval(), "use cmpptr");
  2709   if (reachable(src2)) {
  2710     cmpl(src1, as_Address(src2));
  2711   } else {
  2712     lea(rscratch1, src2);
  2713     cmpl(src1, Address(rscratch1, 0));
  2717 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  2718   Assembler::cmpl(src1, imm);
  2721 void MacroAssembler::cmp32(Register src1, Address src2) {
  2722   Assembler::cmpl(src1, src2);
  2725 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  2726   ucomisd(opr1, opr2);
  2728   Label L;
  2729   if (unordered_is_less) {
  2730     movl(dst, -1);
  2731     jcc(Assembler::parity, L);
  2732     jcc(Assembler::below , L);
  2733     movl(dst, 0);
  2734     jcc(Assembler::equal , L);
  2735     increment(dst);
  2736   } else { // unordered is greater
  2737     movl(dst, 1);
  2738     jcc(Assembler::parity, L);
  2739     jcc(Assembler::above , L);
  2740     movl(dst, 0);
  2741     jcc(Assembler::equal , L);
  2742     decrementl(dst);
  2744   bind(L);
  2747 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  2748   ucomiss(opr1, opr2);
  2750   Label L;
  2751   if (unordered_is_less) {
  2752     movl(dst, -1);
  2753     jcc(Assembler::parity, L);
  2754     jcc(Assembler::below , L);
  2755     movl(dst, 0);
  2756     jcc(Assembler::equal , L);
  2757     increment(dst);
  2758   } else { // unordered is greater
  2759     movl(dst, 1);
  2760     jcc(Assembler::parity, L);
  2761     jcc(Assembler::above , L);
  2762     movl(dst, 0);
  2763     jcc(Assembler::equal , L);
  2764     decrementl(dst);
  2766   bind(L);
  2770 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  2771   if (reachable(src1)) {
  2772     cmpb(as_Address(src1), imm);
  2773   } else {
  2774     lea(rscratch1, src1);
  2775     cmpb(Address(rscratch1, 0), imm);
  2779 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  2780 #ifdef _LP64
  2781   if (src2.is_lval()) {
  2782     movptr(rscratch1, src2);
  2783     Assembler::cmpq(src1, rscratch1);
  2784   } else if (reachable(src2)) {
  2785     cmpq(src1, as_Address(src2));
  2786   } else {
  2787     lea(rscratch1, src2);
  2788     Assembler::cmpq(src1, Address(rscratch1, 0));
  2790 #else
  2791   if (src2.is_lval()) {
  2792     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  2793   } else {
  2794     cmpl(src1, as_Address(src2));
  2796 #endif // _LP64
  2799 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  2800   assert(src2.is_lval(), "not a mem-mem compare");
  2801 #ifdef _LP64
  2802   // moves src2's literal address
  2803   movptr(rscratch1, src2);
  2804   Assembler::cmpq(src1, rscratch1);
  2805 #else
  2806   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  2807 #endif // _LP64
  2810 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  2811   if (reachable(adr)) {
  2812     if (os::is_MP())
  2813       lock();
  2814     cmpxchgptr(reg, as_Address(adr));
  2815   } else {
  2816     lea(rscratch1, adr);
  2817     if (os::is_MP())
  2818       lock();
  2819     cmpxchgptr(reg, Address(rscratch1, 0));
  2823 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  2824   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  2827 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  2828   if (reachable(src)) {
  2829     Assembler::comisd(dst, as_Address(src));
  2830   } else {
  2831     lea(rscratch1, src);
  2832     Assembler::comisd(dst, Address(rscratch1, 0));
  2836 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  2837   if (reachable(src)) {
  2838     Assembler::comiss(dst, as_Address(src));
  2839   } else {
  2840     lea(rscratch1, src);
  2841     Assembler::comiss(dst, Address(rscratch1, 0));
  2846 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  2847   Condition negated_cond = negate_condition(cond);
  2848   Label L;
  2849   jcc(negated_cond, L);
  2850   pushf(); // Preserve flags
  2851   atomic_incl(counter_addr);
  2852   popf();
  2853   bind(L);
  2856 int MacroAssembler::corrected_idivl(Register reg) {
  2857   // Full implementation of Java idiv and irem; checks for
  2858   // special case as described in JVM spec., p.243 & p.271.
  2859   // The function returns the (pc) offset of the idivl
  2860   // instruction - may be needed for implicit exceptions.
  2861   //
  2862   //         normal case                           special case
  2863   //
  2864   // input : rax,: dividend                         min_int
  2865   //         reg: divisor   (may not be rax,/rdx)   -1
  2866   //
  2867   // output: rax,: quotient  (= rax, idiv reg)       min_int
  2868   //         rdx: remainder (= rax, irem reg)       0
  2869   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  2870   const int min_int = 0x80000000;
  2871   Label normal_case, special_case;
  2873   // check for special case
  2874   cmpl(rax, min_int);
  2875   jcc(Assembler::notEqual, normal_case);
  2876   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  2877   cmpl(reg, -1);
  2878   jcc(Assembler::equal, special_case);
  2880   // handle normal case
  2881   bind(normal_case);
  2882   cdql();
  2883   int idivl_offset = offset();
  2884   idivl(reg);
  2886   // normal and special case exit
  2887   bind(special_case);
  2889   return idivl_offset;
  2894 void MacroAssembler::decrementl(Register reg, int value) {
  2895   if (value == min_jint) {subl(reg, value) ; return; }
  2896   if (value <  0) { incrementl(reg, -value); return; }
  2897   if (value == 0) {                        ; return; }
  2898   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  2899   /* else */      { subl(reg, value)       ; return; }
  2902 void MacroAssembler::decrementl(Address dst, int value) {
  2903   if (value == min_jint) {subl(dst, value) ; return; }
  2904   if (value <  0) { incrementl(dst, -value); return; }
  2905   if (value == 0) {                        ; return; }
  2906   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  2907   /* else */      { subl(dst, value)       ; return; }
  2910 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  2911   assert (shift_value > 0, "illegal shift value");
  2912   Label _is_positive;
  2913   testl (reg, reg);
  2914   jcc (Assembler::positive, _is_positive);
  2915   int offset = (1 << shift_value) - 1 ;
  2917   if (offset == 1) {
  2918     incrementl(reg);
  2919   } else {
  2920     addl(reg, offset);
  2923   bind (_is_positive);
  2924   sarl(reg, shift_value);
  2927 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
  2928   if (reachable(src)) {
  2929     Assembler::divsd(dst, as_Address(src));
  2930   } else {
  2931     lea(rscratch1, src);
  2932     Assembler::divsd(dst, Address(rscratch1, 0));
  2936 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
  2937   if (reachable(src)) {
  2938     Assembler::divss(dst, as_Address(src));
  2939   } else {
  2940     lea(rscratch1, src);
  2941     Assembler::divss(dst, Address(rscratch1, 0));
  2945 // !defined(COMPILER2) is because of stupid core builds
  2946 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  2947 void MacroAssembler::empty_FPU_stack() {
  2948   if (VM_Version::supports_mmx()) {
  2949     emms();
  2950   } else {
  2951     for (int i = 8; i-- > 0; ) ffree(i);
  2954 #endif // !LP64 || C1 || !C2
  2957 // Defines obj, preserves var_size_in_bytes
  2958 void MacroAssembler::eden_allocate(Register obj,
  2959                                    Register var_size_in_bytes,
  2960                                    int con_size_in_bytes,
  2961                                    Register t1,
  2962                                    Label& slow_case) {
  2963   assert(obj == rax, "obj must be in rax, for cmpxchg");
  2964   assert_different_registers(obj, var_size_in_bytes, t1);
  2965   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  2966     jmp(slow_case);
  2967   } else {
  2968     Register end = t1;
  2969     Label retry;
  2970     bind(retry);
  2971     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  2972     movptr(obj, heap_top);
  2973     if (var_size_in_bytes == noreg) {
  2974       lea(end, Address(obj, con_size_in_bytes));
  2975     } else {
  2976       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  2978     // if end < obj then we wrapped around => object too long => slow case
  2979     cmpptr(end, obj);
  2980     jcc(Assembler::below, slow_case);
  2981     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  2982     jcc(Assembler::above, slow_case);
  2983     // Compare obj with the top addr, and if still equal, store the new top addr in
  2984     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  2985     // it otherwise. Use lock prefix for atomicity on MPs.
  2986     locked_cmpxchgptr(end, heap_top);
  2987     jcc(Assembler::notEqual, retry);
  2991 void MacroAssembler::enter() {
  2992   push(rbp);
  2993   mov(rbp, rsp);
  2996 // A 5 byte nop that is safe for patching (see patch_verified_entry)
  2997 void MacroAssembler::fat_nop() {
  2998   if (UseAddressNop) {
  2999     addr_nop_5();
  3000   } else {
  3001     emit_int8(0x26); // es:
  3002     emit_int8(0x2e); // cs:
  3003     emit_int8(0x64); // fs:
  3004     emit_int8(0x65); // gs:
  3005     emit_int8((unsigned char)0x90);
  3009 void MacroAssembler::fcmp(Register tmp) {
  3010   fcmp(tmp, 1, true, true);
  3013 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  3014   assert(!pop_right || pop_left, "usage error");
  3015   if (VM_Version::supports_cmov()) {
  3016     assert(tmp == noreg, "unneeded temp");
  3017     if (pop_left) {
  3018       fucomip(index);
  3019     } else {
  3020       fucomi(index);
  3022     if (pop_right) {
  3023       fpop();
  3025   } else {
  3026     assert(tmp != noreg, "need temp");
  3027     if (pop_left) {
  3028       if (pop_right) {
  3029         fcompp();
  3030       } else {
  3031         fcomp(index);
  3033     } else {
  3034       fcom(index);
  3036     // convert FPU condition into eflags condition via rax,
  3037     save_rax(tmp);
  3038     fwait(); fnstsw_ax();
  3039     sahf();
  3040     restore_rax(tmp);
  3042   // condition codes set as follows:
  3043   //
  3044   // CF (corresponds to C0) if x < y
  3045   // PF (corresponds to C2) if unordered
  3046   // ZF (corresponds to C3) if x = y
  3049 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  3050   fcmp2int(dst, unordered_is_less, 1, true, true);
  3053 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  3054   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  3055   Label L;
  3056   if (unordered_is_less) {
  3057     movl(dst, -1);
  3058     jcc(Assembler::parity, L);
  3059     jcc(Assembler::below , L);
  3060     movl(dst, 0);
  3061     jcc(Assembler::equal , L);
  3062     increment(dst);
  3063   } else { // unordered is greater
  3064     movl(dst, 1);
  3065     jcc(Assembler::parity, L);
  3066     jcc(Assembler::above , L);
  3067     movl(dst, 0);
  3068     jcc(Assembler::equal , L);
  3069     decrementl(dst);
  3071   bind(L);
  3074 void MacroAssembler::fld_d(AddressLiteral src) {
  3075   fld_d(as_Address(src));
  3078 void MacroAssembler::fld_s(AddressLiteral src) {
  3079   fld_s(as_Address(src));
  3082 void MacroAssembler::fld_x(AddressLiteral src) {
  3083   Assembler::fld_x(as_Address(src));
  3086 void MacroAssembler::fldcw(AddressLiteral src) {
  3087   Assembler::fldcw(as_Address(src));
  3090 void MacroAssembler::pow_exp_core_encoding() {
  3091   // kills rax, rcx, rdx
  3092   subptr(rsp,sizeof(jdouble));
  3093   // computes 2^X. Stack: X ...
  3094   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
  3095   // keep it on the thread's stack to compute 2^int(X) later
  3096   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
  3097   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
  3098   fld_s(0);                 // Stack: X X ...
  3099   frndint();                // Stack: int(X) X ...
  3100   fsuba(1);                 // Stack: int(X) X-int(X) ...
  3101   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
  3102   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
  3103   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
  3104   faddp(1);                 // Stack: 2^(X-int(X))
  3105   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
  3106   // shift int(X)+1023 to exponent position.
  3107   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
  3108   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
  3109   // values so detect them and set result to NaN.
  3110   movl(rax,Address(rsp,0));
  3111   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
  3112   addl(rax, 1023);
  3113   movl(rdx,rax);
  3114   shll(rax,20);
  3115   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
  3116   addl(rdx,1);
  3117   // Check that 1 < int(X)+1023+1 < 2048
  3118   // in 3 steps:
  3119   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
  3120   // 2- (int(X)+1023+1)&-2048 != 0
  3121   // 3- (int(X)+1023+1)&-2048 != 1
  3122   // Do 2- first because addl just updated the flags.
  3123   cmov32(Assembler::equal,rax,rcx);
  3124   cmpl(rdx,1);
  3125   cmov32(Assembler::equal,rax,rcx);
  3126   testl(rdx,rcx);
  3127   cmov32(Assembler::notEqual,rax,rcx);
  3128   movl(Address(rsp,4),rax);
  3129   movl(Address(rsp,0),0);
  3130   fmul_d(Address(rsp,0));   // Stack: 2^X ...
  3131   addptr(rsp,sizeof(jdouble));
  3134 void MacroAssembler::increase_precision() {
  3135   subptr(rsp, BytesPerWord);
  3136   fnstcw(Address(rsp, 0));
  3137   movl(rax, Address(rsp, 0));
  3138   orl(rax, 0x300);
  3139   push(rax);
  3140   fldcw(Address(rsp, 0));
  3141   pop(rax);
  3144 void MacroAssembler::restore_precision() {
  3145   fldcw(Address(rsp, 0));
  3146   addptr(rsp, BytesPerWord);
  3149 void MacroAssembler::fast_pow() {
  3150   // computes X^Y = 2^(Y * log2(X))
  3151   // if fast computation is not possible, result is NaN. Requires
  3152   // fallback from user of this macro.
  3153   // increase precision for intermediate steps of the computation
  3154   BLOCK_COMMENT("fast_pow {");
  3155   increase_precision();
  3156   fyl2x();                 // Stack: (Y*log2(X)) ...
  3157   pow_exp_core_encoding(); // Stack: exp(X) ...
  3158   restore_precision();
  3159   BLOCK_COMMENT("} fast_pow");
  3162 void MacroAssembler::fast_exp() {
  3163   // computes exp(X) = 2^(X * log2(e))
  3164   // if fast computation is not possible, result is NaN. Requires
  3165   // fallback from user of this macro.
  3166   // increase precision for intermediate steps of the computation
  3167   increase_precision();
  3168   fldl2e();                // Stack: log2(e) X ...
  3169   fmulp(1);                // Stack: (X*log2(e)) ...
  3170   pow_exp_core_encoding(); // Stack: exp(X) ...
  3171   restore_precision();
  3174 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
  3175   // kills rax, rcx, rdx
  3176   // pow and exp needs 2 extra registers on the fpu stack.
  3177   Label slow_case, done;
  3178   Register tmp = noreg;
  3179   if (!VM_Version::supports_cmov()) {
  3180     // fcmp needs a temporary so preserve rdx,
  3181     tmp = rdx;
  3183   Register tmp2 = rax;
  3184   Register tmp3 = rcx;
  3186   if (is_exp) {
  3187     // Stack: X
  3188     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
  3189     fast_exp();                 // Stack: exp(X) X
  3190     fcmp(tmp, 0, false, false); // Stack: exp(X) X
  3191     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
  3192     jcc(Assembler::parity, slow_case);
  3193     // get rid of duplicate argument. Stack: exp(X)
  3194     if (num_fpu_regs_in_use > 0) {
  3195       fxch();
  3196       fpop();
  3197     } else {
  3198       ffree(1);
  3200     jmp(done);
  3201   } else {
  3202     // Stack: X Y
  3203     Label x_negative, y_not_2;
  3205     static double two = 2.0;
  3206     ExternalAddress two_addr((address)&two);
  3208     // constant maybe too far on 64 bit
  3209     lea(tmp2, two_addr);
  3210     fld_d(Address(tmp2, 0));    // Stack: 2 X Y
  3211     fcmp(tmp, 2, true, false);  // Stack: X Y
  3212     jcc(Assembler::parity, y_not_2);
  3213     jcc(Assembler::notEqual, y_not_2);
  3215     fxch(); fpop();             // Stack: X
  3216     fmul(0);                    // Stack: X*X
  3218     jmp(done);
  3220     bind(y_not_2);
  3222     fldz();                     // Stack: 0 X Y
  3223     fcmp(tmp, 1, true, false);  // Stack: X Y
  3224     jcc(Assembler::above, x_negative);
  3226     // X >= 0
  3228     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  3229     fld_s(1);                   // Stack: X Y X Y
  3230     fast_pow();                 // Stack: X^Y X Y
  3231     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
  3232     // X^Y not equal to itself: X^Y is NaN go to slow case.
  3233     jcc(Assembler::parity, slow_case);
  3234     // get rid of duplicate arguments. Stack: X^Y
  3235     if (num_fpu_regs_in_use > 0) {
  3236       fxch(); fpop();
  3237       fxch(); fpop();
  3238     } else {
  3239       ffree(2);
  3240       ffree(1);
  3242     jmp(done);
  3244     // X <= 0
  3245     bind(x_negative);
  3247     fld_s(1);                   // Stack: Y X Y
  3248     frndint();                  // Stack: int(Y) X Y
  3249     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
  3250     jcc(Assembler::notEqual, slow_case);
  3252     subptr(rsp, 8);
  3254     // For X^Y, when X < 0, Y has to be an integer and the final
  3255     // result depends on whether it's odd or even. We just checked
  3256     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
  3257     // integer to test its parity. If int(Y) is huge and doesn't fit
  3258     // in the 64 bit integer range, the integer indefinite value will
  3259     // end up in the gp registers. Huge numbers are all even, the
  3260     // integer indefinite number is even so it's fine.
  3262 #ifdef ASSERT
  3263     // Let's check we don't end up with an integer indefinite number
  3264     // when not expected. First test for huge numbers: check whether
  3265     // int(Y)+1 == int(Y) which is true for very large numbers and
  3266     // those are all even. A 64 bit integer is guaranteed to not
  3267     // overflow for numbers where y+1 != y (when precision is set to
  3268     // double precision).
  3269     Label y_not_huge;
  3271     fld1();                     // Stack: 1 int(Y) X Y
  3272     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
  3274 #ifdef _LP64
  3275     // trip to memory to force the precision down from double extended
  3276     // precision
  3277     fstp_d(Address(rsp, 0));
  3278     fld_d(Address(rsp, 0));
  3279 #endif
  3281     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
  3282 #endif
  3284     // move int(Y) as 64 bit integer to thread's stack
  3285     fistp_d(Address(rsp,0));    // Stack: X Y
  3287 #ifdef ASSERT
  3288     jcc(Assembler::notEqual, y_not_huge);
  3290     // Y is huge so we know it's even. It may not fit in a 64 bit
  3291     // integer and we don't want the debug code below to see the
  3292     // integer indefinite value so overwrite int(Y) on the thread's
  3293     // stack with 0.
  3294     movl(Address(rsp, 0), 0);
  3295     movl(Address(rsp, 4), 0);
  3297     bind(y_not_huge);
  3298 #endif
  3300     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
  3301     fld_s(1);                   // Stack: X Y X Y
  3302     fabs();                     // Stack: abs(X) Y X Y
  3303     fast_pow();                 // Stack: abs(X)^Y X Y
  3304     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
  3305     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
  3307     pop(tmp2);
  3308     NOT_LP64(pop(tmp3));
  3309     jcc(Assembler::parity, slow_case);
  3311 #ifdef ASSERT
  3312     // Check that int(Y) is not integer indefinite value (int
  3313     // overflow). Shouldn't happen because for values that would
  3314     // overflow, 1+int(Y)==Y which was tested earlier.
  3315 #ifndef _LP64
  3317       Label integer;
  3318       testl(tmp2, tmp2);
  3319       jcc(Assembler::notZero, integer);
  3320       cmpl(tmp3, 0x80000000);
  3321       jcc(Assembler::notZero, integer);
  3322       STOP("integer indefinite value shouldn't be seen here");
  3323       bind(integer);
  3325 #else
  3327       Label integer;
  3328       mov(tmp3, tmp2); // preserve tmp2 for parity check below
  3329       shlq(tmp3, 1);
  3330       jcc(Assembler::carryClear, integer);
  3331       jcc(Assembler::notZero, integer);
  3332       STOP("integer indefinite value shouldn't be seen here");
  3333       bind(integer);
  3335 #endif
  3336 #endif
  3338     // get rid of duplicate arguments. Stack: X^Y
  3339     if (num_fpu_regs_in_use > 0) {
  3340       fxch(); fpop();
  3341       fxch(); fpop();
  3342     } else {
  3343       ffree(2);
  3344       ffree(1);
  3347     testl(tmp2, 1);
  3348     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
  3349     // X <= 0, Y even: X^Y = -abs(X)^Y
  3351     fchs();                     // Stack: -abs(X)^Y Y
  3352     jmp(done);
  3355   // slow case: runtime call
  3356   bind(slow_case);
  3358   fpop();                       // pop incorrect result or int(Y)
  3360   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
  3361                       is_exp ? 1 : 2, num_fpu_regs_in_use);
  3363   // Come here with result in F-TOS
  3364   bind(done);
  3367 void MacroAssembler::fpop() {
  3368   ffree();
  3369   fincstp();
  3372 void MacroAssembler::fremr(Register tmp) {
  3373   save_rax(tmp);
  3374   { Label L;
  3375     bind(L);
  3376     fprem();
  3377     fwait(); fnstsw_ax();
  3378 #ifdef _LP64
  3379     testl(rax, 0x400);
  3380     jcc(Assembler::notEqual, L);
  3381 #else
  3382     sahf();
  3383     jcc(Assembler::parity, L);
  3384 #endif // _LP64
  3386   restore_rax(tmp);
  3387   // Result is in ST0.
