src/cpu/x86/vm/interp_masm_x86_32.cpp

Thu, 02 Oct 2008 19:58:19 -0700

author
xdono
date
Thu, 02 Oct 2008 19:58:19 -0700
changeset 772
9ee9cf798b59
parent 739
dc7f315e41f7
child 947
db4caa99ef11
child 1045
70998f2e05ef
permissions
-rw-r--r--

6754988: Update copyright year
Summary: Update for files that have been modified starting July 2008
Reviewed-by: ohair, tbell

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_x86_32.cpp.incl"
    29 // Implementation of InterpreterMacroAssembler
    30 #ifdef CC_INTERP
    31 void InterpreterMacroAssembler::get_method(Register reg) {
    32   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
    33   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    34 }
    35 #endif // CC_INTERP
    38 #ifndef CC_INTERP
    39 void InterpreterMacroAssembler::call_VM_leaf_base(
    40   address entry_point,
    41   int     number_of_arguments
    42 ) {
    43   // interpreter specific
    44   //
    45   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
    46   //       since these are callee saved registers and no blocking/
    47   //       GC can happen in leaf calls.
    48   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    49   // already saved them so that it can use rsi/rdi as temporaries
    50   // then a save/restore here will DESTROY the copy the caller
    51   // saved! There used to be a save_bcp() that only happened in
    52   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    53   // when jvm built with ASSERTs.
    54 #ifdef ASSERT
    55   { Label L;
    56     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    57     jcc(Assembler::equal, L);
    58     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
    59     bind(L);
    60   }
    61 #endif
    62   // super call
    63   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    64   // interpreter specific
    66   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
    67   // but since they may not have been saved (and we don't want to
    68   // save them here (see note above) the assert is invalid.
    69 }
    72 void InterpreterMacroAssembler::call_VM_base(
    73   Register oop_result,
    74   Register java_thread,
    75   Register last_java_sp,
    76   address  entry_point,
    77   int      number_of_arguments,
    78   bool     check_exceptions
    79 ) {
    80 #ifdef ASSERT
    81   { Label L;
    82     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    83     jcc(Assembler::equal, L);
    84     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
    85     bind(L);
    86   }
    87 #endif /* ASSERT */
    88   // interpreter specific
    89   //
    90   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    91   //       really make a difference for these runtime calls, since they are
    92   //       slow anyway. Btw., bcp must be saved/restored since it may change
    93   //       due to GC.
    94   assert(java_thread == noreg , "not expecting a precomputed java thread");
    95   save_bcp();
    96   // super call
    97   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
    98   // interpreter specific
    99   restore_bcp();
   100   restore_locals();
   101 }
   104 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   105   if (JvmtiExport::can_pop_frame()) {
   106     Label L;
   107     // Initiate popframe handling only if it is not already being processed.  If the flag
   108     // has the popframe_processing bit set, it means that this code is called *during* popframe
   109     // handling - we don't want to reenter.
   110     Register pop_cond = java_thread;  // Not clear if any other register is available...
   111     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
   112     testl(pop_cond, JavaThread::popframe_pending_bit);
   113     jcc(Assembler::zero, L);
   114     testl(pop_cond, JavaThread::popframe_processing_bit);
   115     jcc(Assembler::notZero, L);
   116     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   117     // address of the same-named entrypoint in the generated interpreter code.
   118     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   119     jmp(rax);
   120     bind(L);
   121     get_thread(java_thread);
   122   }
   123 }
   126 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   127   get_thread(rcx);
   128   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
   129   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
   130   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
   131   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
   132   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
   133                              + in_ByteSize(wordSize));
   134   switch (state) {
   135     case atos: movptr(rax, oop_addr);
   136                movptr(oop_addr, (int32_t)NULL_WORD);
   137                verify_oop(rax, state);                break;
   138     case ltos:
   139                movl(rdx, val_addr1);               // fall through
   140     case btos:                                     // fall through
   141     case ctos:                                     // fall through
   142     case stos:                                     // fall through
   143     case itos: movl(rax, val_addr);                   break;
   144     case ftos: fld_s(val_addr);                       break;
   145     case dtos: fld_d(val_addr);                       break;
   146     case vtos: /* nothing to do */                    break;
   147     default  : ShouldNotReachHere();
   148   }
   149   // Clean up tos value in the thread object
   150   movl(tos_addr,  (int32_t) ilgl);
   151   movptr(val_addr,  (int32_t)NULL_WORD);
   152   NOT_LP64(movl(val_addr1, (int32_t)NULL_WORD));
   153 }
   156 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   157   if (JvmtiExport::can_force_early_return()) {
   158     Label L;
   159     Register tmp = java_thread;
   160     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
   161     testptr(tmp, tmp);
   162     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   164     // Initiate earlyret handling only if it is not already being processed.
   165     // If the flag has the earlyret_processing bit set, it means that this code
   166     // is called *during* earlyret handling - we don't want to reenter.
   167     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
   168     cmpl(tmp, JvmtiThreadState::earlyret_pending);
   169     jcc(Assembler::notEqual, L);
   171     // Call Interpreter::remove_activation_early_entry() to get the address of the
   172     // same-named entrypoint in the generated interpreter code.
