src/share/vm/runtime/thread.cpp

Tue, 02 Nov 2010 16:02:46 -0700

author
iveresov
date
Tue, 02 Nov 2010 16:02:46 -0700
changeset 2246
9de67bf4244d
parent 2233
fa83ab460c54
child 2277
5caa30ea147b
permissions
-rw-r--r--

6996136: VM crash in src/share/vm/runtime/virtualspace.cpp:424
Summary: Turn CDS off if compressed oops is on
Reviewed-by: ysr, kvn, jcoomes, phh

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_thread.cpp.incl"
    28 #ifdef DTRACE_ENABLED
    30 // Only bother with this argument setup if dtrace is available
    32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
    33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
    34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
    35   intptr_t, intptr_t, bool);
    36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
    37   intptr_t, intptr_t, bool);
    39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
    40   {                                                                        \
    41     ResourceMark rm(this);                                                 \
    42     int len = 0;                                                           \
    43     const char* name = (javathread)->get_thread_name();                    \
    44     len = strlen(name);                                                    \
    45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
    46       name, len,                                                           \
    47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
    48       (javathread)->osthread()->thread_id(),                               \
    49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
    50   }
    52 #else //  ndef DTRACE_ENABLED
    54 #define DTRACE_THREAD_PROBE(probe, javathread)
    56 #endif // ndef DTRACE_ENABLED
    58 // Class hierarchy
    59 // - Thread
    60 //   - VMThread
    61 //   - WatcherThread
    62 //   - ConcurrentMarkSweepThread
    63 //   - JavaThread
    64 //     - CompilerThread
    66 // ======= Thread ========
    68 // Support for forcing alignment of thread objects for biased locking
    69 void* Thread::operator new(size_t size) {
    70   if (UseBiasedLocking) {
    71     const int alignment = markOopDesc::biased_lock_alignment;
    72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
    73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
    74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
    75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
    76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
    77            "JavaThread alignment code overflowed allocated storage");
    78     if (TraceBiasedLocking) {
    79       if (aligned_addr != real_malloc_addr)
    80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
    81                       real_malloc_addr, aligned_addr);
    82     }
    83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
    84     return aligned_addr;
    85   } else {
    86     return CHeapObj::operator new(size);
    87   }
    88 }
    90 void Thread::operator delete(void* p) {
    91   if (UseBiasedLocking) {
    92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
    93     CHeapObj::operator delete(real_malloc_addr);
    94   } else {
    95     CHeapObj::operator delete(p);
    96   }
    97 }
   100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   101 // JavaThread
   104 Thread::Thread() {
   105   // stack
   106   _stack_base   = NULL;
   107   _stack_size   = 0;
   108   _self_raw_id  = 0;
   109   _lgrp_id      = -1;
   110   _osthread     = NULL;
   112   // allocated data structures
   113   set_resource_area(new ResourceArea());
   114   set_handle_area(new HandleArea(NULL));
   115   set_active_handles(NULL);
   116   set_free_handle_block(NULL);
   117   set_last_handle_mark(NULL);
   118   set_osthread(NULL);
   120   // This initial value ==> never claimed.
   121   _oops_do_parity = 0;
   123   // the handle mark links itself to last_handle_mark
   124   new HandleMark(this);
   126   // plain initialization
   127   debug_only(_owned_locks = NULL;)
   128   debug_only(_allow_allocation_count = 0;)
   129   NOT_PRODUCT(_allow_safepoint_count = 0;)
   130   NOT_PRODUCT(_skip_gcalot = false;)
   131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   132   _jvmti_env_iteration_count = 0;
   133   _vm_operation_started_count = 0;
   134   _vm_operation_completed_count = 0;
   135   _current_pending_monitor = NULL;
   136   _current_pending_monitor_is_from_java = true;
   137   _current_waiting_monitor = NULL;
   138   _num_nested_signal = 0;
   139   omFreeList = NULL ;
   140   omFreeCount = 0 ;
   141   omFreeProvision = 32 ;
   142   omInUseList = NULL ;
   143   omInUseCount = 0 ;
   145   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   146   _suspend_flags = 0;
   148   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   149   _hashStateX = os::random() ;
   150   _hashStateY = 842502087 ;
   151   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   152   _hashStateW = 273326509 ;
   154   _OnTrap   = 0 ;
   155   _schedctl = NULL ;
   156   _Stalled  = 0 ;
   157   _TypeTag  = 0x2BAD ;
   159   // Many of the following fields are effectively final - immutable
   160   // Note that nascent threads can't use the Native Monitor-Mutex
   161   // construct until the _MutexEvent is initialized ...
   162   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   163   // we might instead use a stack of ParkEvents that we could provision on-demand.
   164   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   165   // and ::Release()
   166   _ParkEvent   = ParkEvent::Allocate (this) ;
   167   _SleepEvent  = ParkEvent::Allocate (this) ;
   168   _MutexEvent  = ParkEvent::Allocate (this) ;
   169   _MuxEvent    = ParkEvent::Allocate (this) ;
   171 #ifdef CHECK_UNHANDLED_OOPS
   172   if (CheckUnhandledOops) {
   173     _unhandled_oops = new UnhandledOops(this);
   174   }
   175 #endif // CHECK_UNHANDLED_OOPS
   176 #ifdef ASSERT
   177   if (UseBiasedLocking) {
   178     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   179     assert(this == _real_malloc_address ||
   180            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   181            "bug in forced alignment of thread objects");
   182   }
   183 #endif /* ASSERT */
   184 }
   186 void Thread::initialize_thread_local_storage() {
   187   // Note: Make sure this method only calls
   188   // non-blocking operations. Otherwise, it might not work
   189   // with the thread-startup/safepoint interaction.
   191   // During Java thread startup, safepoint code should allow this
   192   // method to complete because it may need to allocate memory to
   193   // store information for the new thread.
   195   // initialize structure dependent on thread local storage
   196   ThreadLocalStorage::set_thread(this);
   198   // set up any platform-specific state.
   199   os::initialize_thread();
   201 }
   203 void Thread::record_stack_base_and_size() {
   204   set_stack_base(os::current_stack_base());
   205   set_stack_size(os::current_stack_size());
   206 }
   209 Thread::~Thread() {
   210   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   211   ObjectSynchronizer::omFlush (this) ;
   213   // deallocate data structures
   214   delete resource_area();
   215   // since the handle marks are using the handle area, we have to deallocated the root
   216   // handle mark before deallocating the thread's handle area,
   217   assert(last_handle_mark() != NULL, "check we have an element");
   218   delete last_handle_mark();
   219   assert(last_handle_mark() == NULL, "check we have reached the end");
   221   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   222   // We NULL out the fields for good hygiene.
   223   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   224   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   225   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   226   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   228   delete handle_area();
   230   // osthread() can be NULL, if creation of thread failed.
   231   if (osthread() != NULL) os::free_thread(osthread());
   233   delete _SR_lock;
   235   // clear thread local storage if the Thread is deleting itself
   236   if (this == Thread::current()) {
   237     ThreadLocalStorage::set_thread(NULL);
   238   } else {
   239     // In the case where we're not the current thread, invalidate all the
   240     // caches in case some code tries to get the current thread or the
   241     // thread that was destroyed, and gets stale information.
   242     ThreadLocalStorage::invalidate_all();
   243   }
   244   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   245 }
   247 // NOTE: dummy function for assertion purpose.
   248 void Thread::run() {
   249   ShouldNotReachHere();
   250 }
   252 #ifdef ASSERT
   253 // Private method to check for dangling thread pointer
   254 void check_for_dangling_thread_pointer(Thread *thread) {
   255  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   256          "possibility of dangling Thread pointer");
   257 }
   258 #endif
   261 #ifndef PRODUCT
   262 // Tracing method for basic thread operations
   263 void Thread::trace(const char* msg, const Thread* const thread) {
   264   if (!TraceThreadEvents) return;
   265   ResourceMark rm;
   266   ThreadCritical tc;
   267   const char *name = "non-Java thread";
   268   int prio = -1;
   269   if (thread->is_Java_thread()
   270       && !thread->is_Compiler_thread()) {
   271     // The Threads_lock must be held to get information about
   272     // this thread but may not be in some situations when
   273     // tracing  thread events.
   274     bool release_Threads_lock = false;
   275     if (!Threads_lock->owned_by_self()) {
   276       Threads_lock->lock();
   277       release_Threads_lock = true;
   278     }
   279     JavaThread* jt = (JavaThread *)thread;
   280     name = (char *)jt->get_thread_name();
   281     oop thread_oop = jt->threadObj();
   282     if (thread_oop != NULL) {
   283       prio = java_lang_Thread::priority(thread_oop);
   284     }
   285     if (release_Threads_lock) {
   286       Threads_lock->unlock();
   287     }
   288   }
   289   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   290 }
   291 #endif
   294 ThreadPriority Thread::get_priority(const Thread* const thread) {
   295   trace("get priority", thread);
   296   ThreadPriority priority;
   297   // Can return an error!
   298   (void)os::get_priority(thread, priority);
   299   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   300   return priority;
   301 }
   303 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   304   trace("set priority", thread);
   305   debug_only(check_for_dangling_thread_pointer(thread);)
   306   // Can return an error!
   307   (void)os::set_priority(thread, priority);
   308 }
   311 void Thread::start(Thread* thread) {
   312   trace("start", thread);
   313   // Start is different from resume in that its safety is guaranteed by context or
   314   // being called from a Java method synchronized on the Thread object.
   315   if (!DisableStartThread) {
   316     if (thread->is_Java_thread()) {
   317       // Initialize the thread state to RUNNABLE before starting this thread.
   318       // Can not set it after the thread started because we do not know the
   319       // exact thread state at that time. It could be in MONITOR_WAIT or
   320       // in SLEEPING or some other state.
   321       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   322                                           java_lang_Thread::RUNNABLE);
   323     }
   324     os::start_thread(thread);
   325   }
   326 }
   328 // Enqueue a VM_Operation to do the job for us - sometime later
   329 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   330   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   331   VMThread::execute(vm_stop);
   332 }
   335 //
   336 // Check if an external suspend request has completed (or has been
   337 // cancelled). Returns true if the thread is externally suspended and
   338 // false otherwise.
   339 //
   340 // The bits parameter returns information about the code path through
   341 // the routine. Useful for debugging:
   342 //
   343 // set in is_ext_suspend_completed():
   344 // 0x00000001 - routine was entered
   345 // 0x00000010 - routine return false at end
   346 // 0x00000100 - thread exited (return false)
   347 // 0x00000200 - suspend request cancelled (return false)
   348 // 0x00000400 - thread suspended (return true)
   349 // 0x00001000 - thread is in a suspend equivalent state (return true)
   350 // 0x00002000 - thread is native and walkable (return true)
   351 // 0x00004000 - thread is native_trans and walkable (needed retry)
   352 //
   353 // set in wait_for_ext_suspend_completion():
   354 // 0x00010000 - routine was entered
   355 // 0x00020000 - suspend request cancelled before loop (return false)
   356 // 0x00040000 - thread suspended before loop (return true)
   357 // 0x00080000 - suspend request cancelled in loop (return false)
   358 // 0x00100000 - thread suspended in loop (return true)
   359 // 0x00200000 - suspend not completed during retry loop (return false)
   360 //
   362 // Helper class for tracing suspend wait debug bits.
   363 //
   364 // 0x00000100 indicates that the target thread exited before it could
   365 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   366 // 0x00080000 each indicate a cancelled suspend request so they don't
   367 // count as wait failures either.
   368 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   370 class TraceSuspendDebugBits : public StackObj {
   371  private:
   372   JavaThread * jt;
   373   bool         is_wait;
   374   bool         called_by_wait;  // meaningful when !is_wait
   375   uint32_t *   bits;
   377  public:
   378   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   379                         uint32_t *_bits) {
   380     jt             = _jt;
   381     is_wait        = _is_wait;
   382     called_by_wait = _called_by_wait;
   383     bits           = _bits;
   384   }
   386   ~TraceSuspendDebugBits() {
   387     if (!is_wait) {
   388 #if 1
   389       // By default, don't trace bits for is_ext_suspend_completed() calls.
   390       // That trace is very chatty.
   391       return;
   392 #else
   393       if (!called_by_wait) {
   394         // If tracing for is_ext_suspend_completed() is enabled, then only
   395         // trace calls to it from wait_for_ext_suspend_completion()
   396         return;
   397       }
   398 #endif
   399     }
   401     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   402       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   403         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   404         ResourceMark rm;
   406         tty->print_cr(
   407             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   408             jt->get_thread_name(), *bits);
   410         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   411       }
   412     }
   413   }
   414 };
   415 #undef DEBUG_FALSE_BITS
   418 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   419   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   421   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   422   bool do_trans_retry;           // flag to force the retry
   424   *bits |= 0x00000001;
   426   do {
   427     do_trans_retry = false;
   429     if (is_exiting()) {
   430       // Thread is in the process of exiting. This is always checked
   431       // first to reduce the risk of dereferencing a freed JavaThread.
   432       *bits |= 0x00000100;
   433       return false;
   434     }
   436     if (!is_external_suspend()) {
   437       // Suspend request is cancelled. This is always checked before
   438       // is_ext_suspended() to reduce the risk of a rogue resume
   439       // confusing the thread that made the suspend request.
   440       *bits |= 0x00000200;
   441       return false;
   442     }
   444     if (is_ext_suspended()) {
   445       // thread is suspended
   446       *bits |= 0x00000400;
   447       return true;
   448     }
   450     // Now that we no longer do hard suspends of threads running
   451     // native code, the target thread can be changing thread state
   452     // while we are in this routine:
   453     //
   454     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   455     //
   456     // We save a copy of the thread state as observed at this moment
   457     // and make our decision about suspend completeness based on the
   458     // copy. This closes the race where the thread state is seen as
   459     // _thread_in_native_trans in the if-thread_blocked check, but is
   460     // seen as _thread_blocked in if-thread_in_native_trans check.
   461     JavaThreadState save_state = thread_state();
   463     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   464       // If the thread's state is _thread_blocked and this blocking
   465       // condition is known to be equivalent to a suspend, then we can
   466       // consider the thread to be externally suspended. This means that
   467       // the code that sets _thread_blocked has been modified to do
   468       // self-suspension if the blocking condition releases. We also
   469       // used to check for CONDVAR_WAIT here, but that is now covered by
   470       // the _thread_blocked with self-suspension check.
   471       //
   472       // Return true since we wouldn't be here unless there was still an
   473       // external suspend request.
   474       *bits |= 0x00001000;
   475       return true;
   476     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   477       // Threads running native code will self-suspend on native==>VM/Java
   478       // transitions. If its stack is walkable (should always be the case
   479       // unless this function is called before the actual java_suspend()
   480       // call), then the wait is done.
   481       *bits |= 0x00002000;
   482       return true;
   483     } else if (!called_by_wait && !did_trans_retry &&
   484                save_state == _thread_in_native_trans &&
   485                frame_anchor()->walkable()) {
   486       // The thread is transitioning from thread_in_native to another
   487       // thread state. check_safepoint_and_suspend_for_native_trans()
   488       // will force the thread to self-suspend. If it hasn't gotten
   489       // there yet we may have caught the thread in-between the native
   490       // code check above and the self-suspend. Lucky us. If we were
   491       // called by wait_for_ext_suspend_completion(), then it
   492       // will be doing the retries so we don't have to.
   493       //
   494       // Since we use the saved thread state in the if-statement above,
   495       // there is a chance that the thread has already transitioned to
   496       // _thread_blocked by the time we get here. In that case, we will
   497       // make a single unnecessary pass through the logic below. This
   498       // doesn't hurt anything since we still do the trans retry.
   500       *bits |= 0x00004000;
   502       // Once the thread leaves thread_in_native_trans for another
   503       // thread state, we break out of this retry loop. We shouldn't
   504       // need this flag to prevent us from getting back here, but
   505       // sometimes paranoia is good.
   506       did_trans_retry = true;
   508       // We wait for the thread to transition to a more usable state.
