src/share/vm/opto/parse1.cpp

Wed, 07 Apr 2010 12:39:27 -0700

author
kvn
date
Wed, 07 Apr 2010 12:39:27 -0700
changeset 1802
9e321dcfa5b7
parent 1779
fdd57634910e
child 1812
ef74d6d1ac1e
permissions
-rw-r--r--

6940726: Use BIS instruction for allocation prefetch on Sparc
Summary: Use BIS instruction for allocation prefetch on Sparc
Reviewed-by: twisti

     1 /*
     2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_parse1.cpp.incl"
    28 // Static array so we can figure out which bytecodes stop us from compiling
    29 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
    30 // and eventually should be encapsulated in a proper class (gri 8/18/98).
    32 int nodes_created              = 0;
    33 int methods_parsed             = 0;
    34 int methods_seen               = 0;
    35 int blocks_parsed              = 0;
    36 int blocks_seen                = 0;
    38 int explicit_null_checks_inserted = 0;
    39 int explicit_null_checks_elided   = 0;
    40 int all_null_checks_found         = 0, implicit_null_checks              = 0;
    41 int implicit_null_throws          = 0;
    43 int reclaim_idx  = 0;
    44 int reclaim_in   = 0;
    45 int reclaim_node = 0;
    47 #ifndef PRODUCT
    48 bool Parse::BytecodeParseHistogram::_initialized = false;
    49 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
    50 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
    51 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
    52 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
    53 #endif
    55 //------------------------------print_statistics-------------------------------
    56 #ifndef PRODUCT
    57 void Parse::print_statistics() {
    58   tty->print_cr("--- Compiler Statistics ---");
    59   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
    60   tty->print("  Nodes created: %d", nodes_created);
    61   tty->cr();
    62   if (methods_seen != methods_parsed)
    63     tty->print_cr("Reasons for parse failures (NOT cumulative):");
    64   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
    66   if( explicit_null_checks_inserted )
    67     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
    68   if( all_null_checks_found )
    69     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
    70                   (100*implicit_null_checks)/all_null_checks_found);
    71   if( implicit_null_throws )
    72     tty->print_cr("%d implicit null exceptions at runtime",
    73                   implicit_null_throws);
    75   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
    76     BytecodeParseHistogram::print();
    77   }
    78 }
    79 #endif
    81 //------------------------------ON STACK REPLACEMENT---------------------------
    83 // Construct a node which can be used to get incoming state for
    84 // on stack replacement.
    85 Node *Parse::fetch_interpreter_state(int index,
    86                                      BasicType bt,
    87                                      Node *local_addrs,
    88                                      Node *local_addrs_base) {
    89   Node *mem = memory(Compile::AliasIdxRaw);
    90   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
    92   // Very similar to LoadNode::make, except we handle un-aligned longs and
    93   // doubles on Sparc.  Intel can handle them just fine directly.
    94   Node *l;
    95   switch( bt ) {                // Signature is flattened
    96   case T_INT:     l = new (C, 3) LoadINode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
    97   case T_FLOAT:   l = new (C, 3) LoadFNode( 0, mem, adr, TypeRawPtr::BOTTOM ); break;
    98   case T_ADDRESS: l = new (C, 3) LoadPNode( 0, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM  ); break;
    99   case T_OBJECT:  l = new (C, 3) LoadPNode( 0, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
   100   case T_LONG:
   101   case T_DOUBLE: {
   102     // Since arguments are in reverse order, the argument address 'adr'
   103     // refers to the back half of the long/double.  Recompute adr.
   104     adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
   105     if( Matcher::misaligned_doubles_ok ) {
   106       l = (bt == T_DOUBLE)
   107         ? (Node*)new (C, 3) LoadDNode( 0, mem, adr, TypeRawPtr::BOTTOM )
   108         : (Node*)new (C, 3) LoadLNode( 0, mem, adr, TypeRawPtr::BOTTOM );
   109     } else {
   110       l = (bt == T_DOUBLE)
   111         ? (Node*)new (C, 3) LoadD_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM )
   112         : (Node*)new (C, 3) LoadL_unalignedNode( 0, mem, adr, TypeRawPtr::BOTTOM );
   113     }
   114     break;
   115   }
   116   default: ShouldNotReachHere();
   117   }
   118   return _gvn.transform(l);
   119 }
   121 // Helper routine to prevent the interpreter from handing
   122 // unexpected typestate to an OSR method.
   123 // The Node l is a value newly dug out of the interpreter frame.
   124 // The type is the type predicted by ciTypeFlow.  Note that it is
   125 // not a general type, but can only come from Type::get_typeflow_type.
   126 // The safepoint is a map which will feed an uncommon trap.
   127 Node* Parse::check_interpreter_type(Node* l, const Type* type,
   128                                     SafePointNode* &bad_type_exit) {
   130   const TypeOopPtr* tp = type->isa_oopptr();
   132   // TypeFlow may assert null-ness if a type appears unloaded.
   133   if (type == TypePtr::NULL_PTR ||
   134       (tp != NULL && !tp->klass()->is_loaded())) {
   135     // Value must be null, not a real oop.
   136     Node* chk = _gvn.transform( new (C, 3) CmpPNode(l, null()) );
   137     Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, BoolTest::eq) );
   138     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
   139     set_control(_gvn.transform( new (C, 1) IfTrueNode(iff) ));
   140     Node* bad_type = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   141     bad_type_exit->control()->add_req(bad_type);
   142     l = null();
   143   }
   145   // Typeflow can also cut off paths from the CFG, based on
   146   // types which appear unloaded, or call sites which appear unlinked.
   147   // When paths are cut off, values at later merge points can rise
   148   // toward more specific classes.  Make sure these specific classes
   149   // are still in effect.
   150   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
   151     // TypeFlow asserted a specific object type.  Value must have that type.
   152     Node* bad_type_ctrl = NULL;
   153     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
   154     bad_type_exit->control()->add_req(bad_type_ctrl);
   155   }
   157   BasicType bt_l = _gvn.type(l)->basic_type();
   158   BasicType bt_t = type->basic_type();
   159   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
   160   return l;
   161 }
   163 // Helper routine which sets up elements of the initial parser map when
   164 // performing a parse for on stack replacement.  Add values into map.
   165 // The only parameter contains the address of a interpreter arguments.
   166 void Parse::load_interpreter_state(Node* osr_buf) {
   167   int index;
   168   int max_locals = jvms()->loc_size();
   169   int max_stack  = jvms()->stk_size();
   172   // Mismatch between method and jvms can occur since map briefly held
   173   // an OSR entry state (which takes up one RawPtr word).
   174   assert(max_locals == method()->max_locals(), "sanity");
   175   assert(max_stack  >= method()->max_stack(),  "sanity");
   176   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
   177   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
   179   // Find the start block.
   180   Block* osr_block = start_block();
   181   assert(osr_block->start() == osr_bci(), "sanity");
   183   // Set initial BCI.
   184   set_parse_bci(osr_block->start());
   186   // Set initial stack depth.
   187   set_sp(osr_block->start_sp());
   189   // Check bailouts.  We currently do not perform on stack replacement
   190   // of loops in catch blocks or loops which branch with a non-empty stack.
   191   if (sp() != 0) {
   192     C->record_method_not_compilable("OSR starts with non-empty stack");
   193     return;
   194   }
   195   // Do not OSR inside finally clauses:
   196   if (osr_block->has_trap_at(osr_block->start())) {
   197     C->record_method_not_compilable("OSR starts with an immediate trap");
   198     return;
   199   }
   201   // Commute monitors from interpreter frame to compiler frame.
   202   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
   203   int mcnt = osr_block->flow()->monitor_count();
   204   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
   205   for (index = 0; index < mcnt; index++) {
   206     // Make a BoxLockNode for the monitor.
   207     Node *box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
   210     // Displaced headers and locked objects are interleaved in the
   211     // temp OSR buffer.  We only copy the locked objects out here.
   212     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
   213     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
   214     // Try and copy the displaced header to the BoxNode
   215     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
   218     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
   220     // Build a bogus FastLockNode (no code will be generated) and push the
   221     // monitor into our debug info.
   222     const FastLockNode *flock = _gvn.transform(new (C, 3) FastLockNode( 0, lock_object, box ))->as_FastLock();
   223     map()->push_monitor(flock);
   225     // If the lock is our method synchronization lock, tuck it away in
   226     // _sync_lock for return and rethrow exit paths.
   227     if (index == 0 && method()->is_synchronized()) {
   228       _synch_lock = flock;
   229     }
   230   }
   232   // Use the raw liveness computation to make sure that unexpected
   233   // values don't propagate into the OSR frame.
   234   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
   235   if (!live_locals.is_valid()) {
   236     // Degenerate or breakpointed method.
   237     C->record_method_not_compilable("OSR in empty or breakpointed method");
   238     return;
   239   }
   241   // Extract the needed locals from the interpreter frame.
   242   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
   244   // find all the locals that the interpreter thinks contain live oops
   245   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
   246   for (index = 0; index < max_locals; index++) {
   248     if (!live_locals.at(index)) {
   249       continue;
   250     }
   252     const Type *type = osr_block->local_type_at(index);
   254     if (type->isa_oopptr() != NULL) {
   256       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
   257       // else we might load a stale oop if the MethodLiveness disagrees with the
   258       // result of the interpreter. If the interpreter says it is dead we agree
   259       // by making the value go to top.
