src/share/vm/runtime/thread.cpp

Wed, 06 Jan 2010 22:21:39 -0800

author
iveresov
date
Wed, 06 Jan 2010 22:21:39 -0800
changeset 1579
9b9c1ee9b3f6
parent 1554
547f81740344
parent 1577
4ce7240d622c
child 1601
7b0e9cba0307
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_thread.cpp.incl"
    28 #ifdef DTRACE_ENABLED
    30 // Only bother with this argument setup if dtrace is available
    32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
    33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
    34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
    35   intptr_t, intptr_t, bool);
    36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
    37   intptr_t, intptr_t, bool);
    39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
    40   {                                                                        \
    41     ResourceMark rm(this);                                                 \
    42     int len = 0;                                                           \
    43     const char* name = (javathread)->get_thread_name();                    \
    44     len = strlen(name);                                                    \
    45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
    46       name, len,                                                           \
    47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
    48       (javathread)->osthread()->thread_id(),                               \
    49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
    50   }
    52 #else //  ndef DTRACE_ENABLED
    54 #define DTRACE_THREAD_PROBE(probe, javathread)
    56 #endif // ndef DTRACE_ENABLED
    58 // Class hierarchy
    59 // - Thread
    60 //   - VMThread
    61 //   - WatcherThread
    62 //   - ConcurrentMarkSweepThread
    63 //   - JavaThread
    64 //     - CompilerThread
    66 // ======= Thread ========
    68 // Support for forcing alignment of thread objects for biased locking
    69 void* Thread::operator new(size_t size) {
    70   if (UseBiasedLocking) {
    71     const int alignment = markOopDesc::biased_lock_alignment;
    72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
    73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
    74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
    75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
    76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
    77            "JavaThread alignment code overflowed allocated storage");
    78     if (TraceBiasedLocking) {
    79       if (aligned_addr != real_malloc_addr)
    80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
    81                       real_malloc_addr, aligned_addr);
    82     }
    83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
    84     return aligned_addr;
    85   } else {
    86     return CHeapObj::operator new(size);
    87   }
    88 }
    90 void Thread::operator delete(void* p) {
    91   if (UseBiasedLocking) {
    92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
    93     CHeapObj::operator delete(real_malloc_addr);
    94   } else {
    95     CHeapObj::operator delete(p);
    96   }
    97 }
   100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
   101 // JavaThread
   104 Thread::Thread() {
   105   // stack
   106   _stack_base   = NULL;
   107   _stack_size   = 0;
   108   _self_raw_id  = 0;
   109   _lgrp_id      = -1;
   110   _osthread     = NULL;
   112   // allocated data structures
   113   set_resource_area(new ResourceArea());
   114   set_handle_area(new HandleArea(NULL));
   115   set_active_handles(NULL);
   116   set_free_handle_block(NULL);
   117   set_last_handle_mark(NULL);
   118   set_osthread(NULL);
   120   // This initial value ==> never claimed.
   121   _oops_do_parity = 0;
   123   // the handle mark links itself to last_handle_mark
   124   new HandleMark(this);
   126   // plain initialization
   127   debug_only(_owned_locks = NULL;)
   128   debug_only(_allow_allocation_count = 0;)
   129   NOT_PRODUCT(_allow_safepoint_count = 0;)
   130   NOT_PRODUCT(_skip_gcalot = false;)
   131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
   132   _jvmti_env_iteration_count = 0;
   133   _vm_operation_started_count = 0;
   134   _vm_operation_completed_count = 0;
   135   _current_pending_monitor = NULL;
   136   _current_pending_monitor_is_from_java = true;
   137   _current_waiting_monitor = NULL;
   138   _num_nested_signal = 0;
   139   omFreeList = NULL ;
   140   omFreeCount = 0 ;
   141   omFreeProvision = 32 ;
   143   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
   144   _suspend_flags = 0;
   146   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
   147   _hashStateX = os::random() ;
   148   _hashStateY = 842502087 ;
   149   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
   150   _hashStateW = 273326509 ;
   152   _OnTrap   = 0 ;
   153   _schedctl = NULL ;
   154   _Stalled  = 0 ;
   155   _TypeTag  = 0x2BAD ;
   157   // Many of the following fields are effectively final - immutable
   158   // Note that nascent threads can't use the Native Monitor-Mutex
   159   // construct until the _MutexEvent is initialized ...
   160   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
   161   // we might instead use a stack of ParkEvents that we could provision on-demand.
   162   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
   163   // and ::Release()
   164   _ParkEvent   = ParkEvent::Allocate (this) ;
   165   _SleepEvent  = ParkEvent::Allocate (this) ;
   166   _MutexEvent  = ParkEvent::Allocate (this) ;
   167   _MuxEvent    = ParkEvent::Allocate (this) ;
   169 #ifdef CHECK_UNHANDLED_OOPS
   170   if (CheckUnhandledOops) {
   171     _unhandled_oops = new UnhandledOops(this);
   172   }
   173 #endif // CHECK_UNHANDLED_OOPS
   174 #ifdef ASSERT
   175   if (UseBiasedLocking) {
   176     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
   177     assert(this == _real_malloc_address ||
   178            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
   179            "bug in forced alignment of thread objects");
   180   }
   181 #endif /* ASSERT */
   182 }
   184 void Thread::initialize_thread_local_storage() {
   185   // Note: Make sure this method only calls
   186   // non-blocking operations. Otherwise, it might not work
   187   // with the thread-startup/safepoint interaction.
   189   // During Java thread startup, safepoint code should allow this
   190   // method to complete because it may need to allocate memory to
   191   // store information for the new thread.
   193   // initialize structure dependent on thread local storage
   194   ThreadLocalStorage::set_thread(this);
   196   // set up any platform-specific state.
   197   os::initialize_thread();
   199 }
   201 void Thread::record_stack_base_and_size() {
   202   set_stack_base(os::current_stack_base());
   203   set_stack_size(os::current_stack_size());
   204 }
   207 Thread::~Thread() {
   208   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
   209   ObjectSynchronizer::omFlush (this) ;
   211   // deallocate data structures
   212   delete resource_area();
   213   // since the handle marks are using the handle area, we have to deallocated the root
   214   // handle mark before deallocating the thread's handle area,
   215   assert(last_handle_mark() != NULL, "check we have an element");
   216   delete last_handle_mark();
   217   assert(last_handle_mark() == NULL, "check we have reached the end");
   219   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
   220   // We NULL out the fields for good hygiene.
   221   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
   222   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
   223   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
   224   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
   226   delete handle_area();
   228   // osthread() can be NULL, if creation of thread failed.
   229   if (osthread() != NULL) os::free_thread(osthread());
   231   delete _SR_lock;
   233   // clear thread local storage if the Thread is deleting itself
   234   if (this == Thread::current()) {
   235     ThreadLocalStorage::set_thread(NULL);
   236   } else {
   237     // In the case where we're not the current thread, invalidate all the
   238     // caches in case some code tries to get the current thread or the
   239     // thread that was destroyed, and gets stale information.
   240     ThreadLocalStorage::invalidate_all();
   241   }
   242   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
   243 }
   245 // NOTE: dummy function for assertion purpose.
   246 void Thread::run() {
   247   ShouldNotReachHere();
   248 }
   250 #ifdef ASSERT
   251 // Private method to check for dangling thread pointer
   252 void check_for_dangling_thread_pointer(Thread *thread) {
   253  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
   254          "possibility of dangling Thread pointer");
   255 }
   256 #endif
   259 #ifndef PRODUCT
   260 // Tracing method for basic thread operations
   261 void Thread::trace(const char* msg, const Thread* const thread) {
   262   if (!TraceThreadEvents) return;
   263   ResourceMark rm;
   264   ThreadCritical tc;
   265   const char *name = "non-Java thread";
   266   int prio = -1;
   267   if (thread->is_Java_thread()
   268       && !thread->is_Compiler_thread()) {
   269     // The Threads_lock must be held to get information about
   270     // this thread but may not be in some situations when
   271     // tracing  thread events.
   272     bool release_Threads_lock = false;
   273     if (!Threads_lock->owned_by_self()) {
   274       Threads_lock->lock();
   275       release_Threads_lock = true;
   276     }
   277     JavaThread* jt = (JavaThread *)thread;
   278     name = (char *)jt->get_thread_name();
   279     oop thread_oop = jt->threadObj();
   280     if (thread_oop != NULL) {
   281       prio = java_lang_Thread::priority(thread_oop);
   282     }
   283     if (release_Threads_lock) {
   284       Threads_lock->unlock();
   285     }
   286   }
   287   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
   288 }
   289 #endif
   292 ThreadPriority Thread::get_priority(const Thread* const thread) {
   293   trace("get priority", thread);
   294   ThreadPriority priority;
   295   // Can return an error!
   296   (void)os::get_priority(thread, priority);
   297   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
   298   return priority;
   299 }
   301 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
   302   trace("set priority", thread);
   303   debug_only(check_for_dangling_thread_pointer(thread);)
   304   // Can return an error!
   305   (void)os::set_priority(thread, priority);
   306 }
   309 void Thread::start(Thread* thread) {
   310   trace("start", thread);
   311   // Start is different from resume in that its safety is guaranteed by context or
   312   // being called from a Java method synchronized on the Thread object.
   313   if (!DisableStartThread) {
   314     if (thread->is_Java_thread()) {
   315       // Initialize the thread state to RUNNABLE before starting this thread.
   316       // Can not set it after the thread started because we do not know the
   317       // exact thread state at that time. It could be in MONITOR_WAIT or
   318       // in SLEEPING or some other state.
   319       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
   320                                           java_lang_Thread::RUNNABLE);
   321     }
   322     os::start_thread(thread);
   323   }
   324 }
   326 // Enqueue a VM_Operation to do the job for us - sometime later
   327 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
   328   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
   329   VMThread::execute(vm_stop);
   330 }
   333 //
   334 // Check if an external suspend request has completed (or has been
   335 // cancelled). Returns true if the thread is externally suspended and
   336 // false otherwise.
   337 //
   338 // The bits parameter returns information about the code path through
   339 // the routine. Useful for debugging:
   340 //
   341 // set in is_ext_suspend_completed():
   342 // 0x00000001 - routine was entered
   343 // 0x00000010 - routine return false at end
   344 // 0x00000100 - thread exited (return false)
   345 // 0x00000200 - suspend request cancelled (return false)
   346 // 0x00000400 - thread suspended (return true)
   347 // 0x00001000 - thread is in a suspend equivalent state (return true)
   348 // 0x00002000 - thread is native and walkable (return true)
   349 // 0x00004000 - thread is native_trans and walkable (needed retry)
   350 //
   351 // set in wait_for_ext_suspend_completion():
   352 // 0x00010000 - routine was entered
   353 // 0x00020000 - suspend request cancelled before loop (return false)
   354 // 0x00040000 - thread suspended before loop (return true)
   355 // 0x00080000 - suspend request cancelled in loop (return false)
   356 // 0x00100000 - thread suspended in loop (return true)
   357 // 0x00200000 - suspend not completed during retry loop (return false)
   358 //
   360 // Helper class for tracing suspend wait debug bits.
   361 //
   362 // 0x00000100 indicates that the target thread exited before it could
   363 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
   364 // 0x00080000 each indicate a cancelled suspend request so they don't
   365 // count as wait failures either.
   366 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
   368 class TraceSuspendDebugBits : public StackObj {
   369  private:
   370   JavaThread * jt;
   371   bool         is_wait;
   372   bool         called_by_wait;  // meaningful when !is_wait
   373   uint32_t *   bits;
   375  public:
   376   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
   377                         uint32_t *_bits) {
   378     jt             = _jt;
   379     is_wait        = _is_wait;
   380     called_by_wait = _called_by_wait;
   381     bits           = _bits;
   382   }
   384   ~TraceSuspendDebugBits() {
   385     if (!is_wait) {
   386 #if 1
   387       // By default, don't trace bits for is_ext_suspend_completed() calls.
   388       // That trace is very chatty.
   389       return;
   390 #else
   391       if (!called_by_wait) {
   392         // If tracing for is_ext_suspend_completed() is enabled, then only
   393         // trace calls to it from wait_for_ext_suspend_completion()
   394         return;
   395       }
   396 #endif
   397     }
   399     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
   400       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
   401         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
   402         ResourceMark rm;
   404         tty->print_cr(
   405             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
   406             jt->get_thread_name(), *bits);
   408         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
   409       }
   410     }
   411   }
   412 };
   413 #undef DEBUG_FALSE_BITS
   416 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
   417   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
   419   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
   420   bool do_trans_retry;           // flag to force the retry
   422   *bits |= 0x00000001;
   424   do {
   425     do_trans_retry = false;
   427     if (is_exiting()) {
   428       // Thread is in the process of exiting. This is always checked
   429       // first to reduce the risk of dereferencing a freed JavaThread.
   430       *bits |= 0x00000100;
   431       return false;
   432     }
   434     if (!is_external_suspend()) {
   435       // Suspend request is cancelled. This is always checked before
   436       // is_ext_suspended() to reduce the risk of a rogue resume
   437       // confusing the thread that made the suspend request.
   438       *bits |= 0x00000200;
   439       return false;
   440     }
   442     if (is_ext_suspended()) {
   443       // thread is suspended
   444       *bits |= 0x00000400;
   445       return true;
   446     }
   448     // Now that we no longer do hard suspends of threads running
   449     // native code, the target thread can be changing thread state
   450     // while we are in this routine:
   451     //
   452     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
   453     //
   454     // We save a copy of the thread state as observed at this moment
   455     // and make our decision about suspend completeness based on the
   456     // copy. This closes the race where the thread state is seen as
   457     // _thread_in_native_trans in the if-thread_blocked check, but is
   458     // seen as _thread_blocked in if-thread_in_native_trans check.