  3388   // Note: fxch & fpop to get rid of ST1
  3389   // (otherwise FPU stack could overflow eventually)
  3390   fxch(1);
  3391   fpop();
  3395 void MacroAssembler::incrementl(AddressLiteral dst) {
  3396   if (reachable(dst)) {
  3397     incrementl(as_Address(dst));
  3398   } else {
  3399     lea(rscratch1, dst);
  3400     incrementl(Address(rscratch1, 0));
  3404 void MacroAssembler::incrementl(ArrayAddress dst) {
  3405   incrementl(as_Address(dst));
  3408 void MacroAssembler::incrementl(Register reg, int value) {
  3409   if (value == min_jint) {addl(reg, value) ; return; }
  3410   if (value <  0) { decrementl(reg, -value); return; }
  3411   if (value == 0) {                        ; return; }
  3412   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  3413   /* else */      { addl(reg, value)       ; return; }
  3416 void MacroAssembler::incrementl(Address dst, int value) {
  3417   if (value == min_jint) {addl(dst, value) ; return; }
  3418   if (value <  0) { decrementl(dst, -value); return; }
  3419   if (value == 0) {                        ; return; }
  3420   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  3421   /* else */      { addl(dst, value)       ; return; }
  3424 void MacroAssembler::jump(AddressLiteral dst) {
  3425   if (reachable(dst)) {
  3426     jmp_literal(dst.target(), dst.rspec());
  3427   } else {
  3428     lea(rscratch1, dst);
  3429     jmp(rscratch1);
  3433 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  3434   if (reachable(dst)) {
  3435     InstructionMark im(this);
  3436     relocate(dst.reloc());
  3437     const int short_size = 2;
  3438     const int long_size = 6;
  3439     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
  3440     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  3441       // 0111 tttn #8-bit disp
  3442       emit_int8(0x70 | cc);
  3443       emit_int8((offs - short_size) & 0xFF);
  3444     } else {
  3445       // 0000 1111 1000 tttn #32-bit disp
  3446       emit_int8(0x0F);
  3447       emit_int8((unsigned char)(0x80 | cc));
  3448       emit_int32(offs - long_size);
  3450   } else {
  3451 #ifdef ASSERT
  3452     warning("reversing conditional branch");
  3453 #endif /* ASSERT */
  3454     Label skip;
  3455     jccb(reverse[cc], skip);
  3456     lea(rscratch1, dst);
  3457     Assembler::jmp(rscratch1);
  3458     bind(skip);
  3462 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  3463   if (reachable(src)) {
  3464     Assembler::ldmxcsr(as_Address(src));
  3465   } else {
  3466     lea(rscratch1, src);
  3467     Assembler::ldmxcsr(Address(rscratch1, 0));
  3471 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  3472   int off;
  3473   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3474     off = offset();
  3475     movsbl(dst, src); // movsxb
  3476   } else {
  3477     off = load_unsigned_byte(dst, src);
  3478     shll(dst, 24);
  3479     sarl(dst, 24);
  3481   return off;
  3484 // Note: load_signed_short used to be called load_signed_word.
  3485 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  3486 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  3487 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  3488 int MacroAssembler::load_signed_short(Register dst, Address src) {
  3489   int off;
  3490   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3491     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  3492     // version but this is what 64bit has always done. This seems to imply
  3493     // that users are only using 32bits worth.
  3494     off = offset();
  3495     movswl(dst, src); // movsxw
  3496   } else {
  3497     off = load_unsigned_short(dst, src);
  3498     shll(dst, 16);
  3499     sarl(dst, 16);
  3501   return off;
  3504 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  3505   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  3506   // and "3.9 Partial Register Penalties", p. 22).
  3507   int off;
  3508   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  3509     off = offset();
  3510     movzbl(dst, src); // movzxb
  3511   } else {
  3512     xorl(dst, dst);
  3513     off = offset();
  3514     movb(dst, src);
  3516   return off;
  3519 // Note: load_unsigned_short used to be called load_unsigned_word.
  3520 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  3521   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  3522   // and "3.9 Partial Register Penalties", p. 22).
  3523   int off;
  3524   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  3525     off = offset();
  3526     movzwl(dst, src); // movzxw
  3527   } else {
  3528     xorl(dst, dst);
  3529     off = offset();
  3530     movw(dst, src);
  3532   return off;
  3535 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  3536   switch (size_in_bytes) {
  3537 #ifndef _LP64
  3538   case  8:
  3539     assert(dst2 != noreg, "second dest register required");
  3540     movl(dst,  src);
  3541     movl(dst2, src.plus_disp(BytesPerInt));
  3542     break;
  3543 #else
  3544   case  8:  movq(dst, src); break;
  3545 #endif
  3546   case  4:  movl(dst, src); break;
  3547   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  3548   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  3549   default:  ShouldNotReachHere();
  3553 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  3554   switch (size_in_bytes) {
  3555 #ifndef _LP64
  3556   case  8:
  3557     assert(src2 != noreg, "second source register required");
  3558     movl(dst,                        src);
  3559     movl(dst.plus_disp(BytesPerInt), src2);
  3560     break;
  3561 #else
  3562   case  8:  movq(dst, src); break;
  3563 #endif
  3564   case  4:  movl(dst, src); break;
  3565   case  2:  movw(dst, src); break;
  3566   case  1:  movb(dst, src); break;
  3567   default:  ShouldNotReachHere();
  3571 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  3572   if (reachable(dst)) {
  3573     movl(as_Address(dst), src);
  3574   } else {
  3575     lea(rscratch1, dst);
  3576     movl(Address(rscratch1, 0), src);
  3580 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  3581   if (reachable(src)) {
  3582     movl(dst, as_Address(src));
  3583   } else {
  3584     lea(rscratch1, src);
  3585     movl(dst, Address(rscratch1, 0));
  3589 // C++ bool manipulation
  3591 void MacroAssembler::movbool(Register dst, Address src) {
  3592   if(sizeof(bool) == 1)
  3593     movb(dst, src);
  3594   else if(sizeof(bool) == 2)
  3595     movw(dst, src);
  3596   else if(sizeof(bool) == 4)
  3597     movl(dst, src);
  3598   else
  3599     // unsupported
  3600     ShouldNotReachHere();
  3603 void MacroAssembler::movbool(Address dst, bool boolconst) {
  3604   if(sizeof(bool) == 1)
  3605     movb(dst, (int) boolconst);
  3606   else if(sizeof(bool) == 2)
  3607     movw(dst, (int) boolconst);
  3608   else if(sizeof(bool) == 4)
  3609     movl(dst, (int) boolconst);
  3610   else
  3611     // unsupported
  3612     ShouldNotReachHere();
  3615 void MacroAssembler::movbool(Address dst, Register src) {
  3616   if(sizeof(bool) == 1)
  3617     movb(dst, src);
  3618   else if(sizeof(bool) == 2)
  3619     movw(dst, src);
  3620   else if(sizeof(bool) == 4)
  3621     movl(dst, src);
  3622   else
  3623     // unsupported
  3624     ShouldNotReachHere();
  3627 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  3628   movb(as_Address(dst), src);
  3631 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
  3632   if (reachable(src)) {
  3633     movdl(dst, as_Address(src));
  3634   } else {
  3635     lea(rscratch1, src);
  3636     movdl(dst, Address(rscratch1, 0));
  3640 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
  3641   if (reachable(src)) {
  3642     movq(dst, as_Address(src));
  3643   } else {
  3644     lea(rscratch1, src);
  3645     movq(dst, Address(rscratch1, 0));
  3649 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  3650   if (reachable(src)) {
  3651     if (UseXmmLoadAndClearUpper) {
  3652       movsd (dst, as_Address(src));
  3653     } else {
  3654       movlpd(dst, as_Address(src));
  3656   } else {
  3657     lea(rscratch1, src);
  3658     if (UseXmmLoadAndClearUpper) {
  3659       movsd (dst, Address(rscratch1, 0));
  3660     } else {
  3661       movlpd(dst, Address(rscratch1, 0));
  3666 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  3667   if (reachable(src)) {
  3668     movss(dst, as_Address(src));
  3669   } else {
  3670     lea(rscratch1, src);
  3671     movss(dst, Address(rscratch1, 0));
  3675 void MacroAssembler::movptr(Register dst, Register src) {
  3676   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3679 void MacroAssembler::movptr(Register dst, Address src) {
  3680   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3683 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  3684 void MacroAssembler::movptr(Register dst, intptr_t src) {
  3685   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  3688 void MacroAssembler::movptr(Address dst, Register src) {
  3689   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  3692 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
  3693   if (reachable(src)) {
  3694     Assembler::movdqu(dst, as_Address(src));
  3695   } else {
  3696     lea(rscratch1, src);
  3697     Assembler::movdqu(dst, Address(rscratch1, 0));
  3701 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
  3702   if (reachable(src)) {
  3703     Assembler::movdqa(dst, as_Address(src));
  3704   } else {
  3705     lea(rscratch1, src);
  3706     Assembler::movdqa(dst, Address(rscratch1, 0));
  3710 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  3711   if (reachable(src)) {
  3712     Assembler::movsd(dst, as_Address(src));
  3713   } else {
  3714     lea(rscratch1, src);
  3715     Assembler::movsd(dst, Address(rscratch1, 0));
  3719 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  3720   if (reachable(src)) {
  3721     Assembler::movss(dst, as_Address(src));
  3722   } else {
  3723     lea(rscratch1, src);
  3724     Assembler::movss(dst, Address(rscratch1, 0));
  3728 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
  3729   if (reachable(src)) {
  3730     Assembler::mulsd(dst, as_Address(src));
  3731   } else {
  3732     lea(rscratch1, src);
  3733     Assembler::mulsd(dst, Address(rscratch1, 0));
  3737 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
  3738   if (reachable(src)) {
  3739     Assembler::mulss(dst, as_Address(src));
  3740   } else {
  3741     lea(rscratch1, src);
  3742     Assembler::mulss(dst, Address(rscratch1, 0));
  3746 void MacroAssembler::null_check(Register reg, int offset) {
  3747   if (needs_explicit_null_check(offset)) {
  3748     // provoke OS NULL exception if reg = NULL by
  3749     // accessing M[reg] w/o changing any (non-CC) registers
  3750     // NOTE: cmpl is plenty here to provoke a segv
  3751     cmpptr(rax, Address(reg, 0));
  3752     // Note: should probably use testl(rax, Address(reg, 0));
  3753     //       may be shorter code (however, this version of
  3754     //       testl needs to be implemented first)
  3755   } else {
  3756     // nothing to do, (later) access of M[reg + offset]
  3757     // will provoke OS NULL exception if reg = NULL
  3761 void MacroAssembler::os_breakpoint() {
  3762   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  3763   // (e.g., MSVC can't call ps() otherwise)
  3764   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  3767 void MacroAssembler::pop_CPU_state() {
  3768   pop_FPU_state();
  3769   pop_IU_state();
  3772 void MacroAssembler::pop_FPU_state() {
  3773   NOT_LP64(frstor(Address(rsp, 0));)
  3774   LP64_ONLY(fxrstor(Address(rsp, 0));)
  3775   addptr(rsp, FPUStateSizeInWords * wordSize);
  3778 void MacroAssembler::pop_IU_state() {
  3779   popa();
  3780   LP64_ONLY(addq(rsp, 8));
  3781   popf();
  3784 // Save Integer and Float state
  3785 // Warning: Stack must be 16 byte aligned (64bit)
  3786 void MacroAssembler::push_CPU_state() {
  3787   push_IU_state();
  3788   push_FPU_state();
  3791 void MacroAssembler::push_FPU_state() {
  3792   subptr(rsp, FPUStateSizeInWords * wordSize);
  3793 #ifndef _LP64
  3794   fnsave(Address(rsp, 0));
  3795   fwait();
  3796 #else
  3797   fxsave(Address(rsp, 0));
  3798 #endif // LP64
  3801 void MacroAssembler::push_IU_state() {
  3802   // Push flags first because pusha kills them
  3803   pushf();
  3804   // Make sure rsp stays 16-byte aligned
  3805   LP64_ONLY(subq(rsp, 8));
  3806   pusha();
  3809 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) {
  3810   // determine java_thread register
  3811   if (!java_thread->is_valid()) {
  3812     java_thread = rdi;
  3813     get_thread(java_thread);
  3815   // we must set sp to zero to clear frame
  3816   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  3817   if (clear_fp) {
  3818     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  3821   // Always clear the pc because it could have been set by make_walkable()
  3822   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  3826 void MacroAssembler::restore_rax(Register tmp) {
  3827   if (tmp == noreg) pop(rax);
  3828   else if (tmp != rax) mov(rax, tmp);
  3831 void MacroAssembler::round_to(Register reg, int modulus) {
  3832   addptr(reg, modulus - 1);
  3833   andptr(reg, -modulus);
  3836 void MacroAssembler::save_rax(Register tmp) {
  3837   if (tmp == noreg) push(rax);
  3838   else if (tmp != rax) mov(tmp, rax);
  3841 // Write serialization page so VM thread can do a pseudo remote membar.
  3842 // We use the current thread pointer to calculate a thread specific
  3843 // offset to write to within the page. This minimizes bus traffic
  3844 // due to cache line collision.
  3845 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  3846   movl(tmp, thread);
  3847   shrl(tmp, os::get_serialize_page_shift_count());
  3848   andl(tmp, (os::vm_page_size() - sizeof(int)));
  3850   Address index(noreg, tmp, Address::times_1);
  3851   ExternalAddress page(os::get_memory_serialize_page());
  3853   // Size of store must match masking code above
  3854   movl(as_Address(ArrayAddress(page, index)), tmp);
  3857 // Calls to C land
  3858 //
  3859 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  3860 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  3861 // has to be reset to 0. This is required to allow proper stack traversal.
  3862 void MacroAssembler::set_last_Java_frame(Register java_thread,
  3863                                          Register last_java_sp,
  3864                                          Register last_java_fp,
  3865                                          address  last_java_pc) {
  3866   // determine java_thread register
  3867   if (!java_thread->is_valid()) {
  3868     java_thread = rdi;
  3869     get_thread(java_thread);
  3871   // determine last_java_sp register
  3872   if (!last_java_sp->is_valid()) {
  3873     last_java_sp = rsp;
  3876   // last_java_fp is optional
  3878   if (last_java_fp->is_valid()) {
  3879     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  3882   // last_java_pc is optional
  3884   if (last_java_pc != NULL) {
  3885     lea(Address(java_thread,
  3886                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  3887         InternalAddress(last_java_pc));
  3890   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  3893 void MacroAssembler::shlptr(Register dst, int imm8) {
  3894   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  3897 void MacroAssembler::shrptr(Register dst, int imm8) {
  3898   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  3901 void MacroAssembler::sign_extend_byte(Register reg) {
  3902   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  3903     movsbl(reg, reg); // movsxb
  3904   } else {
  3905     shll(reg, 24);
  3906     sarl(reg, 24);
  3910 void MacroAssembler::sign_extend_short(Register reg) {
  3911   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  3912     movswl(reg, reg); // movsxw
  3913   } else {
  3914     shll(reg, 16);
  3915     sarl(reg, 16);
  3919 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  3920   assert(reachable(src), "Address should be reachable");
  3921   testl(dst, as_Address(src));
  3924 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
  3925   if (reachable(src)) {
  3926     Assembler::sqrtsd(dst, as_Address(src));
  3927   } else {
  3928     lea(rscratch1, src);
  3929     Assembler::sqrtsd(dst, Address(rscratch1, 0));
  3933 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
  3934   if (reachable(src)) {
  3935     Assembler::sqrtss(dst, as_Address(src));
  3936   } else {
  3937     lea(rscratch1, src);
  3938     Assembler::sqrtss(dst, Address(rscratch1, 0));
  3942 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
  3943   if (reachable(src)) {
  3944     Assembler::subsd(dst, as_Address(src));
  3945   } else {
  3946     lea(rscratch1, src);
  3947     Assembler::subsd(dst, Address(rscratch1, 0));
  3951 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
  3952   if (reachable(src)) {
  3953     Assembler::subss(dst, as_Address(src));
  3954   } else {
  3955     lea(rscratch1, src);
  3956     Assembler::subss(dst, Address(rscratch1, 0));
  3960 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  3961   if (reachable(src)) {
  3962     Assembler::ucomisd(dst, as_Address(src));
  3963   } else {
  3964     lea(rscratch1, src);
  3965     Assembler::ucomisd(dst, Address(rscratch1, 0));
  3969 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  3970   if (reachable(src)) {
  3971     Assembler::ucomiss(dst, as_Address(src));
  3972   } else {
  3973     lea(rscratch1, src);
  3974     Assembler::ucomiss(dst, Address(rscratch1, 0));
  3978 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  3979   // Used in sign-bit flipping with aligned address.
  3980   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3981   if (reachable(src)) {
  3982     Assembler::xorpd(dst, as_Address(src));
  3983   } else {
  3984     lea(rscratch1, src);
  3985     Assembler::xorpd(dst, Address(rscratch1, 0));
  3989 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  3990   // Used in sign-bit flipping with aligned address.
  3991   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
  3992   if (reachable(src)) {
  3993     Assembler::xorps(dst, as_Address(src));
  3994   } else {
  3995     lea(rscratch1, src);
  3996     Assembler::xorps(dst, Address(rscratch1, 0));
  4000 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
  4001   // Used in sign-bit flipping with aligned address.
  4002   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
  4003   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
  4004   if (reachable(src)) {
  4005     Assembler::pshufb(dst, as_Address(src));
  4006   } else {
  4007     lea(rscratch1, src);
  4008     Assembler::pshufb(dst, Address(rscratch1, 0));
  4012 // AVX 3-operands instructions
  4014 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4015   if (reachable(src)) {
  4016     vaddsd(dst, nds, as_Address(src));
  4017   } else {
  4018     lea(rscratch1, src);
  4019     vaddsd(dst, nds, Address(rscratch1, 0));
  4023 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4024   if (reachable(src)) {
  4025     vaddss(dst, nds, as_Address(src));
  4026   } else {
  4027     lea(rscratch1, src);
  4028     vaddss(dst, nds, Address(rscratch1, 0));
  4032 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4033   if (reachable(src)) {
  4034     vandpd(dst, nds, as_Address(src), vector256);
  4035   } else {
  4036     lea(rscratch1, src);
  4037     vandpd(dst, nds, Address(rscratch1, 0), vector256);
  4041 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4042   if (reachable(src)) {
  4043     vandps(dst, nds, as_Address(src), vector256);
  4044   } else {
  4045     lea(rscratch1, src);
  4046     vandps(dst, nds, Address(rscratch1, 0), vector256);
  4050 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4051   if (reachable(src)) {
  4052     vdivsd(dst, nds, as_Address(src));
  4053   } else {
  4054     lea(rscratch1, src);
  4055     vdivsd(dst, nds, Address(rscratch1, 0));
  4059 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4060   if (reachable(src)) {
  4061     vdivss(dst, nds, as_Address(src));
  4062   } else {
  4063     lea(rscratch1, src);
  4064     vdivss(dst, nds, Address(rscratch1, 0));
  4068 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4069   if (reachable(src)) {
  4070     vmulsd(dst, nds, as_Address(src));
  4071   } else {
  4072     lea(rscratch1, src);
  4073     vmulsd(dst, nds, Address(rscratch1, 0));
  4077 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4078   if (reachable(src)) {
  4079     vmulss(dst, nds, as_Address(src));
  4080   } else {
  4081     lea(rscratch1, src);
  4082     vmulss(dst, nds, Address(rscratch1, 0));
  4086 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4087   if (reachable(src)) {
  4088     vsubsd(dst, nds, as_Address(src));
  4089   } else {
  4090     lea(rscratch1, src);
  4091     vsubsd(dst, nds, Address(rscratch1, 0));
  4095 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
  4096   if (reachable(src)) {
  4097     vsubss(dst, nds, as_Address(src));
  4098   } else {
  4099     lea(rscratch1, src);
  4100     vsubss(dst, nds, Address(rscratch1, 0));
  4104 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4105   if (reachable(src)) {
  4106     vxorpd(dst, nds, as_Address(src), vector256);
  4107   } else {
  4108     lea(rscratch1, src);
  4109     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
  4113 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
  4114   if (reachable(src)) {
  4115     vxorps(dst, nds, as_Address(src), vector256);
  4116   } else {
  4117     lea(rscratch1, src);
  4118     vxorps(dst, nds, Address(rscratch1, 0), vector256);
  4123 //////////////////////////////////////////////////////////////////////////////////
  4124 #if INCLUDE_ALL_GCS
  4126 void MacroAssembler::g1_write_barrier_pre(Register obj,
  4127                                           Register pre_val,
  4128                                           Register thread,
  4129                                           Register tmp,
  4130                                           bool tosca_live,
  4131                                           bool expand_call) {
  4133   // If expand_call is true then we expand the call_VM_leaf macro
  4134   // directly to skip generating the check by
  4135   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  4137 #ifdef _LP64
  4138   assert(thread == r15_thread, "must be");
  4139 #endif // _LP64
  4141   Label done;
  4142   Label runtime;
  4144   assert(pre_val != noreg, "check this code");
  4146   if (obj != noreg) {
  4147     assert_different_registers(obj, pre_val, tmp);
  4148     assert(pre_val != rax, "check this code");
  4151   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4152                                        PtrQueue::byte_offset_of_active()));
  4153   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4154                                        PtrQueue::byte_offset_of_index()));
  4155   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  4156                                        PtrQueue::byte_offset_of_buf()));
  4159   // Is marking active?
  4160   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4161     cmpl(in_progress, 0);
  4162   } else {
  4163     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  4164     cmpb(in_progress, 0);
  4166   jcc(Assembler::equal, done);
  4168   // Do we need to load the previous value?
  4169   if (obj != noreg) {
  4170     load_heap_oop(pre_val, Address(obj, 0));
  4173   // Is the previous value null?
  4174   cmpptr(pre_val, (int32_t) NULL_WORD);
  4175   jcc(Assembler::equal, done);
  4177   // Can we store original value in the thread's buffer?
  4178   // Is index == 0?
  4179   // (The index field is typed as size_t.)
  4181   movptr(tmp, index);                   // tmp := *index_adr
  4182   cmpptr(tmp, 0);                       // tmp == 0?
  4183   jcc(Assembler::equal, runtime);       // If yes, goto runtime
  4185   subptr(tmp, wordSize);                // tmp := tmp - wordSize
  4186   movptr(index, tmp);                   // *index_adr := tmp
  4187   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
  4189   // Record the previous value
  4190   movptr(Address(tmp, 0), pre_val);
  4191   jmp(done);
  4193   bind(runtime);
  4194   // save the live input values
  4195   if(tosca_live) push(rax);
  4197   if (obj != noreg && obj != rax)
  4198     push(obj);
  4200   if (pre_val != rax)
  4201     push(pre_val);
  4203   // Calling the runtime using the regular call_VM_leaf mechanism generates
  4204   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  4205   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  4206   //
  4207   // If we care generating the pre-barrier without a frame (e.g. in the
  4208   // intrinsified Reference.get() routine) then ebp might be pointing to
  4209   // the caller frame and so this check will most likely fail at runtime.
  4210   //
  4211   // Expanding the call directly bypasses the generation of the check.
  4212   // So when we do not have have a full interpreter frame on the stack
  4213   // expand_call should be passed true.
  4215   NOT_LP64( push(thread); )
  4217   if (expand_call) {
  4218     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
  4219     pass_arg1(this, thread);
  4220     pass_arg0(this, pre_val);
  4221     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  4222   } else {
  4223     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  4226   NOT_LP64( pop(thread); )
  4228   // save the live input values
  4229   if (pre_val != rax)
  4230     pop(pre_val);
  4232   if (obj != noreg && obj != rax)
  4233     pop(obj);
  4235   if(tosca_live) pop(rax);
  4237   bind(done);
  4240 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  4241                                            Register new_val,
  4242                                            Register thread,
  4243                                            Register tmp,
  4244                                            Register tmp2) {
  4245 #ifdef _LP64
  4246   assert(thread == r15_thread, "must be");
  4247 #endif // _LP64
  4249   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  4250                                        PtrQueue::byte_offset_of_index()));
  4251   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  4252                                        PtrQueue::byte_offset_of_buf()));
  4254   BarrierSet* bs = Universe::heap()->barrier_set();
  4255   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  4256   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  4258   Label done;
  4259   Label runtime;
  4261   // Does store cross heap regions?