   173     get_thread(java_thread);
   174     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
   175     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
   176     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
   177     jmp(rax);
   178     bind(L);
   179     get_thread(java_thread);
   180   }
   181 }
   184 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
   185   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   186   movl(reg, Address(rsi, bcp_offset));
   187   bswapl(reg);
   188   shrl(reg, 16);
   189 }
   192 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset) {
   193   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   194   assert(cache != index, "must use different registers");
   195   load_unsigned_word(index, Address(rsi, bcp_offset));
   196   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   197   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   198   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
   199 }
   202 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
   203   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   204   assert(cache != tmp, "must use different register");
   205   load_unsigned_word(tmp, Address(rsi, bcp_offset));
   206   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
   207                                // convert from field index to ConstantPoolCacheEntry index
   208                                // and from word offset to byte offset
   209   shll(tmp, 2 + LogBytesPerWord);
   210   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   211                                // skip past the header
   212   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   213   addptr(cache, tmp);            // construct pointer to cache entry
   214 }
   217   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   218   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
   219   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
   220 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
   221   assert( Rsub_klass != rax, "rax, holds superklass" );
   222   assert( Rsub_klass != rcx, "rcx holds 2ndary super array length" );
   223   assert( Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr" );
   224   Label not_subtype, loop;
   226   // Profile the not-null value's klass.
   227   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
   229   // Load the super-klass's check offset into ECX
   230   movl( rcx, Address(rax, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() ) );
   231   // Load from the sub-klass's super-class display list, or a 1-word cache of
   232   // the secondary superclass list, or a failing value with a sentinel offset
   233   // if the super-klass is an interface or exceptionally deep in the Java
   234   // hierarchy and we have to scan the secondary superclass list the hard way.
   235   // See if we get an immediate positive hit
   236   cmpptr( rax, Address(Rsub_klass,rcx,Address::times_1) );
   237   jcc( Assembler::equal,ok_is_subtype );
   239   // Check for immediate negative hit
   240   cmpl( rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
   241   jcc( Assembler::notEqual, not_subtype );
   242   // Check for self
   243   cmpptr( Rsub_klass, rax );
   244   jcc( Assembler::equal, ok_is_subtype );
   246   // Now do a linear scan of the secondary super-klass chain.
   247   movptr( rdi, Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()) );
   248   // EDI holds the objArrayOop of secondary supers.
   249   movl( rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));// Load the array length
   250   // Skip to start of data; also clear Z flag incase ECX is zero
   251   addptr( rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT) );
   252   // Scan ECX words at [EDI] for occurance of EAX
   253   // Set NZ/Z based on last compare
   254   repne_scan();
   255   restore_locals();           // Restore EDI; Must not blow flags
   256   // Not equal?
   257   jcc( Assembler::notEqual, not_subtype );
   258   // Must be equal but missed in cache.  Update cache.
   259   movptr( Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()), rax );
   260   jmp( ok_is_subtype );
   262   bind(not_subtype);
   263   profile_typecheck_failed(rcx); // blows rcx
   264 }
   266 void InterpreterMacroAssembler::f2ieee() {
   267   if (IEEEPrecision) {
   268     fstp_s(Address(rsp, 0));
   269     fld_s(Address(rsp, 0));
   270   }
   271 }
   274 void InterpreterMacroAssembler::d2ieee() {
   275   if (IEEEPrecision) {
   276     fstp_d(Address(rsp, 0));
   277     fld_d(Address(rsp, 0));
   278   }
   279 }
   281 // Java Expression Stack
   283 #ifdef ASSERT
   284 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
   285   if (TaggedStackInterpreter) {
   286     Label okay;
   287     cmpptr(Address(rsp, wordSize), (int32_t)t);
   288     jcc(Assembler::equal, okay);
   289     // Also compare if the stack value is zero, then the tag might
   290     // not have been set coming from deopt.
   291     cmpptr(Address(rsp, 0), 0);
   292     jcc(Assembler::equal, okay);
   293     stop("Java Expression stack tag value is bad");
   294     bind(okay);
   295   }
   296 }
   297 #endif // ASSERT
   299 void InterpreterMacroAssembler::pop_ptr(Register r) {
   300   debug_only(verify_stack_tag(frame::TagReference));
   301   pop(r);
   302   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   303 }
   305 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
   306   pop(r);
   307   // Tag may not be reference for jsr, can be returnAddress
   308   if (TaggedStackInterpreter) pop(tag);
   309 }
   311 void InterpreterMacroAssembler::pop_i(Register r) {
   312   debug_only(verify_stack_tag(frame::TagValue));
   313   pop(r);
   314   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   315 }
   317 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
   318   debug_only(verify_stack_tag(frame::TagValue));
   319   pop(lo);
   320   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   321   debug_only(verify_stack_tag(frame::TagValue));
   322   pop(hi);
   323   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   324 }
   326 void InterpreterMacroAssembler::pop_f() {
   327   debug_only(verify_stack_tag(frame::TagValue));
   328   fld_s(Address(rsp, 0));
   329   addptr(rsp, 1 * wordSize);
   330   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   331 }
   333 void InterpreterMacroAssembler::pop_d() {
   334   // Write double to stack contiguously and load into ST0
   335   pop_dtos_to_rsp();
   336   fld_d(Address(rsp, 0));
   337   addptr(rsp, 2 * wordSize);
   338 }
   341 // Pop the top of the java expression stack to execution stack (which
   342 // happens to be the same place).
