src/share/vm/opto/memnode.cpp

Mon, 24 Nov 2014 07:29:03 -0800

author
vlivanov
date
Mon, 24 Nov 2014 07:29:03 -0800
changeset 7385
9e69e8d1c900
parent 7383
e194d26c9f4e
child 7535
7ae4e26cb1e0
child 7858
55d07ec5bde4
permissions
-rw-r--r--

8058148: MaxNodeLimit and LiveNodeCountInliningCutoff
Reviewed-by: kvn, roland

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/compile.hpp"
    33 #include "opto/connode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/matcher.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/mulnode.hpp"
    39 #include "opto/phaseX.hpp"
    40 #include "opto/regmask.hpp"
    42 // Portions of code courtesy of Clifford Click
    44 // Optimization - Graph Style
    46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    48 //=============================================================================
    49 uint MemNode::size_of() const { return sizeof(*this); }
    51 const TypePtr *MemNode::adr_type() const {
    52   Node* adr = in(Address);
    53   const TypePtr* cross_check = NULL;
    54   DEBUG_ONLY(cross_check = _adr_type);
    55   return calculate_adr_type(adr->bottom_type(), cross_check);
    56 }
    58 #ifndef PRODUCT
    59 void MemNode::dump_spec(outputStream *st) const {
    60   if (in(Address) == NULL)  return; // node is dead
    61 #ifndef ASSERT
    62   // fake the missing field
    63   const TypePtr* _adr_type = NULL;
    64   if (in(Address) != NULL)
    65     _adr_type = in(Address)->bottom_type()->isa_ptr();
    66 #endif
    67   dump_adr_type(this, _adr_type, st);
    69   Compile* C = Compile::current();
    70   if( C->alias_type(_adr_type)->is_volatile() )
    71     st->print(" Volatile!");
    72 }
    74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    75   st->print(" @");
    76   if (adr_type == NULL) {
    77     st->print("NULL");
    78   } else {
    79     adr_type->dump_on(st);
    80     Compile* C = Compile::current();
    81     Compile::AliasType* atp = NULL;
    82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    83     if (atp == NULL)
    84       st->print(", idx=?\?;");
    85     else if (atp->index() == Compile::AliasIdxBot)
    86       st->print(", idx=Bot;");
    87     else if (atp->index() == Compile::AliasIdxTop)
    88       st->print(", idx=Top;");
    89     else if (atp->index() == Compile::AliasIdxRaw)
    90       st->print(", idx=Raw;");
    91     else {
    92       ciField* field = atp->field();
    93       if (field) {
    94         st->print(", name=");
    95         field->print_name_on(st);
    96       }
    97       st->print(", idx=%d;", atp->index());
    98     }
    99   }
   100 }
   102 extern void print_alias_types();
   104 #endif
   106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
   107   assert((t_oop != NULL), "sanity");
   108   bool is_instance = t_oop->is_known_instance_field();
   109   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
   110                              (load != NULL) && load->is_Load() &&
   111                              (phase->is_IterGVN() != NULL);
   112   if (!(is_instance || is_boxed_value_load))
   113     return mchain;  // don't try to optimize non-instance types
   114   uint instance_id = t_oop->instance_id();
   115   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
   116   Node *prev = NULL;
   117   Node *result = mchain;
   118   while (prev != result) {
   119     prev = result;
   120     if (result == start_mem)
   121       break;  // hit one of our sentinels
   122     // skip over a call which does not affect this memory slice
   123     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   124       Node *proj_in = result->in(0);
   125       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   126         break;  // hit one of our sentinels
   127       } else if (proj_in->is_Call()) {
   128         CallNode *call = proj_in->as_Call();
   129         if (!call->may_modify(t_oop, phase)) { // returns false for instances
   130           result = call->in(TypeFunc::Memory);
   131         }
   132       } else if (proj_in->is_Initialize()) {
   133         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   134         // Stop if this is the initialization for the object instance which
   135         // which contains this memory slice, otherwise skip over it.
   136         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
   137           break;
   138         }
   139         if (is_instance) {
   140           result = proj_in->in(TypeFunc::Memory);
   141         } else if (is_boxed_value_load) {
   142           Node* klass = alloc->in(AllocateNode::KlassNode);
   143           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
   144           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
   145             result = proj_in->in(TypeFunc::Memory); // not related allocation
   146           }
   147         }
   148       } else if (proj_in->is_MemBar()) {
   149         result = proj_in->in(TypeFunc::Memory);
   150       } else {
   151         assert(false, "unexpected projection");
   152       }
   153     } else if (result->is_ClearArray()) {
   154       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
   155         // Can not bypass initialization of the instance
   156         // we are looking for.
   157         break;
   158       }
   159       // Otherwise skip it (the call updated 'result' value).
   160     } else if (result->is_MergeMem()) {
   161       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
   162     }
   163   }
   164   return result;
   165 }
   167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
   168   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
   169   if (t_oop == NULL)
   170     return mchain;  // don't try to optimize non-oop types
   171   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
   172   bool is_instance = t_oop->is_known_instance_field();
   173   PhaseIterGVN *igvn = phase->is_IterGVN();
   174   if (is_instance && igvn != NULL  && result->is_Phi()) {
   175     PhiNode *mphi = result->as_Phi();
   176     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   177     const TypePtr *t = mphi->adr_type();
   178     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   179         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   180         t->is_oopptr()->cast_to_exactness(true)
   181          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   182          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   183       // clone the Phi with our address type
   184       result = mphi->split_out_instance(t_adr, igvn);
   185     } else {
   186       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   187     }
   188   }
   189   return result;
   190 }
   192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   193   uint alias_idx = phase->C->get_alias_index(tp);
   194   Node *mem = mmem;
   195 #ifdef ASSERT
   196   {
   197     // Check that current type is consistent with the alias index used during graph construction
   198     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   199     bool consistent =  adr_check == NULL || adr_check->empty() ||
   200                        phase->C->must_alias(adr_check, alias_idx );
   201     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   202     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   203                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   204         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   205         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   206           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   207           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   208       // don't assert if it is dead code.
   209       consistent = true;
   210     }
   211     if( !consistent ) {
   212       st->print("alias_idx==%d, adr_check==", alias_idx);
   213       if( adr_check == NULL ) {
   214         st->print("NULL");
   215       } else {
   216         adr_check->dump();
   217       }
   218       st->cr();
   219       print_alias_types();
   220       assert(consistent, "adr_check must match alias idx");
   221     }
   222   }
   223 #endif
   224   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   225   // means an array I have not precisely typed yet.  Do not do any
   226   // alias stuff with it any time soon.
   227   const TypeOopPtr *toop = tp->isa_oopptr();
   228   if( tp->base() != Type::AnyPtr &&
   229       !(toop &&
   230         toop->klass() != NULL &&
   231         toop->klass()->is_java_lang_Object() &&
   232         toop->offset() == Type::OffsetBot) ) {
   233     // compress paths and change unreachable cycles to TOP
   234     // If not, we can update the input infinitely along a MergeMem cycle
   235     // Equivalent code in PhiNode::Ideal
   236     Node* m  = phase->transform(mmem);
   237     // If transformed to a MergeMem, get the desired slice
   238     // Otherwise the returned node represents memory for every slice
   239     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   240     // Update input if it is progress over what we have now
   241   }
   242   return mem;
   243 }
   245 //--------------------------Ideal_common---------------------------------------
   246 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   247 // Unhook non-raw memories from complete (macro-expanded) initializations.
   248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   249   // If our control input is a dead region, kill all below the region
   250   Node *ctl = in(MemNode::Control);
   251   if (ctl && remove_dead_region(phase, can_reshape))
   252     return this;
   253   ctl = in(MemNode::Control);
   254   // Don't bother trying to transform a dead node
   255   if (ctl && ctl->is_top())  return NodeSentinel;
   257   PhaseIterGVN *igvn = phase->is_IterGVN();
   258   // Wait if control on the worklist.
   259   if (ctl && can_reshape && igvn != NULL) {
   260     Node* bol = NULL;
   261     Node* cmp = NULL;
   262     if (ctl->in(0)->is_If()) {
   263       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   264       bol = ctl->in(0)->in(1);
   265       if (bol->is_Bool())
   266         cmp = ctl->in(0)->in(1)->in(1);
   267     }
   268     if (igvn->_worklist.member(ctl) ||
   269         (bol != NULL && igvn->_worklist.member(bol)) ||
   270         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   271       // This control path may be dead.
   272       // Delay this memory node transformation until the control is processed.
   273       phase->is_IterGVN()->_worklist.push(this);
   274       return NodeSentinel; // caller will return NULL
   275     }
   276   }
   277   // Ignore if memory is dead, or self-loop
   278   Node *mem = in(MemNode::Memory);
   279   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
   280   assert(mem != this, "dead loop in MemNode::Ideal");
   282   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
   283     // This memory slice may be dead.
   284     // Delay this mem node transformation until the memory is processed.
   285     phase->is_IterGVN()->_worklist.push(this);
   286     return NodeSentinel; // caller will return NULL
   287   }
   289   Node *address = in(MemNode::Address);
   290   const Type *t_adr = phase->type(address);
   291   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
   293   if (can_reshape && igvn != NULL &&
   294       (igvn->_worklist.member(address) ||
   295        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
   296     // The address's base and type may change when the address is processed.
   297     // Delay this mem node transformation until the address is processed.
   298     phase->is_IterGVN()->_worklist.push(this);
   299     return NodeSentinel; // caller will return NULL
   300   }
   302   // Do NOT remove or optimize the next lines: ensure a new alias index
   303   // is allocated for an oop pointer type before Escape Analysis.
   304   // Note: C++ will not remove it since the call has side effect.
   305   if (t_adr->isa_oopptr()) {
   306     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   307   }
   309   Node* base = NULL;
   310   if (address->is_AddP()) {
   311     base = address->in(AddPNode::Base);
   312   }
   313   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
   314       !t_adr->isa_rawptr()) {
   315     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
   316     // Skip this node optimization if its address has TOP base.
   317     return NodeSentinel; // caller will return NULL
   318   }
   320   // Avoid independent memory operations
   321   Node* old_mem = mem;
   323   // The code which unhooks non-raw memories from complete (macro-expanded)
   324   // initializations was removed. After macro-expansion all stores catched
   325   // by Initialize node became raw stores and there is no information
   326   // which memory slices they modify. So it is unsafe to move any memory
   327   // operation above these stores. Also in most cases hooked non-raw memories
   328   // were already unhooked by using information from detect_ptr_independence()
   329   // and find_previous_store().
   331   if (mem->is_MergeMem()) {
   332     MergeMemNode* mmem = mem->as_MergeMem();
   333     const TypePtr *tp = t_adr->is_ptr();
   335     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   336   }
   338   if (mem != old_mem) {
   339     set_req(MemNode::Memory, mem);
   340     if (can_reshape && old_mem->outcnt() == 0) {
   341         igvn->_worklist.push(old_mem);
   342     }
   343     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   344     return this;
   345   }
   347   // let the subclass continue analyzing...
   348   return NULL;
   349 }
   351 // Helper function for proving some simple control dominations.
   352 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   353 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   354 // is not a constant (dominated by the method's StartNode).
   355 // Used by MemNode::find_previous_store to prove that the
   356 // control input of a memory operation predates (dominates)
   357 // an allocation it wants to look past.
   358 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   359   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   360     return false; // Conservative answer for dead code
   362   // Check 'dom'. Skip Proj and CatchProj nodes.
   363   dom = dom->find_exact_control(dom);
   364   if (dom == NULL || dom->is_top())
   365     return false; // Conservative answer for dead code
   367   if (dom == sub) {
   368     // For the case when, for example, 'sub' is Initialize and the original
   369     // 'dom' is Proj node of the 'sub'.
   370     return false;
   371   }
   373   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   374     return true;
   376   // 'dom' dominates 'sub' if its control edge and control edges
   377   // of all its inputs dominate or equal to sub's control edge.
   379   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   380   // Or Region for the check in LoadNode::Ideal();
   381   // 'sub' should have sub->in(0) != NULL.
   382   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   383          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
   385   // Get control edge of 'sub'.
   386   Node* orig_sub = sub;
   387   sub = sub->find_exact_control(sub->in(0));
   388   if (sub == NULL || sub->is_top())
   389     return false; // Conservative answer for dead code
   391   assert(sub->is_CFG(), "expecting control");
   393   if (sub == dom)
   394     return true;
   396   if (sub->is_Start() || sub->is_Root())
   397     return false;
   399   {
   400     // Check all control edges of 'dom'.
   402     ResourceMark rm;
   403     Arena* arena = Thread::current()->resource_area();
   404     Node_List nlist(arena);
   405     Unique_Node_List dom_list(arena);
   407     dom_list.push(dom);
   408     bool only_dominating_controls = false;
   410     for (uint next = 0; next < dom_list.size(); next++) {
   411       Node* n = dom_list.at(next);
   412       if (n == orig_sub)
   413         return false; // One of dom's inputs dominated by sub.
   414       if (!n->is_CFG() && n->pinned()) {
   415         // Check only own control edge for pinned non-control nodes.
   416         n = n->find_exact_control(n->in(0));
   417         if (n == NULL || n->is_top())
   418           return false; // Conservative answer for dead code
   419         assert(n->is_CFG(), "expecting control");
   420         dom_list.push(n);
   421       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   422         only_dominating_controls = true;
   423       } else if (n->is_CFG()) {
   424         if (n->dominates(sub, nlist))
   425           only_dominating_controls = true;
   426         else
   427           return false;
   428       } else {
   429         // First, own control edge.
   430         Node* m = n->find_exact_control(n->in(0));
   431         if (m != NULL) {
   432           if (m->is_top())
   433             return false; // Conservative answer for dead code
   434           dom_list.push(m);
   435         }
   436         // Now, the rest of edges.
   437         uint cnt = n->req();
   438         for (uint i = 1; i < cnt; i++) {
   439           m = n->find_exact_control(n->in(i));
   440           if (m == NULL || m->is_top())
   441             continue;
   442           dom_list.push(m);
   443         }
   444       }
   445     }
   446     return only_dominating_controls;
   447   }
   448 }
   450 //---------------------detect_ptr_independence---------------------------------
   451 // Used by MemNode::find_previous_store to prove that two base
   452 // pointers are never equal.
   453 // The pointers are accompanied by their associated allocations,
   454 // if any, which have been previously discovered by the caller.
   455 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   456                                       Node* p2, AllocateNode* a2,
   457                                       PhaseTransform* phase) {
   458   // Attempt to prove that these two pointers cannot be aliased.
   459   // They may both manifestly be allocations, and they should differ.
   460   // Or, if they are not both allocations, they can be distinct constants.
   461   // Otherwise, one is an allocation and the other a pre-existing value.
   462   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   463     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   464   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   465     return (a1 != a2);
   466   } else if (a1 != NULL) {                  // one allocation a1
   467     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   468     return all_controls_dominate(p2, a1);
   469   } else { //(a2 != NULL)                   // one allocation a2
   470     return all_controls_dominate(p1, a2);
   471   }
   472   return false;
   473 }
   476 // The logic for reordering loads and stores uses four steps:
   477 // (a) Walk carefully past stores and initializations which we
   478 //     can prove are independent of this load.
   479 // (b) Observe that the next memory state makes an exact match
   480 //     with self (load or store), and locate the relevant store.
   481 // (c) Ensure that, if we were to wire self directly to the store,
   482 //     the optimizer would fold it up somehow.
   483 // (d) Do the rewiring, and return, depending on some other part of
   484 //     the optimizer to fold up the load.
   485 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   486 // specific to loads and stores, so they are handled by the callers.
   487 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   488 //
   489 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   490   Node*         ctrl   = in(MemNode::Control);
   491   Node*         adr    = in(MemNode::Address);
   492   intptr_t      offset = 0;
   493   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   494   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   496   if (offset == Type::OffsetBot)
   497     return NULL;            // cannot unalias unless there are precise offsets
   499   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   501   intptr_t size_in_bytes = memory_size();
   503   Node* mem = in(MemNode::Memory);   // start searching here...
   505   int cnt = 50;             // Cycle limiter
   506   for (;;) {                // While we can dance past unrelated stores...
   507     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   509     if (mem->is_Store()) {
   510       Node* st_adr = mem->in(MemNode::Address);
   511       intptr_t st_offset = 0;
   512       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   513       if (st_base == NULL)
   514         break;              // inscrutable pointer
   515       if (st_offset != offset && st_offset != Type::OffsetBot) {
   516         const int MAX_STORE = BytesPerLong;
   517         if (st_offset >= offset + size_in_bytes ||
   518             st_offset <= offset - MAX_STORE ||
   519             st_offset <= offset - mem->as_Store()->memory_size()) {
   520           // Success:  The offsets are provably independent.
   521           // (You may ask, why not just test st_offset != offset and be done?
   522           // The answer is that stores of different sizes can co-exist
   523           // in the same sequence of RawMem effects.  We sometimes initialize
   524           // a whole 'tile' of array elements with a single jint or jlong.)
   525           mem = mem->in(MemNode::Memory);
   526           continue;           // (a) advance through independent store memory
   527         }
   528       }
   529       if (st_base != base &&
   530           detect_ptr_independence(base, alloc,
   531                                   st_base,
   532                                   AllocateNode::Ideal_allocation(st_base, phase),
   533                                   phase)) {
   534         // Success:  The bases are provably independent.
   535         mem = mem->in(MemNode::Memory);
   536         continue;           // (a) advance through independent store memory
   537       }
   539       // (b) At this point, if the bases or offsets do not agree, we lose,
   540       // since we have not managed to prove 'this' and 'mem' independent.
   541       if (st_base == base && st_offset == offset) {
   542         return mem;         // let caller handle steps (c), (d)
   543       }
   545     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   546       InitializeNode* st_init = mem->in(0)->as_Initialize();
   547       AllocateNode*  st_alloc = st_init->allocation();
   548       if (st_alloc == NULL)
   549         break;              // something degenerated
   550       bool known_identical = false;
   551       bool known_independent = false;
   552       if (alloc == st_alloc)
   553         known_identical = true;
   554       else if (alloc != NULL)
   555         known_independent = true;
   556       else if (all_controls_dominate(this, st_alloc))
   557         known_independent = true;
   559       if (known_independent) {
   560         // The bases are provably independent: Either they are
   561         // manifestly distinct allocations, or else the control
   562         // of this load dominates the store's allocation.
   563         int alias_idx = phase->C->get_alias_index(adr_type());
   564         if (alias_idx == Compile::AliasIdxRaw) {
   565           mem = st_alloc->in(TypeFunc::Memory);
   566         } else {
   567           mem = st_init->memory(alias_idx);
   568         }
   569         continue;           // (a) advance through independent store memory
   570       }
   572       // (b) at this point, if we are not looking at a store initializing
   573       // the same allocation we are loading from, we lose.
   574       if (known_identical) {
   575         // From caller, can_see_stored_value will consult find_captured_store.
   576         return mem;         // let caller handle steps (c), (d)
   577       }
   579     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   580       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   581       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   582         CallNode *call = mem->in(0)->as_Call();
   583         if (!call->may_modify(addr_t, phase)) {
   584           mem = call->in(TypeFunc::Memory);
   585           continue;         // (a) advance through independent call memory
   586         }
   587       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   588         mem = mem->in(0)->in(TypeFunc::Memory);
   589         continue;           // (a) advance through independent MemBar memory
   590       } else if (mem->is_ClearArray()) {
   591         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   592           // (the call updated 'mem' value)
   593           continue;         // (a) advance through independent allocation memory
   594         } else {
   595           // Can not bypass initialization of the instance
   596           // we are looking for.
