src/share/vm/utilities/globalDefinitions.hpp

Wed, 09 Apr 2008 15:10:22 -0700

author
rasbold
date
Wed, 09 Apr 2008 15:10:22 -0700
changeset 544
9f4457a14b58
parent 464
d5fc211aea19
child 548
ba764ed4b6f2
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // This file holds all globally used constants & types, class (forward)
    26 // declarations and a few frequently used utility functions.
    28 //----------------------------------------------------------------------------------------------------
    29 // Constants
    31 const int LogBytesPerShort   = 1;
    32 const int LogBytesPerInt     = 2;
    33 #ifdef _LP64
    34 const int LogBytesPerWord    = 3;
    35 #else
    36 const int LogBytesPerWord    = 2;
    37 #endif
    38 const int LogBytesPerLong    = 3;
    40 const int BytesPerShort      = 1 << LogBytesPerShort;
    41 const int BytesPerInt        = 1 << LogBytesPerInt;
    42 const int BytesPerWord       = 1 << LogBytesPerWord;
    43 const int BytesPerLong       = 1 << LogBytesPerLong;
    45 const int LogBitsPerByte     = 3;
    46 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
    47 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
    48 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
    49 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
    51 const int BitsPerByte        = 1 << LogBitsPerByte;
    52 const int BitsPerShort       = 1 << LogBitsPerShort;
    53 const int BitsPerInt         = 1 << LogBitsPerInt;
    54 const int BitsPerWord        = 1 << LogBitsPerWord;
    55 const int BitsPerLong        = 1 << LogBitsPerLong;
    57 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
    58 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
    60 const int WordsPerLong       = 2;       // Number of stack entries for longs
    62 const int oopSize            = sizeof(char*);
    63 const int wordSize           = sizeof(char*);
    64 const int longSize           = sizeof(jlong);
    65 const int jintSize           = sizeof(jint);
    66 const int size_tSize         = sizeof(size_t);
    68 // Size of a char[] needed to represent a jint as a string in decimal.
    69 const int jintAsStringSize = 12;
    71 const int LogBytesPerOop     = LogBytesPerWord;
    72 const int LogBitsPerOop      = LogBitsPerWord;
    73 const int BytesPerOop        = 1 << LogBytesPerOop;
    74 const int BitsPerOop         = 1 << LogBitsPerOop;
    76 const int BitsPerJavaInteger = 32;
    77 const int BitsPerSize_t      = size_tSize * BitsPerByte;
    79 // In fact this should be
    80 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
    81 // see os::set_memory_serialize_page()
    82 #ifdef _LP64
    83 const int SerializePageShiftCount = 4;
    84 #else
    85 const int SerializePageShiftCount = 3;
    86 #endif
    88 // An opaque struct of heap-word width, so that HeapWord* can be a generic
    89 // pointer into the heap.  We require that object sizes be measured in
    90 // units of heap words, so that that
    91 //   HeapWord* hw;
    92 //   hw += oop(hw)->foo();
    93 // works, where foo is a method (like size or scavenge) that returns the
    94 // object size.
    95 class HeapWord {
    96   friend class VMStructs;
    97 private:
    98   char* i;
    99 };
   101 // HeapWordSize must be 2^LogHeapWordSize.
   102 const int HeapWordSize     = sizeof(HeapWord);
   103 #ifdef _LP64
   104 const int LogHeapWordSize  = 3;
   105 #else
   106 const int LogHeapWordSize  = 2;
   107 #endif
   108 const int HeapWordsPerOop  = oopSize      / HeapWordSize;
   109 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
   111 // The larger HeapWordSize for 64bit requires larger heaps
   112 // for the same application running in 64bit.  See bug 4967770.
   113 // The minimum alignment to a heap word size is done.  Other
   114 // parts of the memory system may required additional alignment
   115 // and are responsible for those alignments.
   116 #ifdef _LP64
   117 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
   118 #else
   119 #define ScaleForWordSize(x) (x)
   120 #endif
   122 // The minimum number of native machine words necessary to contain "byte_size"
   123 // bytes.
