src/share/vm/opto/loopnode.cpp

Fri, 11 Jul 2008 01:14:44 -0700

author
trims
date
Fri, 11 Jul 2008 01:14:44 -0700
changeset 670
9c2ecc2ffb12
parent 631
d1605aabd0a1
parent 657
2a1a77d3458f
child 728
c3e045194476
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_loopnode.cpp.incl"
    28 //=============================================================================
    29 //------------------------------is_loop_iv-------------------------------------
    30 // Determine if a node is Counted loop induction variable.
    31 // The method is declared in node.hpp.
    32 const Node* Node::is_loop_iv() const {
    33   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    34       this->as_Phi()->region()->is_CountedLoop() &&
    35       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    36     return this;
    37   } else {
    38     return NULL;
    39   }
    40 }
    42 //=============================================================================
    43 //------------------------------dump_spec--------------------------------------
    44 // Dump special per-node info
    45 #ifndef PRODUCT
    46 void LoopNode::dump_spec(outputStream *st) const {
    47   if( is_inner_loop () ) st->print( "inner " );
    48   if( is_partial_peel_loop () ) st->print( "partial_peel " );
    49   if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
    50 }
    51 #endif
    53 //------------------------------get_early_ctrl---------------------------------
    54 // Compute earliest legal control
    55 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    56   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    57   uint i;
    58   Node *early;
    59   if( n->in(0) ) {
    60     early = n->in(0);
    61     if( !early->is_CFG() ) // Might be a non-CFG multi-def
    62       early = get_ctrl(early);        // So treat input as a straight data input
    63     i = 1;
    64   } else {
    65     early = get_ctrl(n->in(1));
    66     i = 2;
    67   }
    68   uint e_d = dom_depth(early);
    69   assert( early, "" );
    70   for( ; i < n->req(); i++ ) {
    71     Node *cin = get_ctrl(n->in(i));
    72     assert( cin, "" );
    73     // Keep deepest dominator depth
    74     uint c_d = dom_depth(cin);
    75     if( c_d > e_d ) {           // Deeper guy?
    76       early = cin;              // Keep deepest found so far
    77       e_d = c_d;
    78     } else if( c_d == e_d &&    // Same depth?
    79                early != cin ) { // If not equal, must use slower algorithm
    80       // If same depth but not equal, one _must_ dominate the other
    81       // and we want the deeper (i.e., dominated) guy.
    82       Node *n1 = early;
    83       Node *n2 = cin;
    84       while( 1 ) {
    85         n1 = idom(n1);          // Walk up until break cycle
    86         n2 = idom(n2);
    87         if( n1 == cin ||        // Walked early up to cin
    88             dom_depth(n2) < c_d )
    89           break;                // early is deeper; keep him
    90         if( n2 == early ||      // Walked cin up to early
    91             dom_depth(n1) < c_d ) {
    92           early = cin;          // cin is deeper; keep him
    93           break;
    94         }
    95       }
    96       e_d = dom_depth(early);   // Reset depth register cache
    97     }
    98   }
   100   // Return earliest legal location
   101   assert(early == find_non_split_ctrl(early), "unexpected early control");
   103   return early;
   104 }
   106 //------------------------------set_early_ctrl---------------------------------
   107 // Set earliest legal control
   108 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   109   Node *early = get_early_ctrl(n);
   111   // Record earliest legal location
   112   set_ctrl(n, early);
   113 }
   115 //------------------------------set_subtree_ctrl-------------------------------
   116 // set missing _ctrl entries on new nodes
   117 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   118   // Already set?  Get out.
   119   if( _nodes[n->_idx] ) return;
   120   // Recursively set _nodes array to indicate where the Node goes
   121   uint i;
   122   for( i = 0; i < n->req(); ++i ) {
   123     Node *m = n->in(i);
   124     if( m && m != C->root() )
   125       set_subtree_ctrl( m );
   126   }
   128   // Fixup self
   129   set_early_ctrl( n );
   130 }
   132 //------------------------------is_counted_loop--------------------------------
   133 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   134   PhaseGVN *gvn = &_igvn;
   136   // Counted loop head must be a good RegionNode with only 3 not NULL
   137   // control input edges: Self, Entry, LoopBack.
   138   if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
   139     return NULL;
   141   Node *init_control = x->in(LoopNode::EntryControl);
   142   Node *back_control = x->in(LoopNode::LoopBackControl);
   143   if( init_control == NULL || back_control == NULL )    // Partially dead
   144     return NULL;
   145   // Must also check for TOP when looking for a dead loop
   146   if( init_control->is_top() || back_control->is_top() )
   147     return NULL;
   149   // Allow funny placement of Safepoint
   150   if( back_control->Opcode() == Op_SafePoint )
   151     back_control = back_control->in(TypeFunc::Control);
   153   // Controlling test for loop
   154   Node *iftrue = back_control;
   155   uint iftrue_op = iftrue->Opcode();
   156   if( iftrue_op != Op_IfTrue &&
   157       iftrue_op != Op_IfFalse )
   158     // I have a weird back-control.  Probably the loop-exit test is in
   159     // the middle of the loop and I am looking at some trailing control-flow
   160     // merge point.  To fix this I would have to partially peel the loop.
   161     return NULL; // Obscure back-control
   163   // Get boolean guarding loop-back test
   164   Node *iff = iftrue->in(0);
   165   if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
   166   BoolNode *test = iff->in(1)->as_Bool();
   167   BoolTest::mask bt = test->_test._test;
   168   float cl_prob = iff->as_If()->_prob;
   169   if( iftrue_op == Op_IfFalse ) {
   170     bt = BoolTest(bt).negate();
   171     cl_prob = 1.0 - cl_prob;
   172   }
   173   // Get backedge compare
   174   Node *cmp = test->in(1);
   175   int cmp_op = cmp->Opcode();
   176   if( cmp_op != Op_CmpI )
   177     return NULL;                // Avoid pointer & float compares
   179   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   180   Node *incr  = cmp->in(1);
   181   Node *limit = cmp->in(2);
   183   // ---------
   184   // need 'loop()' test to tell if limit is loop invariant
   185   // ---------
   187   if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
   188     Node *tmp = incr;           // Then reverse order into the CmpI
   189     incr = limit;
   190     limit = tmp;
   191     bt = BoolTest(bt).commute(); // And commute the exit test
   192   }
   193   if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
   194     return NULL;
   196   // Trip-counter increment must be commutative & associative.
   197   uint incr_op = incr->Opcode();
   198   if( incr_op == Op_Phi && incr->req() == 3 ) {
   199     incr = incr->in(2);         // Assume incr is on backedge of Phi
   200     incr_op = incr->Opcode();
   201   }
   202   Node* trunc1 = NULL;
   203   Node* trunc2 = NULL;
   204   const TypeInt* iv_trunc_t = NULL;
   205   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   206     return NULL; // Funny increment opcode
   207   }
   209   // Get merge point
   210   Node *xphi = incr->in(1);
   211   Node *stride = incr->in(2);
   212   if( !stride->is_Con() ) {     // Oops, swap these
   213     if( !xphi->is_Con() )       // Is the other guy a constant?
   214       return NULL;              // Nope, unknown stride, bail out
   215     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   216     xphi = stride;
   217     stride = tmp;
   218   }
   219   //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
   220   if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
   221   PhiNode *phi = xphi->as_Phi();
   223   // Stride must be constant
   224   const Type *stride_t = stride->bottom_type();
   225   int stride_con = stride_t->is_int()->get_con();
   226   assert( stride_con, "missed some peephole opt" );
   228   // Phi must be of loop header; backedge must wrap to increment
   229   if( phi->region() != x ) return NULL;
   230   if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   231       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
   232     return NULL;
   233   }
   234   Node *init_trip = phi->in(LoopNode::EntryControl);
   235   //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
   237   // If iv trunc type is smaller than int, check for possible wrap.
   238   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   239     assert(trunc1 != NULL, "must have found some truncation");
   241     // Get a better type for the phi (filtered thru if's)
   242     const TypeInt* phi_ft = filtered_type(phi);
   244     // Can iv take on a value that will wrap?
   245     //
   246     // Ensure iv's limit is not within "stride" of the wrap value.
   247     //
   248     // Example for "short" type
   249     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   250     //    If the stride is +10, then the last value of the induction
   251     //    variable before the increment (phi_ft->_hi) must be
   252     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   253     //    ensure no truncation occurs after the increment.
   255     if (stride_con > 0) {
   256       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   257           iv_trunc_t->_lo > phi_ft->_lo) {
   258         return NULL;  // truncation may occur
   259       }
   260     } else if (stride_con < 0) {
   261       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   262           iv_trunc_t->_hi < phi_ft->_hi) {
   263         return NULL;  // truncation may occur
   264       }
   265     }
   266     // No possibility of wrap so truncation can be discarded
   267     // Promote iv type to Int
   268   } else {
   269     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   270   }
   272   // =================================================
   273   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   274   //
   275   // Canonicalize the condition on the test.  If we can exactly determine
   276   // the trip-counter exit value, then set limit to that value and use
   277   // a '!=' test.  Otherwise use conditon '<' for count-up loops and
   278   // '>' for count-down loops.  If the condition is inverted and we will
   279   // be rolling through MININT to MAXINT, then bail out.
   281   C->print_method("Before CountedLoop", 3);
   283   // Check for SafePoint on backedge and remove
   284   Node *sfpt = x->in(LoopNode::LoopBackControl);
   285   if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   286     lazy_replace( sfpt, iftrue );
   287     loop->_tail = iftrue;
   288   }
   291   // If compare points to incr, we are ok.  Otherwise the compare
   292   // can directly point to the phi; in this case adjust the compare so that
   293   // it points to the incr by adusting the limit.
   294   if( cmp->in(1) == phi || cmp->in(2) == phi )
   295     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
   297   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   298   // Final value for iterator should be: trip_count * stride + init_trip.
   299   const Type *limit_t = limit->bottom_type();
   300   const Type *init_t = init_trip->bottom_type();
   301   Node *one_p = gvn->intcon( 1);
   302   Node *one_m = gvn->intcon(-1);
   304   Node *trip_count = NULL;
   305   Node *hook = new (C, 6) Node(6);
   306   switch( bt ) {
   307   case BoolTest::eq:
   308     return NULL;                // Bail out, but this loop trips at most twice!
   309   case BoolTest::ne:            // Ahh, the case we desire
   310     if( stride_con == 1 )
   311       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   312     else if( stride_con == -1 )
   313       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
   314     else
   315       return NULL;              // Odd stride; must prove we hit limit exactly
   316     set_subtree_ctrl( trip_count );
   317     //_loop.map(trip_count->_idx,loop(limit));
   318     break;
   319   case BoolTest::le:            // Maybe convert to '<' case
   320     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
   321     set_subtree_ctrl( limit );
   322     hook->init_req(4, limit);
   324     bt = BoolTest::lt;
   325     // Make the new limit be in the same loop nest as the old limit
   326     //_loop.map(limit->_idx,limit_loop);
   327     // Fall into next case
   328   case BoolTest::lt: {          // Maybe convert to '!=' case
   329     if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
   330     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   331     set_subtree_ctrl( range );
   332     hook->init_req(0, range);
   334     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   335     set_subtree_ctrl( bias );
   336     hook->init_req(1, bias);
   338     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
   339     set_subtree_ctrl( bias1 );
   340     hook->init_req(2, bias1);
   342     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   343     set_subtree_ctrl( trip_count );
   344     hook->init_req(3, trip_count);
   345     break;
   346   }
   348   case BoolTest::ge:            // Maybe convert to '>' case
   349     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
   350     set_subtree_ctrl( limit );
   351     hook->init_req(4 ,limit);
   353     bt = BoolTest::gt;
   354     // Make the new limit be in the same loop nest as the old limit
   355     //_loop.map(limit->_idx,limit_loop);
   356     // Fall into next case
   357   case BoolTest::gt: {          // Maybe convert to '!=' case
   358     if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
   359     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
   360     set_subtree_ctrl( range );
   361     hook->init_req(0, range);
   363     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
   364     set_subtree_ctrl( bias );
   365     hook->init_req(1, bias);
   367     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
   368     set_subtree_ctrl( bias1 );
   369     hook->init_req(2, bias1);
   371     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
   372     set_subtree_ctrl( trip_count );
   373     hook->init_req(3, trip_count);
   374     break;
   375   }
   376   }
   378   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
   379   set_subtree_ctrl( span );
   380   hook->init_req(5, span);
   382   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
   383   set_subtree_ctrl( limit );
   385   // Build a canonical trip test.
   386   // Clone code, as old values may be in use.
