src/share/vm/opto/parse2.cpp

Mon, 24 Nov 2014 07:29:03 -0800

author
vlivanov
date
Mon, 24 Nov 2014 07:29:03 -0800
changeset 7385
9e69e8d1c900
parent 7154
42460b71ba70
child 7535
7ae4e26cb1e0
child 7789
eb8b5cc64669
permissions
-rw-r--r--

8058148: MaxNodeLimit and LiveNodeCountInliningCutoff
Reviewed-by: kvn, roland

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "interpreter/linkResolver.hpp"
    31 #include "memory/universe.inline.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/matcher.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/mulnode.hpp"
    38 #include "opto/parse.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    43 extern int explicit_null_checks_inserted,
    44            explicit_null_checks_elided;
    46 //---------------------------------array_load----------------------------------
    47 void Parse::array_load(BasicType elem_type) {
    48   const Type* elem = Type::TOP;
    49   Node* adr = array_addressing(elem_type, 0, &elem);
    50   if (stopped())  return;     // guaranteed null or range check
    51   dec_sp(2);                  // Pop array and index
    52   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    53   Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered);
    54   push(ld);
    55 }
    58 //--------------------------------array_store----------------------------------
    59 void Parse::array_store(BasicType elem_type) {
    60   Node* adr = array_addressing(elem_type, 1);
    61   if (stopped())  return;     // guaranteed null or range check
    62   Node* val = pop();
    63   dec_sp(2);                  // Pop array and index
    64   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
    65   store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type));
    66 }
    69 //------------------------------array_addressing-------------------------------
    70 // Pull array and index from the stack.  Compute pointer-to-element.
    71 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
    72   Node *idx   = peek(0+vals);   // Get from stack without popping
    73   Node *ary   = peek(1+vals);   // in case of exception
    75   // Null check the array base, with correct stack contents
    76   ary = null_check(ary, T_ARRAY);
    77   // Compile-time detect of null-exception?
    78   if (stopped())  return top();
    80   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
    81   const TypeInt*    sizetype = arytype->size();
    82   const Type*       elemtype = arytype->elem();
    84   if (UseUniqueSubclasses && result2 != NULL) {
    85     const Type* el = elemtype->make_ptr();
    86     if (el && el->isa_instptr()) {
    87       const TypeInstPtr* toop = el->is_instptr();
    88       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
    89         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
    90         const Type* subklass = Type::get_const_type(toop->klass());
    91         elemtype = subklass->join_speculative(el);
    92       }
    93     }
    94   }
    96   // Check for big class initializers with all constant offsets
    97   // feeding into a known-size array.
    98   const TypeInt* idxtype = _gvn.type(idx)->is_int();
    99   // See if the highest idx value is less than the lowest array bound,
   100   // and if the idx value cannot be negative:
   101   bool need_range_check = true;
   102   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
   103     need_range_check = false;
   104     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
   105   }
   107   ciKlass * arytype_klass = arytype->klass();
   108   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
   109     // Only fails for some -Xcomp runs
   110     // The class is unloaded.  We have to run this bytecode in the interpreter.
   111     uncommon_trap(Deoptimization::Reason_unloaded,
   112                   Deoptimization::Action_reinterpret,
   113                   arytype->klass(), "!loaded array");
   114     return top();
   115   }
   117   // Do the range check
   118   if (GenerateRangeChecks && need_range_check) {
   119     Node* tst;
   120     if (sizetype->_hi <= 0) {
   121       // The greatest array bound is negative, so we can conclude that we're
   122       // compiling unreachable code, but the unsigned compare trick used below
   123       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
   124       // the uncommon_trap path will always be taken.
   125       tst = _gvn.intcon(0);
   126     } else {
   127       // Range is constant in array-oop, so we can use the original state of mem
   128       Node* len = load_array_length(ary);
   130       // Test length vs index (standard trick using unsigned compare)
   131       Node* chk = _gvn.transform( new (C) CmpUNode(idx, len) );
   132       BoolTest::mask btest = BoolTest::lt;
   133       tst = _gvn.transform( new (C) BoolNode(chk, btest) );
   134     }
   135     // Branch to failure if out of bounds
   136     { BuildCutout unless(this, tst, PROB_MAX);
   137       if (C->allow_range_check_smearing()) {
   138         // Do not use builtin_throw, since range checks are sometimes
   139         // made more stringent by an optimistic transformation.
   140         // This creates "tentative" range checks at this point,
   141         // which are not guaranteed to throw exceptions.
   142         // See IfNode::Ideal, is_range_check, adjust_check.
   143         uncommon_trap(Deoptimization::Reason_range_check,
   144                       Deoptimization::Action_make_not_entrant,
   145                       NULL, "range_check");
   146       } else {
   147         // If we have already recompiled with the range-check-widening
   148         // heroic optimization turned off, then we must really be throwing
   149         // range check exceptions.
   150         builtin_throw(Deoptimization::Reason_range_check, idx);
   151       }
   152     }
   153   }
   154   // Check for always knowing you are throwing a range-check exception
   155   if (stopped())  return top();
   157   Node* ptr = array_element_address(ary, idx, type, sizetype);
   159   if (result2 != NULL)  *result2 = elemtype;
   161   assert(ptr != top(), "top should go hand-in-hand with stopped");
   163   return ptr;
   164 }
   167 // returns IfNode
   168 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
   169   Node   *cmp = _gvn.transform( new (C) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
   170   Node   *tst = _gvn.transform( new (C) BoolNode( cmp, mask));
   171   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
   172   return iff;
   173 }
   175 // return Region node
   176 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
   177   Node *region  = new (C) RegionNode(3); // 2 results
   178   record_for_igvn(region);
   179   region->init_req(1, iffalse);
   180   region->init_req(2, iftrue );
   181   _gvn.set_type(region, Type::CONTROL);
   182   region = _gvn.transform(region);
   183   set_control (region);
   184   return region;
   185 }
   188 //------------------------------helper for tableswitch-------------------------
   189 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   190   // True branch, use existing map info
   191   { PreserveJVMState pjvms(this);
   192     Node *iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
   193     set_control( iftrue );
   194     profile_switch_case(prof_table_index);
   195     merge_new_path(dest_bci_if_true);
   196   }
   198   // False branch
   199   Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
   200   set_control( iffalse );
   201 }
   203 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
   204   // True branch, use existing map info
   205   { PreserveJVMState pjvms(this);
   206     Node *iffalse  = _gvn.transform( new (C) IfFalseNode (iff) );
   207     set_control( iffalse );
   208     profile_switch_case(prof_table_index);
   209     merge_new_path(dest_bci_if_true);
   210   }
   212   // False branch
   213   Node *iftrue = _gvn.transform( new (C) IfTrueNode(iff) );
   214   set_control( iftrue );
   215 }
   217 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
   218   // False branch, use existing map and control()
   219   profile_switch_case(prof_table_index);
   220   merge_new_path(dest_bci);
   221 }
   224 extern "C" {
   225   static int jint_cmp(const void *i, const void *j) {
   226     int a = *(jint *)i;
   227     int b = *(jint *)j;
   228     return a > b ? 1 : a < b ? -1 : 0;
   229   }
   230 }
   233 // Default value for methodData switch indexing. Must be a negative value to avoid
   234 // conflict with any legal switch index.
   235 #define NullTableIndex -1
   237 class SwitchRange : public StackObj {
   238   // a range of integers coupled with a bci destination
   239   jint _lo;                     // inclusive lower limit
   240   jint _hi;                     // inclusive upper limit
   241   int _dest;
   242   int _table_index;             // index into method data table
   244 public:
   245   jint lo() const              { return _lo;   }
   246   jint hi() const              { return _hi;   }
   247   int  dest() const            { return _dest; }
   248   int  table_index() const     { return _table_index; }
   249   bool is_singleton() const    { return _lo == _hi; }
   251   void setRange(jint lo, jint hi, int dest, int table_index) {
   252     assert(lo <= hi, "must be a non-empty range");
   253     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
   254   }
   255   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
   256     assert(lo <= hi, "must be a non-empty range");
   257     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
   258       _hi = hi;
   259       return true;
   260     }
   261     return false;
   262   }
   264   void set (jint value, int dest, int table_index) {
   265     setRange(value, value, dest, table_index);
   266   }
   267   bool adjoin(jint value, int dest, int table_index) {
   268     return adjoinRange(value, value, dest, table_index);
   269   }
   271   void print() {
   272     if (is_singleton())
   273       tty->print(" {%d}=>%d", lo(), dest());
   274     else if (lo() == min_jint)
   275       tty->print(" {..%d}=>%d", hi(), dest());
   276     else if (hi() == max_jint)
   277       tty->print(" {%d..}=>%d", lo(), dest());
   278     else
   279       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
   280   }
   281 };
   284 //-------------------------------do_tableswitch--------------------------------
   285 void Parse::do_tableswitch() {
   286   Node* lookup = pop();
   288   // Get information about tableswitch
   289   int default_dest = iter().get_dest_table(0);
   290   int lo_index     = iter().get_int_table(1);
   291   int hi_index     = iter().get_int_table(2);
   292   int len          = hi_index - lo_index + 1;
   294   if (len < 1) {
   295     // If this is a backward branch, add safepoint
   296     maybe_add_safepoint(default_dest);
   297     merge(default_dest);
   298     return;
   299   }
   301   // generate decision tree, using trichotomy when possible
   302   int rnum = len+2;
   303   bool makes_backward_branch = false;
   304   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   305   int rp = -1;
   306   if (lo_index != min_jint) {
   307     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
   308   }
   309   for (int j = 0; j < len; j++) {
   310     jint match_int = lo_index+j;
   311     int  dest      = iter().get_dest_table(j+3);
   312     makes_backward_branch |= (dest <= bci());
   313     int  table_index = method_data_update() ? j : NullTableIndex;
   314     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
   315       ranges[++rp].set(match_int, dest, table_index);
   316     }
   317   }
   318   jint highest = lo_index+(len-1);
   319   assert(ranges[rp].hi() == highest, "");
   320   if (highest != max_jint
   321       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
   322     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   323   }
   324   assert(rp < len+2, "not too many ranges");
   326   // Safepoint in case if backward branch observed
   327   if( makes_backward_branch && UseLoopSafepoints )
   328     add_safepoint();
   330   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   331 }
   334 //------------------------------do_lookupswitch--------------------------------
   335 void Parse::do_lookupswitch() {
   336   Node *lookup = pop();         // lookup value
   337   // Get information about lookupswitch
   338   int default_dest = iter().get_dest_table(0);
   339   int len          = iter().get_int_table(1);
   341   if (len < 1) {    // If this is a backward branch, add safepoint
   342     maybe_add_safepoint(default_dest);
   343     merge(default_dest);
   344     return;
   345   }
   347   // generate decision tree, using trichotomy when possible
   348   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
   349   {
   350     for( int j = 0; j < len; j++ ) {
   351       table[j+j+0] = iter().get_int_table(2+j+j);
   352       table[j+j+1] = iter().get_dest_table(2+j+j+1);
   353     }
   354     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
   355   }
   357   int rnum = len*2+1;
   358   bool makes_backward_branch = false;
   359   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
   360   int rp = -1;
   361   for( int j = 0; j < len; j++ ) {
   362     jint match_int   = table[j+j+0];
   363     int  dest        = table[j+j+1];
   364     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
   365     int  table_index = method_data_update() ? j : NullTableIndex;
   366     makes_backward_branch |= (dest <= bci());
   367     if( match_int != next_lo ) {
   368       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
   369     }
   370     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
   371       ranges[++rp].set(match_int, dest, table_index);
   372     }
   373   }
   374   jint highest = table[2*(len-1)];
   375   assert(ranges[rp].hi() == highest, "");
   376   if( highest != max_jint
   377       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
   378     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
   379   }
   380   assert(rp < rnum, "not too many ranges");
   382   // Safepoint in case backward branch observed
   383   if( makes_backward_branch && UseLoopSafepoints )
   384     add_safepoint();
   386   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
   387 }
   389 //----------------------------create_jump_tables-------------------------------
   390 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
   391   // Are jumptables enabled
   392   if (!UseJumpTables)  return false;
   394   // Are jumptables supported
   395   if (!Matcher::has_match_rule(Op_Jump))  return false;
   397   // Don't make jump table if profiling
   398   if (method_data_update())  return false;
   400   // Decide if a guard is needed to lop off big ranges at either (or
   401   // both) end(s) of the input set. We'll call this the default target
   402   // even though we can't be sure that it is the true "default".
