src/share/vm/memory/generation.cpp

Tue, 14 Jan 2014 16:40:33 +0100

author
mgerdin
date
Tue, 14 Jan 2014 16:40:33 +0100
changeset 6968
9fec19bb0659
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
child 6978
30c99d8e0f02
permissions
-rw-r--r--

8032379: Remove the is_scavenging flag to process_strong_roots
Summary: Refactor the strong root processing to avoid using a boolean in addition to the ScanOption enum.
Reviewed-by: stefank, tschatzl, ehelin, jmasa

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/gcTimer.hpp"
    27 #include "gc_implementation/shared/gcTrace.hpp"
    28 #include "gc_implementation/shared/spaceDecorator.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "memory/allocation.inline.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/cardTableRS.hpp"
    33 #include "memory/gcLocker.inline.hpp"
    34 #include "memory/genCollectedHeap.hpp"
    35 #include "memory/genMarkSweep.hpp"
    36 #include "memory/genOopClosures.hpp"
    37 #include "memory/genOopClosures.inline.hpp"
    38 #include "memory/generation.hpp"
    39 #include "memory/generation.inline.hpp"
    40 #include "memory/space.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "runtime/java.hpp"
    43 #include "utilities/copy.hpp"
    44 #include "utilities/events.hpp"
    46 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    48 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
    49   _level(level),
    50   _ref_processor(NULL) {
    51   if (!_virtual_space.initialize(rs, initial_size)) {
    52     vm_exit_during_initialization("Could not reserve enough space for "
    53                     "object heap");
    54   }
    55   // Mangle all of the the initial generation.
    56   if (ZapUnusedHeapArea) {
    57     MemRegion mangle_region((HeapWord*)_virtual_space.low(),
    58       (HeapWord*)_virtual_space.high());
    59     SpaceMangler::mangle_region(mangle_region);
    60   }
    61   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
    62           (HeapWord*)_virtual_space.high_boundary());
    63 }
    65 GenerationSpec* Generation::spec() {
    66   GenCollectedHeap* gch = GenCollectedHeap::heap();
    67   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
    68   return gch->_gen_specs[level()];
    69 }
    71 size_t Generation::max_capacity() const {
    72   return reserved().byte_size();
    73 }
    75 void Generation::print_heap_change(size_t prev_used) const {
    76   if (PrintGCDetails && Verbose) {
    77     gclog_or_tty->print(" "  SIZE_FORMAT
    78                         "->" SIZE_FORMAT
    79                         "("  SIZE_FORMAT ")",
    80                         prev_used, used(), capacity());
    81   } else {
    82     gclog_or_tty->print(" "  SIZE_FORMAT "K"
    83                         "->" SIZE_FORMAT "K"
    84                         "("  SIZE_FORMAT "K)",
    85                         prev_used / K, used() / K, capacity() / K);
    86   }
    87 }
    89 // By default we get a single threaded default reference processor;
    90 // generations needing multi-threaded refs processing or discovery override this method.
