src/share/vm/opto/lcm.cpp

Mon, 21 Mar 2011 11:28:14 -0700

author
kvn
date
Mon, 21 Mar 2011 11:28:14 -0700
changeset 2665
9dc311b8473e
parent 2314
f95d63e2154a
child 2683
7e88bdae86ec
child 2780
e6beb62de02d
permissions
-rw-r--r--

7008866: Missing loop predicate for loop with multiple entries
Summary: Add predicates when loop head bytecode is parsed instead of when back branch bytecode is parsed.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/runtime.hpp"
    33 #ifdef TARGET_ARCH_MODEL_x86_32
    34 # include "adfiles/ad_x86_32.hpp"
    35 #endif
    36 #ifdef TARGET_ARCH_MODEL_x86_64
    37 # include "adfiles/ad_x86_64.hpp"
    38 #endif
    39 #ifdef TARGET_ARCH_MODEL_sparc
    40 # include "adfiles/ad_sparc.hpp"
    41 #endif
    42 #ifdef TARGET_ARCH_MODEL_zero
    43 # include "adfiles/ad_zero.hpp"
    44 #endif
    46 // Optimization - Graph Style
    48 //------------------------------implicit_null_check----------------------------
    49 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    50 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    51 // I can generate a memory op if there is not one nearby.
    52 // The proj is the control projection for the not-null case.
    53 // The val is the pointer being checked for nullness or
    54 // decodeHeapOop_not_null node if it did not fold into address.
    55 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    56   // Assume if null check need for 0 offset then always needed
    57   // Intel solaris doesn't support any null checks yet and no
    58   // mechanism exists (yet) to set the switches at an os_cpu level
    59   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    61   // Make sure the ptr-is-null path appears to be uncommon!
    62   float f = end()->as_MachIf()->_prob;
    63   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    64   if( f > PROB_UNLIKELY_MAG(4) ) return;
    66   uint bidx = 0;                // Capture index of value into memop
    67   bool was_store;               // Memory op is a store op
    69   // Get the successor block for if the test ptr is non-null
    70   Block* not_null_block;  // this one goes with the proj
    71   Block* null_block;
    72   if (_nodes[_nodes.size()-1] == proj) {
    73     null_block     = _succs[0];
    74     not_null_block = _succs[1];
    75   } else {
    76     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    77     not_null_block = _succs[0];
    78     null_block     = _succs[1];
    79   }
    80   while (null_block->is_Empty() == Block::empty_with_goto) {
    81     null_block     = null_block->_succs[0];
    82   }
    84   // Search the exception block for an uncommon trap.
    85   // (See Parse::do_if and Parse::do_ifnull for the reason
    86   // we need an uncommon trap.  Briefly, we need a way to
    87   // detect failure of this optimization, as in 6366351.)
    88   {
    89     bool found_trap = false;
    90     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    91       Node* nn = null_block->_nodes[i1];
    92       if (nn->is_MachCall() &&
    93           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
    94         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
    95         if (trtype->isa_int() && trtype->is_int()->is_con()) {
    96           jint tr_con = trtype->is_int()->get_con();
    97           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
    98           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
    99           assert((int)reason < (int)BitsPerInt, "recode bit map");
   100           if (is_set_nth_bit(allowed_reasons, (int) reason)
   101               && action != Deoptimization::Action_none) {
   102             // This uncommon trap is sure to recompile, eventually.
   103             // When that happens, C->too_many_traps will prevent
   104             // this transformation from happening again.
   105             found_trap = true;
   106           }
   107         }
   108         break;
   109       }
   110     }
   111     if (!found_trap) {
   112       // We did not find an uncommon trap.
   113       return;
   114     }
   115   }
   117   // Check for decodeHeapOop_not_null node which did not fold into address
   118   bool is_decoden = ((intptr_t)val) & 1;
   119   val = (Node*)(((intptr_t)val) & ~1);
   121   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   122          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   124   // Search the successor block for a load or store who's base value is also
   125   // the tested value.  There may be several.