   260       //
   262       if (!live_oops.at(index)) {
   263         if (C->log() != NULL) {
   264           C->log()->elem("OSR_mismatch local_index='%d'",index);
   265         }
   266         set_local(index, null());
   267         // and ignore it for the loads
   268         continue;
   269       }
   270     }
   272     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
   273     if (type == Type::TOP || type == Type::HALF) {
   274       continue;
   275     }
   276     // If the type falls to bottom, then this must be a local that
   277     // is mixing ints and oops or some such.  Forcing it to top
   278     // makes it go dead.
   279     if (type == Type::BOTTOM) {
   280       continue;
   281     }
   282     // Construct code to access the appropriate local.
   283     Node *value = fetch_interpreter_state(index, type->basic_type(), locals_addr, osr_buf);
   284     set_local(index, value);
   285   }
   287   // Extract the needed stack entries from the interpreter frame.
   288   for (index = 0; index < sp(); index++) {
   289     const Type *type = osr_block->stack_type_at(index);
   290     if (type != Type::TOP) {
   291       // Currently the compiler bails out when attempting to on stack replace
   292       // at a bci with a non-empty stack.  We should not reach here.
   293       ShouldNotReachHere();
   294     }
   295   }
   297   // End the OSR migration
   298   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
   299                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
   300                     "OSR_migration_end", TypeRawPtr::BOTTOM,
   301                     osr_buf);
   303   // Now that the interpreter state is loaded, make sure it will match
   304   // at execution time what the compiler is expecting now:
   305   SafePointNode* bad_type_exit = clone_map();
   306   bad_type_exit->set_control(new (C, 1) RegionNode(1));
   308   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
   309   for (index = 0; index < max_locals; index++) {
   310     if (stopped())  break;
   311     Node* l = local(index);
   312     if (l->is_top())  continue;  // nothing here
   313     const Type *type = osr_block->local_type_at(index);
   314     if (type->isa_oopptr() != NULL) {
   315       if (!live_oops.at(index)) {
   316         // skip type check for dead oops
   317         continue;
   318       }
   319     }
   320     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
   321       // In our current system it's illegal for jsr addresses to be
   322       // live into an OSR entry point because the compiler performs
   323       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
   324       // case and aborts the compile if addresses are live into an OSR
   325       // entry point.  Because of that we can assume that any address
   326       // locals at the OSR entry point are dead.  Method liveness
   327       // isn't precise enought to figure out that they are dead in all
   328       // cases so simply skip checking address locals all
   329       // together. Any type check is guaranteed to fail since the
   330       // interpreter type is the result of a load which might have any
   331       // value and the expected type is a constant.
   332       continue;
   333     }
   334     set_local(index, check_interpreter_type(l, type, bad_type_exit));
   335   }
   337   for (index = 0; index < sp(); index++) {
   338     if (stopped())  break;
   339     Node* l = stack(index);
   340     if (l->is_top())  continue;  // nothing here
   341     const Type *type = osr_block->stack_type_at(index);
   342     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
   343   }
   345   if (bad_type_exit->control()->req() > 1) {
   346     // Build an uncommon trap here, if any inputs can be unexpected.
   347     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
   348     record_for_igvn(bad_type_exit->control());
   349     SafePointNode* types_are_good = map();
   350     set_map(bad_type_exit);
   351     // The unexpected type happens because a new edge is active
   352     // in the CFG, which typeflow had previously ignored.
   353     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
   354     // This x will be typed as Integer if notReached is not yet linked.
   355     uncommon_trap(Deoptimization::Reason_unreached,
   356                   Deoptimization::Action_reinterpret);
   357     set_map(types_are_good);
   358   }
   359 }
   361 //------------------------------Parse------------------------------------------
   362 // Main parser constructor.
   363 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
   364   : _exits(caller)
   365 {
   366   // Init some variables
   367   _caller = caller;
   368   _method = parse_method;
   369   _expected_uses = expected_uses;
   370   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
   371   _wrote_final = false;
   372   _entry_bci = InvocationEntryBci;
   373   _tf = NULL;
   374   _block = NULL;
   375   debug_only(_block_count = -1);
   376   debug_only(_blocks = (Block*)-1);
   377 #ifndef PRODUCT
   378   if (PrintCompilation || PrintOpto) {
   379     // Make sure I have an inline tree, so I can print messages about it.
   380     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
   381     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method, true);
   382   }
   383   _max_switch_depth = 0;
   384   _est_switch_depth = 0;
   385 #endif
   387   _tf = TypeFunc::make(method());
   388   _iter.reset_to_method(method());
   389   _flow = method()->get_flow_analysis();
   390   if (_flow->failing()) {
   391     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
   392   }
   394 #ifndef PRODUCT
   395   if (_flow->has_irreducible_entry()) {
   396     C->set_parsed_irreducible_loop(true);
   397   }
   398 #endif
   400   if (_expected_uses <= 0) {
   401     _prof_factor = 1;
   402   } else {
   403     float prof_total = parse_method->interpreter_invocation_count();
   404     if (prof_total <= _expected_uses) {
   405       _prof_factor = 1;
   406     } else {
   407       _prof_factor = _expected_uses / prof_total;
   408     }
   409   }
   411   CompileLog* log = C->log();
   412   if (log != NULL) {
   413     log->begin_head("parse method='%d' uses='%g'",
   414                     log->identify(parse_method), expected_uses);
   415     if (depth() == 1 && C->is_osr_compilation()) {
   416       log->print(" osr_bci='%d'", C->entry_bci());
   417     }
   418     log->stamp();
   419     log->end_head();
   420   }
   422   // Accumulate deoptimization counts.
   423   // (The range_check and store_check counts are checked elsewhere.)
   424   ciMethodData* md = method()->method_data();
   425   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
   426     uint md_count = md->trap_count(reason);
   427     if (md_count != 0) {
   428       if (md_count == md->trap_count_limit())
   429         md_count += md->overflow_trap_count();
   430       uint total_count = C->trap_count(reason);
   431       uint old_count   = total_count;
   432       total_count += md_count;
   433       // Saturate the add if it overflows.
   434       if (total_count < old_count || total_count < md_count)
   435         total_count = (uint)-1;
   436       C->set_trap_count(reason, total_count);
   437       if (log != NULL)
   438         log->elem("observe trap='%s' count='%d' total='%d'",
   439                   Deoptimization::trap_reason_name(reason),
   440                   md_count, total_count);
   441     }
   442   }
   443   // Accumulate total sum of decompilations, also.
   444   C->set_decompile_count(C->decompile_count() + md->decompile_count());
   446   _count_invocations = C->do_count_invocations();
   447   _method_data_update = C->do_method_data_update();
   449   if (log != NULL && method()->has_exception_handlers()) {
   450     log->elem("observe that='has_exception_handlers'");
   451   }
   453   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
   454   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
   456   // Always register dependence if JVMTI is enabled, because
   457   // either breakpoint setting or hotswapping of methods may
   458   // cause deoptimization.
   459   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
   460     C->dependencies()->assert_evol_method(method());
   461   }
   463   methods_seen++;
   465   // Do some special top-level things.
   466   if (depth() == 1 && C->is_osr_compilation()) {
   467     _entry_bci = C->entry_bci();
   468     _flow = method()->get_osr_flow_analysis(osr_bci());
   469     if (_flow->failing()) {
   470       C->record_method_not_compilable(_flow->failure_reason());
   471 #ifndef PRODUCT
   472       if (PrintOpto && (Verbose || WizardMode)) {
   473         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
   474         if (Verbose) {
   475           method()->print_oop();
   476           method()->print_codes();
   477           _flow->print();
   478         }
   479       }
   480 #endif
   481     }
   482     _tf = C->tf();     // the OSR entry type is different
   483   }
   485 #ifdef ASSERT
   486   if (depth() == 1) {
   487     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
   488     if (C->tf() != tf()) {
   489       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
   490       assert(C->env()->system_dictionary_modification_counter_changed(),
   491              "Must invalidate if TypeFuncs differ");
   492     }
   493   } else {
   494     assert(!this->is_osr_parse(), "no recursive OSR");
   495   }
   496 #endif
   498   methods_parsed++;
   499 #ifndef PRODUCT
   500   // add method size here to guarantee that inlined methods are added too
   501   if (TimeCompiler)
   502     _total_bytes_compiled += method()->code_size();
   504   show_parse_info();
   505 #endif
   507   if (failing()) {
   508     if (log)  log->done("parse");
   509     return;
   510   }
   512   gvn().set_type(root(), root()->bottom_type());
   513   gvn().transform(top());
   515   // Import the results of the ciTypeFlow.
   516   init_blocks();
   518   // Merge point for all normal exits
   519   build_exits();
   521   // Setup the initial JVM state map.
   522   SafePointNode* entry_map = create_entry_map();
   524   // Check for bailouts during map initialization
   525   if (failing() || entry_map == NULL) {
   526     if (log)  log->done("parse");
   527     return;
   528   }
   530   Node_Notes* caller_nn = C->default_node_notes();
   531   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
   532   if (DebugInlinedCalls || depth() == 1) {
   533     C->set_default_node_notes(make_node_notes(caller_nn));
   534   }
   536   if (is_osr_parse()) {
   537     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
   538     entry_map->set_req(TypeFunc::Parms+0, top());
   539     set_map(entry_map);
   540     load_interpreter_state(osr_buf);
   541   } else {
   542     set_map(entry_map);
   543     do_method_entry();
   544   }
   546   // Check for bailouts during method entry.