   387   incr = incr->clone();
   388   incr->set_req(1,phi);
   389   incr->set_req(2,stride);
   390   incr = _igvn.register_new_node_with_optimizer(incr);
   391   set_early_ctrl( incr );
   392   _igvn.hash_delete(phi);
   393   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   395   // If phi type is more restrictive than Int, raise to
   396   // Int to prevent (almost) infinite recursion in igvn
   397   // which can only handle integer types for constants or minint..maxint.
   398   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   399     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   400     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   401     nphi = _igvn.register_new_node_with_optimizer(nphi);
   402     set_ctrl(nphi, get_ctrl(phi));
   403     _igvn.subsume_node(phi, nphi);
   404     phi = nphi->as_Phi();
   405   }
   406   cmp = cmp->clone();
   407   cmp->set_req(1,incr);
   408   cmp->set_req(2,limit);
   409   cmp = _igvn.register_new_node_with_optimizer(cmp);
   410   set_ctrl(cmp, iff->in(0));
   412   Node *tmp = test->clone();
   413   assert( tmp->is_Bool(), "" );
   414   test = (BoolNode*)tmp;
   415   (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
   416   test->set_req(1,cmp);
   417   _igvn.register_new_node_with_optimizer(test);
   418   set_ctrl(test, iff->in(0));
   419   // If the exit test is dead, STOP!
   420   if( test == NULL ) return NULL;
   421   _igvn.hash_delete(iff);
   422   iff->set_req_X( 1, test, &_igvn );
   424   // Replace the old IfNode with a new LoopEndNode
   425   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
   426   IfNode *le = lex->as_If();
   427   uint dd = dom_depth(iff);
   428   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   429   set_loop(le, loop);
   431   // Get the loop-exit control
   432   Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   434   // Need to swap loop-exit and loop-back control?
   435   if( iftrue_op == Op_IfFalse ) {
   436     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
   437     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
   439     loop->_tail = back_control = ift2;
   440     set_loop(ift2, loop);
   441     set_loop(iff2, get_loop(if_f));
   443     // Lazy update of 'get_ctrl' mechanism.
   444     lazy_replace_proj( if_f  , iff2 );
   445     lazy_replace_proj( iftrue, ift2 );
   447     // Swap names
   448     if_f   = iff2;
   449     iftrue = ift2;
   450   } else {
   451     _igvn.hash_delete(if_f  );
   452     _igvn.hash_delete(iftrue);
   453     if_f  ->set_req_X( 0, le, &_igvn );
   454     iftrue->set_req_X( 0, le, &_igvn );
   455   }
   457   set_idom(iftrue, le, dd+1);
   458   set_idom(if_f,   le, dd+1);
   460   // Now setup a new CountedLoopNode to replace the existing LoopNode
   461   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
   462   // The following assert is approximately true, and defines the intention
   463   // of can_be_counted_loop.  It fails, however, because phase->type
   464   // is not yet initialized for this loop and its parts.
   465   //assert(l->can_be_counted_loop(this), "sanity");
   466   _igvn.register_new_node_with_optimizer(l);
   467   set_loop(l, loop);
   468   loop->_head = l;
   469   // Fix all data nodes placed at the old loop head.
   470   // Uses the lazy-update mechanism of 'get_ctrl'.
   471   lazy_replace( x, l );
   472   set_idom(l, init_control, dom_depth(x));
   474   // Check for immediately preceeding SafePoint and remove
   475   Node *sfpt2 = le->in(0);
   476   if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
   477     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   479   // Free up intermediate goo
   480   _igvn.remove_dead_node(hook);
   482   C->print_method("After CountedLoop", 3);
   484   // Return trip counter
   485   return trip_count;
   486 }
   489 //------------------------------Ideal------------------------------------------
   490 // Return a node which is more "ideal" than the current node.
   491 // Attempt to convert into a counted-loop.
   492 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   493   if (!can_be_counted_loop(phase)) {
   494     phase->C->set_major_progress();
   495   }
   496   return RegionNode::Ideal(phase, can_reshape);
   497 }
   500 //=============================================================================
   501 //------------------------------Ideal------------------------------------------
   502 // Return a node which is more "ideal" than the current node.
   503 // Attempt to convert into a counted-loop.
   504 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   505   return RegionNode::Ideal(phase, can_reshape);
   506 }
   508 //------------------------------dump_spec--------------------------------------
   509 // Dump special per-node info
   510 #ifndef PRODUCT
   511 void CountedLoopNode::dump_spec(outputStream *st) const {
   512   LoopNode::dump_spec(st);
   513   if( stride_is_con() ) {
   514     st->print("stride: %d ",stride_con());
   515   } else {
   516     st->print("stride: not constant ");
   517   }
   518   if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
   519   if( is_main_loop() ) st->print("main of N%d", _idx );
   520   if( is_post_loop() ) st->print("post of N%d", _main_idx );
   521 }
   522 #endif
   524 //=============================================================================
   525 int CountedLoopEndNode::stride_con() const {
   526   return stride()->bottom_type()->is_int()->get_con();
   527 }
   530 //----------------------match_incr_with_optional_truncation--------------------
   531 // Match increment with optional truncation:
   532 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
   533 // Return NULL for failure. Success returns the increment node.
   534 Node* CountedLoopNode::match_incr_with_optional_truncation(
   535                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
   536   // Quick cutouts:
   537   if (expr == NULL || expr->req() != 3)  return false;
   539   Node *t1 = NULL;
   540   Node *t2 = NULL;
   541   const TypeInt* trunc_t = TypeInt::INT;
   542   Node* n1 = expr;
   543   int   n1op = n1->Opcode();
   545   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
   546   if (n1op == Op_AndI &&
   547       n1->in(2)->is_Con() &&
   548       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
   549     // %%% This check should match any mask of 2**K-1.
   550     t1 = n1;
   551     n1 = t1->in(1);
   552     n1op = n1->Opcode();
   553     trunc_t = TypeInt::CHAR;
   554   } else if (n1op == Op_RShiftI &&
   555              n1->in(1) != NULL &&
   556              n1->in(1)->Opcode() == Op_LShiftI &&
   557              n1->in(2) == n1->in(1)->in(2) &&
   558              n1->in(2)->is_Con()) {
   559     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
   560     // %%% This check should match any shift in [1..31].
   561     if (shift == 16 || shift == 8) {
   562       t1 = n1;
   563       t2 = t1->in(1);
   564       n1 = t2->in(1);
   565       n1op = n1->Opcode();
   566       if (shift == 16) {
   567         trunc_t = TypeInt::SHORT;
   568       } else if (shift == 8) {
   569         trunc_t = TypeInt::BYTE;
   570       }
   571     }
   572   }
   574   // If (maybe after stripping) it is an AddI, we won:
   575   if (n1op == Op_AddI) {
   576     *trunc1 = t1;
   577     *trunc2 = t2;
   578     *trunc_type = trunc_t;
   579     return n1;
   580   }
   582   // failed
   583   return NULL;
   584 }
   587 //------------------------------filtered_type--------------------------------
   588 // Return a type based on condition control flow
   589 // A successful return will be a type that is restricted due
   590 // to a series of dominating if-tests, such as:
   591 //    if (i < 10) {
   592 //       if (i > 0) {
   593 //          here: "i" type is [1..10)
   594 //       }
   595 //    }
   596 // or a control flow merge
   597 //    if (i < 10) {
   598 //       do {
   599 //          phi( , ) -- at top of loop type is [min_int..10)
   600 //         i = ?
   601 //       } while ( i < 10)
   602 //
   603 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
   604   assert(n && n->bottom_type()->is_int(), "must be int");
   605   const TypeInt* filtered_t = NULL;
   606   if (!n->is_Phi()) {
   607     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
   608     filtered_t = filtered_type_from_dominators(n, n_ctrl);
   610   } else {
   611     Node* phi    = n->as_Phi();
   612     Node* region = phi->in(0);
   613     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
   614     if (region && region != C->top()) {
   615       for (uint i = 1; i < phi->req(); i++) {
   616         Node* val   = phi->in(i);
   617         Node* use_c = region->in(i);
   618         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
   619         if (val_t != NULL) {
   620           if (filtered_t == NULL) {
   621             filtered_t = val_t;
   622           } else {
   623             filtered_t = filtered_t->meet(val_t)->is_int();
   624           }
   625         }
   626       }
   627     }
   628   }
   629   const TypeInt* n_t = _igvn.type(n)->is_int();
   630   if (filtered_t != NULL) {
   631     n_t = n_t->join(filtered_t)->is_int();
   632   }
   633   return n_t;
   634 }
   637 //------------------------------filtered_type_from_dominators--------------------------------
   638 // Return a possibly more restrictive type for val based on condition control flow of dominators
   639 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
   640   if (val->is_Con()) {
   641      return val->bottom_type()->is_int();
   642   }
   643   uint if_limit = 10; // Max number of dominating if's visited
   644   const TypeInt* rtn_t = NULL;
   646   if (use_ctrl && use_ctrl != C->top()) {
   647     Node* val_ctrl = get_ctrl(val);
   648     uint val_dom_depth = dom_depth(val_ctrl);
   649     Node* pred = use_ctrl;
   650     uint if_cnt = 0;
   651     while (if_cnt < if_limit) {
   652       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
   653         if_cnt++;
   654         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
   655         if (if_t != NULL) {
   656           if (rtn_t == NULL) {
   657             rtn_t = if_t;
   658           } else {
   659             rtn_t = rtn_t->join(if_t)->is_int();
   660           }
   661         }
   662       }
   663       pred = idom(pred);
   664       if (pred == NULL || pred == C->top()) {
   665         break;
   666       }
   667       // Stop if going beyond definition block of val
   668       if (dom_depth(pred) < val_dom_depth) {
   669         break;
   670       }
   671     }
   672   }
   673   return rtn_t;
   674 }
   677 //------------------------------dump_spec--------------------------------------
   678 // Dump special per-node info
   679 #ifndef PRODUCT
   680 void CountedLoopEndNode::dump_spec(outputStream *st) const {
   681   if( in(TestValue)->is_Bool() ) {
   682     BoolTest bt( test_trip()); // Added this for g++.
   684     st->print("[");
   685     bt.dump_on(st);
   686     st->print("]");
   687   }
   688   st->print(" ");
   689   IfNode::dump_spec(st);
   690 }
   691 #endif
   693 //=============================================================================
   694 //------------------------------is_member--------------------------------------
   695 // Is 'l' a member of 'this'?
   696 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
   697   while( l->_nest > _nest ) l = l->_parent;
   698   return l == this;
   699 }
   701 //------------------------------set_nest---------------------------------------
   702 // Set loop tree nesting depth.  Accumulate _has_call bits.
   703 int IdealLoopTree::set_nest( uint depth ) {
   704   _nest = depth;
   705   int bits = _has_call;
   706   if( _child ) bits |= _child->set_nest(depth+1);
   707   if( bits ) _has_call = 1;
   708   if( _next  ) bits |= _next ->set_nest(depth  );
   709   return bits;
   710 }
   712 //------------------------------split_fall_in----------------------------------
   713 // Split out multiple fall-in edges from the loop header.  Move them to a
   714 // private RegionNode before the loop.  This becomes the loop landing pad.
   715 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
   716   PhaseIterGVN &igvn = phase->_igvn;
   717   uint i;
   719   // Make a new RegionNode to be the landing pad.
   720   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
   721   phase->set_loop(landing_pad,_parent);
   722   // Gather all the fall-in control paths into the landing pad
   723   uint icnt = fall_in_cnt;
   724   uint oreq = _head->req();
   725   for( i = oreq-1; i>0; i-- )
   726     if( !phase->is_member( this, _head->in(i) ) )
   727       landing_pad->set_req(icnt--,_head->in(i));
   729   // Peel off PhiNode edges as well
   730   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   731     Node *oj = _head->fast_out(j);
   732     if( oj->is_Phi() ) {
   733       PhiNode* old_phi = oj->as_Phi();
   734       assert( old_phi->region() == _head, "" );
   735       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
   736       Node *p = PhiNode::make_blank(landing_pad, old_phi);
   737       uint icnt = fall_in_cnt;
   738       for( i = oreq-1; i>0; i-- ) {
   739         if( !phase->is_member( this, _head->in(i) ) ) {
   740           p->init_req(icnt--, old_phi->in(i));
   741           // Go ahead and clean out old edges from old phi
   742           old_phi->del_req(i);
   743         }
   744       }
   745       // Search for CSE's here, because ZKM.jar does a lot of
   746       // loop hackery and we need to be a little incremental
   747       // with the CSE to avoid O(N^2) node blow-up.
   748       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
   749       if( p2 ) {                // Found CSE
   750         p->destruct();          // Recover useless new node
   751         p = p2;                 // Use old node
   752       } else {
   753         igvn.register_new_node_with_optimizer(p, old_phi);
   754       }
   755       // Make old Phi refer to new Phi.