  4263   movptr(tmp, store_addr);
  4264   xorptr(tmp, new_val);
  4265   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  4266   jcc(Assembler::equal, done);
  4268   // crosses regions, storing NULL?
  4270   cmpptr(new_val, (int32_t) NULL_WORD);
  4271   jcc(Assembler::equal, done);
  4273   // storing region crossing non-NULL, is card already dirty?
  4275   const Register card_addr = tmp;
  4276   const Register cardtable = tmp2;
  4278   movptr(card_addr, store_addr);
  4279   shrptr(card_addr, CardTableModRefBS::card_shift);
  4280   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
  4281   // a valid address and therefore is not properly handled by the relocation code.
  4282   movptr(cardtable, (intptr_t)ct->byte_map_base);
  4283   addptr(card_addr, cardtable);
  4285   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
  4286   jcc(Assembler::equal, done);
  4288   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  4289   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  4290   jcc(Assembler::equal, done);
  4293   // storing a region crossing, non-NULL oop, card is clean.
  4294   // dirty card and log.
  4296   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
  4298   cmpl(queue_index, 0);
  4299   jcc(Assembler::equal, runtime);
  4300   subl(queue_index, wordSize);
  4301   movptr(tmp2, buffer);
  4302 #ifdef _LP64
  4303   movslq(rscratch1, queue_index);
  4304   addq(tmp2, rscratch1);
  4305   movq(Address(tmp2, 0), card_addr);
  4306 #else
  4307   addl(tmp2, queue_index);
  4308   movl(Address(tmp2, 0), card_addr);
  4309 #endif
  4310   jmp(done);
  4312   bind(runtime);
  4313   // save the live input values
  4314   push(store_addr);
  4315   push(new_val);
  4316 #ifdef _LP64
  4317   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  4318 #else
  4319   push(thread);
  4320   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  4321   pop(thread);
  4322 #endif
  4323   pop(new_val);
  4324   pop(store_addr);
  4326   bind(done);
  4329 #endif // INCLUDE_ALL_GCS
  4330 //////////////////////////////////////////////////////////////////////////////////
  4333 void MacroAssembler::store_check(Register obj) {
  4334   // Does a store check for the oop in register obj. The content of
  4335   // register obj is destroyed afterwards.
  4336   store_check_part_1(obj);
  4337   store_check_part_2(obj);
  4340 void MacroAssembler::store_check(Register obj, Address dst) {
  4341   store_check(obj);
  4345 // split the store check operation so that other instructions can be scheduled inbetween
  4346 void MacroAssembler::store_check_part_1(Register obj) {
  4347   BarrierSet* bs = Universe::heap()->barrier_set();
  4348   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4349   shrptr(obj, CardTableModRefBS::card_shift);
  4352 void MacroAssembler::store_check_part_2(Register obj) {
  4353   BarrierSet* bs = Universe::heap()->barrier_set();
  4354   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  4355   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  4356   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  4358   // The calculation for byte_map_base is as follows:
  4359   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  4360   // So this essentially converts an address to a displacement and it will
  4361   // never need to be relocated. On 64bit however the value may be too
  4362   // large for a 32bit displacement.
  4363   intptr_t disp = (intptr_t) ct->byte_map_base;
  4364   if (is_simm32(disp)) {
  4365     Address cardtable(noreg, obj, Address::times_1, disp);
  4366     movb(cardtable, 0);
  4367   } else {
  4368     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
  4369     // displacement and done in a single instruction given favorable mapping and a
  4370     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
  4371     // entry and that entry is not properly handled by the relocation code.
  4372     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
  4373     Address index(noreg, obj, Address::times_1);
  4374     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  4378 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  4379   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  4382 // Force generation of a 4 byte immediate value even if it fits into 8bit
  4383 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
  4384   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
  4387 void MacroAssembler::subptr(Register dst, Register src) {
  4388   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  4391 // C++ bool manipulation
  4392 void MacroAssembler::testbool(Register dst) {
  4393   if(sizeof(bool) == 1)
  4394     testb(dst, 0xff);
  4395   else if(sizeof(bool) == 2) {
  4396     // testw implementation needed for two byte bools
  4397     ShouldNotReachHere();
  4398   } else if(sizeof(bool) == 4)
  4399     testl(dst, dst);
  4400   else
  4401     // unsupported
  4402     ShouldNotReachHere();
  4405 void MacroAssembler::testptr(Register dst, Register src) {
  4406   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  4409 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  4410 void MacroAssembler::tlab_allocate(Register obj,
  4411                                    Register var_size_in_bytes,
  4412                                    int con_size_in_bytes,
  4413                                    Register t1,
  4414                                    Register t2,
  4415                                    Label& slow_case) {
  4416   assert_different_registers(obj, t1, t2);
  4417   assert_different_registers(obj, var_size_in_bytes, t1);
  4418   Register end = t2;
  4419   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  4421   verify_tlab();
  4423   NOT_LP64(get_thread(thread));
  4425   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  4426   if (var_size_in_bytes == noreg) {
  4427     lea(end, Address(obj, con_size_in_bytes));
  4428   } else {
  4429     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  4431   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  4432   jcc(Assembler::above, slow_case);
  4434   // update the tlab top pointer
  4435   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  4437   // recover var_size_in_bytes if necessary
  4438   if (var_size_in_bytes == end) {
  4439     subptr(var_size_in_bytes, obj);
  4441   verify_tlab();
  4444 // Preserves rbx, and rdx.
  4445 Register MacroAssembler::tlab_refill(Label& retry,
  4446                                      Label& try_eden,
  4447                                      Label& slow_case) {
  4448   Register top = rax;
  4449   Register t1  = rcx;
  4450   Register t2  = rsi;
  4451   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  4452   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  4453   Label do_refill, discard_tlab;
  4455   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4456     // No allocation in the shared eden.
  4457     jmp(slow_case);
  4460   NOT_LP64(get_thread(thread_reg));
  4462   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  4463   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  4465   // calculate amount of free space
  4466   subptr(t1, top);
  4467   shrptr(t1, LogHeapWordSize);
  4469   // Retain tlab and allocate object in shared space if
  4470   // the amount free in the tlab is too large to discard.
  4471   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  4472   jcc(Assembler::lessEqual, discard_tlab);
  4474   // Retain
  4475   // %%% yuck as movptr...
  4476   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  4477   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  4478   if (TLABStats) {
  4479     // increment number of slow_allocations
  4480     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  4482   jmp(try_eden);
  4484   bind(discard_tlab);
  4485   if (TLABStats) {
  4486     // increment number of refills
  4487     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  4488     // accumulate wastage -- t1 is amount free in tlab
  4489     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  4492   // if tlab is currently allocated (top or end != null) then
  4493   // fill [top, end + alignment_reserve) with array object
  4494   testptr(top, top);
  4495   jcc(Assembler::zero, do_refill);
  4497   // set up the mark word
  4498   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  4499   // set the length to the remaining space
  4500   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  4501   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  4502   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  4503   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  4504   // set klass to intArrayKlass
  4505   // dubious reloc why not an oop reloc?
  4506   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  4507   // store klass last.  concurrent gcs assumes klass length is valid if
  4508   // klass field is not null.
  4509   store_klass(top, t1);
  4511   movptr(t1, top);
  4512   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  4513   incr_allocated_bytes(thread_reg, t1, 0);
  4515   // refill the tlab with an eden allocation
  4516   bind(do_refill);
  4517   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4518   shlptr(t1, LogHeapWordSize);
  4519   // allocate new tlab, address returned in top
  4520   eden_allocate(top, t1, 0, t2, slow_case);
  4522   // Check that t1 was preserved in eden_allocate.
  4523 #ifdef ASSERT
  4524   if (UseTLAB) {
  4525     Label ok;
  4526     Register tsize = rsi;
  4527     assert_different_registers(tsize, thread_reg, t1);
  4528     push(tsize);
  4529     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  4530     shlptr(tsize, LogHeapWordSize);
  4531     cmpptr(t1, tsize);
  4532     jcc(Assembler::equal, ok);
  4533     STOP("assert(t1 != tlab size)");
  4534     should_not_reach_here();
  4536     bind(ok);
  4537     pop(tsize);
  4539 #endif
  4540   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  4541   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  4542   addptr(top, t1);
  4543   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  4544   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  4545   verify_tlab();
  4546   jmp(retry);
  4548   return thread_reg; // for use by caller
  4551 void MacroAssembler::incr_allocated_bytes(Register thread,
  4552                                           Register var_size_in_bytes,
  4553                                           int con_size_in_bytes,
  4554                                           Register t1) {
  4555   if (!thread->is_valid()) {
  4556 #ifdef _LP64
  4557     thread = r15_thread;
  4558 #else
  4559     assert(t1->is_valid(), "need temp reg");
  4560     thread = t1;
  4561     get_thread(thread);
  4562 #endif
  4565 #ifdef _LP64
  4566   if (var_size_in_bytes->is_valid()) {
  4567     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  4568   } else {
  4569     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  4571 #else
  4572   if (var_size_in_bytes->is_valid()) {
  4573     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  4574   } else {
  4575     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  4577   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  4578 #endif
  4581 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
  4582   pusha();
  4584   // if we are coming from c1, xmm registers may be live
  4585   int off = 0;
  4586   if (UseSSE == 1)  {
  4587     subptr(rsp, sizeof(jdouble)*8);
  4588     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
  4589     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
  4590     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
  4591     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
  4592     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
  4593     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
  4594     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
  4595     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
  4596   } else if (UseSSE >= 2)  {
  4597 #ifdef COMPILER2
  4598     if (MaxVectorSize > 16) {
  4599       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
  4600       // Save upper half of YMM registes
  4601       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4602       vextractf128h(Address(rsp,  0),xmm0);
  4603       vextractf128h(Address(rsp, 16),xmm1);
  4604       vextractf128h(Address(rsp, 32),xmm2);
  4605       vextractf128h(Address(rsp, 48),xmm3);
  4606       vextractf128h(Address(rsp, 64),xmm4);
  4607       vextractf128h(Address(rsp, 80),xmm5);
  4608       vextractf128h(Address(rsp, 96),xmm6);
  4609       vextractf128h(Address(rsp,112),xmm7);
  4610 #ifdef _LP64
  4611       vextractf128h(Address(rsp,128),xmm8);
  4612       vextractf128h(Address(rsp,144),xmm9);
  4613       vextractf128h(Address(rsp,160),xmm10);
  4614       vextractf128h(Address(rsp,176),xmm11);
  4615       vextractf128h(Address(rsp,192),xmm12);
  4616       vextractf128h(Address(rsp,208),xmm13);
  4617       vextractf128h(Address(rsp,224),xmm14);
  4618       vextractf128h(Address(rsp,240),xmm15);
  4619 #endif
  4621 #endif
  4622     // Save whole 128bit (16 bytes) XMM regiters
  4623     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4624     movdqu(Address(rsp,off++*16),xmm0);
  4625     movdqu(Address(rsp,off++*16),xmm1);
  4626     movdqu(Address(rsp,off++*16),xmm2);
  4627     movdqu(Address(rsp,off++*16),xmm3);
  4628     movdqu(Address(rsp,off++*16),xmm4);
  4629     movdqu(Address(rsp,off++*16),xmm5);
  4630     movdqu(Address(rsp,off++*16),xmm6);
  4631     movdqu(Address(rsp,off++*16),xmm7);
  4632 #ifdef _LP64
  4633     movdqu(Address(rsp,off++*16),xmm8);
  4634     movdqu(Address(rsp,off++*16),xmm9);
  4635     movdqu(Address(rsp,off++*16),xmm10);
  4636     movdqu(Address(rsp,off++*16),xmm11);
  4637     movdqu(Address(rsp,off++*16),xmm12);
  4638     movdqu(Address(rsp,off++*16),xmm13);
  4639     movdqu(Address(rsp,off++*16),xmm14);
  4640     movdqu(Address(rsp,off++*16),xmm15);
  4641 #endif
  4644   // Preserve registers across runtime call
  4645   int incoming_argument_and_return_value_offset = -1;
  4646   if (num_fpu_regs_in_use > 1) {
  4647     // Must preserve all other FPU regs (could alternatively convert
  4648     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
  4649     // FPU state, but can not trust C compiler)
  4650     NEEDS_CLEANUP;
  4651     // NOTE that in this case we also push the incoming argument(s) to
  4652     // the stack and restore it later; we also use this stack slot to
  4653     // hold the return value from dsin, dcos etc.
  4654     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  4655       subptr(rsp, sizeof(jdouble));
  4656       fstp_d(Address(rsp, 0));
  4658     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  4659     for (int i = nb_args-1; i >= 0; i--) {
  4660       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
  4664   subptr(rsp, nb_args*sizeof(jdouble));
  4665   for (int i = 0; i < nb_args; i++) {
  4666     fstp_d(Address(rsp, i*sizeof(jdouble)));
  4669 #ifdef _LP64
  4670   if (nb_args > 0) {
  4671     movdbl(xmm0, Address(rsp, 0));
  4673   if (nb_args > 1) {
  4674     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
  4676   assert(nb_args <= 2, "unsupported number of args");
  4677 #endif // _LP64
  4679   // NOTE: we must not use call_VM_leaf here because that requires a
  4680   // complete interpreter frame in debug mode -- same bug as 4387334
  4681   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  4682   // do proper 64bit abi
  4684   NEEDS_CLEANUP;
  4685   // Need to add stack banging before this runtime call if it needs to
  4686   // be taken; however, there is no generic stack banging routine at
  4687   // the MacroAssembler level
  4689   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
  4691 #ifdef _LP64
  4692   movsd(Address(rsp, 0), xmm0);
  4693   fld_d(Address(rsp, 0));
  4694 #endif // _LP64
  4695   addptr(rsp, sizeof(jdouble) * nb_args);
  4696   if (num_fpu_regs_in_use > 1) {
  4697     // Must save return value to stack and then restore entire FPU
  4698     // stack except incoming arguments
  4699     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  4700     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
  4701       fld_d(Address(rsp, 0));
  4702       addptr(rsp, sizeof(jdouble));
  4704     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
  4705     addptr(rsp, sizeof(jdouble) * nb_args);
  4708   off = 0;
  4709   if (UseSSE == 1)  {
  4710     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
  4711     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
  4712     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
  4713     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
  4714     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
  4715     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
  4716     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
  4717     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
  4718     addptr(rsp, sizeof(jdouble)*8);
  4719   } else if (UseSSE >= 2)  {
  4720     // Restore whole 128bit (16 bytes) XMM regiters
  4721     movdqu(xmm0, Address(rsp,off++*16));
  4722     movdqu(xmm1, Address(rsp,off++*16));
  4723     movdqu(xmm2, Address(rsp,off++*16));
  4724     movdqu(xmm3, Address(rsp,off++*16));
  4725     movdqu(xmm4, Address(rsp,off++*16));
  4726     movdqu(xmm5, Address(rsp,off++*16));
  4727     movdqu(xmm6, Address(rsp,off++*16));
  4728     movdqu(xmm7, Address(rsp,off++*16));
  4729 #ifdef _LP64
  4730     movdqu(xmm8, Address(rsp,off++*16));
  4731     movdqu(xmm9, Address(rsp,off++*16));
  4732     movdqu(xmm10, Address(rsp,off++*16));
  4733     movdqu(xmm11, Address(rsp,off++*16));
  4734     movdqu(xmm12, Address(rsp,off++*16));
  4735     movdqu(xmm13, Address(rsp,off++*16));
  4736     movdqu(xmm14, Address(rsp,off++*16));
  4737     movdqu(xmm15, Address(rsp,off++*16));
  4738 #endif
  4739     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4740 #ifdef COMPILER2
  4741     if (MaxVectorSize > 16) {
  4742       // Restore upper half of YMM registes.
  4743       vinsertf128h(xmm0, Address(rsp,  0));
  4744       vinsertf128h(xmm1, Address(rsp, 16));
  4745       vinsertf128h(xmm2, Address(rsp, 32));
  4746       vinsertf128h(xmm3, Address(rsp, 48));
  4747       vinsertf128h(xmm4, Address(rsp, 64));
  4748       vinsertf128h(xmm5, Address(rsp, 80));
  4749       vinsertf128h(xmm6, Address(rsp, 96));
  4750       vinsertf128h(xmm7, Address(rsp,112));
  4751 #ifdef _LP64
  4752       vinsertf128h(xmm8, Address(rsp,128));
  4753       vinsertf128h(xmm9, Address(rsp,144));
  4754       vinsertf128h(xmm10, Address(rsp,160));
  4755       vinsertf128h(xmm11, Address(rsp,176));
  4756       vinsertf128h(xmm12, Address(rsp,192));
  4757       vinsertf128h(xmm13, Address(rsp,208));
  4758       vinsertf128h(xmm14, Address(rsp,224));
  4759       vinsertf128h(xmm15, Address(rsp,240));
  4760 #endif
  4761       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
  4763 #endif
  4765   popa();
  4768 static const double     pi_4 =  0.7853981633974483;
  4770 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  4771   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  4772   // was attempted in this code; unfortunately it appears that the
  4773   // switch to 80-bit precision and back causes this to be
  4774   // unprofitable compared with simply performing a runtime call if
  4775   // the argument is out of the (-pi/4, pi/4) range.
  4777   Register tmp = noreg;
  4778   if (!VM_Version::supports_cmov()) {
  4779     // fcmp needs a temporary so preserve rbx,
  4780     tmp = rbx;
  4781     push(tmp);
  4784   Label slow_case, done;
  4786   ExternalAddress pi4_adr = (address)&pi_4;
  4787   if (reachable(pi4_adr)) {
  4788     // x ?<= pi/4
  4789     fld_d(pi4_adr);
  4790     fld_s(1);                // Stack:  X  PI/4  X
  4791     fabs();                  // Stack: |X| PI/4  X
  4792     fcmp(tmp);
  4793     jcc(Assembler::above, slow_case);
  4795     // fastest case: -pi/4 <= x <= pi/4
  4796     switch(trig) {
  4797     case 's':
  4798       fsin();
  4799       break;
  4800     case 'c':
  4801       fcos();
  4802       break;
  4803     case 't':
  4804       ftan();
  4805       break;
  4806     default:
  4807       assert(false, "bad intrinsic");
  4808       break;
  4810     jmp(done);
  4813   // slow case: runtime call
  4814   bind(slow_case);
  4816   switch(trig) {
  4817   case 's':
  4819       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
  4821     break;
  4822   case 'c':
  4824       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
  4826     break;
  4827   case 't':
  4829       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
  4831     break;
  4832   default:
  4833     assert(false, "bad intrinsic");
  4834     break;
  4837   // Come here with result in F-TOS
  4838   bind(done);
  4840   if (tmp != noreg) {
  4841     pop(tmp);
  4846 // Look up the method for a megamorphic invokeinterface call.
  4847 // The target method is determined by <intf_klass, itable_index>.
  4848 // The receiver klass is in recv_klass.
  4849 // On success, the result will be in method_result, and execution falls through.
  4850 // On failure, execution transfers to the given label.
  4851 void MacroAssembler::lookup_interface_method(Register recv_klass,
  4852                                              Register intf_klass,
  4853                                              RegisterOrConstant itable_index,
  4854                                              Register method_result,
  4855                                              Register scan_temp,
  4856                                              Label& L_no_such_interface) {
  4857   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  4858   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  4859          "caller must use same register for non-constant itable index as for method");
  4861   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  4862   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  4863   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  4864   int scan_step   = itableOffsetEntry::size() * wordSize;
  4865   int vte_size    = vtableEntry::size() * wordSize;
  4866   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  4867   assert(vte_size == wordSize, "else adjust times_vte_scale");
  4869   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  4871   // %%% Could store the aligned, prescaled offset in the klassoop.
  4872   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  4873   if (HeapWordsPerLong > 1) {
  4874     // Round up to align_object_offset boundary
  4875     // see code for InstanceKlass::start_of_itable!
  4876     round_to(scan_temp, BytesPerLong);
  4879   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  4880   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  4881   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  4883   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  4884   //   if (scan->interface() == intf) {
  4885   //     result = (klass + scan->offset() + itable_index);
  4886   //   }
  4887   // }
  4888   Label search, found_method;
  4890   for (int peel = 1; peel >= 0; peel--) {
  4891     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  4892     cmpptr(intf_klass, method_result);
  4894     if (peel) {
  4895       jccb(Assembler::equal, found_method);
  4896     } else {
  4897       jccb(Assembler::notEqual, search);
  4898       // (invert the test to fall through to found_method...)
  4901     if (!peel)  break;
  4903     bind(search);
  4905     // Check that the previous entry is non-null.  A null entry means that
  4906     // the receiver class doesn't implement the interface, and wasn't the
  4907     // same as when the caller was compiled.
  4908     testptr(method_result, method_result);
  4909     jcc(Assembler::zero, L_no_such_interface);
  4910     addptr(scan_temp, scan_step);
  4913   bind(found_method);
  4915   // Got a hit.
  4916   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4917   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  4921 // virtual method calling
  4922 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4923                                            RegisterOrConstant vtable_index,
  4924                                            Register method_result) {
  4925   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4926   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4927   Address vtable_entry_addr(recv_klass,
  4928                             vtable_index, Address::times_ptr,
  4929                             base + vtableEntry::method_offset_in_bytes());
  4930   movptr(method_result, vtable_entry_addr);
  4934 void MacroAssembler::check_klass_subtype(Register sub_klass,
  4935                            Register super_klass,
  4936                            Register temp_reg,
  4937                            Label& L_success) {
  4938   Label L_failure;
  4939   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  4940   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  4941   bind(L_failure);
  4945 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  4946                                                    Register super_klass,
  4947                                                    Register temp_reg,
  4948                                                    Label* L_success,
  4949                                                    Label* L_failure,
  4950                                                    Label* L_slow_path,
  4951                                         RegisterOrConstant super_check_offset) {
  4952   assert_different_registers(sub_klass, super_klass, temp_reg);
  4953   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  4954   if (super_check_offset.is_register()) {
  4955     assert_different_registers(sub_klass, super_klass,
  4956                                super_check_offset.as_register());
  4957   } else if (must_load_sco) {
  4958     assert(temp_reg != noreg, "supply either a temp or a register offset");
  4961   Label L_fallthrough;
  4962   int label_nulls = 0;
  4963   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  4964   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  4965   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  4966   assert(label_nulls <= 1, "at most one NULL in the batch");
  4968   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  4969   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  4970   Address super_check_offset_addr(super_klass, sco_offset);
  4972   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  4973   // range of a jccb.  If this routine grows larger, reconsider at
  4974   // least some of these.