   124 inline size_t heap_word_size(size_t byte_size) {
   125   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
   126 }
   129 const size_t K                  = 1024;
   130 const size_t M                  = K*K;
   131 const size_t G                  = M*K;
   132 const size_t HWperKB            = K / sizeof(HeapWord);
   134 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
   135 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
   137 // Constants for converting from a base unit to milli-base units.  For
   138 // example from seconds to milliseconds and microseconds
   140 const int MILLIUNITS    = 1000;         // milli units per base unit
   141 const int MICROUNITS    = 1000000;      // micro units per base unit
   142 const int NANOUNITS     = 1000000000;   // nano units per base unit
   144 inline const char* proper_unit_for_byte_size(size_t s) {
   145   if (s >= 10*M) {
   146     return "M";
   147   } else if (s >= 10*K) {
   148     return "K";
   149   } else {
   150     return "B";
   151   }
   152 }
   154 inline size_t byte_size_in_proper_unit(size_t s) {
   155   if (s >= 10*M) {
   156     return s/M;
   157   } else if (s >= 10*K) {
   158     return s/K;
   159   } else {
   160     return s;
   161   }
   162 }
   165 //----------------------------------------------------------------------------------------------------
   166 // VM type definitions
   168 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
   169 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
   171 typedef intptr_t  intx;
   172 typedef uintptr_t uintx;
   174 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
   175 const intx  max_intx  = (uintx)min_intx - 1;
   176 const uintx max_uintx = (uintx)-1;
   178 // Table of values:
   179 //      sizeof intx         4               8
   180 // min_intx             0x80000000      0x8000000000000000
   181 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
   182 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
   184 typedef unsigned int uint;   NEEDS_CLEANUP
   187 //----------------------------------------------------------------------------------------------------
   188 // Java type definitions
   190 // All kinds of 'plain' byte addresses
   191 typedef   signed char s_char;
   192 typedef unsigned char u_char;
   193 typedef u_char*       address;
   194 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
   195                                     // except for some implementations of a C++
   196                                     // linkage pointer to function. Should never
   197                                     // need one of those to be placed in this
   198                                     // type anyway.
   200 //  Utility functions to "portably" (?) bit twiddle pointers
   201 //  Where portable means keep ANSI C++ compilers quiet
   203 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
   204 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
   206 //  Utility functions to "portably" make cast to/from function pointers.
   208 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
   209 inline address_word  castable_address(address x)              { return address_word(x) ; }
   210 inline address_word  castable_address(void* x)                { return address_word(x) ; }
   212 // Pointer subtraction.
   213 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
   214 // the range we might need to find differences from one end of the heap
   215 // to the other.
   216 // A typical use might be:
   217 //     if (pointer_delta(end(), top()) >= size) {
   218 //       // enough room for an object of size
   219 //       ...
   220 // and then additions like
   221 //       ... top() + size ...
   222 // are safe because we know that top() is at least size below end().
   223 inline size_t pointer_delta(const void* left,
   224                             const void* right,
   225                             size_t element_size) {
   226   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
   227 }
   228 // A version specialized for HeapWord*'s.
   229 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
   230   return pointer_delta(left, right, sizeof(HeapWord));
   231 }
   233 //
   234 // ANSI C++ does not allow casting from one pointer type to a function pointer
   235 // directly without at best a warning. This macro accomplishes it silently
   236 // In every case that is present at this point the value be cast is a pointer
   237 // to a C linkage function. In somecase the type used for the cast reflects
   238 // that linkage and a picky compiler would not complain. In other cases because
   239 // there is no convenient place to place a typedef with extern C linkage (i.e
   240 // a platform dependent header file) it doesn't. At this point no compiler seems
   241 // picky enough to catch these instances (which are few). It is possible that
   242 // using templates could fix these for all cases. This use of templates is likely
   243 // so far from the middle of the road that it is likely to be problematic in
   244 // many C++ compilers.
   245 //
   246 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
   247 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
   249 // Unsigned byte types for os and stream.hpp
   251 // Unsigned one, two, four and eigth byte quantities used for describing
   252 // the .class file format. See JVM book chapter 4.
   254 typedef jubyte  u1;
   255 typedef jushort u2;
   256 typedef juint   u4;
   257 typedef julong  u8;
   259 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
   260 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
   261 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
   262 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
   264 //----------------------------------------------------------------------------------------------------
   265 // JVM spec restrictions
   267 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
   270 //----------------------------------------------------------------------------------------------------
   271 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
   272 //
   273 // Determines whether on-the-fly class replacement and frame popping are enabled.
