src/share/vm/opto/escape.cpp

Wed, 09 Apr 2008 15:10:22 -0700

author
rasbold
date
Wed, 09 Apr 2008 15:10:22 -0700
changeset 544
9f4457a14b58
parent 537
f96100ac3d12
child 548
ba764ed4b6f2
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_escape.cpp.incl"
    28 uint PointsToNode::edge_target(uint e) const {
    29   assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
    30   return (_edges->at(e) >> EdgeShift);
    31 }
    33 PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
    34   assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
    35   return (EdgeType) (_edges->at(e) & EdgeMask);
    36 }
    38 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
    39   uint v = (targIdx << EdgeShift) + ((uint) et);
    40   if (_edges == NULL) {
    41      Arena *a = Compile::current()->comp_arena();
    42     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
    43   }
    44   _edges->append_if_missing(v);
    45 }
    47 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
    48   uint v = (targIdx << EdgeShift) + ((uint) et);
    50   _edges->remove(v);
    51 }
    53 #ifndef PRODUCT
    54 static const char *node_type_names[] = {
    55   "UnknownType",
    56   "JavaObject",
    57   "LocalVar",
    58   "Field"
    59 };
    61 static const char *esc_names[] = {
    62   "UnknownEscape",
    63   "NoEscape",
    64   "ArgEscape",
    65   "GlobalEscape"
    66 };
    68 static const char *edge_type_suffix[] = {
    69  "?", // UnknownEdge
    70  "P", // PointsToEdge
    71  "D", // DeferredEdge
    72  "F"  // FieldEdge
    73 };
    75 void PointsToNode::dump() const {
    76   NodeType nt = node_type();
    77   EscapeState es = escape_state();
    78   tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR");
    79   for (uint i = 0; i < edge_count(); i++) {
    80     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    81   }
    82   tty->print("]]  ");
    83   if (_node == NULL)
    84     tty->print_cr("<null>");
    85   else
    86     _node->dump();
    87 }
    88 #endif
    90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
    91   _collecting = true;
    92   this->_compile = C;
    93   const PointsToNode &dummy = PointsToNode();
    94   int sz = C->unique();
    95   _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), sz, sz, dummy);
    96   _phantom_object = C->top()->_idx;
    97   PointsToNode *phn = ptnode_adr(_phantom_object);
    98   phn->_node = C->top();
    99   phn->set_node_type(PointsToNode::JavaObject);
   100   phn->set_escape_state(PointsToNode::GlobalEscape);
   101 }
   103 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   104   PointsToNode *f = ptnode_adr(from_i);
   105   PointsToNode *t = ptnode_adr(to_i);
   107   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   108   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
   109   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
   110   f->add_edge(to_i, PointsToNode::PointsToEdge);
   111 }
   113 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
   114   PointsToNode *f = ptnode_adr(from_i);
   115   PointsToNode *t = ptnode_adr(to_i);
   117   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   118   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
   119   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
   120   // don't add a self-referential edge, this can occur during removal of
   121   // deferred edges
   122   if (from_i != to_i)
   123     f->add_edge(to_i, PointsToNode::DeferredEdge);
   124 }
   126 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
   127   const Type *adr_type = phase->type(adr);
   128   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
   129       adr->in(AddPNode::Address)->is_Proj() &&
   130       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
   131     // We are computing a raw address for a store captured by an Initialize
   132     // compute an appropriate address type. AddP cases #3 and #5 (see below).
   133     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   134     assert(offs != Type::OffsetBot ||
   135            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
   136            "offset must be a constant or it is initialization of array");
   137     return offs;
   138   }
   139   const TypePtr *t_ptr = adr_type->isa_ptr();
   140   assert(t_ptr != NULL, "must be a pointer type");
   141   return t_ptr->offset();
   142 }
   144 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   145   PointsToNode *f = ptnode_adr(from_i);
   146   PointsToNode *t = ptnode_adr(to_i);
   148   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   149   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
   150   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
   151   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
   152   t->set_offset(offset);
   154   f->add_edge(to_i, PointsToNode::FieldEdge);
   155 }
   157 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
   158   PointsToNode *npt = ptnode_adr(ni);
   159   PointsToNode::EscapeState old_es = npt->escape_state();
   160   if (es > old_es)
   161     npt->set_escape_state(es);
   162 }
   164 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
   165                                PointsToNode::EscapeState es, bool done) {
   166   PointsToNode* ptadr = ptnode_adr(n->_idx);
   167   ptadr->_node = n;
   168   ptadr->set_node_type(nt);
   170   // inline set_escape_state(idx, es);
   171   PointsToNode::EscapeState old_es = ptadr->escape_state();
   172   if (es > old_es)
   173     ptadr->set_escape_state(es);
   175   if (done)
   176     _processed.set(n->_idx);
   177 }
   179 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   180   uint idx = n->_idx;
   181   PointsToNode::EscapeState es;
   183   // If we are still collecting or there were no non-escaping allocations
   184   // we don't know the answer yet
   185   if (_collecting || !_has_allocations)
   186     return PointsToNode::UnknownEscape;
   188   // if the node was created after the escape computation, return
   189   // UnknownEscape
   190   if (idx >= (uint)_nodes->length())
   191     return PointsToNode::UnknownEscape;
   193   es = _nodes->at_grow(idx).escape_state();
   195   // if we have already computed a value, return it
   196   if (es != PointsToNode::UnknownEscape)
   197     return es;
   199   // compute max escape state of anything this node could point to
   200   VectorSet ptset(Thread::current()->resource_area());
   201   PointsTo(ptset, n, phase);
   202   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
   203     uint pt = i.elem;
   204     PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state();
   205     if (pes > es)
   206       es = pes;
   207   }
   208   // cache the computed escape state
   209   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   210   _nodes->adr_at(idx)->set_escape_state(es);
   211   return es;
   212 }
   214 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   215   VectorSet visited(Thread::current()->resource_area());
   216   GrowableArray<uint>  worklist;
   218   n = n->uncast();
   219   PointsToNode  npt = _nodes->at_grow(n->_idx);
   221   // If we have a JavaObject, return just that object
   222   if (npt.node_type() == PointsToNode::JavaObject) {
   223     ptset.set(n->_idx);
   224     return;
   225   }
   226   assert(npt._node != NULL, "unregistered node");
   228   worklist.push(n->_idx);
   229   while(worklist.length() > 0) {
   230     int ni = worklist.pop();
   231     PointsToNode pn = _nodes->at_grow(ni);
   232     if (!visited.test_set(ni)) {
   233       // ensure that all inputs of a Phi have been processed
   234       assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),"");
   236       int edges_processed = 0;
   237       for (uint e = 0; e < pn.edge_count(); e++) {
   238         uint etgt = pn.edge_target(e);
   239         PointsToNode::EdgeType et = pn.edge_type(e);
   240         if (et == PointsToNode::PointsToEdge) {
   241           ptset.set(etgt);
   242           edges_processed++;
   243         } else if (et == PointsToNode::DeferredEdge) {
   244           worklist.push(etgt);
   245           edges_processed++;
   246         } else {
   247           assert(false,"neither PointsToEdge or DeferredEdge");
   248         }
   249       }
   250       if (edges_processed == 0) {
   251         // no deferred or pointsto edges found.  Assume the value was set
   252         // outside this method.  Add the phantom object to the pointsto set.
   253         ptset.set(_phantom_object);
   254       }
   255     }
   256   }
   257 }
   259 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
   260   // This method is most expensive during ConnectionGraph construction.
   261   // Reuse vectorSet and an additional growable array for deferred edges.
   262   deferred_edges->clear();
   263   visited->Clear();
   265   uint i = 0;
   266   PointsToNode *ptn = ptnode_adr(ni);
   268   // Mark current edges as visited and move deferred edges to separate array.
   269   for (; i < ptn->edge_count(); i++) {
   270     uint t = ptn->edge_target(i);
   271 #ifdef ASSERT
   272     assert(!visited->test_set(t), "expecting no duplications");
   273 #else
   274     visited->set(t);
   275 #endif
   276     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
   277       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   278       deferred_edges->append(t);
   279     }
   280   }
   281   for (int next = 0; next < deferred_edges->length(); ++next) {
   282     uint t = deferred_edges->at(next);
   283     PointsToNode *ptt = ptnode_adr(t);
   284     for (uint j = 0; j < ptt->edge_count(); j++) {
   285       uint n1 = ptt->edge_target(j);
   286       if (visited->test_set(n1))
   287         continue;
   288       switch(ptt->edge_type(j)) {
   289         case PointsToNode::PointsToEdge:
   290           add_pointsto_edge(ni, n1);
   291           if(n1 == _phantom_object) {
   292             // Special case - field set outside (globally escaping).