    91 void Generation::ref_processor_init() {
    92   assert(_ref_processor == NULL, "a reference processor already exists");
    93   assert(!_reserved.is_empty(), "empty generation?");
    94   _ref_processor = new ReferenceProcessor(_reserved);    // a vanilla reference processor
    95   if (_ref_processor == NULL) {
    96     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
    97   }
    98 }
   100 void Generation::print() const { print_on(tty); }
   102 void Generation::print_on(outputStream* st)  const {
   103   st->print(" %-20s", name());
   104   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
   105              capacity()/K, used()/K);
   106   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   107               _virtual_space.low_boundary(),
   108               _virtual_space.high(),
   109               _virtual_space.high_boundary());
   110 }
   112 void Generation::print_summary_info() { print_summary_info_on(tty); }
   114 void Generation::print_summary_info_on(outputStream* st) {
   115   StatRecord* sr = stat_record();
   116   double time = sr->accumulated_time.seconds();
   117   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
   118                "%d GC's, avg GC time %3.7f]",
   119                level(), time, sr->invocations,
   120                sr->invocations > 0 ? time / sr->invocations : 0.0);
   121 }
   123 // Utility iterator classes
   125 class GenerationIsInReservedClosure : public SpaceClosure {
   126  public:
   127   const void* _p;
   128   Space* sp;
   129   virtual void do_space(Space* s) {
   130     if (sp == NULL) {
   131       if (s->is_in_reserved(_p)) sp = s;
   132     }
   133   }
   134   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
   135 };
   137 class GenerationIsInClosure : public SpaceClosure {
   138  public:
   139   const void* _p;
   140   Space* sp;
   141   virtual void do_space(Space* s) {
   142     if (sp == NULL) {
   143       if (s->is_in(_p)) sp = s;
   144     }
   145   }
   146   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
   147 };
   149 bool Generation::is_in(const void* p) const {
   150   GenerationIsInClosure blk(p);
   151   ((Generation*)this)->space_iterate(&blk);
   152   return blk.sp != NULL;
   153 }
   155 DefNewGeneration* Generation::as_DefNewGeneration() {
   156   assert((kind() == Generation::DefNew) ||
   157          (kind() == Generation::ParNew) ||
   158          (kind() == Generation::ASParNew),
   159     "Wrong youngest generation type");
   160   return (DefNewGeneration*) this;
   161 }
   163 Generation* Generation::next_gen() const {
   164   GenCollectedHeap* gch = GenCollectedHeap::heap();
   165   int next = level() + 1;
   166   if (next < gch->_n_gens) {
   167     return gch->_gens[next];
   168   } else {
   169     return NULL;
   170   }
   171 }
   173 size_t Generation::max_contiguous_available() const {
   174   // The largest number of contiguous free words in this or any higher generation.
   175   size_t max = 0;
   176   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
   177     size_t avail = gen->contiguous_available();
   178     if (avail > max) {
   179       max = avail;
   180     }
   181   }
   182   return max;
   183 }
   185 bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
   186   size_t available = max_contiguous_available();
   187   bool   res = (available >= max_promotion_in_bytes);
   188   if (PrintGC && Verbose) {
   189     gclog_or_tty->print_cr(
   190       "Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
   191       res? "":" not", available, res? ">=":"<",
   192       max_promotion_in_bytes);
   193   }
   194   return res;
   195 }
   197 // Ignores "ref" and calls allocate().
   198 oop Generation::promote(oop obj, size_t obj_size) {
   199   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
   201 #ifndef PRODUCT
   202   if (Universe::heap()->promotion_should_fail()) {
   203     return NULL;
   204   }
   205 #endif  // #ifndef PRODUCT
   207   HeapWord* result = allocate(obj_size, false);
   208   if (result != NULL) {
   209     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
   210     return oop(result);
   211   } else {
   212     GenCollectedHeap* gch = GenCollectedHeap::heap();
   213     return gch->handle_failed_promotion(this, obj, obj_size);
   214   }
   215 }
   217 oop Generation::par_promote(int thread_num,
   218                             oop obj, markOop m, size_t word_sz) {
   219   // Could do a bad general impl here that gets a lock.  But no.
   220   ShouldNotCallThis();
   221   return NULL;
   222 }
   224 void Generation::par_promote_alloc_undo(int thread_num,
   225                                         HeapWord* obj, size_t word_sz) {
   226   // Could do a bad general impl here that gets a lock.  But no.
   227   guarantee(false, "No good general implementation.");
   228 }
   230 Space* Generation::space_containing(const void* p) const {
   231   GenerationIsInReservedClosure blk(p);
   232   // Cast away const
   233   ((Generation*)this)->space_iterate(&blk);
   234   return blk.sp;
   235 }
   237 // Some of these are mediocre general implementations.  Should be
   238 // overridden to get better performance.