  4975 #define local_jcc(assembler_cond, label)                                \
  4976   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  4977   else                             jcc( assembler_cond, label) /*omit semi*/
  4979   // Hacked jmp, which may only be used just before L_fallthrough.
  4980 #define final_jmp(label)                                                \
  4981   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  4982   else                            jmp(label)                /*omit semi*/
  4984   // If the pointers are equal, we are done (e.g., String[] elements).
  4985   // This self-check enables sharing of secondary supertype arrays among
  4986   // non-primary types such as array-of-interface.  Otherwise, each such
  4987   // type would need its own customized SSA.
  4988   // We move this check to the front of the fast path because many
  4989   // type checks are in fact trivially successful in this manner,
  4990   // so we get a nicely predicted branch right at the start of the check.
  4991   cmpptr(sub_klass, super_klass);
  4992   local_jcc(Assembler::equal, *L_success);
  4994   // Check the supertype display:
  4995   if (must_load_sco) {
  4996     // Positive movl does right thing on LP64.
  4997     movl(temp_reg, super_check_offset_addr);
  4998     super_check_offset = RegisterOrConstant(temp_reg);
  5000   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  5001   cmpptr(super_klass, super_check_addr); // load displayed supertype
  5003   // This check has worked decisively for primary supers.
  5004   // Secondary supers are sought in the super_cache ('super_cache_addr').
  5005   // (Secondary supers are interfaces and very deeply nested subtypes.)
  5006   // This works in the same check above because of a tricky aliasing
  5007   // between the super_cache and the primary super display elements.
  5008   // (The 'super_check_addr' can address either, as the case requires.)
  5009   // Note that the cache is updated below if it does not help us find
  5010   // what we need immediately.
  5011   // So if it was a primary super, we can just fail immediately.
  5012   // Otherwise, it's the slow path for us (no success at this point).
  5014   if (super_check_offset.is_register()) {
  5015     local_jcc(Assembler::equal, *L_success);
  5016     cmpl(super_check_offset.as_register(), sc_offset);
  5017     if (L_failure == &L_fallthrough) {
  5018       local_jcc(Assembler::equal, *L_slow_path);
  5019     } else {
  5020       local_jcc(Assembler::notEqual, *L_failure);
  5021       final_jmp(*L_slow_path);
  5023   } else if (super_check_offset.as_constant() == sc_offset) {
  5024     // Need a slow path; fast failure is impossible.
  5025     if (L_slow_path == &L_fallthrough) {
  5026       local_jcc(Assembler::equal, *L_success);
  5027     } else {
  5028       local_jcc(Assembler::notEqual, *L_slow_path);
  5029       final_jmp(*L_success);
  5031   } else {
  5032     // No slow path; it's a fast decision.
  5033     if (L_failure == &L_fallthrough) {
  5034       local_jcc(Assembler::equal, *L_success);
  5035     } else {
  5036       local_jcc(Assembler::notEqual, *L_failure);
  5037       final_jmp(*L_success);
  5041   bind(L_fallthrough);
  5043 #undef local_jcc
  5044 #undef final_jmp
  5048 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  5049                                                    Register super_klass,
  5050                                                    Register temp_reg,
  5051                                                    Register temp2_reg,
  5052                                                    Label* L_success,
  5053                                                    Label* L_failure,
  5054                                                    bool set_cond_codes) {
  5055   assert_different_registers(sub_klass, super_klass, temp_reg);
  5056   if (temp2_reg != noreg)
  5057     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  5058 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  5060   Label L_fallthrough;
  5061   int label_nulls = 0;
  5062   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  5063   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  5064   assert(label_nulls <= 1, "at most one NULL in the batch");
  5066   // a couple of useful fields in sub_klass:
  5067   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  5068   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  5069   Address secondary_supers_addr(sub_klass, ss_offset);
  5070   Address super_cache_addr(     sub_klass, sc_offset);
  5072   // Do a linear scan of the secondary super-klass chain.
  5073   // This code is rarely used, so simplicity is a virtue here.
  5074   // The repne_scan instruction uses fixed registers, which we must spill.
  5075   // Don't worry too much about pre-existing connections with the input regs.
  5077   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  5078   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  5080   // Get super_klass value into rax (even if it was in rdi or rcx).
  5081   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  5082   if (super_klass != rax || UseCompressedOops) {
  5083     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  5084     mov(rax, super_klass);
  5086   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  5087   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  5089 #ifndef PRODUCT
  5090   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  5091   ExternalAddress pst_counter_addr((address) pst_counter);
  5092   NOT_LP64(  incrementl(pst_counter_addr) );
  5093   LP64_ONLY( lea(rcx, pst_counter_addr) );
  5094   LP64_ONLY( incrementl(Address(rcx, 0)) );
  5095 #endif //PRODUCT
  5097   // We will consult the secondary-super array.
  5098   movptr(rdi, secondary_supers_addr);
  5099   // Load the array length.  (Positive movl does right thing on LP64.)
  5100   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
  5101   // Skip to start of data.
  5102   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
  5104   // Scan RCX words at [RDI] for an occurrence of RAX.
  5105   // Set NZ/Z based on last compare.
  5106   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  5107   // not change flags (only scas instruction which is repeated sets flags).
  5108   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  5110     testptr(rax,rax); // Set Z = 0
  5111     repne_scan();
  5113   // Unspill the temp. registers:
  5114   if (pushed_rdi)  pop(rdi);
  5115   if (pushed_rcx)  pop(rcx);
  5116   if (pushed_rax)  pop(rax);
  5118   if (set_cond_codes) {
  5119     // Special hack for the AD files:  rdi is guaranteed non-zero.
  5120     assert(!pushed_rdi, "rdi must be left non-NULL");
  5121     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  5124   if (L_failure == &L_fallthrough)
  5125         jccb(Assembler::notEqual, *L_failure);
  5126   else  jcc(Assembler::notEqual, *L_failure);
  5128   // Success.  Cache the super we found and proceed in triumph.
  5129   movptr(super_cache_addr, super_klass);
  5131   if (L_success != &L_fallthrough) {
  5132     jmp(*L_success);
  5135 #undef IS_A_TEMP
  5137   bind(L_fallthrough);
  5141 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  5142   if (VM_Version::supports_cmov()) {
  5143     cmovl(cc, dst, src);
  5144   } else {
  5145     Label L;
  5146     jccb(negate_condition(cc), L);
  5147     movl(dst, src);
  5148     bind(L);
  5152 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  5153   if (VM_Version::supports_cmov()) {
  5154     cmovl(cc, dst, src);
  5155   } else {
  5156     Label L;
  5157     jccb(negate_condition(cc), L);
  5158     movl(dst, src);
  5159     bind(L);
  5163 void MacroAssembler::verify_oop(Register reg, const char* s) {
  5164   if (!VerifyOops) return;
  5166   // Pass register number to verify_oop_subroutine
  5167   const char* b = NULL;
  5169     ResourceMark rm;
  5170     stringStream ss;
  5171     ss.print("verify_oop: %s: %s", reg->name(), s);
  5172     b = code_string(ss.as_string());
  5174   BLOCK_COMMENT("verify_oop {");
  5175 #ifdef _LP64
  5176   push(rscratch1);                    // save r10, trashed by movptr()
  5177 #endif
  5178   push(rax);                          // save rax,
  5179   push(reg);                          // pass register argument
  5180   ExternalAddress buffer((address) b);
  5181   // avoid using pushptr, as it modifies scratch registers
  5182   // and our contract is not to modify anything
  5183   movptr(rax, buffer.addr());
  5184   push(rax);
  5185   // call indirectly to solve generation ordering problem
  5186   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  5187   call(rax);
  5188   // Caller pops the arguments (oop, message) and restores rax, r10
  5189   BLOCK_COMMENT("} verify_oop");
  5193 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  5194                                                       Register tmp,
  5195                                                       int offset) {
  5196   intptr_t value = *delayed_value_addr;
  5197   if (value != 0)
  5198     return RegisterOrConstant(value + offset);
  5200   // load indirectly to solve generation ordering problem
  5201   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  5203 #ifdef ASSERT
  5204   { Label L;
  5205     testptr(tmp, tmp);
  5206     if (WizardMode) {
  5207       const char* buf = NULL;
  5209         ResourceMark rm;
  5210         stringStream ss;
  5211         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  5212         buf = code_string(ss.as_string());
  5214       jcc(Assembler::notZero, L);
  5215       STOP(buf);
  5216     } else {
  5217       jccb(Assembler::notZero, L);
  5218       hlt();
  5220     bind(L);
  5222 #endif
  5224   if (offset != 0)
  5225     addptr(tmp, offset);
  5227   return RegisterOrConstant(tmp);
  5231 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  5232                                          int extra_slot_offset) {
  5233   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  5234   int stackElementSize = Interpreter::stackElementSize;
  5235   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  5236 #ifdef ASSERT
  5237   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  5238   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  5239 #endif
  5240   Register             scale_reg    = noreg;
  5241   Address::ScaleFactor scale_factor = Address::no_scale;
  5242   if (arg_slot.is_constant()) {
  5243     offset += arg_slot.as_constant() * stackElementSize;
  5244   } else {
  5245     scale_reg    = arg_slot.as_register();
  5246     scale_factor = Address::times(stackElementSize);
  5248   offset += wordSize;           // return PC is on stack
  5249   return Address(rsp, scale_reg, scale_factor, offset);
  5253 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  5254   if (!VerifyOops) return;
  5256   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  5257   // Pass register number to verify_oop_subroutine
  5258   const char* b = NULL;
  5260     ResourceMark rm;
  5261     stringStream ss;
  5262     ss.print("verify_oop_addr: %s", s);
  5263     b = code_string(ss.as_string());
  5265 #ifdef _LP64
  5266   push(rscratch1);                    // save r10, trashed by movptr()
  5267 #endif
  5268   push(rax);                          // save rax,
  5269   // addr may contain rsp so we will have to adjust it based on the push
  5270   // we just did (and on 64 bit we do two pushes)
  5271   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  5272   // stores rax into addr which is backwards of what was intended.
  5273   if (addr.uses(rsp)) {
  5274     lea(rax, addr);
  5275     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
  5276   } else {
  5277     pushptr(addr);
  5280   ExternalAddress buffer((address) b);
  5281   // pass msg argument
  5282   // avoid using pushptr, as it modifies scratch registers
  5283   // and our contract is not to modify anything
  5284   movptr(rax, buffer.addr());
  5285   push(rax);
  5287   // call indirectly to solve generation ordering problem
  5288   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  5289   call(rax);
  5290   // Caller pops the arguments (addr, message) and restores rax, r10.
  5293 void MacroAssembler::verify_tlab() {
  5294 #ifdef ASSERT
  5295   if (UseTLAB && VerifyOops) {
  5296     Label next, ok;
  5297     Register t1 = rsi;
  5298     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  5300     push(t1);
  5301     NOT_LP64(push(thread_reg));
  5302     NOT_LP64(get_thread(thread_reg));
  5304     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  5305     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  5306     jcc(Assembler::aboveEqual, next);
  5307     STOP("assert(top >= start)");
  5308     should_not_reach_here();
  5310     bind(next);
  5311     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  5312     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  5313     jcc(Assembler::aboveEqual, ok);
  5314     STOP("assert(top <= end)");
  5315     should_not_reach_here();
  5317     bind(ok);
  5318     NOT_LP64(pop(thread_reg));
  5319     pop(t1);
  5321 #endif
  5324 class ControlWord {
  5325  public:
  5326   int32_t _value;
  5328   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  5329   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  5330   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  5331   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  5332   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  5333   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  5334   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  5335   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  5337   void print() const {
  5338     // rounding control
  5339     const char* rc;
  5340     switch (rounding_control()) {
  5341       case 0: rc = "round near"; break;
  5342       case 1: rc = "round down"; break;
  5343       case 2: rc = "round up  "; break;
  5344       case 3: rc = "chop      "; break;
  5345     };
  5346     // precision control
  5347     const char* pc;
  5348     switch (precision_control()) {
  5349       case 0: pc = "24 bits "; break;
  5350       case 1: pc = "reserved"; break;
  5351       case 2: pc = "53 bits "; break;
  5352       case 3: pc = "64 bits "; break;
  5353     };
  5354     // flags
  5355     char f[9];
  5356     f[0] = ' ';
  5357     f[1] = ' ';
  5358     f[2] = (precision   ()) ? 'P' : 'p';
  5359     f[3] = (underflow   ()) ? 'U' : 'u';
  5360     f[4] = (overflow    ()) ? 'O' : 'o';
  5361     f[5] = (zero_divide ()) ? 'Z' : 'z';
  5362     f[6] = (denormalized()) ? 'D' : 'd';
  5363     f[7] = (invalid     ()) ? 'I' : 'i';
  5364     f[8] = '\x0';
  5365     // output
  5366     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  5369 };
  5371 class StatusWord {
  5372  public:
  5373   int32_t _value;
  5375   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  5376   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  5377   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  5378   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  5379   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  5380   int  top() const                     { return  (_value >> 11) & 7      ; }
  5381   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  5382   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  5383   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  5384   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  5385   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  5386   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  5387   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  5388   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  5390   void print() const {
  5391     // condition codes
  5392     char c[5];
  5393     c[0] = (C3()) ? '3' : '-';
  5394     c[1] = (C2()) ? '2' : '-';
  5395     c[2] = (C1()) ? '1' : '-';
  5396     c[3] = (C0()) ? '0' : '-';
  5397     c[4] = '\x0';
  5398     // flags
  5399     char f[9];
  5400     f[0] = (error_status()) ? 'E' : '-';
  5401     f[1] = (stack_fault ()) ? 'S' : '-';
  5402     f[2] = (precision   ()) ? 'P' : '-';
  5403     f[3] = (underflow   ()) ? 'U' : '-';
  5404     f[4] = (overflow    ()) ? 'O' : '-';
  5405     f[5] = (zero_divide ()) ? 'Z' : '-';
  5406     f[6] = (denormalized()) ? 'D' : '-';
  5407     f[7] = (invalid     ()) ? 'I' : '-';
  5408     f[8] = '\x0';
  5409     // output
  5410     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  5413 };
  5415 class TagWord {
  5416  public:
  5417   int32_t _value;
  5419   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  5421   void print() const {
  5422     printf("%04x", _value & 0xFFFF);
  5425 };
  5427 class FPU_Register {
  5428  public:
  5429   int32_t _m0;
  5430   int32_t _m1;
  5431   int16_t _ex;
  5433   bool is_indefinite() const           {
  5434     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  5437   void print() const {
  5438     char  sign = (_ex < 0) ? '-' : '+';
  5439     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  5440     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  5441   };
  5443 };
  5445 class FPU_State {
  5446  public:
  5447   enum {
  5448     register_size       = 10,
  5449     number_of_registers =  8,
  5450     register_mask       =  7
  5451   };
  5453   ControlWord  _control_word;
  5454   StatusWord   _status_word;
  5455   TagWord      _tag_word;
  5456   int32_t      _error_offset;
  5457   int32_t      _error_selector;
  5458   int32_t      _data_offset;
  5459   int32_t      _data_selector;
  5460   int8_t       _register[register_size * number_of_registers];
  5462   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  5463   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  5465   const char* tag_as_string(int tag) const {
  5466     switch (tag) {
  5467       case 0: return "valid";
  5468       case 1: return "zero";
  5469       case 2: return "special";
  5470       case 3: return "empty";
  5472     ShouldNotReachHere();
  5473     return NULL;
  5476   void print() const {
  5477     // print computation registers
  5478     { int t = _status_word.top();
  5479       for (int i = 0; i < number_of_registers; i++) {
  5480         int j = (i - t) & register_mask;
  5481         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  5482         st(j)->print();
  5483         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  5486     printf("\n");
  5487     // print control registers
  5488     printf("ctrl = "); _control_word.print(); printf("\n");
  5489     printf("stat = "); _status_word .print(); printf("\n");
  5490     printf("tags = "); _tag_word    .print(); printf("\n");
  5493 };
  5495 class Flag_Register {
  5496  public:
  5497   int32_t _value;
  5499   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  5500   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  5501   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  5502   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  5503   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  5504   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  5505   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  5507   void print() const {
  5508     // flags
  5509     char f[8];
  5510     f[0] = (overflow       ()) ? 'O' : '-';
  5511     f[1] = (direction      ()) ? 'D' : '-';
  5512     f[2] = (sign           ()) ? 'S' : '-';
  5513     f[3] = (zero           ()) ? 'Z' : '-';
  5514     f[4] = (auxiliary_carry()) ? 'A' : '-';
  5515     f[5] = (parity         ()) ? 'P' : '-';
  5516     f[6] = (carry          ()) ? 'C' : '-';
  5517     f[7] = '\x0';
  5518     // output
  5519     printf("%08x  flags = %s", _value, f);
  5522 };
  5524 class IU_Register {
  5525  public:
  5526   int32_t _value;
  5528   void print() const {
  5529     printf("%08x  %11d", _value, _value);
  5532 };
  5534 class IU_State {
  5535  public:
  5536   Flag_Register _eflags;
  5537   IU_Register   _rdi;
  5538   IU_Register   _rsi;
  5539   IU_Register   _rbp;
  5540   IU_Register   _rsp;
  5541   IU_Register   _rbx;
  5542   IU_Register   _rdx;
  5543   IU_Register   _rcx;
  5544   IU_Register   _rax;
  5546   void print() const {
  5547     // computation registers
  5548     printf("rax,  = "); _rax.print(); printf("\n");
  5549     printf("rbx,  = "); _rbx.print(); printf("\n");
  5550     printf("rcx  = "); _rcx.print(); printf("\n");
  5551     printf("rdx  = "); _rdx.print(); printf("\n");
  5552     printf("rdi  = "); _rdi.print(); printf("\n");
  5553     printf("rsi  = "); _rsi.print(); printf("\n");
  5554     printf("rbp,  = "); _rbp.print(); printf("\n");
  5555     printf("rsp  = "); _rsp.print(); printf("\n");
  5556     printf("\n");
  5557     // control registers
  5558     printf("flgs = "); _eflags.print(); printf("\n");
  5560 };
  5563 class CPU_State {
  5564  public:
  5565   FPU_State _fpu_state;
  5566   IU_State  _iu_state;
  5568   void print() const {
  5569     printf("--------------------------------------------------\n");
  5570     _iu_state .print();
  5571     printf("\n");
  5572     _fpu_state.print();
  5573     printf("--------------------------------------------------\n");
  5576 };
  5579 static void _print_CPU_state(CPU_State* state) {
  5580   state->print();
  5581 };
  5584 void MacroAssembler::print_CPU_state() {
  5585   push_CPU_state();
  5586   push(rsp);                // pass CPU state
  5587   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  5588   addptr(rsp, wordSize);       // discard argument
  5589   pop_CPU_state();
  5593 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  5594   static int counter = 0;
  5595   FPU_State* fs = &state->_fpu_state;
  5596   counter++;
  5597   // For leaf calls, only verify that the top few elements remain empty.
  5598   // We only need 1 empty at the top for C2 code.
  5599   if( stack_depth < 0 ) {
  5600     if( fs->tag_for_st(7) != 3 ) {
  5601       printf("FPR7 not empty\n");
  5602       state->print();
  5603       assert(false, "error");
  5604       return false;
  5606     return true;                // All other stack states do not matter
  5609   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  5610          "bad FPU control word");
  5612   // compute stack depth
  5613   int i = 0;
  5614   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  5615   int d = i;
  5616   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  5617   // verify findings
  5618   if (i != FPU_State::number_of_registers) {
  5619     // stack not contiguous
  5620     printf("%s: stack not contiguous at ST%d\n", s, i);
  5621     state->print();
  5622     assert(false, "error");
  5623     return false;
  5625   // check if computed stack depth corresponds to expected stack depth
  5626   if (stack_depth < 0) {
  5627     // expected stack depth is -stack_depth or less
  5628     if (d > -stack_depth) {
  5629       // too many elements on the stack
  5630       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  5631       state->print();
  5632       assert(false, "error");
  5633       return false;
  5635   } else {
  5636     // expected stack depth is stack_depth
  5637     if (d != stack_depth) {
  5638       // wrong stack depth
  5639       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  5640       state->print();
  5641       assert(false, "error");
  5642       return false;
  5645   // everything is cool
  5646   return true;
  5650 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  5651   if (!VerifyFPU) return;
  5652   push_CPU_state();
  5653   push(rsp);                // pass CPU state
  5654   ExternalAddress msg((address) s);
  5655   // pass message string s
  5656   pushptr(msg.addr());
  5657   push(stack_depth);        // pass stack depth
  5658   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  5659   addptr(rsp, 3 * wordSize);   // discard arguments
  5660   // check for error
  5661   { Label L;
  5662     testl(rax, rax);
  5663     jcc(Assembler::notZero, L);
  5664     int3();                  // break if error condition
  5665     bind(L);
  5667   pop_CPU_state();
  5670 void MacroAssembler::restore_cpu_control_state_after_jni() {
  5671   // Either restore the MXCSR register after returning from the JNI Call
  5672   // or verify that it wasn't changed (with -Xcheck:jni flag).
  5673   if (VM_Version::supports_sse()) {
  5674     if (RestoreMXCSROnJNICalls) {
  5675       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  5676     } else if (CheckJNICalls) {
  5677       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  5680   if (VM_Version::supports_avx()) {
  5681     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
  5682     vzeroupper();
  5685 #ifndef _LP64
  5686   // Either restore the x87 floating pointer control word after returning
  5687   // from the JNI call or verify that it wasn't changed.
  5688   if (CheckJNICalls) {
  5689     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  5691 #endif // _LP64
  5695 void MacroAssembler::load_klass(Register dst, Register src) {
  5696 #ifdef _LP64
  5697   if (UseCompressedClassPointers) {
  5698     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5699     decode_klass_not_null(dst);
  5700   } else
  5701 #endif
  5702     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  5705 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  5706   load_klass(dst, src);
  5707   movptr(dst, Address(dst, Klass::prototype_header_offset()));
  5710 void MacroAssembler::store_klass(Register dst, Register src) {
  5711 #ifdef _LP64
  5712   if (UseCompressedClassPointers) {
  5713     encode_klass_not_null(src);
  5714     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5715   } else
  5716 #endif
  5717     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  5720 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  5721 #ifdef _LP64
  5722   // FIXME: Must change all places where we try to load the klass.