   293             ptn->set_escape_state(PointsToNode::GlobalEscape);
   294           }
   295           break;
   296         case PointsToNode::DeferredEdge:
   297           deferred_edges->append(n1);
   298           break;
   299         case PointsToNode::FieldEdge:
   300           assert(false, "invalid connection graph");
   301           break;
   302       }
   303     }
   304   }
   305 }
   308 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
   309 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   310 //  a pointsto edge is added if it is a JavaObject
   312 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
   313   PointsToNode an = _nodes->at_grow(adr_i);
   314   PointsToNode to = _nodes->at_grow(to_i);
   315   bool deferred = (to.node_type() == PointsToNode::LocalVar);
   317   for (uint fe = 0; fe < an.edge_count(); fe++) {
   318     assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   319     int fi = an.edge_target(fe);
   320     PointsToNode pf = _nodes->at_grow(fi);
   321     int po = pf.offset();
   322     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   323       if (deferred)
   324         add_deferred_edge(fi, to_i);
   325       else
   326         add_pointsto_edge(fi, to_i);
   327     }
   328   }
   329 }
   331 // Add a deferred  edge from node given by "from_i" to any field of adr_i
   332 // whose offset matches "offset".
   333 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   334   PointsToNode an = _nodes->at_grow(adr_i);
   335   for (uint fe = 0; fe < an.edge_count(); fe++) {
   336     assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   337     int fi = an.edge_target(fe);
   338     PointsToNode pf = _nodes->at_grow(fi);
   339     int po = pf.offset();
   340     if (pf.edge_count() == 0) {
   341       // we have not seen any stores to this field, assume it was set outside this method
   342       add_pointsto_edge(fi, _phantom_object);
   343     }
   344     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   345       add_deferred_edge(from_i, fi);
   346     }
   347   }
   348 }
   350 // Helper functions
   352 static Node* get_addp_base(Node *addp) {
   353   assert(addp->is_AddP(), "must be AddP");
   354   //
   355   // AddP cases for Base and Address inputs:
   356   // case #1. Direct object's field reference:
   357   //     Allocate
   358   //       |
   359   //     Proj #5 ( oop result )
   360   //       |
   361   //     CheckCastPP (cast to instance type)
   362   //      | |
   363   //     AddP  ( base == address )
   364   //
   365   // case #2. Indirect object's field reference:
   366   //      Phi
   367   //       |
   368   //     CastPP (cast to instance type)
   369   //      | |
   370   //     AddP  ( base == address )
   371   //
   372   // case #3. Raw object's field reference for Initialize node:
   373   //      Allocate
   374   //        |
   375   //      Proj #5 ( oop result )
   376   //  top   |
   377   //     \  |
   378   //     AddP  ( base == top )
   379   //
   380   // case #4. Array's element reference:
   381   //   {CheckCastPP | CastPP}
   382   //     |  | |
   383   //     |  AddP ( array's element offset )
   384   //     |  |
   385   //     AddP ( array's offset )
   386   //
   387   // case #5. Raw object's field reference for arraycopy stub call:
   388   //          The inline_native_clone() case when the arraycopy stub is called
   389   //          after the allocation before Initialize and CheckCastPP nodes.
   390   //      Allocate
   391   //        |
   392   //      Proj #5 ( oop result )
   393   //       | |
   394   //       AddP  ( base == address )
   395   //
   396   // case #6. Constant Pool, ThreadLocal, CastX2P or
   397   //          Raw object's field reference:
   398   //      {ConP, ThreadLocal, CastX2P, raw Load}
   399   //  top   |
   400   //     \  |
   401   //     AddP  ( base == top )
   402   //
   403   // case #7. Klass's field reference.
   404   //      LoadKlass
   405   //       | |
   406   //       AddP  ( base == address )
   407   //
   408   Node *base = addp->in(AddPNode::Base)->uncast();
   409   if (base->is_top()) { // The AddP case #3 and #6.
   410     base = addp->in(AddPNode::Address)->uncast();
   411     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
   412            base->Opcode() == Op_CastX2P ||
   413            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
   414            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
   415   }
   416   return base;
   417 }
   419 static Node* find_second_addp(Node* addp, Node* n) {
   420   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
   422   Node* addp2 = addp->raw_out(0);
   423   if (addp->outcnt() == 1 && addp2->is_AddP() &&
   424       addp2->in(AddPNode::Base) == n &&
   425       addp2->in(AddPNode::Address) == addp) {
   427     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
   428     //
   429     // Find array's offset to push it on worklist first and
   430     // as result process an array's element offset first (pushed second)
   431     // to avoid CastPP for the array's offset.
   432     // Otherwise the inserted CastPP (LocalVar) will point to what
   433     // the AddP (Field) points to. Which would be wrong since
   434     // the algorithm expects the CastPP has the same point as
   435     // as AddP's base CheckCastPP (LocalVar).
   436     //
   437     //    ArrayAllocation
   438     //     |
   439     //    CheckCastPP
   440     //     |
   441     //    memProj (from ArrayAllocation CheckCastPP)
   442     //     |  ||
   443     //     |  ||   Int (element index)
   444     //     |  ||    |   ConI (log(element size))
   445     //     |  ||    |   /
   446     //     |  ||   LShift
   447     //     |  ||  /
   448     //     |  AddP (array's element offset)
   449     //     |  |
   450     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
   451     //     | / /
   452     //     AddP (array's offset)
   453     //      |
   454     //     Load/Store (memory operation on array's element)
   455     //
   456     return addp2;
   457   }
   458   return NULL;
   459 }
   461 //
   462 // Adjust the type and inputs of an AddP which computes the
   463 // address of a field of an instance
   464 //
   465 void ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
   466   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
   467   assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
   468   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   469   if (t == NULL) {
   470     // We are computing a raw address for a store captured by an Initialize
   471     // compute an appropriate address type.
   472     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
   473     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
   474     int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
   475     assert(offs != Type::OffsetBot, "offset must be a constant");
   476     t = base_t->add_offset(offs)->is_oopptr();
   477   }
   478   uint inst_id =  base_t->instance_id();
   479   assert(!t->is_instance() || t->instance_id() == inst_id,
   480                              "old type must be non-instance or match new type");
   481   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   482   // Do NOT remove the next call: ensure an new alias index is allocated
   483   // for the instance type
   484   int alias_idx = _compile->get_alias_index(tinst);
   485   igvn->set_type(addp, tinst);
   486   // record the allocation in the node map
   487   set_map(addp->_idx, get_map(base->_idx));
   488   // if the Address input is not the appropriate instance type
   489   // (due to intervening casts,) insert a cast
   490   Node *adr = addp->in(AddPNode::Address);
   491   const TypeOopPtr  *atype = igvn->type(adr)->isa_oopptr();
   492   if (atype != NULL && atype->instance_id() != inst_id) {
   493     assert(!atype->is_instance(), "no conflicting instances");
   494     const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
   495     Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
   496     acast->set_req(0, adr->in(0));
   497     igvn->set_type(acast, new_atype);
   498     record_for_optimizer(acast);
   499     Node *bcast = acast;
   500     Node *abase = addp->in(AddPNode::Base);
   501     if (abase != adr) {
   502       bcast = new (_compile, 2) CastPPNode(abase, base_t);
   503       bcast->set_req(0, abase->in(0));
   504       igvn->set_type(bcast, base_t);
   505       record_for_optimizer(bcast);
   506     }
   507     igvn->hash_delete(addp);
   508     addp->set_req(AddPNode::Base, bcast);
   509     addp->set_req(AddPNode::Address, acast);
   510     igvn->hash_insert(addp);
   511   }
   512   // Put on IGVN worklist since at least addp's type was changed above.
   513   record_for_optimizer(addp);
   514 }
   516 //
   517 // Create a new version of orig_phi if necessary. Returns either the newly
   518 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   519 // phi was created.  Cache the last newly created phi in the node map.
   520 //
   521 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   522   Compile *C = _compile;
   523   new_created = false;
   524   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   525   // nothing to do if orig_phi is bottom memory or matches alias_idx
   526   if (phi_alias_idx == alias_idx) {
   527     return orig_phi;
   528   }
   529   // have we already created a Phi for this alias index?
   530   PhiNode *result = get_map_phi(orig_phi->_idx);
   531   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   532     return result;
   533   }
   534   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   535     if (C->do_escape_analysis() == true && !C->failing()) {
   536       // Retry compilation without escape analysis.
   537       // If this is the first failure, the sentinel string will "stick"
   538       // to the Compile object, and the C2Compiler will see it and retry.
   539       C->record_failure(C2Compiler::retry_no_escape_analysis());
   540     }
   541     return NULL;
   542   }
   543   orig_phi_worklist.append_if_missing(orig_phi);
   544   const TypePtr *atype = C->get_adr_type(alias_idx);
   545   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   546   set_map_phi(orig_phi->_idx, result);
   547   igvn->set_type(result, result->bottom_type());
   548   record_for_optimizer(result);
   549   new_created = true;
   550   return result;
   551 }
   553 //
   554 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
   555 // specified alias index.