   459     JavaThreadState save_state = thread_state();
   461     if (save_state == _thread_blocked && is_suspend_equivalent()) {
   462       // If the thread's state is _thread_blocked and this blocking
   463       // condition is known to be equivalent to a suspend, then we can
   464       // consider the thread to be externally suspended. This means that
   465       // the code that sets _thread_blocked has been modified to do
   466       // self-suspension if the blocking condition releases. We also
   467       // used to check for CONDVAR_WAIT here, but that is now covered by
   468       // the _thread_blocked with self-suspension check.
   469       //
   470       // Return true since we wouldn't be here unless there was still an
   471       // external suspend request.
   472       *bits |= 0x00001000;
   473       return true;
   474     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
   475       // Threads running native code will self-suspend on native==>VM/Java
   476       // transitions. If its stack is walkable (should always be the case
   477       // unless this function is called before the actual java_suspend()
   478       // call), then the wait is done.
   479       *bits |= 0x00002000;
   480       return true;
   481     } else if (!called_by_wait && !did_trans_retry &&
   482                save_state == _thread_in_native_trans &&
   483                frame_anchor()->walkable()) {
   484       // The thread is transitioning from thread_in_native to another
   485       // thread state. check_safepoint_and_suspend_for_native_trans()
   486       // will force the thread to self-suspend. If it hasn't gotten
   487       // there yet we may have caught the thread in-between the native
   488       // code check above and the self-suspend. Lucky us. If we were
   489       // called by wait_for_ext_suspend_completion(), then it
   490       // will be doing the retries so we don't have to.
   491       //
   492       // Since we use the saved thread state in the if-statement above,
   493       // there is a chance that the thread has already transitioned to
   494       // _thread_blocked by the time we get here. In that case, we will
   495       // make a single unnecessary pass through the logic below. This
   496       // doesn't hurt anything since we still do the trans retry.
   498       *bits |= 0x00004000;
   500       // Once the thread leaves thread_in_native_trans for another
   501       // thread state, we break out of this retry loop. We shouldn't
   502       // need this flag to prevent us from getting back here, but
   503       // sometimes paranoia is good.
   504       did_trans_retry = true;
   506       // We wait for the thread to transition to a more usable state.
   507       for (int i = 1; i <= SuspendRetryCount; i++) {
   508         // We used to do an "os::yield_all(i)" call here with the intention
   509         // that yielding would increase on each retry. However, the parameter
   510         // is ignored on Linux which means the yield didn't scale up. Waiting
   511         // on the SR_lock below provides a much more predictable scale up for
   512         // the delay. It also provides a simple/direct point to check for any
   513         // safepoint requests from the VMThread
   515         // temporarily drops SR_lock while doing wait with safepoint check
   516         // (if we're a JavaThread - the WatcherThread can also call this)
   517         // and increase delay with each retry
   518         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   520         // check the actual thread state instead of what we saved above
   521         if (thread_state() != _thread_in_native_trans) {
   522           // the thread has transitioned to another thread state so
   523           // try all the checks (except this one) one more time.
   524           do_trans_retry = true;
   525           break;
   526         }
   527       } // end retry loop
   530     }
   531   } while (do_trans_retry);
   533   *bits |= 0x00000010;
   534   return false;
   535 }
   537 //
   538 // Wait for an external suspend request to complete (or be cancelled).
   539 // Returns true if the thread is externally suspended and false otherwise.
   540 //
   541 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
   542        uint32_t *bits) {
   543   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
   544                              false /* !called_by_wait */, bits);
   546   // local flag copies to minimize SR_lock hold time
   547   bool is_suspended;
   548   bool pending;
   549   uint32_t reset_bits;
   551   // set a marker so is_ext_suspend_completed() knows we are the caller
   552   *bits |= 0x00010000;
   554   // We use reset_bits to reinitialize the bits value at the top of
   555   // each retry loop. This allows the caller to make use of any
   556   // unused bits for their own marking purposes.
   557   reset_bits = *bits;
   559   {
   560     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
   561     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   562                                             delay, bits);
   563     pending = is_external_suspend();
   564   }
   565   // must release SR_lock to allow suspension to complete
   567   if (!pending) {
   568     // A cancelled suspend request is the only false return from
   569     // is_ext_suspend_completed() that keeps us from entering the
   570     // retry loop.
   571     *bits |= 0x00020000;
   572     return false;
   573   }
   575   if (is_suspended) {
   576     *bits |= 0x00040000;
   577     return true;
   578   }
   580   for (int i = 1; i <= retries; i++) {
   581     *bits = reset_bits;  // reinit to only track last retry
   583     // We used to do an "os::yield_all(i)" call here with the intention
   584     // that yielding would increase on each retry. However, the parameter
   585     // is ignored on Linux which means the yield didn't scale up. Waiting
   586     // on the SR_lock below provides a much more predictable scale up for
   587     // the delay. It also provides a simple/direct point to check for any
   588     // safepoint requests from the VMThread
   590     {
   591       MutexLocker ml(SR_lock());
   592       // wait with safepoint check (if we're a JavaThread - the WatcherThread
   593       // can also call this)  and increase delay with each retry
   594       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
   596       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
   597                                               delay, bits);
   599       // It is possible for the external suspend request to be cancelled
   600       // (by a resume) before the actual suspend operation is completed.
   601       // Refresh our local copy to see if we still need to wait.
   602       pending = is_external_suspend();
   603     }
   605     if (!pending) {
   606       // A cancelled suspend request is the only false return from
   607       // is_ext_suspend_completed() that keeps us from staying in the
   608       // retry loop.
   609       *bits |= 0x00080000;
   610       return false;
   611     }
   613     if (is_suspended) {
   614       *bits |= 0x00100000;
   615       return true;
   616     }
   617   } // end retry loop
   619   // thread did not suspend after all our retries
   620   *bits |= 0x00200000;
   621   return false;
   622 }
   624 #ifndef PRODUCT
   625 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
   627   // This should not need to be atomic as the only way for simultaneous
   628   // updates is via interrupts. Even then this should be rare or non-existant
   629   // and we don't care that much anyway.
   631   int index = _jmp_ring_index;
   632   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
   633   _jmp_ring[index]._target = (intptr_t) target;
   634   _jmp_ring[index]._instruction = (intptr_t) instr;
   635   _jmp_ring[index]._file = file;
   636   _jmp_ring[index]._line = line;
   637 }
   638 #endif /* PRODUCT */
   640 // Called by flat profiler
   641 // Callers have already called wait_for_ext_suspend_completion
   642 // The assertion for that is currently too complex to put here:
   643 bool JavaThread::profile_last_Java_frame(frame* _fr) {
   644   bool gotframe = false;
   645   // self suspension saves needed state.
   646   if (has_last_Java_frame() && _anchor.walkable()) {
   647      *_fr = pd_last_frame();
   648      gotframe = true;
   649   }
   650   return gotframe;
   651 }
   653 void Thread::interrupt(Thread* thread) {
   654   trace("interrupt", thread);
   655   debug_only(check_for_dangling_thread_pointer(thread);)
   656   os::interrupt(thread);
   657 }
   659 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
   660   trace("is_interrupted", thread);
   661   debug_only(check_for_dangling_thread_pointer(thread);)
   662   // Note:  If clear_interrupted==false, this simply fetches and
   663   // returns the value of the field osthread()->interrupted().
   664   return os::is_interrupted(thread, clear_interrupted);
   665 }
   668 // GC Support
   669 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
   670   jint thread_parity = _oops_do_parity;
   671   if (thread_parity != strong_roots_parity) {
   672     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
   673     if (res == thread_parity) return true;
   674     else {
   675       guarantee(res == strong_roots_parity, "Or else what?");
   676       assert(SharedHeap::heap()->n_par_threads() > 0,
   677              "Should only fail when parallel.");
   678       return false;
   679     }
   680   }
   681   assert(SharedHeap::heap()->n_par_threads() > 0,
   682          "Should only fail when parallel.");
   683   return false;
   684 }
   686 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
   687   active_handles()->oops_do(f);
   688   // Do oop for ThreadShadow
   689   f->do_oop((oop*)&_pending_exception);
   690   handle_area()->oops_do(f);
   691 }
   693 void Thread::nmethods_do(CodeBlobClosure* cf) {
   694   // no nmethods in a generic thread...
   695 }
   697 void Thread::print_on(outputStream* st) const {
   698   // get_priority assumes osthread initialized
   699   if (osthread() != NULL) {
   700     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
   701     osthread()->print_on(st);
   702   }
   703   debug_only(if (WizardMode) print_owned_locks_on(st);)
   704 }
   706 // Thread::print_on_error() is called by fatal error handler. Don't use
   707 // any lock or allocate memory.
   708 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
   709   if      (is_VM_thread())                  st->print("VMThread");
   710   else if (is_Compiler_thread())            st->print("CompilerThread");
   711   else if (is_Java_thread())                st->print("JavaThread");
   712   else if (is_GC_task_thread())             st->print("GCTaskThread");
   713   else if (is_Watcher_thread())             st->print("WatcherThread");
   714   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
   715   else st->print("Thread");
   717   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
   718             _stack_base - _stack_size, _stack_base);
   720   if (osthread()) {
   721     st->print(" [id=%d]", osthread()->thread_id());
   722   }
   723 }
   725 #ifdef ASSERT
   726 void Thread::print_owned_locks_on(outputStream* st) const {
   727   Monitor *cur = _owned_locks;
   728   if (cur == NULL) {
   729     st->print(" (no locks) ");
   730   } else {
   731     st->print_cr(" Locks owned:");
   732     while(cur) {
   733       cur->print_on(st);
   734       cur = cur->next();
   735     }
   736   }
   737 }
   739 static int ref_use_count  = 0;
   741 bool Thread::owns_locks_but_compiled_lock() const {
   742   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   743     if (cur != Compile_lock) return true;
   744   }
   745   return false;
   746 }
   749 #endif
   751 #ifndef PRODUCT
   753 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
   754 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
   755 // no threads which allow_vm_block's are held
   756 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
   757     // Check if current thread is allowed to block at a safepoint
   758     if (!(_allow_safepoint_count == 0))
   759       fatal("Possible safepoint reached by thread that does not allow it");
   760     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
   761       fatal("LEAF method calling lock?");
   762     }
   764 #ifdef ASSERT
   765     if (potential_vm_operation && is_Java_thread()
   766         && !Universe::is_bootstrapping()) {
   767       // Make sure we do not hold any locks that the VM thread also uses.
   768       // This could potentially lead to deadlocks
   769       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
   770         // Threads_lock is special, since the safepoint synchronization will not start before this is
   771         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
   772         // since it is used to transfer control between JavaThreads and the VMThread
   773         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
   774         if ( (cur->allow_vm_block() &&
   775               cur != Threads_lock &&
   776               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
   777               cur != VMOperationRequest_lock &&
   778               cur != VMOperationQueue_lock) ||
   779               cur->rank() == Mutex::special) {
   780           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
   781         }
   782       }
   783     }
   785     if (GCALotAtAllSafepoints) {
   786       // We could enter a safepoint here and thus have a gc
   787       InterfaceSupport::check_gc_alot();
   788     }
   789 #endif
   790 }
   791 #endif
   793 bool Thread::is_in_stack(address adr) const {
   794   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
   795   address end = os::current_stack_pointer();
   796   if (stack_base() >= adr && adr >= end) return true;
   798   return false;
   799 }
   802 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
   803 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
   804 // used for compilation in the future. If that change is made, the need for these methods
   805 // should be revisited, and they should be removed if possible.
   807 bool Thread::is_lock_owned(address adr) const {
   808   return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
   809 }
   811 bool Thread::set_as_starting_thread() {
   812  // NOTE: this must be called inside the main thread.