   404   bool needs_guard = false;
   405   int default_dest;
   406   int64 total_outlier_size = 0;
   407   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
   408   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
   410   if (lo->dest() == hi->dest()) {
   411     total_outlier_size = hi_size + lo_size;
   412     default_dest = lo->dest();
   413   } else if (lo_size > hi_size) {
   414     total_outlier_size = lo_size;
   415     default_dest = lo->dest();
   416   } else {
   417     total_outlier_size = hi_size;
   418     default_dest = hi->dest();
   419   }
   421   // If a guard test will eliminate very sparse end ranges, then
   422   // it is worth the cost of an extra jump.
   423   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
   424     needs_guard = true;
   425     if (default_dest == lo->dest()) lo++;
   426     if (default_dest == hi->dest()) hi--;
   427   }
   429   // Find the total number of cases and ranges
   430   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
   431   int num_range = hi - lo + 1;
   433   // Don't create table if: too large, too small, or too sparse.
   434   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
   435     return false;
   436   if (num_cases > (MaxJumpTableSparseness * num_range))
   437     return false;
   439   // Normalize table lookups to zero
   440   int lowval = lo->lo();
   441   key_val = _gvn.transform( new (C) SubINode(key_val, _gvn.intcon(lowval)) );
   443   // Generate a guard to protect against input keyvals that aren't
   444   // in the switch domain.
   445   if (needs_guard) {
   446     Node*   size = _gvn.intcon(num_cases);
   447     Node*   cmp = _gvn.transform( new (C) CmpUNode(key_val, size) );
   448     Node*   tst = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ge) );
   449     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
   450     jump_if_true_fork(iff, default_dest, NullTableIndex);
   451   }
   453   // Create an ideal node JumpTable that has projections
   454   // of all possible ranges for a switch statement
   455   // The key_val input must be converted to a pointer offset and scaled.
   456   // Compare Parse::array_addressing above.
   457 #ifdef _LP64
   458   // Clean the 32-bit int into a real 64-bit offset.
   459   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
   460   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
   461   key_val       = _gvn.transform( new (C) ConvI2LNode(key_val, lkeytype) );
   462 #endif
   463   // Shift the value by wordsize so we have an index into the table, rather
   464   // than a switch value
   465   Node *shiftWord = _gvn.MakeConX(wordSize);
   466   key_val = _gvn.transform( new (C) MulXNode( key_val, shiftWord));
   468   // Create the JumpNode
   469   Node* jtn = _gvn.transform( new (C) JumpNode(control(), key_val, num_cases) );
   471   // These are the switch destinations hanging off the jumpnode
   472   int i = 0;
   473   for (SwitchRange* r = lo; r <= hi; r++) {
   474     for (int64 j = r->lo(); j <= r->hi(); j++, i++) {
   475       Node* input = _gvn.transform(new (C) JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
   476       {
   477         PreserveJVMState pjvms(this);
   478         set_control(input);
   479         jump_if_always_fork(r->dest(), r->table_index());
   480       }
   481     }
   482   }
   483   assert(i == num_cases, "miscount of cases");
   484   stop_and_kill_map();  // no more uses for this JVMS
   485   return true;
   486 }
   488 //----------------------------jump_switch_ranges-------------------------------
   489 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
   490   Block* switch_block = block();
   492   if (switch_depth == 0) {
   493     // Do special processing for the top-level call.
   494     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
   495     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
   497     // Decrement pred-numbers for the unique set of nodes.
   498 #ifdef ASSERT
   499     // Ensure that the block's successors are a (duplicate-free) set.
   500     int successors_counted = 0;  // block occurrences in [hi..lo]
   501     int unique_successors = switch_block->num_successors();
   502     for (int i = 0; i < unique_successors; i++) {
   503       Block* target = switch_block->successor_at(i);
   505       // Check that the set of successors is the same in both places.
   506       int successors_found = 0;
   507       for (SwitchRange* p = lo; p <= hi; p++) {
   508         if (p->dest() == target->start())  successors_found++;
   509       }
   510       assert(successors_found > 0, "successor must be known");
   511       successors_counted += successors_found;
   512     }
   513     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
   514 #endif
   516     // Maybe prune the inputs, based on the type of key_val.
   517     jint min_val = min_jint;
   518     jint max_val = max_jint;
   519     const TypeInt* ti = key_val->bottom_type()->isa_int();
   520     if (ti != NULL) {
   521       min_val = ti->_lo;
   522       max_val = ti->_hi;
   523       assert(min_val <= max_val, "invalid int type");
   524     }
   525     while (lo->hi() < min_val)  lo++;
   526     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
   527     while (hi->lo() > max_val)  hi--;
   528     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
   529   }
   531 #ifndef PRODUCT
   532   if (switch_depth == 0) {
   533     _max_switch_depth = 0;
   534     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
   535   }
   536 #endif
   538   assert(lo <= hi, "must be a non-empty set of ranges");
   539   if (lo == hi) {
   540     jump_if_always_fork(lo->dest(), lo->table_index());
   541   } else {
   542     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
   543     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
   545     if (create_jump_tables(key_val, lo, hi)) return;
   547     int nr = hi - lo + 1;
   549     SwitchRange* mid = lo + nr/2;
   550     // if there is an easy choice, pivot at a singleton:
   551     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
   553     assert(lo < mid && mid <= hi, "good pivot choice");
   554     assert(nr != 2 || mid == hi,   "should pick higher of 2");
   555     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
   557     Node *test_val = _gvn.intcon(mid->lo());
   559     if (mid->is_singleton()) {
   560       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
   561       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
   563       // Special Case:  If there are exactly three ranges, and the high
   564       // and low range each go to the same place, omit the "gt" test,
   565       // since it will not discriminate anything.
   566       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
   567       if (eq_test_only) {
   568         assert(mid == hi-1, "");
   569       }
   571       // if there is a higher range, test for it and process it:
   572       if (mid < hi && !eq_test_only) {
   573         // two comparisons of same values--should enable 1 test for 2 branches
   574         // Use BoolTest::le instead of BoolTest::gt
   575         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
   576         Node   *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_le) );
   577         Node   *iffalse = _gvn.transform( new (C) IfFalseNode(iff_le) );
   578         { PreserveJVMState pjvms(this);
   579           set_control(iffalse);
   580           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
   581         }
   582         set_control(iftrue);
   583       }
   585     } else {
   586       // mid is a range, not a singleton, so treat mid..hi as a unit
   587       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
   589       // if there is a higher range, test for it and process it:
   590       if (mid == hi) {
   591         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
   592       } else {
   593         Node *iftrue  = _gvn.transform( new (C) IfTrueNode(iff_ge) );
   594         Node *iffalse = _gvn.transform( new (C) IfFalseNode(iff_ge) );
   595         { PreserveJVMState pjvms(this);
   596           set_control(iftrue);
   597           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
   598         }
   599         set_control(iffalse);
   600       }
   601     }
   603     // in any case, process the lower range
   604     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
   605   }
   607   // Decrease pred_count for each successor after all is done.
   608   if (switch_depth == 0) {
   609     int unique_successors = switch_block->num_successors();
   610     for (int i = 0; i < unique_successors; i++) {
   611       Block* target = switch_block->successor_at(i);
   612       // Throw away the pre-allocated path for each unique successor.