   556 //
   557 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   559   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   560   Compile *C = _compile;
   561   bool new_phi_created;
   562   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   563   if (!new_phi_created) {
   564     return result;
   565   }
   567   GrowableArray<PhiNode *>  phi_list;
   568   GrowableArray<uint>  cur_input;
   570   PhiNode *phi = orig_phi;
   571   uint idx = 1;
   572   bool finished = false;
   573   while(!finished) {
   574     while (idx < phi->req()) {
   575       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
   576       if (mem != NULL && mem->is_Phi()) {
   577         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   578         if (new_phi_created) {
   579           // found an phi for which we created a new split, push current one on worklist and begin
   580           // processing new one
   581           phi_list.push(phi);
   582           cur_input.push(idx);
   583           phi = mem->as_Phi();
   584           result = newphi;
   585           idx = 1;
   586           continue;
   587         } else {
   588           mem = newphi;
   589         }
   590       }
   591       if (C->failing()) {
   592         return NULL;
   593       }
   594       result->set_req(idx++, mem);
   595     }
   596 #ifdef ASSERT
   597     // verify that the new Phi has an input for each input of the original
   598     assert( phi->req() == result->req(), "must have same number of inputs.");
   599     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
   600 #endif
   601     // Check if all new phi's inputs have specified alias index.
   602     // Otherwise use old phi.
   603     for (uint i = 1; i < phi->req(); i++) {
   604       Node* in = result->in(i);
   605       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
   606     }
   607     // we have finished processing a Phi, see if there are any more to do
   608     finished = (phi_list.length() == 0 );
   609     if (!finished) {
   610       phi = phi_list.pop();
   611       idx = cur_input.pop();
   612       PhiNode *prev_result = get_map_phi(phi->_idx);
   613       prev_result->set_req(idx++, result);
   614       result = prev_result;
   615     }
   616   }
   617   return result;
   618 }
   621 //
   622 // The next methods are derived from methods in MemNode.
   623 //
   624 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
   625   Node *mem = mmem;
   626   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   627   // means an array I have not precisely typed yet.  Do not do any
   628   // alias stuff with it any time soon.
   629   if( tinst->base() != Type::AnyPtr &&
   630       !(tinst->klass()->is_java_lang_Object() &&
   631         tinst->offset() == Type::OffsetBot) ) {
   632     mem = mmem->memory_at(alias_idx);
   633     // Update input if it is progress over what we have now
   634   }
   635   return mem;
   636 }
   638 //
   639 // Search memory chain of "mem" to find a MemNode whose address
   640 // is the specified alias index.
   641 //
   642 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
   643   if (orig_mem == NULL)
   644     return orig_mem;
   645   Compile* C = phase->C;
   646   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
   647   bool is_instance = (tinst != NULL) && tinst->is_instance();
   648   Node *prev = NULL;
   649   Node *result = orig_mem;
   650   while (prev != result) {
   651     prev = result;
   652     if (result->is_Mem()) {
   653       MemNode *mem = result->as_Mem();
   654       const Type *at = phase->type(mem->in(MemNode::Address));
   655       if (at != Type::TOP) {
   656         assert (at->isa_ptr() != NULL, "pointer type required.");
   657         int idx = C->get_alias_index(at->is_ptr());
   658         if (idx == alias_idx)
   659           break;
   660       }
   661       result = mem->in(MemNode::Memory);
   662     }
   663     if (!is_instance)
   664       continue;  // don't search further for non-instance types
   665     // skip over a call which does not affect this memory slice
   666     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   667       Node *proj_in = result->in(0);
   668       if (proj_in->is_Call()) {
   669         CallNode *call = proj_in->as_Call();
   670         if (!call->may_modify(tinst, phase)) {
   671           result = call->in(TypeFunc::Memory);
   672         }
   673       } else if (proj_in->is_Initialize()) {
   674         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   675         // Stop if this is the initialization for the object instance which
   676         // which contains this memory slice, otherwise skip over it.
   677         if (alloc == NULL || alloc->_idx != tinst->instance_id()) {
   678           result = proj_in->in(TypeFunc::Memory);
   679         }
   680       } else if (proj_in->is_MemBar()) {
   681         result = proj_in->in(TypeFunc::Memory);
   682       }
   683     } else if (result->is_MergeMem()) {
   684       MergeMemNode *mmem = result->as_MergeMem();
   685       result = step_through_mergemem(mmem, alias_idx, tinst);
   686       if (result == mmem->base_memory()) {
   687         // Didn't find instance memory, search through general slice recursively.
   688         result = mmem->memory_at(C->get_general_index(alias_idx));
   689         result = find_inst_mem(result, alias_idx, orig_phis, phase);
   690         if (C->failing()) {
   691           return NULL;
   692         }
   693         mmem->set_memory_at(alias_idx, result);
   694       }
   695     } else if (result->is_Phi() &&
   696                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
   697       Node *un = result->as_Phi()->unique_input(phase);
   698       if (un != NULL) {
   699         result = un;
   700       } else {
   701         break;
   702       }
   703     }
   704   }
   705   if (is_instance && result->is_Phi()) {
   706     PhiNode *mphi = result->as_Phi();
   707     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   708     const TypePtr *t = mphi->adr_type();
   709     if (C->get_alias_index(t) != alias_idx) {
   710       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
   711     }
   712   }
   713   // the result is either MemNode, PhiNode, InitializeNode.
   714   return result;
   715 }
   718 //
   719 //  Convert the types of unescaped object to instance types where possible,
   720 //  propagate the new type information through the graph, and update memory
   721 //  edges and MergeMem inputs to reflect the new type.
   722 //
   723 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
   724 //  The processing is done in 4 phases:
   725 //
   726 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
   727 //            types for the CheckCastPP for allocations where possible.
   728 //            Propagate the the new types through users as follows:
   729 //               casts and Phi:  push users on alloc_worklist
   730 //               AddP:  cast Base and Address inputs to the instance type
   731 //                      push any AddP users on alloc_worklist and push any memnode
   732 //                      users onto memnode_worklist.
   733 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   734 //            search the Memory chain for a store with the appropriate type
   735 //            address type.  If a Phi is found, create a new version with
   736 //            the approriate memory slices from each of the Phi inputs.
   737 //            For stores, process the users as follows:
   738 //               MemNode:  push on memnode_worklist
   739 //               MergeMem: push on mergemem_worklist
   740 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
   741 //            moving the first node encountered of each  instance type to the
   742 //            the input corresponding to its alias index.
   743 //            appropriate memory slice.
   744 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
   745 //
   746 // In the following example, the CheckCastPP nodes are the cast of allocation
   747 // results and the allocation of node 29 is unescaped and eligible to be an
   748 // instance type.
   749 //
   750 // We start with:
   751 //
   752 //     7 Parm #memory
   753 //    10  ConI  "12"
   754 //    19  CheckCastPP   "Foo"
   755 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   756 //    29  CheckCastPP   "Foo"
   757 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
   758 //
   759 //    40  StoreP  25   7  20   ... alias_index=4
   760 //    50  StoreP  35  40  30   ... alias_index=4
   761 //    60  StoreP  45  50  20   ... alias_index=4
   762 //    70  LoadP    _  60  30   ... alias_index=4
   763 //    80  Phi     75  50  60   Memory alias_index=4
   764 //    90  LoadP    _  80  30   ... alias_index=4
   765 //   100  LoadP    _  80  20   ... alias_index=4
   766 //
   767 //
   768 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
   769 // and creating a new alias index for node 30.  This gives:
   770 //
   771 //     7 Parm #memory
   772 //    10  ConI  "12"
   773 //    19  CheckCastPP   "Foo"
   774 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   775 //    29  CheckCastPP   "Foo"  iid=24
   776 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   777 //
   778 //    40  StoreP  25   7  20   ... alias_index=4
   779 //    50  StoreP  35  40  30   ... alias_index=6
   780 //    60  StoreP  45  50  20   ... alias_index=4
   781 //    70  LoadP    _  60  30   ... alias_index=6
   782 //    80  Phi     75  50  60   Memory alias_index=4
   783 //    90  LoadP    _  80  30   ... alias_index=6
   784 //   100  LoadP    _  80  20   ... alias_index=4
   785 //
   786 // In phase 2, new memory inputs are computed for the loads and stores,
   787 // And a new version of the phi is created.  In phase 4, the inputs to
   788 // node 80 are updated and then the memory nodes are updated with the
   789 // values computed in phase 2.  This results in:
   790 //
   791 //     7 Parm #memory
   792 //    10  ConI  "12"
   793 //    19  CheckCastPP   "Foo"
   794 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   795 //    29  CheckCastPP   "Foo"  iid=24
   796 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   797 //
   798 //    40  StoreP  25  7   20   ... alias_index=4
   799 //    50  StoreP  35  7   30   ... alias_index=6
   800 //    60  StoreP  45  40  20   ... alias_index=4
   801 //    70  LoadP    _  50  30   ... alias_index=6
   802 //    80  Phi     75  40  60   Memory alias_index=4
   803 //   120  Phi     75  50  50   Memory alias_index=6
   804 //    90  LoadP    _ 120  30   ... alias_index=6
   805 //   100  LoadP    _  80  20   ... alias_index=4
   806 //
   807 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
   808   GrowableArray<Node *>  memnode_worklist;
   809   GrowableArray<Node *>  mergemem_worklist;
   810   GrowableArray<PhiNode *>  orig_phis;
   811   PhaseGVN  *igvn = _compile->initial_gvn();
   812   uint new_index_start = (uint) _compile->num_alias_types();
   813   VectorSet visited(Thread::current()->resource_area());
   814   VectorSet ptset(Thread::current()->resource_area());
   817   //  Phase 1:  Process possible allocations from alloc_worklist.