   756       old_phi->add_req(p);
   757       // Check for the special case of making the old phi useless and
   758       // disappear it.  In JavaGrande I have a case where this useless
   759       // Phi is the loop limit and prevents recognizing a CountedLoop
   760       // which in turn prevents removing an empty loop.
   761       Node *id_old_phi = old_phi->Identity( &igvn );
   762       if( id_old_phi != old_phi ) { // Found a simple identity?
   763         // Note that I cannot call 'subsume_node' here, because
   764         // that will yank the edge from old_phi to the Region and
   765         // I'm mid-iteration over the Region's uses.
   766         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
   767           Node* use = old_phi->last_out(i);
   768           igvn.hash_delete(use);
   769           igvn._worklist.push(use);
   770           uint uses_found = 0;
   771           for (uint j = 0; j < use->len(); j++) {
   772             if (use->in(j) == old_phi) {
   773               if (j < use->req()) use->set_req (j, id_old_phi);
   774               else                use->set_prec(j, id_old_phi);
   775               uses_found++;
   776             }
   777           }
   778           i -= uses_found;    // we deleted 1 or more copies of this edge
   779         }
   780       }
   781       igvn._worklist.push(old_phi);
   782     }
   783   }
   784   // Finally clean out the fall-in edges from the RegionNode
   785   for( i = oreq-1; i>0; i-- ) {
   786     if( !phase->is_member( this, _head->in(i) ) ) {
   787       _head->del_req(i);
   788     }
   789   }
   790   // Transform landing pad
   791   igvn.register_new_node_with_optimizer(landing_pad, _head);
   792   // Insert landing pad into the header
   793   _head->add_req(landing_pad);
   794 }
   796 //------------------------------split_outer_loop-------------------------------
   797 // Split out the outermost loop from this shared header.
   798 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
   799   PhaseIterGVN &igvn = phase->_igvn;
   801   // Find index of outermost loop; it should also be my tail.
   802   uint outer_idx = 1;
   803   while( _head->in(outer_idx) != _tail ) outer_idx++;
   805   // Make a LoopNode for the outermost loop.
   806   Node *ctl = _head->in(LoopNode::EntryControl);
   807   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
   808   outer = igvn.register_new_node_with_optimizer(outer, _head);
   809   phase->set_created_loop_node();
   810   // Outermost loop falls into '_head' loop
   811   _head->set_req(LoopNode::EntryControl, outer);
   812   _head->del_req(outer_idx);
   813   // Split all the Phis up between '_head' loop and 'outer' loop.
   814   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   815     Node *out = _head->fast_out(j);
   816     if( out->is_Phi() ) {
   817       PhiNode *old_phi = out->as_Phi();
   818       assert( old_phi->region() == _head, "" );
   819       Node *phi = PhiNode::make_blank(outer, old_phi);
   820       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
   821       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
   822       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
   823       // Make old Phi point to new Phi on the fall-in path
   824       igvn.hash_delete(old_phi);
   825       old_phi->set_req(LoopNode::EntryControl, phi);
   826       old_phi->del_req(outer_idx);
   827       igvn._worklist.push(old_phi);
   828     }
   829   }
   831   // Use the new loop head instead of the old shared one
   832   _head = outer;
   833   phase->set_loop(_head, this);
   834 }
   836 //------------------------------fix_parent-------------------------------------
   837 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
   838   loop->_parent = parent;
   839   if( loop->_child ) fix_parent( loop->_child, loop   );
   840   if( loop->_next  ) fix_parent( loop->_next , parent );
   841 }
   843 //------------------------------estimate_path_freq-----------------------------
   844 static float estimate_path_freq( Node *n ) {
   845   // Try to extract some path frequency info
   846   IfNode *iff;
   847   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
   848     uint nop = n->Opcode();
   849     if( nop == Op_SafePoint ) {   // Skip any safepoint
   850       n = n->in(0);
   851       continue;
   852     }
   853     if( nop == Op_CatchProj ) {   // Get count from a prior call
   854       // Assume call does not always throw exceptions: means the call-site
   855       // count is also the frequency of the fall-through path.
   856       assert( n->is_CatchProj(), "" );
   857       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
   858         return 0.0f;            // Assume call exception path is rare
   859       Node *call = n->in(0)->in(0)->in(0);
   860       assert( call->is_Call(), "expect a call here" );
   861       const JVMState *jvms = ((CallNode*)call)->jvms();
   862       ciMethodData* methodData = jvms->method()->method_data();
   863       if (!methodData->is_mature())  return 0.0f; // No call-site data
   864       ciProfileData* data = methodData->bci_to_data(jvms->bci());
   865       if ((data == NULL) || !data->is_CounterData()) {
   866         // no call profile available, try call's control input
   867         n = n->in(0);
   868         continue;
   869       }
   870       return data->as_CounterData()->count()/FreqCountInvocations;
   871     }
   872     // See if there's a gating IF test
   873     Node *n_c = n->in(0);
   874     if( !n_c->is_If() ) break;       // No estimate available
   875     iff = n_c->as_If();
   876     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
   877       // Compute how much count comes on this path
   878       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
   879     // Have no count info.  Skip dull uncommon-trap like branches.
   880     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
   881         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
   882       break;
   883     // Skip through never-taken branch; look for a real loop exit.
   884     n = iff->in(0);
   885   }
   886   return 0.0f;                  // No estimate available
   887 }
   889 //------------------------------merge_many_backedges---------------------------
   890 // Merge all the backedges from the shared header into a private Region.
   891 // Feed that region as the one backedge to this loop.
   892 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
   893   uint i;
   895   // Scan for the top 2 hottest backedges
   896   float hotcnt = 0.0f;
   897   float warmcnt = 0.0f;
   898   uint hot_idx = 0;
   899   // Loop starts at 2 because slot 1 is the fall-in path
   900   for( i = 2; i < _head->req(); i++ ) {
   901     float cnt = estimate_path_freq(_head->in(i));
   902     if( cnt > hotcnt ) {       // Grab hottest path
   903       warmcnt = hotcnt;
   904       hotcnt = cnt;
   905       hot_idx = i;
   906     } else if( cnt > warmcnt ) { // And 2nd hottest path
   907       warmcnt = cnt;
   908     }
   909   }
   911   // See if the hottest backedge is worthy of being an inner loop
   912   // by being much hotter than the next hottest backedge.
   913   if( hotcnt <= 0.0001 ||
   914       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
   916   // Peel out the backedges into a private merge point; peel
   917   // them all except optionally hot_idx.
   918   PhaseIterGVN &igvn = phase->_igvn;
   920   Node *hot_tail = NULL;
   921   // Make a Region for the merge point
   922   Node *r = new (phase->C, 1) RegionNode(1);
   923   for( i = 2; i < _head->req(); i++ ) {
   924     if( i != hot_idx )
   925       r->add_req( _head->in(i) );
   926     else hot_tail = _head->in(i);
   927   }
   928   igvn.register_new_node_with_optimizer(r, _head);
   929   // Plug region into end of loop _head, followed by hot_tail
   930   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
   931   _head->set_req(2, r);
   932   if( hot_idx ) _head->add_req(hot_tail);
   934   // Split all the Phis up between '_head' loop and the Region 'r'
   935   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
   936     Node *out = _head->fast_out(j);
   937     if( out->is_Phi() ) {
   938       PhiNode* n = out->as_Phi();
   939       igvn.hash_delete(n);      // Delete from hash before hacking edges
   940       Node *hot_phi = NULL;
   941       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
   942       // Check all inputs for the ones to peel out
   943       uint j = 1;
   944       for( uint i = 2; i < n->req(); i++ ) {
   945         if( i != hot_idx )
   946           phi->set_req( j++, n->in(i) );
   947         else hot_phi = n->in(i);
   948       }
   949       // Register the phi but do not transform until whole place transforms
   950       igvn.register_new_node_with_optimizer(phi, n);
   951       // Add the merge phi to the old Phi
   952       while( n->req() > 3 ) n->del_req( n->req()-1 );
   953       n->set_req(2, phi);
   954       if( hot_idx ) n->add_req(hot_phi);
   955     }
   956   }
   959   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
   960   // of self loop tree.  Turn self into a loop headed by _head and with
   961   // tail being the new merge point.
   962   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
   963   phase->set_loop(_tail,ilt);   // Adjust tail
   964   _tail = r;                    // Self's tail is new merge point
   965   phase->set_loop(r,this);
   966   ilt->_child = _child;         // New guy has my children
   967   _child = ilt;                 // Self has new guy as only child
   968   ilt->_parent = this;          // new guy has self for parent
   969   ilt->_nest = _nest;           // Same nesting depth (for now)
   971   // Starting with 'ilt', look for child loop trees using the same shared
   972   // header.  Flatten these out; they will no longer be loops in the end.
   973   IdealLoopTree **pilt = &_child;
   974   while( ilt ) {
   975     if( ilt->_head == _head ) {
   976       uint i;
   977       for( i = 2; i < _head->req(); i++ )
   978         if( _head->in(i) == ilt->_tail )
   979           break;                // Still a loop
   980       if( i == _head->req() ) { // No longer a loop
   981         // Flatten ilt.  Hang ilt's "_next" list from the end of
   982         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
   983         IdealLoopTree **cp = &ilt->_child;
   984         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
   985         *cp = ilt->_next;       // Hang next list at end of child list
   986         *pilt = ilt->_child;    // Move child up to replace ilt
   987         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
   988         ilt = ilt->_child;      // Repeat using new ilt
   989         continue;               // do not advance over ilt->_child
   990       }
   991       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
   992       phase->set_loop(_head,ilt);
   993     }
   994     pilt = &ilt->_child;        // Advance to next
   995     ilt = *pilt;
   996   }
   998   if( _child ) fix_parent( _child, this );
   999 }
  1001 //------------------------------beautify_loops---------------------------------
  1002 // Split shared headers and insert loop landing pads.
  1003 // Insert a LoopNode to replace the RegionNode.
  1004 // Return TRUE if loop tree is structurally changed.
  1005 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1006   bool result = false;
  1007   // Cache parts in locals for easy
  1008   PhaseIterGVN &igvn = phase->_igvn;
  1010   phase->C->print_method("Before beautify loops", 3);
  1012   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1014   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1015   int fall_in_cnt = 0;
  1016   for( uint i = 1; i < _head->req(); i++ )
  1017     if( !phase->is_member( this, _head->in(i) ) )
  1018       fall_in_cnt++;
  1019   assert( fall_in_cnt, "at least 1 fall-in path" );
  1020   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1021     split_fall_in( phase, fall_in_cnt );
  1023   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1024   // the left.
  1025   fall_in_cnt = 1;
  1026   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1027     fall_in_cnt++;
  1028   if( fall_in_cnt > 1 ) {
  1029     // Since I am just swapping inputs I do not need to update def-use info
  1030     Node *tmp = _head->in(1);
  1031     _head->set_req( 1, _head->in(fall_in_cnt) );
  1032     _head->set_req( fall_in_cnt, tmp );
  1033     // Swap also all Phis
  1034     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1035       Node* phi = _head->fast_out(i);
  1036       if( phi->is_Phi() ) {
  1037         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1038         tmp = phi->in(1);
  1039         phi->set_req( 1, phi->in(fall_in_cnt) );
  1040         phi->set_req( fall_in_cnt, tmp );
  1044   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1045   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1047   // If I am a shared header (multiple backedges), peel off the many
  1048   // backedges into a private merge point and use the merge point as
  1049   // the one true backedge.
  1050   if( _head->req() > 3 ) {
  1051     // Merge the many backedges into a single backedge.
  1052     merge_many_backedges( phase );
  1053     result = true;
  1056   // If I am a shared header (multiple backedges), peel off myself loop.
  1057   // I better be the outermost loop.
  1058   if( _head->req() > 3 ) {
  1059     split_outer_loop( phase );
  1060     result = true;
  1062   } else if( !_head->is_Loop() && !_irreducible ) {
  1063     // Make a new LoopNode to replace the old loop head
  1064     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
  1065     l = igvn.register_new_node_with_optimizer(l, _head);
  1066     phase->set_created_loop_node();
  1067     // Go ahead and replace _head
  1068     phase->_igvn.subsume_node( _head, l );
  1069     _head = l;
  1070     phase->set_loop(_head, this);
  1071     for (DUIterator_Fast imax, i = l->fast_outs(imax); i < imax; i++)
  1072       phase->_igvn.add_users_to_worklist(l->fast_out(i));
  1075   // Now recursively beautify nested loops
  1076   if( _child ) result |= _child->beautify_loops( phase );
  1077   if( _next  ) result |= _next ->beautify_loops( phase );
  1078   return result;
  1081 //------------------------------allpaths_check_safepts----------------------------
  1082 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1083 // encountered.  Helper for check_safepts.