   813   return os::create_main_thread((JavaThread*)this);
   814 }
   816 static void initialize_class(symbolHandle class_name, TRAPS) {
   817   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
   818   instanceKlass::cast(klass)->initialize(CHECK);
   819 }
   822 // Creates the initial ThreadGroup
   823 static Handle create_initial_thread_group(TRAPS) {
   824   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
   825   instanceKlassHandle klass (THREAD, k);
   827   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
   828   {
   829     JavaValue result(T_VOID);
   830     JavaCalls::call_special(&result,
   831                             system_instance,
   832                             klass,
   833                             vmSymbolHandles::object_initializer_name(),
   834                             vmSymbolHandles::void_method_signature(),
   835                             CHECK_NH);
   836   }
   837   Universe::set_system_thread_group(system_instance());
   839   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
   840   {
   841     JavaValue result(T_VOID);
   842     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
   843     JavaCalls::call_special(&result,
   844                             main_instance,
   845                             klass,
   846                             vmSymbolHandles::object_initializer_name(),
   847                             vmSymbolHandles::threadgroup_string_void_signature(),
   848                             system_instance,
   849                             string,
   850                             CHECK_NH);
   851   }
   852   return main_instance;
   853 }
   855 // Creates the initial Thread
   856 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
   857   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
   858   instanceKlassHandle klass (THREAD, k);
   859   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
   861   java_lang_Thread::set_thread(thread_oop(), thread);
   862   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   863   thread->set_threadObj(thread_oop());
   865   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
   867   JavaValue result(T_VOID);
   868   JavaCalls::call_special(&result, thread_oop,
   869                                    klass,
   870                                    vmSymbolHandles::object_initializer_name(),
   871                                    vmSymbolHandles::threadgroup_string_void_signature(),
   872                                    thread_group,
   873                                    string,
   874                                    CHECK_NULL);
   875   return thread_oop();
   876 }
   878 static void call_initializeSystemClass(TRAPS) {
   879   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   880   instanceKlassHandle klass (THREAD, k);
   882   JavaValue result(T_VOID);
   883   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
   884                                          vmSymbolHandles::void_method_signature(), CHECK);
   885 }
   887 #ifdef KERNEL
   888 static void set_jkernel_boot_classloader_hook(TRAPS) {
   889   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
   890   instanceKlassHandle klass (THREAD, k);
   892   if (k == NULL) {
   893     // sun.jkernel.DownloadManager may not present in the JDK; just return
   894     return;
   895   }
   897   JavaValue result(T_VOID);
   898   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
   899                                          vmSymbolHandles::void_method_signature(), CHECK);
   900 }
   901 #endif // KERNEL
   903 static void reset_vm_info_property(TRAPS) {
   904   // the vm info string
   905   ResourceMark rm(THREAD);
   906   const char *vm_info = VM_Version::vm_info_string();
   908   // java.lang.System class
   909   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
   910   instanceKlassHandle klass (THREAD, k);
   912   // setProperty arguments
   913   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
   914   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
   916   // return value
   917   JavaValue r(T_OBJECT);
   919   // public static String setProperty(String key, String value);
   920   JavaCalls::call_static(&r,
   921                          klass,
   922                          vmSymbolHandles::setProperty_name(),
   923                          vmSymbolHandles::string_string_string_signature(),
   924                          key_str,
   925                          value_str,
   926                          CHECK);
   927 }
   930 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
   931   assert(thread_group.not_null(), "thread group should be specified");
   932   assert(threadObj() == NULL, "should only create Java thread object once");
   934   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
   935   instanceKlassHandle klass (THREAD, k);
   936   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   938   java_lang_Thread::set_thread(thread_oop(), this);
   939   java_lang_Thread::set_priority(thread_oop(), NormPriority);
   940   set_threadObj(thread_oop());
   942   JavaValue result(T_VOID);
   943   if (thread_name != NULL) {
   944     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
   945     // Thread gets assigned specified name and null target
   946     JavaCalls::call_special(&result,
   947                             thread_oop,
   948                             klass,
   949                             vmSymbolHandles::object_initializer_name(),
   950                             vmSymbolHandles::threadgroup_string_void_signature(),
   951                             thread_group, // Argument 1
   952                             name,         // Argument 2
   953                             THREAD);
   954   } else {
   955     // Thread gets assigned name "Thread-nnn" and null target
   956     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
   957     JavaCalls::call_special(&result,
   958                             thread_oop,
   959                             klass,
   960                             vmSymbolHandles::object_initializer_name(),
   961                             vmSymbolHandles::threadgroup_runnable_void_signature(),
   962                             thread_group, // Argument 1
   963                             Handle(),     // Argument 2
   964                             THREAD);
   965   }
   968   if (daemon) {
   969       java_lang_Thread::set_daemon(thread_oop());
   970   }
   972   if (HAS_PENDING_EXCEPTION) {
   973     return;
   974   }
   976   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
   977   Handle threadObj(this, this->threadObj());
   979   JavaCalls::call_special(&result,
   980                          thread_group,
   981                          group,
   982                          vmSymbolHandles::add_method_name(),
   983                          vmSymbolHandles::thread_void_signature(),
   984                          threadObj,          // Arg 1
   985                          THREAD);
   988 }
   990 // NamedThread --  non-JavaThread subclasses with multiple
   991 // uniquely named instances should derive from this.
   992 NamedThread::NamedThread() : Thread() {
   993   _name = NULL;
   994   _processed_thread = NULL;
   995 }
   997 NamedThread::~NamedThread() {
   998   if (_name != NULL) {
   999     FREE_C_HEAP_ARRAY(char, _name);
  1000     _name = NULL;
  1004 void NamedThread::set_name(const char* format, ...) {
  1005   guarantee(_name == NULL, "Only get to set name once.");
  1006   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
  1007   guarantee(_name != NULL, "alloc failure");
  1008   va_list ap;
  1009   va_start(ap, format);
  1010   jio_vsnprintf(_name, max_name_len, format, ap);
  1011   va_end(ap);
  1014 // ======= WatcherThread ========
  1016 // The watcher thread exists to simulate timer interrupts.  It should
  1017 // be replaced by an abstraction over whatever native support for
  1018 // timer interrupts exists on the platform.
  1020 WatcherThread* WatcherThread::_watcher_thread   = NULL;
  1021 bool           WatcherThread::_should_terminate = false;
  1023 WatcherThread::WatcherThread() : Thread() {
  1024   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
  1025   if (os::create_thread(this, os::watcher_thread)) {
  1026     _watcher_thread = this;
  1028     // Set the watcher thread to the highest OS priority which should not be
  1029     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
  1030     // is created. The only normal thread using this priority is the reference
  1031     // handler thread, which runs for very short intervals only.
  1032     // If the VMThread's priority is not lower than the WatcherThread profiling
  1033     // will be inaccurate.
  1034     os::set_priority(this, MaxPriority);
  1035     if (!DisableStartThread) {
  1036       os::start_thread(this);
  1041 void WatcherThread::run() {
  1042   assert(this == watcher_thread(), "just checking");
  1044   this->record_stack_base_and_size();
  1045   this->initialize_thread_local_storage();
  1046   this->set_active_handles(JNIHandleBlock::allocate_block());
  1047   while(!_should_terminate) {
  1048     assert(watcher_thread() == Thread::current(),  "thread consistency check");
  1049     assert(watcher_thread() == this,  "thread consistency check");
  1051     // Calculate how long it'll be until the next PeriodicTask work
  1052     // should be done, and sleep that amount of time.
  1053     const size_t time_to_wait = PeriodicTask::time_to_wait();
  1054     os::sleep(this, time_to_wait, false);
  1056     if (is_error_reported()) {
  1057       // A fatal error has happened, the error handler(VMError::report_and_die)
  1058       // should abort JVM after creating an error log file. However in some
  1059       // rare cases, the error handler itself might deadlock. Here we try to
  1060       // kill JVM if the fatal error handler fails to abort in 2 minutes.
  1061       //
  1062       // This code is in WatcherThread because WatcherThread wakes up
  1063       // periodically so the fatal error handler doesn't need to do anything;
  1064       // also because the WatcherThread is less likely to crash than other
  1065       // threads.
  1067       for (;;) {
  1068         if (!ShowMessageBoxOnError
  1069          && (OnError == NULL || OnError[0] == '\0')
  1070          && Arguments::abort_hook() == NULL) {
  1071              os::sleep(this, 2 * 60 * 1000, false);
  1072              fdStream err(defaultStream::output_fd());
  1073              err.print_raw_cr("# [ timer expired, abort... ]");
  1074              // skip atexit/vm_exit/vm_abort hooks
  1075              os::die();
  1078         // Wake up 5 seconds later, the fatal handler may reset OnError or
  1079         // ShowMessageBoxOnError when it is ready to abort.
  1080         os::sleep(this, 5 * 1000, false);
  1084     PeriodicTask::real_time_tick(time_to_wait);
  1086     // If we have no more tasks left due to dynamic disenrollment,
  1087     // shut down the thread since we don't currently support dynamic enrollment
  1088     if (PeriodicTask::num_tasks() == 0) {
  1089       _should_terminate = true;
  1093   // Signal that it is terminated
  1095     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
  1096     _watcher_thread = NULL;
  1097     Terminator_lock->notify();
  1100   // Thread destructor usually does this..
  1101   ThreadLocalStorage::set_thread(NULL);
  1104 void WatcherThread::start() {
  1105   if (watcher_thread() == NULL) {
  1106     _should_terminate = false;
  1107     // Create the single instance of WatcherThread
  1108     new WatcherThread();
  1112 void WatcherThread::stop() {
  1113   // it is ok to take late safepoints here, if needed
  1114   MutexLocker mu(Terminator_lock);
  1115   _should_terminate = true;
  1116   while(watcher_thread() != NULL) {
  1117     // This wait should make safepoint checks, wait without a timeout,
  1118     // and wait as a suspend-equivalent condition.
  1119     //
  1120     // Note: If the FlatProfiler is running, then this thread is waiting
  1121     // for the WatcherThread to terminate and the WatcherThread, via the
  1122     // FlatProfiler task, is waiting for the external suspend request on
  1123     // this thread to complete. wait_for_ext_suspend_completion() will
  1124     // eventually timeout, but that takes time. Making this wait a
  1125     // suspend-equivalent condition solves that timeout problem.
  1126     //
  1127     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  1128                           Mutex::_as_suspend_equivalent_flag);
  1132 void WatcherThread::print_on(outputStream* st) const {
  1133   st->print("\"%s\" ", name());
  1134   Thread::print_on(st);
  1135   st->cr();
  1138 // ======= JavaThread ========
  1140 // A JavaThread is a normal Java thread
  1142 void JavaThread::initialize() {
  1143   // Initialize fields
  1145   // Set the claimed par_id to -1 (ie not claiming any par_ids)
  1146   set_claimed_par_id(-1);
  1148   set_saved_exception_pc(NULL);
  1149   set_threadObj(NULL);
  1150   _anchor.clear();
  1151   set_entry_point(NULL);
  1152   set_jni_functions(jni_functions());
  1153   set_callee_target(NULL);
  1154   set_vm_result(NULL);
  1155   set_vm_result_2(NULL);
  1156   set_vframe_array_head(NULL);
  1157   set_vframe_array_last(NULL);
  1158   set_deferred_locals(NULL);
  1159   set_deopt_mark(NULL);
  1160   clear_must_deopt_id();
  1161   set_monitor_chunks(NULL);
  1162   set_next(NULL);
  1163   set_thread_state(_thread_new);
  1164   _terminated = _not_terminated;
  1165   _privileged_stack_top = NULL;
  1166   _array_for_gc = NULL;
  1167   _suspend_equivalent = false;
  1168   _in_deopt_handler = 0;
  1169   _doing_unsafe_access = false;
  1170   _stack_guard_state = stack_guard_unused;
  1171   _exception_oop = NULL;
  1172   _exception_pc  = 0;
  1173   _exception_handler_pc = 0;
  1174   _exception_stack_size = 0;
  1175   _jvmti_thread_state= NULL;
  1176   _jvmti_get_loaded_classes_closure = NULL;
  1177   _interp_only_mode    = 0;
  1178   _special_runtime_exit_condition = _no_async_condition;
  1179   _pending_async_exception = NULL;
  1180   _is_compiling = false;
  1181   _thread_stat = NULL;
  1182   _thread_stat = new ThreadStatistics();
  1183   _blocked_on_compilation = false;
  1184   _jni_active_critical = 0;
  1185   _do_not_unlock_if_synchronized = false;
  1186   _cached_monitor_info = NULL;
  1187   _parker = Parker::Allocate(this) ;
  1189 #ifndef PRODUCT
  1190   _jmp_ring_index = 0;
  1191   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
  1192     record_jump(NULL, NULL, NULL, 0);
  1194 #endif /* PRODUCT */
  1196   set_thread_profiler(NULL);
  1197   if (FlatProfiler::is_active()) {
  1198     // This is where we would decide to either give each thread it's own profiler
  1199     // or use one global one from FlatProfiler,
  1200     // or up to some count of the number of profiled threads, etc.
  1201     ThreadProfiler* pp = new ThreadProfiler();
  1202     pp->engage();
  1203     set_thread_profiler(pp);
  1206   // Setup safepoint state info for this thread
  1207   ThreadSafepointState::create(this);
  1209   debug_only(_java_call_counter = 0);
  1211   // JVMTI PopFrame support
  1212   _popframe_condition = popframe_inactive;
  1213   _popframe_preserved_args = NULL;
  1214   _popframe_preserved_args_size = 0;
  1216   pd_initialize();
  1219 #ifndef SERIALGC
  1220 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
  1221 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
  1222 #endif // !SERIALGC
  1224 JavaThread::JavaThread(bool is_attaching) :
  1225   Thread()
  1226 #ifndef SERIALGC
  1227   , _satb_mark_queue(&_satb_mark_queue_set),
  1228   _dirty_card_queue(&_dirty_card_queue_set)
  1229 #endif // !SERIALGC
  1231   initialize();
  1232   _is_attaching = is_attaching;
  1233   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
  1236 bool JavaThread::reguard_stack(address cur_sp) {
  1237   if (_stack_guard_state != stack_guard_yellow_disabled) {
  1238     return true; // Stack already guarded or guard pages not needed.
  1241   if (register_stack_overflow()) {
  1242     // For those architectures which have separate register and
  1243     // memory stacks, we must check the register stack to see if
  1244     // it has overflowed.
  1245     return false;
  1248   // Java code never executes within the yellow zone: the latter is only
  1249   // there to provoke an exception during stack banging.  If java code
  1250   // is executing there, either StackShadowPages should be larger, or
  1251   // some exception code in c1, c2 or the interpreter isn't unwinding
  1252   // when it should.
  1253   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
  1255   enable_stack_yellow_zone();
  1256   return true;
  1259 bool JavaThread::reguard_stack(void) {
  1260   return reguard_stack(os::current_stack_pointer());
  1264 void JavaThread::block_if_vm_exited() {
  1265   if (_terminated == _vm_exited) {
  1266     // _vm_exited is set at safepoint, and Threads_lock is never released
  1267     // we will block here forever
  1268     Threads_lock->lock_without_safepoint_check();
  1269     ShouldNotReachHere();
  1274 // Remove this ifdef when C1 is ported to the compiler interface.