   547   if (failing()) {
   548     if (log)  log->done("parse");
   549     C->set_default_node_notes(caller_nn);
   550     return;
   551   }
   553   entry_map = map();  // capture any changes performed by method setup code
   554   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
   556   // We begin parsing as if we have just encountered a jump to the
   557   // method entry.
   558   Block* entry_block = start_block();
   559   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
   560   set_map_clone(entry_map);
   561   merge_common(entry_block, entry_block->next_path_num());
   563 #ifndef PRODUCT
   564   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
   565   set_parse_histogram( parse_histogram_obj );
   566 #endif
   568   // Parse all the basic blocks.
   569   do_all_blocks();
   571   C->set_default_node_notes(caller_nn);
   573   // Check for bailouts during conversion to graph
   574   if (failing()) {
   575     if (log)  log->done("parse");
   576     return;
   577   }
   579   // Fix up all exiting control flow.
   580   set_map(entry_map);
   581   do_exits();
   583   if (log)  log->done("parse nodes='%d' memory='%d'",
   584                       C->unique(), C->node_arena()->used());
   585 }
   587 //---------------------------do_all_blocks-------------------------------------
   588 void Parse::do_all_blocks() {
   589   bool has_irreducible = flow()->has_irreducible_entry();
   591   // Walk over all blocks in Reverse Post-Order.
   592   while (true) {
   593     bool progress = false;
   594     for (int rpo = 0; rpo < block_count(); rpo++) {
   595       Block* block = rpo_at(rpo);
   597       if (block->is_parsed()) continue;
   599       if (!block->is_merged()) {
   600         // Dead block, no state reaches this block
   601         continue;
   602       }
   604       // Prepare to parse this block.
   605       load_state_from(block);
   607       if (stopped()) {
   608         // Block is dead.
   609         continue;
   610       }
   612       blocks_parsed++;
   614       progress = true;
   615       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
   616         // Not all preds have been parsed.  We must build phis everywhere.
   617         // (Note that dead locals do not get phis built, ever.)
   618         ensure_phis_everywhere();
   620         // Leave behind an undisturbed copy of the map, for future merges.
   621         set_map(clone_map());
   622       }
   624       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
   625         // In the absence of irreducible loops, the Region and Phis
   626         // associated with a merge that doesn't involve a backedge can
   627         // be simplified now since the RPO parsing order guarantees
   628         // that any path which was supposed to reach here has already
   629         // been parsed or must be dead.
   630         Node* c = control();
   631         Node* result = _gvn.transform_no_reclaim(control());
   632         if (c != result && TraceOptoParse) {
   633           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
   634         }
   635         if (result != top()) {
   636           record_for_igvn(result);
   637         }
   638       }
   640       // Parse the block.
   641       do_one_block();
   643       // Check for bailouts.
   644       if (failing())  return;
   645     }
   647     // with irreducible loops multiple passes might be necessary to parse everything
   648     if (!has_irreducible || !progress) {
   649       break;
   650     }
   651   }
   653   blocks_seen += block_count();
   655 #ifndef PRODUCT
   656   // Make sure there are no half-processed blocks remaining.
   657   // Every remaining unprocessed block is dead and may be ignored now.
   658   for (int rpo = 0; rpo < block_count(); rpo++) {
   659     Block* block = rpo_at(rpo);
   660     if (!block->is_parsed()) {
   661       if (TraceOptoParse) {
   662         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
   663       }
   664       assert(!block->is_merged(), "no half-processed blocks");
   665     }
   666   }
   667 #endif
   668 }
   670 //-------------------------------build_exits----------------------------------
   671 // Build normal and exceptional exit merge points.
   672 void Parse::build_exits() {
   673   // make a clone of caller to prevent sharing of side-effects
   674   _exits.set_map(_exits.clone_map());
   675   _exits.clean_stack(_exits.sp());
   676   _exits.sync_jvms();
   678   RegionNode* region = new (C, 1) RegionNode(1);
   679   record_for_igvn(region);
   680   gvn().set_type_bottom(region);
   681   _exits.set_control(region);
   683   // Note:  iophi and memphi are not transformed until do_exits.
   684   Node* iophi  = new (C, region->req()) PhiNode(region, Type::ABIO);
   685   Node* memphi = new (C, region->req()) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
   686   _exits.set_i_o(iophi);
   687   _exits.set_all_memory(memphi);
   689   // Add a return value to the exit state.  (Do not push it yet.)
   690   if (tf()->range()->cnt() > TypeFunc::Parms) {
   691     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
   692     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
   693     // becomes loaded during the subsequent parsing, the loaded and unloaded
   694     // types will not join when we transform and push in do_exits().
   695     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
   696     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
   697       ret_type = TypeOopPtr::BOTTOM;
   698     }
   699     int         ret_size = type2size[ret_type->basic_type()];
   700     Node*       ret_phi  = new (C, region->req()) PhiNode(region, ret_type);
   701     _exits.ensure_stack(ret_size);
   702     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
   703     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
   704     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
   705     // Note:  ret_phi is not yet pushed, until do_exits.
   706   }
   707 }
   710 //----------------------------build_start_state-------------------------------
   711 // Construct a state which contains only the incoming arguments from an
   712 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
   713 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
   714   int        arg_size = tf->domain()->cnt();
   715   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
   716   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
   717   SafePointNode* map  = new (this, max_size) SafePointNode(max_size, NULL);
   718   record_for_igvn(map);
   719   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
   720   Node_Notes* old_nn = default_node_notes();
   721   if (old_nn != NULL && has_method()) {
   722     Node_Notes* entry_nn = old_nn->clone(this);
   723     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
   724     entry_jvms->set_offsets(0);
   725     entry_jvms->set_bci(entry_bci());
   726     entry_nn->set_jvms(entry_jvms);
   727     set_default_node_notes(entry_nn);
   728   }
   729   uint i;
   730   for (i = 0; i < (uint)arg_size; i++) {
   731     Node* parm = initial_gvn()->transform(new (this, 1) ParmNode(start, i));
   732     map->init_req(i, parm);
   733     // Record all these guys for later GVN.
   734     record_for_igvn(parm);
   735   }
   736   for (; i < map->req(); i++) {
   737     map->init_req(i, top());
   738   }
   739   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
   740   set_default_node_notes(old_nn);
   741   map->set_jvms(jvms);
   742   jvms->set_map(map);
   743   return jvms;
   744 }
   746 //-----------------------------make_node_notes---------------------------------
   747 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
   748   if (caller_nn == NULL)  return NULL;
   749   Node_Notes* nn = caller_nn->clone(C);
   750   JVMState* caller_jvms = nn->jvms();
   751   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
   752   jvms->set_offsets(0);
   753   jvms->set_bci(_entry_bci);
   754   nn->set_jvms(jvms);
   755   return nn;
   756 }
   759 //--------------------------return_values--------------------------------------
   760 void Compile::return_values(JVMState* jvms) {
   761   GraphKit kit(jvms);
   762   Node* ret = new (this, TypeFunc::Parms) ReturnNode(TypeFunc::Parms,
   763                              kit.control(),
   764                              kit.i_o(),
   765                              kit.reset_memory(),
   766                              kit.frameptr(),
   767                              kit.returnadr());
   768   // Add zero or 1 return values
   769   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
   770   if (ret_size > 0) {
   771     kit.inc_sp(-ret_size);  // pop the return value(s)
   772     kit.sync_jvms();
   773     ret->add_req(kit.argument(0));
   774     // Note:  The second dummy edge is not needed by a ReturnNode.
   775   }
   776   // bind it to root
   777   root()->add_req(ret);
   778   record_for_igvn(ret);
   779   initial_gvn()->transform_no_reclaim(ret);
   780 }
   782 //------------------------rethrow_exceptions-----------------------------------
   783 // Bind all exception states in the list into a single RethrowNode.
   784 void Compile::rethrow_exceptions(JVMState* jvms) {
   785   GraphKit kit(jvms);
   786   if (!kit.has_exceptions())  return;  // nothing to generate
   787   // Load my combined exception state into the kit, with all phis transformed:
   788   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
   789   Node* ex_oop = kit.use_exception_state(ex_map);
   790   RethrowNode* exit = new (this, TypeFunc::Parms + 1) RethrowNode(kit.control(),
   791                                       kit.i_o(), kit.reset_memory(),
   792                                       kit.frameptr(), kit.returnadr(),
   793                                       // like a return but with exception input
   794                                       ex_oop);
   795   // bind to root
   796   root()->add_req(exit);
   797   record_for_igvn(exit);
   798   initial_gvn()->transform_no_reclaim(exit);
   799 }
   801 //---------------------------do_exceptions-------------------------------------
   802 // Process exceptions arising from the current bytecode.
   803 // Send caught exceptions to the proper handler within this method.
   804 // Unhandled exceptions feed into _exit.
   805 void Parse::do_exceptions() {
   806   if (!has_exceptions())  return;
   808   if (failing()) {
   809     // Pop them all off and throw them away.
   810     while (pop_exception_state() != NULL) ;
   811     return;
   812   }
   814   PreserveJVMState pjvms(this, false);
   816   SafePointNode* ex_map;
   817   while ((ex_map = pop_exception_state()) != NULL) {
   818     if (!method()->has_exception_handlers()) {
   819       // Common case:  Transfer control outward.
   820       // Doing it this early allows the exceptions to common up
   821       // even between adjacent method calls.
   822       throw_to_exit(ex_map);
   823     } else {
   824       // Have to look at the exception first.