  1084 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1085   assert(stack.size() == 0, "empty stack");
  1086   stack.push(_tail);
  1087   visited.Clear();
  1088   visited.set(_tail->_idx);
  1089   while (stack.size() > 0) {
  1090     Node* n = stack.pop();
  1091     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1092       // Terminate this path
  1093     } else if (n->Opcode() == Op_SafePoint) {
  1094       if (_phase->get_loop(n) != this) {
  1095         if (_required_safept == NULL) _required_safept = new Node_List();
  1096         _required_safept->push(n);  // save the one closest to the tail
  1098       // Terminate this path
  1099     } else {
  1100       uint start = n->is_Region() ? 1 : 0;
  1101       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1102       for (uint i = start; i < end; i++) {
  1103         Node* in = n->in(i);
  1104         assert(in->is_CFG(), "must be");
  1105         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1106           stack.push(in);
  1113 //------------------------------check_safepts----------------------------
  1114 // Given dominators, try to find loops with calls that must always be
  1115 // executed (call dominates loop tail).  These loops do not need non-call
  1116 // safepoints (ncsfpt).
  1117 //
  1118 // A complication is that a safepoint in a inner loop may be needed
  1119 // by an outer loop. In the following, the inner loop sees it has a
  1120 // call (block 3) on every path from the head (block 2) to the
  1121 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1122 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1123 //
  1124 //          entry  0
  1125 //                 |
  1126 //                 v
  1127 // outer 1,2    +->1
  1128 //              |  |
  1129 //              |  v
  1130 //              |  2<---+  ncsfpt in 2
  1131 //              |_/|\   |
  1132 //                 | v  |
  1133 // inner 2,3      /  3  |  call in 3
  1134 //               /   |  |
  1135 //              v    +--+
  1136 //        exit  4
  1137 //
  1138 //
  1139 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1140 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1141 // is first looked for in the lists for the outer loops of the current loop.
  1142 //
  1143 // The insights into the problem:
  1144 //  A) counted loops are okay
  1145 //  B) innermost loops are okay (only an inner loop can delete
  1146 //     a ncsfpt needed by an outer loop)
  1147 //  C) a loop is immune from an inner loop deleting a safepoint
  1148 //     if the loop has a call on the idom-path
  1149 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1150 //     idom-path that is not in a nested loop
  1151 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1152 //     loop needs to be prevented from deletion by an inner loop
  1153 //
  1154 // There are two analyses:
  1155 //  1) The first, and cheaper one, scans the loop body from
  1156 //     tail to head following the idom (immediate dominator)
  1157 //     chain, looking for the cases (C,D,E) above.
  1158 //     Since inner loops are scanned before outer loops, there is summary
  1159 //     information about inner loops.  Inner loops can be skipped over
  1160 //     when the tail of an inner loop is encountered.
  1161 //
  1162 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1163 //     the idom path (which is rare), scans all predecessor control paths
  1164 //     from the tail to the head, terminating a path when a call or sfpt
  1165 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1166 //
  1167 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1168   // Bottom up traversal
  1169   IdealLoopTree* ch = _child;
  1170   while (ch != NULL) {
  1171     ch->check_safepts(visited, stack);
  1172     ch = ch->_next;
  1175   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1176     bool  has_call         = false; // call on dom-path
  1177     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1178     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1179     // Scan the dom-path nodes from tail to head
  1180     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1181       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1182         has_call = true;
  1183         _has_sfpt = 1;          // Then no need for a safept!
  1184         break;
  1185       } else if (n->Opcode() == Op_SafePoint) {
  1186         if (_phase->get_loop(n) == this) {
  1187           has_local_ncsfpt = true;
  1188           break;
  1190         if (nonlocal_ncsfpt == NULL) {
  1191           nonlocal_ncsfpt = n; // save the one closest to the tail
  1193       } else {
  1194         IdealLoopTree* nlpt = _phase->get_loop(n);
  1195         if (this != nlpt) {
  1196           // If at an inner loop tail, see if the inner loop has already
  1197           // recorded seeing a call on the dom-path (and stop.)  If not,
  1198           // jump to the head of the inner loop.
  1199           assert(is_member(nlpt), "nested loop");
  1200           Node* tail = nlpt->_tail;
  1201           if (tail->in(0)->is_If()) tail = tail->in(0);
  1202           if (n == tail) {
  1203             // If inner loop has call on dom-path, so does outer loop
  1204             if (nlpt->_has_sfpt) {
  1205               has_call = true;
  1206               _has_sfpt = 1;
  1207               break;
  1209             // Skip to head of inner loop
  1210             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1211             n = nlpt->_head;
  1216     // Record safept's that this loop needs preserved when an
  1217     // inner loop attempts to delete it's safepoints.
  1218     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1219       if (nonlocal_ncsfpt != NULL) {
  1220         if (_required_safept == NULL) _required_safept = new Node_List();
  1221         _required_safept->push(nonlocal_ncsfpt);
  1222       } else {
  1223         // Failed to find a suitable safept on the dom-path.  Now use
  1224         // an all paths walk from tail to head, looking for safepoints to preserve.
  1225         allpaths_check_safepts(visited, stack);
  1231 //---------------------------is_deleteable_safept----------------------------
  1232 // Is safept not required by an outer loop?
  1233 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1234   assert(sfpt->Opcode() == Op_SafePoint, "");
  1235   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1236   while (lp != NULL) {
  1237     Node_List* sfpts = lp->_required_safept;
  1238     if (sfpts != NULL) {
  1239       for (uint i = 0; i < sfpts->size(); i++) {
  1240         if (sfpt == sfpts->at(i))
  1241           return false;
  1244     lp = lp->_parent;
  1246   return true;
  1249 //------------------------------counted_loop-----------------------------------
  1250 // Convert to counted loops where possible
  1251 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1253   // For grins, set the inner-loop flag here
  1254   if( !_child ) {
  1255     if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
  1258   if( _head->is_CountedLoop() ||
  1259       phase->is_counted_loop( _head, this ) ) {
  1260     _has_sfpt = 1;              // Indicate we do not need a safepoint here
  1262     // Look for a safepoint to remove
  1263     for (Node* n = tail(); n != _head; n = phase->idom(n))
  1264       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1265           phase->is_deleteable_safept(n))
  1266         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1268     CountedLoopNode *cl = _head->as_CountedLoop();
  1269     Node *incr = cl->incr();
  1270     if( !incr ) return;         // Dead loop?
  1271     Node *init = cl->init_trip();
  1272     Node *phi  = cl->phi();
  1273     // protect against stride not being a constant
  1274     if( !cl->stride_is_con() ) return;
  1275     int stride_con = cl->stride_con();
  1277     // Look for induction variables
  1279     // Visit all children, looking for Phis
  1280     for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1281       Node *out = cl->out(i);
  1282       if (!out->is_Phi())  continue; // Looking for phis
  1283       PhiNode* phi2 = out->as_Phi();
  1284       Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1285       // Look for induction variables of the form:  X += constant
  1286       if( phi2->region() != _head ||
  1287           incr2->req() != 3 ||
  1288           incr2->in(1) != phi2 ||
  1289           incr2 == incr ||
  1290           incr2->Opcode() != Op_AddI ||
  1291           !incr2->in(2)->is_Con() )
  1292         continue;
  1294       // Check for parallel induction variable (parallel to trip counter)
  1295       // via an affine function.  In particular, count-down loops with
  1296       // count-up array indices are common. We only RCE references off
  1297       // the trip-counter, so we need to convert all these to trip-counter
  1298       // expressions.
  1299       Node *init2 = phi2->in( LoopNode::EntryControl );
  1300       int stride_con2 = incr2->in(2)->get_int();
  1302       // The general case here gets a little tricky.  We want to find the
  1303       // GCD of all possible parallel IV's and make a new IV using this
  1304       // GCD for the loop.  Then all possible IVs are simple multiples of
  1305       // the GCD.  In practice, this will cover very few extra loops.
  1306       // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1307       // where +/-1 is the common case, but other integer multiples are
  1308       // also easy to handle.
  1309       int ratio_con = stride_con2/stride_con;
  1311       if( ratio_con * stride_con == stride_con2 ) { // Check for exact
  1312         // Convert to using the trip counter.  The parallel induction
  1313         // variable differs from the trip counter by a loop-invariant
  1314         // amount, the difference between their respective initial values.
  1315         // It is scaled by the 'ratio_con'.
  1316         Compile* C = phase->C;
  1317         Node* ratio = phase->_igvn.intcon(ratio_con);
  1318         phase->set_ctrl(ratio, C->root());
  1319         Node* ratio_init = new (C, 3) MulINode(init, ratio);
  1320         phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
  1321         phase->set_early_ctrl(ratio_init);
  1322         Node* diff = new (C, 3) SubINode(init2, ratio_init);
  1323         phase->_igvn.register_new_node_with_optimizer(diff, init2);
  1324         phase->set_early_ctrl(diff);
  1325         Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
  1326         phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1327         phase->set_ctrl(ratio_idx, cl);
  1328         Node* add  = new (C, 3) AddINode(ratio_idx, diff);
  1329         phase->_igvn.register_new_node_with_optimizer(add);
  1330         phase->set_ctrl(add, cl);
  1331         phase->_igvn.hash_delete( phi2 );
  1332         phase->_igvn.subsume_node( phi2, add );
  1333         // Sometimes an induction variable is unused
  1334         if (add->outcnt() == 0) {
  1335           phase->_igvn.remove_dead_node(add);
  1337         --i; // deleted this phi; rescan starting with next position
  1338         continue;
  1341   } else if (_parent != NULL && !_irreducible) {
  1342     // Not a counted loop.
  1343     // Look for a safepoint on the idom-path to remove, preserving the first one
  1344     bool found = false;
  1345     Node* n = tail();
  1346     for (; n != _head && !found; n = phase->idom(n)) {
  1347       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
  1348         found = true; // Found one
  1350     // Skip past it and delete the others
  1351     for (; n != _head; n = phase->idom(n)) {
  1352       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
  1353           phase->is_deleteable_safept(n))
  1354         phase->lazy_replace(n,n->in(TypeFunc::Control));
  1358   // Recursively
  1359   if( _child ) _child->counted_loop( phase );
  1360   if( _next  ) _next ->counted_loop( phase );
  1363 #ifndef PRODUCT
  1364 //------------------------------dump_head--------------------------------------
  1365 // Dump 1 liner for loop header info
  1366 void IdealLoopTree::dump_head( ) const {
  1367   for( uint i=0; i<_nest; i++ )
  1368     tty->print("  ");
  1369   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1370   if( _irreducible ) tty->print(" IRREDUCIBLE");
  1371   if( _head->is_CountedLoop() ) {
  1372     CountedLoopNode *cl = _head->as_CountedLoop();
  1373     tty->print(" counted");
  1374     if( cl->is_pre_loop () ) tty->print(" pre" );
  1375     if( cl->is_main_loop() ) tty->print(" main");
  1376     if( cl->is_post_loop() ) tty->print(" post");
  1378   tty->cr();
  1381 //------------------------------dump-------------------------------------------
  1382 // Dump loops by loop tree
  1383 void IdealLoopTree::dump( ) const {
  1384   dump_head();
  1385   if( _child ) _child->dump();
  1386   if( _next  ) _next ->dump();
  1389 #endif
  1391 //=============================================================================
  1392 //------------------------------PhaseIdealLoop---------------------------------
  1393 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  1394 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  1395 PhaseIdealLoop::PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs )
  1396   : PhaseTransform(Ideal_Loop),
  1397     _igvn(igvn),
  1398     _dom_lca_tags(C->comp_arena()) {
  1399   // Reset major-progress flag for the driver's heuristics
  1400   C->clear_major_progress();
  1402 #ifndef PRODUCT
  1403   // Capture for later assert
  1404   uint unique = C->unique();
  1405   _loop_invokes++;
  1406   _loop_work += unique;
  1407 #endif
  1409   // True if the method has at least 1 irreducible loop
  1410   _has_irreducible_loops = false;
  1412   _created_loop_node = false;
  1414   Arena *a = Thread::current()->resource_area();
  1415   VectorSet visited(a);
  1416   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  1417   _nodes.map(C->unique(), NULL);
  1418   memset(_nodes.adr(), 0, wordSize * C->unique());
  1420   // Pre-build the top-level outermost loop tree entry
  1421   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  1422   // Do not need a safepoint at the top level
  1423   _ltree_root->_has_sfpt = 1;
  1425   // Empty pre-order array
  1426   allocate_preorders();
  1428   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  1429   // IdealLoopTree entries.  Data nodes are NOT walked.