   613       target->next_path_num();
   614     }
   615   }
   617 #ifndef PRODUCT
   618   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
   619   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
   620     SwitchRange* r;
   621     int nsing = 0;
   622     for( r = lo; r <= hi; r++ ) {
   623       if( r->is_singleton() )  nsing++;
   624     }
   625     tty->print(">>> ");
   626     _method->print_short_name();
   627     tty->print_cr(" switch decision tree");
   628     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
   629                   (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
   630     if (_max_switch_depth > _est_switch_depth) {
   631       tty->print_cr("******** BAD SWITCH DEPTH ********");
   632     }
   633     tty->print("   ");
   634     for( r = lo; r <= hi; r++ ) {
   635       r->print();
   636     }
   637     tty->cr();
   638   }
   639 #endif
   640 }
   642 void Parse::modf() {
   643   Node *f2 = pop();
   644   Node *f1 = pop();
   645   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
   646                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
   647                               "frem", NULL, //no memory effects
   648                               f1, f2);
   649   Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
   651   push(res);
   652 }
   654 void Parse::modd() {
   655   Node *d2 = pop_pair();
   656   Node *d1 = pop_pair();
   657   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
   658                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
   659                               "drem", NULL, //no memory effects
   660                               d1, top(), d2, top());
   661   Node* res_d   = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
   663 #ifdef ASSERT
   664   Node* res_top = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 1));
   665   assert(res_top == top(), "second value must be top");
   666 #endif
   668   push_pair(res_d);
   669 }
   671 void Parse::l2f() {
   672   Node* f2 = pop();
   673   Node* f1 = pop();
   674   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
   675                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
   676                               "l2f", NULL, //no memory effects
   677                               f1, f2);
   678   Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms + 0));
   680   push(res);
   681 }
   683 void Parse::do_irem() {
   684   // Must keep both values on the expression-stack during null-check
   685   zero_check_int(peek());
   686   // Compile-time detect of null-exception?
   687   if (stopped())  return;
   689   Node* b = pop();
   690   Node* a = pop();
   692   const Type *t = _gvn.type(b);
   693   if (t != Type::TOP) {
   694     const TypeInt *ti = t->is_int();
   695     if (ti->is_con()) {
   696       int divisor = ti->get_con();
   697       // check for positive power of 2
   698       if (divisor > 0 &&
   699           (divisor & ~(divisor-1)) == divisor) {
   700         // yes !
   701         Node *mask = _gvn.intcon((divisor - 1));
   702         // Sigh, must handle negative dividends
   703         Node *zero = _gvn.intcon(0);
   704         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
   705         Node *iff = _gvn.transform( new (C) IfFalseNode(ifff) );
   706         Node *ift = _gvn.transform( new (C) IfTrueNode (ifff) );
   707         Node *reg = jump_if_join(ift, iff);
   708         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
   709         // Negative path; negate/and/negate
   710         Node *neg = _gvn.transform( new (C) SubINode(zero, a) );
   711         Node *andn= _gvn.transform( new (C) AndINode(neg, mask) );
   712         Node *negn= _gvn.transform( new (C) SubINode(zero, andn) );
   713         phi->init_req(1, negn);
   714         // Fast positive case
   715         Node *andx = _gvn.transform( new (C) AndINode(a, mask) );
   716         phi->init_req(2, andx);
   717         // Push the merge
   718         push( _gvn.transform(phi) );
   719         return;
   720       }
   721     }
   722   }
   723   // Default case
   724   push( _gvn.transform( new (C) ModINode(control(),a,b) ) );
   725 }
   727 // Handle jsr and jsr_w bytecode
   728 void Parse::do_jsr() {
   729   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
   731   // Store information about current state, tagged with new _jsr_bci
   732   int return_bci = iter().next_bci();
   733   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
   735   // Update method data
   736   profile_taken_branch(jsr_bci);
   738   // The way we do things now, there is only one successor block
   739   // for the jsr, because the target code is cloned by ciTypeFlow.
   740   Block* target = successor_for_bci(jsr_bci);
   742   // What got pushed?
   743   const Type* ret_addr = target->peek();
   744   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
   746   // Effect on jsr on stack
   747   push(_gvn.makecon(ret_addr));
   749   // Flow to the jsr.
   750   merge(jsr_bci);
   751 }
   753 // Handle ret bytecode
   754 void Parse::do_ret() {
   755   // Find to whom we return.
   756   assert(block()->num_successors() == 1, "a ret can only go one place now");
   757   Block* target = block()->successor_at(0);
   758   assert(!target->is_ready(), "our arrival must be expected");
   759   profile_ret(target->flow()->start());
   760   int pnum = target->next_path_num();
   761   merge_common(target, pnum);
   762 }
   764 //--------------------------dynamic_branch_prediction--------------------------
   765 // Try to gather dynamic branch prediction behavior.  Return a probability
   766 // of the branch being taken and set the "cnt" field.  Returns a -1.0
   767 // if we need to use static prediction for some reason.
   768 float Parse::dynamic_branch_prediction(float &cnt) {
   769   ResourceMark rm;
   771   cnt  = COUNT_UNKNOWN;
   773   // Use MethodData information if it is available
   774   // FIXME: free the ProfileData structure
   775   ciMethodData* methodData = method()->method_data();
   776   if (!methodData->is_mature())  return PROB_UNKNOWN;
   777   ciProfileData* data = methodData->bci_to_data(bci());
   778   if (!data->is_JumpData())  return PROB_UNKNOWN;
   780   // get taken and not taken values
   781   int     taken = data->as_JumpData()->taken();
   782   int not_taken = 0;
   783   if (data->is_BranchData()) {
   784     not_taken = data->as_BranchData()->not_taken();
   785   }
   787   // scale the counts to be commensurate with invocation counts:
   788   taken = method()->scale_count(taken);
   789   not_taken = method()->scale_count(not_taken);
   791   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
   792   // We also check that individual counters are positive first, overwise the sum can become positive.
   793   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
   794     if (C->log() != NULL) {
   795       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
   796     }
   797     return PROB_UNKNOWN;
   798   }
   800   // Compute frequency that we arrive here
   801   float sum = taken + not_taken;
   802   // Adjust, if this block is a cloned private block but the
   803   // Jump counts are shared.  Taken the private counts for
   804   // just this path instead of the shared counts.
   805   if( block()->count() > 0 )
   806     sum = block()->count();
   807   cnt = sum / FreqCountInvocations;
   809   // Pin probability to sane limits
   810   float prob;
   811   if( !taken )
   812     prob = (0+PROB_MIN) / 2;
   813   else if( !not_taken )
   814     prob = (1+PROB_MAX) / 2;
   815   else {                         // Compute probability of true path
   816     prob = (float)taken / (float)(taken + not_taken);
   817     if (prob > PROB_MAX)  prob = PROB_MAX;
   818     if (prob < PROB_MIN)   prob = PROB_MIN;
   819   }
   821   assert((cnt > 0.0f) && (prob > 0.0f),
   822          "Bad frequency assignment in if");
   824   if (C->log() != NULL) {
   825     const char* prob_str = NULL;
   826     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
   827     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
   828     char prob_str_buf[30];
   829     if (prob_str == NULL) {
   830       sprintf(prob_str_buf, "%g", prob);
   831       prob_str = prob_str_buf;
   832     }
   833     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
   834                    iter().get_dest(), taken, not_taken, cnt, prob_str);
   835   }
   836   return prob;
   837 }
   839 //-----------------------------branch_prediction-------------------------------
   840 float Parse::branch_prediction(float& cnt,
   841                                BoolTest::mask btest,
   842                                int target_bci) {
   843   float prob = dynamic_branch_prediction(cnt);
   844   // If prob is unknown, switch to static prediction
   845   if (prob != PROB_UNKNOWN)  return prob;
   847   prob = PROB_FAIR;                   // Set default value
   848   if (btest == BoolTest::eq)          // Exactly equal test?
   849     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
   850   else if (btest == BoolTest::ne)
   851     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
   853   // If this is a conditional test guarding a backwards branch,
   854   // assume its a loop-back edge.  Make it a likely taken branch.
   855   if (target_bci < bci()) {
   856     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
   857       // Since it's an OSR, we probably have profile data, but since
   858       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
   859       // Let's make a special check here for completely zero counts.
   860       ciMethodData* methodData = method()->method_data();
   861       if (!methodData->is_empty()) {
   862         ciProfileData* data = methodData->bci_to_data(bci());
   863         // Only stop for truly zero counts, which mean an unknown part
   864         // of the OSR-ed method, and we want to deopt to gather more stats.
   865         // If you have ANY counts, then this loop is simply 'cold' relative
   866         // to the OSR loop.
   867         if (data->as_BranchData()->taken() +
   868             data->as_BranchData()->not_taken() == 0 ) {
   869           // This is the only way to return PROB_UNKNOWN:
   870           return PROB_UNKNOWN;
   871         }
   872       }
   873     }
   874     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
   875   }
   877   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
   878   return prob;
   879 }
   881 // The magic constants are chosen so as to match the output of
   882 // branch_prediction() when the profile reports a zero taken count.
   883 // It is important to distinguish zero counts unambiguously, because
   884 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
   885 // very small but nonzero probabilities, which if confused with zero
   886 // counts would keep the program recompiling indefinitely.
   887 bool Parse::seems_never_taken(float prob) const {
   888   return prob < PROB_MIN;
   889 }
   891 // True if the comparison seems to be the kind that will not change its
   892 // statistics from true to false.  See comments in adjust_map_after_if.
   893 // This question is only asked along paths which are already
   894 // classifed as untaken (by seems_never_taken), so really,
   895 // if a path is never taken, its controlling comparison is
   896 // already acting in a stable fashion.  If the comparison
   897 // seems stable, we will put an expensive uncommon trap
   898 // on the untaken path.