  1275 static void compiler_thread_entry(JavaThread* thread, TRAPS);
  1277 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
  1278   Thread()
  1279 #ifndef SERIALGC
  1280   , _satb_mark_queue(&_satb_mark_queue_set),
  1281   _dirty_card_queue(&_dirty_card_queue_set)
  1282 #endif // !SERIALGC
  1284   if (TraceThreadEvents) {
  1285     tty->print_cr("creating thread %p", this);
  1287   initialize();
  1288   _is_attaching = false;
  1289   set_entry_point(entry_point);
  1290   // Create the native thread itself.
  1291   // %note runtime_23
  1292   os::ThreadType thr_type = os::java_thread;
  1293   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
  1294                                                      os::java_thread;
  1295   os::create_thread(this, thr_type, stack_sz);
  1297   // The _osthread may be NULL here because we ran out of memory (too many threads active).
  1298   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
  1299   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
  1300   // the exception consists of creating the exception object & initializing it, initialization
  1301   // will leave the VM via a JavaCall and then all locks must be unlocked).
  1302   //
  1303   // The thread is still suspended when we reach here. Thread must be explicit started
  1304   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
  1305   // by calling Threads:add. The reason why this is not done here, is because the thread
  1306   // object must be fully initialized (take a look at JVM_Start)
  1309 JavaThread::~JavaThread() {
  1310   if (TraceThreadEvents) {
  1311       tty->print_cr("terminate thread %p", this);
  1314   // JSR166 -- return the parker to the free list
  1315   Parker::Release(_parker);
  1316   _parker = NULL ;
  1318   // Free any remaining  previous UnrollBlock
  1319   vframeArray* old_array = vframe_array_last();
  1321   if (old_array != NULL) {
  1322     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
  1323     old_array->set_unroll_block(NULL);
  1324     delete old_info;
  1325     delete old_array;
  1328   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
  1329   if (deferred != NULL) {
  1330     // This can only happen if thread is destroyed before deoptimization occurs.
  1331     assert(deferred->length() != 0, "empty array!");
  1332     do {
  1333       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
  1334       deferred->remove_at(0);
  1335       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
  1336       delete dlv;
  1337     } while (deferred->length() != 0);
  1338     delete deferred;
  1341   // All Java related clean up happens in exit
  1342   ThreadSafepointState::destroy(this);
  1343   if (_thread_profiler != NULL) delete _thread_profiler;
  1344   if (_thread_stat != NULL) delete _thread_stat;
  1348 // The first routine called by a new Java thread
  1349 void JavaThread::run() {
  1350   // initialize thread-local alloc buffer related fields
  1351   this->initialize_tlab();
  1353   // used to test validitity of stack trace backs
  1354   this->record_base_of_stack_pointer();
  1356   // Record real stack base and size.
  1357   this->record_stack_base_and_size();
  1359   // Initialize thread local storage; set before calling MutexLocker
  1360   this->initialize_thread_local_storage();
  1362   this->create_stack_guard_pages();
  1364   // Thread is now sufficient initialized to be handled by the safepoint code as being
  1365   // in the VM. Change thread state from _thread_new to _thread_in_vm
  1366   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
  1368   assert(JavaThread::current() == this, "sanity check");
  1369   assert(!Thread::current()->owns_locks(), "sanity check");
  1371   DTRACE_THREAD_PROBE(start, this);
  1373   // This operation might block. We call that after all safepoint checks for a new thread has
  1374   // been completed.
  1375   this->set_active_handles(JNIHandleBlock::allocate_block());
  1377   if (JvmtiExport::should_post_thread_life()) {
  1378     JvmtiExport::post_thread_start(this);
  1381   // We call another function to do the rest so we are sure that the stack addresses used
  1382   // from there will be lower than the stack base just computed
  1383   thread_main_inner();
  1385   // Note, thread is no longer valid at this point!
  1389 void JavaThread::thread_main_inner() {
  1390   assert(JavaThread::current() == this, "sanity check");
  1391   assert(this->threadObj() != NULL, "just checking");
  1393   // Execute thread entry point. If this thread is being asked to restart,
  1394   // or has been stopped before starting, do not reexecute entry point.
  1395   // Note: Due to JVM_StopThread we can have pending exceptions already!
  1396   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
  1397     // enter the thread's entry point only if we have no pending exceptions
  1398     HandleMark hm(this);
  1399     this->entry_point()(this, this);
  1402   DTRACE_THREAD_PROBE(stop, this);
  1404   this->exit(false);
  1405   delete this;
  1409 static void ensure_join(JavaThread* thread) {
  1410   // We do not need to grap the Threads_lock, since we are operating on ourself.
  1411   Handle threadObj(thread, thread->threadObj());
  1412   assert(threadObj.not_null(), "java thread object must exist");
  1413   ObjectLocker lock(threadObj, thread);
  1414   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1415   thread->clear_pending_exception();
  1416   // It is of profound importance that we set the stillborn bit and reset the thread object,
  1417   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
  1418   // false. So in case another thread is doing a join on this thread , it will detect that the thread
  1419   // is dead when it gets notified.
  1420   java_lang_Thread::set_stillborn(threadObj());
  1421   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
  1422   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
  1423   java_lang_Thread::set_thread(threadObj(), NULL);
  1424   lock.notify_all(thread);
  1425   // Ignore pending exception (ThreadDeath), since we are exiting anyway
  1426   thread->clear_pending_exception();
  1430 // For any new cleanup additions, please check to see if they need to be applied to
  1431 // cleanup_failed_attach_current_thread as well.
  1432 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
  1433   assert(this == JavaThread::current(),  "thread consistency check");
  1434   if (!InitializeJavaLangSystem) return;
  1436   HandleMark hm(this);
  1437   Handle uncaught_exception(this, this->pending_exception());
  1438   this->clear_pending_exception();
  1439   Handle threadObj(this, this->threadObj());
  1440   assert(threadObj.not_null(), "Java thread object should be created");
  1442   if (get_thread_profiler() != NULL) {
  1443     get_thread_profiler()->disengage();
  1444     ResourceMark rm;
  1445     get_thread_profiler()->print(get_thread_name());
  1449   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
  1451     EXCEPTION_MARK;
  1453     CLEAR_PENDING_EXCEPTION;
  1455   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
  1456   // has to be fixed by a runtime query method
  1457   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
  1458     // JSR-166: change call from from ThreadGroup.uncaughtException to
  1459     // java.lang.Thread.dispatchUncaughtException
  1460     if (uncaught_exception.not_null()) {
  1461       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
  1462       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
  1463         (address)uncaught_exception(), (address)threadObj(), (address)group());
  1465         EXCEPTION_MARK;
  1466         // Check if the method Thread.dispatchUncaughtException() exists. If so
  1467         // call it.  Otherwise we have an older library without the JSR-166 changes,
  1468         // so call ThreadGroup.uncaughtException()
  1469         KlassHandle recvrKlass(THREAD, threadObj->klass());
  1470         CallInfo callinfo;
  1471         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1472         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
  1473                                            vmSymbolHandles::dispatchUncaughtException_name(),
  1474                                            vmSymbolHandles::throwable_void_signature(),
  1475                                            KlassHandle(), false, false, THREAD);
  1476         CLEAR_PENDING_EXCEPTION;
  1477         methodHandle method = callinfo.selected_method();
  1478         if (method.not_null()) {
  1479           JavaValue result(T_VOID);
  1480           JavaCalls::call_virtual(&result,
  1481                                   threadObj, thread_klass,
  1482                                   vmSymbolHandles::dispatchUncaughtException_name(),
  1483                                   vmSymbolHandles::throwable_void_signature(),
  1484                                   uncaught_exception,
  1485                                   THREAD);
  1486         } else {
  1487           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
  1488           JavaValue result(T_VOID);
  1489           JavaCalls::call_virtual(&result,
  1490                                   group, thread_group,
  1491                                   vmSymbolHandles::uncaughtException_name(),
  1492                                   vmSymbolHandles::thread_throwable_void_signature(),
  1493                                   threadObj,           // Arg 1
  1494                                   uncaught_exception,  // Arg 2
  1495                                   THREAD);
  1497         CLEAR_PENDING_EXCEPTION;
  1501     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
  1502     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
  1503     // is deprecated anyhow.
  1504     { int count = 3;
  1505       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
  1506         EXCEPTION_MARK;
  1507         JavaValue result(T_VOID);
  1508         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
  1509         JavaCalls::call_virtual(&result,
  1510                               threadObj, thread_klass,
  1511                               vmSymbolHandles::exit_method_name(),
  1512                               vmSymbolHandles::void_method_signature(),
  1513                               THREAD);
  1514         CLEAR_PENDING_EXCEPTION;
  1518     // notify JVMTI
  1519     if (JvmtiExport::should_post_thread_life()) {
  1520       JvmtiExport::post_thread_end(this);
  1523     // We have notified the agents that we are exiting, before we go on,
  1524     // we must check for a pending external suspend request and honor it
  1525     // in order to not surprise the thread that made the suspend request.
  1526     while (true) {
  1528         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1529         if (!is_external_suspend()) {
  1530           set_terminated(_thread_exiting);
  1531           ThreadService::current_thread_exiting(this);
  1532           break;
  1534         // Implied else:
  1535         // Things get a little tricky here. We have a pending external
  1536         // suspend request, but we are holding the SR_lock so we
  1537         // can't just self-suspend. So we temporarily drop the lock
  1538         // and then self-suspend.
  1541       ThreadBlockInVM tbivm(this);
  1542       java_suspend_self();
  1544       // We're done with this suspend request, but we have to loop around
  1545       // and check again. Eventually we will get SR_lock without a pending
  1546       // external suspend request and will be able to mark ourselves as
  1547       // exiting.
  1549     // no more external suspends are allowed at this point
  1550   } else {
  1551     // before_exit() has already posted JVMTI THREAD_END events
  1554   // Notify waiters on thread object. This has to be done after exit() is called
  1555   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
  1556   // group should have the destroyed bit set before waiters are notified).
  1557   ensure_join(this);
  1558   assert(!this->has_pending_exception(), "ensure_join should have cleared");
  1560   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
  1561   // held by this thread must be released.  A detach operation must only
  1562   // get here if there are no Java frames on the stack.  Therefore, any
  1563   // owned monitors at this point MUST be JNI-acquired monitors which are
  1564   // pre-inflated and in the monitor cache.
  1565   //
  1566   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
  1567   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
  1568     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
  1569     ObjectSynchronizer::release_monitors_owned_by_thread(this);
  1570     assert(!this->has_pending_exception(), "release_monitors should have cleared");
  1573   // These things needs to be done while we are still a Java Thread. Make sure that thread
  1574   // is in a consistent state, in case GC happens
  1575   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
  1577   if (active_handles() != NULL) {
  1578     JNIHandleBlock* block = active_handles();
  1579     set_active_handles(NULL);
  1580     JNIHandleBlock::release_block(block);
  1583   if (free_handle_block() != NULL) {
  1584     JNIHandleBlock* block = free_handle_block();
  1585     set_free_handle_block(NULL);
  1586     JNIHandleBlock::release_block(block);
  1589   // These have to be removed while this is still a valid thread.
  1590   remove_stack_guard_pages();
  1592   if (UseTLAB) {
  1593     tlab().make_parsable(true);  // retire TLAB
  1596   if (jvmti_thread_state() != NULL) {
  1597     JvmtiExport::cleanup_thread(this);
  1600 #ifndef SERIALGC
  1601   // We must flush G1-related buffers before removing a thread from
  1602   // the list of active threads.
  1603   if (UseG1GC) {
  1604     flush_barrier_queues();
  1606 #endif
  1608   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
  1609   Threads::remove(this);
  1612 #ifndef SERIALGC
  1613 // Flush G1-related queues.
  1614 void JavaThread::flush_barrier_queues() {
  1615   satb_mark_queue().flush();
  1616   dirty_card_queue().flush();
  1618 #endif
  1620 void JavaThread::cleanup_failed_attach_current_thread() {
  1621   if (get_thread_profiler() != NULL) {
  1622     get_thread_profiler()->disengage();
  1623     ResourceMark rm;
  1624     get_thread_profiler()->print(get_thread_name());
  1627   if (active_handles() != NULL) {
  1628     JNIHandleBlock* block = active_handles();
  1629     set_active_handles(NULL);
  1630     JNIHandleBlock::release_block(block);
  1633   if (free_handle_block() != NULL) {
  1634     JNIHandleBlock* block = free_handle_block();
  1635     set_free_handle_block(NULL);
  1636     JNIHandleBlock::release_block(block);
  1639   if (UseTLAB) {
  1640     tlab().make_parsable(true);  // retire TLAB, if any
  1643 #ifndef SERIALGC
  1644   if (UseG1GC) {
  1645     flush_barrier_queues();
  1647 #endif
  1649   Threads::remove(this);
  1650   delete this;
  1656 JavaThread* JavaThread::active() {
  1657   Thread* thread = ThreadLocalStorage::thread();
  1658   assert(thread != NULL, "just checking");
  1659   if (thread->is_Java_thread()) {
  1660     return (JavaThread*) thread;
  1661   } else {
  1662     assert(thread->is_VM_thread(), "this must be a vm thread");
  1663     VM_Operation* op = ((VMThread*) thread)->vm_operation();
  1664     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
  1665     assert(ret->is_Java_thread(), "must be a Java thread");
  1666     return ret;
  1670 bool JavaThread::is_lock_owned(address adr) const {
  1671   if (Thread::is_lock_owned(adr)) return true;
  1673   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  1674     if (chunk->contains(adr)) return true;
  1677   return false;
  1681 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
  1682   chunk->set_next(monitor_chunks());
  1683   set_monitor_chunks(chunk);
  1686 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
  1687   guarantee(monitor_chunks() != NULL, "must be non empty");
  1688   if (monitor_chunks() == chunk) {
  1689     set_monitor_chunks(chunk->next());
  1690   } else {
  1691     MonitorChunk* prev = monitor_chunks();
  1692     while (prev->next() != chunk) prev = prev->next();
  1693     prev->set_next(chunk->next());
  1697 // JVM support.