   818   //  Create instance types for the CheckCastPP for allocations where possible.
   819   while (alloc_worklist.length() != 0) {
   820     Node *n = alloc_worklist.pop();
   821     uint ni = n->_idx;
   822     const TypeOopPtr* tinst = NULL;
   823     if (n->is_Call()) {
   824       CallNode *alloc = n->as_Call();
   825       // copy escape information to call node
   826       PointsToNode* ptn = _nodes->adr_at(alloc->_idx);
   827       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   828       // We have an allocation or call which returns a Java object,
   829       // see if it is unescaped.
   830       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
   831         continue;
   832       if (alloc->is_Allocate()) {
   833         // Set the scalar_replaceable flag before the next check.
   834         alloc->as_Allocate()->_is_scalar_replaceable = true;
   835       }
   836       // find CheckCastPP of call return value
   837       n = alloc->result_cast();
   838       if (n == NULL ||          // No uses accept Initialize or
   839           !n->is_CheckCastPP()) // not unique CheckCastPP.
   840         continue;
   841       // The inline code for Object.clone() casts the allocation result to
   842       // java.lang.Object and then to the the actual type of the allocated
   843       // object. Detect this case and use the second cast.
   844       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
   845           && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) {
   846         Node *cast2 = NULL;
   847         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   848           Node *use = n->fast_out(i);
   849           if (use->is_CheckCastPP()) {
   850             cast2 = use;
   851             break;
   852           }
   853         }
   854         if (cast2 != NULL) {
   855           n = cast2;
   856         } else {
   857           continue;
   858         }
   859       }
   860       set_escape_state(n->_idx, es);
   861       // in order for an object to be stackallocatable, it must be:
   862       //   - a direct allocation (not a call returning an object)
   863       //   - non-escaping
   864       //   - eligible to be a unique type
   865       //   - not determined to be ineligible by escape analysis
   866       set_map(alloc->_idx, n);
   867       set_map(n->_idx, alloc);
   868       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
   869       if (t == NULL)
   870         continue;  // not a TypeInstPtr
   871       tinst = t->cast_to_instance(ni);
   872       igvn->hash_delete(n);
   873       igvn->set_type(n,  tinst);
   874       n->raise_bottom_type(tinst);
   875       igvn->hash_insert(n);
   876       record_for_optimizer(n);
   877       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
   878           (t->isa_instptr() || t->isa_aryptr())) {
   879         // An allocation may have an Initialize which has raw stores. Scan
   880         // the users of the raw allocation result and push AddP users
   881         // on alloc_worklist.
   882         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
   883         assert (raw_result != NULL, "must have an allocation result");
   884         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
   885           Node *use = raw_result->fast_out(i);
   886           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
   887             Node* addp2 = find_second_addp(use, raw_result);
   888             if (addp2 != NULL) {
   889               assert(alloc->is_AllocateArray(),"array allocation was expected");
   890               alloc_worklist.append_if_missing(addp2);
   891             }
   892             alloc_worklist.append_if_missing(use);
   893           } else if (use->is_Initialize()) {
   894             memnode_worklist.append_if_missing(use);
   895           }
   896         }
   897       }
   898     } else if (n->is_AddP()) {
   899       ptset.Clear();
   900       PointsTo(ptset, get_addp_base(n), igvn);
   901       assert(ptset.Size() == 1, "AddP address is unique");
   902       uint elem = ptset.getelem(); // Allocation node's index
   903       if (elem == _phantom_object)
   904         continue; // Assume the value was set outside this method.
   905       Node *base = get_map(elem);  // CheckCastPP node
   906       split_AddP(n, base, igvn);
   907       tinst = igvn->type(base)->isa_oopptr();
   908     } else if (n->is_Phi() ||
   909                n->is_CheckCastPP() ||
   910                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
   911       if (visited.test_set(n->_idx)) {
   912         assert(n->is_Phi(), "loops only through Phi's");
   913         continue;  // already processed
   914       }
   915       ptset.Clear();
   916       PointsTo(ptset, n, igvn);
   917       if (ptset.Size() == 1) {
   918         uint elem = ptset.getelem(); // Allocation node's index
   919         if (elem == _phantom_object)
   920           continue; // Assume the value was set outside this method.
   921         Node *val = get_map(elem);   // CheckCastPP node
   922         TypeNode *tn = n->as_Type();
   923         tinst = igvn->type(val)->isa_oopptr();
   924         assert(tinst != NULL && tinst->is_instance() &&
   925                tinst->instance_id() == elem , "instance type expected.");
   926         const TypeOopPtr *tn_t = igvn->type(tn)->isa_oopptr();
   928         if (tn_t != NULL &&
   929  tinst->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
   930           igvn->hash_delete(tn);
   931           igvn->set_type(tn, tinst);
   932           tn->set_type(tinst);
   933           igvn->hash_insert(tn);
   934           record_for_optimizer(n);
   935         }
   936       }
   937     } else {
   938       continue;
   939     }
   940     // push users on appropriate worklist
   941     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   942       Node *use = n->fast_out(i);
   943       if(use->is_Mem() && use->in(MemNode::Address) == n) {
   944         memnode_worklist.append_if_missing(use);
   945       } else if (use->is_Initialize()) {
   946         memnode_worklist.append_if_missing(use);
   947       } else if (use->is_MergeMem()) {
   948         mergemem_worklist.append_if_missing(use);
   949       } else if (use->is_Call() && tinst != NULL) {
   950         // Look for MergeMem nodes for calls which reference unique allocation
   951         // (through CheckCastPP nodes) even for debug info.
   952         Node* m = use->in(TypeFunc::Memory);
   953         uint iid = tinst->instance_id();
   954         while (m->is_Proj() && m->in(0)->is_Call() &&
   955                m->in(0) != use && !m->in(0)->_idx != iid) {
   956           m = m->in(0)->in(TypeFunc::Memory);
   957         }
   958         if (m->is_MergeMem()) {
   959           mergemem_worklist.append_if_missing(m);
   960         }
   961       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
   962         Node* addp2 = find_second_addp(use, n);
   963         if (addp2 != NULL) {
   964           alloc_worklist.append_if_missing(addp2);
   965         }
   966         alloc_worklist.append_if_missing(use);
   967       } else if (use->is_Phi() ||
   968                  use->is_CheckCastPP() ||
   969                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
   970         alloc_worklist.append_if_missing(use);
   971       }
   972     }
   974   }
   975   // New alias types were created in split_AddP().
   976   uint new_index_end = (uint) _compile->num_alias_types();
   978   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   979   //            compute new values for Memory inputs  (the Memory inputs are not
   980   //            actually updated until phase 4.)
   981   if (memnode_worklist.length() == 0)
   982     return;  // nothing to do
   984   while (memnode_worklist.length() != 0) {
   985     Node *n = memnode_worklist.pop();
   986     if (visited.test_set(n->_idx))
   987       continue;
   988     if (n->is_Phi()) {
   989       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
   990       // we don't need to do anything, but the users must be pushed if we haven't processed
   991       // this Phi before
   992     } else if (n->is_Initialize()) {
   993       // we don't need to do anything, but the users of the memory projection must be pushed
   994       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
   995       if (n == NULL)
   996         continue;
   997     } else {
   998       assert(n->is_Mem(), "memory node required.");
   999       Node *addr = n->in(MemNode::Address);
  1000       assert(addr->is_AddP(), "AddP required");
  1001       const Type *addr_t = igvn->type(addr);
  1002       if (addr_t == Type::TOP)
  1003         continue;
  1004       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  1005       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  1006       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  1007       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
  1008       if (_compile->failing()) {
  1009         return;
  1011       if (mem != n->in(MemNode::Memory)) {
  1012         set_map(n->_idx, mem);
  1013         _nodes->adr_at(n->_idx)->_node = n;
  1015       if (n->is_Load()) {
  1016         continue;  // don't push users
  1017       } else if (n->is_LoadStore()) {
  1018         // get the memory projection
  1019         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1020           Node *use = n->fast_out(i);
  1021           if (use->Opcode() == Op_SCMemProj) {
  1022             n = use;
  1023             break;
  1026         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  1029     // push user on appropriate worklist
  1030     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1031       Node *use = n->fast_out(i);
  1032       if (use->is_Phi()) {
  1033         memnode_worklist.append_if_missing(use);
  1034       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  1035         memnode_worklist.append_if_missing(use);
  1036       } else if (use->is_Initialize()) {
  1037         memnode_worklist.append_if_missing(use);
  1038       } else if (use->is_MergeMem()) {
  1039         mergemem_worklist.append_if_missing(use);
  1044   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  1045   //            Walk each memory moving the first node encountered of each
  1046   //            instance type to the the input corresponding to its alias index.