   899 bool Parse::seems_stable_comparison() const {
   900   if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
   901     return false;
   902   }
   903   return true;
   904 }
   906 //-------------------------------repush_if_args--------------------------------
   907 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
   908 inline int Parse::repush_if_args() {
   909 #ifndef PRODUCT
   910   if (PrintOpto && WizardMode) {
   911     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
   912                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
   913     method()->print_name(); tty->cr();
   914   }
   915 #endif
   916   int bc_depth = - Bytecodes::depth(iter().cur_bc());
   917   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
   918   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
   919   assert(argument(0) != NULL, "must exist");
   920   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
   921   inc_sp(bc_depth);
   922   return bc_depth;
   923 }
   925 //----------------------------------do_ifnull----------------------------------
   926 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
   927   int target_bci = iter().get_dest();
   929   Block* branch_block = successor_for_bci(target_bci);
   930   Block* next_block   = successor_for_bci(iter().next_bci());
   932   float cnt;
   933   float prob = branch_prediction(cnt, btest, target_bci);
   934   if (prob == PROB_UNKNOWN) {
   935     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
   936 #ifndef PRODUCT
   937     if (PrintOpto && Verbose)
   938       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
   939 #endif
   940     repush_if_args(); // to gather stats on loop
   941     // We need to mark this branch as taken so that if we recompile we will
   942     // see that it is possible. In the tiered system the interpreter doesn't
   943     // do profiling and by the time we get to the lower tier from the interpreter
   944     // the path may be cold again. Make sure it doesn't look untaken
   945     profile_taken_branch(target_bci, !ProfileInterpreter);
   946     uncommon_trap(Deoptimization::Reason_unreached,
   947                   Deoptimization::Action_reinterpret,
   948                   NULL, "cold");
   949     if (C->eliminate_boxing()) {
   950       // Mark the successor blocks as parsed
   951       branch_block->next_path_num();
   952       next_block->next_path_num();
   953     }
   954     return;
   955   }
   957   explicit_null_checks_inserted++;
   959   // Generate real control flow
   960   Node   *tst = _gvn.transform( new (C) BoolNode( c, btest ) );
   962   // Sanity check the probability value
   963   assert(prob > 0.0f,"Bad probability in Parser");
   964  // Need xform to put node in hash table
   965   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
   966   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
   967   // True branch
   968   { PreserveJVMState pjvms(this);
   969     Node* iftrue  = _gvn.transform( new (C) IfTrueNode (iff) );
   970     set_control(iftrue);
   972     if (stopped()) {            // Path is dead?
   973       explicit_null_checks_elided++;
   974       if (C->eliminate_boxing()) {
   975         // Mark the successor block as parsed
   976         branch_block->next_path_num();
   977       }
   978     } else {                    // Path is live.
   979       // Update method data
   980       profile_taken_branch(target_bci);
   981       adjust_map_after_if(btest, c, prob, branch_block, next_block);
   982       if (!stopped()) {
   983         merge(target_bci);
   984       }
   985     }
   986   }
   988   // False branch
   989   Node* iffalse = _gvn.transform( new (C) IfFalseNode(iff) );
   990   set_control(iffalse);
   992   if (stopped()) {              // Path is dead?
   993     explicit_null_checks_elided++;
   994     if (C->eliminate_boxing()) {
   995       // Mark the successor block as parsed
   996       next_block->next_path_num();
   997     }
   998   } else  {                     // Path is live.
   999     // Update method data
  1000     profile_not_taken_branch();
  1001     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
  1002                         next_block, branch_block);
  1006 //------------------------------------do_if------------------------------------
  1007 void Parse::do_if(BoolTest::mask btest, Node* c) {
  1008   int target_bci = iter().get_dest();
  1010   Block* branch_block = successor_for_bci(target_bci);
  1011   Block* next_block   = successor_for_bci(iter().next_bci());
  1013   float cnt;
  1014   float prob = branch_prediction(cnt, btest, target_bci);
  1015   float untaken_prob = 1.0 - prob;
  1017   if (prob == PROB_UNKNOWN) {
  1018 #ifndef PRODUCT
  1019     if (PrintOpto && Verbose)
  1020       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
  1021 #endif
  1022     repush_if_args(); // to gather stats on loop
  1023     // We need to mark this branch as taken so that if we recompile we will
  1024     // see that it is possible. In the tiered system the interpreter doesn't
  1025     // do profiling and by the time we get to the lower tier from the interpreter
  1026     // the path may be cold again. Make sure it doesn't look untaken
  1027     profile_taken_branch(target_bci, !ProfileInterpreter);
  1028     uncommon_trap(Deoptimization::Reason_unreached,
  1029                   Deoptimization::Action_reinterpret,
  1030                   NULL, "cold");
  1031     if (C->eliminate_boxing()) {
  1032       // Mark the successor blocks as parsed
  1033       branch_block->next_path_num();
  1034       next_block->next_path_num();
  1036     return;
  1039   // Sanity check the probability value
  1040   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
  1042   bool taken_if_true = true;
  1043   // Convert BoolTest to canonical form:
  1044   if (!BoolTest(btest).is_canonical()) {
  1045     btest         = BoolTest(btest).negate();
  1046     taken_if_true = false;
  1047     // prob is NOT updated here; it remains the probability of the taken
  1048     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
  1050   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
  1052   Node* tst0 = new (C) BoolNode(c, btest);
  1053   Node* tst = _gvn.transform(tst0);
  1054   BoolTest::mask taken_btest   = BoolTest::illegal;
  1055   BoolTest::mask untaken_btest = BoolTest::illegal;
  1057   if (tst->is_Bool()) {
  1058     // Refresh c from the transformed bool node, since it may be
  1059     // simpler than the original c.  Also re-canonicalize btest.
  1060     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
  1061     // That can arise from statements like: if (x instanceof C) ...
  1062     if (tst != tst0) {
  1063       // Canonicalize one more time since transform can change it.
  1064       btest = tst->as_Bool()->_test._test;
  1065       if (!BoolTest(btest).is_canonical()) {
  1066         // Reverse edges one more time...
  1067         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
  1068         btest = tst->as_Bool()->_test._test;
  1069         assert(BoolTest(btest).is_canonical(), "sanity");
  1070         taken_if_true = !taken_if_true;
  1072       c = tst->in(1);
  1074     BoolTest::mask neg_btest = BoolTest(btest).negate();
  1075     taken_btest   = taken_if_true ?     btest : neg_btest;
  1076     untaken_btest = taken_if_true ? neg_btest :     btest;
  1079   // Generate real control flow
  1080   float true_prob = (taken_if_true ? prob : untaken_prob);
  1081   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
  1082   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
  1083   Node* taken_branch   = new (C) IfTrueNode(iff);
  1084   Node* untaken_branch = new (C) IfFalseNode(iff);
  1085   if (!taken_if_true) {  // Finish conversion to canonical form
  1086     Node* tmp      = taken_branch;
  1087     taken_branch   = untaken_branch;
  1088     untaken_branch = tmp;
  1091   // Branch is taken:
  1092   { PreserveJVMState pjvms(this);
  1093     taken_branch = _gvn.transform(taken_branch);
  1094     set_control(taken_branch);
  1096     if (stopped()) {
  1097       if (C->eliminate_boxing()) {
  1098         // Mark the successor block as parsed
  1099         branch_block->next_path_num();
  1101     } else {
  1102       // Update method data
  1103       profile_taken_branch(target_bci);
  1104       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
  1105       if (!stopped()) {
  1106         merge(target_bci);
  1111   untaken_branch = _gvn.transform(untaken_branch);
  1112   set_control(untaken_branch);
  1114   // Branch not taken.
  1115   if (stopped()) {
  1116     if (C->eliminate_boxing()) {
  1117       // Mark the successor block as parsed
  1118       next_block->next_path_num();
  1120   } else {
  1121     // Update method data
  1122     profile_not_taken_branch();
  1123     adjust_map_after_if(untaken_btest, c, untaken_prob,
  1124                         next_block, branch_block);
  1128 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
  1129   // Don't want to speculate on uncommon traps when running with -Xcomp
  1130   if (!UseInterpreter) {
  1131     return false;
  1133   return (seems_never_taken(prob) && seems_stable_comparison());
  1136 //----------------------------adjust_map_after_if------------------------------
  1137 // Adjust the JVM state to reflect the result of taking this path.
  1138 // Basically, it means inspecting the CmpNode controlling this
  1139 // branch, seeing how it constrains a tested value, and then
  1140 // deciding if it's worth our while to encode this constraint
  1141 // as graph nodes in the current abstract interpretation map.
  1142 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
  1143                                 Block* path, Block* other_path) {
  1144   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
  1145     return;                             // nothing to do
  1147   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  1149   if (path_is_suitable_for_uncommon_trap(prob)) {
  1150     repush_if_args();
  1151     uncommon_trap(Deoptimization::Reason_unstable_if,
  1152                   Deoptimization::Action_reinterpret,
  1153                   NULL,
  1154                   (is_fallthrough ? "taken always" : "taken never"));
  1155     return;
  1158   Node* val = c->in(1);
  1159   Node* con = c->in(2);
  1160   const Type* tcon = _gvn.type(con);
  1161   const Type* tval = _gvn.type(val);
  1162   bool have_con = tcon->singleton();
  1163   if (tval->singleton()) {
  1164     if (!have_con) {
  1165       // Swap, so constant is in con.
  1166       con  = val;
  1167       tcon = tval;
  1168       val  = c->in(2);
  1169       tval = _gvn.type(val);
  1170       btest = BoolTest(btest).commute();
  1171       have_con = true;
  1172     } else {
  1173       // Do we have two constants?  Then leave well enough alone.
  1174       have_con = false;
  1177   if (!have_con)                        // remaining adjustments need a con
  1178     return;
  1180   sharpen_type_after_if(btest, con, tcon, val, tval);
  1184 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
  1185   Node* ldk;
  1186   if (n->is_DecodeNKlass()) {
  1187     if (n->in(1)->Opcode() != Op_LoadNKlass) {
  1188       return NULL;
  1189     } else {
  1190       ldk = n->in(1);
  1192   } else if (n->Opcode() != Op_LoadKlass) {
  1193     return NULL;
  1194   } else {
  1195     ldk = n;
  1197   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
  1199   Node* adr = ldk->in(MemNode::Address);
  1200   intptr_t off = 0;
  1201   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
  1202   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
  1203     return NULL;
  1204   const TypePtr* tp = gvn->type(obj)->is_ptr();
  1205   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
  1206     return NULL;
  1208   return obj;
  1211 void Parse::sharpen_type_after_if(BoolTest::mask btest,
  1212                                   Node* con, const Type* tcon,
  1213                                   Node* val, const Type* tval) {
  1214   // Look for opportunities to sharpen the type of a node
  1215   // whose klass is compared with a constant klass.