  1699 // Note: this function shouldn't block if it's called in
  1700 // _thread_in_native_trans state (such as from
  1701 // check_special_condition_for_native_trans()).
  1702 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
  1704   if (has_last_Java_frame() && has_async_condition()) {
  1705     // If we are at a polling page safepoint (not a poll return)
  1706     // then we must defer async exception because live registers
  1707     // will be clobbered by the exception path. Poll return is
  1708     // ok because the call we a returning from already collides
  1709     // with exception handling registers and so there is no issue.
  1710     // (The exception handling path kills call result registers but
  1711     //  this is ok since the exception kills the result anyway).
  1713     if (is_at_poll_safepoint()) {
  1714       // if the code we are returning to has deoptimized we must defer
  1715       // the exception otherwise live registers get clobbered on the
  1716       // exception path before deoptimization is able to retrieve them.
  1717       //
  1718       RegisterMap map(this, false);
  1719       frame caller_fr = last_frame().sender(&map);
  1720       assert(caller_fr.is_compiled_frame(), "what?");
  1721       if (caller_fr.is_deoptimized_frame()) {
  1722         if (TraceExceptions) {
  1723           ResourceMark rm;
  1724           tty->print_cr("deferred async exception at compiled safepoint");
  1726         return;
  1731   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
  1732   if (condition == _no_async_condition) {
  1733     // Conditions have changed since has_special_runtime_exit_condition()
  1734     // was called:
  1735     // - if we were here only because of an external suspend request,
  1736     //   then that was taken care of above (or cancelled) so we are done
  1737     // - if we were here because of another async request, then it has
  1738     //   been cleared between the has_special_runtime_exit_condition()
  1739     //   and now so again we are done
  1740     return;
  1743   // Check for pending async. exception
  1744   if (_pending_async_exception != NULL) {
  1745     // Only overwrite an already pending exception, if it is not a threadDeath.
  1746     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
  1748       // We cannot call Exceptions::_throw(...) here because we cannot block
  1749       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
  1751       if (TraceExceptions) {
  1752         ResourceMark rm;
  1753         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
  1754         if (has_last_Java_frame() ) {
  1755           frame f = last_frame();
  1756           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
  1758         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1760       _pending_async_exception = NULL;
  1761       clear_has_async_exception();
  1765   if (check_unsafe_error &&
  1766       condition == _async_unsafe_access_error && !has_pending_exception()) {
  1767     condition = _no_async_condition;  // done
  1768     switch (thread_state()) {
  1769     case _thread_in_vm:
  1771         JavaThread* THREAD = this;
  1772         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1774     case _thread_in_native:
  1776         ThreadInVMfromNative tiv(this);
  1777         JavaThread* THREAD = this;
  1778         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
  1780     case _thread_in_Java:
  1782         ThreadInVMfromJava tiv(this);
  1783         JavaThread* THREAD = this;
  1784         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
  1786     default:
  1787       ShouldNotReachHere();
  1791   assert(condition == _no_async_condition || has_pending_exception() ||
  1792          (!check_unsafe_error && condition == _async_unsafe_access_error),
  1793          "must have handled the async condition, if no exception");
  1796 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
  1797   //
  1798   // Check for pending external suspend. Internal suspend requests do
  1799   // not use handle_special_runtime_exit_condition().
  1800   // If JNIEnv proxies are allowed, don't self-suspend if the target
  1801   // thread is not the current thread. In older versions of jdbx, jdbx
  1802   // threads could call into the VM with another thread's JNIEnv so we
  1803   // can be here operating on behalf of a suspended thread (4432884).
  1804   bool do_self_suspend = is_external_suspend_with_lock();
  1805   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
  1806     //
  1807     // Because thread is external suspended the safepoint code will count
  1808     // thread as at a safepoint. This can be odd because we can be here
  1809     // as _thread_in_Java which would normally transition to _thread_blocked
  1810     // at a safepoint. We would like to mark the thread as _thread_blocked
  1811     // before calling java_suspend_self like all other callers of it but
  1812     // we must then observe proper safepoint protocol. (We can't leave
  1813     // _thread_blocked with a safepoint in progress). However we can be
  1814     // here as _thread_in_native_trans so we can't use a normal transition
  1815     // constructor/destructor pair because they assert on that type of
  1816     // transition. We could do something like:
  1817     //
  1818     // JavaThreadState state = thread_state();
  1819     // set_thread_state(_thread_in_vm);
  1820     // {
  1821     //   ThreadBlockInVM tbivm(this);
  1822     //   java_suspend_self()
  1823     // }
  1824     // set_thread_state(_thread_in_vm_trans);
  1825     // if (safepoint) block;
  1826     // set_thread_state(state);
  1827     //
  1828     // but that is pretty messy. Instead we just go with the way the
  1829     // code has worked before and note that this is the only path to
  1830     // java_suspend_self that doesn't put the thread in _thread_blocked
  1831     // mode.
  1833     frame_anchor()->make_walkable(this);
  1834     java_suspend_self();
  1836     // We might be here for reasons in addition to the self-suspend request
  1837     // so check for other async requests.
  1840   if (check_asyncs) {
  1841     check_and_handle_async_exceptions();
  1845 void JavaThread::send_thread_stop(oop java_throwable)  {
  1846   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
  1847   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
  1848   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
  1850   // Do not throw asynchronous exceptions against the compiler thread
  1851   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
  1852   if (is_Compiler_thread()) return;
  1854   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
  1855   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
  1856     java_lang_Thread::set_stillborn(threadObj());
  1860     // Actually throw the Throwable against the target Thread - however
  1861     // only if there is no thread death exception installed already.
  1862     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
  1863       // If the topmost frame is a runtime stub, then we are calling into
  1864       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
  1865       // must deoptimize the caller before continuing, as the compiled  exception handler table
  1866       // may not be valid
  1867       if (has_last_Java_frame()) {
  1868         frame f = last_frame();
  1869         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
  1870           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  1871           RegisterMap reg_map(this, UseBiasedLocking);
  1872           frame compiled_frame = f.sender(&reg_map);
  1873           if (compiled_frame.can_be_deoptimized()) {
  1874             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
  1879       // Set async. pending exception in thread.
  1880       set_pending_async_exception(java_throwable);
  1882       if (TraceExceptions) {
  1883        ResourceMark rm;
  1884        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
  1886       // for AbortVMOnException flag
  1887       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
  1892   // Interrupt thread so it will wake up from a potential wait()
  1893   Thread::interrupt(this);
  1896 // External suspension mechanism.
  1897 //
  1898 // Tell the VM to suspend a thread when ever it knows that it does not hold on
  1899 // to any VM_locks and it is at a transition
  1900 // Self-suspension will happen on the transition out of the vm.
  1901 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
  1902 //
  1903 // Guarantees on return:
  1904 //   + Target thread will not execute any new bytecode (that's why we need to
  1905 //     force a safepoint)
  1906 //   + Target thread will not enter any new monitors
  1907 //
  1908 void JavaThread::java_suspend() {
  1909   { MutexLocker mu(Threads_lock);
  1910     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
  1911        return;
  1915   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1916     if (!is_external_suspend()) {
  1917       // a racing resume has cancelled us; bail out now
  1918       return;
  1921     // suspend is done
  1922     uint32_t debug_bits = 0;
  1923     // Warning: is_ext_suspend_completed() may temporarily drop the
  1924     // SR_lock to allow the thread to reach a stable thread state if
  1925     // it is currently in a transient thread state.
  1926     if (is_ext_suspend_completed(false /* !called_by_wait */,
  1927                                  SuspendRetryDelay, &debug_bits) ) {
  1928       return;
  1932   VM_ForceSafepoint vm_suspend;
  1933   VMThread::execute(&vm_suspend);
  1936 // Part II of external suspension.
  1937 // A JavaThread self suspends when it detects a pending external suspend
  1938 // request. This is usually on transitions. It is also done in places
  1939 // where continuing to the next transition would surprise the caller,
  1940 // e.g., monitor entry.
  1941 //
  1942 // Returns the number of times that the thread self-suspended.
  1943 //
  1944 // Note: DO NOT call java_suspend_self() when you just want to block current
  1945 //       thread. java_suspend_self() is the second stage of cooperative
  1946 //       suspension for external suspend requests and should only be used
  1947 //       to complete an external suspend request.
  1948 //
  1949 int JavaThread::java_suspend_self() {
  1950   int ret = 0;
  1952   // we are in the process of exiting so don't suspend
  1953   if (is_exiting()) {
  1954      clear_external_suspend();
  1955      return ret;
  1958   assert(_anchor.walkable() ||
  1959     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
  1960     "must have walkable stack");
  1962   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  1964   assert(!this->is_ext_suspended(),
  1965     "a thread trying to self-suspend should not already be suspended");
  1967   if (this->is_suspend_equivalent()) {
  1968     // If we are self-suspending as a result of the lifting of a
  1969     // suspend equivalent condition, then the suspend_equivalent
  1970     // flag is not cleared until we set the ext_suspended flag so
  1971     // that wait_for_ext_suspend_completion() returns consistent
  1972     // results.
  1973     this->clear_suspend_equivalent();
  1976   // A racing resume may have cancelled us before we grabbed SR_lock
  1977   // above. Or another external suspend request could be waiting for us
  1978   // by the time we return from SR_lock()->wait(). The thread
  1979   // that requested the suspension may already be trying to walk our
  1980   // stack and if we return now, we can change the stack out from under
  1981   // it. This would be a "bad thing (TM)" and cause the stack walker
  1982   // to crash. We stay self-suspended until there are no more pending
  1983   // external suspend requests.
  1984   while (is_external_suspend()) {
  1985     ret++;
  1986     this->set_ext_suspended();
  1988     // _ext_suspended flag is cleared by java_resume()
  1989     while (is_ext_suspended()) {
  1990       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
  1994   return ret;
  1997 #ifdef ASSERT
  1998 // verify the JavaThread has not yet been published in the Threads::list, and
  1999 // hence doesn't need protection from concurrent access at this stage
  2000 void JavaThread::verify_not_published() {
  2001   if (!Threads_lock->owned_by_self()) {
  2002    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
  2003    assert( !Threads::includes(this),
  2004            "java thread shouldn't have been published yet!");
  2006   else {
  2007    assert( !Threads::includes(this),
  2008            "java thread shouldn't have been published yet!");
  2011 #endif
  2013 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2014 // progress or when _suspend_flags is non-zero.
  2015 // Current thread needs to self-suspend if there is a suspend request and/or
  2016 // block if a safepoint is in progress.
  2017 // Async exception ISN'T checked.
  2018 // Note only the ThreadInVMfromNative transition can call this function
  2019 // directly and when thread state is _thread_in_native_trans
  2020 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
  2021   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
  2023   JavaThread *curJT = JavaThread::current();
  2024   bool do_self_suspend = thread->is_external_suspend();
  2026   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
  2028   // If JNIEnv proxies are allowed, don't self-suspend if the target
  2029   // thread is not the current thread. In older versions of jdbx, jdbx
  2030   // threads could call into the VM with another thread's JNIEnv so we
  2031   // can be here operating on behalf of a suspended thread (4432884).
  2032   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
  2033     JavaThreadState state = thread->thread_state();
  2035     // We mark this thread_blocked state as a suspend-equivalent so
  2036     // that a caller to is_ext_suspend_completed() won't be confused.
  2037     // The suspend-equivalent state is cleared by java_suspend_self().
  2038     thread->set_suspend_equivalent();
  2040     // If the safepoint code sees the _thread_in_native_trans state, it will
  2041     // wait until the thread changes to other thread state. There is no
  2042     // guarantee on how soon we can obtain the SR_lock and complete the
  2043     // self-suspend request. It would be a bad idea to let safepoint wait for
  2044     // too long. Temporarily change the state to _thread_blocked to
  2045     // let the VM thread know that this thread is ready for GC. The problem
  2046     // of changing thread state is that safepoint could happen just after
  2047     // java_suspend_self() returns after being resumed, and VM thread will
  2048     // see the _thread_blocked state. We must check for safepoint
  2049     // after restoring the state and make sure we won't leave while a safepoint
  2050     // is in progress.
  2051     thread->set_thread_state(_thread_blocked);
  2052     thread->java_suspend_self();
  2053     thread->set_thread_state(state);
  2054     // Make sure new state is seen by VM thread
  2055     if (os::is_MP()) {
  2056       if (UseMembar) {
  2057         // Force a fence between the write above and read below
  2058         OrderAccess::fence();
  2059       } else {
  2060         // Must use this rather than serialization page in particular on Windows
  2061         InterfaceSupport::serialize_memory(thread);
  2066   if (SafepointSynchronize::do_call_back()) {
  2067     // If we are safepointing, then block the caller which may not be
  2068     // the same as the target thread (see above).
  2069     SafepointSynchronize::block(curJT);
  2072   if (thread->is_deopt_suspend()) {
  2073     thread->clear_deopt_suspend();
  2074     RegisterMap map(thread, false);
  2075     frame f = thread->last_frame();
  2076     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
  2077       f = f.sender(&map);
  2079     if (f.id() == thread->must_deopt_id()) {
  2080       thread->clear_must_deopt_id();
  2081       // Since we know we're safe to deopt the current state is a safe state
  2082       f.deoptimize(thread, true);
  2083     } else {
  2084       fatal("missed deoptimization!");
  2089 // Slow path when the native==>VM/Java barriers detect a safepoint is in
  2090 // progress or when _suspend_flags is non-zero.
  2091 // Current thread needs to self-suspend if there is a suspend request and/or
  2092 // block if a safepoint is in progress.