   275 #define HOTSWAP
   277 //----------------------------------------------------------------------------------------------------
   278 // Object alignment, in units of HeapWords.
   279 //
   280 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
   281 // reference fields can be naturally aligned.
   283 const int MinObjAlignment            = HeapWordsPerLong;
   284 const int MinObjAlignmentInBytes     = MinObjAlignment * HeapWordSize;
   285 const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1;
   287 // Machine dependent stuff
   289 #include "incls/_globalDefinitions_pd.hpp.incl"
   291 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
   292 // Note: this value must be a power of 2
   294 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
   296 // Signed variants of alignment helpers.  There are two versions of each, a macro
   297 // for use in places like enum definitions that require compile-time constant
   298 // expressions and a function for all other places so as to get type checking.
   300 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
   302 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
   303   return align_size_up_(size, alignment);
   304 }
   306 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
   308 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
   309   return align_size_down_(size, alignment);
   310 }
   312 // Align objects by rounding up their size, in HeapWord units.
   314 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
   316 inline intptr_t align_object_size(intptr_t size) {
   317   return align_size_up(size, MinObjAlignment);
   318 }
   320 // Pad out certain offsets to jlong alignment, in HeapWord units.
   322 #define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong)
   324 inline intptr_t align_object_offset(intptr_t offset) {
   325   return align_size_up(offset, HeapWordsPerLong);
   326 }
   328 inline bool is_object_aligned(intptr_t offset) {
   329   return offset == align_object_offset(offset);
   330 }
   333 //----------------------------------------------------------------------------------------------------
   334 // Utility macros for compilers
   335 // used to silence compiler warnings
   337 #define Unused_Variable(var) var
   340 //----------------------------------------------------------------------------------------------------
   341 // Miscellaneous
   343 // 6302670 Eliminate Hotspot __fabsf dependency
   344 // All fabs() callers should call this function instead, which will implicitly
   345 // convert the operand to double, avoiding a dependency on __fabsf which
   346 // doesn't exist in early versions of Solaris 8.
   347 inline double fabsd(double value) {
   348   return fabs(value);
   349 }
   351 inline jint low (jlong value)                    { return jint(value); }
   352 inline jint high(jlong value)                    { return jint(value >> 32); }
   354 // the fancy casts are a hopefully portable way
   355 // to do unsigned 32 to 64 bit type conversion
   356 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
   357                                                    *value |= (jlong)(julong)(juint)low; }
   359 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
   360                                                    *value |= (jlong)high       << 32; }
   362 inline jlong jlong_from(jint h, jint l) {
   363   jlong result = 0; // initialization to avoid warning
   364   set_high(&result, h);
   365   set_low(&result,  l);
   366   return result;
   367 }
   369 union jlong_accessor {
   370   jint  words[2];
   371   jlong long_value;
   372 };
   374 void check_basic_types(); // cannot define here; uses assert
   377 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   378 enum BasicType {
   379   T_BOOLEAN  =  4,
   380   T_CHAR     =  5,
   381   T_FLOAT    =  6,
   382   T_DOUBLE   =  7,
   383   T_BYTE     =  8,
   384   T_SHORT    =  9,
   385   T_INT      = 10,
   386   T_LONG     = 11,
   387   T_OBJECT   = 12,
   388   T_ARRAY    = 13,
   389   T_VOID     = 14,
   390   T_ADDRESS  = 15,
   391   T_CONFLICT = 16, // for stack value type with conflicting contents
   392   T_ILLEGAL  = 99
   393 };
   395 inline bool is_java_primitive(BasicType t) {
   396   return T_BOOLEAN <= t && t <= T_LONG;
   397 }
   399 // Convert a char from a classfile signature to a BasicType
   400 inline BasicType char2type(char c) {
   401   switch( c ) {
   402   case 'B': return T_BYTE;
   403   case 'C': return T_CHAR;
   404   case 'D': return T_DOUBLE;
   405   case 'F': return T_FLOAT;
   406   case 'I': return T_INT;
   407   case 'J': return T_LONG;
