src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Tue, 14 Jan 2014 16:40:33 +0100

author
mgerdin
date
Tue, 14 Jan 2014 16:40:33 +0100
changeset 6968
9fec19bb0659
parent 6911
ce8f6bb717c9
child 6971
7426d8d76305
permissions
-rw-r--r--

8032379: Remove the is_scavenging flag to process_strong_roots
Summary: Refactor the strong root processing to avoid using a boolean in addition to the ScanOption enum.
Reviewed-by: stefank, tschatzl, ehelin, jmasa

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
    27 #include "gc_implementation/parNew/parNewGeneration.hpp"
    28 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
    29 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    30 #include "gc_implementation/shared/ageTable.hpp"
    31 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    32 #include "gc_implementation/shared/gcHeapSummary.hpp"
    33 #include "gc_implementation/shared/gcTimer.hpp"
    34 #include "gc_implementation/shared/gcTrace.hpp"
    35 #include "gc_implementation/shared/gcTraceTime.hpp"
    36 #include "gc_implementation/shared/copyFailedInfo.hpp"
    37 #include "gc_implementation/shared/spaceDecorator.hpp"
    38 #include "memory/defNewGeneration.inline.hpp"
    39 #include "memory/genCollectedHeap.hpp"
    40 #include "memory/genOopClosures.inline.hpp"
    41 #include "memory/generation.hpp"
    42 #include "memory/generation.inline.hpp"
    43 #include "memory/referencePolicy.hpp"
    44 #include "memory/resourceArea.hpp"
    45 #include "memory/sharedHeap.hpp"
    46 #include "memory/space.hpp"
    47 #include "oops/objArrayOop.hpp"
    48 #include "oops/oop.inline.hpp"
    49 #include "oops/oop.pcgc.inline.hpp"
    50 #include "runtime/handles.hpp"
    51 #include "runtime/handles.inline.hpp"
    52 #include "runtime/java.hpp"
    53 #include "runtime/thread.inline.hpp"
    54 #include "utilities/copy.hpp"
    55 #include "utilities/globalDefinitions.hpp"
    56 #include "utilities/workgroup.hpp"
    58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    60 #ifdef _MSC_VER
    61 #pragma warning( push )
    62 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
    63 #endif
    64 ParScanThreadState::ParScanThreadState(Space* to_space_,
    65                                        ParNewGeneration* gen_,
    66                                        Generation* old_gen_,
    67                                        int thread_num_,
    68                                        ObjToScanQueueSet* work_queue_set_,
    69                                        Stack<oop, mtGC>* overflow_stacks_,
    70                                        size_t desired_plab_sz_,
    71                                        ParallelTaskTerminator& term_) :
    72   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
    73   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
    74   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
    75   _ageTable(false), // false ==> not the global age table, no perf data.
    76   _to_space_alloc_buffer(desired_plab_sz_),
    77   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
    78   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
    79   _older_gen_closure(gen_, this),
    80   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
    81                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
    82                       work_queue_set_, &term_),
    83   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
    84   _keep_alive_closure(&_scan_weak_ref_closure),
    85   _strong_roots_time(0.0), _term_time(0.0)
    86 {
    87   #if TASKQUEUE_STATS
    88   _term_attempts = 0;
    89   _overflow_refills = 0;
    90   _overflow_refill_objs = 0;
    91   #endif // TASKQUEUE_STATS
    93   _survivor_chunk_array =
    94     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
    95   _hash_seed = 17;  // Might want to take time-based random value.
    96   _start = os::elapsedTime();
    97   _old_gen_closure.set_generation(old_gen_);
    98   _old_gen_root_closure.set_generation(old_gen_);
    99 }
   100 #ifdef _MSC_VER
   101 #pragma warning( pop )
   102 #endif
   104 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
   105                                               size_t plab_word_size) {
   106   ChunkArray* sca = survivor_chunk_array();
   107   if (sca != NULL) {
   108     // A non-null SCA implies that we want the PLAB data recorded.
   109     sca->record_sample(plab_start, plab_word_size);
   110   }
   111 }
   113 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
   114   return new_obj->is_objArray() &&
   115          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
   116          new_obj != old_obj;
   117 }
   119 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
   120   assert(old->is_objArray(), "must be obj array");
   121   assert(old->is_forwarded(), "must be forwarded");
   122   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
   123   assert(!old_gen()->is_in(old), "must be in young generation.");
   125   objArrayOop obj = objArrayOop(old->forwardee());
   126   // Process ParGCArrayScanChunk elements now
   127   // and push the remainder back onto queue
   128   int start     = arrayOop(old)->length();
   129   int end       = obj->length();
   130   int remainder = end - start;
   131   assert(start <= end, "just checking");
   132   if (remainder > 2 * ParGCArrayScanChunk) {
   133     // Test above combines last partial chunk with a full chunk
   134     end = start + ParGCArrayScanChunk;
   135     arrayOop(old)->set_length(end);
   136     // Push remainder.
   137     bool ok = work_queue()->push(old);
   138     assert(ok, "just popped, push must be okay");
   139   } else {
   140     // Restore length so that it can be used if there
   141     // is a promotion failure and forwarding pointers
   142     // must be removed.
   143     arrayOop(old)->set_length(end);
   144   }
   146   // process our set of indices (include header in first chunk)
   147   // should make sure end is even (aligned to HeapWord in case of compressed oops)
   148   if ((HeapWord *)obj < young_old_boundary()) {
   149     // object is in to_space
   150     obj->oop_iterate_range(&_to_space_closure, start, end);
   151   } else {
   152     // object is in old generation
   153     obj->oop_iterate_range(&_old_gen_closure, start, end);
   154   }
   155 }
   158 void ParScanThreadState::trim_queues(int max_size) {
   159   ObjToScanQueue* queue = work_queue();
   160   do {
   161     while (queue->size() > (juint)max_size) {
   162       oop obj_to_scan;
   163       if (queue->pop_local(obj_to_scan)) {
   164         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
   165           if (obj_to_scan->is_objArray() &&
   166               obj_to_scan->is_forwarded() &&
   167               obj_to_scan->forwardee() != obj_to_scan) {
   168             scan_partial_array_and_push_remainder(obj_to_scan);
   169           } else {
   170             // object is in to_space
   171             obj_to_scan->oop_iterate(&_to_space_closure);
   172           }
   173         } else {
   174           // object is in old generation
   175           obj_to_scan->oop_iterate(&_old_gen_closure);
   176         }
   177       }
   178     }
   179     // For the  case of compressed oops, we have a private, non-shared
   180     // overflow stack, so we eagerly drain it so as to more evenly
   181     // distribute load early. Note: this may be good to do in
   182     // general rather than delay for the final stealing phase.
   183     // If applicable, we'll transfer a set of objects over to our
   184     // work queue, allowing them to be stolen and draining our
   185     // private overflow stack.