   825       assert(stopped(), "catch_inline_exceptions trashes the map");
   826       catch_inline_exceptions(ex_map);
   827       stop_and_kill_map();      // we used up this exception state; kill it
   828     }
   829   }
   831   // We now return to our regularly scheduled program:
   832 }
   834 //---------------------------throw_to_exit-------------------------------------
   835 // Merge the given map into an exception exit from this method.
   836 // The exception exit will handle any unlocking of receiver.
   837 // The ex_oop must be saved within the ex_map, unlike merge_exception.
   838 void Parse::throw_to_exit(SafePointNode* ex_map) {
   839   // Pop the JVMS to (a copy of) the caller.
   840   GraphKit caller;
   841   caller.set_map_clone(_caller->map());
   842   caller.set_bci(_caller->bci());
   843   caller.set_sp(_caller->sp());
   844   // Copy out the standard machine state:
   845   for (uint i = 0; i < TypeFunc::Parms; i++) {
   846     caller.map()->set_req(i, ex_map->in(i));
   847   }
   848   // ...and the exception:
   849   Node*          ex_oop        = saved_ex_oop(ex_map);
   850   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
   851   // Finally, collect the new exception state in my exits:
   852   _exits.add_exception_state(caller_ex_map);
   853 }
   855 //------------------------------do_exits---------------------------------------
   856 void Parse::do_exits() {
   857   set_parse_bci(InvocationEntryBci);
   859   // Now peephole on the return bits
   860   Node* region = _exits.control();
   861   _exits.set_control(gvn().transform(region));
   863   Node* iophi = _exits.i_o();
   864   _exits.set_i_o(gvn().transform(iophi));
   866   if (wrote_final()) {
   867     // This method (which must be a constructor by the rules of Java)
   868     // wrote a final.  The effects of all initializations must be
   869     // committed to memory before any code after the constructor
   870     // publishes the reference to the newly constructor object.
   871     // Rather than wait for the publication, we simply block the
   872     // writes here.  Rather than put a barrier on only those writes
   873     // which are required to complete, we force all writes to complete.
   874     //
   875     // "All bets are off" unless the first publication occurs after a
   876     // normal return from the constructor.  We do not attempt to detect
   877     // such unusual early publications.  But no barrier is needed on
   878     // exceptional returns, since they cannot publish normally.
   879     //
   880     _exits.insert_mem_bar(Op_MemBarRelease);
   881 #ifndef PRODUCT
   882     if (PrintOpto && (Verbose || WizardMode)) {
   883       method()->print_name();
   884       tty->print_cr(" writes finals and needs a memory barrier");
   885     }
   886 #endif
   887   }
   889   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
   890     // transform each slice of the original memphi:
   891     mms.set_memory(_gvn.transform(mms.memory()));
   892   }
   894   if (tf()->range()->cnt() > TypeFunc::Parms) {
   895     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
   896     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
   897     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
   898     _exits.push_node(ret_type->basic_type(), ret_phi);
   899   }
   901   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
   903   // Unlock along the exceptional paths.
   904   // This is done late so that we can common up equivalent exceptions
   905   // (e.g., null checks) arising from multiple points within this method.
   906   // See GraphKit::add_exception_state, which performs the commoning.
   907   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
   909   // record exit from a method if compiled while Dtrace is turned on.
   910   if (do_synch || C->env()->dtrace_method_probes()) {
   911     // First move the exception list out of _exits:
   912     GraphKit kit(_exits.transfer_exceptions_into_jvms());
   913     SafePointNode* normal_map = kit.map();  // keep this guy safe
   914     // Now re-collect the exceptions into _exits:
   915     SafePointNode* ex_map;
   916     while ((ex_map = kit.pop_exception_state()) != NULL) {
   917       Node* ex_oop = kit.use_exception_state(ex_map);
   918       // Force the exiting JVM state to have this method at InvocationEntryBci.
   919       // The exiting JVM state is otherwise a copy of the calling JVMS.
   920       JVMState* caller = kit.jvms();
   921       JVMState* ex_jvms = caller->clone_shallow(C);
   922       ex_jvms->set_map(kit.clone_map());
   923       ex_jvms->map()->set_jvms(ex_jvms);
   924       ex_jvms->set_bci(   InvocationEntryBci);
   925       kit.set_jvms(ex_jvms);
   926       if (do_synch) {
   927         // Add on the synchronized-method box/object combo
   928         kit.map()->push_monitor(_synch_lock);
   929         // Unlock!
   930         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
   931       }
   932       if (C->env()->dtrace_method_probes()) {
   933         kit.make_dtrace_method_exit(method());
   934       }
   935       // Done with exception-path processing.
   936       ex_map = kit.make_exception_state(ex_oop);
   937       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
   938       // Pop the last vestige of this method:
   939       ex_map->set_jvms(caller->clone_shallow(C));
   940       ex_map->jvms()->set_map(ex_map);
   941       _exits.push_exception_state(ex_map);
   942     }
   943     assert(_exits.map() == normal_map, "keep the same return state");
   944   }
   946   {
   947     // Capture very early exceptions (receiver null checks) from caller JVMS
   948     GraphKit caller(_caller);
   949     SafePointNode* ex_map;
   950     while ((ex_map = caller.pop_exception_state()) != NULL) {
   951       _exits.add_exception_state(ex_map);
   952     }
   953   }
   954 }
   956 //-----------------------------create_entry_map-------------------------------
   957 // Initialize our parser map to contain the types at method entry.
   958 // For OSR, the map contains a single RawPtr parameter.
   959 // Initial monitor locking for sync. methods is performed by do_method_entry.
   960 SafePointNode* Parse::create_entry_map() {
   961   // Check for really stupid bail-out cases.
   962   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
   963   if (len >= 32760) {
   964     C->record_method_not_compilable_all_tiers("too many local variables");
   965     return NULL;
   966   }
   968   // If this is an inlined method, we may have to do a receiver null check.
   969   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
   970     GraphKit kit(_caller);
   971     kit.null_check_receiver(method());
   972     _caller = kit.transfer_exceptions_into_jvms();
   973     if (kit.stopped()) {
   974       _exits.add_exception_states_from(_caller);
   975       _exits.set_jvms(_caller);
   976       return NULL;
   977     }
   978   }
   980   assert(method() != NULL, "parser must have a method");
   982   // Create an initial safepoint to hold JVM state during parsing
   983   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
   984   set_map(new (C, len) SafePointNode(len, jvms));
   985   jvms->set_map(map());
   986   record_for_igvn(map());
   987   assert(jvms->endoff() == len, "correct jvms sizing");
   989   SafePointNode* inmap = _caller->map();
   990   assert(inmap != NULL, "must have inmap");
   992   uint i;
   994   // Pass thru the predefined input parameters.
   995   for (i = 0; i < TypeFunc::Parms; i++) {
   996     map()->init_req(i, inmap->in(i));
   997   }
   999   if (depth() == 1) {
  1000     assert(map()->memory()->Opcode() == Op_Parm, "");
  1001     // Insert the memory aliasing node
  1002     set_all_memory(reset_memory());
  1004   assert(merged_memory(), "");
  1006   // Now add the locals which are initially bound to arguments:
  1007   uint arg_size = tf()->domain()->cnt();
  1008   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
  1009   for (i = TypeFunc::Parms; i < arg_size; i++) {
  1010     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
  1013   // Clear out the rest of the map (locals and stack)
  1014   for (i = arg_size; i < len; i++) {
  1015     map()->init_req(i, top());
  1018   SafePointNode* entry_map = stop();
  1019   return entry_map;
  1022 //-----------------------------do_method_entry--------------------------------
  1023 // Emit any code needed in the pseudo-block before BCI zero.
  1024 // The main thing to do is lock the receiver of a synchronized method.
  1025 void Parse::do_method_entry() {
  1026   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
  1027   set_sp(0);                      // Java Stack Pointer
  1029   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
  1031   if (C->env()->dtrace_method_probes()) {
  1032     make_dtrace_method_entry(method());
  1035   // If the method is synchronized, we need to construct a lock node, attach
  1036   // it to the Start node, and pin it there.
  1037   if (method()->is_synchronized()) {
  1038     // Insert a FastLockNode right after the Start which takes as arguments
  1039     // the current thread pointer, the "this" pointer & the address of the
  1040     // stack slot pair used for the lock.  The "this" pointer is a projection
  1041     // off the start node, but the locking spot has to be constructed by
  1042     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
  1043     // becomes the second argument to the FastLockNode call.  The
  1044     // FastLockNode becomes the new control parent to pin it to the start.
  1046     // Setup Object Pointer
  1047     Node *lock_obj = NULL;
  1048     if(method()->is_static()) {
  1049       ciInstance* mirror = _method->holder()->java_mirror();
  1050       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
  1051       lock_obj = makecon(t_lock);
  1052     } else {                  // Else pass the "this" pointer,
  1053       lock_obj = local(0);    // which is Parm0 from StartNode
  1055     // Clear out dead values from the debug info.
  1056     kill_dead_locals();
  1057     // Build the FastLockNode
  1058     _synch_lock = shared_lock(lock_obj);
  1061   if (depth() == 1) {
  1062     increment_and_test_invocation_counter(Tier2CompileThreshold);
  1066 //------------------------------init_blocks------------------------------------
  1067 // Initialize our parser map to contain the types/monitors at method entry.
  1068 void Parse::init_blocks() {
  1069   // Create the blocks.
  1070   _block_count = flow()->block_count();
  1071   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
  1072   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
  1074   int rpo;
  1076   // Initialize the structs.
  1077   for (rpo = 0; rpo < block_count(); rpo++) {
  1078     Block* block = rpo_at(rpo);
  1079     block->init_node(this, rpo);
  1082   // Collect predecessor and successor information.