   408   case 'S': return T_SHORT;
   409   case 'Z': return T_BOOLEAN;
   410   case 'V': return T_VOID;
   411   case 'L': return T_OBJECT;
   412   case '[': return T_ARRAY;
   413   }
   414   return T_ILLEGAL;
   415 }
   417 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   418 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
   419 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
   420 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
   421 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
   422 extern BasicType name2type(const char* name);
   424 // Auxilary math routines
   425 // least common multiple
   426 extern size_t lcm(size_t a, size_t b);
   429 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
   430 enum BasicTypeSize {
   431   T_BOOLEAN_size = 1,
   432   T_CHAR_size    = 1,
   433   T_FLOAT_size   = 1,
   434   T_DOUBLE_size  = 2,
   435   T_BYTE_size    = 1,
   436   T_SHORT_size   = 1,
   437   T_INT_size     = 1,
   438   T_LONG_size    = 2,
   439   T_OBJECT_size  = 1,
   440   T_ARRAY_size   = 1,
   441   T_VOID_size    = 0
   442 };
   445 // maps a BasicType to its instance field storage type:
   446 // all sub-word integral types are widened to T_INT
   447 extern BasicType type2field[T_CONFLICT+1];
   448 extern BasicType type2wfield[T_CONFLICT+1];
   451 // size in bytes
   452 enum ArrayElementSize {
   453   T_BOOLEAN_aelem_bytes = 1,
   454   T_CHAR_aelem_bytes    = 2,
   455   T_FLOAT_aelem_bytes   = 4,
   456   T_DOUBLE_aelem_bytes  = 8,
   457   T_BYTE_aelem_bytes    = 1,
   458   T_SHORT_aelem_bytes   = 2,
   459   T_INT_aelem_bytes     = 4,
   460   T_LONG_aelem_bytes    = 8,
   461 #ifdef _LP64
   462   T_OBJECT_aelem_bytes  = 8,
   463   T_ARRAY_aelem_bytes   = 8,
   464 #else
   465   T_OBJECT_aelem_bytes  = 4,
   466   T_ARRAY_aelem_bytes   = 4,
   467 #endif
   468   T_VOID_aelem_bytes    = 0
   469 };
   471 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
   472 #ifdef ASSERT
   473 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
   474 #else
   475 inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; }
   476 #endif
   479 // JavaValue serves as a container for arbitrary Java values.
   481 class JavaValue {
   483  public:
   484   typedef union JavaCallValue {
   485     jfloat   f;
   486     jdouble  d;
   487     jint     i;
   488     jlong    l;
   489     jobject  h;
   490   } JavaCallValue;
   492  private:
   493   BasicType _type;
   494   JavaCallValue _value;
   496  public:
   497   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
   499   JavaValue(jfloat value) {
   500     _type    = T_FLOAT;
   501     _value.f = value;
   502   }
   504   JavaValue(jdouble value) {
   505     _type    = T_DOUBLE;
   506     _value.d = value;
   507   }
   509  jfloat get_jfloat() const { return _value.f; }
   510  jdouble get_jdouble() const { return _value.d; }
   511  jint get_jint() const { return _value.i; }
   512  jlong get_jlong() const { return _value.l; }
   513  jobject get_jobject() const { return _value.h; }
   514  JavaCallValue* get_value_addr() { return &_value; }
   515  BasicType get_type() const { return _type; }
   517  void set_jfloat(jfloat f) { _value.f = f;}
   518  void set_jdouble(jdouble d) { _value.d = d;}
   519  void set_jint(jint i) { _value.i = i;}
   520  void set_jlong(jlong l) { _value.l = l;}
   521  void set_jobject(jobject h) { _value.h = h;}
   522  void set_type(BasicType t) { _type = t; }
   524  jboolean get_jboolean() const { return (jboolean) (_value.i);}
   525  jbyte get_jbyte() const { return (jbyte) (_value.i);}
   526  jchar get_jchar() const { return (jchar) (_value.i);}
   527  jshort get_jshort() const { return (jshort) (_value.i);}
   529 };
   532 #define STACK_BIAS      0
   533 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
   534 // in order to extend the reach of the stack pointer.
   535 #if defined(SPARC) && defined(_LP64)
   536 #undef STACK_BIAS
   537 #define STACK_BIAS      0x7ff
   538 #endif
   541 // TosState describes the top-of-stack state before and after the execution of
   542 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
   543 // registers. The TosState corresponds to the 'machine represention' of this cached
   544 // value. There's 4 states corresponding to the JAVA types int, long, float & double
   545 // as well as a 5th state in case the top-of-stack value is actually on the top
   546 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
   547 // state when it comes to machine representation but is used separately for (oop)
   548 // type specific operations (e.g. verification code).