  1430   build_loop_tree();
  1431   // Check for bailout, and return
  1432   if (C->failing()) {
  1433     return;
  1436   // No loops after all
  1437   if( !_ltree_root->_child ) C->set_has_loops(false);
  1439   // There should always be an outer loop containing the Root and Return nodes.
  1440   // If not, we have a degenerate empty program.  Bail out in this case.
  1441   if (!has_node(C->root())) {
  1442     C->clear_major_progress();
  1443     C->record_method_not_compilable("empty program detected during loop optimization");
  1444     return;
  1447   // Nothing to do, so get out
  1448   if( !C->has_loops() && !do_split_ifs && !verify_me) {
  1449     _igvn.optimize();           // Cleanup NeverBranches
  1450     return;
  1453   // Set loop nesting depth
  1454   _ltree_root->set_nest( 0 );
  1456   // Split shared headers and insert loop landing pads.
  1457   // Do not bother doing this on the Root loop of course.
  1458   if( !verify_me && _ltree_root->_child ) {
  1459     if( _ltree_root->_child->beautify_loops( this ) ) {
  1460       // Re-build loop tree!
  1461       _ltree_root->_child = NULL;
  1462       _nodes.clear();
  1463       reallocate_preorders();
  1464       build_loop_tree();
  1465       // Check for bailout, and return
  1466       if (C->failing()) {
  1467         return;
  1469       // Reset loop nesting depth
  1470       _ltree_root->set_nest( 0 );
  1472       C->print_method("After beautify loops", 3);
  1476   // Build Dominators for elision of NULL checks & loop finding.
  1477   // Since nodes do not have a slot for immediate dominator, make
  1478   // a persistant side array for that info indexed on node->_idx.
  1479   _idom_size = C->unique();
  1480   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  1481   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  1482   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  1483   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  1485   Dominators();
  1487   // As a side effect, Dominators removed any unreachable CFG paths
  1488   // into RegionNodes.  It doesn't do this test against Root, so
  1489   // we do it here.
  1490   for( uint i = 1; i < C->root()->req(); i++ ) {
  1491     if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  1492       _igvn.hash_delete(C->root());
  1493       C->root()->del_req(i);
  1494       _igvn._worklist.push(C->root());
  1495       i--;                      // Rerun same iteration on compressed edges
  1499   // Given dominators, try to find inner loops with calls that must
  1500   // always be executed (call dominates loop tail).  These loops do
  1501   // not need a seperate safepoint.
  1502   Node_List cisstack(a);
  1503   _ltree_root->check_safepts(visited, cisstack);
  1505   // Walk the DATA nodes and place into loops.  Find earliest control
  1506   // node.  For CFG nodes, the _nodes array starts out and remains
  1507   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  1508   // _nodes array holds the earliest legal controlling CFG node.
  1510   // Allocate stack with enough space to avoid frequent realloc
  1511   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
  1512   Node_Stack nstack( a, stack_size );
  1514   visited.Clear();
  1515   Node_List worklist(a);
  1516   // Don't need C->root() on worklist since
  1517   // it will be processed among C->top() inputs
  1518   worklist.push( C->top() );
  1519   visited.set( C->top()->_idx ); // Set C->top() as visited now
  1520   build_loop_early( visited, worklist, nstack, verify_me );
  1522   // Given early legal placement, try finding counted loops.  This placement
  1523   // is good enough to discover most loop invariants.
  1524   if( !verify_me )
  1525     _ltree_root->counted_loop( this );
  1527   // Find latest loop placement.  Find ideal loop placement.
  1528   visited.Clear();
  1529   init_dom_lca_tags();
  1530   // Need C->root() on worklist when processing outs
  1531   worklist.push( C->root() );
  1532   NOT_PRODUCT( C->verify_graph_edges(); )
  1533   worklist.push( C->top() );
  1534   build_loop_late( visited, worklist, nstack, verify_me );
  1536   // clear out the dead code
  1537   while(_deadlist.size()) {
  1538     igvn.remove_globally_dead_node(_deadlist.pop());
  1541 #ifndef PRODUCT
  1542   C->verify_graph_edges();
  1543   if( verify_me ) {             // Nested verify pass?
  1544     // Check to see if the verify mode is broken
  1545     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  1546     return;
  1548   if( VerifyLoopOptimizations ) verify();
  1549 #endif
  1551   if (ReassociateInvariants) {
  1552     // Reassociate invariants and prep for split_thru_phi
  1553     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1554       IdealLoopTree* lpt = iter.current();
  1555       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  1557       lpt->reassociate_invariants(this);
  1559       // Because RCE opportunities can be masked by split_thru_phi,
  1560       // look for RCE candidates and inhibit split_thru_phi
  1561       // on just their loop-phi's for this pass of loop opts
  1562       if( SplitIfBlocks && do_split_ifs ) {
  1563         if (lpt->policy_range_check(this)) {
  1564           lpt->_rce_candidate = 1; // = true
  1570   // Check for aggressive application of split-if and other transforms
  1571   // that require basic-block info (like cloning through Phi's)
  1572   if( SplitIfBlocks && do_split_ifs ) {
  1573     visited.Clear();
  1574     split_if_with_blocks( visited, nstack );
  1575     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  1578   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  1579   // range checks or one-shot null checks.
  1581   // If split-if's didn't hack the graph too bad (no CFG changes)
  1582   // then do loop opts.
  1583   if( C->has_loops() && !C->major_progress() ) {
  1584     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  1585     _ltree_root->_child->iteration_split( this, worklist );
  1586     // No verify after peeling!  GCM has hoisted code out of the loop.
  1587     // After peeling, the hoisted code could sink inside the peeled area.
  1588     // The peeling code does not try to recompute the best location for
  1589     // all the code before the peeled area, so the verify pass will always
  1590     // complain about it.
  1592   // Do verify graph edges in any case
  1593   NOT_PRODUCT( C->verify_graph_edges(); );
  1595   if( !do_split_ifs ) {
  1596     // We saw major progress in Split-If to get here.  We forced a
  1597     // pass with unrolling and not split-if, however more split-if's
  1598     // might make progress.  If the unrolling didn't make progress
  1599     // then the major-progress flag got cleared and we won't try
  1600     // another round of Split-If.  In particular the ever-common
  1601     // instance-of/check-cast pattern requires at least 2 rounds of
  1602     // Split-If to clear out.
  1603     C->set_major_progress();
  1606   // Repeat loop optimizations if new loops were seen
  1607   if (created_loop_node()) {
  1608     C->set_major_progress();
  1611   // Convert scalar to superword operations
  1613   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  1614     // SuperWord transform
  1615     SuperWord sw(this);
  1616     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  1617       IdealLoopTree* lpt = iter.current();
  1618       if (lpt->is_counted()) {
  1619         sw.transform_loop(lpt);
  1624   // Cleanup any modified bits
  1625   _igvn.optimize();
  1627   // Do not repeat loop optimizations if irreducible loops are present
  1628   // by claiming no-progress.
  1629   if( _has_irreducible_loops )
  1630     C->clear_major_progress();
  1633 #ifndef PRODUCT
  1634 //------------------------------print_statistics-------------------------------
  1635 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  1636 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  1637 void PhaseIdealLoop::print_statistics() {
  1638   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  1641 //------------------------------verify-----------------------------------------
  1642 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  1643 static int fail;                // debug only, so its multi-thread dont care
  1644 void PhaseIdealLoop::verify() const {
  1645   int old_progress = C->major_progress();
  1646   ResourceMark rm;
  1647   PhaseIdealLoop loop_verify( _igvn, this, false );
  1648   VectorSet visited(Thread::current()->resource_area());
  1650   fail = 0;
  1651   verify_compare( C->root(), &loop_verify, visited );
  1652   assert( fail == 0, "verify loops failed" );
  1653   // Verify loop structure is the same
  1654   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  1655   // Reset major-progress.  It was cleared by creating a verify version of
  1656   // PhaseIdealLoop.
  1657   for( int i=0; i<old_progress; i++ )
  1658     C->set_major_progress();
  1661 //------------------------------verify_compare---------------------------------
  1662 // Make sure me and the given PhaseIdealLoop agree on key data structures
  1663 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  1664   if( !n ) return;
  1665   if( visited.test_set( n->_idx ) ) return;
  1666   if( !_nodes[n->_idx] ) {      // Unreachable
  1667     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  1668     return;
  1671   uint i;
  1672   for( i = 0; i < n->req(); i++ )
  1673     verify_compare( n->in(i), loop_verify, visited );
  1675   // Check the '_nodes' block/loop structure
  1676   i = n->_idx;
  1677   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  1678     if( _nodes[i] != loop_verify->_nodes[i] &&
  1679         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  1680       tty->print("Mismatched control setting for: ");
  1681       n->dump();
  1682       if( fail++ > 10 ) return;
  1683       Node *c = get_ctrl_no_update(n);
  1684       tty->print("We have it as: ");
  1685       if( c->in(0) ) c->dump();
  1686         else tty->print_cr("N%d",c->_idx);
  1687       tty->print("Verify thinks: ");
  1688       if( loop_verify->has_ctrl(n) )
  1689         loop_verify->get_ctrl_no_update(n)->dump();
  1690       else
  1691         loop_verify->get_loop_idx(n)->dump();
  1692       tty->cr();
  1694   } else {                    // We have a loop
  1695     IdealLoopTree *us = get_loop_idx(n);
  1696     if( loop_verify->has_ctrl(n) ) {
  1697       tty->print("Mismatched loop setting for: ");
  1698       n->dump();
  1699       if( fail++ > 10 ) return;
  1700       tty->print("We have it as: ");
  1701       us->dump();
  1702       tty->print("Verify thinks: ");
  1703       loop_verify->get_ctrl_no_update(n)->dump();
  1704       tty->cr();
  1705     } else if (!C->major_progress()) {
  1706       // Loop selection can be messed up if we did a major progress
  1707       // operation, like split-if.  Do not verify in that case.
  1708       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  1709       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  1710         tty->print("Unequals loops for: ");
  1711         n->dump();
  1712         if( fail++ > 10 ) return;
  1713         tty->print("We have it as: ");
  1714         us->dump();
  1715         tty->print("Verify thinks: ");
  1716         them->dump();
  1717         tty->cr();
  1722   // Check for immediate dominators being equal
  1723   if( i >= _idom_size ) {
  1724     if( !n->is_CFG() ) return;
  1725     tty->print("CFG Node with no idom: ");
  1726     n->dump();
  1727     return;
  1729   if( !n->is_CFG() ) return;
  1730   if( n == C->root() ) return; // No IDOM here
  1732   assert(n->_idx == i, "sanity");
  1733   Node *id = idom_no_update(n);
  1734   if( id != loop_verify->idom_no_update(n) ) {
  1735     tty->print("Unequals idoms for: ");
  1736     n->dump();
  1737     if( fail++ > 10 ) return;
  1738     tty->print("We have it as: ");
  1739     id->dump();
  1740     tty->print("Verify thinks: ");
  1741     loop_verify->idom_no_update(n)->dump();
  1742     tty->cr();
  1747 //------------------------------verify_tree------------------------------------
  1748 // Verify that tree structures match.  Because the CFG can change, siblings
  1749 // within the loop tree can be reordered.  We attempt to deal with that by
  1750 // reordering the verify's loop tree if possible.
  1751 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  1752   assert( _parent == parent, "Badly formed loop tree" );
  1754   // Siblings not in same order?  Attempt to re-order.
  1755   if( _head != loop->_head ) {
  1756     // Find _next pointer to update
  1757     IdealLoopTree **pp = &loop->_parent->_child;
  1758     while( *pp != loop )
  1759       pp = &((*pp)->_next);
  1760     // Find proper sibling to be next
  1761     IdealLoopTree **nn = &loop->_next;
  1762     while( (*nn) && (*nn)->_head != _head )
  1763       nn = &((*nn)->_next);
  1765     // Check for no match.
  1766     if( !(*nn) ) {
  1767       // Annoyingly, irreducible loops can pick different headers
  1768       // after a major_progress operation, so the rest of the loop
  1769       // tree cannot be matched.
  1770       if (_irreducible && Compile::current()->major_progress())  return;
  1771       assert( 0, "failed to match loop tree" );
  1774     // Move (*nn) to (*pp)
  1775     IdealLoopTree *hit = *nn;
  1776     *nn = hit->_next;
  1777     hit->_next = loop;
  1778     *pp = loop;
  1779     loop = hit;
  1780     // Now try again to verify
  1783   assert( _head  == loop->_head , "mismatched loop head" );
  1784   Node *tail = _tail;           // Inline a non-updating version of
  1785   while( !tail->in(0) )         // the 'tail()' call.