   186   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
   187 }
   189 bool ParScanThreadState::take_from_overflow_stack() {
   190   assert(ParGCUseLocalOverflow, "Else should not call");
   191   assert(young_gen()->overflow_list() == NULL, "Error");
   192   ObjToScanQueue* queue = work_queue();
   193   Stack<oop, mtGC>* const of_stack = overflow_stack();
   194   const size_t num_overflow_elems = of_stack->size();
   195   const size_t space_available = queue->max_elems() - queue->size();
   196   const size_t num_take_elems = MIN3(space_available / 4,
   197                                      ParGCDesiredObjsFromOverflowList,
   198                                      num_overflow_elems);
   199   // Transfer the most recent num_take_elems from the overflow
   200   // stack to our work queue.
   201   for (size_t i = 0; i != num_take_elems; i++) {
   202     oop cur = of_stack->pop();
   203     oop obj_to_push = cur->forwardee();
   204     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
   205     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
   206     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
   207     if (should_be_partially_scanned(obj_to_push, cur)) {
   208       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
   209       obj_to_push = cur;
   210     }
   211     bool ok = queue->push(obj_to_push);
   212     assert(ok, "Should have succeeded");
   213   }
   214   assert(young_gen()->overflow_list() == NULL, "Error");
   215   return num_take_elems > 0;  // was something transferred?
   216 }
   218 void ParScanThreadState::push_on_overflow_stack(oop p) {
   219   assert(ParGCUseLocalOverflow, "Else should not call");
   220   overflow_stack()->push(p);
   221   assert(young_gen()->overflow_list() == NULL, "Error");
   222 }
   224 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
   226   // Otherwise, if the object is small enough, try to reallocate the
   227   // buffer.
   228   HeapWord* obj = NULL;
   229   if (!_to_space_full) {
   230     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
   231     Space*            const sp   = to_space();
   232     if (word_sz * 100 <
   233         ParallelGCBufferWastePct * plab->word_sz()) {
   234       // Is small enough; abandon this buffer and start a new one.
   235       plab->retire(false, false);
   236       size_t buf_size = plab->word_sz();
   237       HeapWord* buf_space = sp->par_allocate(buf_size);
   238       if (buf_space == NULL) {
   239         const size_t min_bytes =
   240           ParGCAllocBuffer::min_size() << LogHeapWordSize;
   241         size_t free_bytes = sp->free();
   242         while(buf_space == NULL && free_bytes >= min_bytes) {
   243           buf_size = free_bytes >> LogHeapWordSize;
   244           assert(buf_size == (size_t)align_object_size(buf_size),
   245                  "Invariant");
   246           buf_space  = sp->par_allocate(buf_size);
   247           free_bytes = sp->free();
   248         }
   249       }
   250       if (buf_space != NULL) {
   251         plab->set_word_size(buf_size);
   252         plab->set_buf(buf_space);
   253         record_survivor_plab(buf_space, buf_size);
   254         obj = plab->allocate(word_sz);
   255         // Note that we cannot compare buf_size < word_sz below
   256         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
   257         assert(obj != NULL || plab->words_remaining() < word_sz,
   258                "Else should have been able to allocate");
   259         // It's conceivable that we may be able to use the
   260         // buffer we just grabbed for subsequent small requests
   261         // even if not for this one.
   262       } else {
   263         // We're used up.
   264         _to_space_full = true;
   265       }
   267     } else {
   268       // Too large; allocate the object individually.
   269       obj = sp->par_allocate(word_sz);
   270     }
   271   }
   272   return obj;
   273 }
   276 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
   277                                                 size_t word_sz) {
   278   // Is the alloc in the current alloc buffer?
   279   if (to_space_alloc_buffer()->contains(obj)) {
   280     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
   281            "Should contain whole object.");
   282     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
   283   } else {
   284     CollectedHeap::fill_with_object(obj, word_sz);
   285   }
   286 }
   288 void ParScanThreadState::print_promotion_failure_size() {
   289   if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
   290     gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
   291                         _thread_num, _promotion_failed_info.first_size());
   292   }
   293 }
   295 class ParScanThreadStateSet: private ResourceArray {
   296 public:
   297   // Initializes states for the specified number of threads;
   298   ParScanThreadStateSet(int                     num_threads,
   299                         Space&                  to_space,
   300                         ParNewGeneration&       gen,
   301                         Generation&             old_gen,
   302                         ObjToScanQueueSet&      queue_set,
   303                         Stack<oop, mtGC>*       overflow_stacks_,
   304                         size_t                  desired_plab_sz,
   305                         ParallelTaskTerminator& term);
   307   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
   309   inline ParScanThreadState& thread_state(int i);
   311   void trace_promotion_failed(YoungGCTracer& gc_tracer);
   312   void reset(int active_workers, bool promotion_failed);
   313   void flush();
   315   #if TASKQUEUE_STATS
   316   static void
   317     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
   318   void print_termination_stats(outputStream* const st = gclog_or_tty);
   319   static void
   320     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   321   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
   322   void reset_stats();
   323   #endif // TASKQUEUE_STATS
   325 private:
   326   ParallelTaskTerminator& _term;
   327   ParNewGeneration&       _gen;
   328   Generation&             _next_gen;
   329  public:
   330   bool is_valid(int id) const { return id < length(); }
   331   ParallelTaskTerminator* terminator() { return &_term; }
   332 };
   335 ParScanThreadStateSet::ParScanThreadStateSet(
   336   int num_threads, Space& to_space, ParNewGeneration& gen,
   337   Generation& old_gen, ObjToScanQueueSet& queue_set,
   338   Stack<oop, mtGC>* overflow_stacks,
   339   size_t desired_plab_sz, ParallelTaskTerminator& term)
   340   : ResourceArray(sizeof(ParScanThreadState), num_threads),
   341     _gen(gen), _next_gen(old_gen), _term(term)
   342 {
   343   assert(num_threads > 0, "sanity check!");
   344   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
   345          "overflow_stack allocation mismatch");
   346   // Initialize states.
   347   for (int i = 0; i < num_threads; ++i) {
   348     new ((ParScanThreadState*)_data + i)
   349         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
   350                            overflow_stacks, desired_plab_sz, term);
   351   }
   352 }
   354 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
   355 {
   356   assert(i >= 0 && i < length(), "sanity check!");
   357   return ((ParScanThreadState*)_data)[i];
   358 }
   360 void ParScanThreadStateSet::trace_promotion_failed(YoungGCTracer& gc_tracer) {
   361   for (int i = 0; i < length(); ++i) {
   362     if (thread_state(i).promotion_failed()) {
   363       gc_tracer.report_promotion_failed(thread_state(i).promotion_failed_info());
   364       thread_state(i).promotion_failed_info().reset();
   365     }
   366   }
   367 }
   369 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
   370 {
   371   _term.reset_for_reuse(active_threads);
   372   if (promotion_failed) {
   373     for (int i = 0; i < length(); ++i) {
   374       thread_state(i).print_promotion_failure_size();
   375     }
   376   }
   377 }
   379 #if TASKQUEUE_STATS
   380 void
   381 ParScanThreadState::reset_stats()
   382 {
   383   taskqueue_stats().reset();
   384   _term_attempts = 0;
   385   _overflow_refills = 0;
   386   _overflow_refill_objs = 0;
   387 }
   389 void ParScanThreadStateSet::reset_stats()
   390 {
   391   for (int i = 0; i < length(); ++i) {
   392     thread_state(i).reset_stats();
   393   }
   394 }
   396 void
   397 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
   398 {
   399   st->print_raw_cr("GC Termination Stats");
   400   st->print_raw_cr("     elapsed  --strong roots-- "
   401                    "-------termination-------");
   402   st->print_raw_cr("thr     ms        ms       %   "
   403                    "    ms       %   attempts");
   404   st->print_raw_cr("--- --------- --------- ------ "
   405                    "--------- ------ --------");
   406 }
   408 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
   409 {
   410   print_termination_stats_hdr(st);
   412   for (int i = 0; i < length(); ++i) {
   413     const ParScanThreadState & pss = thread_state(i);
   414     const double elapsed_ms = pss.elapsed_time() * 1000.0;
   415     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
   416     const double term_ms = pss.term_time() * 1000.0;
   417     st->print_cr("%3d %9.2f %9.2f %6.2f "
   418                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
   419                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
   420                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
   421   }
   422 }
   424 // Print stats related to work queue activity.