  1083   for (rpo = 0; rpo < block_count(); rpo++) {
  1084     Block* block = rpo_at(rpo);
  1085     block->init_graph(this);
  1089 //-------------------------------init_node-------------------------------------
  1090 void Parse::Block::init_node(Parse* outer, int rpo) {
  1091   _flow = outer->flow()->rpo_at(rpo);
  1092   _pred_count = 0;
  1093   _preds_parsed = 0;
  1094   _count = 0;
  1095   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
  1096   assert(!(is_merged() || is_parsed() || is_handler()), "sanity");
  1097   assert(_live_locals.size() == 0, "sanity");
  1099   // entry point has additional predecessor
  1100   if (flow()->is_start())  _pred_count++;
  1101   assert(flow()->is_start() == (this == outer->start_block()), "");
  1104 //-------------------------------init_graph------------------------------------
  1105 void Parse::Block::init_graph(Parse* outer) {
  1106   // Create the successor list for this parser block.
  1107   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
  1108   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
  1109   int ns = tfs->length();
  1110   int ne = tfe->length();
  1111   _num_successors = ns;
  1112   _all_successors = ns+ne;
  1113   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
  1114   int p = 0;
  1115   for (int i = 0; i < ns+ne; i++) {
  1116     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
  1117     Block* block2 = outer->rpo_at(tf2->rpo());
  1118     _successors[i] = block2;
  1120     // Accumulate pred info for the other block, too.
  1121     if (i < ns) {
  1122       block2->_pred_count++;
  1123     } else {
  1124       block2->_is_handler = true;
  1127     #ifdef ASSERT
  1128     // A block's successors must be distinguishable by BCI.
  1129     // That is, no bytecode is allowed to branch to two different
  1130     // clones of the same code location.
  1131     for (int j = 0; j < i; j++) {
  1132       Block* block1 = _successors[j];
  1133       if (block1 == block2)  continue;  // duplicates are OK
  1134       assert(block1->start() != block2->start(), "successors have unique bcis");
  1136     #endif
  1139   // Note: We never call next_path_num along exception paths, so they
  1140   // never get processed as "ready".  Also, the input phis of exception
  1141   // handlers get specially processed, so that
  1144 //---------------------------successor_for_bci---------------------------------
  1145 Parse::Block* Parse::Block::successor_for_bci(int bci) {
  1146   for (int i = 0; i < all_successors(); i++) {
  1147     Block* block2 = successor_at(i);
  1148     if (block2->start() == bci)  return block2;
  1150   // We can actually reach here if ciTypeFlow traps out a block
  1151   // due to an unloaded class, and concurrently with compilation the
  1152   // class is then loaded, so that a later phase of the parser is
  1153   // able to see more of the bytecode CFG.  Or, the flow pass and
  1154   // the parser can have a minor difference of opinion about executability
  1155   // of bytecodes.  For example, "obj.field = null" is executable even
  1156   // if the field's type is an unloaded class; the flow pass used to
  1157   // make a trap for such code.
  1158   return NULL;
  1162 //-----------------------------stack_type_at-----------------------------------
  1163 const Type* Parse::Block::stack_type_at(int i) const {
  1164   return get_type(flow()->stack_type_at(i));
  1168 //-----------------------------local_type_at-----------------------------------
  1169 const Type* Parse::Block::local_type_at(int i) const {
  1170   // Make dead locals fall to bottom.
  1171   if (_live_locals.size() == 0) {
  1172     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
  1173     // This bitmap can be zero length if we saw a breakpoint.
  1174     // In such cases, pretend they are all live.
  1175     ((Block*)this)->_live_locals = live_locals;
  1177   if (_live_locals.size() > 0 && !_live_locals.at(i))
  1178     return Type::BOTTOM;
  1180   return get_type(flow()->local_type_at(i));
  1184 #ifndef PRODUCT
  1186 //----------------------------name_for_bc--------------------------------------
  1187 // helper method for BytecodeParseHistogram
  1188 static const char* name_for_bc(int i) {
  1189   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
  1192 //----------------------------BytecodeParseHistogram------------------------------------
  1193 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
  1194   _parser   = p;
  1195   _compiler = c;
  1196   if( ! _initialized ) { _initialized = true; reset(); }
  1199 //----------------------------current_count------------------------------------
  1200 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
  1201   switch( bph_type ) {
  1202   case BPH_transforms: { return _parser->gvn().made_progress(); }
  1203   case BPH_values:     { return _parser->gvn().made_new_values(); }
  1204   default: { ShouldNotReachHere(); return 0; }
  1208 //----------------------------initialized--------------------------------------
  1209 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
  1211 //----------------------------reset--------------------------------------------
  1212 void Parse::BytecodeParseHistogram::reset() {
  1213   int i = Bytecodes::number_of_codes;
  1214   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
  1217 //----------------------------set_initial_state--------------------------------
  1218 // Record info when starting to parse one bytecode
  1219 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
  1220   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
  1221     _initial_bytecode    = bc;
  1222     _initial_node_count  = _compiler->unique();
  1223     _initial_transforms  = current_count(BPH_transforms);
  1224     _initial_values      = current_count(BPH_values);
  1228 //----------------------------record_change--------------------------------
  1229 // Record results of parsing one bytecode
  1230 void Parse::BytecodeParseHistogram::record_change() {
  1231   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
  1232     ++_bytecodes_parsed[_initial_bytecode];
  1233     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
  1234     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
  1235     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
  1240 //----------------------------print--------------------------------------------
  1241 void Parse::BytecodeParseHistogram::print(float cutoff) {
  1242   ResourceMark rm;
  1243   // print profile
  1244   int total  = 0;
  1245   int i      = 0;
  1246   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
  1247   int abs_sum = 0;
  1248   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
  1249   tty->print_cr("Histogram of %d parsed bytecodes:", total);
  1250   if( total == 0 ) { return; }
  1251   tty->cr();
  1252   tty->print_cr("absolute:  count of compiled bytecodes of this type");
  1253   tty->print_cr("relative:  percentage contribution to compiled nodes");
  1254   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
  1255   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
  1256   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
  1257   tty->print_cr("values  :  Average number of node values improved per bytecode");
  1258   tty->print_cr("name    :  Bytecode name");
  1259   tty->cr();
  1260   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
  1261   tty->print_cr("----------------------------------------------------------------------");
  1262   while (--i > 0) {
  1263     int       abs = _bytecodes_parsed[i];
  1264     float     rel = abs * 100.0F / total;
  1265     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
  1266     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
  1267     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
  1268     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
  1269     if (cutoff <= rel) {
  1270       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
  1271       abs_sum += abs;
  1274   tty->print_cr("----------------------------------------------------------------------");
  1275   float rel_sum = abs_sum * 100.0F / total;
  1276   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
  1277   tty->print_cr("----------------------------------------------------------------------");
  1278   tty->cr();
  1280 #endif
  1282 //----------------------------load_state_from----------------------------------
  1283 // Load block/map/sp.  But not do not touch iter/bci.
  1284 void Parse::load_state_from(Block* block) {
  1285   set_block(block);
  1286   // load the block's JVM state:
  1287   set_map(block->start_map());
  1288   set_sp( block->start_sp());
  1292 //-----------------------------record_state------------------------------------
  1293 void Parse::Block::record_state(Parse* p) {
  1294   assert(!is_merged(), "can only record state once, on 1st inflow");
  1295   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
  1296   set_start_map(p->stop());
  1300 //------------------------------do_one_block-----------------------------------
  1301 void Parse::do_one_block() {
  1302   if (TraceOptoParse) {
  1303     Block *b = block();
  1304     int ns = b->num_successors();
  1305     int nt = b->all_successors();
  1307     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
  1308                   block()->rpo(), block()->start(), block()->limit());
  1309     for (int i = 0; i < nt; i++) {
  1310       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
  1312     if (b->is_loop_head()) tty->print("  lphd");
  1313     tty->print_cr("");
  1316   assert(block()->is_merged(), "must be merged before being parsed");
  1317   block()->mark_parsed();
  1318   ++_blocks_parsed;
  1320   // Set iterator to start of block.
  1321   iter().reset_to_bci(block()->start());
  1323   CompileLog* log = C->log();
  1325   // Parse bytecodes
  1326   while (!stopped() && !failing()) {
  1327     iter().next();
  1329     // Learn the current bci from the iterator:
  1330     set_parse_bci(iter().cur_bci());
  1332     if (bci() == block()->limit()) {
  1333       // insert a predicate if it falls through to a loop head block
  1334       if (should_add_predicate(bci())){
  1335         add_predicate();
  1337       // Do not walk into the next block until directed by do_all_blocks.
  1338       merge(bci());
  1339       break;
  1341     assert(bci() < block()->limit(), "bci still in block");
  1343     if (log != NULL) {
  1344       // Output an optional context marker, to help place actions
  1345       // that occur during parsing of this BC.  If there is no log
  1346       // output until the next context string, this context string
  1347       // will be silently ignored.
  1348       log->context()->reset();
  1349       log->context()->print_cr("<bc code='%d' bci='%d'/>", (int)bc(), bci());
  1352     if (block()->has_trap_at(bci())) {
  1353       // We must respect the flow pass's traps, because it will refuse
  1354       // to produce successors for trapping blocks.