   509       for (int i = 1; i <= SuspendRetryCount; i++) {
   510         // We used to do an "os::yield_all(i)" call here with the intention
   511         // that yielding would increase on each retry. However, the parameter
   512         // is ignored on Linux which means the yield didn't scale up. Waiting
   513         // on the SR_lock below provides a much more predictable scale up for
   514         // the delay. It also provides a simple/direct point to check for any
   515         // safepoint requests from the VMThread
   517         // temporarily drops SR_lock while doing wait with safepoint check
   518         // (if we're a JavaThread - the WatcherThread can also call this)
   519         // and increase delay with each retry
   520         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   522         // check the actual thread state instead of what we saved above
   523         if (thread_state() != _thread_in_native_trans) {
   524           // the thread has transitioned to another thread state so
   525           // try all the checks (except this one) one more time.
   526           do_trans_retry = true;
   527           break;
   528         }
   529       } // end retry loop
   532     }
   533   } while (do_trans_retry);
   535   *bits |= 0x00000010;
   536   return false;
   537 }
   539 //
   540 // Wait for an external suspend request to complete (or be cancelled).
   541 // Returns true if the thread is externally suspended and false otherwise.
   542 //
   543 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   544        uint32_t *bits) {
   545   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   546                              false /* !called_by_wait */, bits);
   548   // local flag copies to minimize SR_lock hold time
   549   bool is_suspended;
   550   bool pending;
   551   uint32_t reset_bits;
   553   // set a marker so is_ext_suspend_completed() knows we are the caller
   554   *bits |= 0x00010000;
   556   // We use reset_bits to reinitialize the bits value at the top of
   557   // each retry loop. This allows the caller to make use of any
   558   // unused bits for their own marking purposes.
   559   reset_bits = *bits;
   561   {
   562     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   563     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   564                                             delay, bits);
   565     pending = is_external_suspend();
   566   }
   567   // must release SR_lock to allow suspension to complete
   569   if (!pending) {
   570     // A cancelled suspend request is the only false return from
   571     // is_ext_suspend_completed() that keeps us from entering the
   572     // retry loop.
   573     *bits |= 0x00020000;
   574     return false;
   575   }
   577   if (is_suspended) {
   578     *bits |= 0x00040000;
   579     return true;
   580   }
   582   for (int i = 1; i <= retries; i++) {
   583     *bits = reset_bits;  // reinit to only track last retry
   585     // We used to do an "os::yield_all(i)" call here with the intention
   586     // that yielding would increase on each retry. However, the parameter
   587     // is ignored on Linux which means the yield didn't scale up. Waiting
   588     // on the SR_lock below provides a much more predictable scale up for
   589     // the delay. It also provides a simple/direct point to check for any
   590     // safepoint requests from the VMThread
   592     {
   593       MutexLocker ml(SR_lock());
   594       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   595       // can also call this)  and increase delay with each retry
   596       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   598       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   599                                               delay, bits);
   601       // It is possible for the external suspend request to be cancelled
   602       // (by a resume) before the actual suspend operation is completed.
   603       // Refresh our local copy to see if we still need to wait.
   604       pending = is_external_suspend();
   605     }
   607     if (!pending) {
   608       // A cancelled suspend request is the only false return from
   609       // is_ext_suspend_completed() that keeps us from staying in the
   610       // retry loop.
   611       *bits |= 0x00080000;
   612       return false;
   613     }
   615     if (is_suspended) {
   616       *bits |= 0x00100000;
   617       return true;
   618     }
   619   } // end retry loop
   621   // thread did not suspend after all our retries
   622   *bits |= 0x00200000;
   623   return false;
   624 }
   626 #ifndef PRODUCT
   627 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   629   // This should not need to be atomic as the only way for simultaneous
   630   // updates is via interrupts. Even then this should be rare or non-existant
   631   // and we don't care that much anyway.
   633   int index = _jmp_ring_index;
   634   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   635   _jmp_ring[index]._target = (intptr_t) target;
   636   _jmp_ring[index]._instruction = (intptr_t) instr;
   637   _jmp_ring[index]._file = file;
   638   _jmp_ring[index]._line = line;
   639 }
   640 #endif /* PRODUCT */
   642 // Called by flat profiler
   643 // Callers have already called wait_for_ext_suspend_completion
   644 // The assertion for that is currently too complex to put here:
   645 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   646   bool gotframe = false;
   647   // self suspension saves needed state.
   648   if (has_last_Java_frame() && _anchor.walkable()) {
   649      *_fr = pd_last_frame();
   650      gotframe = true;
   651   }
   652   return gotframe;
   653 }
   655 void Thread::interrupt(Thread* thread) {
   656   trace("interrupt", thread);
   657   debug_only(check_for_dangling_thread_pointer(thread);)
   658   os::interrupt(thread);
   659 }
   661 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   662   trace("is_interrupted", thread);
   663   debug_only(check_for_dangling_thread_pointer(thread);)
   664   // Note:  If clear_interrupted==false, this simply fetches and
   665   // returns the value of the field osthread()->interrupted().
   666   return os::is_interrupted(thread, clear_interrupted);
   667 }
   670 // GC Support
   671 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   672   jint thread_parity = _oops_do_parity;
   673   if (thread_parity != strong_roots_parity) {
   674     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   675     if (res == thread_parity) return true;
   676     else {
   677       guarantee(res == strong_roots_parity, "Or else what?");
   678       assert(SharedHeap::heap()->n_par_threads() > 0,
   679              "Should only fail when parallel.");
   680       return false;
   681     }
   682   }
   683   assert(SharedHeap::heap()->n_par_threads() > 0,
   684          "Should only fail when parallel.");
   685   return false;
   686 }
   688 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   689   active_handles()->oops_do(f);
   690   // Do oop for ThreadShadow
   691   f->do_oop((oop*)&_pending_exception);
   692   handle_area()->oops_do(f);
   693 }
   695 void Thread::nmethods_do(CodeBlobClosure* cf) {
   696   // no nmethods in a generic thread...
   697 }
   699 void Thread::print_on(outputStream* st) const {
   700   // get_priority assumes osthread initialized
   701   if (osthread() != NULL) {
   702     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   703     osthread()->print_on(st);
   704   }
   705   debug_only(if (WizardMode) print_owned_locks_on(st);)
   706 }
   708 // Thread::print_on_error() is called by fatal error handler. Don't use
   709 // any lock or allocate memory.
   710 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   711   if      (is_VM_thread())                  st->print("VMThread");
   712   else if (is_Compiler_thread())            st->print("CompilerThread");
   713   else if (is_Java_thread())                st->print("JavaThread");
   714   else if (is_GC_task_thread())             st->print("GCTaskThread");
   715   else if (is_Watcher_thread())             st->print("WatcherThread");
   716   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   717   else st->print("Thread");
   719   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   720             _stack_base - _stack_size, _stack_base);
   722   if (osthread()) {
   723     st->print(" [id=%d]", osthread()->thread_id());
   724   }
   725 }
   727 #ifdef ASSERT
   728 void Thread::print_owned_locks_on(outputStream* st) const {
   729   Monitor *cur = _owned_locks;
   730   if (cur == NULL) {
   731     st->print(" (no locks) ");
   732   } else {
   733     st->print_cr(" Locks owned:");
   734     while(cur) {
   735       cur->print_on(st);
   736       cur = cur->next();
   737     }
   738   }
   739 }
   741 static int ref_use_count  = 0;
   743 bool Thread::owns_locks_but_compiled_lock() const {
   744   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   745     if (cur != Compile_lock) return true;
   746   }
   747   return false;
   748 }
   751 #endif
   753 #ifndef PRODUCT
   755 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   756 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   757 // no threads which allow_vm_block's are held
   758 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   759     // Check if current thread is allowed to block at a safepoint
   760     if (!(_allow_safepoint_count == 0))
   761       fatal("Possible safepoint reached by thread that does not allow it");
   762     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   763       fatal("LEAF method calling lock?");
   764     }
   766 #ifdef ASSERT
   767     if (potential_vm_operation && is_Java_thread()
   768         && !Universe::is_bootstrapping()) {
   769       // Make sure we do not hold any locks that the VM thread also uses.
   770       // This could potentially lead to deadlocks
   771       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   772         // Threads_lock is special, since the safepoint synchronization will not start before this is
   773         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   774         // since it is used to transfer control between JavaThreads and the VMThread
   775         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   776         if ( (cur->allow_vm_block() &&
   777               cur != Threads_lock &&
   778               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   779               cur != VMOperationRequest_lock &&
   780               cur != VMOperationQueue_lock) ||
   781               cur->rank() == Mutex::special) {
   782           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   783         }
   784       }
   785     }
   787     if (GCALotAtAllSafepoints) {
   788       // We could enter a safepoint here and thus have a gc
   789       InterfaceSupport::check_gc_alot();
   790     }
   791 #endif
   792 }
   793 #endif
   795 bool Thread::is_in_stack(address adr) const {
   796   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   797   address end = os::current_stack_pointer();
   798   if (stack_base() >= adr && adr >= end) return true;
   800   return false;
   801 }
   804 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   805 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   806 // used for compilation in the future. If that change is made, the need for these methods
   807 // should be revisited, and they should be removed if possible.
   809 bool Thread::is_lock_owned(address adr) const {
   810   return on_local_stack(adr);
   811 }
   813 bool Thread::set_as_starting_thread() {
   814  // NOTE: this must be called inside the main thread.
   815   return os::create_main_thread((JavaThread*)this);
   816 }
   818 static void initialize_class(symbolHandle class_name, TRAPS) {
   819   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   820   instanceKlass::cast(klass)->initialize(CHECK);
   821 }
   824 // Creates the initial ThreadGroup
   825 static Handle create_initial_thread_group(TRAPS) {
   826   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
   827   instanceKlassHandle klass (THREAD, k);
   829   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   830   {
   831     JavaValue result(T_VOID);
   832     JavaCalls::call_special(&result,
   833                             system_instance,
   834                             klass,
   835                             vmSymbolHandles::object_initializer_name(),
   836                             vmSymbolHandles::void_method_signature(),
   837                             CHECK_NH);
   838   }
   839   Universe::set_system_thread_group(system_instance());
   841   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   842   {
   843     JavaValue result(T_VOID);
   844     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   845     JavaCalls::call_special(&result,
   846                             main_instance,
   847                             klass,
   848                             vmSymbolHandles::object_initializer_name(),
   849                             vmSymbolHandles::threadgroup_string_void_signature(),
   850                             system_instance,
   851                             string,
   852                             CHECK_NH);
   853   }
   854   return main_instance;
   855 }
   857 // Creates the initial Thread
   858 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   859   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
   860   instanceKlassHandle klass (THREAD, k);
   861   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   863   java_lang_Thread::set_thread(thread_oop(), thread);
   864   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   865   thread->set_threadObj(thread_oop());
   867   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   869   JavaValue result(T_VOID);
   870   JavaCalls::call_special(&result, thread_oop,
   871                                    klass,
   872                                    vmSymbolHandles::object_initializer_name(),
   873                                    vmSymbolHandles::threadgroup_string_void_signature(),
   874                                    thread_group,
   875                                    string,
   876                                    CHECK_NULL);
   877   return thread_oop();
   878 }
   880 static void call_initializeSystemClass(TRAPS) {
   881   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   882   instanceKlassHandle klass (THREAD, k);
   884   JavaValue result(T_VOID);
   885   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
   886                                          vmSymbolHandles::void_method_signature(), CHECK);
   887 }
   889 #ifdef KERNEL
   890 static void set_jkernel_boot_classloader_hook(TRAPS) {
   891   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
   892   instanceKlassHandle klass (THREAD, k);
   894   if (k == NULL) {
   895     // sun.jkernel.DownloadManager may not present in the JDK; just return
   896     return;
   897   }
   899   JavaValue result(T_VOID);
   900   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
   901                                          vmSymbolHandles::void_method_signature(), CHECK);
   902 }
   903 #endif // KERNEL
   905 static void reset_vm_info_property(TRAPS) {
   906   // the vm info string
   907   ResourceMark rm(THREAD);
   908   const char *vm_info = VM_Version::vm_info_string();
   910   // java.lang.System class
   911   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   912   instanceKlassHandle klass (THREAD, k);
   914   // setProperty arguments
   915   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
   916   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
   918   // return value
   919   JavaValue r(T_OBJECT);
   921   // public static String setProperty(String key, String value);
   922   JavaCalls::call_static(&r,
   923                          klass,
   924                          vmSymbolHandles::setProperty_name(),
   925                          vmSymbolHandles::string_string_string_signature(),
   926                          key_str,
   927                          value_str,
   928                          CHECK);
   929 }
   932 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
   933   assert(thread_group.not_null(), "thread group should be specified");
   934   assert(threadObj() == NULL, "should only create Java thread object once");
   936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
   937   instanceKlassHandle klass (THREAD, k);
   938   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   940   java_lang_Thread::set_thread(thread_oop(), this);
   941   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   942   set_threadObj(thread_oop());
   944   JavaValue result(T_VOID);
   945   if (thread_name != NULL) {
   946     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
   947     // Thread gets assigned specified name and null target
   948     JavaCalls::call_special(&result,
   949                             thread_oop,
   950                             klass,
   951                             vmSymbolHandles::object_initializer_name(),
   952                             vmSymbolHandles::threadgroup_string_void_signature(),
   953                             thread_group, // Argument 1
   954                             name,         // Argument 2
   955                             THREAD);
   956   } else {
   957     // Thread gets assigned name "Thread-nnn" and null target
   958     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
   959     JavaCalls::call_special(&result,
   960                             thread_oop,
   961                             klass,
   962                             vmSymbolHandles::object_initializer_name(),
   963                             vmSymbolHandles::threadgroup_runnable_void_signature(),
   964                             thread_group, // Argument 1
   965                             Handle(),     // Argument 2
   966                             THREAD);
   967   }
   970   if (daemon) {
   971       java_lang_Thread::set_daemon(thread_oop());
   972   }
   974   if (HAS_PENDING_EXCEPTION) {
   975     return;
   976   }
   978   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
   979   Handle threadObj(this, this->threadObj());
   981   JavaCalls::call_special(&result,
   982                          thread_group,
   983                          group,
   984                          vmSymbolHandles::add_method_name(),
   985                          vmSymbolHandles::thread_void_signature(),
   986                          threadObj,          // Arg 1
   987                          THREAD);
   990 }
   992 // NamedThread --  non-JavaThread subclasses with multiple
   993 // uniquely named instances should derive from this.
   994 NamedThread::NamedThread() : Thread() {
   995   _name = NULL;
   996   _processed_thread = NULL;
   997 }
   999 NamedThread::~NamedThread() {
  1000   if (_name != NULL) {
  1001     FREE_C_HEAP_ARRAY(char, _name);
  1002     _name = NULL;
  1006 void NamedThread::set_name(const char* format, ...) {
  1007   guarantee(_name == NULL, "Only get to set name once.");
  1008   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1009   guarantee(_name != NULL, "alloc failure");
  1010   va_list ap;
  1011   va_start(ap, format);
  1012   jio_vsnprintf(_name, max_name_len, format, ap);
  1013   va_end(ap);
  1016 // ======= WatcherThread ========
  1018 // The watcher thread exists to simulate timer interrupts.  It should
  1019 // be replaced by an abstraction over whatever native support for
  1020 // timer interrupts exists on the platform.
  1022 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1023 volatile bool  WatcherThread::_should_terminate = false;
  1025 WatcherThread::WatcherThread() : Thread() {
  1026   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1027   if (os::create_thread(this, os::watcher_thread)) {
  1028     _watcher_thread = this;
  1030     // Set the watcher thread to the highest OS priority which should not be
  1031     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1032     // is created. The only normal thread using this priority is the reference
  1033     // handler thread, which runs for very short intervals only.
  1034     // If the VMThread's priority is not lower than the WatcherThread profiling
  1035     // will be inaccurate.
  1036     os::set_priority(this, MaxPriority);
  1037     if (!DisableStartThread) {
  1038       os::start_thread(this);
  1043 void WatcherThread::run() {
  1044   assert(this == watcher_thread(), "just checking");
  1046   this->record_stack_base_and_size();
  1047   this->initialize_thread_local_storage();
  1048   this->set_active_handles(JNIHandleBlock::allocate_block());
  1049   while(!_should_terminate) {
  1050     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1051     assert(watcher_thread() == this,  "thread consistency check");
  1053     // Calculate how long it'll be until the next PeriodicTask work
  1054     // should be done, and sleep that amount of time.