  1047   while (mergemem_worklist.length() != 0) {
  1048     Node *n = mergemem_worklist.pop();
  1049     assert(n->is_MergeMem(), "MergeMem node required.");
  1050     if (visited.test_set(n->_idx))
  1051       continue;
  1052     MergeMemNode *nmm = n->as_MergeMem();
  1053     // Note: we don't want to use MergeMemStream here because we only want to
  1054     //  scan inputs which exist at the start, not ones we add during processing.
  1055     uint nslices = nmm->req();
  1056     igvn->hash_delete(nmm);
  1057     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  1058       Node* mem = nmm->in(i);
  1059       Node* cur = NULL;
  1060       if (mem == NULL || mem->is_top())
  1061         continue;
  1062       while (mem->is_Mem()) {
  1063         const Type *at = igvn->type(mem->in(MemNode::Address));
  1064         if (at != Type::TOP) {
  1065           assert (at->isa_ptr() != NULL, "pointer type required.");
  1066           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  1067           if (idx == i) {
  1068             if (cur == NULL)
  1069               cur = mem;
  1070           } else {
  1071             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  1072               nmm->set_memory_at(idx, mem);
  1076         mem = mem->in(MemNode::Memory);
  1078       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  1079       // Find any instance of the current type if we haven't encountered
  1080       // a value of the instance along the chain.
  1081       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1082         if((uint)_compile->get_general_index(ni) == i) {
  1083           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  1084           if (nmm->is_empty_memory(m)) {
  1085             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
  1086             if (_compile->failing()) {
  1087               return;
  1089             nmm->set_memory_at(ni, result);
  1094     // Find the rest of instances values
  1095     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1096       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
  1097       Node* result = step_through_mergemem(nmm, ni, tinst);
  1098       if (result == nmm->base_memory()) {
  1099         // Didn't find instance memory, search through general slice recursively.
  1100         result = nmm->memory_at(igvn->C->get_general_index(ni));
  1101         result = find_inst_mem(result, ni, orig_phis, igvn);
  1102         if (_compile->failing()) {
  1103           return;
  1105         nmm->set_memory_at(ni, result);
  1108     igvn->hash_insert(nmm);
  1109     record_for_optimizer(nmm);
  1111     // Propagate new memory slices to following MergeMem nodes.
  1112     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1113       Node *use = n->fast_out(i);
  1114       if (use->is_Call()) {
  1115         CallNode* in = use->as_Call();
  1116         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1117           Node* m = in->proj_out(TypeFunc::Memory);
  1118           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1119             Node* mm = m->fast_out(j);
  1120             if (mm->is_MergeMem()) {
  1121               mergemem_worklist.append_if_missing(mm);
  1125         if (use->is_Allocate()) {
  1126           use = use->as_Allocate()->initialization();
  1127           if (use == NULL) {
  1128             continue;
  1132       if (use->is_Initialize()) {
  1133         InitializeNode* in = use->as_Initialize();
  1134         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1135           Node* m = in->proj_out(TypeFunc::Memory);
  1136           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1137             Node* mm = m->fast_out(j);
  1138             if (mm->is_MergeMem()) {
  1139               mergemem_worklist.append_if_missing(mm);
  1147   //  Phase 4:  Update the inputs of non-instance memory Phis and
  1148   //            the Memory input of memnodes
  1149   // First update the inputs of any non-instance Phi's from
  1150   // which we split out an instance Phi.  Note we don't have
  1151   // to recursively process Phi's encounted on the input memory
  1152   // chains as is done in split_memory_phi() since they  will
  1153   // also be processed here.
  1154   while (orig_phis.length() != 0) {
  1155     PhiNode *phi = orig_phis.pop();
  1156     int alias_idx = _compile->get_alias_index(phi->adr_type());
  1157     igvn->hash_delete(phi);
  1158     for (uint i = 1; i < phi->req(); i++) {
  1159       Node *mem = phi->in(i);
  1160       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
  1161       if (_compile->failing()) {
  1162         return;
  1164       if (mem != new_mem) {
  1165         phi->set_req(i, new_mem);
  1168     igvn->hash_insert(phi);
  1169     record_for_optimizer(phi);
  1172   // Update the memory inputs of MemNodes with the value we computed
  1173   // in Phase 2.
  1174   for (int i = 0; i < _nodes->length(); i++) {
  1175     Node *nmem = get_map(i);
  1176     if (nmem != NULL) {
  1177       Node *n = _nodes->adr_at(i)->_node;
  1178       if (n != NULL && n->is_Mem()) {
  1179         igvn->hash_delete(n);
  1180         n->set_req(MemNode::Memory, nmem);
  1181         igvn->hash_insert(n);
  1182         record_for_optimizer(n);
  1188 void ConnectionGraph::compute_escape() {
  1190   // 1. Populate Connection Graph with Ideal nodes.
  1192   Unique_Node_List worklist_init;
  1193   worklist_init.map(_compile->unique(), NULL);  // preallocate space
  1195   // Initialize worklist
  1196   if (_compile->root() != NULL) {
  1197     worklist_init.push(_compile->root());
  1200   GrowableArray<int> cg_worklist;
  1201   PhaseGVN* igvn = _compile->initial_gvn();
  1202   bool has_allocations = false;
  1204   // Push all useful nodes onto CG list and set their type.
  1205   for( uint next = 0; next < worklist_init.size(); ++next ) {
  1206     Node* n = worklist_init.at(next);
  1207     record_for_escape_analysis(n, igvn);
  1208     if (n->is_Call() &&
  1209         _nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) {
  1210       has_allocations = true;
  1212     if(n->is_AddP())
  1213       cg_worklist.append(n->_idx);
  1214     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1215       Node* m = n->fast_out(i);   // Get user
  1216       worklist_init.push(m);
  1220   if (has_allocations) {
  1221     _has_allocations = true;
  1222   } else {
  1223     _has_allocations = false;
  1224     _collecting = false;
  1225     return; // Nothing to do.
  1228   // 2. First pass to create simple CG edges (doesn't require to walk CG).
  1229   for( uint next = 0; next < _delayed_worklist.size(); ++next ) {
  1230     Node* n = _delayed_worklist.at(next);
  1231     build_connection_graph(n, igvn);
  1234   // 3. Pass to create fields edges (Allocate -F-> AddP).
  1235   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1236     int ni = cg_worklist.at(next);
  1237     build_connection_graph(_nodes->adr_at(ni)->_node, igvn);
  1240   cg_worklist.clear();
  1241   cg_worklist.append(_phantom_object);
  1243   // 4. Build Connection Graph which need
  1244   //    to walk the connection graph.
  1245   for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
  1246     PointsToNode* ptn = _nodes->adr_at(ni);
  1247     Node *n = ptn->_node;
  1248     if (n != NULL) { // Call, AddP, LoadP, StoreP
  1249       build_connection_graph(n, igvn);
  1250       if (ptn->node_type() != PointsToNode::UnknownType)
  1251         cg_worklist.append(n->_idx); // Collect CG nodes
  1255   VectorSet ptset(Thread::current()->resource_area());
  1256   GrowableArray<Node*> alloc_worklist;
  1257   GrowableArray<int>   worklist;
  1258   GrowableArray<uint>  deferred_edges;
  1259   VectorSet visited(Thread::current()->resource_area());
  1261   // remove deferred edges from the graph and collect
  1262   // information we will need for type splitting
  1263   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1264     int ni = cg_worklist.at(next);
  1265     PointsToNode* ptn = _nodes->adr_at(ni);
  1266     PointsToNode::NodeType nt = ptn->node_type();
  1267     Node *n = ptn->_node;
  1268     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
  1269       remove_deferred(ni, &deferred_edges, &visited);
  1270       if (n->is_AddP()) {
  1271         // If this AddP computes an address which may point to more that one
  1272         // object, nothing the address points to can be scalar replaceable.
  1273         Node *base = get_addp_base(n);
  1274         ptset.Clear();
  1275         PointsTo(ptset, base, igvn);
  1276         if (ptset.Size() > 1) {
  1277           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1278             uint pt = j.elem;
  1279             ptnode_adr(pt)->_scalar_replaceable = false;
  1283     } else if (nt == PointsToNode::JavaObject && n->is_Call()) {
  1284       // Push call on alloc_worlist (alocations are calls)
  1285       // for processing by split_unique_types().