  1355       int trap_index = block()->flow()->trap_index();
  1356       assert(trap_index != 0, "trap index must be valid");
  1357       uncommon_trap(trap_index);
  1358       break;
  1361     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
  1363 #ifdef ASSERT
  1364     int pre_bc_sp = sp();
  1365     int inputs, depth;
  1366     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
  1367     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC");
  1368 #endif //ASSERT
  1370     do_one_bytecode();
  1372     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, "correct depth prediction");
  1374     do_exceptions();
  1376     NOT_PRODUCT( parse_histogram()->record_change(); );
  1378     if (log != NULL)  log->context()->reset();  // done w/ this one
  1380     // Fall into next bytecode.  Each bytecode normally has 1 sequential
  1381     // successor which is typically made ready by visiting this bytecode.
  1382     // If the successor has several predecessors, then it is a merge
  1383     // point, starts a new basic block, and is handled like other basic blocks.
  1388 //------------------------------merge------------------------------------------
  1389 void Parse::set_parse_bci(int bci) {
  1390   set_bci(bci);
  1391   Node_Notes* nn = C->default_node_notes();
  1392   if (nn == NULL)  return;
  1394   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
  1395   if (!DebugInlinedCalls && depth() > 1) {
  1396     return;
  1399   // Update the JVMS annotation, if present.
  1400   JVMState* jvms = nn->jvms();
  1401   if (jvms != NULL && jvms->bci() != bci) {
  1402     // Update the JVMS.
  1403     jvms = jvms->clone_shallow(C);
  1404     jvms->set_bci(bci);
  1405     nn->set_jvms(jvms);
  1409 //------------------------------merge------------------------------------------
  1410 // Merge the current mapping into the basic block starting at bci
  1411 void Parse::merge(int target_bci) {
  1412   Block* target = successor_for_bci(target_bci);
  1413   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1414   assert(!target->is_ready(), "our arrival must be expected");
  1415   int pnum = target->next_path_num();
  1416   merge_common(target, pnum);
  1419 //-------------------------merge_new_path--------------------------------------
  1420 // Merge the current mapping into the basic block, using a new path
  1421 void Parse::merge_new_path(int target_bci) {
  1422   Block* target = successor_for_bci(target_bci);
  1423   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1424   assert(!target->is_ready(), "new path into frozen graph");
  1425   int pnum = target->add_new_path();
  1426   merge_common(target, pnum);
  1429 //-------------------------merge_exception-------------------------------------
  1430 // Merge the current mapping into the basic block starting at bci
  1431 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
  1432 void Parse::merge_exception(int target_bci) {
  1433   assert(sp() == 1, "must have only the throw exception on the stack");
  1434   Block* target = successor_for_bci(target_bci);
  1435   if (target == NULL) { handle_missing_successor(target_bci); return; }
  1436   assert(target->is_handler(), "exceptions are handled by special blocks");
  1437   int pnum = target->add_new_path();
  1438   merge_common(target, pnum);
  1441 //--------------------handle_missing_successor---------------------------------
  1442 void Parse::handle_missing_successor(int target_bci) {
  1443 #ifndef PRODUCT
  1444   Block* b = block();
  1445   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
  1446   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
  1447 #endif
  1448   ShouldNotReachHere();
  1451 //--------------------------merge_common---------------------------------------
  1452 void Parse::merge_common(Parse::Block* target, int pnum) {
  1453   if (TraceOptoParse) {
  1454     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
  1457   // Zap extra stack slots to top
  1458   assert(sp() == target->start_sp(), "");
  1459   clean_stack(sp());
  1461   if (!target->is_merged()) {   // No prior mapping at this bci
  1462     if (TraceOptoParse) { tty->print(" with empty state");  }
  1464     // If this path is dead, do not bother capturing it as a merge.
  1465     // It is "as if" we had 1 fewer predecessors from the beginning.
  1466     if (stopped()) {
  1467       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
  1468       return;
  1471     // Record that a new block has been merged.
  1472     ++_blocks_merged;
  1474     // Make a region if we know there are multiple or unpredictable inputs.
  1475     // (Also, if this is a plain fall-through, we might see another region,
  1476     // which must not be allowed into this block's map.)
  1477     if (pnum > PhiNode::Input         // Known multiple inputs.
  1478         || target->is_handler()       // These have unpredictable inputs.
  1479         || target->is_loop_head()     // Known multiple inputs
  1480         || control()->is_Region()) {  // We must hide this guy.
  1481       // Add a Region to start the new basic block.  Phis will be added
  1482       // later lazily.
  1483       int edges = target->pred_count();
  1484       if (edges < pnum)  edges = pnum;  // might be a new path!
  1485       Node *r = new (C, edges+1) RegionNode(edges+1);
  1486       gvn().set_type(r, Type::CONTROL);
  1487       record_for_igvn(r);
  1488       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
  1489       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
  1490       r->init_req(pnum, control());
  1491       set_control(r);
  1494     // Convert the existing Parser mapping into a mapping at this bci.
  1495     store_state_to(target);
  1496     assert(target->is_merged(), "do not come here twice");
  1498   } else {                      // Prior mapping at this bci
  1499     if (TraceOptoParse) {  tty->print(" with previous state"); }
  1501     // We must not manufacture more phis if the target is already parsed.
  1502     bool nophi = target->is_parsed();
  1504     SafePointNode* newin = map();// Hang on to incoming mapping
  1505     Block* save_block = block(); // Hang on to incoming block;
  1506     load_state_from(target);    // Get prior mapping
  1508     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
  1509     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
  1510     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
  1511     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
  1513     // Iterate over my current mapping and the old mapping.
  1514     // Where different, insert Phi functions.
  1515     // Use any existing Phi functions.
  1516     assert(control()->is_Region(), "must be merging to a region");
  1517     RegionNode* r = control()->as_Region();
  1519     // Compute where to merge into
  1520     // Merge incoming control path
  1521     r->init_req(pnum, newin->control());
  1523     if (pnum == 1) {            // Last merge for this Region?
  1524       if (!block()->flow()->is_irreducible_entry()) {
  1525         Node* result = _gvn.transform_no_reclaim(r);
  1526         if (r != result && TraceOptoParse) {
  1527           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
  1530       record_for_igvn(r);
  1533     // Update all the non-control inputs to map:
  1534     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
  1535     bool check_elide_phi = target->is_SEL_backedge(save_block);
  1536     for (uint j = 1; j < newin->req(); j++) {
  1537       Node* m = map()->in(j);   // Current state of target.
  1538       Node* n = newin->in(j);   // Incoming change to target state.
  1539       PhiNode* phi;
  1540       if (m->is_Phi() && m->as_Phi()->region() == r)
  1541         phi = m->as_Phi();
  1542       else
  1543         phi = NULL;
  1544       if (m != n) {             // Different; must merge
  1545         switch (j) {
  1546         // Frame pointer and Return Address never changes
  1547         case TypeFunc::FramePtr:// Drop m, use the original value
  1548         case TypeFunc::ReturnAdr:
  1549           break;
  1550         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
  1551           assert(phi == NULL, "the merge contains phis, not vice versa");
  1552           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
  1553           continue;
  1554         default:                // All normal stuff
  1555           if (phi == NULL) {
  1556             if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
  1557               phi = ensure_phi(j, nophi);
  1560           break;
  1563       // At this point, n might be top if:
  1564       //  - there is no phi (because TypeFlow detected a conflict), or
  1565       //  - the corresponding control edges is top (a dead incoming path)
  1566       // It is a bug if we create a phi which sees a garbage value on a live path.
  1568       if (phi != NULL) {
  1569         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
  1570         assert(phi->region() == r, "");
  1571         phi->set_req(pnum, n);  // Then add 'n' to the merge
  1572         if (pnum == PhiNode::Input) {
  1573           // Last merge for this Phi.
  1574           // So far, Phis have had a reasonable type from ciTypeFlow.
  1575           // Now _gvn will join that with the meet of current inputs.
  1576           // BOTTOM is never permissible here, 'cause pessimistically
  1577           // Phis of pointers cannot lose the basic pointer type.
  1578           debug_only(const Type* bt1 = phi->bottom_type());
  1579           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
  1580           map()->set_req(j, _gvn.transform_no_reclaim(phi));
  1581           debug_only(const Type* bt2 = phi->bottom_type());
  1582           assert(bt2->higher_equal(bt1), "must be consistent with type-flow");
  1583           record_for_igvn(phi);
  1586     } // End of for all values to be merged
  1588     if (pnum == PhiNode::Input &&
  1589         !r->in(0)) {         // The occasional useless Region
  1590       assert(control() == r, "");
  1591       set_control(r->nonnull_req());
  1594     // newin has been subsumed into the lazy merge, and is now dead.
  1595     set_block(save_block);
  1597     stop();                     // done with this guy, for now
  1600   if (TraceOptoParse) {
  1601     tty->print_cr(" on path %d", pnum);
  1604   // Done with this parser state.
  1605   assert(stopped(), "");
  1609 //--------------------------merge_memory_edges---------------------------------
  1610 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
  1611   // (nophi means we must not create phis, because we already parsed here)
  1612   assert(n != NULL, "");
  1613   // Merge the inputs to the MergeMems
  1614   MergeMemNode* m = merged_memory();
  1616   assert(control()->is_Region(), "must be merging to a region");
  1617   RegionNode* r = control()->as_Region();
  1619   PhiNode* base = NULL;
  1620   MergeMemNode* remerge = NULL;
  1621   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
  1622     Node *p = mms.force_memory();
  1623     Node *q = mms.memory2();
  1624     if (mms.is_empty() && nophi) {
  1625       // Trouble:  No new splits allowed after a loop body is parsed.