   126   Node_List *out = new Node_List(Thread::current()->resource_area());
   127   MachNode *best = NULL;        // Best found so far
   128   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   129     Node *m = val->out(i);
   130     if( !m->is_Mach() ) continue;
   131     MachNode *mach = m->as_Mach();
   132     was_store = false;
   133     int iop = mach->ideal_Opcode();
   134     switch( iop ) {
   135     case Op_LoadB:
   136     case Op_LoadUS:
   137     case Op_LoadD:
   138     case Op_LoadF:
   139     case Op_LoadI:
   140     case Op_LoadL:
   141     case Op_LoadP:
   142     case Op_LoadN:
   143     case Op_LoadS:
   144     case Op_LoadKlass:
   145     case Op_LoadNKlass:
   146     case Op_LoadRange:
   147     case Op_LoadD_unaligned:
   148     case Op_LoadL_unaligned:
   149       assert(mach->in(2) == val, "should be address");
   150       break;
   151     case Op_StoreB:
   152     case Op_StoreC:
   153     case Op_StoreCM:
   154     case Op_StoreD:
   155     case Op_StoreF:
   156     case Op_StoreI:
   157     case Op_StoreL:
   158     case Op_StoreP:
   159     case Op_StoreN:
   160       was_store = true;         // Memory op is a store op
   161       // Stores will have their address in slot 2 (memory in slot 1).
   162       // If the value being nul-checked is in another slot, it means we
   163       // are storing the checked value, which does NOT check the value!
   164       if( mach->in(2) != val ) continue;
   165       break;                    // Found a memory op?
   166     case Op_StrComp:
   167     case Op_StrEquals:
   168     case Op_StrIndexOf:
   169     case Op_AryEq:
   170       // Not a legit memory op for implicit null check regardless of
   171       // embedded loads
   172       continue;
   173     default:                    // Also check for embedded loads
   174       if( !mach->needs_anti_dependence_check() )
   175         continue;               // Not an memory op; skip it
   176       if( must_clone[iop] ) {
   177         // Do not move nodes which produce flags because
   178         // RA will try to clone it to place near branch and
   179         // it will cause recompilation, see clone_node().
   180         continue;
   181       }
   182       {
   183         // Check that value is used in memory address in
   184         // instructions with embedded load (CmpP val1,(val2+off)).
   185         Node* base;
   186         Node* index;
   187         const MachOper* oper = mach->memory_inputs(base, index);
   188         if (oper == NULL || oper == (MachOper*)-1) {
   189           continue;             // Not an memory op; skip it
   190         }
   191         if (val == base ||
   192             val == index && val->bottom_type()->isa_narrowoop()) {
   193           break;                // Found it
   194         } else {
   195           continue;             // Skip it
   196         }
   197       }
   198       break;
   199     }
   200     // check if the offset is not too high for implicit exception
   201     {
   202       intptr_t offset = 0;
   203       const TypePtr *adr_type = NULL;  // Do not need this return value here
   204       const Node* base = mach->get_base_and_disp(offset, adr_type);
   205       if (base == NULL || base == NodeSentinel) {
   206         // Narrow oop address doesn't have base, only index
   207         if( val->bottom_type()->isa_narrowoop() &&
   208             MacroAssembler::needs_explicit_null_check(offset) )
   209           continue;             // Give up if offset is beyond page size
   210         // cannot reason about it; is probably not implicit null exception
   211       } else {
   212         const TypePtr* tptr;
   213         if (UseCompressedOops && Universe::narrow_oop_shift() == 0) {
   214           // 32-bits narrow oop can be the base of address expressions
   215           tptr = base->bottom_type()->make_ptr();
   216         } else {
   217           // only regular oops are expected here
   218           tptr = base->bottom_type()->is_ptr();
   219         }
   220         // Give up if offset is not a compile-time constant
   221         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   222           continue;
   223         offset += tptr->_offset; // correct if base is offseted
   224         if( MacroAssembler::needs_explicit_null_check(offset) )
   225           continue;             // Give up is reference is beyond 4K page size
   226       }
   227     }
   229     // Check ctrl input to see if the null-check dominates the memory op
   230     Block *cb = cfg->_bbs[mach->_idx];
   231     cb = cb->_idom;             // Always hoist at least 1 block
   232     if( !was_store ) {          // Stores can be hoisted only one block
   233       while( cb->_dom_depth > (_dom_depth + 1))
   234         cb = cb->_idom;         // Hoist loads as far as we want
   235       // The non-null-block should dominate the memory op, too. Live
   236       // range spilling will insert a spill in the non-null-block if it is
   237       // needs to spill the memory op for an implicit null check.
   238       if (cb->_dom_depth == (_dom_depth + 1)) {
   239         if (cb != not_null_block) continue;
   240         cb = cb->_idom;
   241       }
   242     }
   243     if( cb != this ) continue;
   245     // Found a memory user; see if it can be hoisted to check-block
   246     uint vidx = 0;              // Capture index of value into memop
   247     uint j;
   248     for( j = mach->req()-1; j > 0; j-- ) {
   249       if( mach->in(j) == val ) {
   250         vidx = j;
   251         // Ignore DecodeN val which could be hoisted to where needed.