  2093 // Also check for pending async exception (not including unsafe access error).
  2094 // Note only the native==>VM/Java barriers can call this function and when
  2095 // thread state is _thread_in_native_trans.
  2096 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
  2097   check_safepoint_and_suspend_for_native_trans(thread);
  2099   if (thread->has_async_exception()) {
  2100     // We are in _thread_in_native_trans state, don't handle unsafe
  2101     // access error since that may block.
  2102     thread->check_and_handle_async_exceptions(false);
  2106 // We need to guarantee the Threads_lock here, since resumes are not
  2107 // allowed during safepoint synchronization
  2108 // Can only resume from an external suspension
  2109 void JavaThread::java_resume() {
  2110   assert_locked_or_safepoint(Threads_lock);
  2112   // Sanity check: thread is gone, has started exiting or the thread
  2113   // was not externally suspended.
  2114   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
  2115     return;
  2118   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
  2120   clear_external_suspend();
  2122   if (is_ext_suspended()) {
  2123     clear_ext_suspended();
  2124     SR_lock()->notify_all();
  2128 void JavaThread::create_stack_guard_pages() {
  2129   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
  2130   address low_addr = stack_base() - stack_size();
  2131   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2133   int allocate = os::allocate_stack_guard_pages();
  2134   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
  2136   if (allocate && !os::commit_memory((char *) low_addr, len)) {
  2137     warning("Attempt to allocate stack guard pages failed.");
  2138     return;
  2141   if (os::guard_memory((char *) low_addr, len)) {
  2142     _stack_guard_state = stack_guard_enabled;
  2143   } else {
  2144     warning("Attempt to protect stack guard pages failed.");
  2145     if (os::uncommit_memory((char *) low_addr, len)) {
  2146       warning("Attempt to deallocate stack guard pages failed.");
  2151 void JavaThread::remove_stack_guard_pages() {
  2152   if (_stack_guard_state == stack_guard_unused) return;
  2153   address low_addr = stack_base() - stack_size();
  2154   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
  2156   if (os::allocate_stack_guard_pages()) {
  2157     if (os::uncommit_memory((char *) low_addr, len)) {
  2158       _stack_guard_state = stack_guard_unused;
  2159     } else {
  2160       warning("Attempt to deallocate stack guard pages failed.");
  2162   } else {
  2163     if (_stack_guard_state == stack_guard_unused) return;
  2164     if (os::unguard_memory((char *) low_addr, len)) {
  2165       _stack_guard_state = stack_guard_unused;
  2166     } else {
  2167         warning("Attempt to unprotect stack guard pages failed.");
  2172 void JavaThread::enable_stack_yellow_zone() {
  2173   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2174   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
  2176   // The base notation is from the stacks point of view, growing downward.
  2177   // We need to adjust it to work correctly with guard_memory()
  2178   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2180   guarantee(base < stack_base(),"Error calculating stack yellow zone");
  2181   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
  2183   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
  2184     _stack_guard_state = stack_guard_enabled;
  2185   } else {
  2186     warning("Attempt to guard stack yellow zone failed.");
  2188   enable_register_stack_guard();
  2191 void JavaThread::disable_stack_yellow_zone() {
  2192   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2193   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
  2195   // Simply return if called for a thread that does not use guard pages.
  2196   if (_stack_guard_state == stack_guard_unused) return;
  2198   // The base notation is from the stacks point of view, growing downward.
  2199   // We need to adjust it to work correctly with guard_memory()
  2200   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
  2202   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
  2203     _stack_guard_state = stack_guard_yellow_disabled;
  2204   } else {
  2205     warning("Attempt to unguard stack yellow zone failed.");
  2207   disable_register_stack_guard();
  2210 void JavaThread::enable_stack_red_zone() {
  2211   // The base notation is from the stacks point of view, growing downward.
  2212   // We need to adjust it to work correctly with guard_memory()
  2213   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2214   address base = stack_red_zone_base() - stack_red_zone_size();
  2216   guarantee(base < stack_base(),"Error calculating stack red zone");
  2217   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
  2219   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
  2220     warning("Attempt to guard stack red zone failed.");
  2224 void JavaThread::disable_stack_red_zone() {
  2225   // The base notation is from the stacks point of view, growing downward.
  2226   // We need to adjust it to work correctly with guard_memory()
  2227   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
  2228   address base = stack_red_zone_base() - stack_red_zone_size();
  2229   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
  2230     warning("Attempt to unguard stack red zone failed.");
  2234 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
  2235   // ignore is there is no stack
  2236   if (!has_last_Java_frame()) return;
  2237   // traverse the stack frames. Starts from top frame.
  2238   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2239     frame* fr = fst.current();
  2240     f(fr, fst.register_map());
  2245 #ifndef PRODUCT
  2246 // Deoptimization
  2247 // Function for testing deoptimization
  2248 void JavaThread::deoptimize() {
  2249   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2250   StackFrameStream fst(this, UseBiasedLocking);
  2251   bool deopt = false;           // Dump stack only if a deopt actually happens.
  2252   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
  2253   // Iterate over all frames in the thread and deoptimize
  2254   for(; !fst.is_done(); fst.next()) {
  2255     if(fst.current()->can_be_deoptimized()) {
  2257       if (only_at) {
  2258         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
  2259         // consists of comma or carriage return separated numbers so
  2260         // search for the current bci in that string.
  2261         address pc = fst.current()->pc();
  2262         nmethod* nm =  (nmethod*) fst.current()->cb();
  2263         ScopeDesc* sd = nm->scope_desc_at( pc);
  2264         char buffer[8];
  2265         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
  2266         size_t len = strlen(buffer);
  2267         const char * found = strstr(DeoptimizeOnlyAt, buffer);
  2268         while (found != NULL) {
  2269           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
  2270               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
  2271             // Check that the bci found is bracketed by terminators.
  2272             break;
  2274           found = strstr(found + 1, buffer);
  2276         if (!found) {
  2277           continue;
  2281       if (DebugDeoptimization && !deopt) {
  2282         deopt = true; // One-time only print before deopt
  2283         tty->print_cr("[BEFORE Deoptimization]");
  2284         trace_frames();
  2285         trace_stack();
  2287       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2291   if (DebugDeoptimization && deopt) {
  2292     tty->print_cr("[AFTER Deoptimization]");
  2293     trace_frames();
  2298 // Make zombies
  2299 void JavaThread::make_zombies() {
  2300   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2301     if (fst.current()->can_be_deoptimized()) {
  2302       // it is a Java nmethod
  2303       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
  2304       nm->make_not_entrant();
  2308 #endif // PRODUCT
  2311 void JavaThread::deoptimized_wrt_marked_nmethods() {
  2312   if (!has_last_Java_frame()) return;
  2313   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
  2314   StackFrameStream fst(this, UseBiasedLocking);
  2315   for(; !fst.is_done(); fst.next()) {
  2316     if (fst.current()->should_be_deoptimized()) {
  2317       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
  2323 // GC support
  2324 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
  2326 void JavaThread::gc_epilogue() {
  2327   frames_do(frame_gc_epilogue);
  2331 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
  2333 void JavaThread::gc_prologue() {
  2334   frames_do(frame_gc_prologue);
  2337 // If the caller is a NamedThread, then remember, in the current scope,
  2338 // the given JavaThread in its _processed_thread field.
  2339 class RememberProcessedThread: public StackObj {
  2340   NamedThread* _cur_thr;
  2341 public:
  2342   RememberProcessedThread(JavaThread* jthr) {
  2343     Thread* thread = Thread::current();
  2344     if (thread->is_Named_thread()) {
  2345       _cur_thr = (NamedThread *)thread;
  2346       _cur_thr->set_processed_thread(jthr);
  2347     } else {
  2348       _cur_thr = NULL;
  2352   ~RememberProcessedThread() {
  2353     if (_cur_thr) {
  2354       _cur_thr->set_processed_thread(NULL);
  2357 };
  2359 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  2360   // Flush deferred store-barriers, if any, associated with
  2361   // initializing stores done by this JavaThread in the current epoch.
  2362   Universe::heap()->flush_deferred_store_barrier(this);
  2364   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
  2365   // since there may be more than one thread using each ThreadProfiler.
  2367   // Traverse the GCHandles
  2368   Thread::oops_do(f, cf);
  2370   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2371           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2373   if (has_last_Java_frame()) {
  2374     // Record JavaThread to GC thread
  2375     RememberProcessedThread rpt(this);
  2377     // Traverse the privileged stack
  2378     if (_privileged_stack_top != NULL) {
  2379       _privileged_stack_top->oops_do(f);
  2382     // traverse the registered growable array
  2383     if (_array_for_gc != NULL) {
  2384       for (int index = 0; index < _array_for_gc->length(); index++) {
  2385         f->do_oop(_array_for_gc->adr_at(index));
  2389     // Traverse the monitor chunks
  2390     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
  2391       chunk->oops_do(f);
  2394     // Traverse the execution stack
  2395     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2396       fst.current()->oops_do(f, cf, fst.register_map());
  2400   // callee_target is never live across a gc point so NULL it here should
  2401   // it still contain a methdOop.
  2403   set_callee_target(NULL);
  2405   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
  2406   // If we have deferred set_locals there might be oops waiting to be
  2407   // written
  2408   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
  2409   if (list != NULL) {
  2410     for (int i = 0; i < list->length(); i++) {
  2411       list->at(i)->oops_do(f);
  2415   // Traverse instance variables at the end since the GC may be moving things
  2416   // around using this function
  2417   f->do_oop((oop*) &_threadObj);
  2418   f->do_oop((oop*) &_vm_result);
  2419   f->do_oop((oop*) &_vm_result_2);
  2420   f->do_oop((oop*) &_exception_oop);
  2421   f->do_oop((oop*) &_pending_async_exception);
  2423   if (jvmti_thread_state() != NULL) {
  2424     jvmti_thread_state()->oops_do(f);
  2428 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
  2429   Thread::nmethods_do(cf);  // (super method is a no-op)
  2431   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
  2432           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
  2434   if (has_last_Java_frame()) {
  2435     // Traverse the execution stack
  2436     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2437       fst.current()->nmethods_do(cf);
  2442 // Printing
  2443 const char* _get_thread_state_name(JavaThreadState _thread_state) {
  2444   switch (_thread_state) {
  2445   case _thread_uninitialized:     return "_thread_uninitialized";
  2446   case _thread_new:               return "_thread_new";
  2447   case _thread_new_trans:         return "_thread_new_trans";
  2448   case _thread_in_native:         return "_thread_in_native";
  2449   case _thread_in_native_trans:   return "_thread_in_native_trans";
  2450   case _thread_in_vm:             return "_thread_in_vm";
  2451   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
  2452   case _thread_in_Java:           return "_thread_in_Java";
  2453   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
  2454   case _thread_blocked:           return "_thread_blocked";
  2455   case _thread_blocked_trans:     return "_thread_blocked_trans";
  2456   default:                        return "unknown thread state";
  2460 #ifndef PRODUCT
  2461 void JavaThread::print_thread_state_on(outputStream *st) const {
  2462   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
  2463 };
  2464 void JavaThread::print_thread_state() const {
  2465   print_thread_state_on(tty);
  2466 };
  2467 #endif // PRODUCT
  2469 // Called by Threads::print() for VM_PrintThreads operation
  2470 void JavaThread::print_on(outputStream *st) const {
  2471   st->print("\"%s\" ", get_thread_name());
  2472   oop thread_oop = threadObj();
  2473   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
  2474   Thread::print_on(st);
  2475   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
  2476   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
  2477   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
  2478     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
  2480 #ifndef PRODUCT
  2481   print_thread_state_on(st);
  2482   _safepoint_state->print_on(st);
  2483 #endif // PRODUCT
  2486 // Called by fatal error handler. The difference between this and
  2487 // JavaThread::print() is that we can't grab lock or allocate memory.
  2488 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
  2489   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
  2490   oop thread_obj = threadObj();
  2491   if (thread_obj != NULL) {
  2492      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
  2494   st->print(" [");
  2495   st->print("%s", _get_thread_state_name(_thread_state));
  2496   if (osthread()) {
  2497     st->print(", id=%d", osthread()->thread_id());
  2499   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
  2500             _stack_base - _stack_size, _stack_base);
  2501   st->print("]");
  2502   return;
  2505 // Verification
  2507 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
  2509 void JavaThread::verify() {
  2510   // Verify oops in the thread.
  2511   oops_do(&VerifyOopClosure::verify_oop, NULL);
  2513   // Verify the stack frames.
  2514   frames_do(frame_verify);
  2517 // CR 6300358 (sub-CR 2137150)
  2518 // Most callers of this method assume that it can't return NULL but a
  2519 // thread may not have a name whilst it is in the process of attaching to
  2520 // the VM - see CR 6412693, and there are places where a JavaThread can be
  2521 // seen prior to having it's threadObj set (eg JNI attaching threads and
  2522 // if vm exit occurs during initialization). These cases can all be accounted
  2523 // for such that this method never returns NULL.
  2524 const char* JavaThread::get_thread_name() const {
  2525 #ifdef ASSERT
  2526   // early safepoints can hit while current thread does not yet have TLS
  2527   if (!SafepointSynchronize::is_at_safepoint()) {
  2528     Thread *cur = Thread::current();
  2529     if (!(cur->is_Java_thread() && cur == this)) {
  2530       // Current JavaThreads are allowed to get their own name without
  2531       // the Threads_lock.