   240 class GenerationBlockStartClosure : public SpaceClosure {
   241  public:
   242   const void* _p;
   243   HeapWord* _start;
   244   virtual void do_space(Space* s) {
   245     if (_start == NULL && s->is_in_reserved(_p)) {
   246       _start = s->block_start(_p);
   247     }
   248   }
   249   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
   250 };
   252 HeapWord* Generation::block_start(const void* p) const {
   253   GenerationBlockStartClosure blk(p);
   254   // Cast away const
   255   ((Generation*)this)->space_iterate(&blk);
   256   return blk._start;
   257 }
   259 class GenerationBlockSizeClosure : public SpaceClosure {
   260  public:
   261   const HeapWord* _p;
   262   size_t size;
   263   virtual void do_space(Space* s) {
   264     if (size == 0 && s->is_in_reserved(_p)) {
   265       size = s->block_size(_p);
   266     }
   267   }
   268   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
   269 };
   271 size_t Generation::block_size(const HeapWord* p) const {
   272   GenerationBlockSizeClosure blk(p);
   273   // Cast away const
   274   ((Generation*)this)->space_iterate(&blk);
   275   assert(blk.size > 0, "seems reasonable");
   276   return blk.size;
   277 }
   279 class GenerationBlockIsObjClosure : public SpaceClosure {
   280  public:
   281   const HeapWord* _p;
   282   bool is_obj;
   283   virtual void do_space(Space* s) {
   284     if (!is_obj && s->is_in_reserved(_p)) {
   285       is_obj |= s->block_is_obj(_p);
   286     }
   287   }
   288   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
   289 };
   291 bool Generation::block_is_obj(const HeapWord* p) const {
   292   GenerationBlockIsObjClosure blk(p);
   293   // Cast away const
   294   ((Generation*)this)->space_iterate(&blk);
   295   return blk.is_obj;
   296 }
   298 class GenerationOopIterateClosure : public SpaceClosure {
   299  public:
   300   ExtendedOopClosure* cl;
   301   MemRegion mr;
   302   virtual void do_space(Space* s) {
   303     s->oop_iterate(mr, cl);
   304   }
   305   GenerationOopIterateClosure(ExtendedOopClosure* _cl, MemRegion _mr) :
   306     cl(_cl), mr(_mr) {}
   307 };
   309 void Generation::oop_iterate(ExtendedOopClosure* cl) {
   310   GenerationOopIterateClosure blk(cl, _reserved);
   311   space_iterate(&blk);
   312 }
   314 void Generation::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   315   GenerationOopIterateClosure blk(cl, mr);
   316   space_iterate(&blk);
   317 }
   319 void Generation::younger_refs_in_space_iterate(Space* sp,
   320                                                OopsInGenClosure* cl) {
   321   GenRemSet* rs = SharedHeap::heap()->rem_set();
   322   rs->younger_refs_in_space_iterate(sp, cl);
   323 }
   325 class GenerationObjIterateClosure : public SpaceClosure {
   326  private:
   327   ObjectClosure* _cl;
   328  public:
   329   virtual void do_space(Space* s) {
   330     s->object_iterate(_cl);
   331   }
   332   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
   333 };
   335 void Generation::object_iterate(ObjectClosure* cl) {
   336   GenerationObjIterateClosure blk(cl);
   337   space_iterate(&blk);
   338 }
   340 class GenerationSafeObjIterateClosure : public SpaceClosure {
   341  private:
   342   ObjectClosure* _cl;
   343  public:
   344   virtual void do_space(Space* s) {
   345     s->safe_object_iterate(_cl);
   346   }
   347   GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
   348 };
   350 void Generation::safe_object_iterate(ObjectClosure* cl) {
   351   GenerationSafeObjIterateClosure blk(cl);
   352   space_iterate(&blk);
   353 }
   355 void Generation::prepare_for_compaction(CompactPoint* cp) {
   356   // Generic implementation, can be specialized
   357   CompactibleSpace* space = first_compaction_space();
   358   while (space != NULL) {
   359     space->prepare_for_compaction(cp);
   360     space = space->next_compaction_space();
   361   }
   362 }
   364 class AdjustPointersClosure: public SpaceClosure {
   365  public:
   366   void do_space(Space* sp) {
   367     sp->adjust_pointers();
   368   }
   369 };
   371 void Generation::adjust_pointers() {
   372   // Note that this is done over all spaces, not just the compactible
   373   // ones.