   252         if( is_decoden ) continue;
   253       }
   254       // Block of memory-op input
   255       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   256       Block *b = this;          // Start from nul check
   257       while( b != inb && b->_dom_depth > inb->_dom_depth )
   258         b = b->_idom;           // search upwards for input
   259       // See if input dominates null check
   260       if( b != inb )
   261         break;
   262     }
   263     if( j > 0 )
   264       continue;
   265     Block *mb = cfg->_bbs[mach->_idx];
   266     // Hoisting stores requires more checks for the anti-dependence case.
   267     // Give up hoisting if we have to move the store past any load.
   268     if( was_store ) {
   269       Block *b = mb;            // Start searching here for a local load
   270       // mach use (faulting) trying to hoist
   271       // n might be blocker to hoisting
   272       while( b != this ) {
   273         uint k;
   274         for( k = 1; k < b->_nodes.size(); k++ ) {
   275           Node *n = b->_nodes[k];
   276           if( n->needs_anti_dependence_check() &&
   277               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   278             break;              // Found anti-dependent load
   279         }
   280         if( k < b->_nodes.size() )
   281           break;                // Found anti-dependent load
   282         // Make sure control does not do a merge (would have to check allpaths)
   283         if( b->num_preds() != 2 ) break;
   284         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   285       }
   286       if( b != this ) continue;
   287     }
   289     // Make sure this memory op is not already being used for a NullCheck
   290     Node *e = mb->end();
   291     if( e->is_MachNullCheck() && e->in(1) == mach )
   292       continue;                 // Already being used as a NULL check
   294     // Found a candidate!  Pick one with least dom depth - the highest
   295     // in the dom tree should be closest to the null check.
   296     if( !best ||
   297         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   298       best = mach;
   299       bidx = vidx;
   301     }
   302   }
   303   // No candidate!
   304   if( !best ) return;
   306   // ---- Found an implicit null check
   307   extern int implicit_null_checks;
   308   implicit_null_checks++;
   310   if( is_decoden ) {
   311     // Check if we need to hoist decodeHeapOop_not_null first.
   312     Block *valb = cfg->_bbs[val->_idx];
   313     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
   314       // Hoist it up to the end of the test block.
   315       valb->find_remove(val);
   316       this->add_inst(val);
   317       cfg->_bbs.map(val->_idx,this);
   318       // DecodeN on x86 may kill flags. Check for flag-killing projections
   319       // that also need to be hoisted.
   320       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   321         Node* n = val->fast_out(j);
   322         if( n->Opcode() == Op_MachProj ) {
   323           cfg->_bbs[n->_idx]->find_remove(n);
   324           this->add_inst(n);
   325           cfg->_bbs.map(n->_idx,this);
   326         }
   327       }
   328     }
   329   }
   330   // Hoist the memory candidate up to the end of the test block.
   331   Block *old_block = cfg->_bbs[best->_idx];
   332   old_block->find_remove(best);
   333   add_inst(best);
   334   cfg->_bbs.map(best->_idx,this);
   336   // Move the control dependence
   337   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   338     best->set_req(0, _nodes[0]);
   340   // Check for flag-killing projections that also need to be hoisted
   341   // Should be DU safe because no edge updates.
   342   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   343     Node* n = best->fast_out(j);
   344     if( n->Opcode() == Op_MachProj ) {
   345       cfg->_bbs[n->_idx]->find_remove(n);
   346       add_inst(n);
   347       cfg->_bbs.map(n->_idx,this);
   348     }
   349   }
   351   Compile *C = cfg->C;
   352   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   353   // One of two graph shapes got matched:
   354   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   355   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   356   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   357   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   358   // We need to flip the projections to keep the same semantics.
   359   if( proj->Opcode() == Op_IfTrue ) {
   360     // Swap order of projections in basic block to swap branch targets
   361     Node *tmp1 = _nodes[end_idx()+1];
   362     Node *tmp2 = _nodes[end_idx()+2];
   363     _nodes.map(end_idx()+1, tmp2);
   364     _nodes.map(end_idx()+2, tmp1);
   365     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
   366     tmp1->replace_by(tmp);
   367     tmp2->replace_by(tmp1);
   368     tmp->replace_by(tmp2);
   369     tmp->destruct();
   370   }
   372   // Remove the existing null check; use a new implicit null check instead.
   373   // Since schedule-local needs precise def-use info, we need to correct
   374   // it as well.