  1786     tail = tail->in(1);
  1787   assert( tail == loop->_tail, "mismatched loop tail" );
  1789   // Counted loops that are guarded should be able to find their guards
  1790   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  1791     CountedLoopNode *cl = _head->as_CountedLoop();
  1792     Node *init = cl->init_trip();
  1793     Node *ctrl = cl->in(LoopNode::EntryControl);
  1794     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1795     Node *iff  = ctrl->in(0);
  1796     assert( iff->Opcode() == Op_If, "" );
  1797     Node *bol  = iff->in(1);
  1798     assert( bol->Opcode() == Op_Bool, "" );
  1799     Node *cmp  = bol->in(1);
  1800     assert( cmp->Opcode() == Op_CmpI, "" );
  1801     Node *add  = cmp->in(1);
  1802     Node *opaq;
  1803     if( add->Opcode() == Op_Opaque1 ) {
  1804       opaq = add;
  1805     } else {
  1806       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  1807       assert( add == init, "" );
  1808       opaq = cmp->in(2);
  1810     assert( opaq->Opcode() == Op_Opaque1, "" );
  1814   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  1815   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  1816   // Innermost loops need to verify loop bodies,
  1817   // but only if no 'major_progress'
  1818   int fail = 0;
  1819   if (!Compile::current()->major_progress() && _child == NULL) {
  1820     for( uint i = 0; i < _body.size(); i++ ) {
  1821       Node *n = _body.at(i);
  1822       if (n->outcnt() == 0)  continue; // Ignore dead
  1823       uint j;
  1824       for( j = 0; j < loop->_body.size(); j++ )
  1825         if( loop->_body.at(j) == n )
  1826           break;
  1827       if( j == loop->_body.size() ) { // Not found in loop body
  1828         // Last ditch effort to avoid assertion: Its possible that we
  1829         // have some users (so outcnt not zero) but are still dead.
  1830         // Try to find from root.
  1831         if (Compile::current()->root()->find(n->_idx)) {
  1832           fail++;
  1833           tty->print("We have that verify does not: ");
  1834           n->dump();
  1838     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  1839       Node *n = loop->_body.at(i2);
  1840       if (n->outcnt() == 0)  continue; // Ignore dead
  1841       uint j;
  1842       for( j = 0; j < _body.size(); j++ )
  1843         if( _body.at(j) == n )
  1844           break;
  1845       if( j == _body.size() ) { // Not found in loop body
  1846         // Last ditch effort to avoid assertion: Its possible that we
  1847         // have some users (so outcnt not zero) but are still dead.
  1848         // Try to find from root.
  1849         if (Compile::current()->root()->find(n->_idx)) {
  1850           fail++;
  1851           tty->print("Verify has that we do not: ");
  1852           n->dump();
  1856     assert( !fail, "loop body mismatch" );
  1860 #endif
  1862 //------------------------------set_idom---------------------------------------
  1863 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  1864   uint idx = d->_idx;
  1865   if (idx >= _idom_size) {
  1866     uint newsize = _idom_size<<1;
  1867     while( idx >= newsize ) {
  1868       newsize <<= 1;
  1870     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  1871     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  1872     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  1873     _idom_size = newsize;
  1875   _idom[idx] = n;
  1876   _dom_depth[idx] = dom_depth;
  1879 //------------------------------recompute_dom_depth---------------------------------------
  1880 // The dominator tree is constructed with only parent pointers.
  1881 // This recomputes the depth in the tree by first tagging all
  1882 // nodes as "no depth yet" marker.  The next pass then runs up
  1883 // the dom tree from each node marked "no depth yet", and computes
  1884 // the depth on the way back down.
  1885 void PhaseIdealLoop::recompute_dom_depth() {
  1886   uint no_depth_marker = C->unique();
  1887   uint i;
  1888   // Initialize depth to "no depth yet"
  1889   for (i = 0; i < _idom_size; i++) {
  1890     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  1891      _dom_depth[i] = no_depth_marker;
  1894   if (_dom_stk == NULL) {
  1895     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
  1896     if (init_size < 10) init_size = 10;
  1897     _dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
  1899   // Compute new depth for each node.
  1900   for (i = 0; i < _idom_size; i++) {
  1901     uint j = i;
  1902     // Run up the dom tree to find a node with a depth
  1903     while (_dom_depth[j] == no_depth_marker) {
  1904       _dom_stk->push(j);
  1905       j = _idom[j]->_idx;
  1907     // Compute the depth on the way back down this tree branch
  1908     uint dd = _dom_depth[j] + 1;
  1909     while (_dom_stk->length() > 0) {
  1910       uint j = _dom_stk->pop();
  1911       _dom_depth[j] = dd;
  1912       dd++;
  1917 //------------------------------sort-------------------------------------------
  1918 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  1919 // loop tree, not the root.
  1920 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  1921   if( !innermost ) return loop; // New innermost loop
  1923   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  1924   assert( loop_preorder, "not yet post-walked loop" );
  1925   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  1926   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  1928   // Insert at start of list
  1929   while( l ) {                  // Insertion sort based on pre-order
  1930     if( l == loop ) return innermost; // Already on list!
  1931     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  1932     assert( l_preorder, "not yet post-walked l" );
  1933     // Check header pre-order number to figure proper nesting
  1934     if( loop_preorder > l_preorder )
  1935       break;                    // End of insertion
  1936     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  1937     // Since I split shared headers, you'd think this could not happen.
  1938     // BUT: I must first do the preorder numbering before I can discover I
  1939     // have shared headers, so the split headers all get the same preorder
  1940     // number as the RegionNode they split from.
  1941     if( loop_preorder == l_preorder &&
  1942         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  1943       break;                    // Also check for shared headers (same pre#)
  1944     pp = &l->_parent;           // Chain up list
  1945     l = *pp;
  1947   // Link into list
  1948   // Point predecessor to me
  1949   *pp = loop;
  1950   // Point me to successor
  1951   IdealLoopTree *p = loop->_parent;
  1952   loop->_parent = l;            // Point me to successor
  1953   if( p ) sort( p, innermost ); // Insert my parents into list as well
  1954   return innermost;
  1957 //------------------------------build_loop_tree--------------------------------
  1958 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  1959 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  1960 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  1961 // tightest enclosing IdealLoopTree for post-walked.
  1962 //
  1963 // During my forward walk I do a short 1-layer lookahead to see if I can find
  1964 // a loop backedge with that doesn't have any work on the backedge.  This
  1965 // helps me construct nested loops with shared headers better.
  1966 //
  1967 // Once I've done the forward recursion, I do the post-work.  For each child
  1968 // I check to see if there is a backedge.  Backedges define a loop!  I
  1969 // insert an IdealLoopTree at the target of the backedge.
  1970 //
  1971 // During the post-work I also check to see if I have several children
  1972 // belonging to different loops.  If so, then this Node is a decision point
  1973 // where control flow can choose to change loop nests.  It is at this
  1974 // decision point where I can figure out how loops are nested.  At this
  1975 // time I can properly order the different loop nests from my children.
  1976 // Note that there may not be any backedges at the decision point!
  1977 //
  1978 // Since the decision point can be far removed from the backedges, I can't
  1979 // order my loops at the time I discover them.  Thus at the decision point
  1980 // I need to inspect loop header pre-order numbers to properly nest my
  1981 // loops.  This means I need to sort my childrens' loops by pre-order.
  1982 // The sort is of size number-of-control-children, which generally limits
  1983 // it to size 2 (i.e., I just choose between my 2 target loops).
  1984 void PhaseIdealLoop::build_loop_tree() {
  1985   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  1986   GrowableArray <Node *> bltstack(C->unique() >> 1);
  1987   Node *n = C->root();
  1988   bltstack.push(n);
  1989   int pre_order = 1;
  1990   int stack_size;
  1992   while ( ( stack_size = bltstack.length() ) != 0 ) {
  1993     n = bltstack.top(); // Leave node on stack
  1994     if ( !is_visited(n) ) {
  1995       // ---- Pre-pass Work ----
  1996       // Pre-walked but not post-walked nodes need a pre_order number.
  1998       set_preorder_visited( n, pre_order ); // set as visited
  2000       // ---- Scan over children ----
  2001       // Scan first over control projections that lead to loop headers.
  2002       // This helps us find inner-to-outer loops with shared headers better.
  2004       // Scan children's children for loop headers.
  2005       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2006         Node* m = n->raw_out(i);       // Child
  2007         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2008           // Scan over children's children to find loop
  2009           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2010             Node* l = m->fast_out(j);
  2011             if( is_visited(l) &&       // Been visited?
  2012                 !is_postvisited(l) &&  // But not post-visited
  2013                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2014               // Found!  Scan the DFS down this path before doing other paths
  2015               bltstack.push(m);
  2016               break;
  2021       pre_order++;
  2023     else if ( !is_postvisited(n) ) {
  2024       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2025       // such as com.sun.rsasign.am::a.
  2026       // For non-recursive version, first, process current children.
  2027       // On next iteration, check if additional children were added.
  2028       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2029         Node* u = n->raw_out(k);
  2030         if ( u->is_CFG() && !is_visited(u) ) {
  2031           bltstack.push(u);
  2034       if ( bltstack.length() == stack_size ) {
  2035         // There were no additional children, post visit node now
  2036         (void)bltstack.pop(); // Remove node from stack
  2037         pre_order = build_loop_tree_impl( n, pre_order );
  2038         // Check for bailout
  2039         if (C->failing()) {
  2040           return;
  2042         // Check to grow _preorders[] array for the case when
  2043         // build_loop_tree_impl() adds new nodes.
  2044         check_grow_preorders();
  2047     else {
  2048       (void)bltstack.pop(); // Remove post-visited node from stack
  2053 //------------------------------build_loop_tree_impl---------------------------
  2054 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2055   // ---- Post-pass Work ----
  2056   // Pre-walked but not post-walked nodes need a pre_order number.
  2058   // Tightest enclosing loop for this Node
  2059   IdealLoopTree *innermost = NULL;
  2061   // For all children, see if any edge is a backedge.  If so, make a loop
  2062   // for it.  Then find the tightest enclosing loop for the self Node.
  2063   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2064     Node* m = n->fast_out(i);   // Child
  2065     if( n == m ) continue;      // Ignore control self-cycles
  2066     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2068     IdealLoopTree *l;           // Child's loop
  2069     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2070       // Found a backedge
  2071       assert( get_preorder(m) < pre_order, "should be backedge" );
  2072       // Check for the RootNode, which is already a LoopNode and is allowed
  2073       // to have multiple "backedges".
  2074       if( m == C->root()) {     // Found the root?
  2075         l = _ltree_root;        // Root is the outermost LoopNode
  2076       } else {                  // Else found a nested loop
  2077         // Insert a LoopNode to mark this loop.
  2078         l = new IdealLoopTree(this, m, n);
  2079       } // End of Else found a nested loop
  2080       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2081         set_loop(m, l);         // Set loop header to loop now
  2083     } else {                    // Else not a nested loop
  2084       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2085       l = get_loop(m);          // Get previously determined loop
  2086       // If successor is header of a loop (nest), move up-loop till it
  2087       // is a member of some outer enclosing loop.  Since there are no
  2088       // shared headers (I've split them already) I only need to go up
  2089       // at most 1 level.
  2090       while( l && l->_head == m ) // Successor heads loop?
  2091         l = l->_parent;         // Move up 1 for me
  2092       // If this loop is not properly parented, then this loop
  2093       // has no exit path out, i.e. its an infinite loop.
  2094       if( !l ) {
  2095         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2096         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2097         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2098         // many backedges as well.
  2100         // Here I set the loop to be the root loop.  I could have, after
  2101         // inserting a bogus loop exit, restarted the recursion and found my
  2102         // new loop exit.  This would make the infinite loop a first-class
  2103         // loop and it would then get properly optimized.  What's the use of
  2104         // optimizing an infinite loop?
  2105         l = _ltree_root;        // Oops, found infinite loop
  2107         // Insert the NeverBranch between 'm' and it's control user.
  2108         NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
  2109         _igvn.register_new_node_with_optimizer(iff);
  2110         set_loop(iff, l);
  2111         Node *if_t = new (C, 1) CProjNode( iff, 0 );
  2112         _igvn.register_new_node_with_optimizer(if_t);
  2113         set_loop(if_t, l);
  2115         Node* cfg = NULL;       // Find the One True Control User of m
  2116         for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2117           Node* x = m->fast_out(j);
  2118           if (x->is_CFG() && x != m && x != iff)
  2119             { cfg = x; break; }
  2121         assert(cfg != NULL, "must find the control user of m");
  2122         uint k = 0;             // Probably cfg->in(0)
  2123         while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2124         cfg->set_req( k, if_t ); // Now point to NeverBranch
  2126         // Now create the never-taken loop exit
  2127         Node *if_f = new (C, 1) CProjNode( iff, 1 );
  2128         _igvn.register_new_node_with_optimizer(if_f);
  2129         set_loop(if_f, l);
  2130         // Find frame ptr for Halt.  Relies on the optimizer
  2131         // V-N'ing.  Easier and quicker than searching through
  2132         // the program structure.