  1055     size_t time_to_wait = PeriodicTask::time_to_wait();
  1057     // we expect this to timeout - we only ever get unparked when
  1058     // we should terminate
  1060       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
  1062       jlong prev_time = os::javaTimeNanos();
  1063       for (;;) {
  1064         int res= _SleepEvent->park(time_to_wait);
  1065         if (res == OS_TIMEOUT || _should_terminate)
  1066           break;
  1067         // spurious wakeup of some kind
  1068         jlong now = os::javaTimeNanos();
  1069         time_to_wait -= (now - prev_time) / 1000000;
  1070         if (time_to_wait <= 0)
  1071           break;
  1072         prev_time = now;
  1076     if (is_error_reported()) {
  1077       // A fatal error has happened, the error handler(VMError::report_and_die)
  1078       // should abort JVM after creating an error log file. However in some
  1079       // rare cases, the error handler itself might deadlock. Here we try to
  1080       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1081       //
  1082       // This code is in WatcherThread because WatcherThread wakes up
  1083       // periodically so the fatal error handler doesn't need to do anything;
  1084       // also because the WatcherThread is less likely to crash than other
  1085       // threads.
  1087       for (;;) {
  1088         if (!ShowMessageBoxOnError
  1089          && (OnError == NULL || OnError[0] == '\0')
  1090          && Arguments::abort_hook() == NULL) {
  1091              os::sleep(this, 2 * 60 * 1000, false);
  1092              fdStream err(defaultStream::output_fd());
  1093              err.print_raw_cr("# [ timer expired, abort... ]");
  1094              // skip atexit/vm_exit/vm_abort hooks
  1095              os::die();
  1098         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1099         // ShowMessageBoxOnError when it is ready to abort.
  1100         os::sleep(this, 5 * 1000, false);
  1104     PeriodicTask::real_time_tick(time_to_wait);
  1106     // If we have no more tasks left due to dynamic disenrollment,
  1107     // shut down the thread since we don't currently support dynamic enrollment
  1108     if (PeriodicTask::num_tasks() == 0) {
  1109       _should_terminate = true;
  1113   // Signal that it is terminated
  1115     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1116     _watcher_thread = NULL;
  1117     Terminator_lock->notify();
  1120   // Thread destructor usually does this..
  1121   ThreadLocalStorage::set_thread(NULL);
  1124 void WatcherThread::start() {
  1125   if (watcher_thread() == NULL) {
  1126     _should_terminate = false;
  1127     // Create the single instance of WatcherThread
  1128     new WatcherThread();
  1132 void WatcherThread::stop() {
  1133   // it is ok to take late safepoints here, if needed
  1134   MutexLocker mu(Terminator_lock);
  1135   _should_terminate = true;
  1136   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
  1138   Thread* watcher = watcher_thread();
  1139   if (watcher != NULL)
  1140     watcher->_SleepEvent->unpark();
  1142   while(watcher_thread() != NULL) {
  1143     // This wait should make safepoint checks, wait without a timeout,
  1144     // and wait as a suspend-equivalent condition.
  1145     //
  1146     // Note: If the FlatProfiler is running, then this thread is waiting
  1147     // for the WatcherThread to terminate and the WatcherThread, via the
  1148     // FlatProfiler task, is waiting for the external suspend request on
  1149     // this thread to complete. wait_for_ext_suspend_completion() will
  1150     // eventually timeout, but that takes time. Making this wait a
  1151     // suspend-equivalent condition solves that timeout problem.
  1152     //
  1153     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1154                           Mutex::_as_suspend_equivalent_flag);
  1158 void WatcherThread::print_on(outputStream* st) const {
  1159   st->print("\"%s\" ", name());
  1160   Thread::print_on(st);
  1161   st->cr();
  1164 // ======= JavaThread ========
  1166 // A JavaThread is a normal Java thread
  1168 void JavaThread::initialize() {
  1169   // Initialize fields
  1171   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1172   set_claimed_par_id(-1);
  1174   set_saved_exception_pc(NULL);
  1175   set_threadObj(NULL);
  1176   _anchor.clear();
  1177   set_entry_point(NULL);
  1178   set_jni_functions(jni_functions());
  1179   set_callee_target(NULL);
  1180   set_vm_result(NULL);
  1181   set_vm_result_2(NULL);
  1182   set_vframe_array_head(NULL);
  1183   set_vframe_array_last(NULL);
  1184   set_deferred_locals(NULL);
  1185   set_deopt_mark(NULL);
  1186   set_deopt_nmethod(NULL);
  1187   clear_must_deopt_id();
  1188   set_monitor_chunks(NULL);
  1189   set_next(NULL);
  1190   set_thread_state(_thread_new);
  1191   _terminated = _not_terminated;
  1192   _privileged_stack_top = NULL;
  1193   _array_for_gc = NULL;
  1194   _suspend_equivalent = false;
  1195   _in_deopt_handler = 0;
  1196   _doing_unsafe_access = false;
  1197   _stack_guard_state = stack_guard_unused;
  1198   _exception_oop = NULL;
  1199   _exception_pc  = 0;
  1200   _exception_handler_pc = 0;
  1201   _exception_stack_size = 0;
  1202   _jvmti_thread_state= NULL;
  1203   _should_post_on_exceptions_flag = JNI_FALSE;
  1204   _jvmti_get_loaded_classes_closure = NULL;
  1205   _interp_only_mode    = 0;
  1206   _special_runtime_exit_condition = _no_async_condition;
  1207   _pending_async_exception = NULL;
  1208   _is_compiling = false;
  1209   _thread_stat = NULL;
  1210   _thread_stat = new ThreadStatistics();
  1211   _blocked_on_compilation = false;
  1212   _jni_active_critical = 0;
  1213   _do_not_unlock_if_synchronized = false;
  1214   _cached_monitor_info = NULL;
  1215   _parker = Parker::Allocate(this) ;
  1217 #ifndef PRODUCT
  1218   _jmp_ring_index = 0;
  1219   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1220     record_jump(NULL, NULL, NULL, 0);
  1222 #endif /* PRODUCT */
  1224   set_thread_profiler(NULL);
  1225   if (FlatProfiler::is_active()) {
  1226     // This is where we would decide to either give each thread it's own profiler
  1227     // or use one global one from FlatProfiler,
  1228     // or up to some count of the number of profiled threads, etc.
  1229     ThreadProfiler* pp = new ThreadProfiler();
  1230     pp->engage();
  1231     set_thread_profiler(pp);
  1234   // Setup safepoint state info for this thread
  1235   ThreadSafepointState::create(this);
  1237   debug_only(_java_call_counter = 0);
  1239   // JVMTI PopFrame support
  1240   _popframe_condition = popframe_inactive;
  1241   _popframe_preserved_args = NULL;
  1242   _popframe_preserved_args_size = 0;
  1244   pd_initialize();
  1247 #ifndef SERIALGC
  1248 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1249 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1250 #endif // !SERIALGC
  1252 JavaThread::JavaThread(bool is_attaching) :
  1253   Thread()
  1254 #ifndef SERIALGC
  1255   , _satb_mark_queue(&_satb_mark_queue_set),
  1256   _dirty_card_queue(&_dirty_card_queue_set)
  1257 #endif // !SERIALGC
  1259   initialize();
  1260   _is_attaching = is_attaching;
  1261   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1264 bool JavaThread::reguard_stack(address cur_sp) {
  1265   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1266     return true; // Stack already guarded or guard pages not needed.
  1269   if (register_stack_overflow()) {
  1270     // For those architectures which have separate register and
  1271     // memory stacks, we must check the register stack to see if
  1272     // it has overflowed.
  1273     return false;
  1276   // Java code never executes within the yellow zone: the latter is only
  1277   // there to provoke an exception during stack banging.  If java code
  1278   // is executing there, either StackShadowPages should be larger, or
  1279   // some exception code in c1, c2 or the interpreter isn't unwinding
  1280   // when it should.
  1281   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1283   enable_stack_yellow_zone();
  1284   return true;
  1287 bool JavaThread::reguard_stack(void) {
  1288   return reguard_stack(os::current_stack_pointer());
  1292 void JavaThread::block_if_vm_exited() {
  1293   if (_terminated == _vm_exited) {
  1294     // _vm_exited is set at safepoint, and Threads_lock is never released
  1295     // we will block here forever
  1296     Threads_lock->lock_without_safepoint_check();
  1297     ShouldNotReachHere();
  1302 // Remove this ifdef when C1 is ported to the compiler interface.
  1303 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1305 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1306   Thread()
  1307 #ifndef SERIALGC
  1308   , _satb_mark_queue(&_satb_mark_queue_set),
  1309   _dirty_card_queue(&_dirty_card_queue_set)
  1310 #endif // !SERIALGC
  1312   if (TraceThreadEvents) {
  1313     tty->print_cr("creating thread %p", this);
  1315   initialize();
  1316   _is_attaching = false;
  1317   set_entry_point(entry_point);
  1318   // Create the native thread itself.
  1319   // %note runtime_23
  1320   os::ThreadType thr_type = os::java_thread;
  1321   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1322                                                      os::java_thread;
  1323   os::create_thread(this, thr_type, stack_sz);
  1325   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1326   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1327   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1328   // the exception consists of creating the exception object & initializing it, initialization
  1329   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1330   //
  1331   // The thread is still suspended when we reach here. Thread must be explicit started
  1332   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1333   // by calling Threads:add. The reason why this is not done here, is because the thread
  1334   // object must be fully initialized (take a look at JVM_Start)
  1337 JavaThread::~JavaThread() {
  1338   if (TraceThreadEvents) {
  1339       tty->print_cr("terminate thread %p", this);
  1342   // JSR166 -- return the parker to the free list
  1343   Parker::Release(_parker);
  1344   _parker = NULL ;
  1346   // Free any remaining  previous UnrollBlock
  1347   vframeArray* old_array = vframe_array_last();
  1349   if (old_array != NULL) {
  1350     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1351     old_array->set_unroll_block(NULL);
  1352     delete old_info;
  1353     delete old_array;
  1356   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1357   if (deferred != NULL) {
  1358     // This can only happen if thread is destroyed before deoptimization occurs.
  1359     assert(deferred->length() != 0, "empty array!");
  1360     do {
  1361       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1362       deferred->remove_at(0);
  1363       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1364       delete dlv;
  1365     } while (deferred->length() != 0);
  1366     delete deferred;
  1369   // All Java related clean up happens in exit
  1370   ThreadSafepointState::destroy(this);
  1371   if (_thread_profiler != NULL) delete _thread_profiler;
  1372   if (_thread_stat != NULL) delete _thread_stat;
  1376 // The first routine called by a new Java thread
  1377 void JavaThread::run() {
  1378   // initialize thread-local alloc buffer related fields
  1379   this->initialize_tlab();
  1381   // used to test validitity of stack trace backs
  1382   this->record_base_of_stack_pointer();
  1384   // Record real stack base and size.
  1385   this->record_stack_base_and_size();
  1387   // Initialize thread local storage; set before calling MutexLocker
  1388   this->initialize_thread_local_storage();
  1390   this->create_stack_guard_pages();
  1392   this->cache_global_variables();
  1394   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1395   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1396   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1398   assert(JavaThread::current() == this, "sanity check");
  1399   assert(!Thread::current()->owns_locks(), "sanity check");
  1401   DTRACE_THREAD_PROBE(start, this);
  1403   // This operation might block. We call that after all safepoint checks for a new thread has
  1404   // been completed.
  1405   this->set_active_handles(JNIHandleBlock::allocate_block());
  1407   if (JvmtiExport::should_post_thread_life()) {
  1408     JvmtiExport::post_thread_start(this);
  1411   // We call another function to do the rest so we are sure that the stack addresses used
  1412   // from there will be lower than the stack base just computed
  1413   thread_main_inner();
  1415   // Note, thread is no longer valid at this point!
  1419 void JavaThread::thread_main_inner() {
  1420   assert(JavaThread::current() == this, "sanity check");
  1421   assert(this->threadObj() != NULL, "just checking");
  1423   // Execute thread entry point. If this thread is being asked to restart,
  1424   // or has been stopped before starting, do not reexecute entry point.
  1425   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1426   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
  1427     // enter the thread's entry point only if we have no pending exceptions
  1428     HandleMark hm(this);
  1429     this->entry_point()(this, this);
  1432   DTRACE_THREAD_PROBE(stop, this);
  1434   this->exit(false);
  1435   delete this;
  1439 static void ensure_join(JavaThread* thread) {
  1440   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1441   Handle threadObj(thread, thread->threadObj());
  1442   assert(threadObj.not_null(), "java thread object must exist");
  1443   ObjectLocker lock(threadObj, thread);
  1444   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1445   thread->clear_pending_exception();
  1446   // It is of profound importance that we set the stillborn bit and reset the thread object,
  1447   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
  1448   // false. So in case another thread is doing a join on this thread , it will detect that the thread
  1449   // is dead when it gets notified.
  1450   java_lang_Thread::set_stillborn(threadObj());
  1451   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1452   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1453   java_lang_Thread::set_thread(threadObj(), NULL);
  1454   lock.notify_all(thread);
  1455   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1456   thread->clear_pending_exception();
  1460 // For any new cleanup additions, please check to see if they need to be applied to
  1461 // cleanup_failed_attach_current_thread as well.
  1462 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1463   assert(this == JavaThread::current(),  "thread consistency check");
  1464   if (!InitializeJavaLangSystem) return;
  1466   HandleMark hm(this);
  1467   Handle uncaught_exception(this, this->pending_exception());
  1468   this->clear_pending_exception();
  1469   Handle threadObj(this, this->threadObj());
  1470   assert(threadObj.not_null(), "Java thread object should be created");
  1472   if (get_thread_profiler() != NULL) {
  1473     get_thread_profiler()->disengage();
  1474     ResourceMark rm;
  1475     get_thread_profiler()->print(get_thread_name());
  1479   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1481     EXCEPTION_MARK;
  1483     CLEAR_PENDING_EXCEPTION;
  1485   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1486   // has to be fixed by a runtime query method
  1487   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1488     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1489     // java.lang.Thread.dispatchUncaughtException
  1490     if (uncaught_exception.not_null()) {
  1491       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1492       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1493         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1495         EXCEPTION_MARK;
  1496         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1497         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1498         // so call ThreadGroup.uncaughtException()
  1499         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1500         CallInfo callinfo;
  1501         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1502         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1503                                            vmSymbolHandles::dispatchUncaughtException_name(),
  1504                                            vmSymbolHandles::throwable_void_signature(),
  1505                                            KlassHandle(), false, false, THREAD);
  1506         CLEAR_PENDING_EXCEPTION;
  1507         methodHandle method = callinfo.selected_method();
  1508         if (method.not_null()) {
  1509           JavaValue result(T_VOID);
  1510           JavaCalls::call_virtual(&result,
  1511                                   threadObj, thread_klass,
  1512                                   vmSymbolHandles::dispatchUncaughtException_name(),
  1513                                   vmSymbolHandles::throwable_void_signature(),
  1514                                   uncaught_exception,
  1515                                   THREAD);
  1516         } else {
  1517           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1518           JavaValue result(T_VOID);
  1519           JavaCalls::call_virtual(&result,
  1520                                   group, thread_group,
  1521                                   vmSymbolHandles::uncaughtException_name(),
  1522                                   vmSymbolHandles::thread_throwable_void_signature(),
  1523                                   threadObj,           // Arg 1
  1524                                   uncaught_exception,  // Arg 2
  1525                                   THREAD);
  1527         CLEAR_PENDING_EXCEPTION;
  1531     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1532     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1533     // is deprecated anyhow.
  1534     { int count = 3;
  1535       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1536         EXCEPTION_MARK;
  1537         JavaValue result(T_VOID);
  1538         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1539         JavaCalls::call_virtual(&result,
  1540                               threadObj, thread_klass,
  1541                               vmSymbolHandles::exit_method_name(),
  1542                               vmSymbolHandles::void_method_signature(),
  1543                               THREAD);
  1544         CLEAR_PENDING_EXCEPTION;
  1548     // notify JVMTI
  1549     if (JvmtiExport::should_post_thread_life()) {
  1550       JvmtiExport::post_thread_end(this);
  1553     // We have notified the agents that we are exiting, before we go on,
  1554     // we must check for a pending external suspend request and honor it
  1555     // in order to not surprise the thread that made the suspend request.