   375   Node *old_tst = proj->in(0);
   376   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   377   _nodes.map(end_idx(),nul_chk);
   378   cfg->_bbs.map(nul_chk->_idx,this);
   379   // Redirect users of old_test to nul_chk
   380   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   381     old_tst->last_out(i2)->set_req(0, nul_chk);
   382   // Clean-up any dead code
   383   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   384     old_tst->set_req(i3, NULL);
   386   cfg->latency_from_uses(nul_chk);
   387   cfg->latency_from_uses(best);
   388 }
   391 //------------------------------select-----------------------------------------
   392 // Select a nice fellow from the worklist to schedule next. If there is only
   393 // one choice, then use it. Projections take top priority for correctness
   394 // reasons - if I see a projection, then it is next.  There are a number of
   395 // other special cases, for instructions that consume condition codes, et al.
   396 // These are chosen immediately. Some instructions are required to immediately
   397 // precede the last instruction in the block, and these are taken last. Of the
   398 // remaining cases (most), choose the instruction with the greatest latency
   399 // (that is, the most number of pseudo-cycles required to the end of the
   400 // routine). If there is a tie, choose the instruction with the most inputs.
   401 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
   403   // If only a single entry on the stack, use it
   404   uint cnt = worklist.size();
   405   if (cnt == 1) {
   406     Node *n = worklist[0];
   407     worklist.map(0,worklist.pop());
   408     return n;
   409   }
   411   uint choice  = 0; // Bigger is most important
   412   uint latency = 0; // Bigger is scheduled first
   413   uint score   = 0; // Bigger is better
   414   int idx = -1;     // Index in worklist
   416   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   417     // Order in worklist is used to break ties.
   418     // See caller for how this is used to delay scheduling
   419     // of induction variable increments to after the other
   420     // uses of the phi are scheduled.
   421     Node *n = worklist[i];      // Get Node on worklist
   423     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   424     if( n->is_Proj() ||         // Projections always win
   425         n->Opcode()== Op_Con || // So does constant 'Top'
   426         iop == Op_CreateEx ||   // Create-exception must start block
   427         iop == Op_CheckCastPP
   428         ) {
   429       worklist.map(i,worklist.pop());
   430       return n;
   431     }
   433     // Final call in a block must be adjacent to 'catch'
   434     Node *e = end();
   435     if( e->is_Catch() && e->in(0)->in(0) == n )
   436       continue;
   438     // Memory op for an implicit null check has to be at the end of the block
   439     if( e->is_MachNullCheck() && e->in(1) == n )
   440       continue;
   442     uint n_choice  = 2;
   444     // See if this instruction is consumed by a branch. If so, then (as the
   445     // branch is the last instruction in the basic block) force it to the
   446     // end of the basic block
   447     if ( must_clone[iop] ) {
   448       // See if any use is a branch
   449       bool found_machif = false;
   451       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   452         Node* use = n->fast_out(j);
   454         // The use is a conditional branch, make them adjacent
   455         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   456           found_machif = true;
   457           break;
   458         }
   460         // More than this instruction pending for successor to be ready,
   461         // don't choose this if other opportunities are ready
   462         if (ready_cnt[use->_idx] > 1)
   463           n_choice = 1;
   464       }
   466       // loop terminated, prefer not to use this instruction
   467       if (found_machif)
   468         continue;
   469     }
   471     // See if this has a predecessor that is "must_clone", i.e. sets the
   472     // condition code. If so, choose this first
   473     for (uint j = 0; j < n->req() ; j++) {
   474       Node *inn = n->in(j);
   475       if (inn) {
   476         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   477           n_choice = 3;
   478           break;
   479         }
   480       }
   481     }
   483     // MachTemps should be scheduled last so they are near their uses
   484     if (n->is_MachTemp()) {
   485       n_choice = 1;
   486     }
   488     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
   489     uint n_score   = n->req();   // Many inputs get high score to break ties
   491     // Keep best latency found
   492     if( choice < n_choice ||
   493         ( choice == n_choice &&
   494           ( latency < n_latency ||
   495             ( latency == n_latency &&
   496               ( score < n_score ))))) {
   497       choice  = n_choice;
   498       latency = n_latency;
   499       score   = n_score;
   500       idx     = i;               // Also keep index in worklist
   501     }
   502   } // End of for all ready nodes in worklist
   504   assert(idx >= 0, "index should be set");
   505   Node *n = worklist[(uint)idx];      // Get the winner
   507   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   508   return n;
   509 }
   512 //------------------------------set_next_call----------------------------------
   513 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   514   if( next_call.test_set(n->_idx) ) return;
   515   for( uint i=0; i<n->len(); i++ ) {
   516     Node *m = n->in(i);
   517     if( !m ) continue;  // must see all nodes in block that precede call
   518     if( bbs[m->_idx] == this )
   519       set_next_call( m, next_call, bbs );
   520   }
   521 }
   523 //------------------------------needed_for_next_call---------------------------
   524 // Set the flag 'next_call' for each Node that is needed for the next call to
   525 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   526 // next subroutine call get priority - basically it moves things NOT needed
   527 // for the next call till after the call.  This prevents me from trying to
   528 // carry lots of stuff live across a call.