  5723   if (UseCompressedOops) {
  5724     movl(dst, src);
  5725     decode_heap_oop(dst);
  5726   } else
  5727 #endif
  5728     movptr(dst, src);
  5731 // Doesn't do verfication, generates fixed size code
  5732 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
  5733 #ifdef _LP64
  5734   if (UseCompressedOops) {
  5735     movl(dst, src);
  5736     decode_heap_oop_not_null(dst);
  5737   } else
  5738 #endif
  5739     movptr(dst, src);
  5742 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  5743 #ifdef _LP64
  5744   if (UseCompressedOops) {
  5745     assert(!dst.uses(src), "not enough registers");
  5746     encode_heap_oop(src);
  5747     movl(dst, src);
  5748   } else
  5749 #endif
  5750     movptr(dst, src);
  5753 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
  5754   assert_different_registers(src1, tmp);
  5755 #ifdef _LP64
  5756   if (UseCompressedOops) {
  5757     bool did_push = false;
  5758     if (tmp == noreg) {
  5759       tmp = rax;
  5760       push(tmp);
  5761       did_push = true;
  5762       assert(!src2.uses(rsp), "can't push");
  5764     load_heap_oop(tmp, src2);
  5765     cmpptr(src1, tmp);
  5766     if (did_push)  pop(tmp);
  5767   } else
  5768 #endif
  5769     cmpptr(src1, src2);
  5772 // Used for storing NULLs.
  5773 void MacroAssembler::store_heap_oop_null(Address dst) {
  5774 #ifdef _LP64
  5775   if (UseCompressedOops) {
  5776     movl(dst, (int32_t)NULL_WORD);
  5777   } else {
  5778     movslq(dst, (int32_t)NULL_WORD);
  5780 #else
  5781   movl(dst, (int32_t)NULL_WORD);
  5782 #endif
  5785 #ifdef _LP64
  5786 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  5787   if (UseCompressedClassPointers) {
  5788     // Store to klass gap in destination
  5789     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  5793 #ifdef ASSERT
  5794 void MacroAssembler::verify_heapbase(const char* msg) {
  5795   assert (UseCompressedOops, "should be compressed");
  5796   assert (Universe::heap() != NULL, "java heap should be initialized");
  5797   if (CheckCompressedOops) {
  5798     Label ok;
  5799     push(rscratch1); // cmpptr trashes rscratch1
  5800     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  5801     jcc(Assembler::equal, ok);
  5802     STOP(msg);
  5803     bind(ok);
  5804     pop(rscratch1);
  5807 #endif
  5809 // Algorithm must match oop.inline.hpp encode_heap_oop.
  5810 void MacroAssembler::encode_heap_oop(Register r) {
  5811 #ifdef ASSERT
  5812   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  5813 #endif
  5814   verify_oop(r, "broken oop in encode_heap_oop");
  5815   if (Universe::narrow_oop_base() == NULL) {
  5816     if (Universe::narrow_oop_shift() != 0) {
  5817       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5818       shrq(r, LogMinObjAlignmentInBytes);
  5820     return;
  5822   testq(r, r);
  5823   cmovq(Assembler::equal, r, r12_heapbase);
  5824   subq(r, r12_heapbase);
  5825   shrq(r, LogMinObjAlignmentInBytes);
  5828 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  5829 #ifdef ASSERT
  5830   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  5831   if (CheckCompressedOops) {
  5832     Label ok;
  5833     testq(r, r);
  5834     jcc(Assembler::notEqual, ok);
  5835     STOP("null oop passed to encode_heap_oop_not_null");
  5836     bind(ok);
  5838 #endif
  5839   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  5840   if (Universe::narrow_oop_base() != NULL) {
  5841     subq(r, r12_heapbase);
  5843   if (Universe::narrow_oop_shift() != 0) {
  5844     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5845     shrq(r, LogMinObjAlignmentInBytes);
  5849 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  5850 #ifdef ASSERT
  5851   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  5852   if (CheckCompressedOops) {
  5853     Label ok;
  5854     testq(src, src);
  5855     jcc(Assembler::notEqual, ok);
  5856     STOP("null oop passed to encode_heap_oop_not_null2");
  5857     bind(ok);
  5859 #endif
  5860   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  5861   if (dst != src) {
  5862     movq(dst, src);
  5864   if (Universe::narrow_oop_base() != NULL) {
  5865     subq(dst, r12_heapbase);
  5867   if (Universe::narrow_oop_shift() != 0) {
  5868     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5869     shrq(dst, LogMinObjAlignmentInBytes);
  5873 void  MacroAssembler::decode_heap_oop(Register r) {
  5874 #ifdef ASSERT
  5875   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  5876 #endif
  5877   if (Universe::narrow_oop_base() == NULL) {
  5878     if (Universe::narrow_oop_shift() != 0) {
  5879       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5880       shlq(r, LogMinObjAlignmentInBytes);
  5882   } else {
  5883     Label done;
  5884     shlq(r, LogMinObjAlignmentInBytes);
  5885     jccb(Assembler::equal, done);
  5886     addq(r, r12_heapbase);
  5887     bind(done);
  5889   verify_oop(r, "broken oop in decode_heap_oop");
  5892 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  5893   // Note: it will change flags
  5894   assert (UseCompressedOops, "should only be used for compressed headers");
  5895   assert (Universe::heap() != NULL, "java heap should be initialized");
  5896   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5897   // vtableStubs also counts instructions in pd_code_size_limit.
  5898   // Also do not verify_oop as this is called by verify_oop.
  5899   if (Universe::narrow_oop_shift() != 0) {
  5900     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5901     shlq(r, LogMinObjAlignmentInBytes);
  5902     if (Universe::narrow_oop_base() != NULL) {
  5903       addq(r, r12_heapbase);
  5905   } else {
  5906     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5910 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  5911   // Note: it will change flags
  5912   assert (UseCompressedOops, "should only be used for compressed headers");
  5913   assert (Universe::heap() != NULL, "java heap should be initialized");
  5914   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5915   // vtableStubs also counts instructions in pd_code_size_limit.
  5916   // Also do not verify_oop as this is called by verify_oop.
  5917   if (Universe::narrow_oop_shift() != 0) {
  5918     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  5919     if (LogMinObjAlignmentInBytes == Address::times_8) {
  5920       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  5921     } else {
  5922       if (dst != src) {
  5923         movq(dst, src);
  5925       shlq(dst, LogMinObjAlignmentInBytes);
  5926       if (Universe::narrow_oop_base() != NULL) {
  5927         addq(dst, r12_heapbase);
  5930   } else {
  5931     assert (Universe::narrow_oop_base() == NULL, "sanity");
  5932     if (dst != src) {
  5933       movq(dst, src);
  5938 void MacroAssembler::encode_klass_not_null(Register r) {
  5939   if (Universe::narrow_klass_base() != NULL) {
  5940     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  5941     assert(r != r12_heapbase, "Encoding a klass in r12");
  5942     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  5943     subq(r, r12_heapbase);
  5945   if (Universe::narrow_klass_shift() != 0) {
  5946     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5947     shrq(r, LogKlassAlignmentInBytes);
  5949   if (Universe::narrow_klass_base() != NULL) {
  5950     reinit_heapbase();
  5954 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  5955   if (dst == src) {
  5956     encode_klass_not_null(src);
  5957   } else {
  5958     if (Universe::narrow_klass_base() != NULL) {
  5959       mov64(dst, (int64_t)Universe::narrow_klass_base());
  5960       negq(dst);
  5961       addq(dst, src);
  5962     } else {
  5963       movptr(dst, src);
  5965     if (Universe::narrow_klass_shift() != 0) {
  5966       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5967       shrq(dst, LogKlassAlignmentInBytes);
  5972 // Function instr_size_for_decode_klass_not_null() counts the instructions
  5973 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  5974 // when (Universe::heap() != NULL).  Hence, if the instructions they
  5975 // generate change, then this method needs to be updated.
  5976 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  5977   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  5978   if (Universe::narrow_klass_base() != NULL) {
  5979     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  5980     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
  5981   } else {
  5982     // longest load decode klass function, mov64, leaq
  5983     return 16;
  5987 // !!! If the instructions that get generated here change then function
  5988 // instr_size_for_decode_klass_not_null() needs to get updated.
  5989 void  MacroAssembler::decode_klass_not_null(Register r) {
  5990   // Note: it will change flags
  5991   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  5992   assert(r != r12_heapbase, "Decoding a klass in r12");
  5993   // Cannot assert, unverified entry point counts instructions (see .ad file)
  5994   // vtableStubs also counts instructions in pd_code_size_limit.
  5995   // Also do not verify_oop as this is called by verify_oop.
  5996   if (Universe::narrow_klass_shift() != 0) {
  5997     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  5998     shlq(r, LogKlassAlignmentInBytes);
  6000   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
  6001   if (Universe::narrow_klass_base() != NULL) {
  6002     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
  6003     addq(r, r12_heapbase);
  6004     reinit_heapbase();
  6008 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  6009   // Note: it will change flags
  6010   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6011   if (dst == src) {
  6012     decode_klass_not_null(dst);
  6013   } else {
  6014     // Cannot assert, unverified entry point counts instructions (see .ad file)
  6015     // vtableStubs also counts instructions in pd_code_size_limit.
  6016     // Also do not verify_oop as this is called by verify_oop.
  6017     mov64(dst, (int64_t)Universe::narrow_klass_base());
  6018     if (Universe::narrow_klass_shift() != 0) {
  6019       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  6020       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  6021       leaq(dst, Address(dst, src, Address::times_8, 0));
  6022     } else {
  6023       addq(dst, src);
  6028 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  6029   assert (UseCompressedOops, "should only be used for compressed headers");
  6030   assert (Universe::heap() != NULL, "java heap should be initialized");
  6031   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6032   int oop_index = oop_recorder()->find_index(obj);
  6033   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6034   mov_narrow_oop(dst, oop_index, rspec);
  6037 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  6038   assert (UseCompressedOops, "should only be used for compressed headers");
  6039   assert (Universe::heap() != NULL, "java heap should be initialized");
  6040   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6041   int oop_index = oop_recorder()->find_index(obj);
  6042   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6043   mov_narrow_oop(dst, oop_index, rspec);
  6046 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  6047   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6048   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6049   int klass_index = oop_recorder()->find_index(k);
  6050   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6051   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6054 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
  6055   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6056   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6057   int klass_index = oop_recorder()->find_index(k);
  6058   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6059   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6062 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  6063   assert (UseCompressedOops, "should only be used for compressed headers");
  6064   assert (Universe::heap() != NULL, "java heap should be initialized");
  6065   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6066   int oop_index = oop_recorder()->find_index(obj);
  6067   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6068   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  6071 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  6072   assert (UseCompressedOops, "should only be used for compressed headers");
  6073   assert (Universe::heap() != NULL, "java heap should be initialized");
  6074   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6075   int oop_index = oop_recorder()->find_index(obj);
  6076   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6077   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  6080 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
  6081   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6082   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6083   int klass_index = oop_recorder()->find_index(k);
  6084   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6085   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6088 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
  6089   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  6090   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6091   int klass_index = oop_recorder()->find_index(k);
  6092   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6093   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
  6096 void MacroAssembler::reinit_heapbase() {
  6097   if (UseCompressedOops || UseCompressedClassPointers) {
  6098     if (Universe::heap() != NULL) {
  6099       if (Universe::narrow_oop_base() == NULL) {
  6100         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
  6101       } else {
  6102         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
  6104     } else {
  6105       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
  6110 #endif // _LP64
  6113 // C2 compiled method's prolog code.
  6114 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
  6116   // WARNING: Initial instruction MUST be 5 bytes or longer so that
  6117   // NativeJump::patch_verified_entry will be able to patch out the entry
  6118   // code safely. The push to verify stack depth is ok at 5 bytes,
  6119   // the frame allocation can be either 3 or 6 bytes. So if we don't do
  6120   // stack bang then we must use the 6 byte frame allocation even if
  6121   // we have no frame. :-(
  6122   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
  6124   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  6125   // Remove word for return addr
  6126   framesize -= wordSize;
  6127   stack_bang_size -= wordSize;
  6129   // Calls to C2R adapters often do not accept exceptional returns.
  6130   // We require that their callers must bang for them.  But be careful, because
  6131   // some VM calls (such as call site linkage) can use several kilobytes of
  6132   // stack.  But the stack safety zone should account for that.
  6133   // See bugs 4446381, 4468289, 4497237.
  6134   if (stack_bang_size > 0) {
  6135     generate_stack_overflow_check(stack_bang_size);
  6137     // We always push rbp, so that on return to interpreter rbp, will be
  6138     // restored correctly and we can correct the stack.
  6139     push(rbp);
  6140     // Save caller's stack pointer into RBP if the frame pointer is preserved.
  6141     if (PreserveFramePointer) {
  6142       mov(rbp, rsp);
  6144     // Remove word for ebp
  6145     framesize -= wordSize;
  6147     // Create frame
  6148     if (framesize) {
  6149       subptr(rsp, framesize);
  6151   } else {
  6152     // Create frame (force generation of a 4 byte immediate value)
  6153     subptr_imm32(rsp, framesize);
  6155     // Save RBP register now.
  6156     framesize -= wordSize;
  6157     movptr(Address(rsp, framesize), rbp);
  6158     // Save caller's stack pointer into RBP if the frame pointer is preserved.
  6159     if (PreserveFramePointer) {
  6160       movptr(rbp, rsp);
  6161       if (framesize > 0) {
  6162         addptr(rbp, framesize);
  6167   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
  6168     framesize -= wordSize;
  6169     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
  6172 #ifndef _LP64
  6173   // If method sets FPU control word do it now
  6174   if (fp_mode_24b) {
  6175     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
  6177   if (UseSSE >= 2 && VerifyFPU) {
  6178     verify_FPU(0, "FPU stack must be clean on entry");
  6180 #endif
  6182 #ifdef ASSERT
  6183   if (VerifyStackAtCalls) {
  6184     Label L;
  6185     push(rax);
  6186     mov(rax, rsp);
  6187     andptr(rax, StackAlignmentInBytes-1);
  6188     cmpptr(rax, StackAlignmentInBytes-wordSize);
  6189     pop(rax);
  6190     jcc(Assembler::equal, L);
  6191     STOP("Stack is not properly aligned!");
  6192     bind(L);
  6194 #endif
  6198 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
  6199   // cnt - number of qwords (8-byte words).
  6200   // base - start address, qword aligned.
  6201   assert(base==rdi, "base register must be edi for rep stos");
  6202   assert(tmp==rax,   "tmp register must be eax for rep stos");
  6203   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
  6205   xorptr(tmp, tmp);
  6206   if (UseFastStosb) {
  6207     shlptr(cnt,3); // convert to number of bytes
  6208     rep_stosb();
  6209   } else {
  6210     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
  6211     rep_stos();
  6215 // IndexOf for constant substrings with size >= 8 chars
  6216 // which don't need to be loaded through stack.
  6217 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  6218                                       Register cnt1, Register cnt2,
  6219                                       int int_cnt2,  Register result,
  6220                                       XMMRegister vec, Register tmp) {
  6221   ShortBranchVerifier sbv(this);
  6222   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  6224   // This method uses pcmpestri inxtruction with bound registers
  6225   //   inputs:
  6226   //     xmm - substring
  6227   //     rax - substring length (elements count)
  6228   //     mem - scanned string
  6229   //     rdx - string length (elements count)
  6230   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  6231   //   outputs:
  6232   //     rcx - matched index in string
  6233   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6235   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  6236         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  6237         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  6239   // Note, inline_string_indexOf() generates checks:
  6240   // if (substr.count > string.count) return -1;
  6241   // if (substr.count == 0) return 0;
  6242   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  6244   // Load substring.
  6245   movdqu(vec, Address(str2, 0));
  6246   movl(cnt2, int_cnt2);
  6247   movptr(result, str1); // string addr
  6249   if (int_cnt2 > 8) {
  6250     jmpb(SCAN_TO_SUBSTR);
  6252     // Reload substr for rescan, this code
  6253     // is executed only for large substrings (> 8 chars)
  6254     bind(RELOAD_SUBSTR);
  6255     movdqu(vec, Address(str2, 0));
  6256     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  6258     bind(RELOAD_STR);
  6259     // We came here after the beginning of the substring was
  6260     // matched but the rest of it was not so we need to search
  6261     // again. Start from the next element after the previous match.
  6263     // cnt2 is number of substring reminding elements and
  6264     // cnt1 is number of string reminding elements when cmp failed.
  6265     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  6266     subl(cnt1, cnt2);
  6267     addl(cnt1, int_cnt2);
  6268     movl(cnt2, int_cnt2); // Now restore cnt2
  6270     decrementl(cnt1);     // Shift to next element
  6271     cmpl(cnt1, cnt2);
  6272     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6274     addptr(result, 2);
  6276   } // (int_cnt2 > 8)
  6278   // Scan string for start of substr in 16-byte vectors
  6279   bind(SCAN_TO_SUBSTR);
  6280   pcmpestri(vec, Address(result, 0), 0x0d);
  6281   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  6282   subl(cnt1, 8);
  6283   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  6284   cmpl(cnt1, cnt2);
  6285   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6286   addptr(result, 16);
  6287   jmpb(SCAN_TO_SUBSTR);
  6289   // Found a potential substr
  6290   bind(FOUND_CANDIDATE);
  6291   // Matched whole vector if first element matched (tmp(rcx) == 0).
  6292   if (int_cnt2 == 8) {
  6293     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  6294   } else { // int_cnt2 > 8
  6295     jccb(Assembler::overflow, FOUND_SUBSTR);
  6297   // After pcmpestri tmp(rcx) contains matched element index
  6298   // Compute start addr of substr
  6299   lea(result, Address(result, tmp, Address::times_2));
  6301   // Make sure string is still long enough
  6302   subl(cnt1, tmp);
  6303   cmpl(cnt1, cnt2);
  6304   if (int_cnt2 == 8) {
  6305     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  6306   } else { // int_cnt2 > 8
  6307     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  6309   // Left less then substring.
  6311   bind(RET_NOT_FOUND);
  6312   movl(result, -1);
  6313   jmpb(EXIT);
  6315   if (int_cnt2 > 8) {
  6316     // This code is optimized for the case when whole substring
  6317     // is matched if its head is matched.
  6318     bind(MATCH_SUBSTR_HEAD);
  6319     pcmpestri(vec, Address(result, 0), 0x0d);
  6320     // Reload only string if does not match
  6321     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  6323     Label CONT_SCAN_SUBSTR;
  6324     // Compare the rest of substring (> 8 chars).
  6325     bind(FOUND_SUBSTR);
  6326     // First 8 chars are already matched.
  6327     negptr(cnt2);
  6328     addptr(cnt2, 8);
  6330     bind(SCAN_SUBSTR);
  6331     subl(cnt1, 8);
  6332     cmpl(cnt2, -8); // Do not read beyond substring
  6333     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  6334     // Back-up strings to avoid reading beyond substring:
  6335     // cnt1 = cnt1 - cnt2 + 8
  6336     addl(cnt1, cnt2); // cnt2 is negative
  6337     addl(cnt1, 8);
  6338     movl(cnt2, 8); negptr(cnt2);
  6339     bind(CONT_SCAN_SUBSTR);
  6340     if (int_cnt2 < (int)G) {
  6341       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  6342       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  6343     } else {
  6344       // calculate index in register to avoid integer overflow (int_cnt2*2)
  6345       movl(tmp, int_cnt2);
  6346       addptr(tmp, cnt2);
  6347       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  6348       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  6350     // Need to reload strings pointers if not matched whole vector
  6351     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  6352     addptr(cnt2, 8);
  6353     jcc(Assembler::negative, SCAN_SUBSTR);
  6354     // Fall through if found full substring
  6356   } // (int_cnt2 > 8)
  6358   bind(RET_FOUND);
  6359   // Found result if we matched full small substring.
  6360   // Compute substr offset
  6361   subptr(result, str1);
  6362   shrl(result, 1); // index
  6363   bind(EXIT);
  6365 } // string_indexofC8
  6367 // Small strings are loaded through stack if they cross page boundary.
  6368 void MacroAssembler::string_indexof(Register str1, Register str2,
  6369                                     Register cnt1, Register cnt2,
  6370                                     int int_cnt2,  Register result,
  6371                                     XMMRegister vec, Register tmp) {
  6372   ShortBranchVerifier sbv(this);
  6373   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  6374   //
  6375   // int_cnt2 is length of small (< 8 chars) constant substring
  6376   // or (-1) for non constant substring in which case its length
  6377   // is in cnt2 register.
  6378   //
  6379   // Note, inline_string_indexOf() generates checks:
  6380   // if (substr.count > string.count) return -1;
  6381   // if (substr.count == 0) return 0;
  6382   //
  6383   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  6385   // This method uses pcmpestri inxtruction with bound registers
  6386   //   inputs:
  6387   //     xmm - substring
  6388   //     rax - substring length (elements count)
  6389   //     mem - scanned string
  6390   //     rdx - string length (elements count)
  6391   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  6392   //   outputs:
  6393   //     rcx - matched index in string
  6394   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6396   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  6397         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  6398         FOUND_CANDIDATE;
  6400   { //========================================================
  6401     // We don't know where these strings are located
  6402     // and we can't read beyond them. Load them through stack.
  6403     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  6405     movptr(tmp, rsp); // save old SP
  6407     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  6408       if (int_cnt2 == 1) {  // One char
  6409         load_unsigned_short(result, Address(str2, 0));
  6410         movdl(vec, result); // move 32 bits
  6411       } else if (int_cnt2 == 2) { // Two chars
  6412         movdl(vec, Address(str2, 0)); // move 32 bits
  6413       } else if (int_cnt2 == 4) { // Four chars
  6414         movq(vec, Address(str2, 0));  // move 64 bits
  6415       } else { // cnt2 = { 3, 5, 6, 7 }
  6416         // Array header size is 12 bytes in 32-bit VM
  6417         // + 6 bytes for 3 chars == 18 bytes,
  6418         // enough space to load vec and shift.
  6419         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
  6420         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  6421         psrldq(vec, 16-(int_cnt2*2));
  6423     } else { // not constant substring
  6424       cmpl(cnt2, 8);
  6425       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  6427       // We can read beyond string if srt+16 does not cross page boundary
  6428       // since heaps are aligned and mapped by pages.
  6429       assert(os::vm_page_size() < (int)G, "default page should be small");
  6430       movl(result, str2); // We need only low 32 bits
  6431       andl(result, (os::vm_page_size()-1));
  6432       cmpl(result, (os::vm_page_size()-16));
  6433       jccb(Assembler::belowEqual, CHECK_STR);
  6435       // Move small strings to stack to allow load 16 bytes into vec.
  6436       subptr(rsp, 16);
  6437       int stk_offset = wordSize-2;
  6438       push(cnt2);
  6440       bind(COPY_SUBSTR);
  6441       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  6442       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  6443       decrement(cnt2);
  6444       jccb(Assembler::notZero, COPY_SUBSTR);
  6446       pop(cnt2);
  6447       movptr(str2, rsp);  // New substring address
  6448     } // non constant
  6450     bind(CHECK_STR);
  6451     cmpl(cnt1, 8);
  6452     jccb(Assembler::aboveEqual, BIG_STRINGS);
  6454     // Check cross page boundary.