  1286       alloc_worklist.append(n);
  1290   // push all GlobalEscape nodes on the worklist
  1291   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1292     int nk = cg_worklist.at(next);
  1293     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape)
  1294       worklist.append(nk);
  1296   // mark all node reachable from GlobalEscape nodes
  1297   while(worklist.length() > 0) {
  1298     PointsToNode n = _nodes->at(worklist.pop());
  1299     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1300       uint npi = n.edge_target(ei);
  1301       PointsToNode *np = ptnode_adr(npi);
  1302       if (np->escape_state() < PointsToNode::GlobalEscape) {
  1303         np->set_escape_state(PointsToNode::GlobalEscape);
  1304         worklist.append_if_missing(npi);
  1309   // push all ArgEscape nodes on the worklist
  1310   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1311     int nk = cg_worklist.at(next);
  1312     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape)
  1313       worklist.push(nk);
  1315   // mark all node reachable from ArgEscape nodes
  1316   while(worklist.length() > 0) {
  1317     PointsToNode n = _nodes->at(worklist.pop());
  1318     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1319       uint npi = n.edge_target(ei);
  1320       PointsToNode *np = ptnode_adr(npi);
  1321       if (np->escape_state() < PointsToNode::ArgEscape) {
  1322         np->set_escape_state(PointsToNode::ArgEscape);
  1323         worklist.append_if_missing(npi);
  1328   // push all NoEscape nodes on the worklist
  1329   for( int next = 0; next < cg_worklist.length(); ++next ) {
  1330     int nk = cg_worklist.at(next);
  1331     if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape)
  1332       worklist.push(nk);
  1334   // mark all node reachable from NoEscape nodes
  1335   while(worklist.length() > 0) {
  1336     PointsToNode n = _nodes->at(worklist.pop());
  1337     for (uint ei = 0; ei < n.edge_count(); ei++) {
  1338       uint npi = n.edge_target(ei);
  1339       PointsToNode *np = ptnode_adr(npi);
  1340       if (np->escape_state() < PointsToNode::NoEscape) {
  1341         np->set_escape_state(PointsToNode::NoEscape);
  1342         worklist.append_if_missing(npi);
  1347   _collecting = false;
  1349   has_allocations = false; // Are there scalar replaceable allocations?
  1351   for( int next = 0; next < alloc_worklist.length(); ++next ) {
  1352     Node* n = alloc_worklist.at(next);
  1353     uint ni = n->_idx;
  1354     PointsToNode* ptn = _nodes->adr_at(ni);
  1355     PointsToNode::EscapeState es = ptn->escape_state();
  1356     if (ptn->escape_state() == PointsToNode::NoEscape &&
  1357         ptn->_scalar_replaceable) {
  1358       has_allocations = true;
  1359       break;
  1362   if (!has_allocations) {
  1363     return; // Nothing to do.
  1366   if(_compile->AliasLevel() >= 3 && EliminateAllocations) {
  1367     // Now use the escape information to create unique types for
  1368     // unescaped objects
  1369     split_unique_types(alloc_worklist);
  1370     if (_compile->failing())  return;
  1372     // Clean up after split unique types.
  1373     ResourceMark rm;
  1374     PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
  1376 #ifdef ASSERT
  1377   } else if (PrintEscapeAnalysis || PrintEliminateAllocations) {
  1378     tty->print("=== No allocations eliminated for ");
  1379     C()->method()->print_short_name();
  1380     if(!EliminateAllocations) {
  1381       tty->print(" since EliminateAllocations is off ===");
  1382     } else if(_compile->AliasLevel() < 3) {
  1383       tty->print(" since AliasLevel < 3 ===");
  1385     tty->cr();
  1386 #endif
  1390 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
  1392     switch (call->Opcode()) {
  1393 #ifdef ASSERT
  1394     case Op_Allocate:
  1395     case Op_AllocateArray:
  1396     case Op_Lock:
  1397     case Op_Unlock:
  1398       assert(false, "should be done already");
  1399       break;
  1400 #endif
  1401     case Op_CallLeafNoFP:
  1403       // Stub calls, objects do not escape but they are not scale replaceable.
  1404       // Adjust escape state for outgoing arguments.
  1405       const TypeTuple * d = call->tf()->domain();
  1406       VectorSet ptset(Thread::current()->resource_area());
  1407       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1408         const Type* at = d->field_at(i);
  1409         Node *arg = call->in(i)->uncast();
  1410         const Type *aat = phase->type(arg);
  1411         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
  1412           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
  1413                  aat->isa_ptr() != NULL, "expecting an Ptr");
  1414           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1415           if (arg->is_AddP()) {
  1416             //
  1417             // The inline_native_clone() case when the arraycopy stub is called
  1418             // after the allocation before Initialize and CheckCastPP nodes.
  1419             //
  1420             // Set AddP's base (Allocate) as not scalar replaceable since
  1421             // pointer to the base (with offset) is passed as argument.
  1422             //
  1423             arg = get_addp_base(arg);
  1425           ptset.Clear();
  1426           PointsTo(ptset, arg, phase);
  1427           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1428             uint pt = j.elem;
  1429             set_escape_state(pt, PointsToNode::ArgEscape);
  1433       break;
  1436     case Op_CallStaticJava:
  1437     // For a static call, we know exactly what method is being called.
  1438     // Use bytecode estimator to record the call's escape affects
  1440       ciMethod *meth = call->as_CallJava()->method();
  1441       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1442       // fall-through if not a Java method or no analyzer information
  1443       if (call_analyzer != NULL) {
  1444         const TypeTuple * d = call->tf()->domain();
  1445         VectorSet ptset(Thread::current()->resource_area());
  1446         bool copy_dependencies = false;
  1447         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1448           const Type* at = d->field_at(i);
  1449           int k = i - TypeFunc::Parms;
  1451           if (at->isa_oopptr() != NULL) {
  1452             Node *arg = call->in(i)->uncast();
  1454             bool global_escapes = false;
  1455             bool fields_escapes = false;
  1456             if (!call_analyzer->is_arg_stack(k)) {
  1457               // The argument global escapes, mark everything it could point to
  1458               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1459               global_escapes = true;
  1460             } else {
  1461               if (!call_analyzer->is_arg_local(k)) {
  1462                 // The argument itself doesn't escape, but any fields might
  1463                 fields_escapes = true;
  1465               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1466               copy_dependencies = true;
  1469             ptset.Clear();
  1470             PointsTo(ptset, arg, phase);
  1471             for( VectorSetI j(&ptset); j.test(); ++j ) {
  1472               uint pt = j.elem;
  1473               if (global_escapes) {
  1474                 //The argument global escapes, mark everything it could point to
  1475                 set_escape_state(pt, PointsToNode::GlobalEscape);
  1476               } else {
  1477                 if (fields_escapes) {
  1478                   // The argument itself doesn't escape, but any fields might
  1479                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
  1481                 set_escape_state(pt, PointsToNode::ArgEscape);
  1486         if (copy_dependencies)
  1487           call_analyzer->copy_dependencies(C()->dependencies());
  1488         break;
  1492     default:
  1493     // Fall-through here if not a Java method or no analyzer information
  1494     // or some other type of call, assume the worst case: all arguments
  1495     // globally escape.
  1497       // adjust escape state for  outgoing arguments
  1498       const TypeTuple * d = call->tf()->domain();
  1499       VectorSet ptset(Thread::current()->resource_area());
  1500       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1501         const Type* at = d->field_at(i);
  1502         if (at->isa_oopptr() != NULL) {
  1503           Node *arg = call->in(i)->uncast();
  1504           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1505           ptset.Clear();
  1506           PointsTo(ptset, arg, phase);
  1507           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1508             uint pt = j.elem;
  1509             set_escape_state(pt, PointsToNode::GlobalEscape);
  1510             PointsToNode *ptadr = ptnode_adr(pt);
  1517 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
  1518   PointsToNode *ptadr = ptnode_adr(resproj->_idx);
  1520   CallNode *call = resproj->in(0)->as_Call();
  1521   switch (call->Opcode()) {
  1522     case Op_Allocate:
  1524       Node *k = call->in(AllocateNode::KlassNode);
  1525       const TypeKlassPtr *kt;
  1526       if (k->Opcode() == Op_LoadKlass) {
  1527         kt = k->as_Load()->type()->isa_klassptr();
  1528       } else {
  1529         kt = k->as_Type()->type()->isa_klassptr();
  1531       assert(kt != NULL, "TypeKlassPtr  required.");
  1532       ciKlass* cik = kt->klass();
  1533       ciInstanceKlass* ciik = cik->as_instance_klass();
  1535       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1536       PointsToNode::EscapeState es;
  1537       uint edge_to;
  1538       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1539         es = PointsToNode::GlobalEscape;
  1540         edge_to = _phantom_object; // Could not be worse
  1541       } else {
  1542         es = PointsToNode::NoEscape;
  1543         edge_to = call->_idx;
  1545       set_escape_state(call->_idx, es);
  1546       add_pointsto_edge(resproj->_idx, edge_to);
  1547       _processed.set(resproj->_idx);
  1548       break;
  1551     case Op_AllocateArray:
  1553       PointsToNode *ptadr = ptnode_adr(call->_idx);
  1554       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
  1555       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
  1556         // Not scalar replaceable if the length is not constant or too big.