   374   AdjustPointersClosure blk;
   375   space_iterate(&blk, true);
   376 }
   378 void Generation::compact() {
   379   CompactibleSpace* sp = first_compaction_space();
   380   while (sp != NULL) {
   381     sp->compact();
   382     sp = sp->next_compaction_space();
   383   }
   384 }
   386 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
   387                                int level,
   388                                GenRemSet* remset) :
   389   Generation(rs, initial_byte_size, level), _rs(remset),
   390   _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
   391   _used_at_prologue()
   392 {
   393   HeapWord* start = (HeapWord*)rs.base();
   394   size_t reserved_byte_size = rs.size();
   395   assert((uintptr_t(start) & 3) == 0, "bad alignment");
   396   assert((reserved_byte_size & 3) == 0, "bad alignment");
   397   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
   398   _bts = new BlockOffsetSharedArray(reserved_mr,
   399                                     heap_word_size(initial_byte_size));
   400   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
   401   _rs->resize_covered_region(committed_mr);
   402   if (_bts == NULL)
   403     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
   405   // Verify that the start and end of this generation is the start of a card.
   406   // If this wasn't true, a single card could span more than on generation,
   407   // which would cause problems when we commit/uncommit memory, and when we
   408   // clear and dirty cards.
   409   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
   410   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
   411     // Don't check at the very end of the heap as we'll assert that we're probing off
   412     // the end if we try.
   413     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
   414   }
   415   _min_heap_delta_bytes = MinHeapDeltaBytes;
   416   _capacity_at_prologue = initial_byte_size;
   417   _used_at_prologue = 0;
   418 }
   420 bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
   421   assert_locked_or_safepoint(Heap_lock);
   422   if (bytes == 0) {
   423     return true;  // That's what grow_by(0) would return
   424   }
   425   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
   426   if (aligned_bytes == 0){
   427     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
   428     // return true with the implication that an expansion was done when it
   429     // was not.  A call to expand implies a best effort to expand by "bytes"
   430     // but not a guarantee.  Align down to give a best effort.  This is likely
   431     // the most that the generation can expand since it has some capacity to
   432     // start with.
   433     aligned_bytes = ReservedSpace::page_align_size_down(bytes);
   434   }
   435   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
   436   bool success = false;
   437   if (aligned_expand_bytes > aligned_bytes) {
   438     success = grow_by(aligned_expand_bytes);
   439   }
   440   if (!success) {
   441     success = grow_by(aligned_bytes);
   442   }
   443   if (!success) {
   444     success = grow_to_reserved();
   445   }
   446   if (PrintGC && Verbose) {
   447     if (success && GC_locker::is_active_and_needs_gc()) {
   448       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
   449     }
   450   }
   452   return success;
   453 }
   456 // No young generation references, clear this generation's cards.
   457 void CardGeneration::clear_remembered_set() {
   458   _rs->clear(reserved());
   459 }
   462 // Objects in this generation may have moved, invalidate this
   463 // generation's cards.
   464 void CardGeneration::invalidate_remembered_set() {
   465   _rs->invalidate(used_region());
   466 }
   469 void CardGeneration::compute_new_size() {
   470   assert(_shrink_factor <= 100, "invalid shrink factor");
   471   size_t current_shrink_factor = _shrink_factor;
   472   _shrink_factor = 0;
   474   // We don't have floating point command-line arguments
   475   // Note:  argument processing ensures that MinHeapFreeRatio < 100.
   476   const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
   477   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
   479   // Compute some numbers about the state of the heap.