  6455     movl(result, str1); // We need only low 32 bits
  6456     andl(result, (os::vm_page_size()-1));
  6457     cmpl(result, (os::vm_page_size()-16));
  6458     jccb(Assembler::belowEqual, BIG_STRINGS);
  6460     subptr(rsp, 16);
  6461     int stk_offset = -2;
  6462     if (int_cnt2 < 0) { // not constant
  6463       push(cnt2);
  6464       stk_offset += wordSize;
  6466     movl(cnt2, cnt1);
  6468     bind(COPY_STR);
  6469     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  6470     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  6471     decrement(cnt2);
  6472     jccb(Assembler::notZero, COPY_STR);
  6474     if (int_cnt2 < 0) { // not constant
  6475       pop(cnt2);
  6477     movptr(str1, rsp);  // New string address
  6479     bind(BIG_STRINGS);
  6480     // Load substring.
  6481     if (int_cnt2 < 0) { // -1
  6482       movdqu(vec, Address(str2, 0));
  6483       push(cnt2);       // substr count
  6484       push(str2);       // substr addr
  6485       push(str1);       // string addr
  6486     } else {
  6487       // Small (< 8 chars) constant substrings are loaded already.
  6488       movl(cnt2, int_cnt2);
  6490     push(tmp);  // original SP
  6492   } // Finished loading
  6494   //========================================================
  6495   // Start search
  6496   //
  6498   movptr(result, str1); // string addr
  6500   if (int_cnt2  < 0) {  // Only for non constant substring
  6501     jmpb(SCAN_TO_SUBSTR);
  6503     // SP saved at sp+0
  6504     // String saved at sp+1*wordSize
  6505     // Substr saved at sp+2*wordSize
  6506     // Substr count saved at sp+3*wordSize
  6508     // Reload substr for rescan, this code
  6509     // is executed only for large substrings (> 8 chars)
  6510     bind(RELOAD_SUBSTR);
  6511     movptr(str2, Address(rsp, 2*wordSize));
  6512     movl(cnt2, Address(rsp, 3*wordSize));
  6513     movdqu(vec, Address(str2, 0));
  6514     // We came here after the beginning of the substring was
  6515     // matched but the rest of it was not so we need to search
  6516     // again. Start from the next element after the previous match.
  6517     subptr(str1, result); // Restore counter
  6518     shrl(str1, 1);
  6519     addl(cnt1, str1);
  6520     decrementl(cnt1);   // Shift to next element
  6521     cmpl(cnt1, cnt2);
  6522     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6524     addptr(result, 2);
  6525   } // non constant
  6527   // Scan string for start of substr in 16-byte vectors
  6528   bind(SCAN_TO_SUBSTR);
  6529   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  6530   pcmpestri(vec, Address(result, 0), 0x0d);
  6531   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  6532   subl(cnt1, 8);
  6533   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  6534   cmpl(cnt1, cnt2);
  6535   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  6536   addptr(result, 16);
  6538   bind(ADJUST_STR);
  6539   cmpl(cnt1, 8); // Do not read beyond string
  6540   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  6541   // Back-up string to avoid reading beyond string.
  6542   lea(result, Address(result, cnt1, Address::times_2, -16));
  6543   movl(cnt1, 8);
  6544   jmpb(SCAN_TO_SUBSTR);
  6546   // Found a potential substr
  6547   bind(FOUND_CANDIDATE);
  6548   // After pcmpestri tmp(rcx) contains matched element index
  6550   // Make sure string is still long enough
  6551   subl(cnt1, tmp);
  6552   cmpl(cnt1, cnt2);
  6553   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  6554   // Left less then substring.
  6556   bind(RET_NOT_FOUND);
  6557   movl(result, -1);
  6558   jmpb(CLEANUP);
  6560   bind(FOUND_SUBSTR);
  6561   // Compute start addr of substr
  6562   lea(result, Address(result, tmp, Address::times_2));
  6564   if (int_cnt2 > 0) { // Constant substring
  6565     // Repeat search for small substring (< 8 chars)
  6566     // from new point without reloading substring.
  6567     // Have to check that we don't read beyond string.
  6568     cmpl(tmp, 8-int_cnt2);
  6569     jccb(Assembler::greater, ADJUST_STR);
  6570     // Fall through if matched whole substring.
  6571   } else { // non constant
  6572     assert(int_cnt2 == -1, "should be != 0");
  6574     addl(tmp, cnt2);
  6575     // Found result if we matched whole substring.
  6576     cmpl(tmp, 8);
  6577     jccb(Assembler::lessEqual, RET_FOUND);
  6579     // Repeat search for small substring (<= 8 chars)
  6580     // from new point 'str1' without reloading substring.
  6581     cmpl(cnt2, 8);
  6582     // Have to check that we don't read beyond string.
  6583     jccb(Assembler::lessEqual, ADJUST_STR);
  6585     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  6586     // Compare the rest of substring (> 8 chars).
  6587     movptr(str1, result);
  6589     cmpl(tmp, cnt2);
  6590     // First 8 chars are already matched.
  6591     jccb(Assembler::equal, CHECK_NEXT);
  6593     bind(SCAN_SUBSTR);
  6594     pcmpestri(vec, Address(str1, 0), 0x0d);
  6595     // Need to reload strings pointers if not matched whole vector
  6596     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  6598     bind(CHECK_NEXT);
  6599     subl(cnt2, 8);
  6600     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  6601     addptr(str1, 16);
  6602     addptr(str2, 16);
  6603     subl(cnt1, 8);
  6604     cmpl(cnt2, 8); // Do not read beyond substring
  6605     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  6606     // Back-up strings to avoid reading beyond substring.
  6607     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  6608     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  6609     subl(cnt1, cnt2);
  6610     movl(cnt2, 8);
  6611     addl(cnt1, 8);
  6612     bind(CONT_SCAN_SUBSTR);
  6613     movdqu(vec, Address(str2, 0));
  6614     jmpb(SCAN_SUBSTR);
  6616     bind(RET_FOUND_LONG);
  6617     movptr(str1, Address(rsp, wordSize));
  6618   } // non constant
  6620   bind(RET_FOUND);
  6621   // Compute substr offset
  6622   subptr(result, str1);
  6623   shrl(result, 1); // index
  6625   bind(CLEANUP);
  6626   pop(rsp); // restore SP
  6628 } // string_indexof
  6630 // Compare strings.
  6631 void MacroAssembler::string_compare(Register str1, Register str2,
  6632                                     Register cnt1, Register cnt2, Register result,
  6633                                     XMMRegister vec1) {
  6634   ShortBranchVerifier sbv(this);
  6635   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  6637   // Compute the minimum of the string lengths and the
  6638   // difference of the string lengths (stack).
  6639   // Do the conditional move stuff
  6640   movl(result, cnt1);
  6641   subl(cnt1, cnt2);
  6642   push(cnt1);
  6643   cmov32(Assembler::lessEqual, cnt2, result);
  6645   // Is the minimum length zero?
  6646   testl(cnt2, cnt2);
  6647   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  6649   // Compare first characters
  6650   load_unsigned_short(result, Address(str1, 0));
  6651   load_unsigned_short(cnt1, Address(str2, 0));
  6652   subl(result, cnt1);
  6653   jcc(Assembler::notZero,  POP_LABEL);
  6654   cmpl(cnt2, 1);
  6655   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  6657   // Check if the strings start at the same location.
  6658   cmpptr(str1, str2);
  6659   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
  6661   Address::ScaleFactor scale = Address::times_2;
  6662   int stride = 8;
  6664   if (UseAVX >= 2 && UseSSE42Intrinsics) {
  6665     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
  6666     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
  6667     Label COMPARE_TAIL_LONG;
  6668     int pcmpmask = 0x19;
  6670     // Setup to compare 16-chars (32-bytes) vectors,
  6671     // start from first character again because it has aligned address.
  6672     int stride2 = 16;
  6673     int adr_stride  = stride  << scale;
  6674     int adr_stride2 = stride2 << scale;
  6676     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  6677     // rax and rdx are used by pcmpestri as elements counters
  6678     movl(result, cnt2);
  6679     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
  6680     jcc(Assembler::zero, COMPARE_TAIL_LONG);
  6682     // fast path : compare first 2 8-char vectors.
  6683     bind(COMPARE_16_CHARS);
  6684     movdqu(vec1, Address(str1, 0));
  6685     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  6686     jccb(Assembler::below, COMPARE_INDEX_CHAR);
  6688     movdqu(vec1, Address(str1, adr_stride));
  6689     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
  6690     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
  6691     addl(cnt1, stride);
  6693     // Compare the characters at index in cnt1
  6694     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
  6695     load_unsigned_short(result, Address(str1, cnt1, scale));
  6696     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  6697     subl(result, cnt2);
  6698     jmp(POP_LABEL);
  6700     // Setup the registers to start vector comparison loop
  6701     bind(COMPARE_WIDE_VECTORS);
  6702     lea(str1, Address(str1, result, scale));
  6703     lea(str2, Address(str2, result, scale));
  6704     subl(result, stride2);
  6705     subl(cnt2, stride2);
  6706     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
  6707     negptr(result);
  6709     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
  6710     bind(COMPARE_WIDE_VECTORS_LOOP);
  6711     vmovdqu(vec1, Address(str1, result, scale));
  6712     vpxor(vec1, Address(str2, result, scale));
  6713     vptest(vec1, vec1);
  6714     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
  6715     addptr(result, stride2);
  6716     subl(cnt2, stride2);
  6717     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
  6718     // clean upper bits of YMM registers
  6719     vpxor(vec1, vec1);
  6721     // compare wide vectors tail
  6722     bind(COMPARE_WIDE_TAIL);
  6723     testptr(result, result);
  6724     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6726     movl(result, stride2);
  6727     movl(cnt2, result);
  6728     negptr(result);
  6729     jmpb(COMPARE_WIDE_VECTORS_LOOP);
  6731     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
  6732     bind(VECTOR_NOT_EQUAL);
  6733     // clean upper bits of YMM registers
  6734     vpxor(vec1, vec1);
  6735     lea(str1, Address(str1, result, scale));
  6736     lea(str2, Address(str2, result, scale));
  6737     jmp(COMPARE_16_CHARS);
  6739     // Compare tail chars, length between 1 to 15 chars
  6740     bind(COMPARE_TAIL_LONG);
  6741     movl(cnt2, result);
  6742     cmpl(cnt2, stride);
  6743     jccb(Assembler::less, COMPARE_SMALL_STR);
  6745     movdqu(vec1, Address(str1, 0));
  6746     pcmpestri(vec1, Address(str2, 0), pcmpmask);
  6747     jcc(Assembler::below, COMPARE_INDEX_CHAR);
  6748     subptr(cnt2, stride);
  6749     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6750     lea(str1, Address(str1, result, scale));
  6751     lea(str2, Address(str2, result, scale));
  6752     negptr(cnt2);
  6753     jmpb(WHILE_HEAD_LABEL);
  6755     bind(COMPARE_SMALL_STR);
  6756   } else if (UseSSE42Intrinsics) {
  6757     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  6758     int pcmpmask = 0x19;
  6759     // Setup to compare 8-char (16-byte) vectors,
  6760     // start from first character again because it has aligned address.
  6761     movl(result, cnt2);
  6762     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  6763     jccb(Assembler::zero, COMPARE_TAIL);
  6765     lea(str1, Address(str1, result, scale));
  6766     lea(str2, Address(str2, result, scale));
  6767     negptr(result);
  6769     // pcmpestri
  6770     //   inputs:
  6771     //     vec1- substring
  6772     //     rax - negative string length (elements count)
  6773     //     mem - scaned string
  6774     //     rdx - string length (elements count)
  6775     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  6776     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  6777     //   outputs:
  6778     //     rcx - first mismatched element index
  6779     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  6781     bind(COMPARE_WIDE_VECTORS);
  6782     movdqu(vec1, Address(str1, result, scale));
  6783     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  6784     // After pcmpestri cnt1(rcx) contains mismatched element index
  6786     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  6787     addptr(result, stride);
  6788     subptr(cnt2, stride);
  6789     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6791     // compare wide vectors tail
  6792     testptr(result, result);
  6793     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  6795     movl(cnt2, stride);
  6796     movl(result, stride);
  6797     negptr(result);
  6798     movdqu(vec1, Address(str1, result, scale));
  6799     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  6800     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  6802     // Mismatched characters in the vectors
  6803     bind(VECTOR_NOT_EQUAL);
  6804     addptr(cnt1, result);
  6805     load_unsigned_short(result, Address(str1, cnt1, scale));
  6806     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
  6807     subl(result, cnt2);
  6808     jmpb(POP_LABEL);
  6810     bind(COMPARE_TAIL); // limit is zero
  6811     movl(cnt2, result);
  6812     // Fallthru to tail compare
  6814   // Shift str2 and str1 to the end of the arrays, negate min
  6815   lea(str1, Address(str1, cnt2, scale));
  6816   lea(str2, Address(str2, cnt2, scale));
  6817   decrementl(cnt2);  // first character was compared already
  6818   negptr(cnt2);
  6820   // Compare the rest of the elements
  6821   bind(WHILE_HEAD_LABEL);
  6822   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  6823   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  6824   subl(result, cnt1);
  6825   jccb(Assembler::notZero, POP_LABEL);
  6826   increment(cnt2);
  6827   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  6829   // Strings are equal up to min length.  Return the length difference.
  6830   bind(LENGTH_DIFF_LABEL);
  6831   pop(result);
  6832   jmpb(DONE_LABEL);
  6834   // Discard the stored length difference
  6835   bind(POP_LABEL);
  6836   pop(cnt1);
  6838   // That's it
  6839   bind(DONE_LABEL);
  6842 // Compare char[] arrays aligned to 4 bytes or substrings.
  6843 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  6844                                         Register limit, Register result, Register chr,
  6845                                         XMMRegister vec1, XMMRegister vec2) {
  6846   ShortBranchVerifier sbv(this);
  6847   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  6849   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  6850   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  6852   // Check the input args
  6853   cmpptr(ary1, ary2);
  6854   jcc(Assembler::equal, TRUE_LABEL);
  6856   if (is_array_equ) {
  6857     // Need additional checks for arrays_equals.
  6858     testptr(ary1, ary1);
  6859     jcc(Assembler::zero, FALSE_LABEL);
  6860     testptr(ary2, ary2);
  6861     jcc(Assembler::zero, FALSE_LABEL);
  6863     // Check the lengths
  6864     movl(limit, Address(ary1, length_offset));
  6865     cmpl(limit, Address(ary2, length_offset));
  6866     jcc(Assembler::notEqual, FALSE_LABEL);
  6869   // count == 0
  6870   testl(limit, limit);
  6871   jcc(Assembler::zero, TRUE_LABEL);
  6873   if (is_array_equ) {
  6874     // Load array address
  6875     lea(ary1, Address(ary1, base_offset));
  6876     lea(ary2, Address(ary2, base_offset));
  6879   shll(limit, 1);      // byte count != 0
  6880   movl(result, limit); // copy
  6882   if (UseAVX >= 2) {
  6883     // With AVX2, use 32-byte vector compare
  6884     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6886     // Compare 32-byte vectors
  6887     andl(result, 0x0000001e);  //   tail count (in bytes)
  6888     andl(limit, 0xffffffe0);   // vector count (in bytes)
  6889     jccb(Assembler::zero, COMPARE_TAIL);
  6891     lea(ary1, Address(ary1, limit, Address::times_1));
  6892     lea(ary2, Address(ary2, limit, Address::times_1));
  6893     negptr(limit);
  6895     bind(COMPARE_WIDE_VECTORS);
  6896     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
  6897     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
  6898     vpxor(vec1, vec2);
  6900     vptest(vec1, vec1);
  6901     jccb(Assembler::notZero, FALSE_LABEL);
  6902     addptr(limit, 32);
  6903     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6905     testl(result, result);
  6906     jccb(Assembler::zero, TRUE_LABEL);
  6908     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
  6909     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
  6910     vpxor(vec1, vec2);
  6912     vptest(vec1, vec1);
  6913     jccb(Assembler::notZero, FALSE_LABEL);
  6914     jmpb(TRUE_LABEL);
  6916     bind(COMPARE_TAIL); // limit is zero
  6917     movl(limit, result);
  6918     // Fallthru to tail compare
  6919   } else if (UseSSE42Intrinsics) {
  6920     // With SSE4.2, use double quad vector compare
  6921     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  6923     // Compare 16-byte vectors
  6924     andl(result, 0x0000000e);  //   tail count (in bytes)
  6925     andl(limit, 0xfffffff0);   // vector count (in bytes)
  6926     jccb(Assembler::zero, COMPARE_TAIL);
  6928     lea(ary1, Address(ary1, limit, Address::times_1));
  6929     lea(ary2, Address(ary2, limit, Address::times_1));
  6930     negptr(limit);
  6932     bind(COMPARE_WIDE_VECTORS);
  6933     movdqu(vec1, Address(ary1, limit, Address::times_1));
  6934     movdqu(vec2, Address(ary2, limit, Address::times_1));
  6935     pxor(vec1, vec2);
  6937     ptest(vec1, vec1);
  6938     jccb(Assembler::notZero, FALSE_LABEL);
  6939     addptr(limit, 16);
  6940     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  6942     testl(result, result);
  6943     jccb(Assembler::zero, TRUE_LABEL);
  6945     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  6946     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  6947     pxor(vec1, vec2);
  6949     ptest(vec1, vec1);
  6950     jccb(Assembler::notZero, FALSE_LABEL);
  6951     jmpb(TRUE_LABEL);
  6953     bind(COMPARE_TAIL); // limit is zero
  6954     movl(limit, result);
  6955     // Fallthru to tail compare
  6958   // Compare 4-byte vectors
  6959   andl(limit, 0xfffffffc); // vector count (in bytes)
  6960   jccb(Assembler::zero, COMPARE_CHAR);
  6962   lea(ary1, Address(ary1, limit, Address::times_1));
  6963   lea(ary2, Address(ary2, limit, Address::times_1));
  6964   negptr(limit);
  6966   bind(COMPARE_VECTORS);
  6967   movl(chr, Address(ary1, limit, Address::times_1));
  6968   cmpl(chr, Address(ary2, limit, Address::times_1));
  6969   jccb(Assembler::notEqual, FALSE_LABEL);
  6970   addptr(limit, 4);
  6971   jcc(Assembler::notZero, COMPARE_VECTORS);
  6973   // Compare trailing char (final 2 bytes), if any
  6974   bind(COMPARE_CHAR);
  6975   testl(result, 0x2);   // tail  char
  6976   jccb(Assembler::zero, TRUE_LABEL);
  6977   load_unsigned_short(chr, Address(ary1, 0));
  6978   load_unsigned_short(limit, Address(ary2, 0));
  6979   cmpl(chr, limit);
  6980   jccb(Assembler::notEqual, FALSE_LABEL);
  6982   bind(TRUE_LABEL);
  6983   movl(result, 1);   // return true
  6984   jmpb(DONE);
  6986   bind(FALSE_LABEL);
  6987   xorl(result, result); // return false
  6989   // That's it
  6990   bind(DONE);
  6991   if (UseAVX >= 2) {
  6992     // clean upper bits of YMM registers
  6993     vpxor(vec1, vec1);
  6994     vpxor(vec2, vec2);
  6998 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  6999                                    Register to, Register value, Register count,
  7000                                    Register rtmp, XMMRegister xtmp) {
  7001   ShortBranchVerifier sbv(this);
  7002   assert_different_registers(to, value, count, rtmp);
  7003   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  7004   Label L_fill_2_bytes, L_fill_4_bytes;
  7006   int shift = -1;
  7007   switch (t) {
  7008     case T_BYTE:
  7009       shift = 2;
  7010       break;
  7011     case T_SHORT:
  7012       shift = 1;
  7013       break;
  7014     case T_INT:
  7015       shift = 0;
  7016       break;
  7017     default: ShouldNotReachHere();
  7020   if (t == T_BYTE) {
  7021     andl(value, 0xff);
  7022     movl(rtmp, value);
  7023     shll(rtmp, 8);
  7024     orl(value, rtmp);
  7026   if (t == T_SHORT) {
  7027     andl(value, 0xffff);
  7029   if (t == T_BYTE || t == T_SHORT) {
  7030     movl(rtmp, value);
  7031     shll(rtmp, 16);
  7032     orl(value, rtmp);
  7035   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  7036   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  7037   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  7038     // align source address at 4 bytes address boundary
  7039     if (t == T_BYTE) {
  7040       // One byte misalignment happens only for byte arrays
  7041       testptr(to, 1);
  7042       jccb(Assembler::zero, L_skip_align1);
  7043       movb(Address(to, 0), value);
  7044       increment(to);
  7045       decrement(count);
  7046       BIND(L_skip_align1);
  7048     // Two bytes misalignment happens only for byte and short (char) arrays
  7049     testptr(to, 2);
  7050     jccb(Assembler::zero, L_skip_align2);
  7051     movw(Address(to, 0), value);
  7052     addptr(to, 2);
  7053     subl(count, 1<<(shift-1));
  7054     BIND(L_skip_align2);
  7056   if (UseSSE < 2) {
  7057     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  7058     // Fill 32-byte chunks
  7059     subl(count, 8 << shift);
  7060     jcc(Assembler::less, L_check_fill_8_bytes);
  7061     align(16);
  7063     BIND(L_fill_32_bytes_loop);
  7065     for (int i = 0; i < 32; i += 4) {
  7066       movl(Address(to, i), value);
  7069     addptr(to, 32);
  7070     subl(count, 8 << shift);
  7071     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  7072     BIND(L_check_fill_8_bytes);
  7073     addl(count, 8 << shift);
  7074     jccb(Assembler::zero, L_exit);
  7075     jmpb(L_fill_8_bytes);
  7077     //
  7078     // length is too short, just fill qwords
  7079     //
  7080     BIND(L_fill_8_bytes_loop);
  7081     movl(Address(to, 0), value);
  7082     movl(Address(to, 4), value);
  7083     addptr(to, 8);
  7084     BIND(L_fill_8_bytes);
  7085     subl(count, 1 << (shift + 1));
  7086     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  7087     // fall through to fill 4 bytes
  7088   } else {
  7089     Label L_fill_32_bytes;
  7090     if (!UseUnalignedLoadStores) {
  7091       // align to 8 bytes, we know we are 4 byte aligned to start
  7092       testptr(to, 4);
  7093       jccb(Assembler::zero, L_fill_32_bytes);