   343 void InterpreterMacroAssembler::pop_dtos_to_rsp() {
   344   if (TaggedStackInterpreter) {
   345     // Pop double value into scratch registers
   346     debug_only(verify_stack_tag(frame::TagValue));
   347     pop(rax);
   348     addptr(rsp, 1* wordSize);
   349     debug_only(verify_stack_tag(frame::TagValue));
   350     pop(rdx);
   351     addptr(rsp, 1* wordSize);
   352     push(rdx);
   353     push(rax);
   354   }
   355 }
   357 void InterpreterMacroAssembler::pop_ftos_to_rsp() {
   358   if (TaggedStackInterpreter) {
   359     debug_only(verify_stack_tag(frame::TagValue));
   360     pop(rax);
   361     addptr(rsp, 1 * wordSize);
   362     push(rax);  // ftos is at rsp
   363   }
   364 }
   366 void InterpreterMacroAssembler::pop(TosState state) {
   367   switch (state) {
   368     case atos: pop_ptr(rax);                                 break;
   369     case btos:                                               // fall through
   370     case ctos:                                               // fall through
   371     case stos:                                               // fall through
   372     case itos: pop_i(rax);                                   break;
   373     case ltos: pop_l(rax, rdx);                              break;
   374     case ftos: pop_f();                                      break;
   375     case dtos: pop_d();                                      break;
   376     case vtos: /* nothing to do */                           break;
   377     default  : ShouldNotReachHere();
   378   }
   379   verify_oop(rax, state);
   380 }
   382 void InterpreterMacroAssembler::push_ptr(Register r) {
   383   if (TaggedStackInterpreter) push(frame::TagReference);
   384   push(r);
   385 }
   387 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   388   if (TaggedStackInterpreter) push(tag);  // tag first
   389   push(r);
   390 }
   392 void InterpreterMacroAssembler::push_i(Register r) {
   393   if (TaggedStackInterpreter) push(frame::TagValue);
   394   push(r);
   395 }
   397 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
   398   if (TaggedStackInterpreter) push(frame::TagValue);
   399   push(hi);
   400   if (TaggedStackInterpreter) push(frame::TagValue);
   401   push(lo);
   402 }
   404 void InterpreterMacroAssembler::push_f() {
   405   if (TaggedStackInterpreter) push(frame::TagValue);
   406   // Do not schedule for no AGI! Never write beyond rsp!
   407   subptr(rsp, 1 * wordSize);
   408   fstp_s(Address(rsp, 0));
   409 }
   411 void InterpreterMacroAssembler::push_d(Register r) {
   412   if (TaggedStackInterpreter) {
   413     // Double values are stored as:
   414     //   tag
   415     //   high
   416     //   tag
   417     //   low
   418     push(frame::TagValue);
   419     subptr(rsp, 3 * wordSize);
   420     fstp_d(Address(rsp, 0));
   421     // move high word up to slot n-1
   422     movl(r, Address(rsp, 1*wordSize));
   423     movl(Address(rsp, 2*wordSize), r);
   424     // move tag
   425     movl(Address(rsp, 1*wordSize), frame::TagValue);
   426   } else {
   427     // Do not schedule for no AGI! Never write beyond rsp!
   428     subptr(rsp, 2 * wordSize);
   429     fstp_d(Address(rsp, 0));
   430   }
   431 }
   434 void InterpreterMacroAssembler::push(TosState state) {
   435   verify_oop(rax, state);
   436   switch (state) {
   437     case atos: push_ptr(rax); break;
   438     case btos:                                               // fall through
   439     case ctos:                                               // fall through
   440     case stos:                                               // fall through
   441     case itos: push_i(rax);                                    break;
   442     case ltos: push_l(rax, rdx);                               break;
   443     case ftos: push_f();                                       break;
   444     case dtos: push_d(rax);                                    break;
   445     case vtos: /* nothing to do */                             break;
   446     default  : ShouldNotReachHere();
   447   }
   448 }
   451 // Tagged stack helpers for swap and dup
   452 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   453                                                  Register tag) {
   454   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   455   if (TaggedStackInterpreter) {
   456     movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
   457   }
   458 }
   460 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   461                                                   Register tag) {
   462   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   463   if (TaggedStackInterpreter) {
   464     movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
   465   }
   466 }
   469 // Tagged local support
   470 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
   471   if (TaggedStackInterpreter) {
   472     if (tag == frame::TagCategory2) {
   473       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)frame::TagValue);
   474       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)frame::TagValue);
   475     } else {
   476       movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
   477     }
   478   }
   479 }
   481 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
   482   if (TaggedStackInterpreter) {
   483     if (tag == frame::TagCategory2) {
   484       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   485                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
   486       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   487                     Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
   488     } else {
   489       movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   490                                Interpreter::local_tag_offset_in_bytes(0)), (int32_t)tag);
   491     }
   492   }
   493 }
   495 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
   496   if (TaggedStackInterpreter) {
   497     // can only be TagValue or TagReference
   498     movptr(Address(rdi, idx, Interpreter::stackElementScale(),
   499                            Interpreter::local_tag_offset_in_bytes(0)), tag);
   500   }
   501 }
   504 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
   505   if (TaggedStackInterpreter) {
   506     // can only be TagValue or TagReference
   507     movptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), tag);
   508   }
   509 }
   511 #ifdef ASSERT
   512 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
   513   if (TaggedStackInterpreter) {
   514      frame::Tag t = tag;
   515     if (tag == frame::TagCategory2) {
   516       Label nbl;
   517       t = frame::TagValue;  // change to what is stored in locals
   518       cmpptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
   519       jcc(Assembler::equal, nbl);
   520       stop("Local tag is bad for long/double");
   521       bind(nbl);
   522     }
   523     Label notBad;
   524     cmpptr(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
   525     jcc(Assembler::equal, notBad);
   526     // Also compare if the local value is zero, then the tag might
   527     // not have been set coming from deopt.