  2532       assert_locked_or_safepoint(Threads_lock);
  2535 #endif // ASSERT
  2536     return get_thread_name_string();
  2539 // Returns a non-NULL representation of this thread's name, or a suitable
  2540 // descriptive string if there is no set name
  2541 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
  2542   const char* name_str;
  2543   oop thread_obj = threadObj();
  2544   if (thread_obj != NULL) {
  2545     typeArrayOop name = java_lang_Thread::name(thread_obj);
  2546     if (name != NULL) {
  2547       if (buf == NULL) {
  2548         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2550       else {
  2551         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
  2554     else if (is_attaching()) { // workaround for 6412693 - see 6404306
  2555       name_str = "<no-name - thread is attaching>";
  2557     else {
  2558       name_str = Thread::name();
  2561   else {
  2562     name_str = Thread::name();
  2564   assert(name_str != NULL, "unexpected NULL thread name");
  2565   return name_str;
  2569 const char* JavaThread::get_threadgroup_name() const {
  2570   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2571   oop thread_obj = threadObj();
  2572   if (thread_obj != NULL) {
  2573     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2574     if (thread_group != NULL) {
  2575       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
  2576       // ThreadGroup.name can be null
  2577       if (name != NULL) {
  2578         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2579         return str;
  2583   return NULL;
  2586 const char* JavaThread::get_parent_name() const {
  2587   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
  2588   oop thread_obj = threadObj();
  2589   if (thread_obj != NULL) {
  2590     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
  2591     if (thread_group != NULL) {
  2592       oop parent = java_lang_ThreadGroup::parent(thread_group);
  2593       if (parent != NULL) {
  2594         typeArrayOop name = java_lang_ThreadGroup::name(parent);
  2595         // ThreadGroup.name can be null
  2596         if (name != NULL) {
  2597           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
  2598           return str;
  2603   return NULL;
  2606 ThreadPriority JavaThread::java_priority() const {
  2607   oop thr_oop = threadObj();
  2608   if (thr_oop == NULL) return NormPriority; // Bootstrapping
  2609   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
  2610   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
  2611   return priority;
  2614 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
  2616   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
  2617   // Link Java Thread object <-> C++ Thread
  2619   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
  2620   // and put it into a new Handle.  The Handle "thread_oop" can then
  2621   // be used to pass the C++ thread object to other methods.
  2623   // Set the Java level thread object (jthread) field of the
  2624   // new thread (a JavaThread *) to C++ thread object using the
  2625   // "thread_oop" handle.
  2627   // Set the thread field (a JavaThread *) of the
  2628   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
  2630   Handle thread_oop(Thread::current(),
  2631                     JNIHandles::resolve_non_null(jni_thread));
  2632   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
  2633     "must be initialized");
  2634   set_threadObj(thread_oop());
  2635   java_lang_Thread::set_thread(thread_oop(), this);
  2637   if (prio == NoPriority) {
  2638     prio = java_lang_Thread::priority(thread_oop());
  2639     assert(prio != NoPriority, "A valid priority should be present");
  2642   // Push the Java priority down to the native thread; needs Threads_lock
  2643   Thread::set_priority(this, prio);
  2645   // Add the new thread to the Threads list and set it in motion.
  2646   // We must have threads lock in order to call Threads::add.
  2647   // It is crucial that we do not block before the thread is
  2648   // added to the Threads list for if a GC happens, then the java_thread oop
  2649   // will not be visited by GC.
  2650   Threads::add(this);
  2653 oop JavaThread::current_park_blocker() {
  2654   // Support for JSR-166 locks
  2655   oop thread_oop = threadObj();
  2656   if (thread_oop != NULL &&
  2657       JDK_Version::current().supports_thread_park_blocker()) {
  2658     return java_lang_Thread::park_blocker(thread_oop);
  2660   return NULL;
  2664 void JavaThread::print_stack_on(outputStream* st) {
  2665   if (!has_last_Java_frame()) return;
  2666   ResourceMark rm;
  2667   HandleMark   hm;
  2669   RegisterMap reg_map(this);
  2670   vframe* start_vf = last_java_vframe(&reg_map);
  2671   int count = 0;
  2672   for (vframe* f = start_vf; f; f = f->sender() ) {
  2673     if (f->is_java_frame()) {
  2674       javaVFrame* jvf = javaVFrame::cast(f);
  2675       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
  2677       // Print out lock information
  2678       if (JavaMonitorsInStackTrace) {
  2679         jvf->print_lock_info_on(st, count);
  2681     } else {
  2682       // Ignore non-Java frames
  2685     // Bail-out case for too deep stacks
  2686     count++;
  2687     if (MaxJavaStackTraceDepth == count) return;
  2692 // JVMTI PopFrame support
  2693 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
  2694   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
  2695   if (in_bytes(size_in_bytes) != 0) {
  2696     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
  2697     _popframe_preserved_args_size = in_bytes(size_in_bytes);
  2698     Copy::conjoint_bytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
  2702 void* JavaThread::popframe_preserved_args() {
  2703   return _popframe_preserved_args;
  2706 ByteSize JavaThread::popframe_preserved_args_size() {
  2707   return in_ByteSize(_popframe_preserved_args_size);
  2710 WordSize JavaThread::popframe_preserved_args_size_in_words() {
  2711   int sz = in_bytes(popframe_preserved_args_size());
  2712   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
  2713   return in_WordSize(sz / wordSize);
  2716 void JavaThread::popframe_free_preserved_args() {
  2717   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
  2718   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
  2719   _popframe_preserved_args = NULL;
  2720   _popframe_preserved_args_size = 0;
  2723 #ifndef PRODUCT
  2725 void JavaThread::trace_frames() {
  2726   tty->print_cr("[Describe stack]");
  2727   int frame_no = 1;
  2728   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
  2729     tty->print("  %d. ", frame_no++);
  2730     fst.current()->print_value_on(tty,this);
  2731     tty->cr();
  2736 void JavaThread::trace_stack_from(vframe* start_vf) {
  2737   ResourceMark rm;
  2738   int vframe_no = 1;
  2739   for (vframe* f = start_vf; f; f = f->sender() ) {
  2740     if (f->is_java_frame()) {
  2741       javaVFrame::cast(f)->print_activation(vframe_no++);
  2742     } else {
  2743       f->print();
  2745     if (vframe_no > StackPrintLimit) {
  2746       tty->print_cr("...<more frames>...");
  2747       return;
  2753 void JavaThread::trace_stack() {
  2754   if (!has_last_Java_frame()) return;
  2755   ResourceMark rm;
  2756   HandleMark   hm;
  2757   RegisterMap reg_map(this);
  2758   trace_stack_from(last_java_vframe(&reg_map));
  2762 #endif // PRODUCT
  2765 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
  2766   assert(reg_map != NULL, "a map must be given");
  2767   frame f = last_frame();
  2768   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
  2769     if (vf->is_java_frame()) return javaVFrame::cast(vf);
  2771   return NULL;
  2775 klassOop JavaThread::security_get_caller_class(int depth) {
  2776   vframeStream vfst(this);
  2777   vfst.security_get_caller_frame(depth);
  2778   if (!vfst.at_end()) {
  2779     return vfst.method()->method_holder();
  2781   return NULL;
  2784 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
  2785   assert(thread->is_Compiler_thread(), "must be compiler thread");
  2786   CompileBroker::compiler_thread_loop();
  2789 // Create a CompilerThread
  2790 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
  2791 : JavaThread(&compiler_thread_entry) {
  2792   _env   = NULL;
  2793   _log   = NULL;
  2794   _task  = NULL;
  2795   _queue = queue;
  2796   _counters = counters;
  2798 #ifndef PRODUCT
  2799   _ideal_graph_printer = NULL;
  2800 #endif
  2804 // ======= Threads ========
  2806 // The Threads class links together all active threads, and provides
  2807 // operations over all threads.  It is protected by its own Mutex
  2808 // lock, which is also used in other contexts to protect thread
  2809 // operations from having the thread being operated on from exiting
  2810 // and going away unexpectedly (e.g., safepoint synchronization)
  2812 JavaThread* Threads::_thread_list = NULL;
  2813 int         Threads::_number_of_threads = 0;
  2814 int         Threads::_number_of_non_daemon_threads = 0;
  2815 int         Threads::_return_code = 0;
  2816 size_t      JavaThread::_stack_size_at_create = 0;
  2818 // All JavaThreads
  2819 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
  2821 void os_stream();
  2823 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
  2824 void Threads::threads_do(ThreadClosure* tc) {
  2825   assert_locked_or_safepoint(Threads_lock);
  2826   // ALL_JAVA_THREADS iterates through all JavaThreads
  2827   ALL_JAVA_THREADS(p) {
  2828     tc->do_thread(p);
  2830   // Someday we could have a table or list of all non-JavaThreads.
  2831   // For now, just manually iterate through them.
  2832   tc->do_thread(VMThread::vm_thread());
  2833   Universe::heap()->gc_threads_do(tc);
  2834   WatcherThread *wt = WatcherThread::watcher_thread();
  2835   // Strictly speaking, the following NULL check isn't sufficient to make sure
  2836   // the data for WatcherThread is still valid upon being examined. However,
  2837   // considering that WatchThread terminates when the VM is on the way to
  2838   // exit at safepoint, the chance of the above is extremely small. The right
  2839   // way to prevent termination of WatcherThread would be to acquire
  2840   // Terminator_lock, but we can't do that without violating the lock rank
  2841   // checking in some cases.
  2842   if (wt != NULL)
  2843     tc->do_thread(wt);
  2845   // If CompilerThreads ever become non-JavaThreads, add them here
  2848 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
  2850   extern void JDK_Version_init();
  2852   // Check version
  2853   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
  2855   // Initialize the output stream module
  2856   ostream_init();
  2858   // Process java launcher properties.
  2859   Arguments::process_sun_java_launcher_properties(args);
  2861   // Initialize the os module before using TLS
  2862   os::init();
  2864   // Initialize system properties.
  2865   Arguments::init_system_properties();
  2867   // So that JDK version can be used as a discrimintor when parsing arguments
  2868   JDK_Version_init();
  2870   // Parse arguments
  2871   jint parse_result = Arguments::parse(args);
  2872   if (parse_result != JNI_OK) return parse_result;
  2874   if (PauseAtStartup) {
  2875     os::pause();
  2878   HS_DTRACE_PROBE(hotspot, vm__init__begin);
  2880   // Record VM creation timing statistics
  2881   TraceVmCreationTime create_vm_timer;
  2882   create_vm_timer.start();
  2884   // Timing (must come after argument parsing)
  2885   TraceTime timer("Create VM", TraceStartupTime);
  2887   // Initialize the os module after parsing the args
  2888   jint os_init_2_result = os::init_2();
  2889   if (os_init_2_result != JNI_OK) return os_init_2_result;
  2891   // Initialize output stream logging
  2892   ostream_init_log();
  2894   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
  2895   // Must be before create_vm_init_agents()
  2896   if (Arguments::init_libraries_at_startup()) {
  2897     convert_vm_init_libraries_to_agents();
  2900   // Launch -agentlib/-agentpath and converted -Xrun agents
  2901   if (Arguments::init_agents_at_startup()) {
  2902     create_vm_init_agents();
  2905   // Initialize Threads state
  2906   _thread_list = NULL;
  2907   _number_of_threads = 0;
  2908   _number_of_non_daemon_threads = 0;
  2910   // Initialize TLS
  2911   ThreadLocalStorage::init();
  2913   // Initialize global data structures and create system classes in heap
  2914   vm_init_globals();
  2916   // Attach the main thread to this os thread
  2917   JavaThread* main_thread = new JavaThread();
  2918   main_thread->set_thread_state(_thread_in_vm);
  2919   // must do this before set_active_handles and initialize_thread_local_storage
  2920   // Note: on solaris initialize_thread_local_storage() will (indirectly)
  2921   // change the stack size recorded here to one based on the java thread
  2922   // stacksize. This adjusted size is what is used to figure the placement
  2923   // of the guard pages.
  2924   main_thread->record_stack_base_and_size();
  2925   main_thread->initialize_thread_local_storage();
  2927   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
  2929   if (!main_thread->set_as_starting_thread()) {
  2930     vm_shutdown_during_initialization(
  2931       "Failed necessary internal allocation. Out of swap space");
  2932     delete main_thread;
  2933     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2934     return JNI_ENOMEM;
  2937   // Enable guard page *after* os::create_main_thread(), otherwise it would
  2938   // crash Linux VM, see notes in os_linux.cpp.
  2939   main_thread->create_stack_guard_pages();
  2941   // Initialize Java-Leve synchronization subsystem
  2942   ObjectSynchronizer::Initialize() ;
  2944   // Initialize global modules
  2945   jint status = init_globals();
  2946   if (status != JNI_OK) {
  2947     delete main_thread;
  2948     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
  2949     return status;
  2952   HandleMark hm;
  2954   { MutexLocker mu(Threads_lock);
  2955     Threads::add(main_thread);
  2958   // Any JVMTI raw monitors entered in onload will transition into
  2959   // real raw monitor. VM is setup enough here for raw monitor enter.
  2960   JvmtiExport::transition_pending_onload_raw_monitors();
  2962   if (VerifyBeforeGC &&
  2963       Universe::heap()->total_collections() >= VerifyGCStartAt) {
  2964     Universe::heap()->prepare_for_verify();
  2965     Universe::verify();   // make sure we're starting with a clean slate
  2968   // Create the VMThread
  2969   { TraceTime timer("Start VMThread", TraceStartupTime);
  2970     VMThread::create();
  2971     Thread* vmthread = VMThread::vm_thread();
  2973     if (!os::create_thread(vmthread, os::vm_thread))
  2974       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
  2976     // Wait for the VM thread to become ready, and VMThread::run to initialize
  2977     // Monitors can have spurious returns, must always check another state flag
  2979       MutexLocker ml(Notify_lock);
  2980       os::start_thread(vmthread);
  2981       while (vmthread->active_handles() == NULL) {
  2982         Notify_lock->wait();
  2987   assert (Universe::is_fully_initialized(), "not initialized");
  2988   EXCEPTION_MARK;
  2990   // At this point, the Universe is initialized, but we have not executed
  2991   // any byte code.  Now is a good time (the only time) to dump out the
  2992   // internal state of the JVM for sharing.