   425 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
   426 {
   427   st->print_raw_cr("GC Task Stats");
   428   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
   429   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
   430 }
   432 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
   433 {
   434   print_taskqueue_stats_hdr(st);
   436   TaskQueueStats totals;
   437   for (int i = 0; i < length(); ++i) {
   438     const ParScanThreadState & pss = thread_state(i);
   439     const TaskQueueStats & stats = pss.taskqueue_stats();
   440     st->print("%3d ", i); stats.print(st); st->cr();
   441     totals += stats;
   443     if (pss.overflow_refills() > 0) {
   444       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
   445                    SIZE_FORMAT_W(10) " overflow objects",
   446                    pss.overflow_refills(), pss.overflow_refill_objs());
   447     }
   448   }
   449   st->print("tot "); totals.print(st); st->cr();
   451   DEBUG_ONLY(totals.verify());
   452 }
   453 #endif // TASKQUEUE_STATS
   455 void ParScanThreadStateSet::flush()
   456 {
   457   // Work in this loop should be kept as lightweight as
   458   // possible since this might otherwise become a bottleneck
   459   // to scaling. Should we add heavy-weight work into this
   460   // loop, consider parallelizing the loop into the worker threads.
   461   for (int i = 0; i < length(); ++i) {
   462     ParScanThreadState& par_scan_state = thread_state(i);
   464     // Flush stats related to To-space PLAB activity and
   465     // retire the last buffer.
   466     par_scan_state.to_space_alloc_buffer()->
   467       flush_stats_and_retire(_gen.plab_stats(),
   468                              true /* end_of_gc */,
   469                              false /* retain */);
   471     // Every thread has its own age table.  We need to merge
   472     // them all into one.
   473     ageTable *local_table = par_scan_state.age_table();
   474     _gen.age_table()->merge(local_table);
   476     // Inform old gen that we're done.
   477     _next_gen.par_promote_alloc_done(i);
   478     _next_gen.par_oop_since_save_marks_iterate_done(i);
   479   }
   481   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
   482     // We need to call this even when ResizeOldPLAB is disabled
   483     // so as to avoid breaking some asserts. While we may be able
   484     // to avoid this by reorganizing the code a bit, I am loathe
   485     // to do that unless we find cases where ergo leads to bad
   486     // performance.
   487     CFLS_LAB::compute_desired_plab_size();
   488   }
   489 }
   491 ParScanClosure::ParScanClosure(ParNewGeneration* g,
   492                                ParScanThreadState* par_scan_state) :
   493   OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
   494 {
   495   assert(_g->level() == 0, "Optimized for youngest generation");
   496   _boundary = _g->reserved().end();
   497 }
   499 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
   500 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
   502 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
   503 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
   505 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
   506 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
   508 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
   509 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
   511 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
   512                                              ParScanThreadState* par_scan_state)
   513   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
   514 {}
   516 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
   517 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
   519 #ifdef WIN32
   520 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
   521 #endif
   523 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
   524     ParScanThreadState* par_scan_state_,
   525     ParScanWithoutBarrierClosure* to_space_closure_,
   526     ParScanWithBarrierClosure* old_gen_closure_,
   527     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
   528     ParNewGeneration* par_gen_,
   529     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
   530     ObjToScanQueueSet* task_queues_,
   531     ParallelTaskTerminator* terminator_) :
   533     _par_scan_state(par_scan_state_),
   534     _to_space_closure(to_space_closure_),
   535     _old_gen_closure(old_gen_closure_),
   536     _to_space_root_closure(to_space_root_closure_),
   537     _old_gen_root_closure(old_gen_root_closure_),
   538     _par_gen(par_gen_),
   539     _task_queues(task_queues_),
   540     _terminator(terminator_)
   541 {}
   543 void ParEvacuateFollowersClosure::do_void() {
   544   ObjToScanQueue* work_q = par_scan_state()->work_queue();
   546   while (true) {
   548     // Scan to-space and old-gen objs until we run out of both.
   549     oop obj_to_scan;
   550     par_scan_state()->trim_queues(0);
   552     // We have no local work, attempt to steal from other threads.
   554     // attempt to steal work from promoted.
   555     if (task_queues()->steal(par_scan_state()->thread_num(),
   556                              par_scan_state()->hash_seed(),
   557                              obj_to_scan)) {
   558       bool res = work_q->push(obj_to_scan);
   559       assert(res, "Empty queue should have room for a push.");
   561       //   if successful, goto Start.
   562       continue;
   564       // try global overflow list.
   565     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
   566       continue;
   567     }
   569     // Otherwise, offer termination.
   570     par_scan_state()->start_term_time();
   571     if (terminator()->offer_termination()) break;
   572     par_scan_state()->end_term_time();
   573   }
   574   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
   575          "Broken overflow list?");
   576   // Finish the last termination pause.
   577   par_scan_state()->end_term_time();
   578 }
   580 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
   581                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
   582     AbstractGangTask("ParNewGeneration collection"),
   583     _gen(gen), _next_gen(next_gen),
   584     _young_old_boundary(young_old_boundary),
   585     _state_set(state_set)
   586   {}
   588 // Reset the terminator for the given number of
   589 // active threads.
   590 void ParNewGenTask::set_for_termination(int active_workers) {
   591   _state_set->reset(active_workers, _gen->promotion_failed());
   592   // Should the heap be passed in?  There's only 1 for now so
   593   // grab it instead.
   594   GenCollectedHeap* gch = GenCollectedHeap::heap();
   595   gch->set_n_termination(active_workers);
   596 }
   598 void ParNewGenTask::work(uint worker_id) {
   599   GenCollectedHeap* gch = GenCollectedHeap::heap();
   600   // Since this is being done in a separate thread, need new resource
   601   // and handle marks.
   602   ResourceMark rm;
   603   HandleMark hm;
   604   // We would need multiple old-gen queues otherwise.
   605   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
   607   Generation* old_gen = gch->next_gen(_gen);
   609   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
   610   assert(_state_set->is_valid(worker_id), "Should not have been called");
   612   par_scan_state.set_young_old_boundary(_young_old_boundary);
   614   KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
   615                                       gch->rem_set()->klass_rem_set());
   617   int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_ScavengeCodeCache;
   619   par_scan_state.start_strong_roots();
   620   gch->gen_process_strong_roots(_gen->level(),
   621                                 true,  // Process younger gens, if any,
   622                                        // as strong roots.