   528     cmpptr(Address(rdi, Interpreter::local_offset_in_bytes(n)), 0);
   529     jcc(Assembler::equal, notBad);
   530     stop("Local tag is bad");
   531     bind(notBad);
   532   }
   533 }
   535 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
   536   if (TaggedStackInterpreter) {
   537     frame::Tag t = tag;
   538     if (tag == frame::TagCategory2) {
   539       Label nbl;
   540       t = frame::TagValue;  // change to what is stored in locals
   541       cmpptr(Address(rdi, idx, Interpreter::stackElementScale(),
   542                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
   543       jcc(Assembler::equal, nbl);
   544       stop("Local tag is bad for long/double");
   545       bind(nbl);
   546     }
   547     Label notBad;
   548     cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
   549                   Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
   550     jcc(Assembler::equal, notBad);
   551     // Also compare if the local value is zero, then the tag might
   552     // not have been set coming from deopt.
   553     cmpptr(Address(rdi, idx, Interpreter::stackElementScale(),
   554                   Interpreter::local_offset_in_bytes(0)), 0);
   555     jcc(Assembler::equal, notBad);
   556     stop("Local tag is bad");
   557     bind(notBad);
   559   }
   560 }
   561 #endif // ASSERT
   563 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   564   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   565 }
   568 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
   569   push(arg_1);
   570   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   571 }
   574 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
   575   push(arg_2);
   576   push(arg_1);
   577   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   578 }
   581 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
   582   push(arg_3);
   583   push(arg_2);
   584   push(arg_1);
   585   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   586 }
   589 // Jump to from_interpreted entry of a call unless single stepping is possible
   590 // in this thread in which case we must call the i2i entry
   591 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   592   // set sender sp
   593   lea(rsi, Address(rsp, wordSize));
   594   // record last_sp
   595   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
   597   if (JvmtiExport::can_post_interpreter_events()) {
   598     Label run_compiled_code;
   599     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   600     // compiled code in threads for which the event is enabled.  Check here for
   601     // interp_only_mode if these events CAN be enabled.
   602     get_thread(temp);
   603     // interp_only is an int, on little endian it is sufficient to test the byte only
   604     // Is a cmpl faster (ce
   605     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   606     jcc(Assembler::zero, run_compiled_code);
   607     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   608     bind(run_compiled_code);
   609   }
   611   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   613 }
   616 // The following two routines provide a hook so that an implementation
   617 // can schedule the dispatch in two parts.  Intel does not do this.
   618 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   619   // Nothing Intel-specific to be done here.
   620 }
   622 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   623   dispatch_next(state, step);
   624 }
   626 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
   627                                               bool verifyoop) {
   628   verify_FPU(1, state);
   629   if (VerifyActivationFrameSize) {
   630     Label L;
   631     mov(rcx, rbp);
   632     subptr(rcx, rsp);
   633     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
   634     cmpptr(rcx, min_frame_size);
   635     jcc(Assembler::greaterEqual, L);
   636     stop("broken stack frame");
   637     bind(L);
   638   }
   639   if (verifyoop) verify_oop(rax, state);
   640   Address index(noreg, rbx, Address::times_ptr);
   641   ExternalAddress tbl((address)table);
   642   ArrayAddress dispatch(tbl, index);
   643   jump(dispatch);
   644 }
   647 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   648   dispatch_base(state, Interpreter::dispatch_table(state));
   649 }
   652 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   653   dispatch_base(state, Interpreter::normal_table(state));
   654 }
   656 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   657   dispatch_base(state, Interpreter::normal_table(state), false);
   658 }
   661 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   662   // load next bytecode (load before advancing rsi to prevent AGI)
   663   load_unsigned_byte(rbx, Address(rsi, step));
   664   // advance rsi
   665   increment(rsi, step);
   666   dispatch_base(state, Interpreter::dispatch_table(state));
   667 }
   670 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   671   // load current bytecode
   672   load_unsigned_byte(rbx, Address(rsi, 0));
   673   dispatch_base(state, table);
   674 }
   676 // remove activation
   677 //
   678 // Unlock the receiver if this is a synchronized method.
   679 // Unlock any Java monitors from syncronized blocks.
   680 // Remove the activation from the stack.
   681 //
   682 // If there are locked Java monitors
   683 //    If throw_monitor_exception
   684 //       throws IllegalMonitorStateException
   685 //    Else if install_monitor_exception
   686 //       installs IllegalMonitorStateException
   687 //    Else
   688 //       no error processing
   689 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
   690                                                   bool throw_monitor_exception,
   691                                                   bool install_monitor_exception,
   692                                                   bool notify_jvmdi) {
   693   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
   694   // check if synchronized method
   695   Label unlocked, unlock, no_unlock;
   697   get_thread(rcx);
   698   const Address do_not_unlock_if_synchronized(rcx,
   699     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   701   movbool(rbx, do_not_unlock_if_synchronized);
   702   mov(rdi,rbx);
   703   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   705   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
   706   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   708   testl(rcx, JVM_ACC_SYNCHRONIZED);
   709   jcc(Assembler::zero, unlocked);
   711   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   712   // is set.
   713   mov(rcx,rdi);
   714   testbool(rcx);
   715   jcc(Assembler::notZero, no_unlock);
   717   // unlock monitor
   718   push(state);                                   // save result
   720   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   721   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   722   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
   723   lea   (rdx, monitor);                          // address of first monitor
   725   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
   726   testptr(rax, rax);
   727   jcc    (Assembler::notZero, unlock);
   729   pop(state);
   730   if (throw_monitor_exception) {
   731     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   733     // Entry already unlocked, need to throw exception
   734     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   735     should_not_reach_here();
   736   } else {
   737     // Monitor already unlocked during a stack unroll.