  1216   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
  1217     Node* obj = extract_obj_from_klass_load(&_gvn, val);
  1218     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
  1219     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
  1220        // Found:
  1221        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
  1222        // or the narrowOop equivalent.
  1223        const Type* obj_type = _gvn.type(obj);
  1224        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
  1225        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
  1226            tboth->higher_equal(obj_type)) {
  1227           // obj has to be of the exact type Foo if the CmpP succeeds.
  1228           int obj_in_map = map()->find_edge(obj);
  1229           JVMState* jvms = this->jvms();
  1230           if (obj_in_map >= 0 &&
  1231               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
  1232             TypeNode* ccast = new (C) CheckCastPPNode(control(), obj, tboth);
  1233             const Type* tcc = ccast->as_Type()->type();
  1234             assert(tcc != obj_type && tcc->higher_equal_speculative(obj_type), "must improve");
  1235             // Delay transform() call to allow recovery of pre-cast value
  1236             // at the control merge.
  1237             _gvn.set_type_bottom(ccast);
  1238             record_for_igvn(ccast);
  1239             // Here's the payoff.
  1240             replace_in_map(obj, ccast);
  1246   int val_in_map = map()->find_edge(val);
  1247   if (val_in_map < 0)  return;          // replace_in_map would be useless
  1249     JVMState* jvms = this->jvms();
  1250     if (!(jvms->is_loc(val_in_map) ||
  1251           jvms->is_stk(val_in_map)))
  1252       return;                           // again, it would be useless
  1255   // Check for a comparison to a constant, and "know" that the compared
  1256   // value is constrained on this path.
  1257   assert(tcon->singleton(), "");
  1258   ConstraintCastNode* ccast = NULL;
  1259   Node* cast = NULL;
  1261   switch (btest) {
  1262   case BoolTest::eq:                    // Constant test?
  1264       const Type* tboth = tcon->join_speculative(tval);
  1265       if (tboth == tval)  break;        // Nothing to gain.
  1266       if (tcon->isa_int()) {
  1267         ccast = new (C) CastIINode(val, tboth);
  1268       } else if (tcon == TypePtr::NULL_PTR) {
  1269         // Cast to null, but keep the pointer identity temporarily live.
  1270         ccast = new (C) CastPPNode(val, tboth);
  1271       } else {
  1272         const TypeF* tf = tcon->isa_float_constant();
  1273         const TypeD* td = tcon->isa_double_constant();
  1274         // Exclude tests vs float/double 0 as these could be
  1275         // either +0 or -0.  Just because you are equal to +0
  1276         // doesn't mean you ARE +0!
  1277         // Note, following code also replaces Long and Oop values.
  1278         if ((!tf || tf->_f != 0.0) &&
  1279             (!td || td->_d != 0.0))
  1280           cast = con;                   // Replace non-constant val by con.
  1283     break;
  1285   case BoolTest::ne:
  1286     if (tcon == TypePtr::NULL_PTR) {
  1287       cast = cast_not_null(val, false);
  1289     break;
  1291   default:
  1292     // (At this point we could record int range types with CastII.)
  1293     break;
  1296   if (ccast != NULL) {
  1297     const Type* tcc = ccast->as_Type()->type();
  1298     assert(tcc != tval && tcc->higher_equal_speculative(tval), "must improve");
  1299     // Delay transform() call to allow recovery of pre-cast value
  1300     // at the control merge.
  1301     ccast->set_req(0, control());
  1302     _gvn.set_type_bottom(ccast);
  1303     record_for_igvn(ccast);
  1304     cast = ccast;
  1307   if (cast != NULL) {                   // Here's the payoff.
  1308     replace_in_map(val, cast);
  1312 /**
  1313  * Use speculative type to optimize CmpP node: if comparison is
  1314  * against the low level class, cast the object to the speculative
  1315  * type if any. CmpP should then go away.
  1317  * @param c  expected CmpP node
  1318  * @return   result of CmpP on object casted to speculative type
  1320  */
  1321 Node* Parse::optimize_cmp_with_klass(Node* c) {
  1322   // If this is transformed by the _gvn to a comparison with the low
  1323   // level klass then we may be able to use speculation
  1324   if (c->Opcode() == Op_CmpP &&
  1325       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
  1326       c->in(2)->is_Con()) {
  1327     Node* load_klass = NULL;
  1328     Node* decode = NULL;
  1329     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
  1330       decode = c->in(1);
  1331       load_klass = c->in(1)->in(1);
  1332     } else {
  1333       load_klass = c->in(1);
  1335     if (load_klass->in(2)->is_AddP()) {
  1336       Node* addp = load_klass->in(2);
  1337       Node* obj = addp->in(AddPNode::Address);
  1338       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
  1339       if (obj_type->speculative_type() != NULL) {
  1340         ciKlass* k = obj_type->speculative_type();
  1341         inc_sp(2);
  1342         obj = maybe_cast_profiled_obj(obj, k);
  1343         dec_sp(2);
  1344         // Make the CmpP use the casted obj
  1345         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
  1346         load_klass = load_klass->clone();
  1347         load_klass->set_req(2, addp);
  1348         load_klass = _gvn.transform(load_klass);
  1349         if (decode != NULL) {
  1350           decode = decode->clone();
  1351           decode->set_req(1, load_klass);
  1352           load_klass = _gvn.transform(decode);
  1354         c = c->clone();
  1355         c->set_req(1, load_klass);
  1356         c = _gvn.transform(c);
  1360   return c;
  1363 //------------------------------do_one_bytecode--------------------------------
  1364 // Parse this bytecode, and alter the Parsers JVM->Node mapping
  1365 void Parse::do_one_bytecode() {
  1366   Node *a, *b, *c, *d;          // Handy temps
  1367   BoolTest::mask btest;
  1368   int i;
  1370   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
  1372   if (C->check_node_count(NodeLimitFudgeFactor * 5,
  1373                           "out of nodes parsing method")) {
  1374     return;
  1377 #ifdef ASSERT
  1378   // for setting breakpoints
  1379   if (TraceOptoParse) {
  1380     tty->print(" @");
  1381     dump_bci(bci());
  1382     tty->cr();
  1384 #endif
  1386   switch (bc()) {
  1387   case Bytecodes::_nop:
  1388     // do nothing
  1389     break;
  1390   case Bytecodes::_lconst_0:
  1391     push_pair(longcon(0));
  1392     break;
  1394   case Bytecodes::_lconst_1:
  1395     push_pair(longcon(1));
  1396     break;
  1398   case Bytecodes::_fconst_0:
  1399     push(zerocon(T_FLOAT));
  1400     break;
  1402   case Bytecodes::_fconst_1:
  1403     push(makecon(TypeF::ONE));
  1404     break;
  1406   case Bytecodes::_fconst_2:
  1407     push(makecon(TypeF::make(2.0f)));
  1408     break;
  1410   case Bytecodes::_dconst_0:
  1411     push_pair(zerocon(T_DOUBLE));
  1412     break;
  1414   case Bytecodes::_dconst_1:
  1415     push_pair(makecon(TypeD::ONE));
  1416     break;
  1418   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
  1419   case Bytecodes::_iconst_0: push(intcon( 0)); break;
  1420   case Bytecodes::_iconst_1: push(intcon( 1)); break;
  1421   case Bytecodes::_iconst_2: push(intcon( 2)); break;
  1422   case Bytecodes::_iconst_3: push(intcon( 3)); break;
  1423   case Bytecodes::_iconst_4: push(intcon( 4)); break;
  1424   case Bytecodes::_iconst_5: push(intcon( 5)); break;
  1425   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
  1426   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
  1427   case Bytecodes::_aconst_null: push(null());  break;
  1428   case Bytecodes::_ldc:
  1429   case Bytecodes::_ldc_w:
  1430   case Bytecodes::_ldc2_w:
  1431     // If the constant is unresolved, run this BC once in the interpreter.