   529 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   530   // Find the next control-defining Node in this block
   531   Node* call = NULL;
   532   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   533     Node* m = this_call->fast_out(i);
   534     if( bbs[m->_idx] == this && // Local-block user
   535         m != this_call &&       // Not self-start node
   536         m->is_Call() )
   537       call = m;
   538       break;
   539   }
   540   if (call == NULL)  return;    // No next call (e.g., block end is near)
   541   // Set next-call for all inputs to this call
   542   set_next_call(call, next_call, bbs);
   543 }
   545 //------------------------------sched_call-------------------------------------
   546 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   547   RegMask regs;
   549   // Schedule all the users of the call right now.  All the users are
   550   // projection Nodes, so they must be scheduled next to the call.
   551   // Collect all the defined registers.
   552   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   553     Node* n = mcall->fast_out(i);
   554     assert( n->Opcode()==Op_MachProj, "" );
   555     --ready_cnt[n->_idx];
   556     assert( !ready_cnt[n->_idx], "" );
   557     // Schedule next to call
   558     _nodes.map(node_cnt++, n);
   559     // Collect defined registers
   560     regs.OR(n->out_RegMask());
   561     // Check for scheduling the next control-definer
   562     if( n->bottom_type() == Type::CONTROL )
   563       // Warm up next pile of heuristic bits
   564       needed_for_next_call(n, next_call, bbs);
   566     // Children of projections are now all ready
   567     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   568       Node* m = n->fast_out(j); // Get user
   569       if( bbs[m->_idx] != this ) continue;
   570       if( m->is_Phi() ) continue;
   571       if( !--ready_cnt[m->_idx] )
   572         worklist.push(m);
   573     }
   575   }
   577   // Act as if the call defines the Frame Pointer.
   578   // Certainly the FP is alive and well after the call.
   579   regs.Insert(matcher.c_frame_pointer());
   581   // Set all registers killed and not already defined by the call.
   582   uint r_cnt = mcall->tf()->range()->cnt();
   583   int op = mcall->ideal_Opcode();
   584   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   585   bbs.map(proj->_idx,this);
   586   _nodes.insert(node_cnt++, proj);
   588   // Select the right register save policy.
   589   const char * save_policy;
   590   switch (op) {
   591     case Op_CallRuntime:
   592     case Op_CallLeaf:
   593     case Op_CallLeafNoFP:
   594       // Calling C code so use C calling convention
   595       save_policy = matcher._c_reg_save_policy;
   596       break;
   598     case Op_CallStaticJava:
   599     case Op_CallDynamicJava:
   600       // Calling Java code so use Java calling convention
   601       save_policy = matcher._register_save_policy;
   602       break;
   604     default:
   605       ShouldNotReachHere();
   606   }
   608   // When using CallRuntime mark SOE registers as killed by the call
   609   // so values that could show up in the RegisterMap aren't live in a
   610   // callee saved register since the register wouldn't know where to
   611   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   612   // have debug info on them.  Strictly speaking this only needs to be
   613   // done for oops since idealreg2debugmask takes care of debug info
   614   // references but there no way to handle oops differently than other
   615   // pointers as far as the kill mask goes.
   616   bool exclude_soe = op == Op_CallRuntime;
   618   // If the call is a MethodHandle invoke, we need to exclude the
   619   // register which is used to save the SP value over MH invokes from
   620   // the mask.  Otherwise this register could be used for
   621   // deoptimization information.
   622   if (op == Op_CallStaticJava) {
   623     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   624     if (mcallstaticjava->_method_handle_invoke)
   625       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   626   }
   628   // Fill in the kill mask for the call
   629   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   630     if( !regs.Member(r) ) {     // Not already defined by the call
   631       // Save-on-call register?
   632       if ((save_policy[r] == 'C') ||
   633           (save_policy[r] == 'A') ||
   634           ((save_policy[r] == 'E') && exclude_soe)) {
   635         proj->_rout.Insert(r);
   636       }
   637     }
   638   }
   640   return node_cnt;
   641 }
   644 //------------------------------schedule_local---------------------------------
   645 // Topological sort within a block.  Someday become a real scheduler.