   738     // If requested, install an illegal_monitor_state_exception.
   739     // Continue with stack unrolling.
   740     if (install_monitor_exception) {
   741       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   742       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   743     }
   744     jmp(unlocked);
   745   }
   747   bind(unlock);
   748   unlock_object(rdx);
   749   pop(state);
   751   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
   752   bind(unlocked);
   754   // rax, rdx: Might contain return value
   756   // Check that all monitors are unlocked
   757   {
   758     Label loop, exception, entry, restart;
   759     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
   760     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   761     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
   763     bind(restart);
   764     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
   765     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
   766     jmp(entry);
   768     // Entry already locked, need to throw exception
   769     bind(exception);
   771     if (throw_monitor_exception) {
   772       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   774       // Throw exception
   775       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   776       should_not_reach_here();
   777     } else {
   778       // Stack unrolling. Unlock object and install illegal_monitor_exception
   779       // Unlock does not block, so don't have to worry about the frame
   781       push(state);
   782       mov(rdx, rcx);
   783       unlock_object(rdx);
   784       pop(state);
   786       if (install_monitor_exception) {
   787         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
   788         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   789       }
   791       jmp(restart);
   792     }
   794     bind(loop);
   795     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
   796     jcc(Assembler::notEqual, exception);
   798     addptr(rcx, entry_size);                     // otherwise advance to next entry
   799     bind(entry);
   800     cmpptr(rcx, rbx);                            // check if bottom reached
   801     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
   802   }
   804   bind(no_unlock);
   806   // jvmti support
   807   if (notify_jvmdi) {
   808     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
   809   } else {
   810     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   811   }
   813   // remove activation
   814   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
   815   leave();                                     // remove frame anchor
   816   pop(ret_addr);                               // get return address
   817   mov(rsp, rbx);                               // set sp to sender sp
   818   if (UseSSE) {
   819     // float and double are returned in xmm register in SSE-mode
   820     if (state == ftos && UseSSE >= 1) {
   821       subptr(rsp, wordSize);
   822       fstp_s(Address(rsp, 0));
   823       movflt(xmm0, Address(rsp, 0));
   824       addptr(rsp, wordSize);
   825     } else if (state == dtos && UseSSE >= 2) {
   826       subptr(rsp, 2*wordSize);
   827       fstp_d(Address(rsp, 0));
   828       movdbl(xmm0, Address(rsp, 0));
   829       addptr(rsp, 2*wordSize);
   830     }
   831   }
   832 }
   834 #endif /* !CC_INTERP */
   837 // Lock object
   838 //
   839 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
   840 // be initialized with object to lock
   841 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   842   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   844   if (UseHeavyMonitors) {
   845     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   846   } else {
   848     Label done;
   850     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
   851     const Register obj_reg  = rcx;  // Will contain the oop
   853     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   854     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   855     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
   857     Label slow_case;
   859     // Load object pointer into obj_reg %rcx
   860     movptr(obj_reg, Address(lock_reg, obj_offset));
   862     if (UseBiasedLocking) {
   863       // Note: we use noreg for the temporary register since it's hard
   864       // to come up with a free register on all incoming code paths
   865       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
   866     }
   868     // Load immediate 1 into swap_reg %rax,
   869     movptr(swap_reg, (int32_t)1);
   871     // Load (object->mark() | 1) into swap_reg %rax,
   872     orptr(swap_reg, Address(obj_reg, 0));
   874     // Save (object->mark() | 1) into BasicLock's displaced header
   875     movptr(Address(lock_reg, mark_offset), swap_reg);
   877     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
   878     if (os::is_MP()) {
   879       lock();
   880     }
   881     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   882     if (PrintBiasedLockingStatistics) {
   883       cond_inc32(Assembler::zero,
   884                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   885     }
   886     jcc(Assembler::zero, done);
   888     // Test if the oopMark is an obvious stack pointer, i.e.,
   889     //  1) (mark & 3) == 0, and
   890     //  2) rsp <= mark < mark + os::pagesize()
   891     //
   892     // These 3 tests can be done by evaluating the following
   893     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
   894     // assuming both stack pointer and pagesize have their
   895     // least significant 2 bits clear.
   896     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
   897     subptr(swap_reg, rsp);
   898     andptr(swap_reg, 3 - os::vm_page_size());
   900     // Save the test result, for recursive case, the result is zero
   901     movptr(Address(lock_reg, mark_offset), swap_reg);
   903     if (PrintBiasedLockingStatistics) {
   904       cond_inc32(Assembler::zero,
   905                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   906     }
   907     jcc(Assembler::zero, done);
   909     bind(slow_case);
   911     // Call the runtime routine for slow case
   912     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
   914     bind(done);
   915   }
   916 }
   919 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   920 //
   921 // Argument: rdx : Points to BasicObjectLock structure for lock
   922 // Throw an IllegalMonitorException if object is not locked by current thread
   923 //
   924 // Uses: rax, rbx, rcx, rdx
   925 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   926   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
   928   if (UseHeavyMonitors) {
   929     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   930   } else {
   931     Label done;
   933     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
   934     const Register header_reg = rbx;  // Will contain the old oopMark
   935     const Register obj_reg    = rcx;  // Will contain the oop
   937     save_bcp(); // Save in case of exception
   939     // Convert from BasicObjectLock structure to object and BasicLock structure
   940     // Store the BasicLock address into %rax,
   941     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   943     // Load oop into obj_reg(%rcx)
   944     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
   946     // Free entry
   947     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   949     if (UseBiasedLocking) {
   950       biased_locking_exit(obj_reg, header_reg, done);
   951     }
   953     // Load the old header from BasicLock structure
   954     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
   956     // Test for recursion
   957     testptr(header_reg, header_reg);
   959     // zero for recursive case
   960     jcc(Assembler::zero, done);
   962     // Atomic swap back the old header
   963     if (os::is_MP()) lock();
   964     cmpxchgptr(header_reg, Address(obj_reg, 0));
   966     // zero for recursive case
   967     jcc(Assembler::zero, done);
   969     // Call the runtime routine for slow case.