   623                                 false, // no scope; this is parallel code
   624                                 SharedHeap::ScanningOption(so),
   625                                 &par_scan_state.to_space_root_closure(),
   626                                 true,   // walk *all* scavengable nmethods
   627                                 &par_scan_state.older_gen_closure(),
   628                                 &klass_scan_closure);
   629   par_scan_state.end_strong_roots();
   631   // "evacuate followers".
   632   par_scan_state.evacuate_followers_closure().do_void();
   633 }
   635 #ifdef _MSC_VER
   636 #pragma warning( push )
   637 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   638 #endif
   639 ParNewGeneration::
   640 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
   641   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
   642   _overflow_list(NULL),
   643   _is_alive_closure(this),
   644   _plab_stats(YoungPLABSize, PLABWeight)
   645 {
   646   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
   647   NOT_PRODUCT(_num_par_pushes = 0;)
   648   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
   649   guarantee(_task_queues != NULL, "task_queues allocation failure.");
   651   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
   652     ObjToScanQueue *q = new ObjToScanQueue();
   653     guarantee(q != NULL, "work_queue Allocation failure.");
   654     _task_queues->register_queue(i1, q);
   655   }
   657   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
   658     _task_queues->queue(i2)->initialize();
   660   _overflow_stacks = NULL;
   661   if (ParGCUseLocalOverflow) {
   663     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
   664     // with ','
   665     typedef Stack<oop, mtGC> GCOopStack;
   667     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
   668     for (size_t i = 0; i < ParallelGCThreads; ++i) {
   669       new (_overflow_stacks + i) Stack<oop, mtGC>();
   670     }
   671   }
   673   if (UsePerfData) {
   674     EXCEPTION_MARK;
   675     ResourceMark rm;
   677     const char* cname =
   678          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
   679     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
   680                                      ParallelGCThreads, CHECK);
   681   }
   682 }
   683 #ifdef _MSC_VER
   684 #pragma warning( pop )
   685 #endif
   687 // ParNewGeneration::
   688 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
   689   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
   691 template <class T>
   692 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
   693 #ifdef ASSERT
   694   {
   695     assert(!oopDesc::is_null(*p), "expected non-null ref");
   696     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   697     // We never expect to see a null reference being processed
   698     // as a weak reference.
   699     assert(obj->is_oop(), "expected an oop while scanning weak refs");
   700   }
   701 #endif // ASSERT
   703   _par_cl->do_oop_nv(p);
   705   if (Universe::heap()->is_in_reserved(p)) {
   706     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   707     _rs->write_ref_field_gc_par(p, obj);
   708   }
   709 }
   711 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
   712 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
   714 // ParNewGeneration::
   715 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
   716   DefNewGeneration::KeepAliveClosure(cl) {}
   718 template <class T>
   719 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
   720 #ifdef ASSERT
   721   {
   722     assert(!oopDesc::is_null(*p), "expected non-null ref");
   723     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   724     // We never expect to see a null reference being processed
   725     // as a weak reference.
   726     assert(obj->is_oop(), "expected an oop while scanning weak refs");
   727   }
   728 #endif // ASSERT
   730   _cl->do_oop_nv(p);
   732   if (Universe::heap()->is_in_reserved(p)) {
   733     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   734     _rs->write_ref_field_gc_par(p, obj);
   735   }
   736 }
   738 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
   739 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
   741 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
   742   T heap_oop = oopDesc::load_heap_oop(p);
   743   if (!oopDesc::is_null(heap_oop)) {
   744     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   745     if ((HeapWord*)obj < _boundary) {
   746       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
   747       oop new_obj = obj->is_forwarded()
   748                       ? obj->forwardee()
   749                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
   750       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
   751     }
   752     if (_gc_barrier) {
   753       // If p points to a younger generation, mark the card.
   754       if ((HeapWord*)obj < _gen_boundary) {
   755         _rs->write_ref_field_gc_par(p, obj);
   756       }
   757     }
   758   }
   759 }
   761 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
   762 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
   764 class ParNewRefProcTaskProxy: public AbstractGangTask {
   765   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   766 public:
   767   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
   768                          Generation& next_gen,
   769                          HeapWord* young_old_boundary,
   770                          ParScanThreadStateSet& state_set);
   772 private:
   773   virtual void work(uint worker_id);
   774   virtual void set_for_termination(int active_workers) {
   775     _state_set.terminator()->reset_for_reuse(active_workers);
   776   }
   777 private:
   778   ParNewGeneration&      _gen;
   779   ProcessTask&           _task;
   780   Generation&            _next_gen;
   781   HeapWord*              _young_old_boundary;
   782   ParScanThreadStateSet& _state_set;
   783 };
   785 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
   786     ProcessTask& task, ParNewGeneration& gen,
   787     Generation& next_gen,
   788     HeapWord* young_old_boundary,
   789     ParScanThreadStateSet& state_set)
   790   : AbstractGangTask("ParNewGeneration parallel reference processing"),
   791     _gen(gen),
   792     _task(task),
   793     _next_gen(next_gen),
   794     _young_old_boundary(young_old_boundary),
   795     _state_set(state_set)
   796 {
   797 }
   799 void ParNewRefProcTaskProxy::work(uint worker_id)
   800 {
   801   ResourceMark rm;
   802   HandleMark hm;
   803   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
   804   par_scan_state.set_young_old_boundary(_young_old_boundary);
   805   _task.work(worker_id, par_scan_state.is_alive_closure(),
   806              par_scan_state.keep_alive_closure(),
   807              par_scan_state.evacuate_followers_closure());
   808 }
   810 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
   811   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   812   EnqueueTask& _task;
   814 public:
   815   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
   816     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
   817       _task(task)
   818   { }
   820   virtual void work(uint worker_id)
   821   {
   822     _task.work(worker_id);
   823   }
   824 };
   827 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
   828 {
   829   GenCollectedHeap* gch = GenCollectedHeap::heap();
   830   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   831          "not a generational heap");
   832   FlexibleWorkGang* workers = gch->workers();
   833   assert(workers != NULL, "Need parallel worker threads.");
   834   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
   835   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
   836                                  _generation.reserved().end(), _state_set);
   837   workers->run_task(&rp_task);
   838   _state_set.reset(0 /* bad value in debug if not reset */,
   839                    _generation.promotion_failed());
   840 }
   842 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
   843 {
   844   GenCollectedHeap* gch = GenCollectedHeap::heap();
   845   FlexibleWorkGang* workers = gch->workers();
   846   assert(workers != NULL, "Need parallel worker threads.");
   847   ParNewRefEnqueueTaskProxy enq_task(task);
   848   workers->run_task(&enq_task);
   849 }
   851 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
   852 {
   853   _state_set.flush();
   854   GenCollectedHeap* gch = GenCollectedHeap::heap();
   855   gch->set_par_threads(0);  // 0 ==> non-parallel.