  1556     while (true) {
  1558         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1559         if (!is_external_suspend()) {
  1560           set_terminated(_thread_exiting);
  1561           ThreadService::current_thread_exiting(this);
  1562           break;
  1564         // Implied else:
  1565         // Things get a little tricky here. We have a pending external
  1566         // suspend request, but we are holding the SR_lock so we
  1567         // can't just self-suspend. So we temporarily drop the lock
  1568         // and then self-suspend.
  1571       ThreadBlockInVM tbivm(this);
  1572       java_suspend_self();
  1574       // We're done with this suspend request, but we have to loop around
  1575       // and check again. Eventually we will get SR_lock without a pending
  1576       // external suspend request and will be able to mark ourselves as
  1577       // exiting.
  1579     // no more external suspends are allowed at this point
  1580   } else {
  1581     // before_exit() has already posted JVMTI THREAD_END events
  1584   // Notify waiters on thread object. This has to be done after exit() is called
  1585   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1586   // group should have the destroyed bit set before waiters are notified).
  1587   ensure_join(this);
  1588   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1590   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1591   // held by this thread must be released.  A detach operation must only
  1592   // get here if there are no Java frames on the stack.  Therefore, any
  1593   // owned monitors at this point MUST be JNI-acquired monitors which are
  1594   // pre-inflated and in the monitor cache.
  1595   //
  1596   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1597   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1598     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1599     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1600     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1603   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1604   // is in a consistent state, in case GC happens
  1605   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1607   if (active_handles() != NULL) {
  1608     JNIHandleBlock* block = active_handles();
  1609     set_active_handles(NULL);
  1610     JNIHandleBlock::release_block(block);
  1613   if (free_handle_block() != NULL) {
  1614     JNIHandleBlock* block = free_handle_block();
  1615     set_free_handle_block(NULL);
  1616     JNIHandleBlock::release_block(block);
  1619   // These have to be removed while this is still a valid thread.
  1620   remove_stack_guard_pages();
  1622   if (UseTLAB) {
  1623     tlab().make_parsable(true);  // retire TLAB
  1626   if (jvmti_thread_state() != NULL) {
  1627     JvmtiExport::cleanup_thread(this);
  1630 #ifndef SERIALGC
  1631   // We must flush G1-related buffers before removing a thread from
  1632   // the list of active threads.
  1633   if (UseG1GC) {
  1634     flush_barrier_queues();
  1636 #endif
  1638   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1639   Threads::remove(this);
  1642 #ifndef SERIALGC
  1643 // Flush G1-related queues.
  1644 void JavaThread::flush_barrier_queues() {
  1645   satb_mark_queue().flush();
  1646   dirty_card_queue().flush();
  1649 void JavaThread::initialize_queues() {
  1650   assert(!SafepointSynchronize::is_at_safepoint(),
  1651          "we should not be at a safepoint");
  1653   ObjPtrQueue& satb_queue = satb_mark_queue();
  1654   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
  1655   // The SATB queue should have been constructed with its active
  1656   // field set to false.
  1657   assert(!satb_queue.is_active(), "SATB queue should not be active");
  1658   assert(satb_queue.is_empty(), "SATB queue should be empty");
  1659   // If we are creating the thread during a marking cycle, we should
  1660   // set the active field of the SATB queue to true.
  1661   if (satb_queue_set.is_active()) {
  1662     satb_queue.set_active(true);
  1665   DirtyCardQueue& dirty_queue = dirty_card_queue();
  1666   // The dirty card queue should have been constructed with its
  1667   // active field set to true.
  1668   assert(dirty_queue.is_active(), "dirty card queue should be active");
  1670 #endif // !SERIALGC
  1672 void JavaThread::cleanup_failed_attach_current_thread() {
  1673   if (get_thread_profiler() != NULL) {
  1674     get_thread_profiler()->disengage();
  1675     ResourceMark rm;
  1676     get_thread_profiler()->print(get_thread_name());
  1679   if (active_handles() != NULL) {
  1680     JNIHandleBlock* block = active_handles();
  1681     set_active_handles(NULL);
  1682     JNIHandleBlock::release_block(block);
  1685   if (free_handle_block() != NULL) {
  1686     JNIHandleBlock* block = free_handle_block();
  1687     set_free_handle_block(NULL);
  1688     JNIHandleBlock::release_block(block);
  1691   // These have to be removed while this is still a valid thread.
  1692   remove_stack_guard_pages();
  1694   if (UseTLAB) {
  1695     tlab().make_parsable(true);  // retire TLAB, if any
  1698 #ifndef SERIALGC
  1699   if (UseG1GC) {
  1700     flush_barrier_queues();
  1702 #endif
  1704   Threads::remove(this);
  1705   delete this;
  1711 JavaThread* JavaThread::active() {
  1712   Thread* thread = ThreadLocalStorage::thread();
  1713   assert(thread != NULL, "just checking");
  1714   if (thread->is_Java_thread()) {
  1715     return (JavaThread*) thread;
  1716   } else {
  1717     assert(thread->is_VM_thread(), "this must be a vm thread");
  1718     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1719     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1720     assert(ret->is_Java_thread(), "must be a Java thread");
  1721     return ret;
  1725 bool JavaThread::is_lock_owned(address adr) const {
  1726   if (Thread::is_lock_owned(adr)) return true;
  1728   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1729     if (chunk->contains(adr)) return true;
  1732   return false;
  1736 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1737   chunk->set_next(monitor_chunks());
  1738   set_monitor_chunks(chunk);
  1741 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1742   guarantee(monitor_chunks() != NULL, "must be non empty");
  1743   if (monitor_chunks() == chunk) {
  1744     set_monitor_chunks(chunk->next());
  1745   } else {
  1746     MonitorChunk* prev = monitor_chunks();
  1747     while (prev->next() != chunk) prev = prev->next();
  1748     prev->set_next(chunk->next());
  1752 // JVM support.
  1754 // Note: this function shouldn't block if it's called in
  1755 // _thread_in_native_trans state (such as from
  1756 // check_special_condition_for_native_trans()).
  1757 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1759   if (has_last_Java_frame() && has_async_condition()) {
  1760     // If we are at a polling page safepoint (not a poll return)
  1761     // then we must defer async exception because live registers
  1762     // will be clobbered by the exception path. Poll return is
  1763     // ok because the call we a returning from already collides
  1764     // with exception handling registers and so there is no issue.
  1765     // (The exception handling path kills call result registers but
  1766     //  this is ok since the exception kills the result anyway).
  1768     if (is_at_poll_safepoint()) {
  1769       // if the code we are returning to has deoptimized we must defer
  1770       // the exception otherwise live registers get clobbered on the
  1771       // exception path before deoptimization is able to retrieve them.
  1772       //
  1773       RegisterMap map(this, false);
  1774       frame caller_fr = last_frame().sender(&map);
  1775       assert(caller_fr.is_compiled_frame(), "what?");
  1776       if (caller_fr.is_deoptimized_frame()) {
  1777         if (TraceExceptions) {
  1778           ResourceMark rm;
  1779           tty->print_cr("deferred async exception at compiled safepoint");
  1781         return;
  1786   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1787   if (condition == _no_async_condition) {
  1788     // Conditions have changed since has_special_runtime_exit_condition()
  1789     // was called:
  1790     // - if we were here only because of an external suspend request,
  1791     //   then that was taken care of above (or cancelled) so we are done
  1792     // - if we were here because of another async request, then it has
  1793     //   been cleared between the has_special_runtime_exit_condition()
  1794     //   and now so again we are done
  1795     return;
  1798   // Check for pending async. exception
  1799   if (_pending_async_exception != NULL) {
  1800     // Only overwrite an already pending exception, if it is not a threadDeath.
  1801     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1803       // We cannot call Exceptions::_throw(...) here because we cannot block
  1804       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1806       if (TraceExceptions) {
  1807         ResourceMark rm;
  1808         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1809         if (has_last_Java_frame() ) {
  1810           frame f = last_frame();
  1811           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1813         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1815       _pending_async_exception = NULL;
  1816       clear_has_async_exception();
  1820   if (check_unsafe_error &&
  1821       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1822     condition = _no_async_condition;  // done
  1823     switch (thread_state()) {
  1824     case _thread_in_vm:
  1826         JavaThread* THREAD = this;
  1827         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1829     case _thread_in_native:
  1831         ThreadInVMfromNative tiv(this);
  1832         JavaThread* THREAD = this;
  1833         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1835     case _thread_in_Java:
  1837         ThreadInVMfromJava tiv(this);
  1838         JavaThread* THREAD = this;
  1839         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1841     default:
  1842       ShouldNotReachHere();
  1846   assert(condition == _no_async_condition || has_pending_exception() ||
  1847          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1848          "must have handled the async condition, if no exception");
  1851 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1852   //
  1853   // Check for pending external suspend. Internal suspend requests do
  1854   // not use handle_special_runtime_exit_condition().
  1855   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1856   // thread is not the current thread. In older versions of jdbx, jdbx
  1857   // threads could call into the VM with another thread's JNIEnv so we
  1858   // can be here operating on behalf of a suspended thread (4432884).
  1859   bool do_self_suspend = is_external_suspend_with_lock();
  1860   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1861     //
  1862     // Because thread is external suspended the safepoint code will count
  1863     // thread as at a safepoint. This can be odd because we can be here
  1864     // as _thread_in_Java which would normally transition to _thread_blocked
  1865     // at a safepoint. We would like to mark the thread as _thread_blocked
  1866     // before calling java_suspend_self like all other callers of it but
  1867     // we must then observe proper safepoint protocol. (We can't leave
  1868     // _thread_blocked with a safepoint in progress). However we can be
  1869     // here as _thread_in_native_trans so we can't use a normal transition
  1870     // constructor/destructor pair because they assert on that type of
  1871     // transition. We could do something like:
  1872     //
  1873     // JavaThreadState state = thread_state();
  1874     // set_thread_state(_thread_in_vm);
  1875     // {
  1876     //   ThreadBlockInVM tbivm(this);
  1877     //   java_suspend_self()
  1878     // }
  1879     // set_thread_state(_thread_in_vm_trans);
  1880     // if (safepoint) block;
  1881     // set_thread_state(state);
  1882     //
  1883     // but that is pretty messy. Instead we just go with the way the
  1884     // code has worked before and note that this is the only path to
  1885     // java_suspend_self that doesn't put the thread in _thread_blocked
  1886     // mode.
  1888     frame_anchor()->make_walkable(this);
  1889     java_suspend_self();
  1891     // We might be here for reasons in addition to the self-suspend request
  1892     // so check for other async requests.
  1895   if (check_asyncs) {
  1896     check_and_handle_async_exceptions();
  1900 void JavaThread::send_thread_stop(oop java_throwable)  {
  1901   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1902   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1903   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1905   // Do not throw asynchronous exceptions against the compiler thread
  1906   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1907   if (is_Compiler_thread()) return;
  1909   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
  1910   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
  1911     java_lang_Thread::set_stillborn(threadObj());
  1915     // Actually throw the Throwable against the target Thread - however
  1916     // only if there is no thread death exception installed already.
  1917     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  1918       // If the topmost frame is a runtime stub, then we are calling into
  1919       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  1920       // must deoptimize the caller before continuing, as the compiled  exception handler table
  1921       // may not be valid
  1922       if (has_last_Java_frame()) {
  1923         frame f = last_frame();
  1924         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  1925           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  1926           RegisterMap reg_map(this, UseBiasedLocking);
  1927           frame compiled_frame = f.sender(&reg_map);
  1928           if (compiled_frame.can_be_deoptimized()) {
  1929             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  1934       // Set async. pending exception in thread.
  1935       set_pending_async_exception(java_throwable);
  1937       if (TraceExceptions) {
  1938        ResourceMark rm;
  1939        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1941       // for AbortVMOnException flag
  1942       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  1947   // Interrupt thread so it will wake up from a potential wait()
  1948   Thread::interrupt(this);
  1951 // External suspension mechanism.
  1952 //
  1953 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  1954 // to any VM_locks and it is at a transition
  1955 // Self-suspension will happen on the transition out of the vm.
  1956 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  1957 //
  1958 // Guarantees on return:
  1959 //   + Target thread will not execute any new bytecode (that's why we need to
  1960 //     force a safepoint)
  1961 //   + Target thread will not enter any new monitors
  1962 //
  1963 void JavaThread::java_suspend() {
  1964   { MutexLocker mu(Threads_lock);
  1965     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  1966        return;
  1970   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1971     if (!is_external_suspend()) {
  1972       // a racing resume has cancelled us; bail out now
  1973       return;
  1976     // suspend is done
  1977     uint32_t debug_bits = 0;
  1978     // Warning: is_ext_suspend_completed() may temporarily drop the
  1979     // SR_lock to allow the thread to reach a stable thread state if
  1980     // it is currently in a transient thread state.
  1981     if (is_ext_suspend_completed(false /* !called_by_wait */,
  1982                                  SuspendRetryDelay, &debug_bits) ) {
  1983       return;
  1987   VM_ForceSafepoint vm_suspend;
  1988   VMThread::execute(&vm_suspend);
  1991 // Part II of external suspension.
  1992 // A JavaThread self suspends when it detects a pending external suspend
  1993 // request. This is usually on transitions. It is also done in places
  1994 // where continuing to the next transition would surprise the caller,
  1995 // e.g., monitor entry.
  1996 //
  1997 // Returns the number of times that the thread self-suspended.
  1998 //
  1999 // Note: DO NOT call java_suspend_self() when you just want to block current
  2000 //       thread. java_suspend_self() is the second stage of cooperative
  2001 //       suspension for external suspend requests and should only be used
  2002 //       to complete an external suspend request.
  2003 //
  2004 int JavaThread::java_suspend_self() {
  2005   int ret = 0;
  2007   // we are in the process of exiting so don't suspend
  2008   if (is_exiting()) {
  2009      clear_external_suspend();
  2010      return ret;
  2013   assert(_anchor.walkable() ||
  2014     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  2015     "must have walkable stack");
  2017   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2019   assert(!this->is_ext_suspended(),
  2020     "a thread trying to self-suspend should not already be suspended");
  2022   if (this->is_suspend_equivalent()) {
  2023     // If we are self-suspending as a result of the lifting of a
  2024     // suspend equivalent condition, then the suspend_equivalent
  2025     // flag is not cleared until we set the ext_suspended flag so
  2026     // that wait_for_ext_suspend_completion() returns consistent
  2027     // results.
  2028     this->clear_suspend_equivalent();
  2031   // A racing resume may have cancelled us before we grabbed SR_lock
  2032   // above. Or another external suspend request could be waiting for us
  2033   // by the time we return from SR_lock()->wait(). The thread
  2034   // that requested the suspension may already be trying to walk our
  2035   // stack and if we return now, we can change the stack out from under
  2036   // it. This would be a "bad thing (TM)" and cause the stack walker
  2037   // to crash. We stay self-suspended until there are no more pending
  2038   // external suspend requests.
  2039   while (is_external_suspend()) {
  2040     ret++;
  2041     this->set_ext_suspended();
  2043     // _ext_suspended flag is cleared by java_resume()
  2044     while (is_ext_suspended()) {
  2045       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  2049   return ret;
  2052 #ifdef ASSERT
  2053 // verify the JavaThread has not yet been published in the Threads::list, and
  2054 // hence doesn't need protection from concurrent access at this stage
  2055 void JavaThread::verify_not_published() {
  2056   if (!Threads_lock->owned_by_self()) {
  2057    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2058    assert( !Threads::includes(this),
  2059            "java thread shouldn't have been published yet!");
  2061   else {
  2062    assert( !Threads::includes(this),
  2063            "java thread shouldn't have been published yet!");
  2066 #endif
  2068 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2069 // progress or when _suspend_flags is non-zero.
  2070 // Current thread needs to self-suspend if there is a suspend request and/or
  2071 // block if a safepoint is in progress.
  2072 // Async exception ISN'T checked.
  2073 // Note only the ThreadInVMfromNative transition can call this function
  2074 // directly and when thread state is _thread_in_native_trans
  2075 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2076   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2078   JavaThread *curJT = JavaThread::current();
  2079   bool do_self_suspend = thread->is_external_suspend();
  2081   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2083   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2084   // thread is not the current thread. In older versions of jdbx, jdbx
  2085   // threads could call into the VM with another thread's JNIEnv so we
  2086   // can be here operating on behalf of a suspended thread (4432884).