   597           return mem;
   598         }
   599       } else if (mem->is_MergeMem()) {
   600         int alias_idx = phase->C->get_alias_index(adr_type());
   601         mem = mem->as_MergeMem()->memory_at(alias_idx);
   602         continue;           // (a) advance through independent MergeMem memory
   603       }
   604     }
   606     // Unless there is an explicit 'continue', we must bail out here,
   607     // because 'mem' is an inscrutable memory state (e.g., a call).
   608     break;
   609   }
   611   return NULL;              // bail out
   612 }
   614 //----------------------calculate_adr_type-------------------------------------
   615 // Helper function.  Notices when the given type of address hits top or bottom.
   616 // Also, asserts a cross-check of the type against the expected address type.
   617 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   618   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   619   #ifdef PRODUCT
   620   cross_check = NULL;
   621   #else
   622   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   623   #endif
   624   const TypePtr* tp = t->isa_ptr();
   625   if (tp == NULL) {
   626     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   627     return TypePtr::BOTTOM;           // touches lots of memory
   628   } else {
   629     #ifdef ASSERT
   630     // %%%% [phh] We don't check the alias index if cross_check is
   631     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   632     if (cross_check != NULL &&
   633         cross_check != TypePtr::BOTTOM &&
   634         cross_check != TypeRawPtr::BOTTOM) {
   635       // Recheck the alias index, to see if it has changed (due to a bug).
   636       Compile* C = Compile::current();
   637       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   638              "must stay in the original alias category");
   639       // The type of the address must be contained in the adr_type,
   640       // disregarding "null"-ness.
   641       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   642       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   643       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
   644              "real address must not escape from expected memory type");
   645     }
   646     #endif
   647     return tp;
   648   }
   649 }
   651 //------------------------adr_phi_is_loop_invariant----------------------------
   652 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   653 // loop is loop invariant. Make a quick traversal of Phi and associated
   654 // CastPP nodes, looking to see if they are a closed group within the loop.
   655 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   656   // The idea is that the phi-nest must boil down to only CastPP nodes
   657   // with the same data. This implies that any path into the loop already
   658   // includes such a CastPP, and so the original cast, whatever its input,
   659   // must be covered by an equivalent cast, with an earlier control input.
   660   ResourceMark rm;
   662   // The loop entry input of the phi should be the unique dominating
   663   // node for every Phi/CastPP in the loop.
   664   Unique_Node_List closure;
   665   closure.push(adr_phi->in(LoopNode::EntryControl));
   667   // Add the phi node and the cast to the worklist.
   668   Unique_Node_List worklist;
   669   worklist.push(adr_phi);
   670   if( cast != NULL ){
   671     if( !cast->is_ConstraintCast() ) return false;
   672     worklist.push(cast);
   673   }
   675   // Begin recursive walk of phi nodes.
   676   while( worklist.size() ){
   677     // Take a node off the worklist
   678     Node *n = worklist.pop();
   679     if( !closure.member(n) ){
   680       // Add it to the closure.
   681       closure.push(n);
   682       // Make a sanity check to ensure we don't waste too much time here.
   683       if( closure.size() > 20) return false;
   684       // This node is OK if:
   685       //  - it is a cast of an identical value
   686       //  - or it is a phi node (then we add its inputs to the worklist)
   687       // Otherwise, the node is not OK, and we presume the cast is not invariant
   688       if( n->is_ConstraintCast() ){
   689         worklist.push(n->in(1));
   690       } else if( n->is_Phi() ) {
   691         for( uint i = 1; i < n->req(); i++ ) {
   692           worklist.push(n->in(i));
   693         }
   694       } else {
   695         return false;
   696       }
   697     }
   698   }
   700   // Quit when the worklist is empty, and we've found no offending nodes.
   701   return true;
   702 }
   704 //------------------------------Ideal_DU_postCCP-------------------------------
   705 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   706 // going away in this pass and we need to make this memory op depend on the
   707 // gating null check.
   708 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   709   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   710 }
   712 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   713 // some sense; we get to keep around the knowledge that an oop is not-null
   714 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   715 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   716 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   717 // some of the more trivial cases in the optimizer.  Removing more useless
   718 // Phi's started allowing Loads to illegally float above null checks.  I gave
   719 // up on this approach.  CNC 10/20/2000
   720 // This static method may be called not from MemNode (EncodePNode calls it).
   721 // Only the control edge of the node 'n' might be updated.
   722 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   723   Node *skipped_cast = NULL;
   724   // Need a null check?  Regular static accesses do not because they are
   725   // from constant addresses.  Array ops are gated by the range check (which
   726   // always includes a NULL check).  Just check field ops.
   727   if( n->in(MemNode::Control) == NULL ) {
   728     // Scan upwards for the highest location we can place this memory op.
   729     while( true ) {
   730       switch( adr->Opcode() ) {
   732       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   733         adr = adr->in(AddPNode::Base);
   734         continue;
   736       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   737       case Op_DecodeNKlass:
   738         adr = adr->in(1);
   739         continue;
   741       case Op_EncodeP:
   742       case Op_EncodePKlass:
   743         // EncodeP node's control edge could be set by this method
   744         // when EncodeP node depends on CastPP node.
   745         //
   746         // Use its control edge for memory op because EncodeP may go away
   747         // later when it is folded with following or preceding DecodeN node.
   748         if (adr->in(0) == NULL) {
   749           // Keep looking for cast nodes.
   750           adr = adr->in(1);
   751           continue;
   752         }
   753         ccp->hash_delete(n);
   754         n->set_req(MemNode::Control, adr->in(0));
   755         ccp->hash_insert(n);
   756         return n;
   758       case Op_CastPP:
   759         // If the CastPP is useless, just peek on through it.
   760         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   761           // Remember the cast that we've peeked though. If we peek
   762           // through more than one, then we end up remembering the highest
   763           // one, that is, if in a loop, the one closest to the top.
   764           skipped_cast = adr;
   765           adr = adr->in(1);
   766           continue;
   767         }
   768         // CastPP is going away in this pass!  We need this memory op to be
   769         // control-dependent on the test that is guarding the CastPP.
   770         ccp->hash_delete(n);
   771         n->set_req(MemNode::Control, adr->in(0));
   772         ccp->hash_insert(n);
   773         return n;
   775       case Op_Phi:
   776         // Attempt to float above a Phi to some dominating point.
   777         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   778           // If we've already peeked through a Cast (which could have set the
   779           // control), we can't float above a Phi, because the skipped Cast
   780           // may not be loop invariant.
   781           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   782             adr = adr->in(1);
   783             continue;
   784           }
   785         }
   787         // Intentional fallthrough!
   789         // No obvious dominating point.  The mem op is pinned below the Phi
   790         // by the Phi itself.  If the Phi goes away (no true value is merged)
   791         // then the mem op can float, but not indefinitely.  It must be pinned
   792         // behind the controls leading to the Phi.
   793       case Op_CheckCastPP:
   794         // These usually stick around to change address type, however a
   795         // useless one can be elided and we still need to pick up a control edge
   796         if (adr->in(0) == NULL) {
   797           // This CheckCastPP node has NO control and is likely useless. But we
   798           // need check further up the ancestor chain for a control input to keep
   799           // the node in place. 4959717.
   800           skipped_cast = adr;
   801           adr = adr->in(1);
   802           continue;
   803         }
   804         ccp->hash_delete(n);
   805         n->set_req(MemNode::Control, adr->in(0));
   806         ccp->hash_insert(n);
   807         return n;
   809         // List of "safe" opcodes; those that implicitly block the memory
   810         // op below any null check.
   811       case Op_CastX2P:          // no null checks on native pointers
   812       case Op_Parm:             // 'this' pointer is not null
   813       case Op_LoadP:            // Loading from within a klass
   814       case Op_LoadN:            // Loading from within a klass
   815       case Op_LoadKlass:        // Loading from within a klass
   816       case Op_LoadNKlass:       // Loading from within a klass
   817       case Op_ConP:             // Loading from a klass
   818       case Op_ConN:             // Loading from a klass
   819       case Op_ConNKlass:        // Loading from a klass
   820       case Op_CreateEx:         // Sucking up the guts of an exception oop
   821       case Op_Con:              // Reading from TLS
   822       case Op_CMoveP:           // CMoveP is pinned
   823       case Op_CMoveN:           // CMoveN is pinned
   824         break;                  // No progress
   826       case Op_Proj:             // Direct call to an allocation routine
   827       case Op_SCMemProj:        // Memory state from store conditional ops
   828 #ifdef ASSERT
   829         {
   830           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   831           const Node* call = adr->in(0);
   832           if (call->is_CallJava()) {
   833             const CallJavaNode* call_java = call->as_CallJava();
   834             const TypeTuple *r = call_java->tf()->range();
   835             assert(r->cnt() > TypeFunc::Parms, "must return value");
   836             const Type* ret_type = r->field_at(TypeFunc::Parms);
   837             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   838             // We further presume that this is one of
   839             // new_instance_Java, new_array_Java, or
   840             // the like, but do not assert for this.
   841           } else if (call->is_Allocate()) {
   842             // similar case to new_instance_Java, etc.
   843           } else if (!call->is_CallLeaf()) {
   844             // Projections from fetch_oop (OSR) are allowed as well.
   845             ShouldNotReachHere();
   846           }
   847         }
   848 #endif
   849         break;
   850       default:
   851         ShouldNotReachHere();
   852       }
   853       break;
   854     }
   855   }
   857   return  NULL;               // No progress
   858 }
   861 //=============================================================================
   862 // Should LoadNode::Ideal() attempt to remove control edges?
   863 bool LoadNode::can_remove_control() const {
   864   return true;
   865 }
   866 uint LoadNode::size_of() const { return sizeof(*this); }
   867 uint LoadNode::cmp( const Node &n ) const
   868 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   869 const Type *LoadNode::bottom_type() const { return _type; }
   870 uint LoadNode::ideal_reg() const {
   871   return _type->ideal_reg();
   872 }
   874 #ifndef PRODUCT
   875 void LoadNode::dump_spec(outputStream *st) const {
   876   MemNode::dump_spec(st);
   877   if( !Verbose && !WizardMode ) {
   878     // standard dump does this in Verbose and WizardMode
   879     st->print(" #"); _type->dump_on(st);
   880   }
   881 }
   882 #endif
   884 #ifdef ASSERT
   885 //----------------------------is_immutable_value-------------------------------
   886 // Helper function to allow a raw load without control edge for some cases
   887 bool LoadNode::is_immutable_value(Node* adr) {
   888   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   889           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   890           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   891            in_bytes(JavaThread::osthread_offset())));
   892 }
   893 #endif
   895 //----------------------------LoadNode::make-----------------------------------
   896 // Polymorphic factory method:
   897 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
   898   Compile* C = gvn.C;
   900   // sanity check the alias category against the created node type
   901   assert(!(adr_type->isa_oopptr() &&
   902            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   903          "use LoadKlassNode instead");
   904   assert(!(adr_type->isa_aryptr() &&
   905            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   906          "use LoadRangeNode instead");
   907   // Check control edge of raw loads
   908   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   909           // oop will be recorded in oop map if load crosses safepoint
   910           rt->isa_oopptr() || is_immutable_value(adr),
   911           "raw memory operations should have control edge");
   912   switch (bt) {
   913   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
   914   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
   915   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
   916   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
   917   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
   918   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
   919   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt,            mo);
   920   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt,            mo);
   921   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo);
   922   case T_OBJECT:
   923 #ifdef _LP64
   924     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   925       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
   926       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
   927     } else
   928 #endif
   929     {
   930       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
   931       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
   932     }
   933   }
   934   ShouldNotReachHere();
   935   return (LoadNode*)NULL;
   936 }
   938 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
   939   bool require_atomic = true;
   940   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
   941 }
   946 //------------------------------hash-------------------------------------------
   947 uint LoadNode::hash() const {
   948   // unroll addition of interesting fields
   949   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   950 }
   952 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
   953   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
   954     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
   955     bool is_stable_ary = FoldStableValues &&
   956                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
   957                          tp->isa_aryptr()->is_stable();
   959     return (eliminate_boxing && non_volatile) || is_stable_ary;
   960   }
   962   return false;
   963 }
   965 //---------------------------can_see_stored_value------------------------------
   966 // This routine exists to make sure this set of tests is done the same
   967 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   968 // will change the graph shape in a way which makes memory alive twice at the
   969 // same time (uses the Oracle model of aliasing), then some
   970 // LoadXNode::Identity will fold things back to the equivalence-class model
   971 // of aliasing.
   972 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   973   Node* ld_adr = in(MemNode::Address);
   974   intptr_t ld_off = 0;
   975   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   976   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   977   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
   978   // This is more general than load from boxing objects.
   979   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
   980     uint alias_idx = atp->index();
   981     bool final = !atp->is_rewritable();
   982     Node* result = NULL;
   983     Node* current = st;
   984     // Skip through chains of MemBarNodes checking the MergeMems for
   985     // new states for the slice of this load.  Stop once any other
   986     // kind of node is encountered.  Loads from final memory can skip
   987     // through any kind of MemBar but normal loads shouldn't skip
   988     // through MemBarAcquire since the could allow them to move out of
   989     // a synchronized region.
   990     while (current->is_Proj()) {
   991       int opc = current->in(0)->Opcode();
   992       if ((final && (opc == Op_MemBarAcquire ||
   993                      opc == Op_MemBarAcquireLock ||
   994                      opc == Op_LoadFence)) ||
   995           opc == Op_MemBarRelease ||
   996           opc == Op_StoreFence ||
   997           opc == Op_MemBarReleaseLock ||
   998           opc == Op_MemBarCPUOrder) {
   999         Node* mem = current->in(0)->in(TypeFunc::Memory);
  1000         if (mem->is_MergeMem()) {
  1001           MergeMemNode* merge = mem->as_MergeMem();
  1002           Node* new_st = merge->memory_at(alias_idx);
  1003           if (new_st == merge->base_memory()) {
  1004             // Keep searching
  1005             current = new_st;
  1006             continue;
  1008           // Save the new memory state for the slice and fall through
  1009           // to exit.
  1010           result = new_st;
  1013       break;
  1015     if (result != NULL) {
  1016       st = result;
  1020   // Loop around twice in the case Load -> Initialize -> Store.
  1021   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
  1022   for (int trip = 0; trip <= 1; trip++) {
  1024     if (st->is_Store()) {
  1025       Node* st_adr = st->in(MemNode::Address);
  1026       if (!phase->eqv(st_adr, ld_adr)) {
  1027         // Try harder before giving up...  Match raw and non-raw pointers.
  1028         intptr_t st_off = 0;
  1029         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
  1030         if (alloc == NULL)       return NULL;
  1031         if (alloc != ld_alloc)   return NULL;
  1032         if (ld_off != st_off)    return NULL;
  1033         // At this point we have proven something like this setup:
  1034         //  A = Allocate(...)
  1035         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
  1036         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
  1037         // (Actually, we haven't yet proven the Q's are the same.)
  1038         // In other words, we are loading from a casted version of
  1039         // the same pointer-and-offset that we stored to.
  1040         // Thus, we are able to replace L by V.
  1042       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
  1043       if (store_Opcode() != st->Opcode())
  1044         return NULL;
  1045       return st->in(MemNode::ValueIn);
  1048     // A load from a freshly-created object always returns zero.
  1049     // (This can happen after LoadNode::Ideal resets the load's memory input
  1050     // to find_captured_store, which returned InitializeNode::zero_memory.)
  1051     if (st->is_Proj() && st->in(0)->is_Allocate() &&
  1052         (st->in(0) == ld_alloc) &&
  1053         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
  1054       // return a zero value for the load's basic type
  1055       // (This is one of the few places where a generic PhaseTransform
  1056       // can create new nodes.  Think of it as lazily manifesting
  1057       // virtually pre-existing constants.)
  1058       return phase->zerocon(memory_type());
  1061     // A load from an initialization barrier can match a captured store.
  1062     if (st->is_Proj() && st->in(0)->is_Initialize()) {
  1063       InitializeNode* init = st->in(0)->as_Initialize();
  1064       AllocateNode* alloc = init->allocation();
  1065       if ((alloc != NULL) && (alloc == ld_alloc)) {
  1066         // examine a captured store value
  1067         st = init->find_captured_store(ld_off, memory_size(), phase);
  1068         if (st != NULL)
  1069           continue;             // take one more trip around
  1073     // Load boxed value from result of valueOf() call is input parameter.
  1074     if (this->is_Load() && ld_adr->is_AddP() &&
  1075         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
  1076       intptr_t ignore = 0;
  1077       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
  1078       if (base != NULL && base->is_Proj() &&
  1079           base->as_Proj()->_con == TypeFunc::Parms &&
  1080           base->in(0)->is_CallStaticJava() &&
  1081           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
  1082         return base->in(0)->in(TypeFunc::Parms);
  1086     break;
  1089   return NULL;
  1092 //----------------------is_instance_field_load_with_local_phi------------------
  1093 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1094   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
  1095       in(Address)->is_AddP() ) {
  1096     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
  1097     // Only instances and boxed values.
  1098     if( t_oop != NULL &&
  1099         (t_oop->is_ptr_to_boxed_value() ||
  1100          t_oop->is_known_instance_field()) &&
  1101         t_oop->offset() != Type::OffsetBot &&
  1102         t_oop->offset() != Type::OffsetTop) {
  1103       return true;
  1106   return false;
  1109 //------------------------------Identity---------------------------------------
  1110 // Loads are identity if previous store is to same address
  1111 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1112   // If the previous store-maker is the right kind of Store, and the store is
  1113   // to the same address, then we are equal to the value stored.
  1114   Node* mem = in(Memory);
  1115   Node* value = can_see_stored_value(mem, phase);
  1116   if( value ) {
  1117     // byte, short & char stores truncate naturally.
  1118     // A load has to load the truncated value which requires
  1119     // some sort of masking operation and that requires an
  1120     // Ideal call instead of an Identity call.
  1121     if (memory_size() < BytesPerInt) {
  1122       // If the input to the store does not fit with the load's result type,
  1123       // it must be truncated via an Ideal call.
  1124       if (!phase->type(value)->higher_equal(phase->type(this)))
  1125         return this;
  1127     // (This works even when value is a Con, but LoadNode::Value
  1128     // usually runs first, producing the singleton type of the Con.)
  1129     return value;
  1132   // Search for an existing data phi which was generated before for the same
  1133   // instance's field to avoid infinite generation of phis in a loop.
  1134   Node *region = mem->in(0);
  1135   if (is_instance_field_load_with_local_phi(region)) {
  1136     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
  1137     int this_index  = phase->C->get_alias_index(addr_t);
  1138     int this_offset = addr_t->offset();
  1139     int this_iid    = addr_t->instance_id();
  1140     if (!addr_t->is_known_instance() &&
  1141          addr_t->is_ptr_to_boxed_value()) {
  1142       // Use _idx of address base (could be Phi node) for boxed values.
  1143       intptr_t   ignore = 0;
  1144       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
  1145       this_iid = base->_idx;
  1147     const Type* this_type = bottom_type();
  1148     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1149       Node* phi = region->fast_out(i);
  1150       if (phi->is_Phi() && phi != mem &&
  1151           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
  1152         return phi;
  1157   return this;
  1160 // We're loading from an object which has autobox behaviour.
  1161 // If this object is result of a valueOf call we'll have a phi
  1162 // merging a newly allocated object and a load from the cache.