   970     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
   971     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
   973     bind(done);
   975     restore_bcp();
   976   }
   977 }
   980 #ifndef CC_INTERP
   982 // Test ImethodDataPtr.  If it is null, continue at the specified label
   983 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
   984   assert(ProfileInterpreter, "must be profiling interpreter");
   985   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
   986   testptr(mdp, mdp);
   987   jcc(Assembler::zero, zero_continue);
   988 }
   991 // Set the method data pointer for the current bcp.
   992 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
   993   assert(ProfileInterpreter, "must be profiling interpreter");
   994   Label zero_continue;
   995   push(rax);
   996   push(rbx);
   998   get_method(rbx);
   999   // Test MDO to avoid the call if it is NULL.
  1000   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1001   testptr(rax, rax);
  1002   jcc(Assembler::zero, zero_continue);
  1004   // rbx,: method
  1005   // rsi: bcp
  1006   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
  1007   // rax,: mdi
  1009   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1010   testptr(rbx, rbx);
  1011   jcc(Assembler::zero, zero_continue);
  1012   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
  1013   addptr(rbx, rax);
  1014   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
  1016   bind(zero_continue);
  1017   pop(rbx);
  1018   pop(rax);
  1021 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1022   assert(ProfileInterpreter, "must be profiling interpreter");
  1023 #ifdef ASSERT
  1024   Label verify_continue;
  1025   push(rax);
  1026   push(rbx);
  1027   push(rcx);
  1028   push(rdx);
  1029   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
  1030   get_method(rbx);
  1032   // If the mdp is valid, it will point to a DataLayout header which is
  1033   // consistent with the bcp.  The converse is highly probable also.
  1034   load_unsigned_word(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
  1035   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
  1036   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
  1037   cmpptr(rdx, rsi);
  1038   jcc(Assembler::equal, verify_continue);
  1039   // rbx,: method
  1040   // rsi: bcp
  1041   // rcx: mdp
  1042   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
  1043   bind(verify_continue);
  1044   pop(rdx);
  1045   pop(rcx);
  1046   pop(rbx);
  1047   pop(rax);
  1048 #endif // ASSERT
  1052 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
  1053   // %%% this seems to be used to store counter data which is surely 32bits
  1054   // however 64bit side stores 64 bits which seems wrong
  1055   assert(ProfileInterpreter, "must be profiling interpreter");
  1056   Address data(mdp_in, constant);
  1057   movptr(data, value);
  1061 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1062                                                       int constant,
  1063                                                       bool decrement) {
  1064   // Counter address
  1065   Address data(mdp_in, constant);
  1067   increment_mdp_data_at(data, decrement);
  1071 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
  1072                                                       bool decrement) {
  1074   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1075   assert(ProfileInterpreter, "must be profiling interpreter");
  1077   // %%% 64bit treats this as 64 bit which seems unlikely
  1078   if (decrement) {
  1079     // Decrement the register.  Set condition codes.
  1080     addl(data, -DataLayout::counter_increment);
  1081     // If the decrement causes the counter to overflow, stay negative
  1082     Label L;
  1083     jcc(Assembler::negative, L);
  1084     addl(data, DataLayout::counter_increment);
  1085     bind(L);
  1086   } else {
  1087     assert(DataLayout::counter_increment == 1,
  1088            "flow-free idiom only works with 1");
  1089     // Increment the register.  Set carry flag.
  1090     addl(data, DataLayout::counter_increment);
  1091     // If the increment causes the counter to overflow, pull back by 1.
  1092     sbbl(data, 0);
  1097 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1098                                                       Register reg,
  1099                                                       int constant,
  1100                                                       bool decrement) {
  1101   Address data(mdp_in, reg, Address::times_1, constant);
  1103   increment_mdp_data_at(data, decrement);
  1107 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
  1108   assert(ProfileInterpreter, "must be profiling interpreter");
  1109   int header_offset = in_bytes(DataLayout::header_offset());
  1110   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
  1111   // Set the flag
  1112   orl(Address(mdp_in, header_offset), header_bits);
  1117 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
  1118                                                  int offset,
  1119                                                  Register value,
  1120                                                  Register test_value_out,
  1121                                                  Label& not_equal_continue) {
  1122   assert(ProfileInterpreter, "must be profiling interpreter");
  1123   if (test_value_out == noreg) {
  1124     cmpptr(value, Address(mdp_in, offset));
  1125   } else {
  1126     // Put the test value into a register, so caller can use it:
  1127     movptr(test_value_out, Address(mdp_in, offset));
  1128     cmpptr(test_value_out, value);
  1130   jcc(Assembler::notEqual, not_equal_continue);
  1134 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
  1135   assert(ProfileInterpreter, "must be profiling interpreter");
  1136   Address disp_address(mdp_in, offset_of_disp);
  1137   addptr(mdp_in,disp_address);
  1138   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1142 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
  1143   assert(ProfileInterpreter, "must be profiling interpreter");
  1144   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  1145   addptr(mdp_in, disp_address);
  1146   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1150 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
  1151   assert(ProfileInterpreter, "must be profiling interpreter");
  1152   addptr(mdp_in, constant);
  1153   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1157 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1158   assert(ProfileInterpreter, "must be profiling interpreter");
  1159   push(return_bci);             // save/restore across call_VM
  1160   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1161   pop(return_bci);
  1165 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
  1166   if (ProfileInterpreter) {
  1167     Label profile_continue;
  1169     // If no method data exists, go to profile_continue.