   856   gch->save_marks();
   857 }
   859 ScanClosureWithParBarrier::
   860 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
   861   ScanClosure(g, gc_barrier) {}
   863 EvacuateFollowersClosureGeneral::
   864 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
   865                                 OopsInGenClosure* cur,
   866                                 OopsInGenClosure* older) :
   867   _gch(gch), _level(level),
   868   _scan_cur_or_nonheap(cur), _scan_older(older)
   869 {}
   871 void EvacuateFollowersClosureGeneral::do_void() {
   872   do {
   873     // Beware: this call will lead to closure applications via virtual
   874     // calls.
   875     _gch->oop_since_save_marks_iterate(_level,
   876                                        _scan_cur_or_nonheap,
   877                                        _scan_older);
   878   } while (!_gch->no_allocs_since_save_marks(_level));
   879 }
   882 // A Generation that does parallel young-gen collection.
   884 bool ParNewGeneration::_avoid_promotion_undo = false;
   886 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set, ParNewTracer& gc_tracer) {
   887   assert(_promo_failure_scan_stack.is_empty(), "post condition");
   888   _promo_failure_scan_stack.clear(true); // Clear cached segments.
   890   remove_forwarding_pointers();
   891   if (PrintGCDetails) {
   892     gclog_or_tty->print(" (promotion failed)");
   893   }
   894   // All the spaces are in play for mark-sweep.
   895   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
   896   from()->set_next_compaction_space(to());
   897   gch->set_incremental_collection_failed();
   898   // Inform the next generation that a promotion failure occurred.
   899   _next_gen->promotion_failure_occurred();
   901   // Trace promotion failure in the parallel GC threads
   902   thread_state_set.trace_promotion_failed(gc_tracer);
   903   // Single threaded code may have reported promotion failure to the global state
   904   if (_promotion_failed_info.has_failed()) {
   905     gc_tracer.report_promotion_failed(_promotion_failed_info);
   906   }
   907   // Reset the PromotionFailureALot counters.
   908   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   909 }
   911 void ParNewGeneration::collect(bool   full,
   912                                bool   clear_all_soft_refs,
   913                                size_t size,
   914                                bool   is_tlab) {
   915   assert(full || size > 0, "otherwise we don't want to collect");
   917   GenCollectedHeap* gch = GenCollectedHeap::heap();
   919   _gc_timer->register_gc_start();
   921   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   922     "not a CMS generational heap");
   923   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   924   FlexibleWorkGang* workers = gch->workers();
   925   assert(workers != NULL, "Need workgang for parallel work");
   926   int active_workers =
   927       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
   928                                    workers->active_workers(),
   929                                    Threads::number_of_non_daemon_threads());
   930   workers->set_active_workers(active_workers);
   931   assert(gch->n_gens() == 2,
   932          "Par collection currently only works with single older gen.");
   933   _next_gen = gch->next_gen(this);
   934   // Do we have to avoid promotion_undo?
   935   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
   936     set_avoid_promotion_undo(true);
   937   }
   939   // If the next generation is too full to accommodate worst-case promotion
   940   // from this generation, pass on collection; let the next generation
   941   // do it.
   942   if (!collection_attempt_is_safe()) {
   943     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
   944     return;
   945   }
   946   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   948   ParNewTracer gc_tracer;
   949   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
   950   gch->trace_heap_before_gc(&gc_tracer);
   952   init_assuming_no_promotion_failure();
   954   if (UseAdaptiveSizePolicy) {
   955     set_survivor_overflow(false);
   956     size_policy->minor_collection_begin();
   957   }
   959   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
   960   // Capture heap used before collection (for printing).
   961   size_t gch_prev_used = gch->used();
   963   SpecializationStats::clear();
   965   age_table()->clear();
   966   to()->clear(SpaceDecorator::Mangle);
   968   gch->save_marks();
   969   assert(workers != NULL, "Need parallel worker threads.");
   970   int n_workers = active_workers;
   972   // Set the correct parallelism (number of queues) in the reference processor
   973   ref_processor()->set_active_mt_degree(n_workers);
   975   // Always set the terminator for the active number of workers
   976   // because only those workers go through the termination protocol.
   977   ParallelTaskTerminator _term(n_workers, task_queues());
   978   ParScanThreadStateSet thread_state_set(workers->active_workers(),
   979                                          *to(), *this, *_next_gen, *task_queues(),
   980                                          _overflow_stacks, desired_plab_sz(), _term);
   982   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
   983   gch->set_par_threads(n_workers);
   984   gch->rem_set()->prepare_for_younger_refs_iterate(true);
   985   // It turns out that even when we're using 1 thread, doing the work in a
   986   // separate thread causes wide variance in run times.  We can't help this
   987   // in the multi-threaded case, but we special-case n=1 here to get
   988   // repeatable measurements of the 1-thread overhead of the parallel code.
   989   if (n_workers > 1) {
   990     GenCollectedHeap::StrongRootsScope srs(gch);
   991     workers->run_task(&tsk);
   992   } else {
   993     GenCollectedHeap::StrongRootsScope srs(gch);
   994     tsk.work(0);
   995   }
   996   thread_state_set.reset(0 /* Bad value in debug if not reset */,
   997                          promotion_failed());
   999   // Process (weak) reference objects found during scavenge.
  1000   ReferenceProcessor* rp = ref_processor();
  1001   IsAliveClosure is_alive(this);
  1002   ScanWeakRefClosure scan_weak_ref(this);
  1003   KeepAliveClosure keep_alive(&scan_weak_ref);
  1004   ScanClosure               scan_without_gc_barrier(this, false);
  1005   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
  1006   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
  1007   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
  1008     &scan_without_gc_barrier, &scan_with_gc_barrier);
  1009   rp->setup_policy(clear_all_soft_refs);
  1010   // Can  the mt_degree be set later (at run_task() time would be best)?
  1011   rp->set_active_mt_degree(active_workers);
  1012   ReferenceProcessorStats stats;
  1013   if (rp->processing_is_mt()) {
  1014     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
  1015     stats = rp->process_discovered_references(&is_alive, &keep_alive,
  1016                                               &evacuate_followers, &task_executor,
  1017                                               _gc_timer, gc_tracer.gc_id());
  1018   } else {
  1019     thread_state_set.flush();
  1020     gch->set_par_threads(0);  // 0 ==> non-parallel.
  1021     gch->save_marks();
  1022     stats = rp->process_discovered_references(&is_alive, &keep_alive,
  1023                                               &evacuate_followers, NULL,
  1024                                               _gc_timer, gc_tracer.gc_id());
  1026   gc_tracer.report_gc_reference_stats(stats);
  1027   if (!promotion_failed()) {
  1028     // Swap the survivor spaces.
  1029     eden()->clear(SpaceDecorator::Mangle);
  1030     from()->clear(SpaceDecorator::Mangle);
  1031     if (ZapUnusedHeapArea) {
  1032       // This is now done here because of the piece-meal mangling which
  1033       // can check for valid mangling at intermediate points in the
  1034       // collection(s).  When a minor collection fails to collect
  1035       // sufficient space resizing of the young generation can occur
  1036       // an redistribute the spaces in the young generation.  Mangle
  1037       // here so that unzapped regions don't get distributed to
  1038       // other spaces.