  7094       movl(Address(to, 0), value);
  7095       addptr(to, 4);
  7096       subl(count, 1<<shift);
  7098     BIND(L_fill_32_bytes);
  7100       assert( UseSSE >= 2, "supported cpu only" );
  7101       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  7102       movdl(xtmp, value);
  7103       if (UseAVX >= 2 && UseUnalignedLoadStores) {
  7104         // Fill 64-byte chunks
  7105         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
  7106         vpbroadcastd(xtmp, xtmp);
  7108         subl(count, 16 << shift);
  7109         jcc(Assembler::less, L_check_fill_32_bytes);
  7110         align(16);
  7112         BIND(L_fill_64_bytes_loop);
  7113         vmovdqu(Address(to, 0), xtmp);
  7114         vmovdqu(Address(to, 32), xtmp);
  7115         addptr(to, 64);
  7116         subl(count, 16 << shift);
  7117         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
  7119         BIND(L_check_fill_32_bytes);
  7120         addl(count, 8 << shift);
  7121         jccb(Assembler::less, L_check_fill_8_bytes);
  7122         vmovdqu(Address(to, 0), xtmp);
  7123         addptr(to, 32);
  7124         subl(count, 8 << shift);
  7126         BIND(L_check_fill_8_bytes);
  7127         // clean upper bits of YMM registers
  7128         movdl(xtmp, value);
  7129         pshufd(xtmp, xtmp, 0);
  7130       } else {
  7131         // Fill 32-byte chunks
  7132         pshufd(xtmp, xtmp, 0);
  7134         subl(count, 8 << shift);
  7135         jcc(Assembler::less, L_check_fill_8_bytes);
  7136         align(16);
  7138         BIND(L_fill_32_bytes_loop);
  7140         if (UseUnalignedLoadStores) {
  7141           movdqu(Address(to, 0), xtmp);
  7142           movdqu(Address(to, 16), xtmp);
  7143         } else {
  7144           movq(Address(to, 0), xtmp);
  7145           movq(Address(to, 8), xtmp);
  7146           movq(Address(to, 16), xtmp);
  7147           movq(Address(to, 24), xtmp);
  7150         addptr(to, 32);
  7151         subl(count, 8 << shift);
  7152         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  7154         BIND(L_check_fill_8_bytes);
  7156       addl(count, 8 << shift);
  7157       jccb(Assembler::zero, L_exit);
  7158       jmpb(L_fill_8_bytes);
  7160       //
  7161       // length is too short, just fill qwords
  7162       //
  7163       BIND(L_fill_8_bytes_loop);
  7164       movq(Address(to, 0), xtmp);
  7165       addptr(to, 8);
  7166       BIND(L_fill_8_bytes);
  7167       subl(count, 1 << (shift + 1));
  7168       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  7171   // fill trailing 4 bytes
  7172   BIND(L_fill_4_bytes);
  7173   testl(count, 1<<shift);
  7174   jccb(Assembler::zero, L_fill_2_bytes);
  7175   movl(Address(to, 0), value);
  7176   if (t == T_BYTE || t == T_SHORT) {
  7177     addptr(to, 4);
  7178     BIND(L_fill_2_bytes);
  7179     // fill trailing 2 bytes
  7180     testl(count, 1<<(shift-1));
  7181     jccb(Assembler::zero, L_fill_byte);
  7182     movw(Address(to, 0), value);
  7183     if (t == T_BYTE) {
  7184       addptr(to, 2);
  7185       BIND(L_fill_byte);
  7186       // fill trailing byte
  7187       testl(count, 1);
  7188       jccb(Assembler::zero, L_exit);
  7189       movb(Address(to, 0), value);
  7190     } else {
  7191       BIND(L_fill_byte);
  7193   } else {
  7194     BIND(L_fill_2_bytes);
  7196   BIND(L_exit);
  7199 // encode char[] to byte[] in ISO_8859_1
  7200 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
  7201                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
  7202                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
  7203                                       Register tmp5, Register result) {
  7204   // rsi: src
  7205   // rdi: dst
  7206   // rdx: len
  7207   // rcx: tmp5
  7208   // rax: result
  7209   ShortBranchVerifier sbv(this);
  7210   assert_different_registers(src, dst, len, tmp5, result);
  7211   Label L_done, L_copy_1_char, L_copy_1_char_exit;
  7213   // set result
  7214   xorl(result, result);
  7215   // check for zero length
  7216   testl(len, len);
  7217   jcc(Assembler::zero, L_done);
  7218   movl(result, len);
  7220   // Setup pointers
  7221   lea(src, Address(src, len, Address::times_2)); // char[]
  7222   lea(dst, Address(dst, len, Address::times_1)); // byte[]
  7223   negptr(len);
  7225   if (UseSSE42Intrinsics || UseAVX >= 2) {
  7226     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
  7227     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
  7229     if (UseAVX >= 2) {
  7230       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
  7231       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  7232       movdl(tmp1Reg, tmp5);
  7233       vpbroadcastd(tmp1Reg, tmp1Reg);
  7234       jmpb(L_chars_32_check);
  7236       bind(L_copy_32_chars);
  7237       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
  7238       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
  7239       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  7240       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  7241       jccb(Assembler::notZero, L_copy_32_chars_exit);
  7242       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
  7243       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
  7244       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
  7246       bind(L_chars_32_check);
  7247       addptr(len, 32);
  7248       jccb(Assembler::lessEqual, L_copy_32_chars);
  7250       bind(L_copy_32_chars_exit);
  7251       subptr(len, 16);
  7252       jccb(Assembler::greater, L_copy_16_chars_exit);
  7254     } else if (UseSSE42Intrinsics) {
  7255       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
  7256       movdl(tmp1Reg, tmp5);
  7257       pshufd(tmp1Reg, tmp1Reg, 0);
  7258       jmpb(L_chars_16_check);
  7261     bind(L_copy_16_chars);
  7262     if (UseAVX >= 2) {
  7263       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
  7264       vptest(tmp2Reg, tmp1Reg);
  7265       jccb(Assembler::notZero, L_copy_16_chars_exit);
  7266       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
  7267       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
  7268     } else {
  7269       if (UseAVX > 0) {
  7270         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  7271         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  7272         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
  7273       } else {
  7274         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
  7275         por(tmp2Reg, tmp3Reg);
  7276         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
  7277         por(tmp2Reg, tmp4Reg);
  7279       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
  7280       jccb(Assembler::notZero, L_copy_16_chars_exit);
  7281       packuswb(tmp3Reg, tmp4Reg);
  7283     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
  7285     bind(L_chars_16_check);
  7286     addptr(len, 16);
  7287     jccb(Assembler::lessEqual, L_copy_16_chars);
  7289     bind(L_copy_16_chars_exit);
  7290     if (UseAVX >= 2) {
  7291       // clean upper bits of YMM registers
  7292       vpxor(tmp2Reg, tmp2Reg);
  7293       vpxor(tmp3Reg, tmp3Reg);
  7294       vpxor(tmp4Reg, tmp4Reg);
  7295       movdl(tmp1Reg, tmp5);
  7296       pshufd(tmp1Reg, tmp1Reg, 0);
  7298     subptr(len, 8);
  7299     jccb(Assembler::greater, L_copy_8_chars_exit);
  7301     bind(L_copy_8_chars);
  7302     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
  7303     ptest(tmp3Reg, tmp1Reg);
  7304     jccb(Assembler::notZero, L_copy_8_chars_exit);
  7305     packuswb(tmp3Reg, tmp1Reg);
  7306     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
  7307     addptr(len, 8);
  7308     jccb(Assembler::lessEqual, L_copy_8_chars);
  7310     bind(L_copy_8_chars_exit);
  7311     subptr(len, 8);
  7312     jccb(Assembler::zero, L_done);
  7315   bind(L_copy_1_char);
  7316   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
  7317   testl(tmp5, 0xff00);      // check if Unicode char
  7318   jccb(Assembler::notZero, L_copy_1_char_exit);
  7319   movb(Address(dst, len, Address::times_1, 0), tmp5);
  7320   addptr(len, 1);
  7321   jccb(Assembler::less, L_copy_1_char);
  7323   bind(L_copy_1_char_exit);
  7324   addptr(result, len); // len is negative count of not processed elements
  7325   bind(L_done);
  7328 #ifdef _LP64
  7329 /**
  7330  * Helper for multiply_to_len().
  7331  */
  7332 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
  7333   addq(dest_lo, src1);
  7334   adcq(dest_hi, 0);
  7335   addq(dest_lo, src2);
  7336   adcq(dest_hi, 0);
  7339 /**
  7340  * Multiply 64 bit by 64 bit first loop.
  7341  */
  7342 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
  7343                                            Register y, Register y_idx, Register z,
  7344                                            Register carry, Register product,
  7345                                            Register idx, Register kdx) {
  7346   //
  7347   //  jlong carry, x[], y[], z[];
  7348   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
  7349   //    huge_128 product = y[idx] * x[xstart] + carry;
  7350   //    z[kdx] = (jlong)product;
  7351   //    carry  = (jlong)(product >>> 64);
  7352   //  }
  7353   //  z[xstart] = carry;
  7354   //
  7356   Label L_first_loop, L_first_loop_exit;
  7357   Label L_one_x, L_one_y, L_multiply;
  7359   decrementl(xstart);
  7360   jcc(Assembler::negative, L_one_x);
  7362   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
  7363   rorq(x_xstart, 32); // convert big-endian to little-endian
  7365   bind(L_first_loop);
  7366   decrementl(idx);
  7367   jcc(Assembler::negative, L_first_loop_exit);
  7368   decrementl(idx);
  7369   jcc(Assembler::negative, L_one_y);
  7370   movq(y_idx, Address(y, idx, Address::times_4,  0));
  7371   rorq(y_idx, 32); // convert big-endian to little-endian
  7372   bind(L_multiply);
  7373   movq(product, x_xstart);
  7374   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
  7375   addq(product, carry);
  7376   adcq(rdx, 0);
  7377   subl(kdx, 2);
  7378   movl(Address(z, kdx, Address::times_4,  4), product);
  7379   shrq(product, 32);
  7380   movl(Address(z, kdx, Address::times_4,  0), product);
  7381   movq(carry, rdx);
  7382   jmp(L_first_loop);
  7384   bind(L_one_y);
  7385   movl(y_idx, Address(y,  0));
  7386   jmp(L_multiply);
  7388   bind(L_one_x);
  7389   movl(x_xstart, Address(x,  0));
  7390   jmp(L_first_loop);
  7392   bind(L_first_loop_exit);
  7395 /**
  7396  * Multiply 64 bit by 64 bit and add 128 bit.
  7397  */
  7398 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
  7399                                             Register yz_idx, Register idx,
  7400                                             Register carry, Register product, int offset) {
  7401   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
  7402   //     z[kdx] = (jlong)product;
  7404   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
  7405   rorq(yz_idx, 32); // convert big-endian to little-endian
  7406   movq(product, x_xstart);
  7407   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
  7408   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
  7409   rorq(yz_idx, 32); // convert big-endian to little-endian
  7411   add2_with_carry(rdx, product, carry, yz_idx);
  7413   movl(Address(z, idx, Address::times_4,  offset+4), product);
  7414   shrq(product, 32);
  7415   movl(Address(z, idx, Address::times_4,  offset), product);
  7419 /**
  7420  * Multiply 128 bit by 128 bit. Unrolled inner loop.
  7421  */
  7422 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
  7423                                              Register yz_idx, Register idx, Register jdx,
  7424                                              Register carry, Register product,
  7425                                              Register carry2) {
  7426   //   jlong carry, x[], y[], z[];
  7427   //   int kdx = ystart+1;
  7428   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
  7429   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
  7430   //     z[kdx+idx+1] = (jlong)product;
  7431   //     jlong carry2  = (jlong)(product >>> 64);
  7432   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
  7433   //     z[kdx+idx] = (jlong)product;
  7434   //     carry  = (jlong)(product >>> 64);
  7435   //   }
  7436   //   idx += 2;
  7437   //   if (idx > 0) {
  7438   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
  7439   //     z[kdx+idx] = (jlong)product;
  7440   //     carry  = (jlong)(product >>> 64);
  7441   //   }
  7442   //
  7444   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
  7446   movl(jdx, idx);
  7447   andl(jdx, 0xFFFFFFFC);
  7448   shrl(jdx, 2);
  7450   bind(L_third_loop);
  7451   subl(jdx, 1);
  7452   jcc(Assembler::negative, L_third_loop_exit);
  7453   subl(idx, 4);
  7455   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
  7456   movq(carry2, rdx);
  7458   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
  7459   movq(carry, rdx);
  7460   jmp(L_third_loop);
  7462   bind (L_third_loop_exit);
  7464   andl (idx, 0x3);
  7465   jcc(Assembler::zero, L_post_third_loop_done);
  7467   Label L_check_1;
  7468   subl(idx, 2);
  7469   jcc(Assembler::negative, L_check_1);
  7471   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
  7472   movq(carry, rdx);
  7474   bind (L_check_1);
  7475   addl (idx, 0x2);
  7476   andl (idx, 0x1);
  7477   subl(idx, 1);
  7478   jcc(Assembler::negative, L_post_third_loop_done);
  7480   movl(yz_idx, Address(y, idx, Address::times_4,  0));
  7481   movq(product, x_xstart);
  7482   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
  7483   movl(yz_idx, Address(z, idx, Address::times_4,  0));
  7485   add2_with_carry(rdx, product, yz_idx, carry);
  7487   movl(Address(z, idx, Address::times_4,  0), product);
  7488   shrq(product, 32);
  7490   shlq(rdx, 32);
  7491   orq(product, rdx);
  7492   movq(carry, product);
  7494   bind(L_post_third_loop_done);
  7497 /**
  7498  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
  7500  */
  7501 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
  7502                                                   Register carry, Register carry2,
  7503                                                   Register idx, Register jdx,
  7504                                                   Register yz_idx1, Register yz_idx2,
  7505                                                   Register tmp, Register tmp3, Register tmp4) {
  7506   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
  7508   //   jlong carry, x[], y[], z[];
  7509   //   int kdx = ystart+1;
  7510   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
  7511   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
  7512   //     jlong carry2  = (jlong)(tmp3 >>> 64);
  7513   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
  7514   //     carry  = (jlong)(tmp4 >>> 64);
  7515   //     z[kdx+idx+1] = (jlong)tmp3;
  7516   //     z[kdx+idx] = (jlong)tmp4;
  7517   //   }
  7518   //   idx += 2;
  7519   //   if (idx > 0) {
  7520   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
  7521   //     z[kdx+idx] = (jlong)yz_idx1;
  7522   //     carry  = (jlong)(yz_idx1 >>> 64);
  7523   //   }
  7524   //
  7526   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
  7528   movl(jdx, idx);
  7529   andl(jdx, 0xFFFFFFFC);
  7530   shrl(jdx, 2);
  7532   bind(L_third_loop);
  7533   subl(jdx, 1);
  7534   jcc(Assembler::negative, L_third_loop_exit);
  7535   subl(idx, 4);
  7537   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
  7538   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
  7539   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
  7540   rorxq(yz_idx2, yz_idx2, 32);
  7542   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
  7543   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
  7545   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
  7546   rorxq(yz_idx1, yz_idx1, 32);
  7547   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
  7548   rorxq(yz_idx2, yz_idx2, 32);
  7550   if (VM_Version::supports_adx()) {
  7551     adcxq(tmp3, carry);
  7552     adoxq(tmp3, yz_idx1);
  7554     adcxq(tmp4, tmp);
  7555     adoxq(tmp4, yz_idx2);
  7557     movl(carry, 0); // does not affect flags
  7558     adcxq(carry2, carry);
  7559     adoxq(carry2, carry);
  7560   } else {
  7561     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
  7562     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
  7564   movq(carry, carry2);
  7566   movl(Address(z, idx, Address::times_4, 12), tmp3);
  7567   shrq(tmp3, 32);
  7568   movl(Address(z, idx, Address::times_4,  8), tmp3);
  7570   movl(Address(z, idx, Address::times_4,  4), tmp4);
  7571   shrq(tmp4, 32);
  7572   movl(Address(z, idx, Address::times_4,  0), tmp4);
  7574   jmp(L_third_loop);
  7576   bind (L_third_loop_exit);
  7578   andl (idx, 0x3);
  7579   jcc(Assembler::zero, L_post_third_loop_done);
  7581   Label L_check_1;
  7582   subl(idx, 2);
  7583   jcc(Assembler::negative, L_check_1);
  7585   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
  7586   rorxq(yz_idx1, yz_idx1, 32);
  7587   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
  7588   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
  7589   rorxq(yz_idx2, yz_idx2, 32);
  7591   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
  7593   movl(Address(z, idx, Address::times_4,  4), tmp3);
  7594   shrq(tmp3, 32);
  7595   movl(Address(z, idx, Address::times_4,  0), tmp3);
  7596   movq(carry, tmp4);
  7598   bind (L_check_1);
  7599   addl (idx, 0x2);
  7600   andl (idx, 0x1);
  7601   subl(idx, 1);
  7602   jcc(Assembler::negative, L_post_third_loop_done);
  7603   movl(tmp4, Address(y, idx, Address::times_4,  0));
  7604   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
  7605   movl(tmp4, Address(z, idx, Address::times_4,  0));
  7607   add2_with_carry(carry2, tmp3, tmp4, carry);
  7609   movl(Address(z, idx, Address::times_4,  0), tmp3);
  7610   shrq(tmp3, 32);
  7612   shlq(carry2, 32);
  7613   orq(tmp3, carry2);
  7614   movq(carry, tmp3);
  7616   bind(L_post_third_loop_done);
  7619 /**
  7620  * Code for BigInteger::multiplyToLen() instrinsic.
  7622  * rdi: x
  7623  * rax: xlen
  7624  * rsi: y
  7625  * rcx: ylen
  7626  * r8:  z
  7627  * r11: zlen
  7628  * r12: tmp1
  7629  * r13: tmp2
  7630  * r14: tmp3
  7631  * r15: tmp4
  7632  * rbx: tmp5
  7634  */
  7635 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
  7636                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
  7637   ShortBranchVerifier sbv(this);
  7638   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
  7640   push(tmp1);
  7641   push(tmp2);
  7642   push(tmp3);
  7643   push(tmp4);
  7644   push(tmp5);
  7646   push(xlen);
  7647   push(zlen);
  7649   const Register idx = tmp1;
  7650   const Register kdx = tmp2;
  7651   const Register xstart = tmp3;
  7653   const Register y_idx = tmp4;
  7654   const Register carry = tmp5;
  7655   const Register product  = xlen;
  7656   const Register x_xstart = zlen;  // reuse register
  7658   // First Loop.
  7659   //
  7660   //  final static long LONG_MASK = 0xffffffffL;
  7661   //  int xstart = xlen - 1;
  7662   //  int ystart = ylen - 1;
  7663   //  long carry = 0;
  7664   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
  7665   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
  7666   //    z[kdx] = (int)product;
  7667   //    carry = product >>> 32;
  7668   //  }
  7669   //  z[xstart] = (int)carry;
  7670   //
  7672   movl(idx, ylen);      // idx = ylen;
  7673   movl(kdx, zlen);      // kdx = xlen+ylen;
  7674   xorq(carry, carry);   // carry = 0;
  7676   Label L_done;
  7678   movl(xstart, xlen);
  7679   decrementl(xstart);
  7680   jcc(Assembler::negative, L_done);
  7682   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
  7684   Label L_second_loop;
  7685   testl(kdx, kdx);
  7686   jcc(Assembler::zero, L_second_loop);
  7688   Label L_carry;
  7689   subl(kdx, 1);
  7690   jcc(Assembler::zero, L_carry);
  7692   movl(Address(z, kdx, Address::times_4,  0), carry);
  7693   shrq(carry, 32);
  7694   subl(kdx, 1);
  7696   bind(L_carry);
  7697   movl(Address(z, kdx, Address::times_4,  0), carry);
  7699   // Second and third (nested) loops.
  7700   //
  7701   // for (int i = xstart-1; i >= 0; i--) { // Second loop
  7702   //   carry = 0;
  7703   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
  7704   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
  7705   //                    (z[k] & LONG_MASK) + carry;
  7706   //     z[k] = (int)product;
  7707   //     carry = product >>> 32;
  7708   //   }
  7709   //   z[i] = (int)carry;
  7710   // }
  7711   //
  7712   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
  7714   const Register jdx = tmp1;
  7716   bind(L_second_loop);
  7717   xorl(carry, carry);    // carry = 0;
  7718   movl(jdx, ylen);       // j = ystart+1
  7720   subl(xstart, 1);       // i = xstart-1;
  7721   jcc(Assembler::negative, L_done);
  7723   push (z);
  7725   Label L_last_x;
  7726   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
  7727   subl(xstart, 1);       // i = xstart-1;
  7728   jcc(Assembler::negative, L_last_x);
  7730   if (UseBMI2Instructions) {
  7731     movq(rdx,  Address(x, xstart, Address::times_4,  0));
  7732     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
  7733   } else {
  7734     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
  7735     rorq(x_xstart, 32);  // convert big-endian to little-endian
  7738   Label L_third_loop_prologue;
  7739   bind(L_third_loop_prologue);
  7741   push (x);
  7742   push (xstart);
  7743   push (ylen);
  7746   if (UseBMI2Instructions) {
  7747     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
  7748   } else { // !UseBMI2Instructions
  7749     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
  7752   pop(ylen);
  7753   pop(xlen);
  7754   pop(x);
  7755   pop(z);
  7757   movl(tmp3, xlen);
  7758   addl(tmp3, 1);
  7759   movl(Address(z, tmp3, Address::times_4,  0), carry);
  7760   subl(tmp3, 1);
  7761   jccb(Assembler::negative, L_done);
  7763   shrq(carry, 32);
  7764   movl(Address(z, tmp3, Address::times_4,  0), carry);
  7765   jmp(L_second_loop);
  7767   // Next infrequent code is moved outside loops.
  7768   bind(L_last_x);
  7769   if (UseBMI2Instructions) {
  7770     movl(rdx, Address(x,  0));
  7771   } else {
  7772     movl(x_xstart, Address(x,  0));
  7774   jmp(L_third_loop_prologue);
  7776   bind(L_done);
  7778   pop(zlen);
  7779   pop(xlen);
  7781   pop(tmp5);
  7782   pop(tmp4);
  7783   pop(tmp3);
  7784   pop(tmp2);
  7785   pop(tmp1);
  7788 //Helper functions for square_to_len()
  7790 /**
  7791  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
  7792  * Preserves x and z and modifies rest of the registers.