  1433       ciConstant constant = iter().get_constant();
  1434       if (constant.basic_type() == T_OBJECT &&
  1435           !constant.as_object()->is_loaded()) {
  1436         int index = iter().get_constant_pool_index();
  1437         constantTag tag = iter().get_constant_pool_tag(index);
  1438         uncommon_trap(Deoptimization::make_trap_request
  1439                       (Deoptimization::Reason_unloaded,
  1440                        Deoptimization::Action_reinterpret,
  1441                        index),
  1442                       NULL, tag.internal_name());
  1443         break;
  1445       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
  1446              "must be java_mirror of klass");
  1447       bool pushed = push_constant(constant, true);
  1448       guarantee(pushed, "must be possible to push this constant");
  1451     break;
  1453   case Bytecodes::_aload_0:
  1454     push( local(0) );
  1455     break;
  1456   case Bytecodes::_aload_1:
  1457     push( local(1) );
  1458     break;
  1459   case Bytecodes::_aload_2:
  1460     push( local(2) );
  1461     break;
  1462   case Bytecodes::_aload_3:
  1463     push( local(3) );
  1464     break;
  1465   case Bytecodes::_aload:
  1466     push( local(iter().get_index()) );
  1467     break;
  1469   case Bytecodes::_fload_0:
  1470   case Bytecodes::_iload_0:
  1471     push( local(0) );
  1472     break;
  1473   case Bytecodes::_fload_1:
  1474   case Bytecodes::_iload_1:
  1475     push( local(1) );
  1476     break;
  1477   case Bytecodes::_fload_2:
  1478   case Bytecodes::_iload_2:
  1479     push( local(2) );
  1480     break;
  1481   case Bytecodes::_fload_3:
  1482   case Bytecodes::_iload_3:
  1483     push( local(3) );
  1484     break;
  1485   case Bytecodes::_fload:
  1486   case Bytecodes::_iload:
  1487     push( local(iter().get_index()) );
  1488     break;
  1489   case Bytecodes::_lload_0:
  1490     push_pair_local( 0 );
  1491     break;
  1492   case Bytecodes::_lload_1:
  1493     push_pair_local( 1 );
  1494     break;
  1495   case Bytecodes::_lload_2:
  1496     push_pair_local( 2 );
  1497     break;
  1498   case Bytecodes::_lload_3:
  1499     push_pair_local( 3 );
  1500     break;
  1501   case Bytecodes::_lload:
  1502     push_pair_local( iter().get_index() );
  1503     break;
  1505   case Bytecodes::_dload_0:
  1506     push_pair_local(0);
  1507     break;
  1508   case Bytecodes::_dload_1:
  1509     push_pair_local(1);
  1510     break;
  1511   case Bytecodes::_dload_2:
  1512     push_pair_local(2);
  1513     break;
  1514   case Bytecodes::_dload_3:
  1515     push_pair_local(3);
  1516     break;
  1517   case Bytecodes::_dload:
  1518     push_pair_local(iter().get_index());
  1519     break;
  1520   case Bytecodes::_fstore_0:
  1521   case Bytecodes::_istore_0:
  1522   case Bytecodes::_astore_0:
  1523     set_local( 0, pop() );
  1524     break;
  1525   case Bytecodes::_fstore_1:
  1526   case Bytecodes::_istore_1:
  1527   case Bytecodes::_astore_1:
  1528     set_local( 1, pop() );
  1529     break;
  1530   case Bytecodes::_fstore_2:
  1531   case Bytecodes::_istore_2:
  1532   case Bytecodes::_astore_2:
  1533     set_local( 2, pop() );
  1534     break;
  1535   case Bytecodes::_fstore_3:
  1536   case Bytecodes::_istore_3:
  1537   case Bytecodes::_astore_3:
  1538     set_local( 3, pop() );
  1539     break;
  1540   case Bytecodes::_fstore:
  1541   case Bytecodes::_istore:
  1542   case Bytecodes::_astore:
  1543     set_local( iter().get_index(), pop() );
  1544     break;
  1545   // long stores
  1546   case Bytecodes::_lstore_0:
  1547     set_pair_local( 0, pop_pair() );
  1548     break;
  1549   case Bytecodes::_lstore_1:
  1550     set_pair_local( 1, pop_pair() );
  1551     break;
  1552   case Bytecodes::_lstore_2:
  1553     set_pair_local( 2, pop_pair() );
  1554     break;
  1555   case Bytecodes::_lstore_3:
  1556     set_pair_local( 3, pop_pair() );
  1557     break;
  1558   case Bytecodes::_lstore:
  1559     set_pair_local( iter().get_index(), pop_pair() );
  1560     break;
  1562   // double stores
  1563   case Bytecodes::_dstore_0:
  1564     set_pair_local( 0, dstore_rounding(pop_pair()) );
  1565     break;
  1566   case Bytecodes::_dstore_1:
  1567     set_pair_local( 1, dstore_rounding(pop_pair()) );
  1568     break;
  1569   case Bytecodes::_dstore_2:
  1570     set_pair_local( 2, dstore_rounding(pop_pair()) );
  1571     break;
  1572   case Bytecodes::_dstore_3:
  1573     set_pair_local( 3, dstore_rounding(pop_pair()) );
  1574     break;
  1575   case Bytecodes::_dstore:
  1576     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
  1577     break;
  1579   case Bytecodes::_pop:  dec_sp(1);   break;
  1580   case Bytecodes::_pop2: dec_sp(2);   break;
  1581   case Bytecodes::_swap:
  1582     a = pop();
  1583     b = pop();
  1584     push(a);
  1585     push(b);
  1586     break;
  1587   case Bytecodes::_dup:
  1588     a = pop();
  1589     push(a);
  1590     push(a);
  1591     break;
  1592   case Bytecodes::_dup_x1:
  1593     a = pop();
  1594     b = pop();
  1595     push( a );
  1596     push( b );
  1597     push( a );
  1598     break;
  1599   case Bytecodes::_dup_x2:
  1600     a = pop();
  1601     b = pop();
  1602     c = pop();
  1603     push( a );
  1604     push( c );
  1605     push( b );
  1606     push( a );
  1607     break;
  1608   case Bytecodes::_dup2:
  1609     a = pop();
  1610     b = pop();
  1611     push( b );
  1612     push( a );
  1613     push( b );
  1614     push( a );
  1615     break;
  1617   case Bytecodes::_dup2_x1:
  1618     // before: .. c, b, a
  1619     // after:  .. b, a, c, b, a
  1620     // not tested
  1621     a = pop();
  1622     b = pop();
  1623     c = pop();
  1624     push( b );
  1625     push( a );
  1626     push( c );
  1627     push( b );
  1628     push( a );
  1629     break;
  1630   case Bytecodes::_dup2_x2:
  1631     // before: .. d, c, b, a
  1632     // after:  .. b, a, d, c, b, a
  1633     // not tested
  1634     a = pop();
  1635     b = pop();
  1636     c = pop();
  1637     d = pop();
  1638     push( b );
  1639     push( a );
  1640     push( d );
  1641     push( c );
  1642     push( b );
  1643     push( a );
  1644     break;
  1646   case Bytecodes::_arraylength: {
  1647     // Must do null-check with value on expression stack
  1648     Node *ary = null_check(peek(), T_ARRAY);
  1649     // Compile-time detect of null-exception?
  1650     if (stopped())  return;
  1651     a = pop();
  1652     push(load_array_length(a));
  1653     break;
  1656   case Bytecodes::_baload: array_load(T_BYTE);   break;
  1657   case Bytecodes::_caload: array_load(T_CHAR);   break;
  1658   case Bytecodes::_iaload: array_load(T_INT);    break;
  1659   case Bytecodes::_saload: array_load(T_SHORT);  break;
  1660   case Bytecodes::_faload: array_load(T_FLOAT);  break;
  1661   case Bytecodes::_aaload: array_load(T_OBJECT); break;
  1662   case Bytecodes::_laload: {
  1663     a = array_addressing(T_LONG, 0);
  1664     if (stopped())  return;     // guaranteed null or range check
  1665     dec_sp(2);                  // Pop array and index
  1666     push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered));
  1667     break;
  1669   case Bytecodes::_daload: {
  1670     a = array_addressing(T_DOUBLE, 0);
  1671     if (stopped())  return;     // guaranteed null or range check
  1672     dec_sp(2);                  // Pop array and index
  1673     push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered));
  1674     break;
  1676   case Bytecodes::_bastore: array_store(T_BYTE);  break;
  1677   case Bytecodes::_castore: array_store(T_CHAR);  break;
  1678   case Bytecodes::_iastore: array_store(T_INT);   break;
  1679   case Bytecodes::_sastore: array_store(T_SHORT); break;
  1680   case Bytecodes::_fastore: array_store(T_FLOAT); break;
  1681   case Bytecodes::_aastore: {
  1682     d = array_addressing(T_OBJECT, 1);
  1683     if (stopped())  return;     // guaranteed null or range check
  1684     array_store_check();
  1685     c = pop();                  // Oop to store
  1686     b = pop();                  // index (already used)
  1687     a = pop();                  // the array itself
  1688     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
  1689     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
  1690     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT, MemNode::release);
  1691     break;
  1693   case Bytecodes::_lastore: {
  1694     a = array_addressing(T_LONG, 2);
  1695     if (stopped())  return;     // guaranteed null or range check
  1696     c = pop_pair();
  1697     dec_sp(2);                  // Pop array and index
  1698     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered);
  1699     break;
  1701   case Bytecodes::_dastore: {
  1702     a = array_addressing(T_DOUBLE, 2);
  1703     if (stopped())  return;     // guaranteed null or range check
  1704     c = pop_pair();
  1705     dec_sp(2);                  // Pop array and index
  1706     c = dstore_rounding(c);
  1707     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered);
  1708     break;
  1710   case Bytecodes::_getfield:
  1711     do_getfield();
  1712     break;
  1714   case Bytecodes::_getstatic:
  1715     do_getstatic();
  1716     break;
  1718   case Bytecodes::_putfield:
  1719     do_putfield();
  1720     break;
  1722   case Bytecodes::_putstatic:
  1723     do_putstatic();
  1724     break;
  1726   case Bytecodes::_irem:
  1727     do_irem();
  1728     break;
  1729   case Bytecodes::_idiv:
  1730     // Must keep both values on the expression-stack during null-check
  1731     zero_check_int(peek());
  1732     // Compile-time detect of null-exception?