   480   const size_t used_after_gc = used();
   481   const size_t capacity_after_gc = capacity();
   483   const double min_tmp = used_after_gc / maximum_used_percentage;
   484   size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
   485   // Don't shrink less than the initial generation size
   486   minimum_desired_capacity = MAX2(minimum_desired_capacity,
   487                                   spec()->init_size());
   488   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
   490   if (PrintGC && Verbose) {
   491     const size_t free_after_gc = free();
   492     const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
   493     gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
   494     gclog_or_tty->print_cr("  "
   495                   "  minimum_free_percentage: %6.2f"
   496                   "  maximum_used_percentage: %6.2f",
   497                   minimum_free_percentage,
   498                   maximum_used_percentage);
   499     gclog_or_tty->print_cr("  "
   500                   "   free_after_gc   : %6.1fK"
   501                   "   used_after_gc   : %6.1fK"
   502                   "   capacity_after_gc   : %6.1fK",
   503                   free_after_gc / (double) K,
   504                   used_after_gc / (double) K,
   505                   capacity_after_gc / (double) K);
   506     gclog_or_tty->print_cr("  "
   507                   "   free_percentage: %6.2f",
   508                   free_percentage);
   509   }
   511   if (capacity_after_gc < minimum_desired_capacity) {
   512     // If we have less free space than we want then expand
   513     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
   514     // Don't expand unless it's significant
   515     if (expand_bytes >= _min_heap_delta_bytes) {
   516       expand(expand_bytes, 0); // safe if expansion fails
   517     }
   518     if (PrintGC && Verbose) {
   519       gclog_or_tty->print_cr("    expanding:"
   520                     "  minimum_desired_capacity: %6.1fK"
   521                     "  expand_bytes: %6.1fK"
   522                     "  _min_heap_delta_bytes: %6.1fK",
   523                     minimum_desired_capacity / (double) K,
   524                     expand_bytes / (double) K,
   525                     _min_heap_delta_bytes / (double) K);
   526     }
   527     return;
   528   }
   530   // No expansion, now see if we want to shrink
   531   size_t shrink_bytes = 0;
   532   // We would never want to shrink more than this
   533   size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
   535   if (MaxHeapFreeRatio < 100) {
   536     const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
   537     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
   538     const double max_tmp = used_after_gc / minimum_used_percentage;
   539     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
   540     maximum_desired_capacity = MAX2(maximum_desired_capacity,
   541                                     spec()->init_size());
   542     if (PrintGC && Verbose) {
   543       gclog_or_tty->print_cr("  "
   544                              "  maximum_free_percentage: %6.2f"
   545                              "  minimum_used_percentage: %6.2f",
   546                              maximum_free_percentage,
   547                              minimum_used_percentage);
   548       gclog_or_tty->print_cr("  "
   549                              "  _capacity_at_prologue: %6.1fK"
   550                              "  minimum_desired_capacity: %6.1fK"
   551                              "  maximum_desired_capacity: %6.1fK",
   552                              _capacity_at_prologue / (double) K,
   553                              minimum_desired_capacity / (double) K,
   554                              maximum_desired_capacity / (double) K);
   555     }
   556     assert(minimum_desired_capacity <= maximum_desired_capacity,
   557            "sanity check");
   559     if (capacity_after_gc > maximum_desired_capacity) {
   560       // Capacity too large, compute shrinking size
   561       shrink_bytes = capacity_after_gc - maximum_desired_capacity;
   562       // We don't want shrink all the way back to initSize if people call
   563       // System.gc(), because some programs do that between "phases" and then
   564       // we'd just have to grow the heap up again for the next phase.  So we
   565       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
   566       // on the third call, and 100% by the fourth call.  But if we recompute
   567       // size without shrinking, it goes back to 0%.
   568       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
   569       assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
   570       if (current_shrink_factor == 0) {
   571         _shrink_factor = 10;
   572       } else {
   573         _shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
   574       }
   575       if (PrintGC && Verbose) {
   576         gclog_or_tty->print_cr("  "
   577                       "  shrinking:"
   578                       "  initSize: %.1fK"
   579                       "  maximum_desired_capacity: %.1fK",
   580                       spec()->init_size() / (double) K,
   581                       maximum_desired_capacity / (double) K);
   582         gclog_or_tty->print_cr("  "
   583                       "  shrink_bytes: %.1fK"
   584                       "  current_shrink_factor: %d"
   585                       "  new shrink factor: %d"
   586                       "  _min_heap_delta_bytes: %.1fK",
   587                       shrink_bytes / (double) K,
   588                       current_shrink_factor,
   589                       _shrink_factor,
   590                       _min_heap_delta_bytes / (double) K);
   591       }
   592     }
   593   }
   595   if (capacity_after_gc > _capacity_at_prologue) {
   596     // We might have expanded for promotions, in which case we might want to
   597     // take back that expansion if there's room after GC.  That keeps us from
   598     // stretching the heap with promotions when there's plenty of room.