  1163 // We want to replace this load with the original incoming
  1164 // argument to the valueOf call.
  1165 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1166   assert(phase->C->eliminate_boxing(), "sanity");
  1167   intptr_t ignore = 0;
  1168   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
  1169   if ((base == NULL) || base->is_Phi()) {
  1170     // Push the loads from the phi that comes from valueOf up
  1171     // through it to allow elimination of the loads and the recovery
  1172     // of the original value. It is done in split_through_phi().
  1173     return NULL;
  1174   } else if (base->is_Load() ||
  1175              base->is_DecodeN() && base->in(1)->is_Load()) {
  1176     // Eliminate the load of boxed value for integer types from the cache
  1177     // array by deriving the value from the index into the array.
  1178     // Capture the offset of the load and then reverse the computation.
  1180     // Get LoadN node which loads a boxing object from 'cache' array.
  1181     if (base->is_DecodeN()) {
  1182       base = base->in(1);
  1184     if (!base->in(Address)->is_AddP()) {
  1185       return NULL; // Complex address
  1187     AddPNode* address = base->in(Address)->as_AddP();
  1188     Node* cache_base = address->in(AddPNode::Base);
  1189     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
  1190       // Get ConP node which is static 'cache' field.
  1191       cache_base = cache_base->in(1);
  1193     if ((cache_base != NULL) && cache_base->is_Con()) {
  1194       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
  1195       if ((base_type != NULL) && base_type->is_autobox_cache()) {
  1196         Node* elements[4];
  1197         int shift = exact_log2(type2aelembytes(T_OBJECT));
  1198         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
  1199         if ((count >  0) && elements[0]->is_Con() &&
  1200             ((count == 1) ||
  1201              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
  1202                              elements[1]->in(2) == phase->intcon(shift))) {
  1203           ciObjArray* array = base_type->const_oop()->as_obj_array();
  1204           // Fetch the box object cache[0] at the base of the array and get its value
  1205           ciInstance* box = array->obj_at(0)->as_instance();
  1206           ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1207           assert(ik->is_box_klass(), "sanity");
  1208           assert(ik->nof_nonstatic_fields() == 1, "change following code");
  1209           if (ik->nof_nonstatic_fields() == 1) {
  1210             // This should be true nonstatic_field_at requires calling
  1211             // nof_nonstatic_fields so check it anyway
  1212             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1213             BasicType bt = c.basic_type();
  1214             // Only integer types have boxing cache.
  1215             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
  1216                    bt == T_BYTE    || bt == T_SHORT ||
  1217                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
  1218             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
  1219             if (cache_low != (int)cache_low) {
  1220               return NULL; // should not happen since cache is array indexed by value
  1222             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
  1223             if (offset != (int)offset) {
  1224               return NULL; // should not happen since cache is array indexed by value
  1226            // Add up all the offsets making of the address of the load
  1227             Node* result = elements[0];
  1228             for (int i = 1; i < count; i++) {
  1229               result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
  1231             // Remove the constant offset from the address and then
  1232             result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
  1233             // remove the scaling of the offset to recover the original index.
  1234             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1235               // Peel the shift off directly but wrap it in a dummy node
  1236               // since Ideal can't return existing nodes
  1237               result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
  1238             } else if (result->is_Add() && result->in(2)->is_Con() &&
  1239                        result->in(1)->Opcode() == Op_LShiftX &&
  1240                        result->in(1)->in(2) == phase->intcon(shift)) {
  1241               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
  1242               // but for boxing cache access we know that X<<Z will not overflow
  1243               // (there is range check) so we do this optimizatrion by hand here.
  1244               Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
  1245               result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
  1246             } else {
  1247               result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
  1249 #ifdef _LP64
  1250             if (bt != T_LONG) {
  1251               result = new (phase->C) ConvL2INode(phase->transform(result));
  1253 #else
  1254             if (bt == T_LONG) {
  1255               result = new (phase->C) ConvI2LNode(phase->transform(result));
  1257 #endif
  1258             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
  1259             // Need to preserve unboxing load type if it is unsigned.
  1260             switch(this->Opcode()) {
  1261               case Op_LoadUB:
  1262                 result = new (phase->C) AndINode(phase->transform(result), phase->intcon(0xFF));
  1263                 break;
  1264               case Op_LoadUS:
  1265                 result = new (phase->C) AndINode(phase->transform(result), phase->intcon(0xFFFF));
  1266                 break;
  1268             return result;
  1274   return NULL;
  1277 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
  1278   Node* region = phi->in(0);
  1279   if (region == NULL) {
  1280     return false; // Wait stable graph
  1282   uint cnt = phi->req();
  1283   for (uint i = 1; i < cnt; i++) {
  1284     Node* rc = region->in(i);
  1285     if (rc == NULL || phase->type(rc) == Type::TOP)
  1286       return false; // Wait stable graph
  1287     Node* in = phi->in(i);
  1288     if (in == NULL || phase->type(in) == Type::TOP)
  1289       return false; // Wait stable graph
  1291   return true;
  1293 //------------------------------split_through_phi------------------------------
  1294 // Split instance or boxed field load through Phi.
  1295 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1296   Node* mem     = in(Memory);
  1297   Node* address = in(Address);
  1298   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
  1300   assert((t_oop != NULL) &&
  1301          (t_oop->is_known_instance_field() ||
  1302           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
  1304   Compile* C = phase->C;
  1305   intptr_t ignore = 0;
  1306   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1307   bool base_is_phi = (base != NULL) && base->is_Phi();
  1308   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
  1309                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
  1310                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
  1312   if (!((mem->is_Phi() || base_is_phi) &&
  1313         (load_boxed_values || t_oop->is_known_instance_field()))) {
  1314     return NULL; // memory is not Phi
  1317   if (mem->is_Phi()) {
  1318     if (!stable_phi(mem->as_Phi(), phase)) {
  1319       return NULL; // Wait stable graph
  1321     uint cnt = mem->req();
  1322     // Check for loop invariant memory.
  1323     if (cnt == 3) {
  1324       for (uint i = 1; i < cnt; i++) {
  1325         Node* in = mem->in(i);
  1326         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
  1327         if (m == mem) {
  1328           set_req(Memory, mem->in(cnt - i));
  1329           return this; // made change
  1334   if (base_is_phi) {
  1335     if (!stable_phi(base->as_Phi(), phase)) {
  1336       return NULL; // Wait stable graph
  1338     uint cnt = base->req();
  1339     // Check for loop invariant memory.
  1340     if (cnt == 3) {
  1341       for (uint i = 1; i < cnt; i++) {
  1342         if (base->in(i) == base) {
  1343           return NULL; // Wait stable graph
  1349   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
  1351   // Split through Phi (see original code in loopopts.cpp).
  1352   assert(C->have_alias_type(t_oop), "instance should have alias type");
  1354   // Do nothing here if Identity will find a value
  1355   // (to avoid infinite chain of value phis generation).
  1356   if (!phase->eqv(this, this->Identity(phase)))
  1357     return NULL;
  1359   // Select Region to split through.
  1360   Node* region;
  1361   if (!base_is_phi) {
  1362     assert(mem->is_Phi(), "sanity");
  1363     region = mem->in(0);
  1364     // Skip if the region dominates some control edge of the address.
  1365     if (!MemNode::all_controls_dominate(address, region))
  1366       return NULL;
  1367   } else if (!mem->is_Phi()) {
  1368     assert(base_is_phi, "sanity");
  1369     region = base->in(0);
  1370     // Skip if the region dominates some control edge of the memory.
  1371     if (!MemNode::all_controls_dominate(mem, region))
  1372       return NULL;
  1373   } else if (base->in(0) != mem->in(0)) {
  1374     assert(base_is_phi && mem->is_Phi(), "sanity");
  1375     if (MemNode::all_controls_dominate(mem, base->in(0))) {
  1376       region = base->in(0);
  1377     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
  1378       region = mem->in(0);
  1379     } else {
  1380       return NULL; // complex graph
  1382   } else {
  1383     assert(base->in(0) == mem->in(0), "sanity");
  1384     region = mem->in(0);
  1387   const Type* this_type = this->bottom_type();
  1388   int this_index  = C->get_alias_index(t_oop);
  1389   int this_offset = t_oop->offset();
  1390   int this_iid    = t_oop->instance_id();
  1391   if (!t_oop->is_known_instance() && load_boxed_values) {
  1392     // Use _idx of address base for boxed values.
  1393     this_iid = base->_idx;
  1395   PhaseIterGVN* igvn = phase->is_IterGVN();
  1396   Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1397   for (uint i = 1; i < region->req(); i++) {
  1398     Node* x;
  1399     Node* the_clone = NULL;
  1400     if (region->in(i) == C->top()) {
  1401       x = C->top();      // Dead path?  Use a dead data op
  1402     } else {
  1403       x = this->clone();        // Else clone up the data op
  1404       the_clone = x;            // Remember for possible deletion.
  1405       // Alter data node to use pre-phi inputs
  1406       if (this->in(0) == region) {
  1407         x->set_req(0, region->in(i));
  1408       } else {
  1409         x->set_req(0, NULL);
  1411       if (mem->is_Phi() && (mem->in(0) == region)) {
  1412         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
  1414       if (address->is_Phi() && address->in(0) == region) {
  1415         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
  1417       if (base_is_phi && (base->in(0) == region)) {
  1418         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
  1419         Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
  1420         x->set_req(Address, adr_x);
  1423     // Check for a 'win' on some paths
  1424     const Type *t = x->Value(igvn);
  1426     bool singleton = t->singleton();
  1428     // See comments in PhaseIdealLoop::split_thru_phi().
  1429     if (singleton && t == Type::TOP) {
  1430       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1433     if (singleton) {
  1434       x = igvn->makecon(t);
  1435     } else {
  1436       // We now call Identity to try to simplify the cloned node.
  1437       // Note that some Identity methods call phase->type(this).
  1438       // Make sure that the type array is big enough for
  1439       // our new node, even though we may throw the node away.
  1440       // (This tweaking with igvn only works because x is a new node.)
  1441       igvn->set_type(x, t);
  1442       // If x is a TypeNode, capture any more-precise type permanently into Node
  1443       // otherwise it will be not updated during igvn->transform since
  1444       // igvn->type(x) is set to x->Value() already.
  1445       x->raise_bottom_type(t);
  1446       Node *y = x->Identity(igvn);
  1447       if (y != x) {
  1448         x = y;
  1449       } else {
  1450         y = igvn->hash_find_insert(x);
  1451         if (y) {
  1452           x = y;
  1453         } else {
  1454           // Else x is a new node we are keeping
  1455           // We do not need register_new_node_with_optimizer
  1456           // because set_type has already been called.
  1457           igvn->_worklist.push(x);
  1461     if (x != the_clone && the_clone != NULL) {
  1462       igvn->remove_dead_node(the_clone);
  1464     phi->set_req(i, x);
  1466   // Record Phi
  1467   igvn->register_new_node_with_optimizer(phi);
  1468   return phi;
  1471 //------------------------------Ideal------------------------------------------
  1472 // If the load is from Field memory and the pointer is non-null, it might be possible to
  1473 // zero out the control input.
  1474 // If the offset is constant and the base is an object allocation,
  1475 // try to hook me up to the exact initializing store.
  1476 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1477   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1478   if (p)  return (p == NodeSentinel) ? NULL : p;
  1480   Node* ctrl    = in(MemNode::Control);
  1481   Node* address = in(MemNode::Address);
  1483   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1484   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1485   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1486       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1487     ctrl = ctrl->in(0);
  1488     set_req(MemNode::Control,ctrl);
  1491   intptr_t ignore = 0;
  1492   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1493   if (base != NULL
  1494       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1495     // Check for useless control edge in some common special cases
  1496     if (in(MemNode::Control) != NULL
  1497         && can_remove_control()
  1498         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1499         && all_controls_dominate(base, phase->C->start())) {
  1500       // A method-invariant, non-null address (constant or 'this' argument).
  1501       set_req(MemNode::Control, NULL);
  1505   Node* mem = in(MemNode::Memory);
  1506   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1508   if (can_reshape && (addr_t != NULL)) {
  1509     // try to optimize our memory input
  1510     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
  1511     if (opt_mem != mem) {
  1512       set_req(MemNode::Memory, opt_mem);
  1513       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1514       return this;
  1516     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1517     if ((t_oop != NULL) &&
  1518         (t_oop->is_known_instance_field() ||
  1519          t_oop->is_ptr_to_boxed_value())) {
  1520       PhaseIterGVN *igvn = phase->is_IterGVN();
  1521       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
  1522         // Delay this transformation until memory Phi is processed.
  1523         phase->is_IterGVN()->_worklist.push(this);
  1524         return NULL;
  1526       // Split instance field load through Phi.
  1527       Node* result = split_through_phi(phase);
  1528       if (result != NULL) return result;
  1530       if (t_oop->is_ptr_to_boxed_value()) {
  1531         Node* result = eliminate_autobox(phase);
  1532         if (result != NULL) return result;
  1537   // Check for prior store with a different base or offset; make Load
  1538   // independent.  Skip through any number of them.  Bail out if the stores
  1539   // are in an endless dead cycle and report no progress.  This is a key
  1540   // transform for Reflection.  However, if after skipping through the Stores
  1541   // we can't then fold up against a prior store do NOT do the transform as
  1542   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1543   // array memory alive twice: once for the hoisted Load and again after the
  1544   // bypassed Store.  This situation only works if EVERYBODY who does
  1545   // anti-dependence work knows how to bypass.  I.e. we need all
  1546   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1547   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1548   // fold up, do so.
  1549   Node* prev_mem = find_previous_store(phase);
  1550   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1551   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1552     // (c) See if we can fold up on the spot, but don't fold up here.
  1553     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1554     // just return a prior value, which is done by Identity calls.
  1555     if (can_see_stored_value(prev_mem, phase)) {
  1556       // Make ready for step (d):
  1557       set_req(MemNode::Memory, prev_mem);
  1558       return this;
  1562   return NULL;                  // No further progress
  1565 // Helper to recognize certain Klass fields which are invariant across
  1566 // some group of array types (e.g., int[] or all T[] where T < Object).
  1567 const Type*
  1568 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1569                                  ciKlass* klass) const {
  1570   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
  1571     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1572     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1573     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1574     return TypeInt::make(klass->modifier_flags());
  1576   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
  1577     // The field is Klass::_access_flags.  Return its (constant) value.
  1578     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1579     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1580     return TypeInt::make(klass->access_flags());
  1582   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
  1583     // The field is Klass::_layout_helper.  Return its constant value if known.
  1584     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1585     return TypeInt::make(klass->layout_helper());
  1588   // No match.
  1589   return NULL;
  1592 // Try to constant-fold a stable array element.
  1593 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
  1594   assert(ary->const_oop(), "array should be constant");
  1595   assert(ary->is_stable(), "array should be stable");
  1597   // Decode the results of GraphKit::array_element_address.
  1598   ciArray* aobj = ary->const_oop()->as_array();
  1599   ciConstant con = aobj->element_value_by_offset(off);
  1601   if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
  1602     const Type* con_type = Type::make_from_constant(con);
  1603     if (con_type != NULL) {
  1604       if (con_type->isa_aryptr()) {
  1605         // Join with the array element type, in case it is also stable.
  1606         int dim = ary->stable_dimension();
  1607         con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
  1609       if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
  1610         con_type = con_type->make_narrowoop();
  1612 #ifndef PRODUCT
  1613       if (TraceIterativeGVN) {
  1614         tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
  1615         con_type->dump(); tty->cr();
  1617 #endif //PRODUCT
  1618       return con_type;
  1621   return NULL;
  1624 //------------------------------Value-----------------------------------------
  1625 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1626   // Either input is TOP ==> the result is TOP
  1627   Node* mem = in(MemNode::Memory);
  1628   const Type *t1 = phase->type(mem);
  1629   if (t1 == Type::TOP)  return Type::TOP;
  1630   Node* adr = in(MemNode::Address);
  1631   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1632   if (tp == NULL || tp->empty())  return Type::TOP;
  1633   int off = tp->offset();
  1634   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1635   Compile* C = phase->C;
  1637   // Try to guess loaded type from pointer type
  1638   if (tp->isa_aryptr()) {
  1639     const TypeAryPtr* ary = tp->is_aryptr();
  1640     const Type* t = ary->elem();
  1642     // Determine whether the reference is beyond the header or not, by comparing
  1643     // the offset against the offset of the start of the array's data.
  1644     // Different array types begin at slightly different offsets (12 vs. 16).
  1645     // We choose T_BYTE as an example base type that is least restrictive
  1646     // as to alignment, which will therefore produce the smallest
  1647     // possible base offset.
  1648     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1649     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
  1651     // Try to constant-fold a stable array element.
  1652     if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
  1653       // Make sure the reference is not into the header and the offset is constant
  1654       if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
  1655         const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
  1656         if (con_type != NULL) {
  1657           return con_type;
  1662     // Don't do this for integer types. There is only potential profit if
  1663     // the element type t is lower than _type; that is, for int types, if _type is
  1664     // more restrictive than t.  This only happens here if one is short and the other
  1665     // char (both 16 bits), and in those cases we've made an intentional decision
  1666     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1667     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1668     //
  1669     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1670     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1671     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1672     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1673     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1674     // In fact, that could have been the original type of p1, and p1 could have
  1675     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1676     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1677     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1678         && (_type->isa_vect() == NULL)
  1679         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1680       // t might actually be lower than _type, if _type is a unique
  1681       // concrete subclass of abstract class t.
  1682       if (off_beyond_header) {  // is the offset beyond the header?
  1683         const Type* jt = t->join_speculative(_type);
  1684         // In any case, do not allow the join, per se, to empty out the type.
  1685         if (jt->empty() && !t->empty()) {
  1686           // This can happen if a interface-typed array narrows to a class type.
  1687           jt = _type;
  1689 #ifdef ASSERT
  1690         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
  1691           // The pointers in the autobox arrays are always non-null
  1692           Node* base = adr->in(AddPNode::Base);
  1693           if ((base != NULL) && base->is_DecodeN()) {
  1694             // Get LoadN node which loads IntegerCache.cache field
  1695             base = base->in(1);
  1697           if ((base != NULL) && base->is_Con()) {
  1698             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
  1699             if ((base_type != NULL) && base_type->is_autobox_cache()) {
  1700               // It could be narrow oop
  1701               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
  1705 #endif
  1706         return jt;
  1709   } else if (tp->base() == Type::InstPtr) {
  1710     ciEnv* env = C->env();
  1711     const TypeInstPtr* tinst = tp->is_instptr();
  1712     ciKlass* klass = tinst->klass();
  1713     assert( off != Type::OffsetBot ||
  1714             // arrays can be cast to Objects
  1715             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1716             // unsafe field access may not have a constant offset
  1717             C->has_unsafe_access(),
  1718             "Field accesses must be precise" );
  1719     // For oop loads, we expect the _type to be precise
  1720     if (klass == env->String_klass() &&
  1721         adr->is_AddP() && off != Type::OffsetBot) {
  1722       // For constant Strings treat the final fields as compile time constants.
  1723       Node* base = adr->in(AddPNode::Base);
  1724       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1725       if (t != NULL && t->singleton()) {
  1726         ciField* field = env->String_klass()->get_field_by_offset(off, false);
  1727         if (field != NULL && field->is_final()) {
  1728           ciObject* string = t->const_oop();
  1729           ciConstant constant = string->as_instance()->field_value(field);
  1730           if (constant.basic_type() == T_INT) {
  1731             return TypeInt::make(constant.as_int());
  1732           } else if (constant.basic_type() == T_ARRAY) {
  1733             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1734               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1735             } else {
  1736               return TypeOopPtr::make_from_constant(constant.as_object(), true);
  1742     // Optimizations for constant objects
  1743     ciObject* const_oop = tinst->const_oop();
  1744     if (const_oop != NULL) {
  1745       // For constant Boxed value treat the target field as a compile time constant.