  1733     if (stopped())  return;
  1734     b = pop();
  1735     a = pop();
  1736     push( _gvn.transform( new (C) DivINode(control(),a,b) ) );
  1737     break;
  1738   case Bytecodes::_imul:
  1739     b = pop(); a = pop();
  1740     push( _gvn.transform( new (C) MulINode(a,b) ) );
  1741     break;
  1742   case Bytecodes::_iadd:
  1743     b = pop(); a = pop();
  1744     push( _gvn.transform( new (C) AddINode(a,b) ) );
  1745     break;
  1746   case Bytecodes::_ineg:
  1747     a = pop();
  1748     push( _gvn.transform( new (C) SubINode(_gvn.intcon(0),a)) );
  1749     break;
  1750   case Bytecodes::_isub:
  1751     b = pop(); a = pop();
  1752     push( _gvn.transform( new (C) SubINode(a,b) ) );
  1753     break;
  1754   case Bytecodes::_iand:
  1755     b = pop(); a = pop();
  1756     push( _gvn.transform( new (C) AndINode(a,b) ) );
  1757     break;
  1758   case Bytecodes::_ior:
  1759     b = pop(); a = pop();
  1760     push( _gvn.transform( new (C) OrINode(a,b) ) );
  1761     break;
  1762   case Bytecodes::_ixor:
  1763     b = pop(); a = pop();
  1764     push( _gvn.transform( new (C) XorINode(a,b) ) );
  1765     break;
  1766   case Bytecodes::_ishl:
  1767     b = pop(); a = pop();
  1768     push( _gvn.transform( new (C) LShiftINode(a,b) ) );
  1769     break;
  1770   case Bytecodes::_ishr:
  1771     b = pop(); a = pop();
  1772     push( _gvn.transform( new (C) RShiftINode(a,b) ) );
  1773     break;
  1774   case Bytecodes::_iushr:
  1775     b = pop(); a = pop();
  1776     push( _gvn.transform( new (C) URShiftINode(a,b) ) );
  1777     break;
  1779   case Bytecodes::_fneg:
  1780     a = pop();
  1781     b = _gvn.transform(new (C) NegFNode (a));
  1782     push(b);
  1783     break;
  1785   case Bytecodes::_fsub:
  1786     b = pop();
  1787     a = pop();
  1788     c = _gvn.transform( new (C) SubFNode(a,b) );
  1789     d = precision_rounding(c);
  1790     push( d );
  1791     break;
  1793   case Bytecodes::_fadd:
  1794     b = pop();
  1795     a = pop();
  1796     c = _gvn.transform( new (C) AddFNode(a,b) );
  1797     d = precision_rounding(c);
  1798     push( d );
  1799     break;
  1801   case Bytecodes::_fmul:
  1802     b = pop();
  1803     a = pop();
  1804     c = _gvn.transform( new (C) MulFNode(a,b) );
  1805     d = precision_rounding(c);
  1806     push( d );
  1807     break;
  1809   case Bytecodes::_fdiv:
  1810     b = pop();
  1811     a = pop();
  1812     c = _gvn.transform( new (C) DivFNode(0,a,b) );
  1813     d = precision_rounding(c);
  1814     push( d );
  1815     break;
  1817   case Bytecodes::_frem:
  1818     if (Matcher::has_match_rule(Op_ModF)) {
  1819       // Generate a ModF node.
  1820       b = pop();
  1821       a = pop();
  1822       c = _gvn.transform( new (C) ModFNode(0,a,b) );
  1823       d = precision_rounding(c);
  1824       push( d );
  1826     else {
  1827       // Generate a call.
  1828       modf();
  1830     break;
  1832   case Bytecodes::_fcmpl:
  1833     b = pop();
  1834     a = pop();
  1835     c = _gvn.transform( new (C) CmpF3Node( a, b));
  1836     push(c);
  1837     break;
  1838   case Bytecodes::_fcmpg:
  1839     b = pop();
  1840     a = pop();
  1842     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
  1843     // which negates the result sign except for unordered.  Flip the unordered
  1844     // as well by using CmpF3 which implements unordered-lesser instead of
  1845     // unordered-greater semantics.  Finally, commute the result bits.  Result
  1846     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
  1847     c = _gvn.transform( new (C) CmpF3Node( b, a));
  1848     c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
  1849     push(c);
  1850     break;
  1852   case Bytecodes::_f2i:
  1853     a = pop();
  1854     push(_gvn.transform(new (C) ConvF2INode(a)));
  1855     break;
  1857   case Bytecodes::_d2i:
  1858     a = pop_pair();
  1859     b = _gvn.transform(new (C) ConvD2INode(a));
  1860     push( b );
  1861     break;
  1863   case Bytecodes::_f2d:
  1864     a = pop();
  1865     b = _gvn.transform( new (C) ConvF2DNode(a));
  1866     push_pair( b );
  1867     break;
  1869   case Bytecodes::_d2f:
  1870     a = pop_pair();
  1871     b = _gvn.transform( new (C) ConvD2FNode(a));
  1872     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
  1873     //b = _gvn.transform(new (C) RoundFloatNode(0, b) );
  1874     push( b );
  1875     break;
  1877   case Bytecodes::_l2f:
  1878     if (Matcher::convL2FSupported()) {
  1879       a = pop_pair();
  1880       b = _gvn.transform( new (C) ConvL2FNode(a));
  1881       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
  1882       // Rather than storing the result into an FP register then pushing
  1883       // out to memory to round, the machine instruction that implements
  1884       // ConvL2D is responsible for rounding.
  1885       // c = precision_rounding(b);
  1886       c = _gvn.transform(b);
  1887       push(c);
  1888     } else {
  1889       l2f();
  1891     break;
  1893   case Bytecodes::_l2d:
  1894     a = pop_pair();
  1895     b = _gvn.transform( new (C) ConvL2DNode(a));
  1896     // For i486.ad, rounding is always necessary (see _l2f above).
  1897     // c = dprecision_rounding(b);
  1898     c = _gvn.transform(b);
  1899     push_pair(c);
  1900     break;
  1902   case Bytecodes::_f2l:
  1903     a = pop();
  1904     b = _gvn.transform( new (C) ConvF2LNode(a));
  1905     push_pair(b);
  1906     break;
  1908   case Bytecodes::_d2l:
  1909     a = pop_pair();
  1910     b = _gvn.transform( new (C) ConvD2LNode(a));
  1911     push_pair(b);
  1912     break;
  1914   case Bytecodes::_dsub:
  1915     b = pop_pair();
  1916     a = pop_pair();
  1917     c = _gvn.transform( new (C) SubDNode(a,b) );
  1918     d = dprecision_rounding(c);
  1919     push_pair( d );
  1920     break;
  1922   case Bytecodes::_dadd:
  1923     b = pop_pair();
  1924     a = pop_pair();
  1925     c = _gvn.transform( new (C) AddDNode(a,b) );
  1926     d = dprecision_rounding(c);
  1927     push_pair( d );
  1928     break;
  1930   case Bytecodes::_dmul:
  1931     b = pop_pair();
  1932     a = pop_pair();
  1933     c = _gvn.transform( new (C) MulDNode(a,b) );
  1934     d = dprecision_rounding(c);
  1935     push_pair( d );
  1936     break;
  1938   case Bytecodes::_ddiv:
  1939     b = pop_pair();
  1940     a = pop_pair();
  1941     c = _gvn.transform( new (C) DivDNode(0,a,b) );
  1942     d = dprecision_rounding(c);
  1943     push_pair( d );
  1944     break;
  1946   case Bytecodes::_dneg:
  1947     a = pop_pair();
  1948     b = _gvn.transform(new (C) NegDNode (a));
  1949     push_pair(b);
  1950     break;
  1952   case Bytecodes::_drem:
  1953     if (Matcher::has_match_rule(Op_ModD)) {
  1954       // Generate a ModD node.
  1955       b = pop_pair();
  1956       a = pop_pair();
  1957       // a % b
  1959       c = _gvn.transform( new (C) ModDNode(0,a,b) );
  1960       d = dprecision_rounding(c);
  1961       push_pair( d );
  1963     else {
  1964       // Generate a call.
  1965       modd();
  1967     break;
  1969   case Bytecodes::_dcmpl:
  1970     b = pop_pair();
  1971     a = pop_pair();
  1972     c = _gvn.transform( new (C) CmpD3Node( a, b));
  1973     push(c);
  1974     break;
  1976   case Bytecodes::_dcmpg:
  1977     b = pop_pair();
  1978     a = pop_pair();
  1979     // Same as dcmpl but need to flip the unordered case.
  1980     // Commute the inputs, which negates the result sign except for unordered.
  1981     // Flip the unordered as well by using CmpD3 which implements
  1982     // unordered-lesser instead of unordered-greater semantics.
  1983     // Finally, negate the result bits.  Result is same as using a
  1984     // CmpD3Greater except we did it with CmpD3 alone.
  1985     c = _gvn.transform( new (C) CmpD3Node( b, a));
  1986     c = _gvn.transform( new (C) SubINode(_gvn.intcon(0),c) );
  1987     push(c);
  1988     break;
  1991     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
  1992   case Bytecodes::_land:
  1993     b = pop_pair();
  1994     a = pop_pair();
  1995     c = _gvn.transform( new (C) AndLNode(a,b) );
  1996     push_pair(c);
  1997     break;
  1998   case Bytecodes::_lor:
  1999     b = pop_pair();
  2000     a = pop_pair();
  2001     c = _gvn.transform( new (C) OrLNode(a,b) );
  2002     push_pair(c);
  2003     break;
  2004   case Bytecodes::_lxor:
  2005     b = pop_pair();
  2006     a = pop_pair();
  2007     c = _gvn.transform( new (C) XorLNode(a,b) );
  2008     push_pair(c);
  2009     break;
  2011   case Bytecodes::_lshl:
  2012     b = pop();                  // the shift count
  2013     a = pop_pair();             // value to be shifted
  2014     c = _gvn.transform( new (C) LShiftLNode(a,b) );
  2015     push_pair(c);
  2016     break;
  2017   case Bytecodes::_lshr:
  2018     b = pop();                  // the shift count
  2019     a = pop_pair();             // value to be shifted
  2020     c = _gvn.transform( new (C) RShiftLNode(a,b) );
  2021     push_pair(c);
  2022     break;
  2023   case Bytecodes::_lushr:
  2024     b = pop();                  // the shift count
  2025     a = pop_pair();             // value to be shifted
  2026     c = _gvn.transform( new (C) URShiftLNode(a,b) );
  2027     push_pair(c);
  2028     break;
  2029   case Bytecodes::_lmul:
  2030     b = pop_pair();
  2031     a = pop_pair();
  2032     c = _gvn.transform( new (C) MulLNode(a,b) );
  2033     push_pair(c);
  2034     break;
  2036   case Bytecodes::_lrem:
  2037     // Must keep both values on the expression-stack during null-check
  2038     assert(peek(0) == top(), "long word order");
  2039     zero_check_long(peek(1));
  2040     // Compile-time detect of null-exception?
  2041     if (stopped())  return;
  2042     b = pop_pair();
  2043     a = pop_pair();
  2044     c = _gvn.transform( new (C) ModLNode(control(),a,b) );
  2045     push_pair(c);
  2046     break;
  2048   case Bytecodes::_ldiv:
  2049     // Must keep both values on the expression-stack during null-check
  2050     assert(peek(0) == top(), "long word order");
  2051     zero_check_long(peek(1));
  2052     // Compile-time detect of null-exception?