  1039       to()->mangle_unused_area();
  1041     swap_spaces();
  1043     // A successful scavenge should restart the GC time limit count which is
  1044     // for full GC's.
  1045     size_policy->reset_gc_overhead_limit_count();
  1047     assert(to()->is_empty(), "to space should be empty now");
  1049     adjust_desired_tenuring_threshold();
  1050   } else {
  1051     handle_promotion_failed(gch, thread_state_set, gc_tracer);
  1053   // set new iteration safe limit for the survivor spaces
  1054   from()->set_concurrent_iteration_safe_limit(from()->top());
  1055   to()->set_concurrent_iteration_safe_limit(to()->top());
  1057   if (ResizePLAB) {
  1058     plab_stats()->adjust_desired_plab_sz(n_workers);
  1061   if (PrintGC && !PrintGCDetails) {
  1062     gch->print_heap_change(gch_prev_used);
  1065   if (PrintGCDetails && ParallelGCVerbose) {
  1066     TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
  1067     TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
  1070   if (UseAdaptiveSizePolicy) {
  1071     size_policy->minor_collection_end(gch->gc_cause());
  1072     size_policy->avg_survived()->sample(from()->used());
  1075   // We need to use a monotonically non-deccreasing time in ms
  1076   // or we will see time-warp warnings and os::javaTimeMillis()
  1077   // does not guarantee monotonicity.
  1078   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1079   update_time_of_last_gc(now);
  1081   SpecializationStats::print();
  1083   rp->set_enqueuing_is_done(true);
  1084   if (rp->processing_is_mt()) {
  1085     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
  1086     rp->enqueue_discovered_references(&task_executor);
  1087   } else {
  1088     rp->enqueue_discovered_references(NULL);
  1090   rp->verify_no_references_recorded();
  1092   gch->trace_heap_after_gc(&gc_tracer);
  1093   gc_tracer.report_tenuring_threshold(tenuring_threshold());
  1095   _gc_timer->register_gc_end();
  1097   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
  1100 static int sum;
  1101 void ParNewGeneration::waste_some_time() {
  1102   for (int i = 0; i < 100; i++) {
  1103     sum += i;
  1107 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
  1109 // Because of concurrency, there are times where an object for which
  1110 // "is_forwarded()" is true contains an "interim" forwarding pointer
  1111 // value.  Such a value will soon be overwritten with a real value.
  1112 // This method requires "obj" to have a forwarding pointer, and waits, if
  1113 // necessary for a real one to be inserted, and returns it.
  1115 oop ParNewGeneration::real_forwardee(oop obj) {
  1116   oop forward_ptr = obj->forwardee();
  1117   if (forward_ptr != ClaimedForwardPtr) {
  1118     return forward_ptr;
  1119   } else {
  1120     return real_forwardee_slow(obj);
  1124 oop ParNewGeneration::real_forwardee_slow(oop obj) {
  1125   // Spin-read if it is claimed but not yet written by another thread.
  1126   oop forward_ptr = obj->forwardee();
  1127   while (forward_ptr == ClaimedForwardPtr) {
  1128     waste_some_time();
  1129     assert(obj->is_forwarded(), "precondition");
  1130     forward_ptr = obj->forwardee();
  1132   return forward_ptr;
  1135 #ifdef ASSERT
  1136 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
  1137   return
  1138     (_avoid_promotion_undo && p == ClaimedForwardPtr)
  1139     || Universe::heap()->is_in_reserved(p);
  1141 #endif
  1143 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
  1144   if (m->must_be_preserved_for_promotion_failure(obj)) {
  1145     // We should really have separate per-worker stacks, rather
  1146     // than use locking of a common pair of stacks.
  1147     MutexLocker ml(ParGCRareEvent_lock);
  1148     preserve_mark(obj, m);
  1152 // Multiple GC threads may try to promote an object.  If the object
  1153 // is successfully promoted, a forwarding pointer will be installed in
  1154 // the object in the young generation.  This method claims the right
  1155 // to install the forwarding pointer before it copies the object,
  1156 // thus avoiding the need to undo the copy as in
  1157 // copy_to_survivor_space_avoiding_with_undo.
  1159 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
  1160         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  1161   // In the sequential version, this assert also says that the object is
  1162   // not forwarded.  That might not be the case here.  It is the case that
  1163   // the caller observed it to be not forwarded at some time in the past.
  1164   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
  1166   // The sequential code read "old->age()" below.  That doesn't work here,
  1167   // since the age is in the mark word, and that might be overwritten with
  1168   // a forwarding pointer by a parallel thread.  So we must save the mark
  1169   // word in a local and then analyze it.
  1170   oopDesc dummyOld;
  1171   dummyOld.set_mark(m);
  1172   assert(!dummyOld.is_forwarded(),
  1173          "should not be called with forwarding pointer mark word.");
  1175   oop new_obj = NULL;
  1176   oop forward_ptr;
  1178   // Try allocating obj in to-space (unless too old)
  1179   if (dummyOld.age() < tenuring_threshold()) {
  1180     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
  1181     if (new_obj == NULL) {
  1182       set_survivor_overflow(true);
  1186   if (new_obj == NULL) {
  1187     // Either to-space is full or we decided to promote
  1188     // try allocating obj tenured
  1190     // Attempt to install a null forwarding pointer (atomically),
  1191     // to claim the right to install the real forwarding pointer.
  1192     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
  1193     if (forward_ptr != NULL) {
  1194       // someone else beat us to it.
  1195         return real_forwardee(old);
  1198     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
  1199                                        old, m, sz);
  1201     if (new_obj == NULL) {
  1202       // promotion failed, forward to self
  1203       _promotion_failed = true;
  1204       new_obj = old;
  1206       preserve_mark_if_necessary(old, m);
  1207       par_scan_state->register_promotion_failure(sz);
  1210     old->forward_to(new_obj);
  1211     forward_ptr = NULL;
  1212   } else {
  1213     // Is in to-space; do copying ourselves.
  1214     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
  1215     forward_ptr = old->forward_to_atomic(new_obj);
  1216     // Restore the mark word copied above.
  1217     new_obj->set_mark(m);
  1218     // Increment age if obj still in new generation
  1219     new_obj->incr_age();
  1220     par_scan_state->age_table()->add(new_obj, sz);
  1222   assert(new_obj != NULL, "just checking");
  1224 #ifndef PRODUCT
  1225   // This code must come after the CAS test, or it will print incorrect
  1226   // information.
  1227   if (TraceScavenge) {
  1228     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
  1229        is_in_reserved(new_obj) ? "copying" : "tenuring",
  1230        new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
  1232 #endif
  1234   if (forward_ptr == NULL) {
  1235     oop obj_to_push = new_obj;
  1236     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
  1237       // Length field used as index of next element to be scanned.
  1238       // Real length can be obtained from real_forwardee()
  1239       arrayOop(old)->set_length(0);
  1240       obj_to_push = old;
  1241       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
  1242              "push forwarded object");
  1244     // Push it on one of the queues of to-be-scanned objects.
  1245     bool simulate_overflow = false;
  1246     NOT_PRODUCT(
  1247       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
  1248         // simulate a stack overflow
  1249         simulate_overflow = true;
  1252     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
  1253       // Add stats for overflow pushes.