  2087   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2088     JavaThreadState state = thread->thread_state();
  2090     // We mark this thread_blocked state as a suspend-equivalent so
  2091     // that a caller to is_ext_suspend_completed() won't be confused.
  2092     // The suspend-equivalent state is cleared by java_suspend_self().
  2093     thread->set_suspend_equivalent();
  2095     // If the safepoint code sees the _thread_in_native_trans state, it will
  2096     // wait until the thread changes to other thread state. There is no
  2097     // guarantee on how soon we can obtain the SR_lock and complete the
  2098     // self-suspend request. It would be a bad idea to let safepoint wait for
  2099     // too long. Temporarily change the state to _thread_blocked to
  2100     // let the VM thread know that this thread is ready for GC. The problem
  2101     // of changing thread state is that safepoint could happen just after
  2102     // java_suspend_self() returns after being resumed, and VM thread will
  2103     // see the _thread_blocked state. We must check for safepoint
  2104     // after restoring the state and make sure we won't leave while a safepoint
  2105     // is in progress.
  2106     thread->set_thread_state(_thread_blocked);
  2107     thread->java_suspend_self();
  2108     thread->set_thread_state(state);
  2109     // Make sure new state is seen by VM thread
  2110     if (os::is_MP()) {
  2111       if (UseMembar) {
  2112         // Force a fence between the write above and read below
  2113         OrderAccess::fence();
  2114       } else {
  2115         // Must use this rather than serialization page in particular on Windows
  2116         InterfaceSupport::serialize_memory(thread);
  2121   if (SafepointSynchronize::do_call_back()) {
  2122     // If we are safepointing, then block the caller which may not be
  2123     // the same as the target thread (see above).
  2124     SafepointSynchronize::block(curJT);
  2127   if (thread->is_deopt_suspend()) {
  2128     thread->clear_deopt_suspend();
  2129     RegisterMap map(thread, false);
  2130     frame f = thread->last_frame();
  2131     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2132       f = f.sender(&map);
  2134     if (f.id() == thread->must_deopt_id()) {
  2135       thread->clear_must_deopt_id();
  2136       f.deoptimize(thread);
  2137     } else {
  2138       fatal("missed deoptimization!");
  2143 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2144 // progress or when _suspend_flags is non-zero.
  2145 // Current thread needs to self-suspend if there is a suspend request and/or
  2146 // block if a safepoint is in progress.
  2147 // Also check for pending async exception (not including unsafe access error).
  2148 // Note only the native==>VM/Java barriers can call this function and when
  2149 // thread state is _thread_in_native_trans.
  2150 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2151   check_safepoint_and_suspend_for_native_trans(thread);
  2153   if (thread->has_async_exception()) {
  2154     // We are in _thread_in_native_trans state, don't handle unsafe
  2155     // access error since that may block.
  2156     thread->check_and_handle_async_exceptions(false);
  2160 // We need to guarantee the Threads_lock here, since resumes are not
  2161 // allowed during safepoint synchronization
  2162 // Can only resume from an external suspension
  2163 void JavaThread::java_resume() {
  2164   assert_locked_or_safepoint(Threads_lock);
  2166   // Sanity check: thread is gone, has started exiting or the thread
  2167   // was not externally suspended.
  2168   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2169     return;
  2172   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2174   clear_external_suspend();
  2176   if (is_ext_suspended()) {
  2177     clear_ext_suspended();
  2178     SR_lock()->notify_all();
  2182 void JavaThread::create_stack_guard_pages() {
  2183   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2184   address low_addr = stack_base() - stack_size();
  2185   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2187   int allocate = os::allocate_stack_guard_pages();
  2188   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2190   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
  2191     warning("Attempt to allocate stack guard pages failed.");
  2192     return;
  2195   if (os::guard_memory((char *) low_addr, len)) {
  2196     _stack_guard_state = stack_guard_enabled;
  2197   } else {
  2198     warning("Attempt to protect stack guard pages failed.");
  2199     if (os::uncommit_memory((char *) low_addr, len)) {
  2200       warning("Attempt to deallocate stack guard pages failed.");
  2205 void JavaThread::remove_stack_guard_pages() {
  2206   if (_stack_guard_state == stack_guard_unused) return;
  2207   address low_addr = stack_base() - stack_size();
  2208   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2210   if (os::allocate_stack_guard_pages()) {
  2211     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
  2212       _stack_guard_state = stack_guard_unused;
  2213     } else {
  2214       warning("Attempt to deallocate stack guard pages failed.");
  2216   } else {
  2217     if (_stack_guard_state == stack_guard_unused) return;
  2218     if (os::unguard_memory((char *) low_addr, len)) {
  2219       _stack_guard_state = stack_guard_unused;
  2220     } else {
  2221         warning("Attempt to unprotect stack guard pages failed.");
  2226 void JavaThread::enable_stack_yellow_zone() {
  2227   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2228   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2230   // The base notation is from the stacks point of view, growing downward.
  2231   // We need to adjust it to work correctly with guard_memory()
  2232   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2234   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2235   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2237   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2238     _stack_guard_state = stack_guard_enabled;
  2239   } else {
  2240     warning("Attempt to guard stack yellow zone failed.");
  2242   enable_register_stack_guard();
  2245 void JavaThread::disable_stack_yellow_zone() {
  2246   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2247   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2249   // Simply return if called for a thread that does not use guard pages.
  2250   if (_stack_guard_state == stack_guard_unused) return;
  2252   // The base notation is from the stacks point of view, growing downward.
  2253   // We need to adjust it to work correctly with guard_memory()
  2254   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2256   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2257     _stack_guard_state = stack_guard_yellow_disabled;
  2258   } else {
  2259     warning("Attempt to unguard stack yellow zone failed.");
  2261   disable_register_stack_guard();
  2264 void JavaThread::enable_stack_red_zone() {
  2265   // The base notation is from the stacks point of view, growing downward.
  2266   // We need to adjust it to work correctly with guard_memory()
  2267   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2268   address base = stack_red_zone_base() - stack_red_zone_size();
  2270   guarantee(base < stack_base(),"Error calculating stack red zone");
  2271   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2273   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2274     warning("Attempt to guard stack red zone failed.");
  2278 void JavaThread::disable_stack_red_zone() {
  2279   // The base notation is from the stacks point of view, growing downward.
  2280   // We need to adjust it to work correctly with guard_memory()
  2281   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2282   address base = stack_red_zone_base() - stack_red_zone_size();
  2283   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2284     warning("Attempt to unguard stack red zone failed.");
  2288 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2289   // ignore is there is no stack
  2290   if (!has_last_Java_frame()) return;
  2291   // traverse the stack frames. Starts from top frame.
  2292   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2293     frame* fr = fst.current();
  2294     f(fr, fst.register_map());
  2299 #ifndef PRODUCT
  2300 // Deoptimization
  2301 // Function for testing deoptimization
  2302 void JavaThread::deoptimize() {
  2303   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2304   StackFrameStream fst(this, UseBiasedLocking);
  2305   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2306   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2307   // Iterate over all frames in the thread and deoptimize
  2308   for(; !fst.is_done(); fst.next()) {
  2309     if(fst.current()->can_be_deoptimized()) {
  2311       if (only_at) {
  2312         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2313         // consists of comma or carriage return separated numbers so
  2314         // search for the current bci in that string.
  2315         address pc = fst.current()->pc();
  2316         nmethod* nm =  (nmethod*) fst.current()->cb();
  2317         ScopeDesc* sd = nm->scope_desc_at( pc);
  2318         char buffer[8];
  2319         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2320         size_t len = strlen(buffer);
  2321         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2322         while (found != NULL) {
  2323           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2324               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2325             // Check that the bci found is bracketed by terminators.
  2326             break;
  2328           found = strstr(found + 1, buffer);
  2330         if (!found) {
  2331           continue;
  2335       if (DebugDeoptimization && !deopt) {
  2336         deopt = true; // One-time only print before deopt
  2337         tty->print_cr("[BEFORE Deoptimization]");
  2338         trace_frames();
  2339         trace_stack();
  2341       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2345   if (DebugDeoptimization && deopt) {
  2346     tty->print_cr("[AFTER Deoptimization]");
  2347     trace_frames();
  2352 // Make zombies
  2353 void JavaThread::make_zombies() {
  2354   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2355     if (fst.current()->can_be_deoptimized()) {
  2356       // it is a Java nmethod
  2357       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2358       nm->make_not_entrant();
  2362 #endif // PRODUCT
  2365 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2366   if (!has_last_Java_frame()) return;
  2367   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2368   StackFrameStream fst(this, UseBiasedLocking);
  2369   for(; !fst.is_done(); fst.next()) {
  2370     if (fst.current()->should_be_deoptimized()) {
  2371       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2377 // GC support
  2378 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2380 void JavaThread::gc_epilogue() {
  2381   frames_do(frame_gc_epilogue);
  2385 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2387 void JavaThread::gc_prologue() {
  2388   frames_do(frame_gc_prologue);
  2391 // If the caller is a NamedThread, then remember, in the current scope,
  2392 // the given JavaThread in its _processed_thread field.
  2393 class RememberProcessedThread: public StackObj {
  2394   NamedThread* _cur_thr;
  2395 public:
  2396   RememberProcessedThread(JavaThread* jthr) {
  2397     Thread* thread = Thread::current();
  2398     if (thread->is_Named_thread()) {
  2399       _cur_thr = (NamedThread *)thread;
  2400       _cur_thr->set_processed_thread(jthr);
  2401     } else {
  2402       _cur_thr = NULL;
  2406   ~RememberProcessedThread() {
  2407     if (_cur_thr) {
  2408       _cur_thr->set_processed_thread(NULL);
  2411 };
  2413 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2414   // Verify that the deferred card marks have been flushed.
  2415   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
  2417   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2418   // since there may be more than one thread using each ThreadProfiler.
  2420   // Traverse the GCHandles
  2421   Thread::oops_do(f, cf);
  2423   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2424           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2426   if (has_last_Java_frame()) {
  2427     // Record JavaThread to GC thread
  2428     RememberProcessedThread rpt(this);
  2430     // Traverse the privileged stack
  2431     if (_privileged_stack_top != NULL) {
  2432       _privileged_stack_top->oops_do(f);
  2435     // traverse the registered growable array
  2436     if (_array_for_gc != NULL) {
  2437       for (int index = 0; index < _array_for_gc->length(); index++) {
  2438         f->do_oop(_array_for_gc->adr_at(index));
  2442     // Traverse the monitor chunks
  2443     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2444       chunk->oops_do(f);
  2447     // Traverse the execution stack
  2448     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2449       fst.current()->oops_do(f, cf, fst.register_map());
  2453   // callee_target is never live across a gc point so NULL it here should
  2454   // it still contain a methdOop.
  2456   set_callee_target(NULL);
  2458   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2459   // If we have deferred set_locals there might be oops waiting to be
  2460   // written
  2461   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2462   if (list != NULL) {
  2463     for (int i = 0; i < list->length(); i++) {
  2464       list->at(i)->oops_do(f);
  2468   // Traverse instance variables at the end since the GC may be moving things
  2469   // around using this function
  2470   f->do_oop((oop*) &_threadObj);
  2471   f->do_oop((oop*) &_vm_result);
  2472   f->do_oop((oop*) &_vm_result_2);
  2473   f->do_oop((oop*) &_exception_oop);
  2474   f->do_oop((oop*) &_pending_async_exception);
  2476   if (jvmti_thread_state() != NULL) {
  2477     jvmti_thread_state()->oops_do(f);
  2481 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2482   Thread::nmethods_do(cf);  // (super method is a no-op)
  2484   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2485           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2487   if (has_last_Java_frame()) {
  2488     // Traverse the execution stack
  2489     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2490       fst.current()->nmethods_do(cf);
  2495 // Printing
  2496 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2497   switch (_thread_state) {
  2498   case _thread_uninitialized:     return "_thread_uninitialized";
  2499   case _thread_new:               return "_thread_new";
  2500   case _thread_new_trans:         return "_thread_new_trans";
  2501   case _thread_in_native:         return "_thread_in_native";
  2502   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2503   case _thread_in_vm:             return "_thread_in_vm";
  2504   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2505   case _thread_in_Java:           return "_thread_in_Java";
  2506   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2507   case _thread_blocked:           return "_thread_blocked";
  2508   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2509   default:                        return "unknown thread state";
  2513 #ifndef PRODUCT
  2514 void JavaThread::print_thread_state_on(outputStream *st) const {
  2515   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2516 };
  2517 void JavaThread::print_thread_state() const {
  2518   print_thread_state_on(tty);
  2519 };
  2520 #endif // PRODUCT
  2522 // Called by Threads::print() for VM_PrintThreads operation
  2523 void JavaThread::print_on(outputStream *st) const {
  2524   st->print("\"%s\" ", get_thread_name());
  2525   oop thread_oop = threadObj();
  2526   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2527   Thread::print_on(st);
  2528   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2529   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2530   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2531     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2533 #ifndef PRODUCT
  2534   print_thread_state_on(st);
  2535   _safepoint_state->print_on(st);
  2536 #endif // PRODUCT
  2539 // Called by fatal error handler. The difference between this and
  2540 // JavaThread::print() is that we can't grab lock or allocate memory.
  2541 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2542   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2543   oop thread_obj = threadObj();
  2544   if (thread_obj != NULL) {
  2545      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2547   st->print(" [");
  2548   st->print("%s", _get_thread_state_name(_thread_state));
  2549   if (osthread()) {
  2550     st->print(", id=%d", osthread()->thread_id());
  2552   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2553             _stack_base - _stack_size, _stack_base);
  2554   st->print("]");
  2555   return;
  2558 // Verification
  2560 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2562 void JavaThread::verify() {
  2563   // Verify oops in the thread.
  2564   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2566   // Verify the stack frames.
  2567   frames_do(frame_verify);
  2570 // CR 6300358 (sub-CR 2137150)
  2571 // Most callers of this method assume that it can't return NULL but a
  2572 // thread may not have a name whilst it is in the process of attaching to
  2573 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2574 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2575 // if vm exit occurs during initialization). These cases can all be accounted
  2576 // for such that this method never returns NULL.
  2577 const char* JavaThread::get_thread_name() const {
  2578 #ifdef ASSERT
  2579   // early safepoints can hit while current thread does not yet have TLS
  2580   if (!SafepointSynchronize::is_at_safepoint()) {
  2581     Thread *cur = Thread::current();
  2582     if (!(cur->is_Java_thread() && cur == this)) {
  2583       // Current JavaThreads are allowed to get their own name without
  2584       // the Threads_lock.
  2585       assert_locked_or_safepoint(Threads_lock);
  2588 #endif // ASSERT
  2589     return get_thread_name_string();
  2592 // Returns a non-NULL representation of this thread's name, or a suitable
  2593 // descriptive string if there is no set name
  2594 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2595   const char* name_str;
  2596   oop thread_obj = threadObj();
  2597   if (thread_obj != NULL) {
  2598     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2599     if (name != NULL) {
  2600       if (buf == NULL) {
  2601         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2603       else {
  2604         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2607     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2608       name_str = "<no-name - thread is attaching>";
  2610     else {
  2611       name_str = Thread::name();
  2614   else {
  2615     name_str = Thread::name();
  2617   assert(name_str != NULL, "unexpected NULL thread name");
  2618   return name_str;
  2622 const char* JavaThread::get_threadgroup_name() const {
  2623   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2624   oop thread_obj = threadObj();
  2625   if (thread_obj != NULL) {
  2626     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2627     if (thread_group != NULL) {
  2628       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2629       // ThreadGroup.name can be null
  2630       if (name != NULL) {
  2631         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2632         return str;
  2636   return NULL;
  2639 const char* JavaThread::get_parent_name() const {
  2640   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2641   oop thread_obj = threadObj();
  2642   if (thread_obj != NULL) {
  2643     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2644     if (thread_group != NULL) {
  2645       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2646       if (parent != NULL) {
  2647         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2648         // ThreadGroup.name can be null
  2649         if (name != NULL) {
  2650           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2651           return str;
  2656   return NULL;
  2659 ThreadPriority JavaThread::java_priority() const {
  2660   oop thr_oop = threadObj();
  2661   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2662   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2663   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2664   return priority;
  2667 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2669   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2670   // Link Java Thread object <-> C++ Thread
  2672   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2673   // and put it into a new Handle.  The Handle "thread_oop" can then
  2674   // be used to pass the C++ thread object to other methods.