   599     size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
   600     expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
   601     // We have two shrinking computations, take the largest
   602     shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
   603     assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
   604     if (PrintGC && Verbose) {
   605       gclog_or_tty->print_cr("  "
   606                              "  aggressive shrinking:"
   607                              "  _capacity_at_prologue: %.1fK"
   608                              "  capacity_after_gc: %.1fK"
   609                              "  expansion_for_promotion: %.1fK"
   610                              "  shrink_bytes: %.1fK",
   611                              capacity_after_gc / (double) K,
   612                              _capacity_at_prologue / (double) K,
   613                              expansion_for_promotion / (double) K,
   614                              shrink_bytes / (double) K);
   615     }
   616   }
   617   // Don't shrink unless it's significant
   618   if (shrink_bytes >= _min_heap_delta_bytes) {
   619     shrink(shrink_bytes);
   620   }
   621 }
   623 // Currently nothing to do.
   624 void CardGeneration::prepare_for_verify() {}
   627 void OneContigSpaceCardGeneration::collect(bool   full,
   628                                            bool   clear_all_soft_refs,
   629                                            size_t size,
   630                                            bool   is_tlab) {
   631   GenCollectedHeap* gch = GenCollectedHeap::heap();
   633   SpecializationStats::clear();
   634   // Temporarily expand the span of our ref processor, so
   635   // refs discovery is over the entire heap, not just this generation
   636   ReferenceProcessorSpanMutator
   637     x(ref_processor(), gch->reserved_region());
   639   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
   640   gc_timer->register_gc_start();
   642   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
   643   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
   645   GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
   647   gc_timer->register_gc_end();
   649   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
   651   SpecializationStats::print();
   652 }
   654 HeapWord*
   655 OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
   656                                                   bool is_tlab,
   657                                                   bool parallel) {
   658   assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
   659   if (parallel) {
   660     MutexLocker x(ParGCRareEvent_lock);
   661     HeapWord* result = NULL;
   662     size_t byte_size = word_size * HeapWordSize;
   663     while (true) {
   664       expand(byte_size, _min_heap_delta_bytes);
   665       if (GCExpandToAllocateDelayMillis > 0) {
   666         os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
   667       }
   668       result = _the_space->par_allocate(word_size);
   669       if ( result != NULL) {
   670         return result;
   671       } else {
   672         // If there's not enough expansion space available, give up.
   673         if (_virtual_space.uncommitted_size() < byte_size) {
   674           return NULL;
   675         }
   676         // else try again
   677       }
   678     }
   679   } else {
   680     expand(word_size*HeapWordSize, _min_heap_delta_bytes);
   681     return _the_space->allocate(word_size);
   682   }
   683 }
   685 bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
   686   GCMutexLocker x(ExpandHeap_lock);
   687   return CardGeneration::expand(bytes, expand_bytes);
   688 }
   691 void OneContigSpaceCardGeneration::shrink(size_t bytes) {
   692   assert_locked_or_safepoint(ExpandHeap_lock);
   693   size_t size = ReservedSpace::page_align_size_down(bytes);
   694   if (size > 0) {
   695     shrink_by(size);
   696   }
   697 }
   700 size_t OneContigSpaceCardGeneration::capacity() const {
   701   return _the_space->capacity();
   702 }
   705 size_t OneContigSpaceCardGeneration::used() const {
   706   return _the_space->used();
   707 }
   710 size_t OneContigSpaceCardGeneration::free() const {
   711   return _the_space->free();
   712 }
   714 MemRegion OneContigSpaceCardGeneration::used_region() const {
   715   return the_space()->used_region();
   716 }
   718 size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
   719   return _the_space->free();
   720 }
   722 size_t OneContigSpaceCardGeneration::contiguous_available() const {
   723   return _the_space->free() + _virtual_space.uncommitted_size();
   724 }
   726 bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
   727   assert_locked_or_safepoint(ExpandHeap_lock);
   728   bool result = _virtual_space.expand_by(bytes);
   729   if (result) {
   730     size_t new_word_size =
   731        heap_word_size(_virtual_space.committed_size());
   732     MemRegion mr(_the_space->bottom(), new_word_size);
   733     // Expand card table
   734     Universe::heap()->barrier_set()->resize_covered_region(mr);
   735     // Expand shared block offset array
   736     _bts->resize(new_word_size);
   738     // Fix for bug #4668531