  1254       if (Verbose && PrintGCDetails) {
  1255         gclog_or_tty->print("queue overflow!\n");
  1257       push_on_overflow_list(old, par_scan_state);
  1258       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
  1261     return new_obj;
  1264   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  1265   // allocate it?
  1266   if (is_in_reserved(new_obj)) {
  1267     // Must be in to_space.
  1268     assert(to()->is_in_reserved(new_obj), "Checking");
  1269     if (forward_ptr == ClaimedForwardPtr) {
  1270       // Wait to get the real forwarding pointer value.
  1271       forward_ptr = real_forwardee(old);
  1273     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  1276   return forward_ptr;
  1280 // Multiple GC threads may try to promote the same object.  If two
  1281 // or more GC threads copy the object, only one wins the race to install
  1282 // the forwarding pointer.  The other threads have to undo their copy.
  1284 oop ParNewGeneration::copy_to_survivor_space_with_undo(
  1285         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  1287   // In the sequential version, this assert also says that the object is
  1288   // not forwarded.  That might not be the case here.  It is the case that
  1289   // the caller observed it to be not forwarded at some time in the past.
  1290   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
  1292   // The sequential code read "old->age()" below.  That doesn't work here,
  1293   // since the age is in the mark word, and that might be overwritten with
  1294   // a forwarding pointer by a parallel thread.  So we must save the mark
  1295   // word here, install it in a local oopDesc, and then analyze it.
  1296   oopDesc dummyOld;
  1297   dummyOld.set_mark(m);
  1298   assert(!dummyOld.is_forwarded(),
  1299          "should not be called with forwarding pointer mark word.");
  1301   bool failed_to_promote = false;
  1302   oop new_obj = NULL;
  1303   oop forward_ptr;
  1305   // Try allocating obj in to-space (unless too old)
  1306   if (dummyOld.age() < tenuring_threshold()) {
  1307     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
  1308     if (new_obj == NULL) {
  1309       set_survivor_overflow(true);
  1313   if (new_obj == NULL) {
  1314     // Either to-space is full or we decided to promote
  1315     // try allocating obj tenured
  1316     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
  1317                                        old, m, sz);
  1319     if (new_obj == NULL) {
  1320       // promotion failed, forward to self
  1321       forward_ptr = old->forward_to_atomic(old);
  1322       new_obj = old;
  1324       if (forward_ptr != NULL) {
  1325         return forward_ptr;   // someone else succeeded
  1328       _promotion_failed = true;
  1329       failed_to_promote = true;
  1331       preserve_mark_if_necessary(old, m);
  1332       par_scan_state->register_promotion_failure(sz);
  1334   } else {
  1335     // Is in to-space; do copying ourselves.
  1336     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
  1337     // Restore the mark word copied above.
  1338     new_obj->set_mark(m);
  1339     // Increment age if new_obj still in new generation
  1340     new_obj->incr_age();
  1341     par_scan_state->age_table()->add(new_obj, sz);
  1343   assert(new_obj != NULL, "just checking");
  1345 #ifndef PRODUCT
  1346   // This code must come after the CAS test, or it will print incorrect
  1347   // information.
  1348   if (TraceScavenge) {
  1349     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
  1350        is_in_reserved(new_obj) ? "copying" : "tenuring",
  1351        new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
  1353 #endif
  1355   // Now attempt to install the forwarding pointer (atomically).
  1356   // We have to copy the mark word before overwriting with forwarding
  1357   // ptr, so we can restore it below in the copy.
  1358   if (!failed_to_promote) {
  1359     forward_ptr = old->forward_to_atomic(new_obj);
  1362   if (forward_ptr == NULL) {
  1363     oop obj_to_push = new_obj;
  1364     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
  1365       // Length field used as index of next element to be scanned.
  1366       // Real length can be obtained from real_forwardee()
  1367       arrayOop(old)->set_length(0);
  1368       obj_to_push = old;
  1369       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
  1370              "push forwarded object");
  1372     // Push it on one of the queues of to-be-scanned objects.
  1373     bool simulate_overflow = false;
  1374     NOT_PRODUCT(
  1375       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
  1376         // simulate a stack overflow
  1377         simulate_overflow = true;
  1380     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
  1381       // Add stats for overflow pushes.
  1382       push_on_overflow_list(old, par_scan_state);
  1383       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
  1386     return new_obj;
  1389   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  1390   // allocate it?
  1391   if (is_in_reserved(new_obj)) {
  1392     // Must be in to_space.
  1393     assert(to()->is_in_reserved(new_obj), "Checking");
  1394     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  1395   } else {
  1396     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
  1397     _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
  1398                                       (HeapWord*)new_obj, sz);
  1401   return forward_ptr;
  1404 #ifndef PRODUCT
  1405 // It's OK to call this multi-threaded;  the worst thing
  1406 // that can happen is that we'll get a bunch of closely
  1407 // spaced simulated oveflows, but that's OK, in fact
  1408 // probably good as it would exercise the overflow code
  1409 // under contention.
  1410 bool ParNewGeneration::should_simulate_overflow() {
  1411   if (_overflow_counter-- <= 0) { // just being defensive
  1412     _overflow_counter = ParGCWorkQueueOverflowInterval;
  1413     return true;
  1414   } else {
  1415     return false;
  1418 #endif
  1420 // In case we are using compressed oops, we need to be careful.
  1421 // If the object being pushed is an object array, then its length
  1422 // field keeps track of the "grey boundary" at which the next
  1423 // incremental scan will be done (see ParGCArrayScanChunk).
  1424 // When using compressed oops, this length field is kept in the
  1425 // lower 32 bits of the erstwhile klass word and cannot be used
  1426 // for the overflow chaining pointer (OCP below). As such the OCP
  1427 // would itself need to be compressed into the top 32-bits in this
  1428 // case. Unfortunately, see below, in the event that we have a
  1429 // promotion failure, the node to be pushed on the list can be
  1430 // outside of the Java heap, so the heap-based pointer compression
  1431 // would not work (we would have potential aliasing between C-heap
  1432 // and Java-heap pointers). For this reason, when using compressed
  1433 // oops, we simply use a worker-thread-local, non-shared overflow
  1434 // list in the form of a growable array, with a slightly different
  1435 // overflow stack draining strategy. If/when we start using fat
  1436 // stacks here, we can go back to using (fat) pointer chains
  1437 // (although some performance comparisons would be useful since
  1438 // single global lists have their own performance disadvantages
  1439 // as we were made painfully aware not long ago, see 6786503).
  1440 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
  1441 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
  1442   assert(is_in_reserved(from_space_obj), "Should be from this generation");
  1443   if (ParGCUseLocalOverflow) {
  1444     // In the case of compressed oops, we use a private, not-shared
  1445     // overflow stack.
  1446     par_scan_state->push_on_overflow_stack(from_space_obj);
  1447   } else {
  1448     assert(!UseCompressedOops, "Error");
  1449     // if the object has been forwarded to itself, then we cannot
  1450     // use the klass pointer for the linked list.  Instead we have
  1451     // to allocate an oopDesc in the C-Heap and use that for the linked list.