  1626       // Instead, wire the new split into a MergeMem on the backedge.
  1627       // The optimizer will sort it out, slicing the phi.
  1628       if (remerge == NULL) {
  1629         assert(base != NULL, "");
  1630         assert(base->in(0) != NULL, "should not be xformed away");
  1631         remerge = MergeMemNode::make(C, base->in(pnum));
  1632         gvn().set_type(remerge, Type::MEMORY);
  1633         base->set_req(pnum, remerge);
  1635       remerge->set_memory_at(mms.alias_idx(), q);
  1636       continue;
  1638     assert(!q->is_MergeMem(), "");
  1639     PhiNode* phi;
  1640     if (p != q) {
  1641       phi = ensure_memory_phi(mms.alias_idx(), nophi);
  1642     } else {
  1643       if (p->is_Phi() && p->as_Phi()->region() == r)
  1644         phi = p->as_Phi();
  1645       else
  1646         phi = NULL;
  1648     // Insert q into local phi
  1649     if (phi != NULL) {
  1650       assert(phi->region() == r, "");
  1651       p = phi;
  1652       phi->set_req(pnum, q);
  1653       if (mms.at_base_memory()) {
  1654         base = phi;  // delay transforming it
  1655       } else if (pnum == 1) {
  1656         record_for_igvn(phi);
  1657         p = _gvn.transform_no_reclaim(phi);
  1659       mms.set_memory(p);// store back through the iterator
  1662   // Transform base last, in case we must fiddle with remerging.
  1663   if (base != NULL && pnum == 1) {
  1664     record_for_igvn(base);
  1665     m->set_base_memory( _gvn.transform_no_reclaim(base) );
  1670 //------------------------ensure_phis_everywhere-------------------------------
  1671 void Parse::ensure_phis_everywhere() {
  1672   ensure_phi(TypeFunc::I_O);
  1674   // Ensure a phi on all currently known memories.
  1675   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
  1676     ensure_memory_phi(mms.alias_idx());
  1677     debug_only(mms.set_memory());  // keep the iterator happy
  1680   // Note:  This is our only chance to create phis for memory slices.
  1681   // If we miss a slice that crops up later, it will have to be
  1682   // merged into the base-memory phi that we are building here.
  1683   // Later, the optimizer will comb out the knot, and build separate
  1684   // phi-loops for each memory slice that matters.
  1686   // Monitors must nest nicely and not get confused amongst themselves.
  1687   // Phi-ify everything up to the monitors, though.
  1688   uint monoff = map()->jvms()->monoff();
  1689   uint nof_monitors = map()->jvms()->nof_monitors();
  1691   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
  1692   bool check_elide_phi = block()->is_SEL_head();
  1693   for (uint i = TypeFunc::Parms; i < monoff; i++) {
  1694     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
  1695       ensure_phi(i);
  1699   // Even monitors need Phis, though they are well-structured.
  1700   // This is true for OSR methods, and also for the rare cases where
  1701   // a monitor object is the subject of a replace_in_map operation.
  1702   // See bugs 4426707 and 5043395.
  1703   for (uint m = 0; m < nof_monitors; m++) {
  1704     ensure_phi(map()->jvms()->monitor_obj_offset(m));
  1709 //-----------------------------add_new_path------------------------------------
  1710 // Add a previously unaccounted predecessor to this block.
  1711 int Parse::Block::add_new_path() {
  1712   // If there is no map, return the lowest unused path number.
  1713   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
  1715   SafePointNode* map = start_map();
  1716   if (!map->control()->is_Region())
  1717     return pred_count()+1;  // there may be a region some day
  1718   RegionNode* r = map->control()->as_Region();
  1720   // Add new path to the region.
  1721   uint pnum = r->req();
  1722   r->add_req(NULL);
  1724   for (uint i = 1; i < map->req(); i++) {
  1725     Node* n = map->in(i);
  1726     if (i == TypeFunc::Memory) {
  1727       // Ensure a phi on all currently known memories.
  1728       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
  1729         Node* phi = mms.memory();
  1730         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
  1731           assert(phi->req() == pnum, "must be same size as region");
  1732           phi->add_req(NULL);
  1735     } else {
  1736       if (n->is_Phi() && n->as_Phi()->region() == r) {
  1737         assert(n->req() == pnum, "must be same size as region");
  1738         n->add_req(NULL);
  1743   return pnum;
  1746 //------------------------------ensure_phi-------------------------------------
  1747 // Turn the idx'th entry of the current map into a Phi
  1748 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
  1749   SafePointNode* map = this->map();
  1750   Node* region = map->control();
  1751   assert(region->is_Region(), "");
  1753   Node* o = map->in(idx);
  1754   assert(o != NULL, "");
  1756   if (o == top())  return NULL; // TOP always merges into TOP
  1758   if (o->is_Phi() && o->as_Phi()->region() == region) {
  1759     return o->as_Phi();
  1762   // Now use a Phi here for merging
  1763   assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1764   const JVMState* jvms = map->jvms();
  1765   const Type* t;
  1766   if (jvms->is_loc(idx)) {
  1767     t = block()->local_type_at(idx - jvms->locoff());
  1768   } else if (jvms->is_stk(idx)) {
  1769     t = block()->stack_type_at(idx - jvms->stkoff());
  1770   } else if (jvms->is_mon(idx)) {
  1771     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
  1772     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
  1773   } else if ((uint)idx < TypeFunc::Parms) {
  1774     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
  1775   } else {
  1776     assert(false, "no type information for this phi");
  1779   // If the type falls to bottom, then this must be a local that
  1780   // is mixing ints and oops or some such.  Forcing it to top
  1781   // makes it go dead.
  1782   if (t == Type::BOTTOM) {
  1783     map->set_req(idx, top());
  1784     return NULL;
  1787   // Do not create phis for top either.
  1788   // A top on a non-null control flow must be an unused even after the.phi.
  1789   if (t == Type::TOP || t == Type::HALF) {
  1790     map->set_req(idx, top());
  1791     return NULL;
  1794   PhiNode* phi = PhiNode::make(region, o, t);
  1795   gvn().set_type(phi, t);
  1796   if (C->do_escape_analysis()) record_for_igvn(phi);
  1797   map->set_req(idx, phi);
  1798   return phi;
  1801 //--------------------------ensure_memory_phi----------------------------------
  1802 // Turn the idx'th slice of the current memory into a Phi
  1803 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
  1804   MergeMemNode* mem = merged_memory();
  1805   Node* region = control();
  1806   assert(region->is_Region(), "");
  1808   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
  1809   assert(o != NULL && o != top(), "");
  1811   PhiNode* phi;
  1812   if (o->is_Phi() && o->as_Phi()->region() == region) {
  1813     phi = o->as_Phi();
  1814     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
  1815       // clone the shared base memory phi to make a new memory split
  1816       assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1817       const Type* t = phi->bottom_type();
  1818       const TypePtr* adr_type = C->get_adr_type(idx);
  1819       phi = phi->slice_memory(adr_type);
  1820       gvn().set_type(phi, t);
  1822     return phi;
  1825   // Now use a Phi here for merging
  1826   assert(!nocreate, "Cannot build a phi for a block already parsed.");
  1827   const Type* t = o->bottom_type();
  1828   const TypePtr* adr_type = C->get_adr_type(idx);
  1829   phi = PhiNode::make(region, o, t, adr_type);
  1830   gvn().set_type(phi, t);
  1831   if (idx == Compile::AliasIdxBot)
  1832     mem->set_base_memory(phi);
  1833   else
  1834     mem->set_memory_at(idx, phi);
  1835   return phi;
  1838 //------------------------------call_register_finalizer-----------------------
  1839 // Check the klass of the receiver and call register_finalizer if the
  1840 // class need finalization.
  1841 void Parse::call_register_finalizer() {
  1842   Node* receiver = local(0);
  1843   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
  1844          "must have non-null instance type");
  1846   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
  1847   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
  1848     // The type isn't known exactly so see if CHA tells us anything.
  1849     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1850     if (!Dependencies::has_finalizable_subclass(ik)) {
  1851       // No finalizable subclasses so skip the dynamic check.
  1852       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
  1853       return;
  1857   // Insert a dynamic test for whether the instance needs
  1858   // finalization.  In general this will fold up since the concrete
  1859   // class is often visible so the access flags are constant.
  1860   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
  1861   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
  1863   Node* access_flags_addr = basic_plus_adr(klass, klass, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  1864   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
  1866   Node* mask  = _gvn.transform(new (C, 3) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
  1867   Node* check = _gvn.transform(new (C, 3) CmpINode(mask, intcon(0)));
  1868   Node* test  = _gvn.transform(new (C, 2) BoolNode(check, BoolTest::ne));
  1870   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
  1872   RegionNode* result_rgn = new (C, 3) RegionNode(3);
  1873   record_for_igvn(result_rgn);
  1875   Node *skip_register = _gvn.transform(new (C, 1) IfFalseNode(iff));
  1876   result_rgn->init_req(1, skip_register);
  1878   Node *needs_register = _gvn.transform(new (C, 1) IfTrueNode(iff));
  1879   set_control(needs_register);
  1880   if (stopped()) {
  1881     // There is no slow path.