   739     if (ZapUnusedHeapArea) {
   740       MemRegion mangle_region(_the_space->end(),
   741       (HeapWord*)_virtual_space.high());
   742       SpaceMangler::mangle_region(mangle_region);
   743     }
   745     // Expand space -- also expands space's BOT
   746     // (which uses (part of) shared array above)
   747     _the_space->set_end((HeapWord*)_virtual_space.high());
   749     // update the space and generation capacity counters
   750     update_counters();
   752     if (Verbose && PrintGC) {
   753       size_t new_mem_size = _virtual_space.committed_size();
   754       size_t old_mem_size = new_mem_size - bytes;
   755       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
   756                       SIZE_FORMAT "K to " SIZE_FORMAT "K",
   757                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
   758     }
   759   }
   760   return result;
   761 }
   764 bool OneContigSpaceCardGeneration::grow_to_reserved() {
   765   assert_locked_or_safepoint(ExpandHeap_lock);
   766   bool success = true;
   767   const size_t remaining_bytes = _virtual_space.uncommitted_size();
   768   if (remaining_bytes > 0) {
   769     success = grow_by(remaining_bytes);
   770     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
   771   }
   772   return success;
   773 }
   775 void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
   776   assert_locked_or_safepoint(ExpandHeap_lock);
   777   // Shrink committed space
   778   _virtual_space.shrink_by(bytes);
   779   // Shrink space; this also shrinks the space's BOT
   780   _the_space->set_end((HeapWord*) _virtual_space.high());
   781   size_t new_word_size = heap_word_size(_the_space->capacity());
   782   // Shrink the shared block offset array
   783   _bts->resize(new_word_size);
   784   MemRegion mr(_the_space->bottom(), new_word_size);
   785   // Shrink the card table
   786   Universe::heap()->barrier_set()->resize_covered_region(mr);
   788   if (Verbose && PrintGC) {
   789     size_t new_mem_size = _virtual_space.committed_size();
   790     size_t old_mem_size = new_mem_size + bytes;
   791     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
   792                   name(), old_mem_size/K, new_mem_size/K);
   793   }
   794 }
   796 // Currently nothing to do.
   797 void OneContigSpaceCardGeneration::prepare_for_verify() {}
   800 // Override for a card-table generation with one contiguous
   801 // space. NOTE: For reasons that are lost in the fog of history,
   802 // this code is used when you iterate over perm gen objects,
   803 // even when one uses CDS, where the perm gen has a couple of
   804 // other spaces; this is because CompactingPermGenGen derives
   805 // from OneContigSpaceCardGeneration. This should be cleaned up,
   806 // see CR 6897789..
   807 void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
   808   _the_space->object_iterate(blk);
   809 }
   811 void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
   812                                                  bool usedOnly) {
   813   blk->do_space(_the_space);
   814 }
   816 void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
   817   blk->set_generation(this);
   818   younger_refs_in_space_iterate(_the_space, blk);
   819   blk->reset_generation();
   820 }
   822 void OneContigSpaceCardGeneration::save_marks() {
   823   _the_space->set_saved_mark();
   824 }
   827 void OneContigSpaceCardGeneration::reset_saved_marks() {
   828   _the_space->reset_saved_mark();
   829 }
   832 bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
   833   return _the_space->saved_mark_at_top();
   834 }
   836 #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)      \
   837                                                                                 \
   838 void OneContigSpaceCardGeneration::                                             \
   839 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {                  \
   840   blk->set_generation(this);                                                    \
   841   _the_space->oop_since_save_marks_iterate##nv_suffix(blk);                     \
   842   blk->reset_generation();                                                      \
   843   save_marks();                                                                 \
   844 }
   846 ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
   848 #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
   851 void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
   852   _last_gc = WaterMark(the_space(), the_space()->top());
   854   // update the generation and space performance counters
   855   update_counters();
   856   if (ZapUnusedHeapArea) {
   857     the_space()->check_mangled_unused_area_complete();
   858   }
   859 }
   861 void OneContigSpaceCardGeneration::record_spaces_top() {
   862   assert(ZapUnusedHeapArea, "Not mangling unused space");
   863   the_space()->set_top_for_allocations();
   864 }
   866 void OneContigSpaceCardGeneration::verify() {
   867   the_space()->verify();
   868 }
   870 void OneContigSpaceCardGeneration::print_on(outputStream* st)  const {
   871   Generation::print_on(st);
   872   st->print("   the");
   873   the_space()->print_on(st);
   874 }

mercurial