   550 enum TosState {         // describes the tos cache contents
   551   btos = 0,             // byte, bool tos cached
   552   ctos = 1,             // short, char tos cached
   553   stos = 2,             // short, char tos cached
   554   itos = 3,             // int tos cached
   555   ltos = 4,             // long tos cached
   556   ftos = 5,             // float tos cached
   557   dtos = 6,             // double tos cached
   558   atos = 7,             // object cached
   559   vtos = 8,             // tos not cached
   560   number_of_states,
   561   ilgl                  // illegal state: should not occur
   562 };
   565 inline TosState as_TosState(BasicType type) {
   566   switch (type) {
   567     case T_BYTE   : return btos;
   568     case T_BOOLEAN: return btos;
   569     case T_CHAR   : return ctos;
   570     case T_SHORT  : return stos;
   571     case T_INT    : return itos;
   572     case T_LONG   : return ltos;
   573     case T_FLOAT  : return ftos;
   574     case T_DOUBLE : return dtos;
   575     case T_VOID   : return vtos;
   576     case T_ARRAY  : // fall through
   577     case T_OBJECT : return atos;
   578   }
   579   return ilgl;
   580 }
   583 // Helper function to convert BasicType info into TosState
   584 // Note: Cannot define here as it uses global constant at the time being.
   585 TosState as_TosState(BasicType type);
   588 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
   590 enum ReferenceType {
   591  REF_NONE,      // Regular class
   592  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
   593  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
   594  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
   595  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
   596  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
   597 };
   600 // JavaThreadState keeps track of which part of the code a thread is executing in. This
   601 // information is needed by the safepoint code.
   602 //
   603 // There are 4 essential states:
   604 //
   605 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
   606 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
   607 //  _thread_in_vm       : Executing in the vm
   608 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
   609 //
   610 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
   611 // a transition from one state to another. These extra states makes it possible for the safepoint code to
   612 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
   613 //
   614 // Given a state, the xxx_trans state can always be found by adding 1.
   615 //
   616 enum JavaThreadState {
   617   _thread_uninitialized     =  0, // should never happen (missing initialization)
   618   _thread_new               =  2, // just starting up, i.e., in process of being initialized
   619   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
   620   _thread_in_native         =  4, // running in native code
   621   _thread_in_native_trans   =  5, // corresponding transition state
   622   _thread_in_vm             =  6, // running in VM
   623   _thread_in_vm_trans       =  7, // corresponding transition state
   624   _thread_in_Java           =  8, // running in Java or in stub code
   625   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
   626   _thread_blocked           = 10, // blocked in vm
   627   _thread_blocked_trans     = 11, // corresponding transition state
   628   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
   629 };
   632 // Handy constants for deciding which compiler mode to use.
   633 enum MethodCompilation {
   634   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
   635   InvalidOSREntryBci = -2
   636 };
   638 // Enumeration to distinguish tiers of compilation
   639 enum CompLevel {
   640   CompLevel_none              = 0,
   641   CompLevel_fast_compile      = 1,
   642   CompLevel_full_optimization = 2,
   644   CompLevel_highest_tier      = CompLevel_full_optimization,
   645 #ifdef TIERED
   646   CompLevel_initial_compile   = CompLevel_fast_compile
   647 #else
   648   CompLevel_initial_compile   = CompLevel_full_optimization
   649 #endif // TIERED
   650 };
   652 inline bool is_tier1_compile(int comp_level) {
   653   return comp_level == CompLevel_fast_compile;
   654 }
   655 inline bool is_tier2_compile(int comp_level) {
   656   return comp_level == CompLevel_full_optimization;
   657 }
   658 inline bool is_highest_tier_compile(int comp_level) {
   659   return comp_level == CompLevel_highest_tier;
   660 }
   662 //----------------------------------------------------------------------------------------------------
   663 // 'Forward' declarations of frequently used classes
   664 // (in order to reduce interface dependencies & reduce
   665 // number of unnecessary compilations after changes)
   667 class symbolTable;
   668 class ClassFileStream;
   670 class Event;
   672 class Thread;
   673 class  VMThread;
   674 class  JavaThread;
   675 class Threads;
   677 class VM_Operation;
   678 class VMOperationQueue;
   680 class CodeBlob;
   681 class  nmethod;
   682 class  OSRAdapter;
   683 class  I2CAdapter;
   684 class  C2IAdapter;
   685 class CompiledIC;
   686 class relocInfo;