   646 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
   647   // Already "sorted" are the block start Node (as the first entry), and
   648   // the block-ending Node and any trailing control projections.  We leave
   649   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   650   // Node.  Everything else gets topo-sorted.
   652 #ifndef PRODUCT
   653     if (cfg->trace_opto_pipelining()) {
   654       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   655       for (uint i = 0;i < _nodes.size();i++) {
   656         tty->print("# ");
   657         _nodes[i]->fast_dump();
   658       }
   659       tty->print_cr("#");
   660     }
   661 #endif
   663   // RootNode is already sorted
   664   if( _nodes.size() == 1 ) return true;
   666   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   667   uint node_cnt = end_idx();
   668   uint phi_cnt = 1;
   669   uint i;
   670   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   671     Node *n = _nodes[i];
   672     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   673         (n->is_Proj()  && n->in(0) == head()) ) {
   674       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   675       _nodes.map(i,_nodes[phi_cnt]);
   676       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   677     } else {                    // All others
   678       // Count block-local inputs to 'n'
   679       uint cnt = n->len();      // Input count
   680       uint local = 0;
   681       for( uint j=0; j<cnt; j++ ) {
   682         Node *m = n->in(j);
   683         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   684           local++;              // One more block-local input
   685       }
   686       ready_cnt[n->_idx] = local; // Count em up
   688       // A few node types require changing a required edge to a precedence edge
   689       // before allocation.
   690       if( UseConcMarkSweepGC || UseG1GC ) {
   691         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   692           // Note: Required edges with an index greater than oper_input_base
   693           // are not supported by the allocator.
   694           // Note2: Can only depend on unmatched edge being last,
   695           // can not depend on its absolute position.
   696           Node *oop_store = n->in(n->req() - 1);
   697           n->del_req(n->req() - 1);
   698           n->add_prec(oop_store);
   699           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   700         }
   701       }
   702       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   703           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   704            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   705         // MemBarAcquire could be created without Precedent edge.
   706         // del_req() replaces the specified edge with the last input edge
   707         // and then removes the last edge. If the specified edge > number of
   708         // edges the last edge will be moved outside of the input edges array
   709         // and the edge will be lost. This is why this code should be
   710         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   711         Node *x = n->in(TypeFunc::Parms);
   712         n->del_req(TypeFunc::Parms);
   713         n->add_prec(x);
   714       }
   715     }
   716   }
   717   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   718     ready_cnt[_nodes[i2]->_idx] = 0;
   720   // All the prescheduled guys do not hold back internal nodes
   721   uint i3;
   722   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   723     Node *n = _nodes[i3];       // Get pre-scheduled
   724     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   725       Node* m = n->fast_out(j);
   726       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
   727         ready_cnt[m->_idx]--;   // Fix ready count
   728     }
   729   }
   731   Node_List delay;
   732   // Make a worklist
   733   Node_List worklist;
   734   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   735     Node *m = _nodes[i4];
   736     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
   737       if (m->is_iteratively_computed()) {
   738         // Push induction variable increments last to allow other uses
   739         // of the phi to be scheduled first. The select() method breaks
   740         // ties in scheduling by worklist order.
   741         delay.push(m);
   742       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   743         // Force the CreateEx to the top of the list so it's processed
   744         // first and ends up at the start of the block.
   745         worklist.insert(0, m);
   746       } else {
   747         worklist.push(m);         // Then on to worklist!