  1557         ptadr->_scalar_replaceable = false;
  1559       set_escape_state(call->_idx, PointsToNode::NoEscape);
  1560       add_pointsto_edge(resproj->_idx, call->_idx);
  1561       _processed.set(resproj->_idx);
  1562       break;
  1565     case Op_CallStaticJava:
  1566     // For a static call, we know exactly what method is being called.
  1567     // Use bytecode estimator to record whether the call's return value escapes
  1569       bool done = true;
  1570       const TypeTuple *r = call->tf()->range();
  1571       const Type* ret_type = NULL;
  1573       if (r->cnt() > TypeFunc::Parms)
  1574         ret_type = r->field_at(TypeFunc::Parms);
  1576       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1577       //        _multianewarray functions return a TypeRawPtr.
  1578       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
  1579         _processed.set(resproj->_idx);
  1580         break;  // doesn't return a pointer type
  1582       ciMethod *meth = call->as_CallJava()->method();
  1583       const TypeTuple * d = call->tf()->domain();
  1584       if (meth == NULL) {
  1585         // not a Java method, assume global escape
  1586         set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1587         if (resproj != NULL)
  1588           add_pointsto_edge(resproj->_idx, _phantom_object);
  1589       } else {
  1590         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
  1591         VectorSet ptset(Thread::current()->resource_area());
  1592         bool copy_dependencies = false;
  1594         if (call_analyzer->is_return_allocated()) {
  1595           // Returns a newly allocated unescaped object, simply
  1596           // update dependency information.
  1597           // Mark it as NoEscape so that objects referenced by
  1598           // it's fields will be marked as NoEscape at least.
  1599           set_escape_state(call->_idx, PointsToNode::NoEscape);
  1600           if (resproj != NULL)
  1601             add_pointsto_edge(resproj->_idx, call->_idx);
  1602           copy_dependencies = true;
  1603         } else if (call_analyzer->is_return_local() && resproj != NULL) {
  1604           // determine whether any arguments are returned
  1605           set_escape_state(call->_idx, PointsToNode::NoEscape);
  1606           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1607             const Type* at = d->field_at(i);
  1609             if (at->isa_oopptr() != NULL) {
  1610               Node *arg = call->in(i)->uncast();
  1612               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
  1613                 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
  1614                 if (arg_esp->node_type() == PointsToNode::UnknownType)
  1615                   done = false;
  1616                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
  1617                   add_pointsto_edge(resproj->_idx, arg->_idx);
  1618                 else
  1619                   add_deferred_edge(resproj->_idx, arg->_idx);
  1620                 arg_esp->_hidden_alias = true;
  1624           copy_dependencies = true;
  1625         } else {
  1626           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1627           if (resproj != NULL)
  1628             add_pointsto_edge(resproj->_idx, _phantom_object);
  1629           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1630             const Type* at = d->field_at(i);
  1631             if (at->isa_oopptr() != NULL) {
  1632               Node *arg = call->in(i)->uncast();
  1633               PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
  1634               arg_esp->_hidden_alias = true;
  1638         if (copy_dependencies)
  1639           call_analyzer->copy_dependencies(C()->dependencies());
  1641       if (done)
  1642         _processed.set(resproj->_idx);
  1643       break;
  1646     default:
  1647     // Some other type of call, assume the worst case that the
  1648     // returned value, if any, globally escapes.
  1650       const TypeTuple *r = call->tf()->range();
  1651       if (r->cnt() > TypeFunc::Parms) {
  1652         const Type* ret_type = r->field_at(TypeFunc::Parms);
  1654         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1655         //        _multianewarray functions return a TypeRawPtr.
  1656         if (ret_type->isa_ptr() != NULL) {
  1657           PointsToNode *ptadr = ptnode_adr(call->_idx);
  1658           set_escape_state(call->_idx, PointsToNode::GlobalEscape);
  1659           if (resproj != NULL)
  1660             add_pointsto_edge(resproj->_idx, _phantom_object);
  1663       _processed.set(resproj->_idx);
  1668 // Populate Connection Graph with Ideal nodes and create simple
  1669 // connection graph edges (do not need to check the node_type of inputs
  1670 // or to call PointsTo() to walk the connection graph).
  1671 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
  1672   if (_processed.test(n->_idx))
  1673     return; // No need to redefine node's state.
  1675   if (n->is_Call()) {
  1676     // Arguments to allocation and locking don't escape.
  1677     if (n->is_Allocate()) {
  1678       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
  1679       record_for_optimizer(n);
  1680     } else if (n->is_Lock() || n->is_Unlock()) {
  1681       // Put Lock and Unlock nodes on IGVN worklist to process them during
  1682       // the first IGVN optimization when escape information is still available.
  1683       record_for_optimizer(n);
  1684       _processed.set(n->_idx);
  1685     } else {
  1686       // Have to process call's arguments first.
  1687       PointsToNode::NodeType nt = PointsToNode::UnknownType;
  1689       // Check if a call returns an object.
  1690       const TypeTuple *r = n->as_Call()->tf()->range();
  1691       if (r->cnt() > TypeFunc::Parms &&
  1692           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
  1693         // Note:  use isa_ptr() instead of isa_oopptr() here because
  1694         //        the _multianewarray functions return a TypeRawPtr.
  1695         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
  1696           nt = PointsToNode::JavaObject;
  1699       add_node(n, nt, PointsToNode::UnknownEscape, false);
  1701     return;
  1704   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
  1705   // ThreadLocal has RawPrt type.
  1706   switch (n->Opcode()) {
  1707     case Op_AddP:
  1709       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
  1710       break;
  1712     case Op_CastX2P:
  1713     { // "Unsafe" memory access.
  1714       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1715       break;
  1717     case Op_CastPP:
  1718     case Op_CheckCastPP:
  1720       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1721       int ti = n->in(1)->_idx;
  1722       PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1723       if (nt == PointsToNode::UnknownType) {
  1724         _delayed_worklist.push(n); // Process it later.
  1725         break;
  1726       } else if (nt == PointsToNode::JavaObject) {
  1727         add_pointsto_edge(n->_idx, ti);
  1728       } else {
  1729         add_deferred_edge(n->_idx, ti);
  1731       _processed.set(n->_idx);
  1732       break;
  1734     case Op_ConP:
  1736       // assume all pointer constants globally escape except for null
  1737       PointsToNode::EscapeState es;
  1738       if (phase->type(n) == TypePtr::NULL_PTR)
  1739         es = PointsToNode::NoEscape;
  1740       else
  1741         es = PointsToNode::GlobalEscape;
  1743       add_node(n, PointsToNode::JavaObject, es, true);
  1744       break;
  1746     case Op_CreateEx:
  1748       // assume that all exception objects globally escape
  1749       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1750       break;
  1752     case Op_LoadKlass:
  1754       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1755       break;
  1757     case Op_LoadP:
  1759       const Type *t = phase->type(n);
  1760       if (t->isa_ptr() == NULL) {
  1761         _processed.set(n->_idx);
  1762         return;
  1764       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1765       break;
  1767     case Op_Parm:
  1769       _processed.set(n->_idx); // No need to redefine it state.
  1770       uint con = n->as_Proj()->_con;
  1771       if (con < TypeFunc::Parms)
  1772         return;
  1773       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
  1774       if (t->isa_ptr() == NULL)
  1775         return;
  1776       // We have to assume all input parameters globally escape
  1777       // (Note: passing 'false' since _processed is already set).
  1778       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
  1779       break;
  1781     case Op_Phi:
  1783       if (n->as_Phi()->type()->isa_ptr() == NULL) {
  1784         // nothing to do if not an oop
  1785         _processed.set(n->_idx);
  1786         return;
  1788       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1789       uint i;
  1790       for (i = 1; i < n->req() ; i++) {
  1791         Node* in = n->in(i);
  1792         if (in == NULL)
  1793           continue;  // ignore NULL
  1794         in = in->uncast();
  1795         if (in->is_top() || in == n)
  1796           continue;  // ignore top or inputs which go back this node
  1797         int ti = in->_idx;
  1798         PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1799         if (nt == PointsToNode::UnknownType) {
  1800           break;
  1801         } else if (nt == PointsToNode::JavaObject) {
  1802           add_pointsto_edge(n->_idx, ti);
  1803         } else {
  1804           add_deferred_edge(n->_idx, ti);
  1807       if (i >= n->req())
  1808         _processed.set(n->_idx);
  1809       else
  1810         _delayed_worklist.push(n);
  1811       break;
  1813     case Op_Proj:
  1815       // we are only interested in the result projection from a call
  1816       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  1817         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1818         process_call_result(n->as_Proj(), phase);
  1819         if (!_processed.test(n->_idx)) {
  1820           // The call's result may need to be processed later if the call
  1821           // returns it's argument and the argument is not processed yet.