  1452     // XXX This is horribly inefficient when a promotion failure occurs
  1453     // and should be fixed. XXX FIX ME !!!
  1454 #ifndef PRODUCT
  1455     Atomic::inc_ptr(&_num_par_pushes);
  1456     assert(_num_par_pushes > 0, "Tautology");
  1457 #endif
  1458     if (from_space_obj->forwardee() == from_space_obj) {
  1459       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
  1460       listhead->forward_to(from_space_obj);
  1461       from_space_obj = listhead;
  1463     oop observed_overflow_list = _overflow_list;
  1464     oop cur_overflow_list;
  1465     do {
  1466       cur_overflow_list = observed_overflow_list;
  1467       if (cur_overflow_list != BUSY) {
  1468         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
  1469       } else {
  1470         from_space_obj->set_klass_to_list_ptr(NULL);
  1472       observed_overflow_list =
  1473         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
  1474     } while (cur_overflow_list != observed_overflow_list);
  1478 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
  1479   bool res;
  1481   if (ParGCUseLocalOverflow) {
  1482     res = par_scan_state->take_from_overflow_stack();
  1483   } else {
  1484     assert(!UseCompressedOops, "Error");
  1485     res = take_from_overflow_list_work(par_scan_state);
  1487   return res;
  1491 // *NOTE*: The overflow list manipulation code here and
  1492 // in CMSCollector:: are very similar in shape,
  1493 // except that in the CMS case we thread the objects
  1494 // directly into the list via their mark word, and do
  1495 // not need to deal with special cases below related
  1496 // to chunking of object arrays and promotion failure
  1497 // handling.
  1498 // CR 6797058 has been filed to attempt consolidation of
  1499 // the common code.
  1500 // Because of the common code, if you make any changes in
  1501 // the code below, please check the CMS version to see if
  1502 // similar changes might be needed.
  1503 // See CMSCollector::par_take_from_overflow_list() for
  1504 // more extensive documentation comments.
  1505 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
  1506   ObjToScanQueue* work_q = par_scan_state->work_queue();
  1507   // How many to take?
  1508   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  1509                                  (size_t)ParGCDesiredObjsFromOverflowList);
  1511   assert(!UseCompressedOops, "Error");
  1512   assert(par_scan_state->overflow_stack() == NULL, "Error");
  1513   if (_overflow_list == NULL) return false;
  1515   // Otherwise, there was something there; try claiming the list.
  1516   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
  1517   // Trim off a prefix of at most objsFromOverflow items
  1518   Thread* tid = Thread::current();
  1519   size_t spin_count = (size_t)ParallelGCThreads;
  1520   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
  1521   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
  1522     // someone grabbed it before we did ...
  1523     // ... we spin for a short while...
  1524     os::sleep(tid, sleep_time_millis, false);
  1525     if (_overflow_list == NULL) {
  1526       // nothing left to take
  1527       return false;
  1528     } else if (_overflow_list != BUSY) {
  1529      // try and grab the prefix
  1530      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
  1533   if (prefix == NULL || prefix == BUSY) {
  1534      // Nothing to take or waited long enough
  1535      if (prefix == NULL) {
  1536        // Write back the NULL in case we overwrote it with BUSY above
  1537        // and it is still the same value.
  1538        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  1540      return false;
  1542   assert(prefix != NULL && prefix != BUSY, "Error");
  1543   size_t i = 1;
  1544   oop cur = prefix;
  1545   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
  1546     i++; cur = cur->list_ptr_from_klass();
  1549   // Reattach remaining (suffix) to overflow list
  1550   if (cur->klass_or_null() == NULL) {
  1551     // Write back the NULL in lieu of the BUSY we wrote
  1552     // above and it is still the same value.
  1553     if (_overflow_list == BUSY) {
  1554       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  1556   } else {
  1557     assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
  1558     oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
  1559     cur->set_klass_to_list_ptr(NULL);     // break off suffix
  1560     // It's possible that the list is still in the empty(busy) state
  1561     // we left it in a short while ago; in that case we may be
  1562     // able to place back the suffix.
  1563     oop observed_overflow_list = _overflow_list;
  1564     oop cur_overflow_list = observed_overflow_list;
  1565     bool attached = false;
  1566     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  1567       observed_overflow_list =
  1568         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
  1569       if (cur_overflow_list == observed_overflow_list) {
  1570         attached = true;
  1571         break;
  1572       } else cur_overflow_list = observed_overflow_list;
  1574     if (!attached) {
  1575       // Too bad, someone else got in in between; we'll need to do a splice.
  1576       // Find the last item of suffix list
  1577       oop last = suffix;
  1578       while (last->klass_or_null() != NULL) {
  1579         last = last->list_ptr_from_klass();
  1581       // Atomically prepend suffix to current overflow list
  1582       observed_overflow_list = _overflow_list;
  1583       do {
  1584         cur_overflow_list = observed_overflow_list;
  1585         if (cur_overflow_list != BUSY) {
  1586           // Do the splice ...
  1587           last->set_klass_to_list_ptr(cur_overflow_list);
  1588         } else { // cur_overflow_list == BUSY
  1589           last->set_klass_to_list_ptr(NULL);
  1591         observed_overflow_list =
  1592           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
  1593       } while (cur_overflow_list != observed_overflow_list);
  1597   // Push objects on prefix list onto this thread's work queue
  1598   assert(prefix != NULL && prefix != BUSY, "program logic");
  1599   cur = prefix;
  1600   ssize_t n = 0;
  1601   while (cur != NULL) {
  1602     oop obj_to_push = cur->forwardee();
  1603     oop next        = cur->list_ptr_from_klass();
  1604     cur->set_klass(obj_to_push->klass());
  1605     // This may be an array object that is self-forwarded. In that case, the list pointer
  1606     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
  1607     if (!is_in_reserved(cur)) {
  1608       // This can become a scaling bottleneck when there is work queue overflow coincident
  1609       // with promotion failure.
  1610       oopDesc* f = cur;
  1611       FREE_C_HEAP_ARRAY(oopDesc, f, mtGC);
  1612     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
  1613       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
  1614       obj_to_push = cur;
  1616     bool ok = work_q->push(obj_to_push);
  1617     assert(ok, "Should have succeeded");
  1618     cur = next;
  1619     n++;
  1621   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
  1622 #ifndef PRODUCT
  1623   assert(_num_par_pushes >= n, "Too many pops?");
  1624   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  1625 #endif
  1626   return true;
  1628 #undef BUSY
  1630 void ParNewGeneration::ref_processor_init() {
  1631   if (_ref_processor == NULL) {
  1632     // Allocate and initialize a reference processor
  1633     _ref_processor =
  1634       new ReferenceProcessor(_reserved,                  // span
  1635                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
  1636                              (int) ParallelGCThreads,    // mt processing degree
  1637                              refs_discovery_is_mt(),     // mt discovery
  1638                              (int) ParallelGCThreads,    // mt discovery degree
  1639                              refs_discovery_is_atomic(), // atomic_discovery
  1640                              NULL);                      // is_alive_non_header
  1644 const char* ParNewGeneration::name() const {
  1645   return "par new generation";

mercurial