   687 class ScopeDesc;
   688 class PcDesc;
   690 class Recompiler;
   691 class Recompilee;
   692 class RecompilationPolicy;
   693 class RFrame;
   694 class  CompiledRFrame;
   695 class  InterpretedRFrame;
   697 class frame;
   699 class vframe;
   700 class   javaVFrame;
   701 class     interpretedVFrame;
   702 class     compiledVFrame;
   703 class     deoptimizedVFrame;
   704 class   externalVFrame;
   705 class     entryVFrame;
   707 class RegisterMap;
   709 class Mutex;
   710 class Monitor;
   711 class BasicLock;
   712 class BasicObjectLock;
   714 class PeriodicTask;
   716 class JavaCallWrapper;
   718 class   oopDesc;
   720 class NativeCall;
   722 class zone;
   724 class StubQueue;
   726 class outputStream;
   728 class ResourceArea;
   730 class DebugInformationRecorder;
   731 class ScopeValue;
   732 class CompressedStream;
   733 class   DebugInfoReadStream;
   734 class   DebugInfoWriteStream;
   735 class LocationValue;
   736 class ConstantValue;
   737 class IllegalValue;
   739 class PrivilegedElement;
   740 class MonitorArray;
   742 class MonitorInfo;
   744 class OffsetClosure;
   745 class OopMapCache;
   746 class InterpreterOopMap;
   747 class OopMapCacheEntry;
   748 class OSThread;
   750 typedef int (*OSThreadStartFunc)(void*);
   752 class Space;
   754 class JavaValue;
   755 class methodHandle;
   756 class JavaCallArguments;
   758 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
   760 extern void basic_fatal(const char* msg);
   763 //----------------------------------------------------------------------------------------------------
   764 // Special constants for debugging
   766 const jint     badInt           = -3;                       // generic "bad int" value
   767 const long     badAddressVal    = -2;                       // generic "bad address" value
   768 const long     badOopVal        = -1;                       // generic "bad oop" value
   769 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
   770 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
   771 const int      badResourceValue = 0xAB;                     // value used to zap resource area
   772 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
   773 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
   774 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
   775 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
   776 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
   777 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
   780 // (These must be implemented as #defines because C++ compilers are
   781 // not obligated to inline non-integral constants!)
   782 #define       badAddress        ((address)::badAddressVal)
   783 #define       badOop            ((oop)::badOopVal)
   784 #define       badHeapWord       (::badHeapWordVal)
   785 #define       badJNIHandle      ((oop)::badJNIHandleVal)
   788 //----------------------------------------------------------------------------------------------------
   789 // Utility functions for bitfield manipulations
   791 const intptr_t AllBits    = ~0; // all bits set in a word
   792 const intptr_t NoBits     =  0; // no bits set in a word
   793 const jlong    NoLongBits =  0; // no bits set in a long
   794 const intptr_t OneBit     =  1; // only right_most bit set in a word
   796 // get a word with the n.th or the right-most or left-most n bits set
   797 // (note: #define used only so that they can be used in enum constant definitions)
   798 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
   799 #define right_n_bits(n)   (nth_bit(n) - 1)
   800 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
   802 // bit-operations using a mask m
   803 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
   804 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
   805 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
   806 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
   807 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
   809 // bit-operations using the n.th bit
   810 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
   811 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
   812 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
   814 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
   815 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
   816   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
   817 }
   820 //----------------------------------------------------------------------------------------------------
   821 // Utility functions for integers
   823 // Avoid use of global min/max macros which may cause unwanted double
   824 // evaluation of arguments.
   825 #ifdef max
   826 #undef max
   827 #endif
   829 #ifdef min
   830 #undef min
   831 #endif
   833 #define max(a,b) Do_not_use_max_use_MAX2_instead
   834 #define min(a,b) Do_not_use_min_use_MIN2_instead
   836 // It is necessary to use templates here. Having normal overloaded
   837 // functions does not work because it is necessary to provide both 32-
   838 // and 64-bit overloaded functions, which does not work, and having
   839 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
   840 // will be even more error-prone than macros.