  1746       if (tinst->is_ptr_to_boxed_value()) {
  1747         return tinst->get_const_boxed_value();
  1748       } else
  1749       // For constant CallSites treat the target field as a compile time constant.
  1750       if (const_oop->is_call_site()) {
  1751         ciCallSite* call_site = const_oop->as_call_site();
  1752         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
  1753         if (field != NULL && field->is_call_site_target()) {
  1754           ciMethodHandle* target = call_site->get_target();
  1755           if (target != NULL) {  // just in case
  1756             ciConstant constant(T_OBJECT, target);
  1757             const Type* t;
  1758             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1759               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1760             } else {
  1761               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
  1763             // Add a dependence for invalidation of the optimization.
  1764             if (!call_site->is_constant_call_site()) {
  1765               C->dependencies()->assert_call_site_target_value(call_site, target);
  1767             return t;
  1772   } else if (tp->base() == Type::KlassPtr) {
  1773     assert( off != Type::OffsetBot ||
  1774             // arrays can be cast to Objects
  1775             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1776             // also allow array-loading from the primary supertype
  1777             // array during subtype checks
  1778             Opcode() == Op_LoadKlass,
  1779             "Field accesses must be precise" );
  1780     // For klass/static loads, we expect the _type to be precise
  1783   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1784   if (tkls != NULL && !StressReflectiveCode) {
  1785     ciKlass* klass = tkls->klass();
  1786     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1787       // We are loading a field from a Klass metaobject whose identity
  1788       // is known at compile time (the type is "exact" or "precise").
  1789       // Check for fields we know are maintained as constants by the VM.
  1790       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
  1791         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1792         // (Folds up type checking code.)
  1793         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1794         return TypeInt::make(klass->super_check_offset());
  1796       // Compute index into primary_supers array
  1797       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1798       // Check for overflowing; use unsigned compare to handle the negative case.
  1799       if( depth < ciKlass::primary_super_limit() ) {
  1800         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1801         // (Folds up type checking code.)
  1802         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1803         ciKlass *ss = klass->super_of_depth(depth);
  1804         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1806       const Type* aift = load_array_final_field(tkls, klass);
  1807       if (aift != NULL)  return aift;
  1808       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
  1809           && klass->is_array_klass()) {
  1810         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
  1811         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1812         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1813         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1815       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
  1816         // The field is Klass::_java_mirror.  Return its (constant) value.
  1817         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1818         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1819         return TypeInstPtr::make(klass->java_mirror());
  1823     // We can still check if we are loading from the primary_supers array at a
  1824     // shallow enough depth.  Even though the klass is not exact, entries less
  1825     // than or equal to its super depth are correct.
  1826     if (klass->is_loaded() ) {
  1827       ciType *inner = klass;
  1828       while( inner->is_obj_array_klass() )
  1829         inner = inner->as_obj_array_klass()->base_element_type();
  1830       if( inner->is_instance_klass() &&
  1831           !inner->as_instance_klass()->flags().is_interface() ) {
  1832         // Compute index into primary_supers array
  1833         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1834         // Check for overflowing; use unsigned compare to handle the negative case.
  1835         if( depth < ciKlass::primary_super_limit() &&
  1836             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1837           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1838           // (Folds up type checking code.)
  1839           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1840           ciKlass *ss = klass->super_of_depth(depth);
  1841           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1846     // If the type is enough to determine that the thing is not an array,
  1847     // we can give the layout_helper a positive interval type.
  1848     // This will help short-circuit some reflective code.
  1849     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
  1850         && !klass->is_array_klass() // not directly typed as an array
  1851         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1852         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1853         ) {
  1854       // Note:  When interfaces are reliable, we can narrow the interface
  1855       // test to (klass != Serializable && klass != Cloneable).
  1856       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1857       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1858       // The key property of this type is that it folds up tests
  1859       // for array-ness, since it proves that the layout_helper is positive.
  1860       // Thus, a generic value like the basic object layout helper works fine.
  1861       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1865   // If we are loading from a freshly-allocated object, produce a zero,
  1866   // if the load is provably beyond the header of the object.
  1867   // (Also allow a variable load from a fresh array to produce zero.)
  1868   const TypeOopPtr *tinst = tp->isa_oopptr();
  1869   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
  1870   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
  1871   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
  1872     Node* value = can_see_stored_value(mem,phase);
  1873     if (value != NULL && value->is_Con()) {
  1874       assert(value->bottom_type()->higher_equal(_type),"sanity");
  1875       return value->bottom_type();
  1879   if (is_instance) {
  1880     // If we have an instance type and our memory input is the
  1881     // programs's initial memory state, there is no matching store,
  1882     // so just return a zero of the appropriate type
  1883     Node *mem = in(MemNode::Memory);
  1884     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1885       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1886       return Type::get_zero_type(_type->basic_type());
  1889   return _type;
  1892 //------------------------------match_edge-------------------------------------
  1893 // Do we Match on this edge index or not?  Match only the address.
  1894 uint LoadNode::match_edge(uint idx) const {
  1895   return idx == MemNode::Address;
  1898 //--------------------------LoadBNode::Ideal--------------------------------------
  1899 //
  1900 //  If the previous store is to the same address as this load,
  1901 //  and the value stored was larger than a byte, replace this load
  1902 //  with the value stored truncated to a byte.  If no truncation is
  1903 //  needed, the replacement is done in LoadNode::Identity().
  1904 //
  1905 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1906   Node* mem = in(MemNode::Memory);
  1907   Node* value = can_see_stored_value(mem,phase);
  1908   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1909     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
  1910     return new (phase->C) RShiftINode(result, phase->intcon(24));
  1912   // Identity call will handle the case where truncation is not needed.
  1913   return LoadNode::Ideal(phase, can_reshape);
  1916 const Type* LoadBNode::Value(PhaseTransform *phase) const {
  1917   Node* mem = in(MemNode::Memory);
  1918   Node* value = can_see_stored_value(mem,phase);
  1919   if (value != NULL && value->is_Con() &&
  1920       !value->bottom_type()->higher_equal(_type)) {
  1921     // If the input to the store does not fit with the load's result type,
  1922     // it must be truncated. We can't delay until Ideal call since
  1923     // a singleton Value is needed for split_thru_phi optimization.
  1924     int con = value->get_int();
  1925     return TypeInt::make((con << 24) >> 24);
  1927   return LoadNode::Value(phase);
  1930 //--------------------------LoadUBNode::Ideal-------------------------------------
  1931 //
  1932 //  If the previous store is to the same address as this load,
  1933 //  and the value stored was larger than a byte, replace this load
  1934 //  with the value stored truncated to a byte.  If no truncation is
  1935 //  needed, the replacement is done in LoadNode::Identity().
  1936 //
  1937 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1938   Node* mem = in(MemNode::Memory);
  1939   Node* value = can_see_stored_value(mem, phase);
  1940   if (value && !phase->type(value)->higher_equal(_type))
  1941     return new (phase->C) AndINode(value, phase->intcon(0xFF));
  1942   // Identity call will handle the case where truncation is not needed.
  1943   return LoadNode::Ideal(phase, can_reshape);
  1946 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
  1947   Node* mem = in(MemNode::Memory);
  1948   Node* value = can_see_stored_value(mem,phase);
  1949   if (value != NULL && value->is_Con() &&
  1950       !value->bottom_type()->higher_equal(_type)) {
  1951     // If the input to the store does not fit with the load's result type,
  1952     // it must be truncated. We can't delay until Ideal call since
  1953     // a singleton Value is needed for split_thru_phi optimization.
  1954     int con = value->get_int();
  1955     return TypeInt::make(con & 0xFF);
  1957   return LoadNode::Value(phase);
  1960 //--------------------------LoadUSNode::Ideal-------------------------------------
  1961 //
  1962 //  If the previous store is to the same address as this load,
  1963 //  and the value stored was larger than a char, replace this load
  1964 //  with the value stored truncated to a char.  If no truncation is
  1965 //  needed, the replacement is done in LoadNode::Identity().
  1966 //
  1967 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1968   Node* mem = in(MemNode::Memory);
  1969   Node* value = can_see_stored_value(mem,phase);
  1970   if( value && !phase->type(value)->higher_equal( _type ) )
  1971     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
  1972   // Identity call will handle the case where truncation is not needed.
  1973   return LoadNode::Ideal(phase, can_reshape);
  1976 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
  1977   Node* mem = in(MemNode::Memory);
  1978   Node* value = can_see_stored_value(mem,phase);
  1979   if (value != NULL && value->is_Con() &&
  1980       !value->bottom_type()->higher_equal(_type)) {
  1981     // If the input to the store does not fit with the load's result type,
  1982     // it must be truncated. We can't delay until Ideal call since
  1983     // a singleton Value is needed for split_thru_phi optimization.
  1984     int con = value->get_int();
  1985     return TypeInt::make(con & 0xFFFF);
  1987   return LoadNode::Value(phase);
  1990 //--------------------------LoadSNode::Ideal--------------------------------------
  1991 //
  1992 //  If the previous store is to the same address as this load,
  1993 //  and the value stored was larger than a short, replace this load
  1994 //  with the value stored truncated to a short.  If no truncation is
  1995 //  needed, the replacement is done in LoadNode::Identity().
  1996 //
  1997 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1998   Node* mem = in(MemNode::Memory);
  1999   Node* value = can_see_stored_value(mem,phase);
  2000   if( value && !phase->type(value)->higher_equal( _type ) ) {
  2001     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
  2002     return new (phase->C) RShiftINode(result, phase->intcon(16));
  2004   // Identity call will handle the case where truncation is not needed.
  2005   return LoadNode::Ideal(phase, can_reshape);
  2008 const Type* LoadSNode::Value(PhaseTransform *phase) const {
  2009   Node* mem = in(MemNode::Memory);
  2010   Node* value = can_see_stored_value(mem,phase);
  2011   if (value != NULL && value->is_Con() &&
  2012       !value->bottom_type()->higher_equal(_type)) {
  2013     // If the input to the store does not fit with the load's result type,
  2014     // it must be truncated. We can't delay until Ideal call since
  2015     // a singleton Value is needed for split_thru_phi optimization.
  2016     int con = value->get_int();
  2017     return TypeInt::make((con << 16) >> 16);
  2019   return LoadNode::Value(phase);
  2022 //=============================================================================
  2023 //----------------------------LoadKlassNode::make------------------------------
  2024 // Polymorphic factory method:
  2025 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk) {
  2026   Compile* C = gvn.C;
  2027   // sanity check the alias category against the created node type
  2028   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
  2029   assert(adr_type != NULL, "expecting TypeKlassPtr");
  2030 #ifdef _LP64
  2031   if (adr_type->is_ptr_to_narrowklass()) {
  2032     assert(UseCompressedClassPointers, "no compressed klasses");
  2033     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
  2034     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
  2036 #endif
  2037   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  2038   return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
  2041 //------------------------------Value------------------------------------------
  2042 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  2043   return klass_value_common(phase);
  2046 // In most cases, LoadKlassNode does not have the control input set. If the control
  2047 // input is set, it must not be removed (by LoadNode::Ideal()).
  2048 bool LoadKlassNode::can_remove_control() const {
  2049   return false;
  2052 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  2053   // Either input is TOP ==> the result is TOP
  2054   const Type *t1 = phase->type( in(MemNode::Memory) );
  2055   if (t1 == Type::TOP)  return Type::TOP;
  2056   Node *adr = in(MemNode::Address);
  2057   const Type *t2 = phase->type( adr );
  2058   if (t2 == Type::TOP)  return Type::TOP;
  2059   const TypePtr *tp = t2->is_ptr();
  2060   if (TypePtr::above_centerline(tp->ptr()) ||
  2061       tp->ptr() == TypePtr::Null)  return Type::TOP;
  2063   // Return a more precise klass, if possible
  2064   const TypeInstPtr *tinst = tp->isa_instptr();
  2065   if (tinst != NULL) {
  2066     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  2067     int offset = tinst->offset();
  2068     if (ik == phase->C->env()->Class_klass()
  2069         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  2070             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2071       // We are loading a special hidden field from a Class mirror object,
  2072       // the field which points to the VM's Klass metaobject.
  2073       ciType* t = tinst->java_mirror_type();
  2074       // java_mirror_type returns non-null for compile-time Class constants.
  2075       if (t != NULL) {
  2076         // constant oop => constant klass
  2077         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  2078           if (t->is_void()) {
  2079             // We cannot create a void array.  Since void is a primitive type return null
  2080             // klass.  Users of this result need to do a null check on the returned klass.
  2081             return TypePtr::NULL_PTR;
  2083           return TypeKlassPtr::make(ciArrayKlass::make(t));
  2085         if (!t->is_klass()) {
  2086           // a primitive Class (e.g., int.class) has NULL for a klass field
  2087           return TypePtr::NULL_PTR;
  2089         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  2090         return TypeKlassPtr::make(t->as_klass());
  2092       // non-constant mirror, so we can't tell what's going on
  2094     if( !ik->is_loaded() )
  2095       return _type;             // Bail out if not loaded
  2096     if (offset == oopDesc::klass_offset_in_bytes()) {
  2097       if (tinst->klass_is_exact()) {
  2098         return TypeKlassPtr::make(ik);
  2100       // See if we can become precise: no subklasses and no interface
  2101       // (Note:  We need to support verified interfaces.)
  2102       if (!ik->is_interface() && !ik->has_subklass()) {
  2103         //assert(!UseExactTypes, "this code should be useless with exact types");
  2104         // Add a dependence; if any subclass added we need to recompile
  2105         if (!ik->is_final()) {
  2106           // %%% should use stronger assert_unique_concrete_subtype instead
  2107           phase->C->dependencies()->assert_leaf_type(ik);
  2109         // Return precise klass
  2110         return TypeKlassPtr::make(ik);
  2113       // Return root of possible klass
  2114       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  2118   // Check for loading klass from an array
  2119   const TypeAryPtr *tary = tp->isa_aryptr();
  2120   if( tary != NULL ) {
  2121     ciKlass *tary_klass = tary->klass();
  2122     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  2123         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  2124       if (tary->klass_is_exact()) {
  2125         return TypeKlassPtr::make(tary_klass);
  2127       ciArrayKlass *ak = tary->klass()->as_array_klass();
  2128       // If the klass is an object array, we defer the question to the
  2129       // array component klass.
  2130       if( ak->is_obj_array_klass() ) {
  2131         assert( ak->is_loaded(), "" );
  2132         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  2133         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  2134           ciInstanceKlass* ik = base_k->as_instance_klass();
  2135           // See if we can become precise: no subklasses and no interface
  2136           if (!ik->is_interface() && !ik->has_subklass()) {
  2137             //assert(!UseExactTypes, "this code should be useless with exact types");
  2138             // Add a dependence; if any subclass added we need to recompile
  2139             if (!ik->is_final()) {
  2140               phase->C->dependencies()->assert_leaf_type(ik);
  2142             // Return precise array klass
  2143             return TypeKlassPtr::make(ak);
  2146         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  2147       } else {                  // Found a type-array?
  2148         //assert(!UseExactTypes, "this code should be useless with exact types");
  2149         assert( ak->is_type_array_klass(), "" );
  2150         return TypeKlassPtr::make(ak); // These are always precise
  2155   // Check for loading klass from an array klass
  2156   const TypeKlassPtr *tkls = tp->isa_klassptr();
  2157   if (tkls != NULL && !StressReflectiveCode) {
  2158     ciKlass* klass = tkls->klass();
  2159     if( !klass->is_loaded() )
  2160       return _type;             // Bail out if not loaded
  2161     if( klass->is_obj_array_klass() &&
  2162         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
  2163       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  2164       // // Always returning precise element type is incorrect,
  2165       // // e.g., element type could be object and array may contain strings
  2166       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  2168       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  2169       // according to the element type's subclassing.
  2170       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  2172     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  2173         tkls->offset() == in_bytes(Klass::super_offset())) {
  2174       ciKlass* sup = klass->as_instance_klass()->super();
  2175       // The field is Klass::_super.  Return its (constant) value.
  2176       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  2177       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  2181   // Bailout case
  2182   return LoadNode::Value(phase);
  2185 //------------------------------Identity---------------------------------------
  2186 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  2187 // Also feed through the klass in Allocate(...klass...)._klass.
  2188 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  2189   return klass_identity_common(phase);
  2192 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  2193   Node* x = LoadNode::Identity(phase);
  2194   if (x != this)  return x;
  2196   // Take apart the address into an oop and and offset.
  2197   // Return 'this' if we cannot.
  2198   Node*    adr    = in(MemNode::Address);
  2199   intptr_t offset = 0;
  2200   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2201   if (base == NULL)     return this;
  2202   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  2203   if (toop == NULL)     return this;
  2205   // We can fetch the klass directly through an AllocateNode.
  2206   // This works even if the klass is not constant (clone or newArray).
  2207   if (offset == oopDesc::klass_offset_in_bytes()) {
  2208     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  2209     if (allocated_klass != NULL) {
  2210       return allocated_klass;
  2214   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
  2215   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
  2216   // See inline_native_Class_query for occurrences of these patterns.
  2217   // Java Example:  x.getClass().isAssignableFrom(y)
  2218   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  2219   //
  2220   // This improves reflective code, often making the Class
  2221   // mirror go completely dead.  (Current exception:  Class
  2222   // mirrors may appear in debug info, but we could clean them out by
  2223   // introducing a new debug info operator for Klass*.java_mirror).
  2224   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  2225       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  2226           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2227     // We are loading a special hidden field from a Class mirror,
  2228     // the field which points to its Klass or ArrayKlass metaobject.
  2229     if (base->is_Load()) {
  2230       Node* adr2 = base->in(MemNode::Address);
  2231       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  2232       if (tkls != NULL && !tkls->empty()
  2233           && (tkls->klass()->is_instance_klass() ||
  2234               tkls->klass()->is_array_klass())
  2235           && adr2->is_AddP()
  2236           ) {
  2237         int mirror_field = in_bytes(Klass::java_mirror_offset());
  2238         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  2239           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
  2241         if (tkls->offset() == mirror_field) {
  2242           return adr2->in(AddPNode::Base);
  2248   return this;
  2252 //------------------------------Value------------------------------------------
  2253 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  2254   const Type *t = klass_value_common(phase);
  2255   if (t == Type::TOP)
  2256     return t;
  2258   return t->make_narrowklass();
  2261 //------------------------------Identity---------------------------------------
  2262 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  2263 // Also feed through the klass in Allocate(...klass...)._klass.
  2264 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  2265   Node *x = klass_identity_common(phase);
  2267   const Type *t = phase->type( x );
  2268   if( t == Type::TOP ) return x;
  2269   if( t->isa_narrowklass()) return x;
  2270   assert (!t->isa_narrowoop(), "no narrow oop here");
  2272   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
  2275 //------------------------------Value-----------------------------------------
  2276 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  2277   // Either input is TOP ==> the result is TOP
  2278   const Type *t1 = phase->type( in(MemNode::Memory) );
  2279   if( t1 == Type::TOP ) return Type::TOP;
  2280   Node *adr = in(MemNode::Address);
  2281   const Type *t2 = phase->type( adr );
  2282   if( t2 == Type::TOP ) return Type::TOP;
  2283   const TypePtr *tp = t2->is_ptr();
  2284   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  2285   const TypeAryPtr *tap = tp->isa_aryptr();
  2286   if( !tap ) return _type;
  2287   return tap->size();
  2290 //-------------------------------Ideal---------------------------------------
  2291 // Feed through the length in AllocateArray(...length...)._length.