   748       }
   749     }
   750   }
   751   while (delay.size()) {
   752     Node* d = delay.pop();
   753     worklist.push(d);
   754   }
   756   // Warm up the 'next_call' heuristic bits
   757   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   759 #ifndef PRODUCT
   760     if (cfg->trace_opto_pipelining()) {
   761       for (uint j=0; j<_nodes.size(); j++) {
   762         Node     *n = _nodes[j];
   763         int     idx = n->_idx;
   764         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
   765         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
   766         tty->print("%4d: %s\n", idx, n->Name());
   767       }
   768     }
   769 #endif
   771   // Pull from worklist and schedule
   772   while( worklist.size() ) {    // Worklist is not ready
   774 #ifndef PRODUCT
   775     if (cfg->trace_opto_pipelining()) {
   776       tty->print("#   ready list:");
   777       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   778         Node *n = worklist[i];      // Get Node on worklist
   779         tty->print(" %d", n->_idx);
   780       }
   781       tty->cr();
   782     }
   783 #endif
   785     // Select and pop a ready guy from worklist
   786     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   787     _nodes.map(phi_cnt++,n);    // Schedule him next
   789 #ifndef PRODUCT
   790     if (cfg->trace_opto_pipelining()) {
   791       tty->print("#    select %d: %s", n->_idx, n->Name());
   792       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
   793       n->dump();
   794       if (Verbose) {
   795         tty->print("#   ready list:");
   796         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   797           Node *n = worklist[i];      // Get Node on worklist
   798           tty->print(" %d", n->_idx);
   799         }
   800         tty->cr();
   801       }
   802     }
   804 #endif
   805     if( n->is_MachCall() ) {
   806       MachCallNode *mcall = n->as_MachCall();
   807       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   808       continue;
   809     }
   810     // Children are now all ready
   811     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   812       Node* m = n->fast_out(i5); // Get user
   813       if( cfg->_bbs[m->_idx] != this ) continue;
   814       if( m->is_Phi() ) continue;
   815       if( !--ready_cnt[m->_idx] )
   816         worklist.push(m);
   817     }
   818   }
   820   if( phi_cnt != end_idx() ) {
   821     // did not schedule all.  Retry, Bailout, or Die
   822     Compile* C = matcher.C;
   823     if (C->subsume_loads() == true && !C->failing()) {
   824       // Retry with subsume_loads == false
   825       // If this is the first failure, the sentinel string will "stick"
   826       // to the Compile object, and the C2Compiler will see it and retry.
   827       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   828     }
   829     // assert( phi_cnt == end_idx(), "did not schedule all" );
   830     return false;
   831   }
   833 #ifndef PRODUCT
   834   if (cfg->trace_opto_pipelining()) {
   835     tty->print_cr("#");
   836     tty->print_cr("# after schedule_local");
   837     for (uint i = 0;i < _nodes.size();i++) {
   838       tty->print("# ");
   839       _nodes[i]->fast_dump();
   840     }
   841     tty->cr();
   842   }
   843 #endif
   846   return true;
   847 }
   849 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   850 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   851   for (uint l = 0; l < use->len(); l++) {
   852     if (use->in(l) == old_def) {
   853       if (l < use->req()) {
   854         use->set_req(l, new_def);
   855       } else {
   856         use->rm_prec(l);
   857         use->add_prec(new_def);
   858         l--;
   859       }
   860     }
   861   }
   862 }
   864 //------------------------------catch_cleanup_find_cloned_def------------------
   865 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   866   assert( use_blk != def_blk, "Inter-block cleanup only");
   868   // The use is some block below the Catch.  Find and return the clone of the def
   869   // that dominates the use. If there is no clone in a dominating block, then
   870   // create a phi for the def in a dominating block.
   872   // Find which successor block dominates this use.  The successor
   873   // blocks must all be single-entry (from the Catch only; I will have
   874   // split blocks to make this so), hence they all dominate.
   875   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   876     use_blk = use_blk->_idom;
   878   // Find the successor
   879   Node *fixup = NULL;
   881   uint j;
   882   for( j = 0; j < def_blk->_num_succs; j++ )
   883     if( use_blk == def_blk->_succs[j] )
   884       break;
   886   if( j == def_blk->_num_succs ) {
   887     // Block at same level in dom-tree is not a successor.  It needs a
   888     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   889     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   890     for(uint k = 1; k < use_blk->num_preds(); k++) {
   891       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   892     }
   894     // Check to see if the use_blk already has an identical phi inserted.
   895     // If it exists, it will be at the first position since all uses of a
   896     // def are processed together.
   897     Node *phi = use_blk->_nodes[1];
   898     if( phi->is_Phi() ) {
   899       fixup = phi;
   900       for (uint k = 1; k < use_blk->num_preds(); k++) {
   901         if (phi->in(k) != inputs[k]) {
   902           // Not a match
   903           fixup = NULL;
   904           break;
   905         }
   906       }
   907     }
   909     // If an existing PhiNode was not found, make a new one.
   910     if (fixup == NULL) {
   911       Node *new_phi = PhiNode::make(use_blk->head(), def);
   912       use_blk->_nodes.insert(1, new_phi);
   913       bbs.map(new_phi->_idx, use_blk);
   914       for (uint k = 1; k < use_blk->num_preds(); k++) {
   915         new_phi->set_req(k, inputs[k]);
   916       }
   917       fixup = new_phi;
   918     }
   920   } else {
   921     // Found the use just below the Catch.  Make it use the clone.