  1882     result_rgn->init_req(2, top());
  1883   } else {
  1884     Node *call = make_runtime_call(RC_NO_LEAF,
  1885                                    OptoRuntime::register_finalizer_Type(),
  1886                                    OptoRuntime::register_finalizer_Java(),
  1887                                    NULL, TypePtr::BOTTOM,
  1888                                    receiver);
  1889     make_slow_call_ex(call, env()->Throwable_klass(), true);
  1891     Node* fast_io  = call->in(TypeFunc::I_O);
  1892     Node* fast_mem = call->in(TypeFunc::Memory);
  1893     // These two phis are pre-filled with copies of of the fast IO and Memory
  1894     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  1895     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  1897     result_rgn->init_req(2, control());
  1898     io_phi    ->init_req(2, i_o());
  1899     mem_phi   ->init_req(2, reset_memory());
  1901     set_all_memory( _gvn.transform(mem_phi) );
  1902     set_i_o(        _gvn.transform(io_phi) );
  1905   set_control( _gvn.transform(result_rgn) );
  1908 //------------------------------return_current---------------------------------
  1909 // Append current _map to _exit_return
  1910 void Parse::return_current(Node* value) {
  1911   if (RegisterFinalizersAtInit &&
  1912       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
  1913     call_register_finalizer();
  1916   // Do not set_parse_bci, so that return goo is credited to the return insn.
  1917   set_bci(InvocationEntryBci);
  1918   if (method()->is_synchronized() && GenerateSynchronizationCode) {
  1919     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
  1921   if (C->env()->dtrace_method_probes()) {
  1922     make_dtrace_method_exit(method());
  1924   SafePointNode* exit_return = _exits.map();
  1925   exit_return->in( TypeFunc::Control  )->add_req( control() );
  1926   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
  1927   Node *mem = exit_return->in( TypeFunc::Memory   );
  1928   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
  1929     if (mms.is_empty()) {
  1930       // get a copy of the base memory, and patch just this one input
  1931       const TypePtr* adr_type = mms.adr_type(C);
  1932       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
  1933       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
  1934       gvn().set_type_bottom(phi);
  1935       phi->del_req(phi->req()-1);  // prepare to re-patch
  1936       mms.set_memory(phi);
  1938     mms.memory()->add_req(mms.memory2());
  1941   // frame pointer is always same, already captured
  1942   if (value != NULL) {
  1943     // If returning oops to an interface-return, there is a silent free
  1944     // cast from oop to interface allowed by the Verifier.  Make it explicit
  1945     // here.
  1946     Node* phi = _exits.argument(0);
  1947     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
  1948     if( tr && tr->klass()->is_loaded() &&
  1949         tr->klass()->is_interface() ) {
  1950       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
  1951       if (tp && tp->klass()->is_loaded() &&
  1952           !tp->klass()->is_interface()) {
  1953         // sharpen the type eagerly; this eases certain assert checking
  1954         if (tp->higher_equal(TypeInstPtr::NOTNULL))
  1955           tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr();
  1956         value = _gvn.transform(new (C, 2) CheckCastPPNode(0,value,tr));
  1959     phi->add_req(value);
  1962   stop_and_kill_map();          // This CFG path dies here
  1966 //------------------------------add_safepoint----------------------------------
  1967 void Parse::add_safepoint() {
  1968   // See if we can avoid this safepoint.  No need for a SafePoint immediately
  1969   // after a Call (except Leaf Call) or another SafePoint.
  1970   Node *proj = control();
  1971   bool add_poll_param = SafePointNode::needs_polling_address_input();
  1972   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
  1973   if( proj->is_Proj() ) {
  1974     Node *n0 = proj->in(0);
  1975     if( n0->is_Catch() ) {
  1976       n0 = n0->in(0)->in(0);
  1977       assert( n0->is_Call(), "expect a call here" );
  1979     if( n0->is_Call() ) {
  1980       if( n0->as_Call()->guaranteed_safepoint() )
  1981         return;
  1982     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
  1983       return;
  1987   // Clear out dead values from the debug info.
  1988   kill_dead_locals();
  1990   // Clone the JVM State
  1991   SafePointNode *sfpnt = new (C, parms) SafePointNode(parms, NULL);
  1993   // Capture memory state BEFORE a SafePoint.  Since we can block at a
  1994   // SafePoint we need our GC state to be safe; i.e. we need all our current
  1995   // write barriers (card marks) to not float down after the SafePoint so we
  1996   // must read raw memory.  Likewise we need all oop stores to match the card
  1997   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
  1998   // state on a deopt).
  2000   // We do not need to WRITE the memory state after a SafePoint.  The control
  2001   // edge will keep card-marks and oop-stores from floating up from below a
  2002   // SafePoint and our true dependency added here will keep them from floating
  2003   // down below a SafePoint.
  2005   // Clone the current memory state
  2006   Node* mem = MergeMemNode::make(C, map()->memory());
  2008   mem = _gvn.transform(mem);
  2010   // Pass control through the safepoint
  2011   sfpnt->init_req(TypeFunc::Control  , control());
  2012   // Fix edges normally used by a call
  2013   sfpnt->init_req(TypeFunc::I_O      , top() );
  2014   sfpnt->init_req(TypeFunc::Memory   , mem   );
  2015   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
  2016   sfpnt->init_req(TypeFunc::FramePtr , top() );
  2018   // Create a node for the polling address
  2019   if( add_poll_param ) {
  2020     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
  2021     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
  2024   // Fix up the JVM State edges
  2025   add_safepoint_edges(sfpnt);
  2026   Node *transformed_sfpnt = _gvn.transform(sfpnt);
  2027   set_control(transformed_sfpnt);
  2029   // Provide an edge from root to safepoint.  This makes the safepoint
  2030   // appear useful until the parse has completed.
  2031   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
  2032     assert(C->root() != NULL, "Expect parse is still valid");
  2033     C->root()->add_prec(transformed_sfpnt);
  2037 //------------------------------should_add_predicate--------------------------
  2038 bool Parse::should_add_predicate(int target_bci) {
  2039   if (!UseLoopPredicate) return false;
  2040   Block* target = successor_for_bci(target_bci);
  2041   if (target != NULL          &&
  2042       target->is_loop_head()  &&
  2043       block()->rpo() < target->rpo()) {
  2044     return true;
  2046   return false;
  2049 //------------------------------add_predicate---------------------------------
  2050 void Parse::add_predicate() {
  2051   assert(UseLoopPredicate,"use only for loop predicate");
  2052   Node *cont    = _gvn.intcon(1);
  2053   Node* opq     = _gvn.transform(new (C, 2) Opaque1Node(C, cont));
  2054   Node *bol     = _gvn.transform(new (C, 2) Conv2BNode(opq));
  2055   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  2056   Node* iffalse = _gvn.transform(new (C, 1) IfFalseNode(iff));
  2057   C->add_predicate_opaq(opq);
  2059     PreserveJVMState pjvms(this);
  2060     set_control(iffalse);
  2061     uncommon_trap(Deoptimization::Reason_predicate,
  2062                   Deoptimization::Action_maybe_recompile);
  2064   Node* iftrue = _gvn.transform(new (C, 1) IfTrueNode(iff));
  2065   set_control(iftrue);
  2068 #ifndef PRODUCT
  2069 //------------------------show_parse_info--------------------------------------
  2070 void Parse::show_parse_info() {
  2071   InlineTree* ilt = NULL;
  2072   if (C->ilt() != NULL) {
  2073     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
  2074     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
  2076   if (PrintCompilation && Verbose) {
  2077     if (depth() == 1) {
  2078       if( ilt->count_inlines() ) {
  2079         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
  2080                      ilt->count_inline_bcs());
  2081         tty->cr();
  2083     } else {
  2084       if (method()->is_synchronized())         tty->print("s");
  2085       if (method()->has_exception_handlers())  tty->print("!");
  2086       // Check this is not the final compiled version
  2087       if (C->trap_can_recompile()) {
  2088         tty->print("-");
  2089       } else {
  2090         tty->print(" ");
  2092       method()->print_short_name();
  2093       if (is_osr_parse()) {
  2094         tty->print(" @ %d", osr_bci());
  2096       tty->print(" (%d bytes)",method()->code_size());
  2097       if (ilt->count_inlines()) {
  2098         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
  2099                    ilt->count_inline_bcs());
  2101       tty->cr();
  2104   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
  2105     // Print that we succeeded; suppress this message on the first osr parse.
  2107     if (method()->is_synchronized())         tty->print("s");
  2108     if (method()->has_exception_handlers())  tty->print("!");
  2109     // Check this is not the final compiled version
  2110     if (C->trap_can_recompile() && depth() == 1) {
  2111       tty->print("-");
  2112     } else {
  2113       tty->print(" ");
  2115     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
  2116     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
  2117     method()->print_short_name();
  2118     if (is_osr_parse()) {
  2119       tty->print(" @ %d", osr_bci());
  2121     if (ilt->caller_bci() != -1) {
  2122       tty->print(" @ %d", ilt->caller_bci());
  2124     tty->print(" (%d bytes)",method()->code_size());
  2125     if (ilt->count_inlines()) {
  2126       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
  2127                  ilt->count_inline_bcs());
  2129     tty->cr();
  2134 //------------------------------dump-------------------------------------------
  2135 // Dump information associated with the bytecodes of current _method
  2136 void Parse::dump() {
  2137   if( method() != NULL ) {
  2138     // Iterate over bytecodes
  2139     ciBytecodeStream iter(method());
  2140     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
  2141       dump_bci( iter.cur_bci() );
  2142       tty->cr();
  2147 // Dump information associated with a byte code index, 'bci'
  2148 void Parse::dump_bci(int bci) {
  2149   // Output info on merge-points, cloning, and within _jsr..._ret
  2150   // NYI
  2151   tty->print(" bci:%d", bci);
  2154 #endif

mercurial