  2676   // Set the Java level thread object (jthread) field of the
  2677   // new thread (a JavaThread *) to C++ thread object using the
  2678   // "thread_oop" handle.
  2680   // Set the thread field (a JavaThread *) of the
  2681   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2683   Handle thread_oop(Thread::current(),
  2684                     JNIHandles::resolve_non_null(jni_thread));
  2685   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2686     "must be initialized");
  2687   set_threadObj(thread_oop());
  2688   java_lang_Thread::set_thread(thread_oop(), this);
  2690   if (prio == NoPriority) {
  2691     prio = java_lang_Thread::priority(thread_oop());
  2692     assert(prio != NoPriority, "A valid priority should be present");
  2695   // Push the Java priority down to the native thread; needs Threads_lock
  2696   Thread::set_priority(this, prio);
  2698   // Add the new thread to the Threads list and set it in motion.
  2699   // We must have threads lock in order to call Threads::add.
  2700   // It is crucial that we do not block before the thread is
  2701   // added to the Threads list for if a GC happens, then the java_thread oop
  2702   // will not be visited by GC.
  2703   Threads::add(this);
  2706 oop JavaThread::current_park_blocker() {
  2707   // Support for JSR-166 locks
  2708   oop thread_oop = threadObj();
  2709   if (thread_oop != NULL &&
  2710       JDK_Version::current().supports_thread_park_blocker()) {
  2711     return java_lang_Thread::park_blocker(thread_oop);
  2713   return NULL;
  2717 void JavaThread::print_stack_on(outputStream* st) {
  2718   if (!has_last_Java_frame()) return;
  2719   ResourceMark rm;
  2720   HandleMark   hm;
  2722   RegisterMap reg_map(this);
  2723   vframe* start_vf = last_java_vframe(&reg_map);
  2724   int count = 0;
  2725   for (vframe* f = start_vf; f; f = f->sender() ) {
  2726     if (f->is_java_frame()) {
  2727       javaVFrame* jvf = javaVFrame::cast(f);
  2728       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2730       // Print out lock information
  2731       if (JavaMonitorsInStackTrace) {
  2732         jvf->print_lock_info_on(st, count);
  2734     } else {
  2735       // Ignore non-Java frames
  2738     // Bail-out case for too deep stacks
  2739     count++;
  2740     if (MaxJavaStackTraceDepth == count) return;
  2745 // JVMTI PopFrame support
  2746 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2747   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2748   if (in_bytes(size_in_bytes) != 0) {
  2749     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2750     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2751     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2755 void* JavaThread::popframe_preserved_args() {
  2756   return _popframe_preserved_args;
  2759 ByteSize JavaThread::popframe_preserved_args_size() {
  2760   return in_ByteSize(_popframe_preserved_args_size);
  2763 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2764   int sz = in_bytes(popframe_preserved_args_size());
  2765   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2766   return in_WordSize(sz / wordSize);
  2769 void JavaThread::popframe_free_preserved_args() {
  2770   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2771   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2772   _popframe_preserved_args = NULL;
  2773   _popframe_preserved_args_size = 0;
  2776 #ifndef PRODUCT
  2778 void JavaThread::trace_frames() {
  2779   tty->print_cr("[Describe stack]");
  2780   int frame_no = 1;
  2781   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2782     tty->print("  %d. ", frame_no++);
  2783     fst.current()->print_value_on(tty,this);
  2784     tty->cr();
  2789 void JavaThread::trace_stack_from(vframe* start_vf) {
  2790   ResourceMark rm;
  2791   int vframe_no = 1;
  2792   for (vframe* f = start_vf; f; f = f->sender() ) {
  2793     if (f->is_java_frame()) {
  2794       javaVFrame::cast(f)->print_activation(vframe_no++);
  2795     } else {
  2796       f->print();
  2798     if (vframe_no > StackPrintLimit) {
  2799       tty->print_cr("...<more frames>...");
  2800       return;
  2806 void JavaThread::trace_stack() {
  2807   if (!has_last_Java_frame()) return;
  2808   ResourceMark rm;
  2809   HandleMark   hm;
  2810   RegisterMap reg_map(this);
  2811   trace_stack_from(last_java_vframe(&reg_map));
  2815 #endif // PRODUCT
  2818 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2819   assert(reg_map != NULL, "a map must be given");
  2820   frame f = last_frame();
  2821   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2822     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2824   return NULL;
  2828 klassOop JavaThread::security_get_caller_class(int depth) {
  2829   vframeStream vfst(this);
  2830   vfst.security_get_caller_frame(depth);
  2831   if (!vfst.at_end()) {
  2832     return vfst.method()->method_holder();
  2834   return NULL;
  2837 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2838   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2839   CompileBroker::compiler_thread_loop();
  2842 // Create a CompilerThread
  2843 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2844 : JavaThread(&compiler_thread_entry) {
  2845   _env   = NULL;
  2846   _log   = NULL;
  2847   _task  = NULL;
  2848   _queue = queue;
  2849   _counters = counters;
  2850   _buffer_blob = NULL;
  2852 #ifndef PRODUCT
  2853   _ideal_graph_printer = NULL;
  2854 #endif
  2858 // ======= Threads ========
  2860 // The Threads class links together all active threads, and provides
  2861 // operations over all threads.  It is protected by its own Mutex
  2862 // lock, which is also used in other contexts to protect thread
  2863 // operations from having the thread being operated on from exiting
  2864 // and going away unexpectedly (e.g., safepoint synchronization)
  2866 JavaThread* Threads::_thread_list = NULL;
  2867 int         Threads::_number_of_threads = 0;
  2868 int         Threads::_number_of_non_daemon_threads = 0;
  2869 int         Threads::_return_code = 0;
  2870 size_t      JavaThread::_stack_size_at_create = 0;
  2872 // All JavaThreads
  2873 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2875 void os_stream();
  2877 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2878 void Threads::threads_do(ThreadClosure* tc) {
  2879   assert_locked_or_safepoint(Threads_lock);
  2880   // ALL_JAVA_THREADS iterates through all JavaThreads
  2881   ALL_JAVA_THREADS(p) {
  2882     tc->do_thread(p);
  2884   // Someday we could have a table or list of all non-JavaThreads.
  2885   // For now, just manually iterate through them.
  2886   tc->do_thread(VMThread::vm_thread());
  2887   Universe::heap()->gc_threads_do(tc);
  2888   WatcherThread *wt = WatcherThread::watcher_thread();
  2889   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2890   // the data for WatcherThread is still valid upon being examined. However,
  2891   // considering that WatchThread terminates when the VM is on the way to
  2892   // exit at safepoint, the chance of the above is extremely small. The right
  2893   // way to prevent termination of WatcherThread would be to acquire
  2894   // Terminator_lock, but we can't do that without violating the lock rank
  2895   // checking in some cases.
  2896   if (wt != NULL)
  2897     tc->do_thread(wt);
  2899   // If CompilerThreads ever become non-JavaThreads, add them here
  2902 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2904   extern void JDK_Version_init();
  2906   // Check version
  2907   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2909   // Initialize the output stream module
  2910   ostream_init();
  2912   // Process java launcher properties.
  2913   Arguments::process_sun_java_launcher_properties(args);
  2915   // Initialize the os module before using TLS
  2916   os::init();
  2918   // Initialize system properties.
  2919   Arguments::init_system_properties();
  2921   // So that JDK version can be used as a discrimintor when parsing arguments
  2922   JDK_Version_init();
  2924   // Update/Initialize System properties after JDK version number is known
  2925   Arguments::init_version_specific_system_properties();
  2927   // Parse arguments
  2928   jint parse_result = Arguments::parse(args);
  2929   if (parse_result != JNI_OK) return parse_result;
  2931   if (PauseAtStartup) {
  2932     os::pause();
  2935   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  2937   // Record VM creation timing statistics
  2938   TraceVmCreationTime create_vm_timer;
  2939   create_vm_timer.start();
  2941   // Timing (must come after argument parsing)
  2942   TraceTime timer("Create VM", TraceStartupTime);
  2944   // Initialize the os module after parsing the args
  2945   jint os_init_2_result = os::init_2();
  2946   if (os_init_2_result != JNI_OK) return os_init_2_result;
  2948   // Initialize output stream logging
  2949   ostream_init_log();
  2951   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  2952   // Must be before create_vm_init_agents()
  2953   if (Arguments::init_libraries_at_startup()) {
  2954     convert_vm_init_libraries_to_agents();
  2957   // Launch -agentlib/-agentpath and converted -Xrun agents
  2958   if (Arguments::init_agents_at_startup()) {
  2959     create_vm_init_agents();
  2962   // Initialize Threads state
  2963   _thread_list = NULL;
  2964   _number_of_threads = 0;
  2965   _number_of_non_daemon_threads = 0;
  2967   // Initialize TLS
  2968   ThreadLocalStorage::init();
  2970   // Initialize global data structures and create system classes in heap
  2971   vm_init_globals();
  2973   // Attach the main thread to this os thread
  2974   JavaThread* main_thread = new JavaThread();
  2975   main_thread->set_thread_state(_thread_in_vm);
  2976   // must do this before set_active_handles and initialize_thread_local_storage
  2977   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  2978   // change the stack size recorded here to one based on the java thread
  2979   // stacksize. This adjusted size is what is used to figure the placement
  2980   // of the guard pages.
  2981   main_thread->record_stack_base_and_size();
  2982   main_thread->initialize_thread_local_storage();
  2984   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  2986   if (!main_thread->set_as_starting_thread()) {
  2987     vm_shutdown_during_initialization(
  2988       "Failed necessary internal allocation. Out of swap space");
  2989     delete main_thread;
  2990     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2991     return JNI_ENOMEM;
  2994   // Enable guard page *after* os::create_main_thread(), otherwise it would
  2995   // crash Linux VM, see notes in os_linux.cpp.
  2996   main_thread->create_stack_guard_pages();
  2998   // Initialize Java-Level synchronization subsystem
  2999   ObjectMonitor::Initialize() ;
  3001   // Initialize global modules
  3002   jint status = init_globals();
  3003   if (status != JNI_OK) {
  3004     delete main_thread;
  3005     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  3006     return status;
  3009   // Should be done after the heap is fully created
  3010   main_thread->cache_global_variables();
  3012   HandleMark hm;
  3014   { MutexLocker mu(Threads_lock);
  3015     Threads::add(main_thread);
  3018   // Any JVMTI raw monitors entered in onload will transition into
  3019   // real raw monitor. VM is setup enough here for raw monitor enter.
  3020   JvmtiExport::transition_pending_onload_raw_monitors();
  3022   if (VerifyBeforeGC &&
  3023       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  3024     Universe::heap()->prepare_for_verify();
  3025     Universe::verify();   // make sure we're starting with a clean slate
  3028   // Create the VMThread
  3029   { TraceTime timer("Start VMThread", TraceStartupTime);
  3030     VMThread::create();
  3031     Thread* vmthread = VMThread::vm_thread();
  3033     if (!os::create_thread(vmthread, os::vm_thread))
  3034       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  3036     // Wait for the VM thread to become ready, and VMThread::run to initialize
  3037     // Monitors can have spurious returns, must always check another state flag
  3039       MutexLocker ml(Notify_lock);
  3040       os::start_thread(vmthread);
  3041       while (vmthread->active_handles() == NULL) {
  3042         Notify_lock->wait();
  3047   assert (Universe::is_fully_initialized(), "not initialized");
  3048   EXCEPTION_MARK;
  3050   // At this point, the Universe is initialized, but we have not executed
  3051   // any byte code.  Now is a good time (the only time) to dump out the
  3052   // internal state of the JVM for sharing.
  3054   if (DumpSharedSpaces) {
  3055     Universe::heap()->preload_and_dump(CHECK_0);
  3056     ShouldNotReachHere();
  3059   // Always call even when there are not JVMTI environments yet, since environments
  3060   // may be attached late and JVMTI must track phases of VM execution
  3061   JvmtiExport::enter_start_phase();
  3063   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3064   JvmtiExport::post_vm_start();
  3067     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3069     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3070       create_vm_init_libraries();
  3073     if (InitializeJavaLangString) {
  3074       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
  3075     } else {
  3076       warning("java.lang.String not initialized");
  3079     if (AggressiveOpts) {
  3081         // Forcibly initialize java/util/HashMap and mutate the private
  3082         // static final "frontCacheEnabled" field before we start creating instances
  3083 #ifdef ASSERT
  3084         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3085         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3086 #endif
  3087         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3088         KlassHandle k = KlassHandle(THREAD, k_o);
  3089         guarantee(k.not_null(), "Must find java/util/HashMap");
  3090         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3091         ik->initialize(CHECK_0);
  3092         fieldDescriptor fd;
  3093         // Possible we might not find this field; if so, don't break
  3094         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3095           k()->bool_field_put(fd.offset(), true);
  3099       if (UseStringCache) {
  3100         // Forcibly initialize java/lang/StringValue and mutate the private
  3101         // static final "stringCacheEnabled" field before we start creating instances
  3102         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3103         // Possible that StringValue isn't present: if so, silently don't break
  3104         if (k_o != NULL) {
  3105           KlassHandle k = KlassHandle(THREAD, k_o);
  3106           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3107           ik->initialize(CHECK_0);
  3108           fieldDescriptor fd;
  3109           // Possible we might not find this field: if so, silently don't break
  3110           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3111             k()->bool_field_put(fd.offset(), true);
  3117     // Initialize java_lang.System (needed before creating the thread)
  3118     if (InitializeJavaLangSystem) {
  3119       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
  3120       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
  3121       Handle thread_group = create_initial_thread_group(CHECK_0);
  3122       Universe::set_main_thread_group(thread_group());
  3123       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
  3124       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3125       main_thread->set_threadObj(thread_object);
  3126       // Set thread status to running since main thread has
  3127       // been started and running.
  3128       java_lang_Thread::set_thread_status(thread_object,
  3129                                           java_lang_Thread::RUNNABLE);
  3131       // The VM preresolve methods to these classes. Make sure that get initialized
  3132       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
  3133       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
  3134       // The VM creates & returns objects of this class. Make sure it's initialized.
  3135       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
  3136       call_initializeSystemClass(CHECK_0);
  3137     } else {
  3138       warning("java.lang.System not initialized");
  3141     // an instance of OutOfMemory exception has been allocated earlier
  3142     if (InitializeJavaLangExceptionsErrors) {
  3143       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
  3144       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
  3145       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
  3146       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
  3147       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
  3148       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
  3149       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
  3150     } else {
  3151       warning("java.lang.OutOfMemoryError has not been initialized");
  3152       warning("java.lang.NullPointerException has not been initialized");
  3153       warning("java.lang.ClassCastException has not been initialized");
  3154       warning("java.lang.ArrayStoreException has not been initialized");
  3155       warning("java.lang.ArithmeticException has not been initialized");
  3156       warning("java.lang.StackOverflowError has not been initialized");
  3159     if (EnableInvokeDynamic) {
  3160       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
  3161       // the compiler.
  3162       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
  3166   // See        : bugid 4211085.
  3167   // Background : the static initializer of java.lang.Compiler tries to read
  3168   //              property"java.compiler" and read & write property "java.vm.info".
  3169   //              When a security manager is installed through the command line
  3170   //              option "-Djava.security.manager", the above properties are not
  3171   //              readable and the static initializer for java.lang.Compiler fails
  3172   //              resulting in a NoClassDefFoundError.  This can happen in any
  3173   //              user code which calls methods in java.lang.Compiler.
  3174   // Hack :       the hack is to pre-load and initialize this class, so that only
  3175   //              system domains are on the stack when the properties are read.
  3176   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3177   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3178   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3179   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3180   //              Once that is done, we should remove this hack.
  3181   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
  3183   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3184   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3185   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3186   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3187   // This should also be taken out as soon as 4211383 gets fixed.
  3188   reset_vm_info_property(CHECK_0);
  3190   quicken_jni_functions();
  3192   // Set flag that basic initialization has completed. Used by exceptions and various
  3193   // debug stuff, that does not work until all basic classes have been initialized.
  3194   set_init_completed();
  3196   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3198   // record VM initialization completion time
  3199   Management::record_vm_init_completed();
  3201   // Compute system loader. Note that this has to occur after set_init_completed, since
  3202   // valid exceptions may be thrown in the process.