  2292 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2293   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2294   if (p)  return (p == NodeSentinel) ? NULL : p;
  2296   // Take apart the address into an oop and and offset.
  2297   // Return 'this' if we cannot.
  2298   Node*    adr    = in(MemNode::Address);
  2299   intptr_t offset = 0;
  2300   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2301   if (base == NULL)     return NULL;
  2302   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2303   if (tary == NULL)     return NULL;
  2305   // We can fetch the length directly through an AllocateArrayNode.
  2306   // This works even if the length is not constant (clone or newArray).
  2307   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2308     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2309     if (alloc != NULL) {
  2310       Node* allocated_length = alloc->Ideal_length();
  2311       Node* len = alloc->make_ideal_length(tary, phase);
  2312       if (allocated_length != len) {
  2313         // New CastII improves on this.
  2314         return len;
  2319   return NULL;
  2322 //------------------------------Identity---------------------------------------
  2323 // Feed through the length in AllocateArray(...length...)._length.
  2324 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2325   Node* x = LoadINode::Identity(phase);
  2326   if (x != this)  return x;
  2328   // Take apart the address into an oop and and offset.
  2329   // Return 'this' if we cannot.
  2330   Node*    adr    = in(MemNode::Address);
  2331   intptr_t offset = 0;
  2332   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2333   if (base == NULL)     return this;
  2334   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2335   if (tary == NULL)     return this;
  2337   // We can fetch the length directly through an AllocateArrayNode.
  2338   // This works even if the length is not constant (clone or newArray).
  2339   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2340     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2341     if (alloc != NULL) {
  2342       Node* allocated_length = alloc->Ideal_length();
  2343       // Do not allow make_ideal_length to allocate a CastII node.
  2344       Node* len = alloc->make_ideal_length(tary, phase, false);
  2345       if (allocated_length == len) {
  2346         // Return allocated_length only if it would not be improved by a CastII.
  2347         return allocated_length;
  2352   return this;
  2356 //=============================================================================
  2357 //---------------------------StoreNode::make-----------------------------------
  2358 // Polymorphic factory method:
  2359 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
  2360   assert((mo == unordered || mo == release), "unexpected");
  2361   Compile* C = gvn.C;
  2362   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  2363          ctl != NULL, "raw memory operations should have control edge");
  2365   switch (bt) {
  2366   case T_BOOLEAN:
  2367   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
  2368   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
  2369   case T_CHAR:
  2370   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
  2371   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
  2372   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
  2373   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
  2374   case T_METADATA:
  2375   case T_ADDRESS:
  2376   case T_OBJECT:
  2377 #ifdef _LP64
  2378     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2379       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2380       return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
  2381     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
  2382                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
  2383                 adr->bottom_type()->isa_rawptr())) {
  2384       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
  2385       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
  2387 #endif
  2389       return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
  2392   ShouldNotReachHere();
  2393   return (StoreNode*)NULL;
  2396 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
  2397   bool require_atomic = true;
  2398   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
  2402 //--------------------------bottom_type----------------------------------------
  2403 const Type *StoreNode::bottom_type() const {
  2404   return Type::MEMORY;
  2407 //------------------------------hash-------------------------------------------
  2408 uint StoreNode::hash() const {
  2409   // unroll addition of interesting fields
  2410   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2412   // Since they are not commoned, do not hash them:
  2413   return NO_HASH;
  2416 //------------------------------Ideal------------------------------------------
  2417 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2418 // When a store immediately follows a relevant allocation/initialization,
  2419 // try to capture it into the initialization, or hoist it above.
  2420 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2421   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2422   if (p)  return (p == NodeSentinel) ? NULL : p;
  2424   Node* mem     = in(MemNode::Memory);
  2425   Node* address = in(MemNode::Address);
  2427   // Back-to-back stores to same address?  Fold em up.  Generally
  2428   // unsafe if I have intervening uses...  Also disallowed for StoreCM
  2429   // since they must follow each StoreP operation.  Redundant StoreCMs
  2430   // are eliminated just before matching in final_graph_reshape.
  2431   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
  2432       mem->Opcode() != Op_StoreCM) {
  2433     // Looking at a dead closed cycle of memory?
  2434     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2436     assert(Opcode() == mem->Opcode() ||
  2437            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2438            "no mismatched stores, except on raw memory");
  2440     if (mem->outcnt() == 1 &&           // check for intervening uses
  2441         mem->as_Store()->memory_size() <= this->memory_size()) {
  2442       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2443       // For example, 'mem' might be the final state at a conditional return.
  2444       // Or, 'mem' might be used by some node which is live at the same time
  2445       // 'this' is live, which might be unschedulable.  So, require exactly
  2446       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2447       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2448       if (can_reshape) {  // (%%% is this an anachronism?)
  2449         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2450                   phase->is_IterGVN());
  2451       } else {
  2452         // It's OK to do this in the parser, since DU info is always accurate,
  2453         // and the parser always refers to nodes via SafePointNode maps.
  2454         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2456       return this;
  2460   // Capture an unaliased, unconditional, simple store into an initializer.
  2461   // Or, if it is independent of the allocation, hoist it above the allocation.
  2462   if (ReduceFieldZeroing && /*can_reshape &&*/
  2463       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2464     InitializeNode* init = mem->in(0)->as_Initialize();
  2465     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
  2466     if (offset > 0) {
  2467       Node* moved = init->capture_store(this, offset, phase, can_reshape);
  2468       // If the InitializeNode captured me, it made a raw copy of me,
  2469       // and I need to disappear.
  2470       if (moved != NULL) {
  2471         // %%% hack to ensure that Ideal returns a new node:
  2472         mem = MergeMemNode::make(phase->C, mem);
  2473         return mem;             // fold me away
  2478   return NULL;                  // No further progress
  2481 //------------------------------Value-----------------------------------------
  2482 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2483   // Either input is TOP ==> the result is TOP
  2484   const Type *t1 = phase->type( in(MemNode::Memory) );
  2485   if( t1 == Type::TOP ) return Type::TOP;
  2486   const Type *t2 = phase->type( in(MemNode::Address) );
  2487   if( t2 == Type::TOP ) return Type::TOP;
  2488   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2489   if( t3 == Type::TOP ) return Type::TOP;
  2490   return Type::MEMORY;
  2493 //------------------------------Identity---------------------------------------
  2494 // Remove redundant stores:
  2495 //   Store(m, p, Load(m, p)) changes to m.
  2496 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2497 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2498   Node* mem = in(MemNode::Memory);
  2499   Node* adr = in(MemNode::Address);
  2500   Node* val = in(MemNode::ValueIn);
  2502   // Load then Store?  Then the Store is useless
  2503   if (val->is_Load() &&
  2504       val->in(MemNode::Address)->eqv_uncast(adr) &&
  2505       val->in(MemNode::Memory )->eqv_uncast(mem) &&
  2506       val->as_Load()->store_Opcode() == Opcode()) {
  2507     return mem;
  2510   // Two stores in a row of the same value?
  2511   if (mem->is_Store() &&
  2512       mem->in(MemNode::Address)->eqv_uncast(adr) &&
  2513       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
  2514       mem->Opcode() == Opcode()) {
  2515     return mem;
  2518   // Store of zero anywhere into a freshly-allocated object?
  2519   // Then the store is useless.
  2520   // (It must already have been captured by the InitializeNode.)
  2521   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2522     // a newly allocated object is already all-zeroes everywhere
  2523     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2524       return mem;
  2527     // the store may also apply to zero-bits in an earlier object
  2528     Node* prev_mem = find_previous_store(phase);
  2529     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2530     if (prev_mem != NULL) {
  2531       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2532       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2533         // prev_val and val might differ by a cast; it would be good
  2534         // to keep the more informative of the two.
  2535         return mem;
  2540   return this;
  2543 //------------------------------match_edge-------------------------------------
  2544 // Do we Match on this edge index or not?  Match only memory & value
  2545 uint StoreNode::match_edge(uint idx) const {
  2546   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2549 //------------------------------cmp--------------------------------------------
  2550 // Do not common stores up together.  They generally have to be split
  2551 // back up anyways, so do not bother.
  2552 uint StoreNode::cmp( const Node &n ) const {
  2553   return (&n == this);          // Always fail except on self
  2556 //------------------------------Ideal_masked_input-----------------------------
  2557 // Check for a useless mask before a partial-word store
  2558 // (StoreB ... (AndI valIn conIa) )
  2559 // If (conIa & mask == mask) this simplifies to
  2560 // (StoreB ... (valIn) )
  2561 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2562   Node *val = in(MemNode::ValueIn);
  2563   if( val->Opcode() == Op_AndI ) {
  2564     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2565     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2566       set_req(MemNode::ValueIn, val->in(1));
  2567       return this;
  2570   return NULL;
  2574 //------------------------------Ideal_sign_extended_input----------------------
  2575 // Check for useless sign-extension before a partial-word store
  2576 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2577 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2578 // (StoreB ... (valIn) )
  2579 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2580   Node *val = in(MemNode::ValueIn);
  2581   if( val->Opcode() == Op_RShiftI ) {
  2582     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2583     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2584       Node *shl = val->in(1);
  2585       if( shl->Opcode() == Op_LShiftI ) {
  2586         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2587         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2588           set_req(MemNode::ValueIn, shl->in(1));
  2589           return this;
  2594   return NULL;
  2597 //------------------------------value_never_loaded-----------------------------------
  2598 // Determine whether there are any possible loads of the value stored.
  2599 // For simplicity, we actually check if there are any loads from the
  2600 // address stored to, not just for loads of the value stored by this node.
  2601 //
  2602 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2603   Node *adr = in(Address);
  2604   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2605   if (adr_oop == NULL)
  2606     return false;
  2607   if (!adr_oop->is_known_instance_field())
  2608     return false; // if not a distinct instance, there may be aliases of the address
  2609   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2610     Node *use = adr->fast_out(i);
  2611     int opc = use->Opcode();
  2612     if (use->is_Load() || use->is_LoadStore()) {
  2613       return false;
  2616   return true;
  2619 //=============================================================================
  2620 //------------------------------Ideal------------------------------------------
  2621 // If the store is from an AND mask that leaves the low bits untouched, then
  2622 // we can skip the AND operation.  If the store is from a sign-extension
  2623 // (a left shift, then right shift) we can skip both.
  2624 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2625   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2626   if( progress != NULL ) return progress;
  2628   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2629   if( progress != NULL ) return progress;
  2631   // Finally check the default case
  2632   return StoreNode::Ideal(phase, can_reshape);
  2635 //=============================================================================
  2636 //------------------------------Ideal------------------------------------------
  2637 // If the store is from an AND mask that leaves the low bits untouched, then
  2638 // we can skip the AND operation
  2639 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2640   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2641   if( progress != NULL ) return progress;
  2643   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2644   if( progress != NULL ) return progress;
  2646   // Finally check the default case
  2647   return StoreNode::Ideal(phase, can_reshape);
  2650 //=============================================================================
  2651 //------------------------------Identity---------------------------------------
  2652 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2653   // No need to card mark when storing a null ptr
  2654   Node* my_store = in(MemNode::OopStore);
  2655   if (my_store->is_Store()) {
  2656     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2657     if( t1 == TypePtr::NULL_PTR ) {
  2658       return in(MemNode::Memory);
  2661   return this;
  2664 //=============================================================================
  2665 //------------------------------Ideal---------------------------------------
  2666 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2667   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2668   if (progress != NULL) return progress;
  2670   Node* my_store = in(MemNode::OopStore);
  2671   if (my_store->is_MergeMem()) {
  2672     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2673     set_req(MemNode::OopStore, mem);
  2674     return this;
  2677   return NULL;
  2680 //------------------------------Value-----------------------------------------
  2681 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2682   // Either input is TOP ==> the result is TOP
  2683   const Type *t = phase->type( in(MemNode::Memory) );
  2684   if( t == Type::TOP ) return Type::TOP;
  2685   t = phase->type( in(MemNode::Address) );
  2686   if( t == Type::TOP ) return Type::TOP;
  2687   t = phase->type( in(MemNode::ValueIn) );
  2688   if( t == Type::TOP ) return Type::TOP;
  2689   // If extra input is TOP ==> the result is TOP
  2690   t = phase->type( in(MemNode::OopStore) );
  2691   if( t == Type::TOP ) return Type::TOP;
  2693   return StoreNode::Value( phase );
  2697 //=============================================================================
  2698 //----------------------------------SCMemProjNode------------------------------
  2699 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2701   return bottom_type();
  2704 //=============================================================================
  2705 //----------------------------------LoadStoreNode------------------------------
  2706 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
  2707   : Node(required),
  2708     _type(rt),
  2709     _adr_type(at)
  2711   init_req(MemNode::Control, c  );
  2712   init_req(MemNode::Memory , mem);
  2713   init_req(MemNode::Address, adr);
  2714   init_req(MemNode::ValueIn, val);
  2715   init_class_id(Class_LoadStore);
  2718 uint LoadStoreNode::ideal_reg() const {
  2719   return _type->ideal_reg();
  2722 bool LoadStoreNode::result_not_used() const {
  2723   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  2724     Node *x = fast_out(i);
  2725     if (x->Opcode() == Op_SCMemProj) continue;
  2726     return false;
  2728   return true;
  2731 uint LoadStoreNode::size_of() const { return sizeof(*this); }
  2733 //=============================================================================
  2734 //----------------------------------LoadStoreConditionalNode--------------------
  2735 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
  2736   init_req(ExpectedIn, ex );
  2739 //=============================================================================
  2740 //-------------------------------adr_type--------------------------------------
  2741 // Do we Match on this edge index or not?  Do not match memory
  2742 const TypePtr* ClearArrayNode::adr_type() const {
  2743   Node *adr = in(3);
  2744   return MemNode::calculate_adr_type(adr->bottom_type());
  2747 //------------------------------match_edge-------------------------------------
  2748 // Do we Match on this edge index or not?  Do not match memory
  2749 uint ClearArrayNode::match_edge(uint idx) const {
  2750   return idx > 1;
  2753 //------------------------------Identity---------------------------------------
  2754 // Clearing a zero length array does nothing
  2755 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2756   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2759 //------------------------------Idealize---------------------------------------
  2760 // Clearing a short array is faster with stores
  2761 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2762   const int unit = BytesPerLong;
  2763   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2764   if (!t)  return NULL;
  2765   if (!t->is_con())  return NULL;
  2766   intptr_t raw_count = t->get_con();
  2767   intptr_t size = raw_count;
  2768   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2769   // Clearing nothing uses the Identity call.
  2770   // Negative clears are possible on dead ClearArrays
  2771   // (see jck test stmt114.stmt11402.val).
  2772   if (size <= 0 || size % unit != 0)  return NULL;
  2773   intptr_t count = size / unit;
  2774   // Length too long; use fast hardware clear
  2775   if (size > Matcher::init_array_short_size)  return NULL;
  2776   Node *mem = in(1);
  2777   if( phase->type(mem)==Type::TOP ) return NULL;
  2778   Node *adr = in(3);
  2779   const Type* at = phase->type(adr);
  2780   if( at==Type::TOP ) return NULL;
  2781   const TypePtr* atp = at->isa_ptr();
  2782   // adjust atp to be the correct array element address type
  2783   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2784   else              atp = atp->add_offset(Type::OffsetBot);
  2785   // Get base for derived pointer purposes
  2786   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2787   Node *base = adr->in(1);
  2789   Node *zero = phase->makecon(TypeLong::ZERO);
  2790   Node *off  = phase->MakeConX(BytesPerLong);
  2791   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
  2792   count--;
  2793   while( count-- ) {
  2794     mem = phase->transform(mem);
  2795     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
  2796     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
  2798   return mem;
  2801 //----------------------------step_through----------------------------------
  2802 // Return allocation input memory edge if it is different instance
  2803 // or itself if it is the one we are looking for.
  2804 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2805   Node* n = *np;
  2806   assert(n->is_ClearArray(), "sanity");
  2807   intptr_t offset;
  2808   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2809   // This method is called only before Allocate nodes are expanded during
  2810   // macro nodes expansion. Before that ClearArray nodes are only generated
  2811   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2812   assert(alloc != NULL, "should have allocation");
  2813   if (alloc->_idx == instance_id) {
  2814     // Can not bypass initialization of the instance we are looking for.
  2815     return false;
  2817   // Otherwise skip it.
  2818   InitializeNode* init = alloc->initialization();
  2819   if (init != NULL)
  2820     *np = init->in(TypeFunc::Memory);
  2821   else
  2822     *np = alloc->in(TypeFunc::Memory);
  2823   return true;
  2826 //----------------------------clear_memory-------------------------------------
  2827 // Generate code to initialize object storage to zero.
  2828 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2829                                    intptr_t start_offset,
  2830                                    Node* end_offset,
  2831                                    PhaseGVN* phase) {
  2832   Compile* C = phase->C;
  2833   intptr_t offset = start_offset;
  2835   int unit = BytesPerLong;
  2836   if ((offset % unit) != 0) {
  2837     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
  2838     adr = phase->transform(adr);
  2839     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2840     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
  2841     mem = phase->transform(mem);
  2842     offset += BytesPerInt;
  2844   assert((offset % unit) == 0, "");
  2846   // Initialize the remaining stuff, if any, with a ClearArray.
  2847   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2850 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2851                                    Node* start_offset,
  2852                                    Node* end_offset,
  2853                                    PhaseGVN* phase) {
  2854   if (start_offset == end_offset) {
  2855     // nothing to do
  2856     return mem;
  2859   Compile* C = phase->C;
  2860   int unit = BytesPerLong;
  2861   Node* zbase = start_offset;
  2862   Node* zend  = end_offset;
  2864   // Scale to the unit required by the CPU:
  2865   if (!Matcher::init_array_count_is_in_bytes) {
  2866     Node* shift = phase->intcon(exact_log2(unit));
  2867     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
  2868     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
  2871   // Bulk clear double-words
  2872   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
  2873   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
  2874   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
  2875   return phase->transform(mem);
  2878 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2879                                    intptr_t start_offset,
  2880                                    intptr_t end_offset,
  2881                                    PhaseGVN* phase) {
  2882   if (start_offset == end_offset) {
  2883     // nothing to do
  2884     return mem;
  2887   Compile* C = phase->C;
  2888   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2889   intptr_t done_offset = end_offset;
  2890   if ((done_offset % BytesPerLong) != 0) {
  2891     done_offset -= BytesPerInt;
  2893   if (done_offset > start_offset) {
  2894     mem = clear_memory(ctl, mem, dest,
  2895                        start_offset, phase->MakeConX(done_offset), phase);
  2897   if (done_offset < end_offset) { // emit the final 32-bit store
  2898     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2899     adr = phase->transform(adr);
  2900     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2901     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
  2902     mem = phase->transform(mem);
  2903     done_offset += BytesPerInt;
  2905   assert(done_offset == end_offset, "");
  2906   return mem;
  2909 //=============================================================================
  2910 // Do not match memory edge.