   841 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
   842 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
   843 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
   844 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
   845 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
   846 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
   848 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
   850 // true if x is a power of 2, false otherwise
   851 inline bool is_power_of_2(intptr_t x) {
   852   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
   853 }
   855 // long version of is_power_of_2
   856 inline bool is_power_of_2_long(jlong x) {
   857   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
   858 }
   860 //* largest i such that 2^i <= x
   861 //  A negative value of 'x' will return '31'
   862 inline int log2_intptr(intptr_t x) {
   863   int i = -1;
   864   uintptr_t p =  1;
   865   while (p != 0 && p <= (uintptr_t)x) {
   866     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   867     i++; p *= 2;
   868   }
   869   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   870   // (if p = 0 then overflow occured and i = 31)
   871   return i;
   872 }
   874 //* largest i such that 2^i <= x
   875 //  A negative value of 'x' will return '63'
   876 inline int log2_long(jlong x) {
   877   int i = -1;
   878   julong p =  1;
   879   while (p != 0 && p <= (julong)x) {
   880     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
   881     i++; p *= 2;
   882   }
   883   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
   884   // (if p = 0 then overflow occured and i = 31)
   885   return i;
   886 }
   888 //* the argument must be exactly a power of 2
   889 inline int exact_log2(intptr_t x) {
   890   #ifdef ASSERT
   891     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
   892   #endif
   893   return log2_intptr(x);
   894 }
   897 // returns integer round-up to the nearest multiple of s (s must be a power of two)
   898 inline intptr_t round_to(intptr_t x, uintx s) {
   899   #ifdef ASSERT
   900     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
   901   #endif
   902   const uintx m = s - 1;
   903   return mask_bits(x + m, ~m);
   904 }
   906 // returns integer round-down to the nearest multiple of s (s must be a power of two)
   907 inline intptr_t round_down(intptr_t x, uintx s) {
   908   #ifdef ASSERT
   909     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
   910   #endif
   911   const uintx m = s - 1;
   912   return mask_bits(x, ~m);
   913 }
   916 inline bool is_odd (intx x) { return x & 1;      }
   917 inline bool is_even(intx x) { return !is_odd(x); }
   919 // "to" should be greater than "from."
   920 inline intx byte_size(void* from, void* to) {
   921   return (address)to - (address)from;
   922 }
   924 //----------------------------------------------------------------------------------------------------
   925 // Avoid non-portable casts with these routines (DEPRECATED)
   927 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
   928 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
   930 // Given sequence of four bytes, build into a 32-bit word
   931 // following the conventions used in class files.
   932 // On the 386, this could be realized with a simple address cast.
   933 //
   935 // This routine takes eight bytes:
   936 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
   937   return  ( u8(c1) << 56 )  &  ( u8(0xff) << 56 )
   938        |  ( u8(c2) << 48 )  &  ( u8(0xff) << 48 )
   939        |  ( u8(c3) << 40 )  &  ( u8(0xff) << 40 )
   940        |  ( u8(c4) << 32 )  &  ( u8(0xff) << 32 )
   941        |  ( u8(c5) << 24 )  &  ( u8(0xff) << 24 )
   942        |  ( u8(c6) << 16 )  &  ( u8(0xff) << 16 )
   943        |  ( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 )
   944        |  ( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 );
   945 }
   947 // This routine takes four bytes:
   948 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
   949   return  ( u4(c1) << 24 )  &  0xff000000
   950        |  ( u4(c2) << 16 )  &  0x00ff0000
   951        |  ( u4(c3) <<  8 )  &  0x0000ff00
   952        |  ( u4(c4) <<  0 )  &  0x000000ff;
   953 }
   955 // And this one works if the four bytes are contiguous in memory:
   956 inline u4 build_u4_from( u1* p ) {
   957   return  build_u4_from( p[0], p[1], p[2], p[3] );
   958 }
   960 // Ditto for two-byte ints:
   961 inline u2 build_u2_from( u1 c1, u1 c2 ) {
   962   return  u2(( u2(c1) <<  8 )  &  0xff00
   963           |  ( u2(c2) <<  0 )  &  0x00ff);
   964 }
   966 // And this one works if the two bytes are contiguous in memory:
   967 inline u2 build_u2_from( u1* p ) {
   968   return  build_u2_from( p[0], p[1] );
   969 }
   971 // Ditto for floats:
   972 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
   973   u4 u = build_u4_from( c1, c2, c3, c4 );
   974   return  *(jfloat*)&u;
   975 }
   977 inline jfloat build_float_from( u1* p ) {
   978   u4 u = build_u4_from( p );
   979   return  *(jfloat*)&u;
   980 }
   983 // now (64-bit) longs
   985 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
   986   return  ( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 )
   987        |  ( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 )
   988        |  ( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 )
   989        |  ( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 )
   990        |  ( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 )
   991        |  ( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 )
   992        |  ( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 )
   993        |  ( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 );
   994 }
   996 inline jlong build_long_from( u1* p ) {
   997   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
   998 }
  1001 // Doubles, too!