  3203   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3204   // set_init_completed has just been called, causing exceptions not to be shortcut
  3205   // anymore. We call vm_exit_during_initialization directly instead.
  3206   SystemDictionary::compute_java_system_loader(THREAD);
  3207   if (HAS_PENDING_EXCEPTION) {
  3208     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3211 #ifdef KERNEL
  3212   if (JDK_Version::is_gte_jdk17x_version()) {
  3213     set_jkernel_boot_classloader_hook(THREAD);
  3215 #endif // KERNEL
  3217 #ifndef SERIALGC
  3218   // Support for ConcurrentMarkSweep. This should be cleaned up
  3219   // and better encapsulated. The ugly nested if test would go away
  3220   // once things are properly refactored. XXX YSR
  3221   if (UseConcMarkSweepGC || UseG1GC) {
  3222     if (UseConcMarkSweepGC) {
  3223       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3224     } else {
  3225       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3227     if (HAS_PENDING_EXCEPTION) {
  3228       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3231 #endif // SERIALGC
  3233   // Always call even when there are not JVMTI environments yet, since environments
  3234   // may be attached late and JVMTI must track phases of VM execution
  3235   JvmtiExport::enter_live_phase();
  3237   // Signal Dispatcher needs to be started before VMInit event is posted
  3238   os::signal_init();
  3240   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3241   if (!DisableAttachMechanism) {
  3242     if (StartAttachListener || AttachListener::init_at_startup()) {
  3243       AttachListener::init();
  3247   // Launch -Xrun agents
  3248   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3249   // back-end can launch with -Xdebug -Xrunjdwp.
  3250   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3251     create_vm_init_libraries();
  3254   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3255   JvmtiExport::post_vm_initialized();
  3257   Chunk::start_chunk_pool_cleaner_task();
  3259   // initialize compiler(s)
  3260   CompileBroker::compilation_init();
  3262   Management::initialize(THREAD);
  3263   if (HAS_PENDING_EXCEPTION) {
  3264     // management agent fails to start possibly due to
  3265     // configuration problem and is responsible for printing
  3266     // stack trace if appropriate. Simply exit VM.
  3267     vm_exit(1);
  3270   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3271   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3272   if (MemProfiling)                   MemProfiler::engage();
  3273   StatSampler::engage();
  3274   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3276   BiasedLocking::init();
  3279   // Start up the WatcherThread if there are any periodic tasks
  3280   // NOTE:  All PeriodicTasks should be registered by now. If they
  3281   //   aren't, late joiners might appear to start slowly (we might
  3282   //   take a while to process their first tick).
  3283   if (PeriodicTask::num_tasks() > 0) {
  3284     WatcherThread::start();
  3287   // Give os specific code one last chance to start
  3288   os::init_3();
  3290   create_vm_timer.end();
  3291   return JNI_OK;
  3294 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3295 extern "C" {
  3296   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3298 // Find a command line agent library and return its entry point for
  3299 //         -agentlib:  -agentpath:   -Xrun
  3300 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3301 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3302   OnLoadEntry_t on_load_entry = NULL;
  3303   void *library = agent->os_lib();  // check if we have looked it up before
  3305   if (library == NULL) {
  3306     char buffer[JVM_MAXPATHLEN];
  3307     char ebuf[1024];
  3308     const char *name = agent->name();
  3309     const char *msg = "Could not find agent library ";
  3311     if (agent->is_absolute_path()) {
  3312       library = hpi::dll_load(name, ebuf, sizeof ebuf);
  3313       if (library == NULL) {
  3314         const char *sub_msg = " in absolute path, with error: ";
  3315         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3316         char *buf = NEW_C_HEAP_ARRAY(char, len);
  3317         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3318         // If we can't find the agent, exit.
  3319         vm_exit_during_initialization(buf, NULL);
  3320         FREE_C_HEAP_ARRAY(char, buf);
  3322     } else {
  3323       // Try to load the agent from the standard dll directory
  3324       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3325       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3326 #ifdef KERNEL
  3327       // Download instrument dll
  3328       if (library == NULL && strcmp(name, "instrument") == 0) {
  3329         char *props = Arguments::get_kernel_properties();
  3330         char *home  = Arguments::get_java_home();
  3331         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3332                       " sun.jkernel.DownloadManager -download client_jvm";
  3333         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3334         char *cmd = NEW_C_HEAP_ARRAY(char, length);
  3335         jio_snprintf(cmd, length, fmt, home, props);
  3336         int status = os::fork_and_exec(cmd);
  3337         FreeHeap(props);
  3338         if (status == -1) {
  3339           warning(cmd);
  3340           vm_exit_during_initialization("fork_and_exec failed: %s",
  3341                                          strerror(errno));
  3343         FREE_C_HEAP_ARRAY(char, cmd);
  3344         // when this comes back the instrument.dll should be where it belongs.
  3345         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3347 #endif // KERNEL
  3348       if (library == NULL) { // Try the local directory
  3349         char ns[1] = {0};
  3350         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
  3351         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3352         if (library == NULL) {
  3353           const char *sub_msg = " on the library path, with error: ";
  3354           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
  3355           char *buf = NEW_C_HEAP_ARRAY(char, len);
  3356           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
  3357           // If we can't find the agent, exit.
  3358           vm_exit_during_initialization(buf, NULL);
  3359           FREE_C_HEAP_ARRAY(char, buf);
  3363     agent->set_os_lib(library);
  3366   // Find the OnLoad function.
  3367   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3368     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
  3369     if (on_load_entry != NULL) break;
  3371   return on_load_entry;
  3374 // Find the JVM_OnLoad entry point
  3375 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3376   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3377   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3380 // Find the Agent_OnLoad entry point
  3381 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3382   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3383   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3386 // For backwards compatibility with -Xrun
  3387 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3388 // treated like -agentpath:
  3389 // Must be called before agent libraries are created
  3390 void Threads::convert_vm_init_libraries_to_agents() {
  3391   AgentLibrary* agent;
  3392   AgentLibrary* next;
  3394   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3395     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3396     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3398     // If there is an JVM_OnLoad function it will get called later,
  3399     // otherwise see if there is an Agent_OnLoad
  3400     if (on_load_entry == NULL) {
  3401       on_load_entry = lookup_agent_on_load(agent);
  3402       if (on_load_entry != NULL) {
  3403         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3404         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3405         Arguments::convert_library_to_agent(agent);
  3406       } else {
  3407         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3413 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3414 // Invokes Agent_OnLoad
  3415 // Called very early -- before JavaThreads exist
  3416 void Threads::create_vm_init_agents() {
  3417   extern struct JavaVM_ main_vm;
  3418   AgentLibrary* agent;
  3420   JvmtiExport::enter_onload_phase();
  3421   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3422     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3424     if (on_load_entry != NULL) {
  3425       // Invoke the Agent_OnLoad function
  3426       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3427       if (err != JNI_OK) {
  3428         vm_exit_during_initialization("agent library failed to init", agent->name());
  3430     } else {
  3431       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3434   JvmtiExport::enter_primordial_phase();
  3437 extern "C" {
  3438   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3441 void Threads::shutdown_vm_agents() {
  3442   // Send any Agent_OnUnload notifications
  3443   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3444   extern struct JavaVM_ main_vm;
  3445   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3447     // Find the Agent_OnUnload function.
  3448     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3449       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3450                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3452       // Invoke the Agent_OnUnload function
  3453       if (unload_entry != NULL) {
  3454         JavaThread* thread = JavaThread::current();
  3455         ThreadToNativeFromVM ttn(thread);
  3456         HandleMark hm(thread);
  3457         (*unload_entry)(&main_vm);
  3458         break;
  3464 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3465 // Invokes JVM_OnLoad
  3466 void Threads::create_vm_init_libraries() {
  3467   extern struct JavaVM_ main_vm;
  3468   AgentLibrary* agent;
  3470   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3471     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3473     if (on_load_entry != NULL) {
  3474       // Invoke the JVM_OnLoad function
  3475       JavaThread* thread = JavaThread::current();
  3476       ThreadToNativeFromVM ttn(thread);
  3477       HandleMark hm(thread);
  3478       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3479       if (err != JNI_OK) {
  3480         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3482     } else {
  3483       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3488 // Last thread running calls java.lang.Shutdown.shutdown()
  3489 void JavaThread::invoke_shutdown_hooks() {
  3490   HandleMark hm(this);
  3492   // We could get here with a pending exception, if so clear it now.
  3493   if (this->has_pending_exception()) {
  3494     this->clear_pending_exception();
  3497   EXCEPTION_MARK;
  3498   klassOop k =
  3499     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
  3500                                       THREAD);
  3501   if (k != NULL) {
  3502     // SystemDictionary::resolve_or_null will return null if there was
  3503     // an exception.  If we cannot load the Shutdown class, just don't
  3504     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3505     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3506     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3507     // was called, the Shutdown class would have already been loaded
  3508     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3509     instanceKlassHandle shutdown_klass (THREAD, k);
  3510     JavaValue result(T_VOID);
  3511     JavaCalls::call_static(&result,
  3512                            shutdown_klass,
  3513                            vmSymbolHandles::shutdown_method_name(),
  3514                            vmSymbolHandles::void_method_signature(),
  3515                            THREAD);
  3517   CLEAR_PENDING_EXCEPTION;
  3520 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3521 // the program falls off the end of main(). Another VM exit path is through
  3522 // vm_exit() when the program calls System.exit() to return a value or when
  3523 // there is a serious error in VM. The two shutdown paths are not exactly
  3524 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3525 // and VM_Exit op at VM level.
  3526 //
  3527 // Shutdown sequence:
  3528 //   + Wait until we are the last non-daemon thread to execute
  3529 //     <-- every thing is still working at this moment -->
  3530 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3531 //        shutdown hooks, run finalizers if finalization-on-exit
  3532 //   + Call before_exit(), prepare for VM exit
  3533 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3534 //        currently the only user of this mechanism is File.deleteOnExit())
  3535 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3536 //        post thread end and vm death events to JVMTI,
  3537 //        stop signal thread
  3538 //   + Call JavaThread::exit(), it will:
  3539 //      > release JNI handle blocks, remove stack guard pages
  3540 //      > remove this thread from Threads list
  3541 //     <-- no more Java code from this thread after this point -->
  3542 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3543 //     the compiler threads at safepoint
  3544 //     <-- do not use anything that could get blocked by Safepoint -->
  3545 //   + Disable tracing at JNI/JVM barriers
  3546 //   + Set _vm_exited flag for threads that are still running native code
  3547 //   + Delete this thread
  3548 //   + Call exit_globals()
  3549 //      > deletes tty
  3550 //      > deletes PerfMemory resources
  3551 //   + Return to caller
  3553 bool Threads::destroy_vm() {
  3554   JavaThread* thread = JavaThread::current();
  3556   // Wait until we are the last non-daemon thread to execute
  3557   { MutexLocker nu(Threads_lock);
  3558     while (Threads::number_of_non_daemon_threads() > 1 )
  3559       // This wait should make safepoint checks, wait without a timeout,
  3560       // and wait as a suspend-equivalent condition.
  3561       //
  3562       // Note: If the FlatProfiler is running and this thread is waiting
  3563       // for another non-daemon thread to finish, then the FlatProfiler
  3564       // is waiting for the external suspend request on this thread to
  3565       // complete. wait_for_ext_suspend_completion() will eventually
  3566       // timeout, but that takes time. Making this wait a suspend-
  3567       // equivalent condition solves that timeout problem.
  3568       //
  3569       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3570                          Mutex::_as_suspend_equivalent_flag);
  3573   // Hang forever on exit if we are reporting an error.
  3574   if (ShowMessageBoxOnError && is_error_reported()) {
  3575     os::infinite_sleep();
  3578   if (JDK_Version::is_jdk12x_version()) {
  3579     // We are the last thread running, so check if finalizers should be run.
  3580     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3581     HandleMark rm(thread);
  3582     Universe::run_finalizers_on_exit();
  3583   } else {
  3584     // run Java level shutdown hooks
  3585     thread->invoke_shutdown_hooks();
  3588   before_exit(thread);
  3590   thread->exit(true);
  3592   // Stop VM thread.
  3594     // 4945125 The vm thread comes to a safepoint during exit.
  3595     // GC vm_operations can get caught at the safepoint, and the
  3596     // heap is unparseable if they are caught. Grab the Heap_lock
  3597     // to prevent this. The GC vm_operations will not be able to
  3598     // queue until after the vm thread is dead.
  3599     MutexLocker ml(Heap_lock);
  3601     VMThread::wait_for_vm_thread_exit();
  3602     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3603     VMThread::destroy();
  3606   // clean up ideal graph printers
  3607 #if defined(COMPILER2) && !defined(PRODUCT)
  3608   IdealGraphPrinter::clean_up();
  3609 #endif
  3611   // Now, all Java threads are gone except daemon threads. Daemon threads
  3612   // running Java code or in VM are stopped by the Safepoint. However,
  3613   // daemon threads executing native code are still running.  But they
  3614   // will be stopped at native=>Java/VM barriers. Note that we can't
  3615   // simply kill or suspend them, as it is inherently deadlock-prone.
  3617 #ifndef PRODUCT
  3618   // disable function tracing at JNI/JVM barriers
  3619   TraceHPI = false;
  3620   TraceJNICalls = false;
  3621   TraceJVMCalls = false;
  3622   TraceRuntimeCalls = false;
  3623 #endif
  3625   VM_Exit::set_vm_exited();
  3627   notify_vm_shutdown();
  3629   delete thread;
  3631   // exit_globals() will delete tty
  3632   exit_globals();
  3634   return true;
  3638 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3639   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3640   return is_supported_jni_version(version);
  3644 jboolean Threads::is_supported_jni_version(jint version) {
  3645   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3646   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3647   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3648   return JNI_FALSE;
  3652 void Threads::add(JavaThread* p, bool force_daemon) {
  3653   // The threads lock must be owned at this point
  3654   assert_locked_or_safepoint(Threads_lock);
  3656   // See the comment for this method in thread.hpp for its purpose and
  3657   // why it is called here.
  3658   p->initialize_queues();
  3659   p->set_next(_thread_list);
  3660   _thread_list = p;
  3661   _number_of_threads++;
  3662   oop threadObj = p->threadObj();
  3663   bool daemon = true;
  3664   // Bootstrapping problem: threadObj can be null for initial
  3665   // JavaThread (or for threads attached via JNI)
  3666   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3667     _number_of_non_daemon_threads++;
  3668     daemon = false;
  3671   ThreadService::add_thread(p, daemon);
  3673   // Possible GC point.
  3674   Events::log("Thread added: " INTPTR_FORMAT, p);
  3677 void Threads::remove(JavaThread* p) {
  3678   // Extra scope needed for Thread_lock, so we can check
  3679   // that we do not remove thread without safepoint code notice
  3680   { MutexLocker ml(Threads_lock);
  3682     assert(includes(p), "p must be present");
  3684     JavaThread* current = _thread_list;
  3685     JavaThread* prev    = NULL;
  3687     while (current != p) {
  3688       prev    = current;
  3689       current = current->next();
  3692     if (prev) {
  3693       prev->set_next(current->next());
  3694     } else {
  3695       _thread_list = p->next();
  3697     _number_of_threads--;
  3698     oop threadObj = p->threadObj();
  3699     bool daemon = true;
  3700     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3701       _number_of_non_daemon_threads--;
  3702       daemon = false;
  3704       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3705       // on destroy_vm will wake up.
  3706       if (number_of_non_daemon_threads() == 1)
  3707         Threads_lock->notify_all();
  3709     ThreadService::remove_thread(p, daemon);
  3711     // Make sure that safepoint code disregard this thread. This is needed since
  3712     // the thread might mess around with locks after this point. This can cause it
  3713     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3714     // of this thread since it is removed from the queue.
  3715     p->set_terminated_value();
  3716   } // unlock Threads_lock
  3718   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3719   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3722 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3723 bool Threads::includes(JavaThread* p) {
  3724   assert(Threads_lock->is_locked(), "sanity check");
  3725   ALL_JAVA_THREADS(q) {
  3726     if (q == p ) {
  3727       return true;
  3730   return false;
  3733 // Operations on the Threads list for GC.  These are not explicitly locked,
  3734 // but the garbage collector must provide a safe context for them to run.
  3735 // In particular, these things should never be called when the Threads_lock
  3736 // is held by some other thread. (Note: the Safepoint abstraction also
  3737 // uses the Threads_lock to gurantee this property. It also makes sure that
  3738 // all threads gets blocked when exiting or starting).