  2911 uint StrIntrinsicNode::match_edge(uint idx) const {
  2912   return idx == 2 || idx == 3;
  2915 //------------------------------Ideal------------------------------------------
  2916 // Return a node which is more "ideal" than the current node.  Strip out
  2917 // control copies
  2918 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2919   if (remove_dead_region(phase, can_reshape)) return this;
  2920   // Don't bother trying to transform a dead node
  2921   if (in(0) && in(0)->is_top())  return NULL;
  2923   if (can_reshape) {
  2924     Node* mem = phase->transform(in(MemNode::Memory));
  2925     // If transformed to a MergeMem, get the desired slice
  2926     uint alias_idx = phase->C->get_alias_index(adr_type());
  2927     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
  2928     if (mem != in(MemNode::Memory)) {
  2929       set_req(MemNode::Memory, mem);
  2930       return this;
  2933   return NULL;
  2936 //------------------------------Value------------------------------------------
  2937 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
  2938   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2939   return bottom_type();
  2942 //=============================================================================
  2943 //------------------------------match_edge-------------------------------------
  2944 // Do not match memory edge
  2945 uint EncodeISOArrayNode::match_edge(uint idx) const {
  2946   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
  2949 //------------------------------Ideal------------------------------------------
  2950 // Return a node which is more "ideal" than the current node.  Strip out
  2951 // control copies
  2952 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2953   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2956 //------------------------------Value------------------------------------------
  2957 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
  2958   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2959   return bottom_type();
  2962 //=============================================================================
  2963 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2964   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2965     _adr_type(C->get_adr_type(alias_idx))
  2967   init_class_id(Class_MemBar);
  2968   Node* top = C->top();
  2969   init_req(TypeFunc::I_O,top);
  2970   init_req(TypeFunc::FramePtr,top);
  2971   init_req(TypeFunc::ReturnAdr,top);
  2972   if (precedent != NULL)
  2973     init_req(TypeFunc::Parms, precedent);
  2976 //------------------------------cmp--------------------------------------------
  2977 uint MemBarNode::hash() const { return NO_HASH; }
  2978 uint MemBarNode::cmp( const Node &n ) const {
  2979   return (&n == this);          // Always fail except on self
  2982 //------------------------------make-------------------------------------------
  2983 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2984   switch (opcode) {
  2985   case Op_MemBarAcquire:     return new(C) MemBarAcquireNode(C, atp, pn);
  2986   case Op_LoadFence:         return new(C) LoadFenceNode(C, atp, pn);
  2987   case Op_MemBarRelease:     return new(C) MemBarReleaseNode(C, atp, pn);
  2988   case Op_StoreFence:        return new(C) StoreFenceNode(C, atp, pn);
  2989   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
  2990   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
  2991   case Op_MemBarVolatile:    return new(C) MemBarVolatileNode(C, atp, pn);
  2992   case Op_MemBarCPUOrder:    return new(C) MemBarCPUOrderNode(C, atp, pn);
  2993   case Op_Initialize:        return new(C) InitializeNode(C, atp, pn);
  2994   case Op_MemBarStoreStore:  return new(C) MemBarStoreStoreNode(C, atp, pn);
  2995   default: ShouldNotReachHere(); return NULL;
  2999 //------------------------------Ideal------------------------------------------
  3000 // Return a node which is more "ideal" than the current node.  Strip out
  3001 // control copies
  3002 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3003   if (remove_dead_region(phase, can_reshape)) return this;
  3004   // Don't bother trying to transform a dead node
  3005   if (in(0) && in(0)->is_top()) {
  3006     return NULL;
  3009   // Eliminate volatile MemBars for scalar replaced objects.
  3010   if (can_reshape && req() == (Precedent+1)) {
  3011     bool eliminate = false;
  3012     int opc = Opcode();
  3013     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
  3014       // Volatile field loads and stores.
  3015       Node* my_mem = in(MemBarNode::Precedent);
  3016       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
  3017       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
  3018         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
  3019         // replace this Precedent (decodeN) with the Load instead.
  3020         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
  3021           Node* load_node = my_mem->in(1);
  3022           set_req(MemBarNode::Precedent, load_node);
  3023           phase->is_IterGVN()->_worklist.push(my_mem);
  3024           my_mem = load_node;
  3025         } else {
  3026           assert(my_mem->unique_out() == this, "sanity");
  3027           del_req(Precedent);
  3028           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
  3029           my_mem = NULL;
  3032       if (my_mem != NULL && my_mem->is_Mem()) {
  3033         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  3034         // Check for scalar replaced object reference.
  3035         if( t_oop != NULL && t_oop->is_known_instance_field() &&
  3036             t_oop->offset() != Type::OffsetBot &&
  3037             t_oop->offset() != Type::OffsetTop) {
  3038           eliminate = true;
  3041     } else if (opc == Op_MemBarRelease) {
  3042       // Final field stores.
  3043       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
  3044       if ((alloc != NULL) && alloc->is_Allocate() &&
  3045           alloc->as_Allocate()->_is_non_escaping) {
  3046         // The allocated object does not escape.
  3047         eliminate = true;
  3050     if (eliminate) {
  3051       // Replace MemBar projections by its inputs.
  3052       PhaseIterGVN* igvn = phase->is_IterGVN();
  3053       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  3054       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  3055       // Must return either the original node (now dead) or a new node
  3056       // (Do not return a top here, since that would break the uniqueness of top.)
  3057       return new (phase->C) ConINode(TypeInt::ZERO);
  3060   return NULL;
  3063 //------------------------------Value------------------------------------------
  3064 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  3065   if( !in(0) ) return Type::TOP;
  3066   if( phase->type(in(0)) == Type::TOP )
  3067     return Type::TOP;
  3068   return TypeTuple::MEMBAR;
  3071 //------------------------------match------------------------------------------
  3072 // Construct projections for memory.
  3073 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  3074   switch (proj->_con) {
  3075   case TypeFunc::Control:
  3076   case TypeFunc::Memory:
  3077     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  3079   ShouldNotReachHere();
  3080   return NULL;
  3083 //===========================InitializeNode====================================
  3084 // SUMMARY:
  3085 // This node acts as a memory barrier on raw memory, after some raw stores.
  3086 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  3087 // The Initialize can 'capture' suitably constrained stores as raw inits.
  3088 // It can coalesce related raw stores into larger units (called 'tiles').
  3089 // It can avoid zeroing new storage for memory units which have raw inits.
  3090 // At macro-expansion, it is marked 'complete', and does not optimize further.
  3091 //
  3092 // EXAMPLE:
  3093 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  3094 //   ctl = incoming control; mem* = incoming memory
  3095 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  3096 // First allocate uninitialized memory and fill in the header:
  3097 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  3098 //   ctl := alloc.Control; mem* := alloc.Memory*
  3099 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  3100 // Then initialize to zero the non-header parts of the raw memory block:
  3101 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  3102 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  3103 // After the initialize node executes, the object is ready for service:
  3104 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  3105 // Suppose its body is immediately initialized as {1,2}:
  3106 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3107 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3108 //   mem.SLICE(#short[*]) := store2
  3109 //
  3110 // DETAILS:
  3111 // An InitializeNode collects and isolates object initialization after
  3112 // an AllocateNode and before the next possible safepoint.  As a
  3113 // memory barrier (MemBarNode), it keeps critical stores from drifting
  3114 // down past any safepoint or any publication of the allocation.
  3115 // Before this barrier, a newly-allocated object may have uninitialized bits.
  3116 // After this barrier, it may be treated as a real oop, and GC is allowed.
  3117 //
  3118 // The semantics of the InitializeNode include an implicit zeroing of
  3119 // the new object from object header to the end of the object.
  3120 // (The object header and end are determined by the AllocateNode.)
  3121 //
  3122 // Certain stores may be added as direct inputs to the InitializeNode.
  3123 // These stores must update raw memory, and they must be to addresses
  3124 // derived from the raw address produced by AllocateNode, and with
  3125 // a constant offset.  They must be ordered by increasing offset.
  3126 // The first one is at in(RawStores), the last at in(req()-1).
  3127 // Unlike most memory operations, they are not linked in a chain,
  3128 // but are displayed in parallel as users of the rawmem output of
  3129 // the allocation.
  3130 //
  3131 // (See comments in InitializeNode::capture_store, which continue
  3132 // the example given above.)
  3133 //
  3134 // When the associated Allocate is macro-expanded, the InitializeNode
  3135 // may be rewritten to optimize collected stores.  A ClearArrayNode
  3136 // may also be created at that point to represent any required zeroing.
  3137 // The InitializeNode is then marked 'complete', prohibiting further
  3138 // capturing of nearby memory operations.
  3139 //
  3140 // During macro-expansion, all captured initializations which store
  3141 // constant values of 32 bits or smaller are coalesced (if advantageous)
  3142 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  3143 // initialized in fewer memory operations.  Memory words which are
  3144 // covered by neither tiles nor non-constant stores are pre-zeroed
  3145 // by explicit stores of zero.  (The code shape happens to do all
  3146 // zeroing first, then all other stores, with both sequences occurring
  3147 // in order of ascending offsets.)
  3148 //
  3149 // Alternatively, code may be inserted between an AllocateNode and its
  3150 // InitializeNode, to perform arbitrary initialization of the new object.
  3151 // E.g., the object copying intrinsics insert complex data transfers here.
  3152 // The initialization must then be marked as 'complete' disable the
  3153 // built-in zeroing semantics and the collection of initializing stores.
  3154 //
  3155 // While an InitializeNode is incomplete, reads from the memory state
  3156 // produced by it are optimizable if they match the control edge and
  3157 // new oop address associated with the allocation/initialization.
  3158 // They return a stored value (if the offset matches) or else zero.
  3159 // A write to the memory state, if it matches control and address,
  3160 // and if it is to a constant offset, may be 'captured' by the
  3161 // InitializeNode.  It is cloned as a raw memory operation and rewired
  3162 // inside the initialization, to the raw oop produced by the allocation.
  3163 // Operations on addresses which are provably distinct (e.g., to
  3164 // other AllocateNodes) are allowed to bypass the initialization.
  3165 //
  3166 // The effect of all this is to consolidate object initialization
  3167 // (both arrays and non-arrays, both piecewise and bulk) into a
  3168 // single location, where it can be optimized as a unit.
  3169 //
  3170 // Only stores with an offset less than TrackedInitializationLimit words
  3171 // will be considered for capture by an InitializeNode.  This puts a
  3172 // reasonable limit on the complexity of optimized initializations.
  3174 //---------------------------InitializeNode------------------------------------
  3175 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  3176   : _is_complete(Incomplete), _does_not_escape(false),
  3177     MemBarNode(C, adr_type, rawoop)
  3179   init_class_id(Class_Initialize);
  3181   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  3182   assert(in(RawAddress) == rawoop, "proper init");
  3183   // Note:  allocation() can be NULL, for secondary initialization barriers
  3186 // Since this node is not matched, it will be processed by the
  3187 // register allocator.  Declare that there are no constraints
  3188 // on the allocation of the RawAddress edge.
  3189 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  3190   // This edge should be set to top, by the set_complete.  But be conservative.
  3191   if (idx == InitializeNode::RawAddress)
  3192     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  3193   return RegMask::Empty;
  3196 Node* InitializeNode::memory(uint alias_idx) {
  3197   Node* mem = in(Memory);
  3198   if (mem->is_MergeMem()) {
  3199     return mem->as_MergeMem()->memory_at(alias_idx);
  3200   } else {
  3201     // incoming raw memory is not split
  3202     return mem;
  3206 bool InitializeNode::is_non_zero() {
  3207   if (is_complete())  return false;
  3208   remove_extra_zeroes();
  3209   return (req() > RawStores);
  3212 void InitializeNode::set_complete(PhaseGVN* phase) {
  3213   assert(!is_complete(), "caller responsibility");
  3214   _is_complete = Complete;
  3216   // After this node is complete, it contains a bunch of
  3217   // raw-memory initializations.  There is no need for
  3218   // it to have anything to do with non-raw memory effects.
  3219   // Therefore, tell all non-raw users to re-optimize themselves,
  3220   // after skipping the memory effects of this initialization.
  3221   PhaseIterGVN* igvn = phase->is_IterGVN();
  3222   if (igvn)  igvn->add_users_to_worklist(this);
  3225 // convenience function
  3226 // return false if the init contains any stores already
  3227 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  3228   InitializeNode* init = initialization();
  3229   if (init == NULL || init->is_complete())  return false;
  3230   init->remove_extra_zeroes();
  3231   // for now, if this allocation has already collected any inits, bail:
  3232   if (init->is_non_zero())  return false;
  3233   init->set_complete(phase);
  3234   return true;
  3237 void InitializeNode::remove_extra_zeroes() {
  3238   if (req() == RawStores)  return;
  3239   Node* zmem = zero_memory();
  3240   uint fill = RawStores;
  3241   for (uint i = fill; i < req(); i++) {
  3242     Node* n = in(i);
  3243     if (n->is_top() || n == zmem)  continue;  // skip
  3244     if (fill < i)  set_req(fill, n);          // compact
  3245     ++fill;
  3247   // delete any empty spaces created:
  3248   while (fill < req()) {
  3249     del_req(fill);
  3253 // Helper for remembering which stores go with which offsets.
  3254 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  3255   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  3256   intptr_t offset = -1;
  3257   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  3258                                                phase, offset);
  3259   if (base == NULL)     return -1;  // something is dead,
  3260   if (offset < 0)       return -1;  //        dead, dead
  3261   return offset;
  3264 // Helper for proving that an initialization expression is
  3265 // "simple enough" to be folded into an object initialization.
  3266 // Attempts to prove that a store's initial value 'n' can be captured
  3267 // within the initialization without creating a vicious cycle, such as:
  3268 //     { Foo p = new Foo(); p.next = p; }
  3269 // True for constants and parameters and small combinations thereof.
  3270 bool InitializeNode::detect_init_independence(Node* n, int& count) {
  3271   if (n == NULL)      return true;   // (can this really happen?)
  3272   if (n->is_Proj())   n = n->in(0);
  3273   if (n == this)      return false;  // found a cycle
  3274   if (n->is_Con())    return true;
  3275   if (n->is_Start())  return true;   // params, etc., are OK
  3276   if (n->is_Root())   return true;   // even better
  3278   Node* ctl = n->in(0);
  3279   if (ctl != NULL && !ctl->is_top()) {
  3280     if (ctl->is_Proj())  ctl = ctl->in(0);
  3281     if (ctl == this)  return false;
  3283     // If we already know that the enclosing memory op is pinned right after
  3284     // the init, then any control flow that the store has picked up
  3285     // must have preceded the init, or else be equal to the init.
  3286     // Even after loop optimizations (which might change control edges)
  3287     // a store is never pinned *before* the availability of its inputs.
  3288     if (!MemNode::all_controls_dominate(n, this))
  3289       return false;                  // failed to prove a good control
  3292   // Check data edges for possible dependencies on 'this'.
  3293   if ((count += 1) > 20)  return false;  // complexity limit
  3294   for (uint i = 1; i < n->req(); i++) {
  3295     Node* m = n->in(i);
  3296     if (m == NULL || m == n || m->is_top())  continue;
  3297     uint first_i = n->find_edge(m);
  3298     if (i != first_i)  continue;  // process duplicate edge just once
  3299     if (!detect_init_independence(m, count)) {
  3300       return false;
  3304   return true;
  3307 // Here are all the checks a Store must pass before it can be moved into
  3308 // an initialization.  Returns zero if a check fails.
  3309 // On success, returns the (constant) offset to which the store applies,
  3310 // within the initialized memory.
  3311 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
  3312   const int FAIL = 0;
  3313   if (st->req() != MemNode::ValueIn + 1)
  3314     return FAIL;                // an inscrutable StoreNode (card mark?)
  3315   Node* ctl = st->in(MemNode::Control);
  3316   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  3317     return FAIL;                // must be unconditional after the initialization
  3318   Node* mem = st->in(MemNode::Memory);
  3319   if (!(mem->is_Proj() && mem->in(0) == this))
  3320     return FAIL;                // must not be preceded by other stores
  3321   Node* adr = st->in(MemNode::Address);
  3322   intptr_t offset;
  3323   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  3324   if (alloc == NULL)
  3325     return FAIL;                // inscrutable address
  3326   if (alloc != allocation())
  3327     return FAIL;                // wrong allocation!  (store needs to float up)
  3328   Node* val = st->in(MemNode::ValueIn);
  3329   int complexity_count = 0;
  3330   if (!detect_init_independence(val, complexity_count))
  3331     return FAIL;                // stored value must be 'simple enough'
  3333   // The Store can be captured only if nothing after the allocation
  3334   // and before the Store is using the memory location that the store
  3335   // overwrites.
  3336   bool failed = false;
  3337   // If is_complete_with_arraycopy() is true the shape of the graph is
  3338   // well defined and is safe so no need for extra checks.
  3339   if (!is_complete_with_arraycopy()) {
  3340     // We are going to look at each use of the memory state following
  3341     // the allocation to make sure nothing reads the memory that the
  3342     // Store writes.
  3343     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
  3344     int alias_idx = phase->C->get_alias_index(t_adr);
  3345     ResourceMark rm;
  3346     Unique_Node_List mems;
  3347     mems.push(mem);
  3348     Node* unique_merge = NULL;
  3349     for (uint next = 0; next < mems.size(); ++next) {
  3350       Node *m  = mems.at(next);
  3351       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  3352         Node *n = m->fast_out(j);
  3353         if (n->outcnt() == 0) {
  3354           continue;
  3356         if (n == st) {
  3357           continue;
  3358         } else if (n->in(0) != NULL && n->in(0) != ctl) {
  3359           // If the control of this use is different from the control
  3360           // of the Store which is right after the InitializeNode then
  3361           // this node cannot be between the InitializeNode and the
  3362           // Store.
  3363           continue;
  3364         } else if (n->is_MergeMem()) {
  3365           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
  3366             // We can hit a MergeMemNode (that will likely go away
  3367             // later) that is a direct use of the memory state
  3368             // following the InitializeNode on the same slice as the
  3369             // store node that we'd like to capture. We need to check
  3370             // the uses of the MergeMemNode.
  3371             mems.push(n);
  3373         } else if (n->is_Mem()) {
  3374           Node* other_adr = n->in(MemNode::Address);
  3375           if (other_adr == adr) {
  3376             failed = true;
  3377             break;
  3378           } else {
  3379             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
  3380             if (other_t_adr != NULL) {
  3381               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
  3382               if (other_alias_idx == alias_idx) {
  3383                 // A load from the same memory slice as the store right
  3384                 // after the InitializeNode. We check the control of the
  3385                 // object/array that is loaded from. If it's the same as
  3386                 // the store control then we cannot capture the store.
  3387                 assert(!n->is_Store(), "2 stores to same slice on same control?");
  3388                 Node* base = other_adr;
  3389                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
  3390                 base = base->in(AddPNode::Base);
  3391                 if (base != NULL) {
  3392                   base = base->uncast();
  3393                   if (base->is_Proj() && base->in(0) == alloc) {
  3394                     failed = true;
  3395                     break;
  3401         } else {
  3402           failed = true;
  3403           break;
  3408   if (failed) {
  3409     if (!can_reshape) {
  3410       // We decided we couldn't capture the store during parsing. We
  3411       // should try again during the next IGVN once the graph is
  3412       // cleaner.
  3413       phase->C->record_for_igvn(st);
  3415     return FAIL;
  3418   return offset;                // success
  3421 // Find the captured store in(i) which corresponds to the range
  3422 // [start..start+size) in the initialized object.
  3423 // If there is one, return its index i.  If there isn't, return the
  3424 // negative of the index where it should be inserted.
  3425 // Return 0 if the queried range overlaps an initialization boundary
  3426 // or if dead code is encountered.
  3427 // If size_in_bytes is zero, do not bother with overlap checks.