  1170     // Otherwise, assign to mdp
  1171     test_method_data_pointer(mdp, profile_continue);
  1173     // We are taking a branch.  Increment the taken count.
  1174     // We inline increment_mdp_data_at to return bumped_count in a register
  1175     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1176     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1178     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
  1179     movl(bumped_count,data);
  1180     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
  1181     addl(bumped_count, DataLayout::counter_increment);
  1182     sbbl(bumped_count, 0);
  1183     movl(data,bumped_count);    // Store back out
  1185     // The method data pointer needs to be updated to reflect the new target.
  1186     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1187     bind (profile_continue);
  1192 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1193   if (ProfileInterpreter) {
  1194     Label profile_continue;
  1196     // If no method data exists, go to profile_continue.
  1197     test_method_data_pointer(mdp, profile_continue);
  1199     // We are taking a branch.  Increment the not taken count.
  1200     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1202     // The method data pointer needs to be updated to correspond to the next bytecode
  1203     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1204     bind (profile_continue);
  1209 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1210   if (ProfileInterpreter) {
  1211     Label profile_continue;
  1213     // If no method data exists, go to profile_continue.
  1214     test_method_data_pointer(mdp, profile_continue);
  1216     // We are making a call.  Increment the count.
  1217     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1219     // The method data pointer needs to be updated to reflect the new target.
  1220     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1221     bind (profile_continue);
  1226 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1227   if (ProfileInterpreter) {
  1228     Label profile_continue;
  1230     // If no method data exists, go to profile_continue.
  1231     test_method_data_pointer(mdp, profile_continue);
  1233     // We are making a call.  Increment the count.
  1234     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1236     // The method data pointer needs to be updated to reflect the new target.
  1237     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
  1238     bind (profile_continue);
  1243 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2) {
  1244   if (ProfileInterpreter) {
  1245     Label profile_continue;
  1247     // If no method data exists, go to profile_continue.
  1248     test_method_data_pointer(mdp, profile_continue);
  1250     // We are making a call.  Increment the count.
  1251     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1253     // Record the receiver type.
  1254     record_klass_in_profile(receiver, mdp, reg2);
  1256     // The method data pointer needs to be updated to reflect the new target.
  1257     update_mdp_by_constant(mdp,
  1258                            in_bytes(VirtualCallData::
  1259                                     virtual_call_data_size()));
  1260     bind(profile_continue);
  1265 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1266                                         Register receiver, Register mdp,
  1267                                         Register reg2,
  1268                                         int start_row, Label& done) {
  1269   int last_row = VirtualCallData::row_limit() - 1;
  1270   assert(start_row <= last_row, "must be work left to do");
  1271   // Test this row for both the receiver and for null.
  1272   // Take any of three different outcomes:
  1273   //   1. found receiver => increment count and goto done
  1274   //   2. found null => keep looking for case 1, maybe allocate this cell
  1275   //   3. found something else => keep looking for cases 1 and 2
  1276   // Case 3 is handled by a recursive call.
  1277   for (int row = start_row; row <= last_row; row++) {
  1278     Label next_test;
  1279     bool test_for_null_also = (row == start_row);
  1281     // See if the receiver is receiver[n].
  1282     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1283     test_mdp_data_at(mdp, recvr_offset, receiver,
  1284                      (test_for_null_also ? reg2 : noreg),
  1285                      next_test);
  1286     // (Reg2 now contains the receiver from the CallData.)
  1288     // The receiver is receiver[n].  Increment count[n].
  1289     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1290     increment_mdp_data_at(mdp, count_offset);
  1291     jmp(done);
  1292     bind(next_test);
  1294     if (row == start_row) {
  1295       // Failed the equality check on receiver[n]...  Test for null.
  1296       testptr(reg2, reg2);
  1297       if (start_row == last_row) {
  1298         // The only thing left to do is handle the null case.
  1299         jcc(Assembler::notZero, done);
  1300         break;
  1302       // Since null is rare, make it be the branch-taken case.
  1303       Label found_null;
  1304       jcc(Assembler::zero, found_null);
  1306       // Put all the "Case 3" tests here.
  1307       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
  1309       // Found a null.  Keep searching for a matching receiver,
  1310       // but remember that this is an empty (unused) slot.
  1311       bind(found_null);
  1315   // In the fall-through case, we found no matching receiver, but we
  1316   // observed the receiver[start_row] is NULL.
  1318   // Fill in the receiver field and increment the count.
  1319   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1320   set_mdp_data_at(mdp, recvr_offset, receiver);
  1321   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1322   movptr(reg2, (int32_t)DataLayout::counter_increment);
  1323   set_mdp_data_at(mdp, count_offset, reg2);
  1324   jmp(done);
  1327 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1328                                                         Register mdp,
  1329                                                         Register reg2) {
  1330   assert(ProfileInterpreter, "must be profiling");
  1331   Label done;
  1333   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
  1335   bind (done);
  1338 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
  1339   if (ProfileInterpreter) {
  1340     Label profile_continue;
  1341     uint row;
  1343     // If no method data exists, go to profile_continue.