  2053     if (stopped())  return;
  2054     b = pop_pair();
  2055     a = pop_pair();
  2056     c = _gvn.transform( new (C) DivLNode(control(),a,b) );
  2057     push_pair(c);
  2058     break;
  2060   case Bytecodes::_ladd:
  2061     b = pop_pair();
  2062     a = pop_pair();
  2063     c = _gvn.transform( new (C) AddLNode(a,b) );
  2064     push_pair(c);
  2065     break;
  2066   case Bytecodes::_lsub:
  2067     b = pop_pair();
  2068     a = pop_pair();
  2069     c = _gvn.transform( new (C) SubLNode(a,b) );
  2070     push_pair(c);
  2071     break;
  2072   case Bytecodes::_lcmp:
  2073     // Safepoints are now inserted _before_ branches.  The long-compare
  2074     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
  2075     // slew of control flow.  These are usually followed by a CmpI vs zero and
  2076     // a branch; this pattern then optimizes to the obvious long-compare and
  2077     // branch.  However, if the branch is backwards there's a Safepoint
  2078     // inserted.  The inserted Safepoint captures the JVM state at the
  2079     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
  2080     // long-compare is used to control a loop the debug info will force
  2081     // computation of the 3-way value, even though the generated code uses a
  2082     // long-compare and branch.  We try to rectify the situation by inserting
  2083     // a SafePoint here and have it dominate and kill the safepoint added at a
  2084     // following backwards branch.  At this point the JVM state merely holds 2
  2085     // longs but not the 3-way value.
  2086     if( UseLoopSafepoints ) {
  2087       switch( iter().next_bc() ) {
  2088       case Bytecodes::_ifgt:
  2089       case Bytecodes::_iflt:
  2090       case Bytecodes::_ifge:
  2091       case Bytecodes::_ifle:
  2092       case Bytecodes::_ifne:
  2093       case Bytecodes::_ifeq:
  2094         // If this is a backwards branch in the bytecodes, add Safepoint
  2095         maybe_add_safepoint(iter().next_get_dest());
  2098     b = pop_pair();
  2099     a = pop_pair();
  2100     c = _gvn.transform( new (C) CmpL3Node( a, b ));
  2101     push(c);
  2102     break;
  2104   case Bytecodes::_lneg:
  2105     a = pop_pair();
  2106     b = _gvn.transform( new (C) SubLNode(longcon(0),a));
  2107     push_pair(b);
  2108     break;
  2109   case Bytecodes::_l2i:
  2110     a = pop_pair();
  2111     push( _gvn.transform( new (C) ConvL2INode(a)));
  2112     break;
  2113   case Bytecodes::_i2l:
  2114     a = pop();
  2115     b = _gvn.transform( new (C) ConvI2LNode(a));
  2116     push_pair(b);
  2117     break;
  2118   case Bytecodes::_i2b:
  2119     // Sign extend
  2120     a = pop();
  2121     a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(24)) );
  2122     a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(24)) );
  2123     push( a );
  2124     break;
  2125   case Bytecodes::_i2s:
  2126     a = pop();
  2127     a = _gvn.transform( new (C) LShiftINode(a,_gvn.intcon(16)) );
  2128     a = _gvn.transform( new (C) RShiftINode(a,_gvn.intcon(16)) );
  2129     push( a );
  2130     break;
  2131   case Bytecodes::_i2c:
  2132     a = pop();
  2133     push( _gvn.transform( new (C) AndINode(a,_gvn.intcon(0xFFFF)) ) );
  2134     break;
  2136   case Bytecodes::_i2f:
  2137     a = pop();
  2138     b = _gvn.transform( new (C) ConvI2FNode(a) ) ;
  2139     c = precision_rounding(b);
  2140     push (b);
  2141     break;
  2143   case Bytecodes::_i2d:
  2144     a = pop();
  2145     b = _gvn.transform( new (C) ConvI2DNode(a));
  2146     push_pair(b);
  2147     break;
  2149   case Bytecodes::_iinc:        // Increment local
  2150     i = iter().get_index();     // Get local index
  2151     set_local( i, _gvn.transform( new (C) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
  2152     break;
  2154   // Exit points of synchronized methods must have an unlock node
  2155   case Bytecodes::_return:
  2156     return_current(NULL);
  2157     break;
  2159   case Bytecodes::_ireturn:
  2160   case Bytecodes::_areturn:
  2161   case Bytecodes::_freturn:
  2162     return_current(pop());
  2163     break;
  2164   case Bytecodes::_lreturn:
  2165     return_current(pop_pair());
  2166     break;
  2167   case Bytecodes::_dreturn:
  2168     return_current(pop_pair());
  2169     break;
  2171   case Bytecodes::_athrow:
  2172     // null exception oop throws NULL pointer exception
  2173     null_check(peek());
  2174     if (stopped())  return;
  2175     // Hook the thrown exception directly to subsequent handlers.
  2176     if (BailoutToInterpreterForThrows) {
  2177       // Keep method interpreted from now on.
  2178       uncommon_trap(Deoptimization::Reason_unhandled,
  2179                     Deoptimization::Action_make_not_compilable);
  2180       return;
  2182     if (env()->jvmti_can_post_on_exceptions()) {
  2183       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
  2184       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
  2186     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
  2187     add_exception_state(make_exception_state(peek()));
  2188     break;
  2190   case Bytecodes::_goto:   // fall through
  2191   case Bytecodes::_goto_w: {
  2192     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
  2194     // If this is a backwards branch in the bytecodes, add Safepoint
  2195     maybe_add_safepoint(target_bci);
  2197     // Update method data
  2198     profile_taken_branch(target_bci);
  2200     // Merge the current control into the target basic block
  2201     merge(target_bci);
  2203     // See if we can get some profile data and hand it off to the next block
  2204     Block *target_block = block()->successor_for_bci(target_bci);
  2205     if (target_block->pred_count() != 1)  break;
  2206     ciMethodData* methodData = method()->method_data();
  2207     if (!methodData->is_mature())  break;
  2208     ciProfileData* data = methodData->bci_to_data(bci());
  2209     assert( data->is_JumpData(), "" );
  2210     int taken = ((ciJumpData*)data)->taken();
  2211     taken = method()->scale_count(taken);
  2212     target_block->set_count(taken);
  2213     break;
  2216   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
  2217   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
  2218   handle_if_null:
  2219     // If this is a backwards branch in the bytecodes, add Safepoint
  2220     maybe_add_safepoint(iter().get_dest());
  2221     a = null();
  2222     b = pop();
  2223     c = _gvn.transform( new (C) CmpPNode(b, a) );
  2224     do_ifnull(btest, c);
  2225     break;
  2227   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
  2228   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
  2229   handle_if_acmp:
  2230     // If this is a backwards branch in the bytecodes, add Safepoint
  2231     maybe_add_safepoint(iter().get_dest());
  2232     a = pop();
  2233     b = pop();
  2234     c = _gvn.transform( new (C) CmpPNode(b, a) );
  2235     c = optimize_cmp_with_klass(c);
  2236     do_if(btest, c);
  2237     break;
  2239   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
  2240   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
  2241   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
  2242   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
  2243   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
  2244   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
  2245   handle_ifxx:
  2246     // If this is a backwards branch in the bytecodes, add Safepoint
  2247     maybe_add_safepoint(iter().get_dest());
  2248     a = _gvn.intcon(0);
  2249     b = pop();
  2250     c = _gvn.transform( new (C) CmpINode(b, a) );
  2251     do_if(btest, c);
  2252     break;
  2254   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
  2255   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
  2256   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
  2257   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
  2258   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
  2259   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
  2260   handle_if_icmp:
  2261     // If this is a backwards branch in the bytecodes, add Safepoint
  2262     maybe_add_safepoint(iter().get_dest());
  2263     a = pop();
  2264     b = pop();
  2265     c = _gvn.transform( new (C) CmpINode( b, a ) );
  2266     do_if(btest, c);
  2267     break;
  2269   case Bytecodes::_tableswitch:
  2270     do_tableswitch();
  2271     break;
  2273   case Bytecodes::_lookupswitch:
  2274     do_lookupswitch();
  2275     break;
  2277   case Bytecodes::_invokestatic:
  2278   case Bytecodes::_invokedynamic:
  2279   case Bytecodes::_invokespecial:
  2280   case Bytecodes::_invokevirtual:
  2281   case Bytecodes::_invokeinterface:
  2282     do_call();
  2283     break;
  2284   case Bytecodes::_checkcast:
  2285     do_checkcast();
  2286     break;
  2287   case Bytecodes::_instanceof:
  2288     do_instanceof();
  2289     break;
  2290   case Bytecodes::_anewarray:
  2291     do_anewarray();
  2292     break;
  2293   case Bytecodes::_newarray:
  2294     do_newarray((BasicType)iter().get_index());
  2295     break;
  2296   case Bytecodes::_multianewarray:
  2297     do_multianewarray();
  2298     break;
  2299   case Bytecodes::_new:
  2300     do_new();
  2301     break;
  2303   case Bytecodes::_jsr:
  2304   case Bytecodes::_jsr_w:
  2305     do_jsr();
  2306     break;
  2308   case Bytecodes::_ret:
  2309     do_ret();
  2310     break;
  2313   case Bytecodes::_monitorenter:
  2314     do_monitor_enter();
  2315     break;
  2317   case Bytecodes::_monitorexit:
  2318     do_monitor_exit();
  2319     break;
  2321   case Bytecodes::_breakpoint:
  2322     // Breakpoint set concurrently to compile
  2323     // %%% use an uncommon trap?
  2324     C->record_failure("breakpoint in method");
  2325     return;
  2327   default:
  2328 #ifndef PRODUCT
  2329     map()->dump(99);
  2330 #endif
  2331     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
  2332     ShouldNotReachHere();
  2335 #ifndef PRODUCT
  2336   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
  2337   if(printer) {
  2338     char buffer[256];
  2339     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
  2340     bool old = printer->traverse_outs();
  2341     printer->set_traverse_outs(true);
  2342     printer->print_method(C, buffer, 4);
  2343     printer->set_traverse_outs(old);
  2345 #endif

mercurial