  3428 int InitializeNode::captured_store_insertion_point(intptr_t start,
  3429                                                    int size_in_bytes,
  3430                                                    PhaseTransform* phase) {
  3431   const int FAIL = 0, MAX_STORE = BytesPerLong;
  3433   if (is_complete())
  3434     return FAIL;                // arraycopy got here first; punt
  3436   assert(allocation() != NULL, "must be present");
  3438   // no negatives, no header fields:
  3439   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  3441   // after a certain size, we bail out on tracking all the stores:
  3442   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3443   if (start >= ti_limit)  return FAIL;
  3445   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  3446     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3448     Node*    st     = in(i);
  3449     intptr_t st_off = get_store_offset(st, phase);
  3450     if (st_off < 0) {
  3451       if (st != zero_memory()) {
  3452         return FAIL;            // bail out if there is dead garbage
  3454     } else if (st_off > start) {
  3455       // ...we are done, since stores are ordered
  3456       if (st_off < start + size_in_bytes) {
  3457         return FAIL;            // the next store overlaps
  3459       return -(int)i;           // not found; here is where to put it
  3460     } else if (st_off < start) {
  3461       if (size_in_bytes != 0 &&
  3462           start < st_off + MAX_STORE &&
  3463           start < st_off + st->as_Store()->memory_size()) {
  3464         return FAIL;            // the previous store overlaps
  3466     } else {
  3467       if (size_in_bytes != 0 &&
  3468           st->as_Store()->memory_size() != size_in_bytes) {
  3469         return FAIL;            // mismatched store size
  3471       return i;
  3474     ++i;
  3478 // Look for a captured store which initializes at the offset 'start'
  3479 // with the given size.  If there is no such store, and no other
  3480 // initialization interferes, then return zero_memory (the memory
  3481 // projection of the AllocateNode).
  3482 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3483                                           PhaseTransform* phase) {
  3484   assert(stores_are_sane(phase), "");
  3485   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3486   if (i == 0) {
  3487     return NULL;                // something is dead
  3488   } else if (i < 0) {
  3489     return zero_memory();       // just primordial zero bits here
  3490   } else {
  3491     Node* st = in(i);           // here is the store at this position
  3492     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3493     return st;
  3497 // Create, as a raw pointer, an address within my new object at 'offset'.
  3498 Node* InitializeNode::make_raw_address(intptr_t offset,
  3499                                        PhaseTransform* phase) {
  3500   Node* addr = in(RawAddress);
  3501   if (offset != 0) {
  3502     Compile* C = phase->C;
  3503     addr = phase->transform( new (C) AddPNode(C->top(), addr,
  3504                                                  phase->MakeConX(offset)) );
  3506   return addr;
  3509 // Clone the given store, converting it into a raw store
  3510 // initializing a field or element of my new object.
  3511 // Caller is responsible for retiring the original store,
  3512 // with subsume_node or the like.
  3513 //
  3514 // From the example above InitializeNode::InitializeNode,
  3515 // here are the old stores to be captured:
  3516 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3517 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3518 //
  3519 // Here is the changed code; note the extra edges on init:
  3520 //   alloc = (Allocate ...)
  3521 //   rawoop = alloc.RawAddress
  3522 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3523 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3524 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3525 //                      rawstore1 rawstore2)
  3526 //
  3527 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3528                                     PhaseTransform* phase, bool can_reshape) {
  3529   assert(stores_are_sane(phase), "");
  3531   if (start < 0)  return NULL;
  3532   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
  3534   Compile* C = phase->C;
  3535   int size_in_bytes = st->memory_size();
  3536   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3537   if (i == 0)  return NULL;     // bail out
  3538   Node* prev_mem = NULL;        // raw memory for the captured store
  3539   if (i > 0) {
  3540     prev_mem = in(i);           // there is a pre-existing store under this one
  3541     set_req(i, C->top());       // temporarily disconnect it
  3542     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3543   } else {
  3544     i = -i;                     // no pre-existing store
  3545     prev_mem = zero_memory();   // a slice of the newly allocated object
  3546     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3547       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3548     else
  3549       ins_req(i, C->top());     // build a new edge
  3551   Node* new_st = st->clone();
  3552   new_st->set_req(MemNode::Control, in(Control));
  3553   new_st->set_req(MemNode::Memory,  prev_mem);
  3554   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3555   new_st = phase->transform(new_st);
  3557   // At this point, new_st might have swallowed a pre-existing store
  3558   // at the same offset, or perhaps new_st might have disappeared,
  3559   // if it redundantly stored the same value (or zero to fresh memory).
  3561   // In any case, wire it in:
  3562   set_req(i, new_st);
  3564   // The caller may now kill the old guy.
  3565   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3566   assert(check_st == new_st || check_st == NULL, "must be findable");
  3567   assert(!is_complete(), "");
  3568   return new_st;
  3571 static bool store_constant(jlong* tiles, int num_tiles,
  3572                            intptr_t st_off, int st_size,
  3573                            jlong con) {
  3574   if ((st_off & (st_size-1)) != 0)
  3575     return false;               // strange store offset (assume size==2**N)
  3576   address addr = (address)tiles + st_off;
  3577   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3578   switch (st_size) {
  3579   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3580   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3581   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3582   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3583   default: return false;        // strange store size (detect size!=2**N here)
  3585   return true;                  // return success to caller
  3588 // Coalesce subword constants into int constants and possibly
  3589 // into long constants.  The goal, if the CPU permits,
  3590 // is to initialize the object with a small number of 64-bit tiles.
  3591 // Also, convert floating-point constants to bit patterns.
  3592 // Non-constants are not relevant to this pass.
  3593 //
  3594 // In terms of the running example on InitializeNode::InitializeNode
  3595 // and InitializeNode::capture_store, here is the transformation
  3596 // of rawstore1 and rawstore2 into rawstore12:
  3597 //   alloc = (Allocate ...)
  3598 //   rawoop = alloc.RawAddress
  3599 //   tile12 = 0x00010002
  3600 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3601 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3602 //
  3603 void
  3604 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3605                                         Node* size_in_bytes,
  3606                                         PhaseGVN* phase) {
  3607   Compile* C = phase->C;
  3609   assert(stores_are_sane(phase), "");
  3610   // Note:  After this pass, they are not completely sane,
  3611   // since there may be some overlaps.
  3613   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3615   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3616   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3617   size_limit = MIN2(size_limit, ti_limit);
  3618   size_limit = align_size_up(size_limit, BytesPerLong);
  3619   int num_tiles = size_limit / BytesPerLong;
  3621   // allocate space for the tile map:
  3622   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3623   jlong  tiles_buf[small_len];
  3624   Node*  nodes_buf[small_len];
  3625   jlong  inits_buf[small_len];
  3626   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3627                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3628   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3629                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3630   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3631                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3632   // tiles: exact bitwise model of all primitive constants
  3633   // nodes: last constant-storing node subsumed into the tiles model
  3634   // inits: which bytes (in each tile) are touched by any initializations
  3636   //// Pass A: Fill in the tile model with any relevant stores.
  3638   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3639   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3640   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3641   Node* zmem = zero_memory(); // initially zero memory state
  3642   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3643     Node* st = in(i);
  3644     intptr_t st_off = get_store_offset(st, phase);
  3646     // Figure out the store's offset and constant value:
  3647     if (st_off < header_size)             continue; //skip (ignore header)
  3648     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3649     int st_size = st->as_Store()->memory_size();
  3650     if (st_off + st_size > size_limit)    break;
  3652     // Record which bytes are touched, whether by constant or not.
  3653     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3654       continue;                 // skip (strange store size)
  3656     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3657     if (!val->singleton())                continue; //skip (non-con store)
  3658     BasicType type = val->basic_type();
  3660     jlong con = 0;
  3661     switch (type) {
  3662     case T_INT:    con = val->is_int()->get_con();  break;
  3663     case T_LONG:   con = val->is_long()->get_con(); break;
  3664     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3665     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3666     default:                              continue; //skip (odd store type)
  3669     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3670         st->Opcode() == Op_StoreL) {
  3671       continue;                 // This StoreL is already optimal.
  3674     // Store down the constant.
  3675     store_constant(tiles, num_tiles, st_off, st_size, con);
  3677     intptr_t j = st_off >> LogBytesPerLong;
  3679     if (type == T_INT && st_size == BytesPerInt
  3680         && (st_off & BytesPerInt) == BytesPerInt) {
  3681       jlong lcon = tiles[j];
  3682       if (!Matcher::isSimpleConstant64(lcon) &&
  3683           st->Opcode() == Op_StoreI) {
  3684         // This StoreI is already optimal by itself.
  3685         jint* intcon = (jint*) &tiles[j];
  3686         intcon[1] = 0;  // undo the store_constant()
  3688         // If the previous store is also optimal by itself, back up and
  3689         // undo the action of the previous loop iteration... if we can.
  3690         // But if we can't, just let the previous half take care of itself.
  3691         st = nodes[j];
  3692         st_off -= BytesPerInt;
  3693         con = intcon[0];
  3694         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3695           assert(st_off >= header_size, "still ignoring header");
  3696           assert(get_store_offset(st, phase) == st_off, "must be");
  3697           assert(in(i-1) == zmem, "must be");
  3698           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3699           assert(con == tcon->is_int()->get_con(), "must be");
  3700           // Undo the effects of the previous loop trip, which swallowed st:
  3701           intcon[0] = 0;        // undo store_constant()
  3702           set_req(i-1, st);     // undo set_req(i, zmem)
  3703           nodes[j] = NULL;      // undo nodes[j] = st
  3704           --old_subword;        // undo ++old_subword
  3706         continue;               // This StoreI is already optimal.
  3710     // This store is not needed.
  3711     set_req(i, zmem);
  3712     nodes[j] = st;              // record for the moment
  3713     if (st_size < BytesPerLong) // something has changed
  3714           ++old_subword;        // includes int/float, but who's counting...
  3715     else  ++old_long;
  3718   if ((old_subword + old_long) == 0)
  3719     return;                     // nothing more to do
  3721   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3722   // Be sure to insert them before overlapping non-constant stores.
  3723   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3724   for (int j = 0; j < num_tiles; j++) {
  3725     jlong con  = tiles[j];
  3726     jlong init = inits[j];
  3727     if (con == 0)  continue;
  3728     jint con0,  con1;           // split the constant, address-wise
  3729     jint init0, init1;          // split the init map, address-wise
  3730     { union { jlong con; jint intcon[2]; } u;
  3731       u.con = con;
  3732       con0  = u.intcon[0];
  3733       con1  = u.intcon[1];
  3734       u.con = init;
  3735       init0 = u.intcon[0];
  3736       init1 = u.intcon[1];
  3739     Node* old = nodes[j];
  3740     assert(old != NULL, "need the prior store");
  3741     intptr_t offset = (j * BytesPerLong);
  3743     bool split = !Matcher::isSimpleConstant64(con);
  3745     if (offset < header_size) {
  3746       assert(offset + BytesPerInt >= header_size, "second int counts");
  3747       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3748       split = true;             // only the second word counts
  3749       // Example:  int a[] = { 42 ... }
  3750     } else if (con0 == 0 && init0 == -1) {
  3751       split = true;             // first word is covered by full inits
  3752       // Example:  int a[] = { ... foo(), 42 ... }
  3753     } else if (con1 == 0 && init1 == -1) {
  3754       split = true;             // second word is covered by full inits
  3755       // Example:  int a[] = { ... 42, foo() ... }
  3758     // Here's a case where init0 is neither 0 nor -1:
  3759     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3760     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3761     // In this case the tile is not split; it is (jlong)42.
  3762     // The big tile is stored down, and then the foo() value is inserted.
  3763     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3765     Node* ctl = old->in(MemNode::Control);
  3766     Node* adr = make_raw_address(offset, phase);
  3767     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3769     // One or two coalesced stores to plop down.
  3770     Node*    st[2];
  3771     intptr_t off[2];
  3772     int  nst = 0;
  3773     if (!split) {
  3774       ++new_long;
  3775       off[nst] = offset;
  3776       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3777                                   phase->longcon(con), T_LONG, MemNode::unordered);
  3778     } else {
  3779       // Omit either if it is a zero.
  3780       if (con0 != 0) {
  3781         ++new_int;
  3782         off[nst]  = offset;
  3783         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3784                                     phase->intcon(con0), T_INT, MemNode::unordered);
  3786       if (con1 != 0) {
  3787         ++new_int;
  3788         offset += BytesPerInt;
  3789         adr = make_raw_address(offset, phase);
  3790         off[nst]  = offset;
  3791         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3792                                     phase->intcon(con1), T_INT, MemNode::unordered);
  3796     // Insert second store first, then the first before the second.
  3797     // Insert each one just before any overlapping non-constant stores.
  3798     while (nst > 0) {
  3799       Node* st1 = st[--nst];
  3800       C->copy_node_notes_to(st1, old);
  3801       st1 = phase->transform(st1);
  3802       offset = off[nst];
  3803       assert(offset >= header_size, "do not smash header");
  3804       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3805       guarantee(ins_idx != 0, "must re-insert constant store");
  3806       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3807       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3808         set_req(--ins_idx, st1);
  3809       else
  3810         ins_req(ins_idx, st1);
  3814   if (PrintCompilation && WizardMode)
  3815     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3816                   old_subword, old_long, new_int, new_long);
  3817   if (C->log() != NULL)
  3818     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3819                    old_subword, old_long, new_int, new_long);
  3821   // Clean up any remaining occurrences of zmem:
  3822   remove_extra_zeroes();
  3825 // Explore forward from in(start) to find the first fully initialized
  3826 // word, and return its offset.  Skip groups of subword stores which
  3827 // together initialize full words.  If in(start) is itself part of a
  3828 // fully initialized word, return the offset of in(start).  If there
  3829 // are no following full-word stores, or if something is fishy, return
  3830 // a negative value.
  3831 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3832   int       int_map = 0;
  3833   intptr_t  int_map_off = 0;
  3834   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3836   for (uint i = start, limit = req(); i < limit; i++) {
  3837     Node* st = in(i);
  3839     intptr_t st_off = get_store_offset(st, phase);
  3840     if (st_off < 0)  break;  // return conservative answer
  3842     int st_size = st->as_Store()->memory_size();
  3843     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3844       return st_off;            // we found a complete word init
  3847     // update the map:
  3849     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3850     if (this_int_off != int_map_off) {
  3851       // reset the map:
  3852       int_map = 0;
  3853       int_map_off = this_int_off;
  3856     int subword_off = st_off - this_int_off;
  3857     int_map |= right_n_bits(st_size) << subword_off;
  3858     if ((int_map & FULL_MAP) == FULL_MAP) {
  3859       return this_int_off;      // we found a complete word init
  3862     // Did this store hit or cross the word boundary?
  3863     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3864     if (next_int_off == this_int_off + BytesPerInt) {
  3865       // We passed the current int, without fully initializing it.
  3866       int_map_off = next_int_off;
  3867       int_map >>= BytesPerInt;
  3868     } else if (next_int_off > this_int_off + BytesPerInt) {
  3869       // We passed the current and next int.
  3870       return this_int_off + BytesPerInt;
  3874   return -1;
  3878 // Called when the associated AllocateNode is expanded into CFG.
  3879 // At this point, we may perform additional optimizations.
  3880 // Linearize the stores by ascending offset, to make memory
  3881 // activity as coherent as possible.
  3882 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3883                                       intptr_t header_size,
  3884                                       Node* size_in_bytes,
  3885                                       PhaseGVN* phase) {
  3886   assert(!is_complete(), "not already complete");
  3887   assert(stores_are_sane(phase), "");
  3888   assert(allocation() != NULL, "must be present");
  3890   remove_extra_zeroes();
  3892   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3893     // reduce instruction count for common initialization patterns
  3894     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3896   Node* zmem = zero_memory();   // initially zero memory state
  3897   Node* inits = zmem;           // accumulating a linearized chain of inits
  3898   #ifdef ASSERT
  3899   intptr_t first_offset = allocation()->minimum_header_size();
  3900   intptr_t last_init_off = first_offset;  // previous init offset
  3901   intptr_t last_init_end = first_offset;  // previous init offset+size
  3902   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3903   #endif
  3904   intptr_t zeroes_done = header_size;
  3906   bool do_zeroing = true;       // we might give up if inits are very sparse
  3907   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3909   if (ZeroTLAB)  do_zeroing = false;
  3910   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3912   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3913     Node* st = in(i);
  3914     intptr_t st_off = get_store_offset(st, phase);
  3915     if (st_off < 0)
  3916       break;                    // unknown junk in the inits
  3917     if (st->in(MemNode::Memory) != zmem)
  3918       break;                    // complicated store chains somehow in list
  3920     int st_size = st->as_Store()->memory_size();
  3921     intptr_t next_init_off = st_off + st_size;
  3923     if (do_zeroing && zeroes_done < next_init_off) {
  3924       // See if this store needs a zero before it or under it.
  3925       intptr_t zeroes_needed = st_off;
  3927       if (st_size < BytesPerInt) {
  3928         // Look for subword stores which only partially initialize words.
  3929         // If we find some, we must lay down some word-level zeroes first,
  3930         // underneath the subword stores.
  3931         //
  3932         // Examples:
  3933         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3934         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3935         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3936         //
  3937         // Note:  coalesce_subword_stores may have already done this,
  3938         // if it was prompted by constant non-zero subword initializers.
  3939         // But this case can still arise with non-constant stores.
  3941         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3943         // In the examples above:
  3944         //   in(i)          p   q   r   s     x   y     z
  3945         //   st_off        12  13  14  15    12  13    14
  3946         //   st_size        1   1   1   1     1   1     1
  3947         //   next_full_s.  12  16  16  16    16  16    16
  3948         //   z's_done      12  16  16  16    12  16    12
  3949         //   z's_needed    12  16  16  16    16  16    16
  3950         //   zsize          0   0   0   0     4   0     4
  3951         if (next_full_store < 0) {
  3952           // Conservative tack:  Zero to end of current word.
  3953           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3954         } else {
  3955           // Zero to beginning of next fully initialized word.
  3956           // Or, don't zero at all, if we are already in that word.
  3957           assert(next_full_store >= zeroes_needed, "must go forward");
  3958           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3959           zeroes_needed = next_full_store;
  3963       if (zeroes_needed > zeroes_done) {
  3964         intptr_t zsize = zeroes_needed - zeroes_done;
  3965         // Do some incremental zeroing on rawmem, in parallel with inits.
  3966         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3967         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3968                                               zeroes_done, zeroes_needed,
  3969                                               phase);
  3970         zeroes_done = zeroes_needed;
  3971         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3972           do_zeroing = false;   // leave the hole, next time
  3976     // Collect the store and move on:
  3977     st->set_req(MemNode::Memory, inits);
  3978     inits = st;                 // put it on the linearized chain
  3979     set_req(i, zmem);           // unhook from previous position
  3981     if (zeroes_done == st_off)
  3982       zeroes_done = next_init_off;
  3984     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3986     #ifdef ASSERT
  3987     // Various order invariants.  Weaker than stores_are_sane because
  3988     // a large constant tile can be filled in by smaller non-constant stores.