  2133         Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
  2134         _igvn.register_new_node_with_optimizer(frame);
  2135         // Halt & Catch Fire
  2136         Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
  2137         _igvn.register_new_node_with_optimizer(halt);
  2138         set_loop(halt, l);
  2139         C->root()->add_req(halt);
  2140         set_loop(C->root(), _ltree_root);
  2143     // Weeny check for irreducible.  This child was already visited (this
  2144     // IS the post-work phase).  Is this child's loop header post-visited
  2145     // as well?  If so, then I found another entry into the loop.
  2146     while( is_postvisited(l->_head) ) {
  2147       // found irreducible
  2148       l->_irreducible = 1; // = true
  2149       l = l->_parent;
  2150       _has_irreducible_loops = true;
  2151       // Check for bad CFG here to prevent crash, and bailout of compile
  2152       if (l == NULL) {
  2153         C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2154         return pre_order;
  2158     // This Node might be a decision point for loops.  It is only if
  2159     // it's children belong to several different loops.  The sort call
  2160     // does a trivial amount of work if there is only 1 child or all
  2161     // children belong to the same loop.  If however, the children
  2162     // belong to different loops, the sort call will properly set the
  2163     // _parent pointers to show how the loops nest.
  2164     //
  2165     // In any case, it returns the tightest enclosing loop.
  2166     innermost = sort( l, innermost );
  2169   // Def-use info will have some dead stuff; dead stuff will have no
  2170   // loop decided on.
  2172   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  2173   if( innermost && innermost->_head == n ) {
  2174     assert( get_loop(n) == innermost, "" );
  2175     IdealLoopTree *p = innermost->_parent;
  2176     IdealLoopTree *l = innermost;
  2177     while( p && l->_head == n ) {
  2178       l->_next = p->_child;     // Put self on parents 'next child'
  2179       p->_child = l;            // Make self as first child of parent
  2180       l = p;                    // Now walk up the parent chain
  2181       p = l->_parent;
  2183   } else {
  2184     // Note that it is possible for a LoopNode to reach here, if the
  2185     // backedge has been made unreachable (hence the LoopNode no longer
  2186     // denotes a Loop, and will eventually be removed).
  2188     // Record tightest enclosing loop for self.  Mark as post-visited.
  2189     set_loop(n, innermost);
  2190     // Also record has_call flag early on
  2191     if( innermost ) {
  2192       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  2193         // Do not count uncommon calls
  2194         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  2195           Node *iff = n->in(0)->in(0);
  2196           if( !iff->is_If() ||
  2197               (n->in(0)->Opcode() == Op_IfFalse &&
  2198                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  2199               (iff->as_If()->_prob >= 0.01) )
  2200             innermost->_has_call = 1;
  2202       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  2203         // Disable loop optimizations if the loop has a scalar replaceable
  2204         // allocation. This disabling may cause a potential performance lost
  2205         // if the allocation is not eliminated for some reason.
  2206         innermost->_allow_optimizations = false;
  2207         innermost->_has_call = 1; // = true
  2212   // Flag as post-visited now
  2213   set_postvisited(n);
  2214   return pre_order;
  2218 //------------------------------build_loop_early-------------------------------
  2219 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2220 // First pass computes the earliest controlling node possible.  This is the
  2221 // controlling input with the deepest dominating depth.
  2222 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
  2223   while (worklist.size() != 0) {
  2224     // Use local variables nstack_top_n & nstack_top_i to cache values
  2225     // on nstack's top.
  2226     Node *nstack_top_n = worklist.pop();
  2227     uint  nstack_top_i = 0;
  2228 //while_nstack_nonempty:
  2229     while (true) {
  2230       // Get parent node and next input's index from stack's top.
  2231       Node  *n = nstack_top_n;
  2232       uint   i = nstack_top_i;
  2233       uint cnt = n->req(); // Count of inputs
  2234       if (i == 0) {        // Pre-process the node.
  2235         if( has_node(n) &&            // Have either loop or control already?
  2236             !has_ctrl(n) ) {          // Have loop picked out already?
  2237           // During "merge_many_backedges" we fold up several nested loops
  2238           // into a single loop.  This makes the members of the original
  2239           // loop bodies pointing to dead loops; they need to move up
  2240           // to the new UNION'd larger loop.  I set the _head field of these
  2241           // dead loops to NULL and the _parent field points to the owning
  2242           // loop.  Shades of UNION-FIND algorithm.
  2243           IdealLoopTree *ilt;
  2244           while( !(ilt = get_loop(n))->_head ) {
  2245             // Normally I would use a set_loop here.  But in this one special
  2246             // case, it is legal (and expected) to change what loop a Node
  2247             // belongs to.
  2248             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  2250           // Remove safepoints ONLY if I've already seen I don't need one.
  2251           // (the old code here would yank a 2nd safepoint after seeing a
  2252           // first one, even though the 1st did not dominate in the loop body
  2253           // and thus could be avoided indefinitely)
  2254           if( !verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  2255               is_deleteable_safept(n)) {
  2256             Node *in = n->in(TypeFunc::Control);
  2257             lazy_replace(n,in);       // Pull safepoint now
  2258             // Carry on with the recursion "as if" we are walking
  2259             // only the control input
  2260             if( !visited.test_set( in->_idx ) ) {
  2261               worklist.push(in);      // Visit this guy later, using worklist
  2263             // Get next node from nstack:
  2264             // - skip n's inputs processing by setting i > cnt;
  2265             // - we also will not call set_early_ctrl(n) since
  2266             //   has_node(n) == true (see the condition above).
  2267             i = cnt + 1;
  2270       } // if (i == 0)
  2272       // Visit all inputs
  2273       bool done = true;       // Assume all n's inputs will be processed
  2274       while (i < cnt) {
  2275         Node *in = n->in(i);
  2276         ++i;
  2277         if (in == NULL) continue;
  2278         if (in->pinned() && !in->is_CFG())
  2279           set_ctrl(in, in->in(0));
  2280         int is_visited = visited.test_set( in->_idx );
  2281         if (!has_node(in)) {  // No controlling input yet?
  2282           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  2283           assert( !is_visited, "visit only once" );
  2284           nstack.push(n, i);  // Save parent node and next input's index.
  2285           nstack_top_n = in;  // Process current input now.
  2286           nstack_top_i = 0;
  2287           done = false;       // Not all n's inputs processed.
  2288           break; // continue while_nstack_nonempty;
  2289         } else if (!is_visited) {
  2290           // This guy has a location picked out for him, but has not yet
  2291           // been visited.  Happens to all CFG nodes, for instance.
  2292           // Visit him using the worklist instead of recursion, to break
  2293           // cycles.  Since he has a location already we do not need to
  2294           // find his location before proceeding with the current Node.
  2295           worklist.push(in);  // Visit this guy later, using worklist
  2298       if (done) {
  2299         // All of n's inputs have been processed, complete post-processing.
  2301         // Compute earilest point this Node can go.
  2302         // CFG, Phi, pinned nodes already know their controlling input.
  2303         if (!has_node(n)) {
  2304           // Record earliest legal location
  2305           set_early_ctrl( n );
  2307         if (nstack.is_empty()) {
  2308           // Finished all nodes on stack.
  2309           // Process next node on the worklist.
  2310           break;
  2312         // Get saved parent node and next input's index.
  2313         nstack_top_n = nstack.node();
  2314         nstack_top_i = nstack.index();
  2315         nstack.pop();
  2317     } // while (true)
  2321 //------------------------------dom_lca_internal--------------------------------
  2322 // Pair-wise LCA
  2323 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  2324   if( !n1 ) return n2;          // Handle NULL original LCA
  2325   assert( n1->is_CFG(), "" );
  2326   assert( n2->is_CFG(), "" );
  2327   // find LCA of all uses
  2328   uint d1 = dom_depth(n1);
  2329   uint d2 = dom_depth(n2);
  2330   while (n1 != n2) {
  2331     if (d1 > d2) {
  2332       n1 =      idom(n1);
  2333       d1 = dom_depth(n1);
  2334     } else if (d1 < d2) {
  2335       n2 =      idom(n2);
  2336       d2 = dom_depth(n2);
  2337     } else {
  2338       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2339       // of the tree might have the same depth.  These sections have
  2340       // to be searched more carefully.
  2342       // Scan up all the n1's with equal depth, looking for n2.
  2343       Node *t1 = idom(n1);
  2344       while (dom_depth(t1) == d1) {
  2345         if (t1 == n2)  return n2;
  2346         t1 = idom(t1);
  2348       // Scan up all the n2's with equal depth, looking for n1.
  2349       Node *t2 = idom(n2);
  2350       while (dom_depth(t2) == d2) {
  2351         if (t2 == n1)  return n1;
  2352         t2 = idom(t2);
  2354       // Move up to a new dominator-depth value as well as up the dom-tree.
  2355       n1 = t1;
  2356       n2 = t2;
  2357       d1 = dom_depth(n1);
  2358       d2 = dom_depth(n2);
  2361   return n1;
  2364 //------------------------------compute_idom-----------------------------------
  2365 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  2366 // IDOMs are correct.
  2367 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  2368   assert( region->is_Region(), "" );
  2369   Node *LCA = NULL;
  2370   for( uint i = 1; i < region->req(); i++ ) {
  2371     if( region->in(i) != C->top() )
  2372       LCA = dom_lca( LCA, region->in(i) );
  2374   return LCA;
  2377 //------------------------------get_late_ctrl----------------------------------
  2378 // Compute latest legal control.
  2379 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  2380   assert(early != NULL, "early control should not be NULL");
  2382   // Compute LCA over list of uses
  2383   Node *LCA = NULL;
  2384   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  2385     Node* c = n->fast_out(i);
  2386     if (_nodes[c->_idx] == NULL)
  2387       continue;                 // Skip the occasional dead node
  2388     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  2389       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  2390         if( c->in(j) == n ) {   // Found matching input?
  2391           Node *use = c->in(0)->in(j);
  2392           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2395     } else {
  2396       // For CFG data-users, use is in the block just prior
  2397       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  2398       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  2402   // if this is a load, check for anti-dependent stores
  2403   // We use a conservative algorithm to identify potential interfering
  2404   // instructions and for rescheduling the load.  The users of the memory
  2405   // input of this load are examined.  Any use which is not a load and is
  2406   // dominated by early is considered a potentially interfering store.
  2407   // This can produce false positives.
  2408   if (n->is_Load() && LCA != early) {
  2409     Node_List worklist;
  2411     Node *mem = n->in(MemNode::Memory);
  2412     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  2413       Node* s = mem->fast_out(i);
  2414       worklist.push(s);
  2416     while(worklist.size() != 0 && LCA != early) {
  2417       Node* s = worklist.pop();
  2418       if (s->is_Load()) {
  2419         continue;
  2420       } else if (s->is_MergeMem()) {
  2421         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  2422           Node* s1 = s->fast_out(i);
  2423           worklist.push(s1);
  2425       } else {
  2426         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  2427         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  2428         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  2429           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  2435   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  2436   return LCA;
  2439 // true if CFG node d dominates CFG node n
  2440 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  2441   if (d == n)
  2442     return true;
  2443   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  2444   uint dd = dom_depth(d);
  2445   while (dom_depth(n) >= dd) {
  2446     if (n == d)
  2447       return true;
  2448     n = idom(n);
  2450   return false;
  2453 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  2454 // Pair-wise LCA with tags.
  2455 // Tag each index with the node 'tag' currently being processed
  2456 // before advancing up the dominator chain using idom().
  2457 // Later calls that find a match to 'tag' know that this path has already
  2458 // been considered in the current LCA (which is input 'n1' by convention).
  2459 // Since get_late_ctrl() is only called once for each node, the tag array
  2460 // does not need to be cleared between calls to get_late_ctrl().
  2461 // Algorithm trades a larger constant factor for better asymptotic behavior
  2462 //
  2463 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  2464   uint d1 = dom_depth(n1);
  2465   uint d2 = dom_depth(n2);
  2467   do {
  2468     if (d1 > d2) {
  2469       // current lca is deeper than n2
  2470       _dom_lca_tags.map(n1->_idx, tag);
  2471       n1 =      idom(n1);
  2472       d1 = dom_depth(n1);
  2473     } else if (d1 < d2) {
  2474       // n2 is deeper than current lca
  2475       Node *memo = _dom_lca_tags[n2->_idx];
  2476       if( memo == tag ) {
  2477         return n1;    // Return the current LCA
  2479       _dom_lca_tags.map(n2->_idx, tag);
  2480       n2 =      idom(n2);
  2481       d2 = dom_depth(n2);
  2482     } else {
  2483       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  2484       // of the tree might have the same depth.  These sections have
  2485       // to be searched more carefully.