  1344     test_method_data_pointer(mdp, profile_continue);
  1346     // Update the total ret count.
  1347     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1349     for (row = 0; row < RetData::row_limit(); row++) {
  1350       Label next_test;
  1352       // See if return_bci is equal to bci[n]:
  1353       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
  1354                        noreg, next_test);
  1356       // return_bci is equal to bci[n].  Increment the count.
  1357       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1359       // The method data pointer needs to be updated to reflect the new target.
  1360       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
  1361       jmp(profile_continue);
  1362       bind(next_test);
  1365     update_mdp_for_ret(return_bci);
  1367     bind (profile_continue);
  1372 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1373   if (ProfileInterpreter) {
  1374     Label profile_continue;
  1376     // If no method data exists, go to profile_continue.
  1377     test_method_data_pointer(mdp, profile_continue);
  1379     // The method data pointer needs to be updated.
  1380     int mdp_delta = in_bytes(BitData::bit_data_size());
  1381     if (TypeProfileCasts) {
  1382       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1384     update_mdp_by_constant(mdp, mdp_delta);
  1386     bind (profile_continue);
  1391 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1392   if (ProfileInterpreter && TypeProfileCasts) {
  1393     Label profile_continue;
  1395     // If no method data exists, go to profile_continue.
  1396     test_method_data_pointer(mdp, profile_continue);
  1398     int count_offset = in_bytes(CounterData::count_offset());
  1399     // Back up the address, since we have already bumped the mdp.
  1400     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1402     // *Decrement* the counter.  We expect to see zero or small negatives.
  1403     increment_mdp_data_at(mdp, count_offset, true);
  1405     bind (profile_continue);
  1410 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
  1412   if (ProfileInterpreter) {
  1413     Label profile_continue;
  1415     // If no method data exists, go to profile_continue.
  1416     test_method_data_pointer(mdp, profile_continue);
  1418     // The method data pointer needs to be updated.
  1419     int mdp_delta = in_bytes(BitData::bit_data_size());
  1420     if (TypeProfileCasts) {
  1421       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1423       // Record the object type.
  1424       record_klass_in_profile(klass, mdp, reg2);
  1425       assert(reg2 == rdi, "we know how to fix this blown reg");
  1426       restore_locals();         // Restore EDI
  1428     update_mdp_by_constant(mdp, mdp_delta);
  1430     bind(profile_continue);
  1435 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1436   if (ProfileInterpreter) {
  1437     Label profile_continue;
  1439     // If no method data exists, go to profile_continue.
  1440     test_method_data_pointer(mdp, profile_continue);
  1442     // Update the default case count
  1443     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
  1445     // The method data pointer needs to be updated.
  1446     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
  1448     bind (profile_continue);
  1453 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
  1454   if (ProfileInterpreter) {
  1455     Label profile_continue;
  1457     // If no method data exists, go to profile_continue.
  1458     test_method_data_pointer(mdp, profile_continue);
  1460     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1461     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
  1462     // index is positive and so should have correct value if this code were
  1463     // used on 64bits
  1464     imulptr(index, reg2);
  1465     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
  1467     // Update the case count
  1468     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
  1470     // The method data pointer needs to be updated.
  1471     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
  1473     bind (profile_continue);
  1477 #endif // !CC_INTERP
  1481 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1482   if (state == atos) MacroAssembler::verify_oop(reg);
  1486 #ifndef CC_INTERP
  1487 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1488   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  1491 #endif /* CC_INTERP */
  1494 void InterpreterMacroAssembler::notify_method_entry() {
  1495   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1496   // track stack depth.  If it is possible to enter interp_only_mode we add
  1497   // the code to check if the event should be sent.
  1498   if (JvmtiExport::can_post_interpreter_events()) {
  1499     Label L;
  1500     get_thread(rcx);
  1501     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1502     testl(rcx,rcx);
  1503     jcc(Assembler::zero, L);
  1504     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  1505     bind(L);
  1509     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1510     get_thread(rcx);
  1511     get_method(rbx);
  1512     call_VM_leaf(
  1513       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
  1518 void InterpreterMacroAssembler::notify_method_exit(
  1519     TosState state, NotifyMethodExitMode mode) {
  1520   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1521   // track stack depth.  If it is possible to enter interp_only_mode we add
  1522   // the code to check if the event should be sent.
  1523   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1524     Label L;
  1525     // Note: frame::interpreter_frame_result has a dependency on how the
  1526     // method result is saved across the call to post_method_exit. If this
  1527     // is changed then the interpreter_frame_result implementation will
  1528     // need to be updated too.
  1530     // For c++ interpreter the result is always stored at a known location in the frame
  1531     // template interpreter will leave it on the top of the stack.
  1532     NOT_CC_INTERP(push(state);)
  1533     get_thread(rcx);
  1534     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
  1535     testl(rcx,rcx);
  1536     jcc(Assembler::zero, L);
  1537     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1538     bind(L);
  1539     NOT_CC_INTERP(pop(state);)
  1543     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
  1544     NOT_CC_INTERP(push(state));
  1545     get_thread(rbx);
  1546     get_method(rcx);
  1547     call_VM_leaf(
  1548       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1549       rbx, rcx);
  1550     NOT_CC_INTERP(pop(state));

mercurial