  3989     assert(st_off >= last_init_off, "inits do not reverse");
  3990     last_init_off = st_off;
  3991     const Type* val = NULL;
  3992     if (st_size >= BytesPerInt &&
  3993         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3994         (int)val->basic_type() < (int)T_OBJECT) {
  3995       assert(st_off >= last_tile_end, "tiles do not overlap");
  3996       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3997       last_tile_end = MAX2(last_tile_end, next_init_off);
  3998     } else {
  3999       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  4000       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  4001       assert(st_off      >= last_init_end, "inits do not overlap");
  4002       last_init_end = next_init_off;  // it's a non-tile
  4004     #endif //ASSERT
  4007   remove_extra_zeroes();        // clear out all the zmems left over
  4008   add_req(inits);
  4010   if (!ZeroTLAB) {
  4011     // If anything remains to be zeroed, zero it all now.
  4012     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  4013     // if it is the last unused 4 bytes of an instance, forget about it
  4014     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  4015     if (zeroes_done + BytesPerLong >= size_limit) {
  4016       assert(allocation() != NULL, "");
  4017       if (allocation()->Opcode() == Op_Allocate) {
  4018         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  4019         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  4020         if (zeroes_done == k->layout_helper())
  4021           zeroes_done = size_limit;
  4024     if (zeroes_done < size_limit) {
  4025       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  4026                                             zeroes_done, size_in_bytes, phase);
  4030   set_complete(phase);
  4031   return rawmem;
  4035 #ifdef ASSERT
  4036 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  4037   if (is_complete())
  4038     return true;                // stores could be anything at this point
  4039   assert(allocation() != NULL, "must be present");
  4040   intptr_t last_off = allocation()->minimum_header_size();
  4041   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  4042     Node* st = in(i);
  4043     intptr_t st_off = get_store_offset(st, phase);
  4044     if (st_off < 0)  continue;  // ignore dead garbage
  4045     if (last_off > st_off) {
  4046       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
  4047       this->dump(2);
  4048       assert(false, "ascending store offsets");
  4049       return false;
  4051     last_off = st_off + st->as_Store()->memory_size();
  4053   return true;
  4055 #endif //ASSERT
  4060 //============================MergeMemNode=====================================
  4061 //
  4062 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  4063 // contributing store or call operations.  Each contributor provides the memory
  4064 // state for a particular "alias type" (see Compile::alias_type).  For example,
  4065 // if a MergeMem has an input X for alias category #6, then any memory reference
  4066 // to alias category #6 may use X as its memory state input, as an exact equivalent
  4067 // to using the MergeMem as a whole.
  4068 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  4069 //
  4070 // (Here, the <N> notation gives the index of the relevant adr_type.)
  4071 //
  4072 // In one special case (and more cases in the future), alias categories overlap.
  4073 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  4074 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  4075 // it is exactly equivalent to that state W:
  4076 //   MergeMem(<Bot>: W) <==> W
  4077 //
  4078 // Usually, the merge has more than one input.  In that case, where inputs
  4079 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  4080 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  4081 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  4082 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  4083 //
  4084 // A merge can take a "wide" memory state as one of its narrow inputs.
  4085 // This simply means that the merge observes out only the relevant parts of
  4086 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  4087 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  4088 //
  4089 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  4090 // and that memory slices "leak through":
  4091 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  4092 //
  4093 // But, in such a cascade, repeated memory slices can "block the leak":
  4094 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  4095 //
  4096 // In the last example, Y is not part of the combined memory state of the
  4097 // outermost MergeMem.  The system must, of course, prevent unschedulable
  4098 // memory states from arising, so you can be sure that the state Y is somehow
  4099 // a precursor to state Y'.
  4100 //
  4101 //
  4102 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  4103 // of each MergeMemNode array are exactly the numerical alias indexes, including
  4104 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  4105 // Compile::alias_type (and kin) produce and manage these indexes.
  4106 //
  4107 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  4108 // (Note that this provides quick access to the top node inside MergeMem methods,
  4109 // without the need to reach out via TLS to Compile::current.)
  4110 //
  4111 // As a consequence of what was just described, a MergeMem that represents a full
  4112 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  4113 // containing all alias categories.
  4114 //
  4115 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  4116 //
  4117 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  4118 // a memory state for the alias type <N>, or else the top node, meaning that
  4119 // there is no particular input for that alias type.  Note that the length of
  4120 // a MergeMem is variable, and may be extended at any time to accommodate new
  4121 // memory states at larger alias indexes.  When merges grow, they are of course
  4122 // filled with "top" in the unused in() positions.
  4123 //
  4124 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  4125 // (Top was chosen because it works smoothly with passes like GCM.)
  4126 //
  4127 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  4128 // the type of random VM bits like TLS references.)  Since it is always the
  4129 // first non-Bot memory slice, some low-level loops use it to initialize an
  4130 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  4131 //
  4132 //
  4133 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  4134 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  4135 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  4136 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  4137 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  4138 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  4139 //
  4140 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  4141 // really that different from the other memory inputs.  An abbreviation called
  4142 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  4143 //
  4144 //
  4145 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  4146 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  4147 // that "emerges though" the base memory will be marked as excluding the alias types
  4148 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  4149 //
  4150 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  4151 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  4152 //
  4153 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  4154 // (It is currently unimplemented.)  As you can see, the resulting merge is
  4155 // actually a disjoint union of memory states, rather than an overlay.
  4156 //
  4158 //------------------------------MergeMemNode-----------------------------------
  4159 Node* MergeMemNode::make_empty_memory() {
  4160   Node* empty_memory = (Node*) Compile::current()->top();
  4161   assert(empty_memory->is_top(), "correct sentinel identity");
  4162   return empty_memory;
  4165 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  4166   init_class_id(Class_MergeMem);
  4167   // all inputs are nullified in Node::Node(int)
  4168   // set_input(0, NULL);  // no control input
  4170   // Initialize the edges uniformly to top, for starters.
  4171   Node* empty_mem = make_empty_memory();
  4172   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  4173     init_req(i,empty_mem);
  4175   assert(empty_memory() == empty_mem, "");
  4177   if( new_base != NULL && new_base->is_MergeMem() ) {
  4178     MergeMemNode* mdef = new_base->as_MergeMem();
  4179     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  4180     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  4181       mms.set_memory(mms.memory2());
  4183     assert(base_memory() == mdef->base_memory(), "");
  4184   } else {
  4185     set_base_memory(new_base);
  4189 // Make a new, untransformed MergeMem with the same base as 'mem'.
  4190 // If mem is itself a MergeMem, populate the result with the same edges.
  4191 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  4192   return new(C) MergeMemNode(mem);
  4195 //------------------------------cmp--------------------------------------------
  4196 uint MergeMemNode::hash() const { return NO_HASH; }
  4197 uint MergeMemNode::cmp( const Node &n ) const {
  4198   return (&n == this);          // Always fail except on self
  4201 //------------------------------Identity---------------------------------------
  4202 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  4203   // Identity if this merge point does not record any interesting memory
  4204   // disambiguations.
  4205   Node* base_mem = base_memory();
  4206   Node* empty_mem = empty_memory();
  4207   if (base_mem != empty_mem) {  // Memory path is not dead?
  4208     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4209       Node* mem = in(i);
  4210       if (mem != empty_mem && mem != base_mem) {
  4211         return this;            // Many memory splits; no change
  4215   return base_mem;              // No memory splits; ID on the one true input
  4218 //------------------------------Ideal------------------------------------------
  4219 // This method is invoked recursively on chains of MergeMem nodes
  4220 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  4221   // Remove chain'd MergeMems
  4222   //
  4223   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  4224   // relative to the "in(Bot)".  Since we are patching both at the same time,
  4225   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  4226   // but rewrite each "in(i)" relative to the new "in(Bot)".
  4227   Node *progress = NULL;
  4230   Node* old_base = base_memory();
  4231   Node* empty_mem = empty_memory();
  4232   if (old_base == empty_mem)
  4233     return NULL; // Dead memory path.
  4235   MergeMemNode* old_mbase;
  4236   if (old_base != NULL && old_base->is_MergeMem())
  4237     old_mbase = old_base->as_MergeMem();
  4238   else
  4239     old_mbase = NULL;
  4240   Node* new_base = old_base;
  4242   // simplify stacked MergeMems in base memory
  4243   if (old_mbase)  new_base = old_mbase->base_memory();
  4245   // the base memory might contribute new slices beyond my req()
  4246   if (old_mbase)  grow_to_match(old_mbase);
  4248   // Look carefully at the base node if it is a phi.
  4249   PhiNode* phi_base;
  4250   if (new_base != NULL && new_base->is_Phi())
  4251     phi_base = new_base->as_Phi();
  4252   else
  4253     phi_base = NULL;
  4255   Node*    phi_reg = NULL;
  4256   uint     phi_len = (uint)-1;
  4257   if (phi_base != NULL && !phi_base->is_copy()) {
  4258     // do not examine phi if degraded to a copy
  4259     phi_reg = phi_base->region();
  4260     phi_len = phi_base->req();
  4261     // see if the phi is unfinished
  4262     for (uint i = 1; i < phi_len; i++) {
  4263       if (phi_base->in(i) == NULL) {
  4264         // incomplete phi; do not look at it yet!
  4265         phi_reg = NULL;
  4266         phi_len = (uint)-1;
  4267         break;
  4272   // Note:  We do not call verify_sparse on entry, because inputs
  4273   // can normalize to the base_memory via subsume_node or similar
  4274   // mechanisms.  This method repairs that damage.
  4276   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  4278   // Look at each slice.
  4279   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4280     Node* old_in = in(i);
  4281     // calculate the old memory value
  4282     Node* old_mem = old_in;
  4283     if (old_mem == empty_mem)  old_mem = old_base;
  4284     assert(old_mem == memory_at(i), "");
  4286     // maybe update (reslice) the old memory value
  4288     // simplify stacked MergeMems
  4289     Node* new_mem = old_mem;
  4290     MergeMemNode* old_mmem;
  4291     if (old_mem != NULL && old_mem->is_MergeMem())
  4292       old_mmem = old_mem->as_MergeMem();
  4293     else
  4294       old_mmem = NULL;
  4295     if (old_mmem == this) {
  4296       // This can happen if loops break up and safepoints disappear.
  4297       // A merge of BotPtr (default) with a RawPtr memory derived from a
  4298       // safepoint can be rewritten to a merge of the same BotPtr with
  4299       // the BotPtr phi coming into the loop.  If that phi disappears
  4300       // also, we can end up with a self-loop of the mergemem.
  4301       // In general, if loops degenerate and memory effects disappear,
  4302       // a mergemem can be left looking at itself.  This simply means
  4303       // that the mergemem's default should be used, since there is
  4304       // no longer any apparent effect on this slice.
  4305       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  4306       //       from start.  Update the input to TOP.
  4307       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  4309     else if (old_mmem != NULL) {
  4310       new_mem = old_mmem->memory_at(i);
  4312     // else preceding memory was not a MergeMem
  4314     // replace equivalent phis (unfortunately, they do not GVN together)
  4315     if (new_mem != NULL && new_mem != new_base &&
  4316         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  4317       if (new_mem->is_Phi()) {
  4318         PhiNode* phi_mem = new_mem->as_Phi();
  4319         for (uint i = 1; i < phi_len; i++) {
  4320           if (phi_base->in(i) != phi_mem->in(i)) {
  4321             phi_mem = NULL;
  4322             break;
  4325         if (phi_mem != NULL) {
  4326           // equivalent phi nodes; revert to the def
  4327           new_mem = new_base;
  4332     // maybe store down a new value
  4333     Node* new_in = new_mem;
  4334     if (new_in == new_base)  new_in = empty_mem;
  4336     if (new_in != old_in) {
  4337       // Warning:  Do not combine this "if" with the previous "if"
  4338       // A memory slice might have be be rewritten even if it is semantically
  4339       // unchanged, if the base_memory value has changed.
  4340       set_req(i, new_in);
  4341       progress = this;          // Report progress
  4345   if (new_base != old_base) {
  4346     set_req(Compile::AliasIdxBot, new_base);
  4347     // Don't use set_base_memory(new_base), because we need to update du.
  4348     assert(base_memory() == new_base, "");
  4349     progress = this;
  4352   if( base_memory() == this ) {
  4353     // a self cycle indicates this memory path is dead
  4354     set_req(Compile::AliasIdxBot, empty_mem);
  4357   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  4358   // Recursion must occur after the self cycle check above
  4359   if( base_memory()->is_MergeMem() ) {
  4360     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  4361     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  4362     if( m != NULL && (m->is_top() ||
  4363         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  4364       // propagate rollup of dead cycle to self
  4365       set_req(Compile::AliasIdxBot, empty_mem);
  4369   if( base_memory() == empty_mem ) {
  4370     progress = this;
  4371     // Cut inputs during Parse phase only.
  4372     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  4373     if( !can_reshape ) {
  4374       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4375         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  4380   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  4381     // Check if PhiNode::Ideal's "Split phis through memory merges"
  4382     // transform should be attempted. Look for this->phi->this cycle.
  4383     uint merge_width = req();
  4384     if (merge_width > Compile::AliasIdxRaw) {
  4385       PhiNode* phi = base_memory()->as_Phi();
  4386       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  4387         if (phi->in(i) == this) {
  4388           phase->is_IterGVN()->_worklist.push(phi);
  4389           break;
  4395   assert(progress || verify_sparse(), "please, no dups of base");
  4396   return progress;
  4399 //-------------------------set_base_memory-------------------------------------
  4400 void MergeMemNode::set_base_memory(Node *new_base) {
  4401   Node* empty_mem = empty_memory();
  4402   set_req(Compile::AliasIdxBot, new_base);
  4403   assert(memory_at(req()) == new_base, "must set default memory");
  4404   // Clear out other occurrences of new_base:
  4405   if (new_base != empty_mem) {
  4406     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4407       if (in(i) == new_base)  set_req(i, empty_mem);
  4412 //------------------------------out_RegMask------------------------------------
  4413 const RegMask &MergeMemNode::out_RegMask() const {
  4414   return RegMask::Empty;
  4417 //------------------------------dump_spec--------------------------------------
  4418 #ifndef PRODUCT
  4419 void MergeMemNode::dump_spec(outputStream *st) const {
  4420   st->print(" {");
  4421   Node* base_mem = base_memory();
  4422   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  4423     Node* mem = memory_at(i);
  4424     if (mem == base_mem) { st->print(" -"); continue; }
  4425     st->print( " N%d:", mem->_idx );
  4426     Compile::current()->get_adr_type(i)->dump_on(st);
  4428   st->print(" }");
  4430 #endif // !PRODUCT
  4433 #ifdef ASSERT
  4434 static bool might_be_same(Node* a, Node* b) {
  4435   if (a == b)  return true;
  4436   if (!(a->is_Phi() || b->is_Phi()))  return false;
  4437   // phis shift around during optimization
  4438   return true;  // pretty stupid...
  4441 // verify a narrow slice (either incoming or outgoing)
  4442 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  4443   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  4444   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  4445   if (Node::in_dump())      return;  // muzzle asserts when printing
  4446   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  4447   assert(n != NULL, "");
  4448   // Elide intervening MergeMem's
  4449   while (n->is_MergeMem()) {
  4450     n = n->as_MergeMem()->memory_at(alias_idx);
  4452   Compile* C = Compile::current();
  4453   const TypePtr* n_adr_type = n->adr_type();
  4454   if (n == m->empty_memory()) {
  4455     // Implicit copy of base_memory()
  4456   } else if (n_adr_type != TypePtr::BOTTOM) {
  4457     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4458     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4459   } else {
  4460     // A few places like make_runtime_call "know" that VM calls are narrow,
  4461     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4462     bool expected_wide_mem = false;
  4463     if (n == m->base_memory()) {
  4464       expected_wide_mem = true;
  4465     } else if (alias_idx == Compile::AliasIdxRaw ||
  4466                n == m->memory_at(Compile::AliasIdxRaw)) {
  4467       expected_wide_mem = true;
  4468     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4469       // memory can "leak through" calls on channels that
  4470       // are write-once.  Allow this also.
  4471       expected_wide_mem = true;
  4473     assert(expected_wide_mem, "expected narrow slice replacement");
  4476 #else // !ASSERT
  4477 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
  4478 #endif
  4481 //-----------------------------memory_at---------------------------------------
  4482 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4483   assert(alias_idx >= Compile::AliasIdxRaw ||
  4484          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4485          "must avoid base_memory and AliasIdxTop");
  4487   // Otherwise, it is a narrow slice.
  4488   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4489   Compile *C = Compile::current();
  4490   if (is_empty_memory(n)) {
  4491     // the array is sparse; empty slots are the "top" node
  4492     n = base_memory();
  4493     assert(Node::in_dump()
  4494            || n == NULL || n->bottom_type() == Type::TOP
  4495            || n->adr_type() == NULL // address is TOP
  4496            || n->adr_type() == TypePtr::BOTTOM
  4497            || n->adr_type() == TypeRawPtr::BOTTOM
  4498            || Compile::current()->AliasLevel() == 0,
  4499            "must be a wide memory");
  4500     // AliasLevel == 0 if we are organizing the memory states manually.
  4501     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4502   } else {
  4503     // make sure the stored slice is sane
  4504     #ifdef ASSERT
  4505     if (is_error_reported() || Node::in_dump()) {
  4506     } else if (might_be_same(n, base_memory())) {
  4507       // Give it a pass:  It is a mostly harmless repetition of the base.
  4508       // This can arise normally from node subsumption during optimization.
  4509     } else {
  4510       verify_memory_slice(this, alias_idx, n);
  4512     #endif
  4514   return n;
  4517 //---------------------------set_memory_at-------------------------------------
  4518 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4519   verify_memory_slice(this, alias_idx, n);
  4520   Node* empty_mem = empty_memory();
  4521   if (n == base_memory())  n = empty_mem;  // collapse default
  4522   uint need_req = alias_idx+1;
  4523   if (req() < need_req) {
  4524     if (n == empty_mem)  return;  // already the default, so do not grow me
  4525     // grow the sparse array
  4526     do {
  4527       add_req(empty_mem);
  4528     } while (req() < need_req);
  4530   set_req( alias_idx, n );
  4535 //--------------------------iteration_setup------------------------------------
  4536 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4537   if (other != NULL) {
  4538     grow_to_match(other);
  4539     // invariant:  the finite support of mm2 is within mm->req()
  4540     #ifdef ASSERT
  4541     for (uint i = req(); i < other->req(); i++) {
  4542       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4544     #endif
  4546   // Replace spurious copies of base_memory by top.
  4547   Node* base_mem = base_memory();
  4548   if (base_mem != NULL && !base_mem->is_top()) {
  4549     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4550       if (in(i) == base_mem)
  4551         set_req(i, empty_memory());
  4556 //---------------------------grow_to_match-------------------------------------
  4557 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4558   Node* empty_mem = empty_memory();
  4559   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4560   // look for the finite support of the other memory
  4561   for (uint i = other->req(); --i >= req(); ) {
  4562     if (other->in(i) != empty_mem) {
  4563       uint new_len = i+1;
  4564       while (req() < new_len)  add_req(empty_mem);
  4565       break;
  4570 //---------------------------verify_sparse-------------------------------------
  4571 #ifndef PRODUCT
  4572 bool MergeMemNode::verify_sparse() const {
  4573   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4574   Node* base_mem = base_memory();
  4575   // The following can happen in degenerate cases, since empty==top.
  4576   if (is_empty_memory(base_mem))  return true;
  4577   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4578     assert(in(i) != NULL, "sane slice");
  4579     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4581   return true;
  4584 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4585   Node* n;
  4586   n = mm->in(idx);
  4587   if (mem == n)  return true;  // might be empty_memory()
  4588   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4589   if (mem == n)  return true;
  4590   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4591     if (mem == n)  return true;
  4592     if (n == NULL)  break;
  4594   return false;
  4596 #endif // !PRODUCT

mercurial