  2487       // Scan up all the n1's with equal depth, looking for n2.
  2488       _dom_lca_tags.map(n1->_idx, tag);
  2489       Node *t1 = idom(n1);
  2490       while (dom_depth(t1) == d1) {
  2491         if (t1 == n2)  return n2;
  2492         _dom_lca_tags.map(t1->_idx, tag);
  2493         t1 = idom(t1);
  2495       // Scan up all the n2's with equal depth, looking for n1.
  2496       _dom_lca_tags.map(n2->_idx, tag);
  2497       Node *t2 = idom(n2);
  2498       while (dom_depth(t2) == d2) {
  2499         if (t2 == n1)  return n1;
  2500         _dom_lca_tags.map(t2->_idx, tag);
  2501         t2 = idom(t2);
  2503       // Move up to a new dominator-depth value as well as up the dom-tree.
  2504       n1 = t1;
  2505       n2 = t2;
  2506       d1 = dom_depth(n1);
  2507       d2 = dom_depth(n2);
  2509   } while (n1 != n2);
  2510   return n1;
  2513 //------------------------------init_dom_lca_tags------------------------------
  2514 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2515 // Intended use does not involve any growth for the array, so it could
  2516 // be of fixed size.
  2517 void PhaseIdealLoop::init_dom_lca_tags() {
  2518   uint limit = C->unique() + 1;
  2519   _dom_lca_tags.map( limit, NULL );
  2520 #ifdef ASSERT
  2521   for( uint i = 0; i < limit; ++i ) {
  2522     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2524 #endif // ASSERT
  2527 //------------------------------clear_dom_lca_tags------------------------------
  2528 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  2529 // Intended use does not involve any growth for the array, so it could
  2530 // be of fixed size.
  2531 void PhaseIdealLoop::clear_dom_lca_tags() {
  2532   uint limit = C->unique() + 1;
  2533   _dom_lca_tags.map( limit, NULL );
  2534   _dom_lca_tags.clear();
  2535 #ifdef ASSERT
  2536   for( uint i = 0; i < limit; ++i ) {
  2537     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  2539 #endif // ASSERT
  2542 //------------------------------build_loop_late--------------------------------
  2543 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2544 // Second pass finds latest legal placement, and ideal loop placement.
  2545 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me ) {
  2546   while (worklist.size() != 0) {
  2547     Node *n = worklist.pop();
  2548     // Only visit once
  2549     if (visited.test_set(n->_idx)) continue;
  2550     uint cnt = n->outcnt();
  2551     uint   i = 0;
  2552     while (true) {
  2553       assert( _nodes[n->_idx], "no dead nodes" );
  2554       // Visit all children
  2555       if (i < cnt) {
  2556         Node* use = n->raw_out(i);
  2557         ++i;
  2558         // Check for dead uses.  Aggressively prune such junk.  It might be
  2559         // dead in the global sense, but still have local uses so I cannot
  2560         // easily call 'remove_dead_node'.
  2561         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  2562           // Due to cycles, we might not hit the same fixed point in the verify
  2563           // pass as we do in the regular pass.  Instead, visit such phis as
  2564           // simple uses of the loop head.
  2565           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  2566             if( !visited.test(use->_idx) )
  2567               worklist.push(use);
  2568           } else if( !visited.test_set(use->_idx) ) {
  2569             nstack.push(n, i); // Save parent and next use's index.
  2570             n   = use;         // Process all children of current use.
  2571             cnt = use->outcnt();
  2572             i   = 0;
  2574         } else {
  2575           // Do not visit around the backedge of loops via data edges.
  2576           // push dead code onto a worklist
  2577           _deadlist.push(use);
  2579       } else {
  2580         // All of n's children have been processed, complete post-processing.
  2581         build_loop_late_post(n, verify_me);
  2582         if (nstack.is_empty()) {
  2583           // Finished all nodes on stack.
  2584           // Process next node on the worklist.
  2585           break;
  2587         // Get saved parent node and next use's index. Visit the rest of uses.
  2588         n   = nstack.node();
  2589         cnt = n->outcnt();
  2590         i   = nstack.index();
  2591         nstack.pop();
  2597 //------------------------------build_loop_late_post---------------------------
  2598 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  2599 // Second pass finds latest legal placement, and ideal loop placement.
  2600 void PhaseIdealLoop::build_loop_late_post( Node *n, const PhaseIdealLoop *verify_me ) {
  2602   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress()) {
  2603     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  2606   // CFG and pinned nodes already handled
  2607   if( n->in(0) ) {
  2608     if( n->in(0)->is_top() ) return; // Dead?
  2610     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  2611     // _must_ be pinned (they have to observe their control edge of course).
  2612     // Unlike Stores (which modify an unallocable resource, the memory
  2613     // state), Mods/Loads can float around.  So free them up.
  2614     bool pinned = true;
  2615     switch( n->Opcode() ) {
  2616     case Op_DivI:
  2617     case Op_DivF:
  2618     case Op_DivD:
  2619     case Op_ModI:
  2620     case Op_ModF:
  2621     case Op_ModD:
  2622     case Op_LoadB:              // Same with Loads; they can sink
  2623     case Op_LoadC:              // during loop optimizations.
  2624     case Op_LoadD:
  2625     case Op_LoadF:
  2626     case Op_LoadI:
  2627     case Op_LoadKlass:
  2628     case Op_LoadL:
  2629     case Op_LoadS:
  2630     case Op_LoadP:
  2631     case Op_LoadRange:
  2632     case Op_LoadD_unaligned:
  2633     case Op_LoadL_unaligned:
  2634     case Op_StrComp:            // Does a bunch of load-like effects
  2635     case Op_AryEq:
  2636       pinned = false;
  2638     if( pinned ) {
  2639       IdealLoopTree *choosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  2640       if( !choosen_loop->_child )       // Inner loop?
  2641         choosen_loop->_body.push(n); // Collect inner loops
  2642       return;
  2644   } else {                      // No slot zero
  2645     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  2646       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  2647       return;
  2649     assert(!n->is_CFG() || n->outcnt() == 0, "");
  2652   // Do I have a "safe range" I can select over?
  2653   Node *early = get_ctrl(n);// Early location already computed
  2655   // Compute latest point this Node can go
  2656   Node *LCA = get_late_ctrl( n, early );
  2657   // LCA is NULL due to uses being dead
  2658   if( LCA == NULL ) {
  2659 #ifdef ASSERT
  2660     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  2661       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  2663 #endif
  2664     _nodes.map(n->_idx, 0);     // This node is useless
  2665     _deadlist.push(n);
  2666     return;
  2668   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  2670   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  2671   Node *least = legal;          // Best legal position so far
  2672   while( early != legal ) {     // While not at earliest legal
  2673     // Find least loop nesting depth
  2674     legal = idom(legal);        // Bump up the IDOM tree
  2675     // Check for lower nesting depth
  2676     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  2677       least = legal;
  2680   // Try not to place code on a loop entry projection
  2681   // which can inhibit range check elimination.
  2682   if (least != early) {
  2683     Node* ctrl_out = least->unique_ctrl_out();
  2684     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  2685         least == ctrl_out->in(LoopNode::EntryControl)) {
  2686       Node* least_dom = idom(least);
  2687       if (get_loop(least_dom)->is_member(get_loop(least))) {
  2688         least = least_dom;
  2693 #ifdef ASSERT
  2694   // If verifying, verify that 'verify_me' has a legal location
  2695   // and choose it as our location.
  2696   if( verify_me ) {
  2697     Node *v_ctrl = verify_me->get_ctrl_no_update(n);
  2698     Node *legal = LCA;
  2699     while( early != legal ) {   // While not at earliest legal
  2700       if( legal == v_ctrl ) break;  // Check for prior good location
  2701       legal = idom(legal)      ;// Bump up the IDOM tree
  2703     // Check for prior good location
  2704     if( legal == v_ctrl ) least = legal; // Keep prior if found
  2706 #endif
  2708   // Assign discovered "here or above" point
  2709   least = find_non_split_ctrl(least);
  2710   set_ctrl(n, least);
  2712   // Collect inner loop bodies
  2713   IdealLoopTree *choosen_loop = get_loop(least);
  2714   if( !choosen_loop->_child )   // Inner loop?
  2715     choosen_loop->_body.push(n);// Collect inner loops
  2718 #ifndef PRODUCT
  2719 //------------------------------dump-------------------------------------------
  2720 void PhaseIdealLoop::dump( ) const {
  2721   ResourceMark rm;
  2722   Arena* arena = Thread::current()->resource_area();
  2723   Node_Stack stack(arena, C->unique() >> 2);
  2724   Node_List rpo_list;
  2725   VectorSet visited(arena);
  2726   visited.set(C->top()->_idx);
  2727   rpo( C->root(), stack, visited, rpo_list );
  2728   // Dump root loop indexed by last element in PO order
  2729   dump( _ltree_root, rpo_list.size(), rpo_list );
  2732 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  2734   // Indent by loop nesting depth
  2735   for( uint x = 0; x < loop->_nest; x++ )
  2736     tty->print("  ");
  2737   tty->print_cr("---- Loop N%d-N%d ----", loop->_head->_idx,loop->_tail->_idx);
  2739   // Now scan for CFG nodes in the same loop
  2740   for( uint j=idx; j > 0;  j-- ) {
  2741     Node *n = rpo_list[j-1];
  2742     if( !_nodes[n->_idx] )      // Skip dead nodes
  2743       continue;
  2744     if( get_loop(n) != loop ) { // Wrong loop nest
  2745       if( get_loop(n)->_head == n &&    // Found nested loop?
  2746           get_loop(n)->_parent == loop )
  2747         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  2748       continue;
  2751     // Dump controlling node
  2752     for( uint x = 0; x < loop->_nest; x++ )
  2753       tty->print("  ");
  2754     tty->print("C");
  2755     if( n == C->root() ) {
  2756       n->dump();
  2757     } else {
  2758       Node* cached_idom   = idom_no_update(n);
  2759       Node *computed_idom = n->in(0);
  2760       if( n->is_Region() ) {
  2761         computed_idom = compute_idom(n);
  2762         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  2763         // any MultiBranch ctrl node), so apply a similar transform to
  2764         // the cached idom returned from idom_no_update.
  2765         cached_idom = find_non_split_ctrl(cached_idom);
  2767       tty->print(" ID:%d",computed_idom->_idx);
  2768       n->dump();
  2769       if( cached_idom != computed_idom ) {
  2770         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  2771                       computed_idom->_idx, cached_idom->_idx);
  2774     // Dump nodes it controls
  2775     for( uint k = 0; k < _nodes.Size(); k++ ) {
  2776       // (k < C->unique() && get_ctrl(find(k)) == n)
  2777       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  2778         Node *m = C->root()->find(k);
  2779         if( m && m->outcnt() > 0 ) {
  2780           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  2781             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  2782                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  2784           for( uint j = 0; j < loop->_nest; j++ )
  2785             tty->print("  ");
  2786           tty->print(" ");
  2787           m->dump();
  2794 // Collect a R-P-O for the whole CFG.
  2795 // Result list is in post-order (scan backwards for RPO)
  2796 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  2797   stk.push(start, 0);
  2798   visited.set(start->_idx);
  2800   while (stk.is_nonempty()) {
  2801     Node* m   = stk.node();
  2802     uint  idx = stk.index();
  2803     if (idx < m->outcnt()) {
  2804       stk.set_index(idx + 1);
  2805       Node* n = m->raw_out(idx);
  2806       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  2807         stk.push(n, 0);
  2809     } else {
  2810       rpo_list.push(m);
  2811       stk.pop();
  2815 #endif
  2818 //=============================================================================
  2819 //------------------------------LoopTreeIterator-----------------------------------
  2821 // Advance to next loop tree using a preorder, left-to-right traversal.
  2822 void LoopTreeIterator::next() {
  2823   assert(!done(), "must not be done.");
  2824   if (_curnt->_child != NULL) {
  2825     _curnt = _curnt->_child;
  2826   } else if (_curnt->_next != NULL) {
  2827     _curnt = _curnt->_next;
  2828   } else {
  2829     while (_curnt != _root && _curnt->_next == NULL) {
  2830       _curnt = _curnt->_parent;
  2832     if (_curnt == _root) {
  2833       _curnt = NULL;
  2834       assert(done(), "must be done.");
  2835     } else {
  2836       assert(_curnt->_next != NULL, "must be more to do");
  2837       _curnt = _curnt->_next;

mercurial