  3740 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3741   ALL_JAVA_THREADS(p) {
  3742     p->oops_do(f, cf);
  3744   VMThread::vm_thread()->oops_do(f, cf);
  3747 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3748   // Introduce a mechanism allowing parallel threads to claim threads as
  3749   // root groups.  Overhead should be small enough to use all the time,
  3750   // even in sequential code.
  3751   SharedHeap* sh = SharedHeap::heap();
  3752   bool is_par = (sh->n_par_threads() > 0);
  3753   int cp = SharedHeap::heap()->strong_roots_parity();
  3754   ALL_JAVA_THREADS(p) {
  3755     if (p->claim_oops_do(is_par, cp)) {
  3756       p->oops_do(f, cf);
  3759   VMThread* vmt = VMThread::vm_thread();
  3760   if (vmt->claim_oops_do(is_par, cp))
  3761     vmt->oops_do(f, cf);
  3764 #ifndef SERIALGC
  3765 // Used by ParallelScavenge
  3766 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3767   ALL_JAVA_THREADS(p) {
  3768     q->enqueue(new ThreadRootsTask(p));
  3770   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3773 // Used by Parallel Old
  3774 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3775   ALL_JAVA_THREADS(p) {
  3776     q->enqueue(new ThreadRootsMarkingTask(p));
  3778   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3780 #endif // SERIALGC
  3782 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3783   ALL_JAVA_THREADS(p) {
  3784     p->nmethods_do(cf);
  3786   VMThread::vm_thread()->nmethods_do(cf);
  3789 void Threads::gc_epilogue() {
  3790   ALL_JAVA_THREADS(p) {
  3791     p->gc_epilogue();
  3795 void Threads::gc_prologue() {
  3796   ALL_JAVA_THREADS(p) {
  3797     p->gc_prologue();
  3801 void Threads::deoptimized_wrt_marked_nmethods() {
  3802   ALL_JAVA_THREADS(p) {
  3803     p->deoptimized_wrt_marked_nmethods();
  3808 // Get count Java threads that are waiting to enter the specified monitor.
  3809 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3810   address monitor, bool doLock) {
  3811   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3812     "must grab Threads_lock or be at safepoint");
  3813   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3815   int i = 0;
  3817     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3818     ALL_JAVA_THREADS(p) {
  3819       if (p->is_Compiler_thread()) continue;
  3821       address pending = (address)p->current_pending_monitor();
  3822       if (pending == monitor) {             // found a match
  3823         if (i < count) result->append(p);   // save the first count matches
  3824         i++;
  3828   return result;
  3832 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3833   assert(doLock ||
  3834          Threads_lock->owned_by_self() ||
  3835          SafepointSynchronize::is_at_safepoint(),
  3836          "must grab Threads_lock or be at safepoint");
  3838   // NULL owner means not locked so we can skip the search
  3839   if (owner == NULL) return NULL;
  3842     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3843     ALL_JAVA_THREADS(p) {
  3844       // first, see if owner is the address of a Java thread
  3845       if (owner == (address)p) return p;
  3848   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3849   if (UseHeavyMonitors) return NULL;
  3851   //
  3852   // If we didn't find a matching Java thread and we didn't force use of
  3853   // heavyweight monitors, then the owner is the stack address of the
  3854   // Lock Word in the owning Java thread's stack.
  3855   //
  3856   JavaThread* the_owner = NULL;
  3858     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3859     ALL_JAVA_THREADS(q) {
  3860       if (q->is_lock_owned(owner)) {
  3861         the_owner = q;
  3862         break;
  3866   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3867   return the_owner;
  3870 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3871 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3872   char buf[32];
  3873   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3875   st->print_cr("Full thread dump %s (%s %s):",
  3876                 Abstract_VM_Version::vm_name(),
  3877                 Abstract_VM_Version::vm_release(),
  3878                 Abstract_VM_Version::vm_info_string()
  3879                );
  3880   st->cr();
  3882 #ifndef SERIALGC
  3883   // Dump concurrent locks
  3884   ConcurrentLocksDump concurrent_locks;
  3885   if (print_concurrent_locks) {
  3886     concurrent_locks.dump_at_safepoint();
  3888 #endif // SERIALGC
  3890   ALL_JAVA_THREADS(p) {
  3891     ResourceMark rm;
  3892     p->print_on(st);
  3893     if (print_stacks) {
  3894       if (internal_format) {
  3895         p->trace_stack();
  3896       } else {
  3897         p->print_stack_on(st);
  3900     st->cr();
  3901 #ifndef SERIALGC
  3902     if (print_concurrent_locks) {
  3903       concurrent_locks.print_locks_on(p, st);
  3905 #endif // SERIALGC
  3908   VMThread::vm_thread()->print_on(st);
  3909   st->cr();
  3910   Universe::heap()->print_gc_threads_on(st);
  3911   WatcherThread* wt = WatcherThread::watcher_thread();
  3912   if (wt != NULL) wt->print_on(st);
  3913   st->cr();
  3914   CompileBroker::print_compiler_threads_on(st);
  3915   st->flush();
  3918 // Threads::print_on_error() is called by fatal error handler. It's possible
  3919 // that VM is not at safepoint and/or current thread is inside signal handler.
  3920 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  3921 // memory (even in resource area), it might deadlock the error handler.
  3922 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  3923   bool found_current = false;
  3924   st->print_cr("Java Threads: ( => current thread )");
  3925   ALL_JAVA_THREADS(thread) {
  3926     bool is_current = (current == thread);
  3927     found_current = found_current || is_current;
  3929     st->print("%s", is_current ? "=>" : "  ");
  3931     st->print(PTR_FORMAT, thread);
  3932     st->print(" ");
  3933     thread->print_on_error(st, buf, buflen);
  3934     st->cr();
  3936   st->cr();
  3938   st->print_cr("Other Threads:");
  3939   if (VMThread::vm_thread()) {
  3940     bool is_current = (current == VMThread::vm_thread());
  3941     found_current = found_current || is_current;
  3942     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  3944     st->print(PTR_FORMAT, VMThread::vm_thread());
  3945     st->print(" ");
  3946     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  3947     st->cr();
  3949   WatcherThread* wt = WatcherThread::watcher_thread();
  3950   if (wt != NULL) {
  3951     bool is_current = (current == wt);
  3952     found_current = found_current || is_current;
  3953     st->print("%s", is_current ? "=>" : "  ");
  3955     st->print(PTR_FORMAT, wt);
  3956     st->print(" ");
  3957     wt->print_on_error(st, buf, buflen);
  3958     st->cr();
  3960   if (!found_current) {
  3961     st->cr();
  3962     st->print("=>" PTR_FORMAT " (exited) ", current);
  3963     current->print_on_error(st, buf, buflen);
  3964     st->cr();
  3968 // Internal SpinLock and Mutex
  3969 // Based on ParkEvent
  3971 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
  3972 //
  3973 // We employ SpinLocks _only for low-contention, fixed-length
  3974 // short-duration critical sections where we're concerned
  3975 // about native mutex_t or HotSpot Mutex:: latency.
  3976 // The mux construct provides a spin-then-block mutual exclusion
  3977 // mechanism.
  3978 //
  3979 // Testing has shown that contention on the ListLock guarding gFreeList
  3980 // is common.  If we implement ListLock as a simple SpinLock it's common
  3981 // for the JVM to devolve to yielding with little progress.  This is true
  3982 // despite the fact that the critical sections protected by ListLock are
  3983 // extremely short.
  3984 //
  3985 // TODO-FIXME: ListLock should be of type SpinLock.
  3986 // We should make this a 1st-class type, integrated into the lock
  3987 // hierarchy as leaf-locks.  Critically, the SpinLock structure
  3988 // should have sufficient padding to avoid false-sharing and excessive
  3989 // cache-coherency traffic.
  3992 typedef volatile int SpinLockT ;
  3994 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
  3995   if (Atomic::cmpxchg (1, adr, 0) == 0) {
  3996      return ;   // normal fast-path return
  3999   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
  4000   TEVENT (SpinAcquire - ctx) ;
  4001   int ctr = 0 ;
  4002   int Yields = 0 ;
  4003   for (;;) {
  4004      while (*adr != 0) {
  4005         ++ctr ;
  4006         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
  4007            if (Yields > 5) {
  4008              // Consider using a simple NakedSleep() instead.
  4009              // Then SpinAcquire could be called by non-JVM threads
  4010              Thread::current()->_ParkEvent->park(1) ;
  4011            } else {
  4012              os::NakedYield() ;
  4013              ++Yields ;
  4015         } else {
  4016            SpinPause() ;
  4019      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
  4023 void Thread::SpinRelease (volatile int * adr) {
  4024   assert (*adr != 0, "invariant") ;
  4025   OrderAccess::fence() ;      // guarantee at least release consistency.
  4026   // Roach-motel semantics.
  4027   // It's safe if subsequent LDs and STs float "up" into the critical section,
  4028   // but prior LDs and STs within the critical section can't be allowed
  4029   // to reorder or float past the ST that releases the lock.
  4030   *adr = 0 ;
  4033 // muxAcquire and muxRelease:
  4034 //
  4035 // *  muxAcquire and muxRelease support a single-word lock-word construct.
  4036 //    The LSB of the word is set IFF the lock is held.
  4037 //    The remainder of the word points to the head of a singly-linked list
  4038 //    of threads blocked on the lock.
  4039 //
  4040 // *  The current implementation of muxAcquire-muxRelease uses its own
  4041 //    dedicated Thread._MuxEvent instance.  If we're interested in
  4042 //    minimizing the peak number of extant ParkEvent instances then
  4043 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
  4044 //    as certain invariants were satisfied.  Specifically, care would need
  4045 //    to be taken with regards to consuming unpark() "permits".
  4046 //    A safe rule of thumb is that a thread would never call muxAcquire()
  4047 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
  4048 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
  4049 //    consume an unpark() permit intended for monitorenter, for instance.
  4050 //    One way around this would be to widen the restricted-range semaphore
  4051 //    implemented in park().  Another alternative would be to provide
  4052 //    multiple instances of the PlatformEvent() for each thread.  One
  4053 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
  4054 //
  4055 // *  Usage:
  4056 //    -- Only as leaf locks
  4057 //    -- for short-term locking only as muxAcquire does not perform
  4058 //       thread state transitions.
  4059 //
  4060 // Alternatives:
  4061 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
  4062 //    but with parking or spin-then-park instead of pure spinning.
  4063 // *  Use Taura-Oyama-Yonenzawa locks.
  4064 // *  It's possible to construct a 1-0 lock if we encode the lockword as
  4065 //    (List,LockByte).  Acquire will CAS the full lockword while Release
  4066 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
  4067 //    acquiring threads use timers (ParkTimed) to detect and recover from
  4068 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
  4069 //    boundaries by using placement-new.
  4070 // *  Augment MCS with advisory back-link fields maintained with CAS().
  4071 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
  4072 //    The validity of the backlinks must be ratified before we trust the value.
  4073 //    If the backlinks are invalid the exiting thread must back-track through the
  4074 //    the forward links, which are always trustworthy.
  4075 // *  Add a successor indication.  The LockWord is currently encoded as
  4076 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
  4077 //    to provide the usual futile-wakeup optimization.
  4078 //    See RTStt for details.
  4079 // *  Consider schedctl.sc_nopreempt to cover the critical section.
  4080 //
  4083 typedef volatile intptr_t MutexT ;      // Mux Lock-word
  4084 enum MuxBits { LOCKBIT = 1 } ;
  4086 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
  4087   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4088   if (w == 0) return ;
  4089   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4090      return ;
  4093   TEVENT (muxAcquire - Contention) ;
  4094   ParkEvent * const Self = Thread::current()->_MuxEvent ;
  4095   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
  4096   for (;;) {
  4097      int its = (os::is_MP() ? 100 : 0) + 1 ;
  4099      // Optional spin phase: spin-then-park strategy
  4100      while (--its >= 0) {
  4101        w = *Lock ;
  4102        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4103           return ;
  4107      Self->reset() ;
  4108      Self->OnList = intptr_t(Lock) ;
  4109      // The following fence() isn't _strictly necessary as the subsequent
  4110      // CAS() both serializes execution and ratifies the fetched *Lock value.
  4111      OrderAccess::fence();
  4112      for (;;) {
  4113         w = *Lock ;
  4114         if ((w & LOCKBIT) == 0) {
  4115             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4116                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
  4117                 return ;
  4119             continue ;      // Interference -- *Lock changed -- Just retry
  4121         assert (w & LOCKBIT, "invariant") ;
  4122         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4123         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
  4126      while (Self->OnList != 0) {
  4127         Self->park() ;
  4132 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
  4133   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
  4134   if (w == 0) return ;
  4135   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4136     return ;
  4139   TEVENT (muxAcquire - Contention) ;
  4140   ParkEvent * ReleaseAfter = NULL ;
  4141   if (ev == NULL) {
  4142     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
  4144   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
  4145   for (;;) {
  4146     guarantee (ev->OnList == 0, "invariant") ;
  4147     int its = (os::is_MP() ? 100 : 0) + 1 ;
  4149     // Optional spin phase: spin-then-park strategy
  4150     while (--its >= 0) {
  4151       w = *Lock ;
  4152       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4153         if (ReleaseAfter != NULL) {
  4154           ParkEvent::Release (ReleaseAfter) ;
  4156         return ;
  4160     ev->reset() ;
  4161     ev->OnList = intptr_t(Lock) ;
  4162     // The following fence() isn't _strictly necessary as the subsequent
  4163     // CAS() both serializes execution and ratifies the fetched *Lock value.
  4164     OrderAccess::fence();
  4165     for (;;) {
  4166       w = *Lock ;
  4167       if ((w & LOCKBIT) == 0) {
  4168         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
  4169           ev->OnList = 0 ;
  4170           // We call ::Release while holding the outer lock, thus
  4171           // artificially lengthening the critical section.
  4172           // Consider deferring the ::Release() until the subsequent unlock(),
  4173           // after we've dropped the outer lock.
  4174           if (ReleaseAfter != NULL) {
  4175             ParkEvent::Release (ReleaseAfter) ;
  4177           return ;
  4179         continue ;      // Interference -- *Lock changed -- Just retry
  4181       assert (w & LOCKBIT, "invariant") ;
  4182       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
  4183       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
  4186     while (ev->OnList != 0) {
  4187       ev->park() ;
  4192 // Release() must extract a successor from the list and then wake that thread.
  4193 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
  4194 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
  4195 // Release() would :
  4196 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
  4197 // (B) Extract a successor from the private list "in-hand"
  4198 // (C) attempt to CAS() the residual back into *Lock over null.
  4199 //     If there were any newly arrived threads and the CAS() would fail.
  4200 //     In that case Release() would detach the RATs, re-merge the list in-hand
  4201 //     with the RATs and repeat as needed.  Alternately, Release() might
  4202 //     detach and extract a successor, but then pass the residual list to the wakee.
  4203 //     The wakee would be responsible for reattaching and remerging before it
  4204 //     competed for the lock.
  4205 //
  4206 // Both "pop" and DMR are immune from ABA corruption -- there can be
  4207 // multiple concurrent pushers, but only one popper or detacher.
  4208 // This implementation pops from the head of the list.  This is unfair,
  4209 // but tends to provide excellent throughput as hot threads remain hot.
  4210 // (We wake recently run threads first).
  4212 void Thread::muxRelease (volatile intptr_t * Lock)  {
  4213   for (;;) {
  4214     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
  4215     assert (w & LOCKBIT, "invariant") ;
  4216     if (w == LOCKBIT) return ;
  4217     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
  4218     assert (List != NULL, "invariant") ;
  4219     assert (List->OnList == intptr_t(Lock), "invariant") ;
  4220     ParkEvent * nxt = List->ListNext ;
  4222     // The following CAS() releases the lock and pops the head element.
  4223     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
  4224       continue ;
  4226     List->OnList = 0 ;
  4227     OrderAccess::fence() ;
  4228     List->unpark () ;
  4229     return ;
  4234 void Threads::verify() {
  4235   ALL_JAVA_THREADS(p) {
  4236     p->verify();
  4238   VMThread* thread = VMThread::vm_thread();
  4239   if (thread != NULL) thread->verify();

mercurial