   922     fixup = use_blk->_nodes[n_clone_idx];
   923   }
   925   return fixup;
   926 }
   928 //--------------------------catch_cleanup_intra_block--------------------------
   929 // Fix all input edges in use that reference "def".  The use is in the same
   930 // block as the def and both have been cloned in each successor block.
   931 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   933   // Both the use and def have been cloned. For each successor block,
   934   // get the clone of the use, and make its input the clone of the def
   935   // found in that block.
   937   uint use_idx = blk->find_node(use);
   938   uint offset_idx = use_idx - beg;
   939   for( uint k = 0; k < blk->_num_succs; k++ ) {
   940     // Get clone in each successor block
   941     Block *sb = blk->_succs[k];
   942     Node *clone = sb->_nodes[offset_idx+1];
   943     assert( clone->Opcode() == use->Opcode(), "" );
   945     // Make use-clone reference the def-clone
   946     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   947   }
   948 }
   950 //------------------------------catch_cleanup_inter_block---------------------
   951 // Fix all input edges in use that reference "def".  The use is in a different
   952 // block than the def.
   953 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   954   if( !use_blk ) return;        // Can happen if the use is a precedence edge
   956   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
   957   catch_cleanup_fix_all_inputs(use, def, new_def);
   958 }
   960 //------------------------------call_catch_cleanup-----------------------------
   961 // If we inserted any instructions between a Call and his CatchNode,
   962 // clone the instructions on all paths below the Catch.
   963 void Block::call_catch_cleanup(Block_Array &bbs) {
   965   // End of region to clone
   966   uint end = end_idx();
   967   if( !_nodes[end]->is_Catch() ) return;
   968   // Start of region to clone
   969   uint beg = end;
   970   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
   971         !_nodes[beg-1]->in(0)->is_Call() ) {
   972     beg--;
   973     assert(beg > 0,"Catch cleanup walking beyond block boundary");
   974   }
   975   // Range of inserted instructions is [beg, end)
   976   if( beg == end ) return;
   978   // Clone along all Catch output paths.  Clone area between the 'beg' and
   979   // 'end' indices.
   980   for( uint i = 0; i < _num_succs; i++ ) {
   981     Block *sb = _succs[i];
   982     // Clone the entire area; ignoring the edge fixup for now.
   983     for( uint j = end; j > beg; j-- ) {
   984       // It is safe here to clone a node with anti_dependence
   985       // since clones dominate on each path.
   986       Node *clone = _nodes[j-1]->clone();
   987       sb->_nodes.insert( 1, clone );
   988       bbs.map(clone->_idx,sb);
   989     }
   990   }
   993   // Fixup edges.  Check the def-use info per cloned Node
   994   for(uint i2 = beg; i2 < end; i2++ ) {
   995     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
   996     Node *n = _nodes[i2];        // Node that got cloned
   997     // Need DU safe iterator because of edge manipulation in calls.
   998     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
   999     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
  1000       out->push(n->fast_out(j1));
  1002     uint max = out->size();
  1003     for (uint j = 0; j < max; j++) {// For all users
  1004       Node *use = out->pop();
  1005       Block *buse = bbs[use->_idx];
  1006       if( use->is_Phi() ) {
  1007         for( uint k = 1; k < use->req(); k++ )
  1008           if( use->in(k) == n ) {
  1009             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
  1010             use->set_req(k, fixup);
  1012       } else {
  1013         if (this == buse) {
  1014           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
  1015         } else {
  1016           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
  1019     } // End for all users
  1021   } // End of for all Nodes in cloned area
  1023   // Remove the now-dead cloned ops
  1024   for(uint i3 = beg; i3 < end; i3++ ) {
  1025     _nodes[beg]->disconnect_inputs(NULL);
  1026     _nodes.remove(beg);
  1029   // If the successor blocks have a CreateEx node, move it back to the top
  1030   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
  1031     Block *sb = _succs[i4];
  1032     uint new_cnt = end - beg;
  1033     // Remove any newly created, but dead, nodes.
  1034     for( uint j = new_cnt; j > 0; j-- ) {
  1035       Node *n = sb->_nodes[j];
  1036       if (n->outcnt() == 0 &&
  1037           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1038         n->disconnect_inputs(NULL);
  1039         sb->_nodes.remove(j);
  1040         new_cnt--;
  1043     // If any newly created nodes remain, move the CreateEx node to the top
  1044     if (new_cnt > 0) {
  1045       Node *cex = sb->_nodes[1+new_cnt];
  1046       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1047         sb->_nodes.remove(1+new_cnt);
  1048         sb->_nodes.insert(1,cex);

mercurial