  1002 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
  1003   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
  1004   return  *(jdouble*)&u;
  1007 inline jdouble build_double_from( u1* p ) {
  1008   jlong u = build_long_from( p );
  1009   return  *(jdouble*)&u;
  1013 // Portable routines to go the other way:
  1015 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
  1016   c1 = u1(x >> 8);
  1017   c2 = u1(x);
  1020 inline void explode_short_to( u2 x, u1* p ) {
  1021   explode_short_to( x, p[0], p[1]);
  1024 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
  1025   c1 = u1(x >> 24);
  1026   c2 = u1(x >> 16);
  1027   c3 = u1(x >>  8);
  1028   c4 = u1(x);
  1031 inline void explode_int_to( u4 x, u1* p ) {
  1032   explode_int_to( x, p[0], p[1], p[2], p[3]);
  1036 // Pack and extract shorts to/from ints:
  1038 inline int extract_low_short_from_int(jint x) {
  1039   return x & 0xffff;
  1042 inline int extract_high_short_from_int(jint x) {
  1043   return (x >> 16) & 0xffff;
  1046 inline int build_int_from_shorts( jushort low, jushort high ) {
  1047   return ((int)((unsigned int)high << 16) | (unsigned int)low);
  1050 // Printf-style formatters for fixed- and variable-width types as pointers and
  1051 // integers.
  1052 //
  1053 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  1054 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
  1055 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
  1056 // (in ILP32).
  1058 // Format 32-bit quantities.
  1059 #define INT32_FORMAT  "%d"
  1060 #define UINT32_FORMAT "%u"
  1061 #define INT32_FORMAT_W(width)   "%" #width "d"
  1062 #define UINT32_FORMAT_W(width)  "%" #width "u"
  1064 #define PTR32_FORMAT  "0x%08x"
  1066 // Format 64-bit quantities.
  1067 #define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
  1068 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
  1069 #define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
  1071 #define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
  1072 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
  1074 // Format macros that allow the field width to be specified.  The width must be
  1075 // a string literal (e.g., "8") or a macro that evaluates to one.
  1076 #ifdef _LP64
  1077 #define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
  1078 #define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
  1079 #else
  1080 #define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
  1081 #define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
  1082 #endif // _LP64
  1084 // Format pointers and size_t (or size_t-like integer types) which change size
  1085 // between 32- and 64-bit.
  1086 #ifdef  _LP64
  1087 #define PTR_FORMAT    PTR64_FORMAT
  1088 #define UINTX_FORMAT  UINT64_FORMAT
  1089 #define INTX_FORMAT   INT64_FORMAT
  1090 #define SIZE_FORMAT   UINT64_FORMAT
  1091 #define SSIZE_FORMAT  INT64_FORMAT
  1092 #else   // !_LP64
  1093 #define PTR_FORMAT    PTR32_FORMAT
  1094 #define UINTX_FORMAT  UINT32_FORMAT
  1095 #define INTX_FORMAT   INT32_FORMAT
  1096 #define SIZE_FORMAT   UINT32_FORMAT
  1097 #define SSIZE_FORMAT  INT32_FORMAT
  1098 #endif  // _LP64
  1100 #define INTPTR_FORMAT PTR_FORMAT
  1102 // Enable zap-a-lot if in debug version.
  1104 # ifdef ASSERT
  1105 # ifdef COMPILER2
  1106 #   define ENABLE_ZAP_DEAD_LOCALS
  1107 #endif /* COMPILER2 */
  1108 # endif /* ASSERT */
  1110 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))

mercurial