  1822           _delayed_worklist.push(n);
  1824       } else {
  1825         _processed.set(n->_idx);
  1827       break;
  1829     case Op_Return:
  1831       if( n->req() > TypeFunc::Parms &&
  1832           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  1833         // Treat Return value as LocalVar with GlobalEscape escape state.
  1834         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
  1835         int ti = n->in(TypeFunc::Parms)->_idx;
  1836         PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
  1837         if (nt == PointsToNode::UnknownType) {
  1838           _delayed_worklist.push(n); // Process it later.
  1839           break;
  1840         } else if (nt == PointsToNode::JavaObject) {
  1841           add_pointsto_edge(n->_idx, ti);
  1842         } else {
  1843           add_deferred_edge(n->_idx, ti);
  1846       _processed.set(n->_idx);
  1847       break;
  1849     case Op_StoreP:
  1851       const Type *adr_type = phase->type(n->in(MemNode::Address));
  1852       if (adr_type->isa_oopptr()) {
  1853         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1854       } else {
  1855         Node* adr = n->in(MemNode::Address);
  1856         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
  1857             adr->in(AddPNode::Address)->is_Proj() &&
  1858             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  1859           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1860           // We are computing a raw address for a store captured
  1861           // by an Initialize compute an appropriate address type.
  1862           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  1863           assert(offs != Type::OffsetBot, "offset must be a constant");
  1864         } else {
  1865           _processed.set(n->_idx);
  1866           return;
  1869       break;
  1871     case Op_StorePConditional:
  1872     case Op_CompareAndSwapP:
  1874       const Type *adr_type = phase->type(n->in(MemNode::Address));
  1875       if (adr_type->isa_oopptr()) {
  1876         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  1877       } else {
  1878         _processed.set(n->_idx);
  1879         return;
  1881       break;
  1883     case Op_ThreadLocal:
  1885       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
  1886       break;
  1888     default:
  1890       // nothing to do
  1892   return;
  1895 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
  1896   // Don't set processed bit for AddP, LoadP, StoreP since
  1897   // they may need more then one pass to process.
  1898   if (_processed.test(n->_idx))
  1899     return; // No need to redefine node's state.
  1901   PointsToNode *ptadr = ptnode_adr(n->_idx);
  1903   if (n->is_Call()) {
  1904     CallNode *call = n->as_Call();
  1905     process_call_arguments(call, phase);
  1906     _processed.set(n->_idx);
  1907     return;
  1910   switch (n->Opcode()) {
  1911     case Op_AddP:
  1913       Node *base = get_addp_base(n);
  1914       // Create a field edge to this node from everything base could point to.
  1915       VectorSet ptset(Thread::current()->resource_area());
  1916       PointsTo(ptset, base, phase);
  1917       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1918         uint pt = i.elem;
  1919         add_field_edge(pt, n->_idx, address_offset(n, phase));
  1921       break;
  1923     case Op_CastX2P:
  1925       assert(false, "Op_CastX2P");
  1926       break;
  1928     case Op_CastPP:
  1929     case Op_CheckCastPP:
  1931       int ti = n->in(1)->_idx;
  1932       if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
  1933         add_pointsto_edge(n->_idx, ti);
  1934       } else {
  1935         add_deferred_edge(n->_idx, ti);
  1937       _processed.set(n->_idx);
  1938       break;
  1940     case Op_ConP:
  1942       assert(false, "Op_ConP");
  1943       break;
  1945     case Op_CreateEx:
  1947       assert(false, "Op_CreateEx");
  1948       break;
  1950     case Op_LoadKlass:
  1952       assert(false, "Op_LoadKlass");
  1953       break;
  1955     case Op_LoadP:
  1957       const Type *t = phase->type(n);
  1958 #ifdef ASSERT
  1959       if (t->isa_ptr() == NULL)
  1960         assert(false, "Op_LoadP");
  1961 #endif
  1963       Node* adr = n->in(MemNode::Address)->uncast();
  1964       const Type *adr_type = phase->type(adr);
  1965       Node* adr_base;
  1966       if (adr->is_AddP()) {
  1967         adr_base = get_addp_base(adr);
  1968       } else {
  1969         adr_base = adr;
  1972       // For everything "adr_base" could point to, create a deferred edge from
  1973       // this node to each field with the same offset.
  1974       VectorSet ptset(Thread::current()->resource_area());
  1975       PointsTo(ptset, adr_base, phase);
  1976       int offset = address_offset(adr, phase);
  1977       for( VectorSetI i(&ptset); i.test(); ++i ) {
  1978         uint pt = i.elem;
  1979         add_deferred_edge_to_fields(n->_idx, pt, offset);
  1981       break;
  1983     case Op_Parm:
  1985       assert(false, "Op_Parm");
  1986       break;
  1988     case Op_Phi:
  1990 #ifdef ASSERT
  1991       if (n->as_Phi()->type()->isa_ptr() == NULL)
  1992         assert(false, "Op_Phi");
  1993 #endif
  1994       for (uint i = 1; i < n->req() ; i++) {
  1995         Node* in = n->in(i);
  1996         if (in == NULL)
  1997           continue;  // ignore NULL
  1998         in = in->uncast();
  1999         if (in->is_top() || in == n)
  2000           continue;  // ignore top or inputs which go back this node
  2001         int ti = in->_idx;
  2002         if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) {
  2003           add_pointsto_edge(n->_idx, ti);
  2004         } else {
  2005           add_deferred_edge(n->_idx, ti);
  2008       _processed.set(n->_idx);
  2009       break;
  2011     case Op_Proj:
  2013       // we are only interested in the result projection from a call
  2014       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2015         process_call_result(n->as_Proj(), phase);
  2016         assert(_processed.test(n->_idx), "all call results should be processed");
  2017       } else {
  2018         assert(false, "Op_Proj");
  2020       break;
  2022     case Op_Return:
  2024 #ifdef ASSERT
  2025       if( n->req() <= TypeFunc::Parms ||
  2026           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2027         assert(false, "Op_Return");
  2029 #endif
  2030       int ti = n->in(TypeFunc::Parms)->_idx;
  2031       if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
  2032         add_pointsto_edge(n->_idx, ti);
  2033       } else {
  2034         add_deferred_edge(n->_idx, ti);
  2036       _processed.set(n->_idx);
  2037       break;
  2039     case Op_StoreP:
  2040     case Op_StorePConditional:
  2041     case Op_CompareAndSwapP:
  2043       Node *adr = n->in(MemNode::Address);
  2044       const Type *adr_type = phase->type(adr);
  2045 #ifdef ASSERT
  2046       if (!adr_type->isa_oopptr())
  2047         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
  2048 #endif
  2050       assert(adr->is_AddP(), "expecting an AddP");
  2051       Node *adr_base = get_addp_base(adr);
  2052       Node *val = n->in(MemNode::ValueIn)->uncast();
  2053       // For everything "adr_base" could point to, create a deferred edge
  2054       // to "val" from each field with the same offset.
  2055       VectorSet ptset(Thread::current()->resource_area());
  2056       PointsTo(ptset, adr_base, phase);
  2057       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2058         uint pt = i.elem;
  2059         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
  2061       break;
  2063     case Op_ThreadLocal:
  2065       assert(false, "Op_ThreadLocal");
  2066       break;
  2068     default:
  2070       // nothing to do
  2074 #ifndef PRODUCT
  2075 void ConnectionGraph::dump() {
  2076   PhaseGVN  *igvn = _compile->initial_gvn();
  2077   bool first = true;
  2079   uint size = (uint)_nodes->length();
  2080   for (uint ni = 0; ni < size; ni++) {
  2081     PointsToNode *ptn = _nodes->adr_at(ni);
  2082     PointsToNode::NodeType ptn_type = ptn->node_type();
  2084     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
  2085       continue;
  2086     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
  2087     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  2088       if (first) {
  2089         tty->cr();
  2090         tty->print("======== Connection graph for ");
  2091         C()->method()->print_short_name();
  2092         tty->cr();
  2093         first = false;
  2095       tty->print("%6d ", ni);
  2096       ptn->dump();
  2097       // Print all locals which reference this allocation
  2098       for (uint li = ni; li < size; li++) {
  2099         PointsToNode *ptn_loc = _nodes->adr_at(li);
  2100         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
  2101         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
  2102              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
  2103           tty->print("%6d  LocalVar [[%d]]", li, ni);
  2104           _nodes->adr_at(li)->_node->dump();
  2107       if (Verbose) {
  2108         // Print all fields which reference this allocation
  2109         for (uint i = 0; i < ptn->edge_count(); i++) {
  2110           uint ei = ptn->edge_target(i);
  2111           tty->print("%6d  Field [[%d]]", ei, ni);
  2112           _nodes->adr_at(ei)->_node->dump();
  2115       tty->cr();
  2119 #endif

mercurial