  7793  */
  7795 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
  7796   // Perform square and right shift by 1
  7797   // Handle odd xlen case first, then for even xlen do the following
  7798   // jlong carry = 0;
  7799   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
  7800   //     huge_128 product = x[j:j+1] * x[j:j+1];
  7801   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
  7802   //     z[i+2:i+3] = (jlong)(product >>> 1);
  7803   //     carry = (jlong)product;
  7804   // }
  7806   xorq(tmp5, tmp5);     // carry
  7807   xorq(rdxReg, rdxReg);
  7808   xorl(tmp1, tmp1);     // index for x
  7809   xorl(tmp4, tmp4);     // index for z
  7811   Label L_first_loop, L_first_loop_exit;
  7813   testl(xlen, 1);
  7814   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
  7816   // Square and right shift by 1 the odd element using 32 bit multiply
  7817   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
  7818   imulq(raxReg, raxReg);
  7819   shrq(raxReg, 1);
  7820   adcq(tmp5, 0);
  7821   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
  7822   incrementl(tmp1);
  7823   addl(tmp4, 2);
  7825   // Square and  right shift by 1 the rest using 64 bit multiply
  7826   bind(L_first_loop);
  7827   cmpptr(tmp1, xlen);
  7828   jccb(Assembler::equal, L_first_loop_exit);
  7830   // Square
  7831   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
  7832   rorq(raxReg, 32);    // convert big-endian to little-endian
  7833   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
  7835   // Right shift by 1 and save carry
  7836   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
  7837   rcrq(rdxReg, 1);
  7838   rcrq(raxReg, 1);
  7839   adcq(tmp5, 0);
  7841   // Store result in z
  7842   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
  7843   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
  7845   // Update indices for x and z
  7846   addl(tmp1, 2);
  7847   addl(tmp4, 4);
  7848   jmp(L_first_loop);
  7850   bind(L_first_loop_exit);
  7854 /**
  7855  * Perform the following multiply add operation using BMI2 instructions
  7856  * carry:sum = sum + op1*op2 + carry
  7857  * op2 should be in rdx
  7858  * op2 is preserved, all other registers are modified
  7859  */
  7860 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
  7861   // assert op2 is rdx
  7862   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
  7863   addq(sum, carry);
  7864   adcq(tmp2, 0);
  7865   addq(sum, op1);
  7866   adcq(tmp2, 0);
  7867   movq(carry, tmp2);
  7870 /**
  7871  * Perform the following multiply add operation:
  7872  * carry:sum = sum + op1*op2 + carry
  7873  * Preserves op1, op2 and modifies rest of registers
  7874  */
  7875 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
  7876   // rdx:rax = op1 * op2
  7877   movq(raxReg, op2);
  7878   mulq(op1);
  7880   //  rdx:rax = sum + carry + rdx:rax
  7881   addq(sum, carry);
  7882   adcq(rdxReg, 0);
  7883   addq(sum, raxReg);
  7884   adcq(rdxReg, 0);
  7886   // carry:sum = rdx:sum
  7887   movq(carry, rdxReg);
  7890 /**
  7891  * Add 64 bit long carry into z[] with carry propogation.
  7892  * Preserves z and carry register values and modifies rest of registers.
  7894  */
  7895 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
  7896   Label L_fourth_loop, L_fourth_loop_exit;
  7898   movl(tmp1, 1);
  7899   subl(zlen, 2);
  7900   addq(Address(z, zlen, Address::times_4, 0), carry);
  7902   bind(L_fourth_loop);
  7903   jccb(Assembler::carryClear, L_fourth_loop_exit);
  7904   subl(zlen, 2);
  7905   jccb(Assembler::negative, L_fourth_loop_exit);
  7906   addq(Address(z, zlen, Address::times_4, 0), tmp1);
  7907   jmp(L_fourth_loop);
  7908   bind(L_fourth_loop_exit);
  7911 /**
  7912  * Shift z[] left by 1 bit.
  7913  * Preserves x, len, z and zlen registers and modifies rest of the registers.
  7915  */
  7916 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
  7918   Label L_fifth_loop, L_fifth_loop_exit;
  7920   // Fifth loop
  7921   // Perform primitiveLeftShift(z, zlen, 1)
  7923   const Register prev_carry = tmp1;
  7924   const Register new_carry = tmp4;
  7925   const Register value = tmp2;
  7926   const Register zidx = tmp3;
  7928   // int zidx, carry;
  7929   // long value;
  7930   // carry = 0;
  7931   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
  7932   //    (carry:value)  = (z[i] << 1) | carry ;
  7933   //    z[i] = value;
  7934   // }
  7936   movl(zidx, zlen);
  7937   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
  7939   bind(L_fifth_loop);
  7940   decl(zidx);  // Use decl to preserve carry flag
  7941   decl(zidx);
  7942   jccb(Assembler::negative, L_fifth_loop_exit);
  7944   if (UseBMI2Instructions) {
  7945      movq(value, Address(z, zidx, Address::times_4, 0));
  7946      rclq(value, 1);
  7947      rorxq(value, value, 32);
  7948      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
  7950   else {
  7951     // clear new_carry
  7952     xorl(new_carry, new_carry);
  7954     // Shift z[i] by 1, or in previous carry and save new carry
  7955     movq(value, Address(z, zidx, Address::times_4, 0));
  7956     shlq(value, 1);
  7957     adcl(new_carry, 0);
  7959     orq(value, prev_carry);
  7960     rorq(value, 0x20);
  7961     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
  7963     // Set previous carry = new carry
  7964     movl(prev_carry, new_carry);
  7966   jmp(L_fifth_loop);
  7968   bind(L_fifth_loop_exit);
  7972 /**
  7973  * Code for BigInteger::squareToLen() intrinsic
  7975  * rdi: x
  7976  * rsi: len
  7977  * r8:  z
  7978  * rcx: zlen
  7979  * r12: tmp1
  7980  * r13: tmp2
  7981  * r14: tmp3
  7982  * r15: tmp4
  7983  * rbx: tmp5
  7985  */
  7986 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
  7988   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
  7989   push(tmp1);
  7990   push(tmp2);
  7991   push(tmp3);
  7992   push(tmp4);
  7993   push(tmp5);
  7995   // First loop
  7996   // Store the squares, right shifted one bit (i.e., divided by 2).
  7997   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
  7999   // Add in off-diagonal sums.
  8000   //
  8001   // Second, third (nested) and fourth loops.
  8002   // zlen +=2;
  8003   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
  8004   //    carry = 0;
  8005   //    long op2 = x[xidx:xidx+1];
  8006   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
  8007   //       k -= 2;
  8008   //       long op1 = x[j:j+1];
  8009   //       long sum = z[k:k+1];
  8010   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
  8011   //       z[k:k+1] = sum;
  8012   //    }
  8013   //    add_one_64(z, k, carry, tmp_regs);
  8014   // }
  8016   const Register carry = tmp5;
  8017   const Register sum = tmp3;
  8018   const Register op1 = tmp4;
  8019   Register op2 = tmp2;
  8021   push(zlen);
  8022   push(len);
  8023   addl(zlen,2);
  8024   bind(L_second_loop);
  8025   xorq(carry, carry);
  8026   subl(zlen, 4);
  8027   subl(len, 2);
  8028   push(zlen);
  8029   push(len);
  8030   cmpl(len, 0);
  8031   jccb(Assembler::lessEqual, L_second_loop_exit);
  8033   // Multiply an array by one 64 bit long.
  8034   if (UseBMI2Instructions) {
  8035     op2 = rdxReg;
  8036     movq(op2, Address(x, len, Address::times_4,  0));
  8037     rorxq(op2, op2, 32);
  8039   else {
  8040     movq(op2, Address(x, len, Address::times_4,  0));
  8041     rorq(op2, 32);
  8044   bind(L_third_loop);
  8045   decrementl(len);
  8046   jccb(Assembler::negative, L_third_loop_exit);
  8047   decrementl(len);
  8048   jccb(Assembler::negative, L_last_x);
  8050   movq(op1, Address(x, len, Address::times_4,  0));
  8051   rorq(op1, 32);
  8053   bind(L_multiply);
  8054   subl(zlen, 2);
  8055   movq(sum, Address(z, zlen, Address::times_4,  0));
  8057   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
  8058   if (UseBMI2Instructions) {
  8059     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
  8061   else {
  8062     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
  8065   movq(Address(z, zlen, Address::times_4, 0), sum);
  8067   jmp(L_third_loop);
  8068   bind(L_third_loop_exit);
  8070   // Fourth loop
  8071   // Add 64 bit long carry into z with carry propogation.
  8072   // Uses offsetted zlen.
  8073   add_one_64(z, zlen, carry, tmp1);
  8075   pop(len);
  8076   pop(zlen);
  8077   jmp(L_second_loop);
  8079   // Next infrequent code is moved outside loops.
  8080   bind(L_last_x);
  8081   movl(op1, Address(x, 0));
  8082   jmp(L_multiply);
  8084   bind(L_second_loop_exit);
  8085   pop(len);
  8086   pop(zlen);
  8087   pop(len);
  8088   pop(zlen);
  8090   // Fifth loop
  8091   // Shift z left 1 bit.
  8092   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
  8094   // z[zlen-1] |= x[len-1] & 1;
  8095   movl(tmp3, Address(x, len, Address::times_4, -4));
  8096   andl(tmp3, 1);
  8097   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
  8099   pop(tmp5);
  8100   pop(tmp4);
  8101   pop(tmp3);
  8102   pop(tmp2);
  8103   pop(tmp1);
  8106 /**
  8107  * Helper function for mul_add()
  8108  * Multiply the in[] by int k and add to out[] starting at offset offs using
  8109  * 128 bit by 32 bit multiply and return the carry in tmp5.
  8110  * Only quad int aligned length of in[] is operated on in this function.
  8111  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
  8112  * This function preserves out, in and k registers.
  8113  * len and offset point to the appropriate index in "in" & "out" correspondingly
  8114  * tmp5 has the carry.
  8115  * other registers are temporary and are modified.
  8117  */
  8118 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
  8119   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
  8120   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
  8122   Label L_first_loop, L_first_loop_exit;
  8124   movl(tmp1, len);
  8125   shrl(tmp1, 2);
  8127   bind(L_first_loop);
  8128   subl(tmp1, 1);
  8129   jccb(Assembler::negative, L_first_loop_exit);
  8131   subl(len, 4);
  8132   subl(offset, 4);
  8134   Register op2 = tmp2;
  8135   const Register sum = tmp3;
  8136   const Register op1 = tmp4;
  8137   const Register carry = tmp5;
  8139   if (UseBMI2Instructions) {
  8140     op2 = rdxReg;
  8143   movq(op1, Address(in, len, Address::times_4,  8));
  8144   rorq(op1, 32);
  8145   movq(sum, Address(out, offset, Address::times_4,  8));
  8146   rorq(sum, 32);
  8147   if (UseBMI2Instructions) {
  8148     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
  8150   else {
  8151     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
  8153   // Store back in big endian from little endian
  8154   rorq(sum, 0x20);
  8155   movq(Address(out, offset, Address::times_4,  8), sum);
  8157   movq(op1, Address(in, len, Address::times_4,  0));
  8158   rorq(op1, 32);
  8159   movq(sum, Address(out, offset, Address::times_4,  0));
  8160   rorq(sum, 32);
  8161   if (UseBMI2Instructions) {
  8162     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
  8164   else {
  8165     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
  8167   // Store back in big endian from little endian
  8168   rorq(sum, 0x20);
  8169   movq(Address(out, offset, Address::times_4,  0), sum);
  8171   jmp(L_first_loop);
  8172   bind(L_first_loop_exit);
  8175 /**
  8176  * Code for BigInteger::mulAdd() intrinsic
  8178  * rdi: out
  8179  * rsi: in
  8180  * r11: offs (out.length - offset)
  8181  * rcx: len
  8182  * r8:  k
  8183  * r12: tmp1
  8184  * r13: tmp2
  8185  * r14: tmp3
  8186  * r15: tmp4
  8187  * rbx: tmp5
  8188  * Multiply the in[] by word k and add to out[], return the carry in rax
  8189  */
  8190 void MacroAssembler::mul_add(Register out, Register in, Register offs,
  8191    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
  8192    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
  8194   Label L_carry, L_last_in, L_done;
  8196 // carry = 0;
  8197 // for (int j=len-1; j >= 0; j--) {
  8198 //    long product = (in[j] & LONG_MASK) * kLong +
  8199 //                   (out[offs] & LONG_MASK) + carry;
  8200 //    out[offs--] = (int)product;
  8201 //    carry = product >>> 32;
  8202 // }
  8203 //
  8204   push(tmp1);
  8205   push(tmp2);
  8206   push(tmp3);
  8207   push(tmp4);
  8208   push(tmp5);
  8210   Register op2 = tmp2;
  8211   const Register sum = tmp3;
  8212   const Register op1 = tmp4;
  8213   const Register carry =  tmp5;
  8215   if (UseBMI2Instructions) {
  8216     op2 = rdxReg;
  8217     movl(op2, k);
  8219   else {
  8220     movl(op2, k);
  8223   xorq(carry, carry);
  8225   //First loop
  8227   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
  8228   //The carry is in tmp5
  8229   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
  8231   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
  8232   decrementl(len);
  8233   jccb(Assembler::negative, L_carry);
  8234   decrementl(len);
  8235   jccb(Assembler::negative, L_last_in);
  8237   movq(op1, Address(in, len, Address::times_4,  0));
  8238   rorq(op1, 32);
  8240   subl(offs, 2);
  8241   movq(sum, Address(out, offs, Address::times_4,  0));
  8242   rorq(sum, 32);
  8244   if (UseBMI2Instructions) {
  8245     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
  8247   else {
  8248     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
  8251   // Store back in big endian from little endian
  8252   rorq(sum, 0x20);
  8253   movq(Address(out, offs, Address::times_4,  0), sum);
  8255   testl(len, len);
  8256   jccb(Assembler::zero, L_carry);
  8258   //Multiply the last in[] entry, if any
  8259   bind(L_last_in);
  8260   movl(op1, Address(in, 0));
  8261   movl(sum, Address(out, offs, Address::times_4,  -4));
  8263   movl(raxReg, k);
  8264   mull(op1); //tmp4 * eax -> edx:eax
  8265   addl(sum, carry);
  8266   adcl(rdxReg, 0);
  8267   addl(sum, raxReg);
  8268   adcl(rdxReg, 0);
  8269   movl(carry, rdxReg);
  8271   movl(Address(out, offs, Address::times_4,  -4), sum);
  8273   bind(L_carry);
  8274   //return tmp5/carry as carry in rax
  8275   movl(rax, carry);
  8277   bind(L_done);
  8278   pop(tmp5);
  8279   pop(tmp4);
  8280   pop(tmp3);
  8281   pop(tmp2);
  8282   pop(tmp1);
  8284 #endif
  8286 /**
  8287  * Emits code to update CRC-32 with a byte value according to constants in table
  8289  * @param [in,out]crc   Register containing the crc.
  8290  * @param [in]val       Register containing the byte to fold into the CRC.
  8291  * @param [in]table     Register containing the table of crc constants.
  8293  * uint32_t crc;
  8294  * val = crc_table[(val ^ crc) & 0xFF];
  8295  * crc = val ^ (crc >> 8);
  8297  */
  8298 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
  8299   xorl(val, crc);
  8300   andl(val, 0xFF);
  8301   shrl(crc, 8); // unsigned shift
  8302   xorl(crc, Address(table, val, Address::times_4, 0));
  8305 /**
  8306  * Fold 128-bit data chunk
  8307  */
  8308 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
  8309   if (UseAVX > 0) {
  8310     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
  8311     vpclmulldq(xcrc, xK, xcrc); // [63:0]
  8312     vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
  8313     pxor(xcrc, xtmp);
  8314   } else {
  8315     movdqa(xtmp, xcrc);
  8316     pclmulhdq(xtmp, xK);   // [123:64]
  8317     pclmulldq(xcrc, xK);   // [63:0]
  8318     pxor(xcrc, xtmp);
  8319     movdqu(xtmp, Address(buf, offset));
  8320     pxor(xcrc, xtmp);
  8324 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
  8325   if (UseAVX > 0) {
  8326     vpclmulhdq(xtmp, xK, xcrc);
  8327     vpclmulldq(xcrc, xK, xcrc);
  8328     pxor(xcrc, xbuf);
  8329     pxor(xcrc, xtmp);
  8330   } else {
  8331     movdqa(xtmp, xcrc);
  8332     pclmulhdq(xtmp, xK);
  8333     pclmulldq(xcrc, xK);
  8334     pxor(xcrc, xbuf);
  8335     pxor(xcrc, xtmp);
  8339 /**
  8340  * 8-bit folds to compute 32-bit CRC
  8342  * uint64_t xcrc;
  8343  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
  8344  */
  8345 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
  8346   movdl(tmp, xcrc);
  8347   andl(tmp, 0xFF);
  8348   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
  8349   psrldq(xcrc, 1); // unsigned shift one byte
  8350   pxor(xcrc, xtmp);
  8353 /**
  8354  * uint32_t crc;
  8355  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
  8356  */
  8357 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
  8358   movl(tmp, crc);
  8359   andl(tmp, 0xFF);
  8360   shrl(crc, 8);
  8361   xorl(crc, Address(table, tmp, Address::times_4, 0));
  8364 /**
  8365  * @param crc   register containing existing CRC (32-bit)
  8366  * @param buf   register pointing to input byte buffer (byte*)
  8367  * @param len   register containing number of bytes
  8368  * @param table register that will contain address of CRC table
  8369  * @param tmp   scratch register
  8370  */
  8371 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
  8372   assert_different_registers(crc, buf, len, table, tmp, rax);
  8374   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
  8375   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
  8377   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
  8378   notl(crc); // ~crc
  8379   cmpl(len, 16);
  8380   jcc(Assembler::less, L_tail);
  8382   // Align buffer to 16 bytes
  8383   movl(tmp, buf);
  8384   andl(tmp, 0xF);
  8385   jccb(Assembler::zero, L_aligned);
  8386   subl(tmp,  16);
  8387   addl(len, tmp);
  8389   align(4);
  8390   BIND(L_align_loop);
  8391   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  8392   update_byte_crc32(crc, rax, table);
  8393   increment(buf);
  8394   incrementl(tmp);
  8395   jccb(Assembler::less, L_align_loop);
  8397   BIND(L_aligned);
  8398   movl(tmp, len); // save
  8399   shrl(len, 4);
  8400   jcc(Assembler::zero, L_tail_restore);
  8402   // Fold crc into first bytes of vector
  8403   movdqa(xmm1, Address(buf, 0));
  8404   movdl(rax, xmm1);
  8405   xorl(crc, rax);
  8406   pinsrd(xmm1, crc, 0);
  8407   addptr(buf, 16);
  8408   subl(len, 4); // len > 0
  8409   jcc(Assembler::less, L_fold_tail);
  8411   movdqa(xmm2, Address(buf,  0));
  8412   movdqa(xmm3, Address(buf, 16));
  8413   movdqa(xmm4, Address(buf, 32));
  8414   addptr(buf, 48);
  8415   subl(len, 3);
  8416   jcc(Assembler::lessEqual, L_fold_512b);
  8418   // Fold total 512 bits of polynomial on each iteration,
  8419   // 128 bits per each of 4 parallel streams.
  8420   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
  8422   align(32);
  8423   BIND(L_fold_512b_loop);
  8424   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  8425   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
  8426   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
  8427   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
  8428   addptr(buf, 64);
  8429   subl(len, 4);
  8430   jcc(Assembler::greater, L_fold_512b_loop);
  8432   // Fold 512 bits to 128 bits.
  8433   BIND(L_fold_512b);
  8434   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  8435   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
  8436   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
  8437   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
  8439   // Fold the rest of 128 bits data chunks
  8440   BIND(L_fold_tail);
  8441   addl(len, 3);
  8442   jccb(Assembler::lessEqual, L_fold_128b);
  8443   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
  8445   BIND(L_fold_tail_loop);
  8446   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
  8447   addptr(buf, 16);
  8448   decrementl(len);
  8449   jccb(Assembler::greater, L_fold_tail_loop);
  8451   // Fold 128 bits in xmm1 down into 32 bits in crc register.
  8452   BIND(L_fold_128b);
  8453   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
  8454   if (UseAVX > 0) {
  8455     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
  8456     vpand(xmm3, xmm0, xmm2, false /* vector256 */);
  8457     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
  8458   } else {
  8459     movdqa(xmm2, xmm0);
  8460     pclmulqdq(xmm2, xmm1, 0x1);
  8461     movdqa(xmm3, xmm0);
  8462     pand(xmm3, xmm2);
  8463     pclmulqdq(xmm0, xmm3, 0x1);
  8465   psrldq(xmm1, 8);
  8466   psrldq(xmm2, 4);
  8467   pxor(xmm0, xmm1);
  8468   pxor(xmm0, xmm2);
  8470   // 8 8-bit folds to compute 32-bit CRC.
  8471   for (int j = 0; j < 4; j++) {
  8472     fold_8bit_crc32(xmm0, table, xmm1, rax);
  8474   movdl(crc, xmm0); // mov 32 bits to general register
  8475   for (int j = 0; j < 4; j++) {
  8476     fold_8bit_crc32(crc, table, rax);
  8479   BIND(L_tail_restore);
  8480   movl(len, tmp); // restore
  8481   BIND(L_tail);
  8482   andl(len, 0xf);
  8483   jccb(Assembler::zero, L_exit);
  8485   // Fold the rest of bytes
  8486   align(4);
  8487   BIND(L_tail_loop);
  8488   movsbl(rax, Address(buf, 0)); // load byte with sign extension
  8489   update_byte_crc32(crc, rax, table);
  8490   increment(buf);
  8491   decrementl(len);
  8492   jccb(Assembler::greater, L_tail_loop);
  8494   BIND(L_exit);
  8495   notl(crc); // ~c
  8498 #undef BIND
  8499 #undef BLOCK_COMMENT
  8502 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  8503   switch (cond) {
  8504     // Note some conditions are synonyms for others
  8505     case Assembler::zero:         return Assembler::notZero;
  8506     case Assembler::notZero:      return Assembler::zero;
  8507     case Assembler::less:         return Assembler::greaterEqual;
  8508     case Assembler::lessEqual:    return Assembler::greater;
  8509     case Assembler::greater:      return Assembler::lessEqual;
  8510     case Assembler::greaterEqual: return Assembler::less;
  8511     case Assembler::below:        return Assembler::aboveEqual;
  8512     case Assembler::belowEqual:   return Assembler::above;
  8513     case Assembler::above:        return Assembler::belowEqual;
  8514     case Assembler::aboveEqual:   return Assembler::below;
  8515     case Assembler::overflow:     return Assembler::noOverflow;
  8516     case Assembler::noOverflow:   return Assembler::overflow;
  8517     case Assembler::negative:     return Assembler::positive;
  8518     case Assembler::positive:     return Assembler::negative;
  8519     case Assembler::parity:       return Assembler::noParity;
  8520     case Assembler::noParity:     return Assembler::parity;
  8522   ShouldNotReachHere(); return Assembler::overflow;
  8525 SkipIfEqual::SkipIfEqual(
  8526     MacroAssembler* masm, const bool* flag_addr, bool value) {
  8527   _masm = masm;
  8528   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  8529   _masm->jcc(Assembler::equal, _label);
  8532 SkipIfEqual::~SkipIfEqual() {
  8533   _masm->bind(_label);

mercurial