  2994   if (DumpSharedSpaces) {
  2995     Universe::heap()->preload_and_dump(CHECK_0);
  2996     ShouldNotReachHere();
  2999   // Always call even when there are not JVMTI environments yet, since environments
  3000   // may be attached late and JVMTI must track phases of VM execution
  3001   JvmtiExport::enter_start_phase();
  3003   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
  3004   JvmtiExport::post_vm_start();
  3007     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
  3009     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3010       create_vm_init_libraries();
  3013     if (InitializeJavaLangString) {
  3014       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
  3015     } else {
  3016       warning("java.lang.String not initialized");
  3019     if (AggressiveOpts) {
  3021         // Forcibly initialize java/util/HashMap and mutate the private
  3022         // static final "frontCacheEnabled" field before we start creating instances
  3023 #ifdef ASSERT
  3024         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3025         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
  3026 #endif
  3027         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
  3028         KlassHandle k = KlassHandle(THREAD, k_o);
  3029         guarantee(k.not_null(), "Must find java/util/HashMap");
  3030         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3031         ik->initialize(CHECK_0);
  3032         fieldDescriptor fd;
  3033         // Possible we might not find this field; if so, don't break
  3034         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3035           k()->bool_field_put(fd.offset(), true);
  3039       if (UseStringCache) {
  3040         // Forcibly initialize java/lang/StringValue and mutate the private
  3041         // static final "stringCacheEnabled" field before we start creating instances
  3042         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
  3043         // Possible that StringValue isn't present: if so, silently don't break
  3044         if (k_o != NULL) {
  3045           KlassHandle k = KlassHandle(THREAD, k_o);
  3046           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
  3047           ik->initialize(CHECK_0);
  3048           fieldDescriptor fd;
  3049           // Possible we might not find this field: if so, silently don't break
  3050           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
  3051             k()->bool_field_put(fd.offset(), true);
  3057     // Initialize java_lang.System (needed before creating the thread)
  3058     if (InitializeJavaLangSystem) {
  3059       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
  3060       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
  3061       Handle thread_group = create_initial_thread_group(CHECK_0);
  3062       Universe::set_main_thread_group(thread_group());
  3063       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
  3064       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
  3065       main_thread->set_threadObj(thread_object);
  3066       // Set thread status to running since main thread has
  3067       // been started and running.
  3068       java_lang_Thread::set_thread_status(thread_object,
  3069                                           java_lang_Thread::RUNNABLE);
  3071       // The VM preresolve methods to these classes. Make sure that get initialized
  3072       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
  3073       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
  3074       // The VM creates & returns objects of this class. Make sure it's initialized.
  3075       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
  3076       call_initializeSystemClass(CHECK_0);
  3077     } else {
  3078       warning("java.lang.System not initialized");
  3081     // an instance of OutOfMemory exception has been allocated earlier
  3082     if (InitializeJavaLangExceptionsErrors) {
  3083       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
  3084       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
  3085       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
  3086       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
  3087       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
  3088       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
  3089       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
  3090     } else {
  3091       warning("java.lang.OutOfMemoryError has not been initialized");
  3092       warning("java.lang.NullPointerException has not been initialized");
  3093       warning("java.lang.ClassCastException has not been initialized");
  3094       warning("java.lang.ArrayStoreException has not been initialized");
  3095       warning("java.lang.ArithmeticException has not been initialized");
  3096       warning("java.lang.StackOverflowError has not been initialized");
  3099     if (EnableInvokeDynamic) {
  3100       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
  3101       // the compiler.
  3102       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
  3106   // See        : bugid 4211085.
  3107   // Background : the static initializer of java.lang.Compiler tries to read
  3108   //              property"java.compiler" and read & write property "java.vm.info".
  3109   //              When a security manager is installed through the command line
  3110   //              option "-Djava.security.manager", the above properties are not
  3111   //              readable and the static initializer for java.lang.Compiler fails
  3112   //              resulting in a NoClassDefFoundError.  This can happen in any
  3113   //              user code which calls methods in java.lang.Compiler.
  3114   // Hack :       the hack is to pre-load and initialize this class, so that only
  3115   //              system domains are on the stack when the properties are read.
  3116   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
  3117   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
  3118   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
  3119   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
  3120   //              Once that is done, we should remove this hack.
  3121   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
  3123   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
  3124   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
  3125   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
  3126   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
  3127   // This should also be taken out as soon as 4211383 gets fixed.
  3128   reset_vm_info_property(CHECK_0);
  3130   quicken_jni_functions();
  3132   // Set flag that basic initialization has completed. Used by exceptions and various
  3133   // debug stuff, that does not work until all basic classes have been initialized.
  3134   set_init_completed();
  3136   HS_DTRACE_PROBE(hotspot, vm__init__end);
  3138   // record VM initialization completion time
  3139   Management::record_vm_init_completed();
  3141   // Compute system loader. Note that this has to occur after set_init_completed, since
  3142   // valid exceptions may be thrown in the process.
  3143   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
  3144   // set_init_completed has just been called, causing exceptions not to be shortcut
  3145   // anymore. We call vm_exit_during_initialization directly instead.
  3146   SystemDictionary::compute_java_system_loader(THREAD);
  3147   if (HAS_PENDING_EXCEPTION) {
  3148     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3151 #ifdef KERNEL
  3152   if (JDK_Version::is_gte_jdk17x_version()) {
  3153     set_jkernel_boot_classloader_hook(THREAD);
  3155 #endif // KERNEL
  3157 #ifndef SERIALGC
  3158   // Support for ConcurrentMarkSweep. This should be cleaned up
  3159   // and better encapsulated. The ugly nested if test would go away
  3160   // once things are properly refactored. XXX YSR
  3161   if (UseConcMarkSweepGC || UseG1GC) {
  3162     if (UseConcMarkSweepGC) {
  3163       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
  3164     } else {
  3165       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
  3167     if (HAS_PENDING_EXCEPTION) {
  3168       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
  3171 #endif // SERIALGC
  3173   // Always call even when there are not JVMTI environments yet, since environments
  3174   // may be attached late and JVMTI must track phases of VM execution
  3175   JvmtiExport::enter_live_phase();
  3177   // Signal Dispatcher needs to be started before VMInit event is posted
  3178   os::signal_init();
  3180   // Start Attach Listener if +StartAttachListener or it can't be started lazily
  3181   if (!DisableAttachMechanism) {
  3182     if (StartAttachListener || AttachListener::init_at_startup()) {
  3183       AttachListener::init();
  3187   // Launch -Xrun agents
  3188   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
  3189   // back-end can launch with -Xdebug -Xrunjdwp.
  3190   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
  3191     create_vm_init_libraries();
  3194   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
  3195   JvmtiExport::post_vm_initialized();
  3197   Chunk::start_chunk_pool_cleaner_task();
  3199   // initialize compiler(s)
  3200   CompileBroker::compilation_init();
  3202   Management::initialize(THREAD);
  3203   if (HAS_PENDING_EXCEPTION) {
  3204     // management agent fails to start possibly due to
  3205     // configuration problem and is responsible for printing
  3206     // stack trace if appropriate. Simply exit VM.
  3207     vm_exit(1);
  3210   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
  3211   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
  3212   if (MemProfiling)                   MemProfiler::engage();
  3213   StatSampler::engage();
  3214   if (CheckJNICalls)                  JniPeriodicChecker::engage();
  3216   BiasedLocking::init();
  3219   // Start up the WatcherThread if there are any periodic tasks
  3220   // NOTE:  All PeriodicTasks should be registered by now. If they
  3221   //   aren't, late joiners might appear to start slowly (we might
  3222   //   take a while to process their first tick).
  3223   if (PeriodicTask::num_tasks() > 0) {
  3224     WatcherThread::start();
  3227   create_vm_timer.end();
  3228   return JNI_OK;
  3231 // type for the Agent_OnLoad and JVM_OnLoad entry points
  3232 extern "C" {
  3233   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
  3235 // Find a command line agent library and return its entry point for
  3236 //         -agentlib:  -agentpath:   -Xrun
  3237 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
  3238 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
  3239   OnLoadEntry_t on_load_entry = NULL;
  3240   void *library = agent->os_lib();  // check if we have looked it up before
  3242   if (library == NULL) {
  3243     char buffer[JVM_MAXPATHLEN];
  3244     char ebuf[1024];
  3245     const char *name = agent->name();
  3247     if (agent->is_absolute_path()) {
  3248       library = hpi::dll_load(name, ebuf, sizeof ebuf);
  3249       if (library == NULL) {
  3250         // If we can't find the agent, exit.
  3251         vm_exit_during_initialization("Could not find agent library in absolute path", name);
  3253     } else {
  3254       // Try to load the agent from the standard dll directory
  3255       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
  3256       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3257 #ifdef KERNEL
  3258       // Download instrument dll
  3259       if (library == NULL && strcmp(name, "instrument") == 0) {
  3260         char *props = Arguments::get_kernel_properties();
  3261         char *home  = Arguments::get_java_home();
  3262         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
  3263                       " sun.jkernel.DownloadManager -download client_jvm";
  3264         int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
  3265         char *cmd = AllocateHeap(length);
  3266         jio_snprintf(cmd, length, fmt, home, props);
  3267         int status = os::fork_and_exec(cmd);
  3268         FreeHeap(props);
  3269         FreeHeap(cmd);
  3270         if (status == -1) {
  3271           warning(cmd);
  3272           vm_exit_during_initialization("fork_and_exec failed: %s",
  3273                                          strerror(errno));
  3275         // when this comes back the instrument.dll should be where it belongs.
  3276         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3278 #endif // KERNEL
  3279       if (library == NULL) { // Try the local directory
  3280         char ns[1] = {0};
  3281         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
  3282         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
  3283         if (library == NULL) {
  3284           // If we can't find the agent, exit.
  3285           vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
  3289     agent->set_os_lib(library);
  3292   // Find the OnLoad function.
  3293   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
  3294     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
  3295     if (on_load_entry != NULL) break;
  3297   return on_load_entry;
  3300 // Find the JVM_OnLoad entry point
  3301 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
  3302   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
  3303   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3306 // Find the Agent_OnLoad entry point
  3307 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
  3308   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
  3309   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
  3312 // For backwards compatibility with -Xrun
  3313 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
  3314 // treated like -agentpath:
  3315 // Must be called before agent libraries are created
  3316 void Threads::convert_vm_init_libraries_to_agents() {
  3317   AgentLibrary* agent;
  3318   AgentLibrary* next;
  3320   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
  3321     next = agent->next();  // cache the next agent now as this agent may get moved off this list
  3322     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3324     // If there is an JVM_OnLoad function it will get called later,
  3325     // otherwise see if there is an Agent_OnLoad
  3326     if (on_load_entry == NULL) {
  3327       on_load_entry = lookup_agent_on_load(agent);
  3328       if (on_load_entry != NULL) {
  3329         // switch it to the agent list -- so that Agent_OnLoad will be called,
  3330         // JVM_OnLoad won't be attempted and Agent_OnUnload will
  3331         Arguments::convert_library_to_agent(agent);
  3332       } else {
  3333         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
  3339 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
  3340 // Invokes Agent_OnLoad
  3341 // Called very early -- before JavaThreads exist
  3342 void Threads::create_vm_init_agents() {
  3343   extern struct JavaVM_ main_vm;
  3344   AgentLibrary* agent;
  3346   JvmtiExport::enter_onload_phase();
  3347   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3348     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
  3350     if (on_load_entry != NULL) {
  3351       // Invoke the Agent_OnLoad function
  3352       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3353       if (err != JNI_OK) {
  3354         vm_exit_during_initialization("agent library failed to init", agent->name());
  3356     } else {
  3357       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
  3360   JvmtiExport::enter_primordial_phase();
  3363 extern "C" {
  3364   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
  3367 void Threads::shutdown_vm_agents() {
  3368   // Send any Agent_OnUnload notifications
  3369   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
  3370   extern struct JavaVM_ main_vm;
  3371   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
  3373     // Find the Agent_OnUnload function.
  3374     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
  3375       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
  3376                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
  3378       // Invoke the Agent_OnUnload function
  3379       if (unload_entry != NULL) {
  3380         JavaThread* thread = JavaThread::current();
  3381         ThreadToNativeFromVM ttn(thread);
  3382         HandleMark hm(thread);
  3383         (*unload_entry)(&main_vm);
  3384         break;
  3390 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
  3391 // Invokes JVM_OnLoad
  3392 void Threads::create_vm_init_libraries() {
  3393   extern struct JavaVM_ main_vm;
  3394   AgentLibrary* agent;
  3396   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
  3397     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
  3399     if (on_load_entry != NULL) {
  3400       // Invoke the JVM_OnLoad function
  3401       JavaThread* thread = JavaThread::current();
  3402       ThreadToNativeFromVM ttn(thread);
  3403       HandleMark hm(thread);
  3404       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
  3405       if (err != JNI_OK) {
  3406         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
  3408     } else {
  3409       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
  3414 // Last thread running calls java.lang.Shutdown.shutdown()
  3415 void JavaThread::invoke_shutdown_hooks() {
  3416   HandleMark hm(this);
  3418   // We could get here with a pending exception, if so clear it now.
  3419   if (this->has_pending_exception()) {
  3420     this->clear_pending_exception();
  3423   EXCEPTION_MARK;
  3424   klassOop k =
  3425     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
  3426                                       THREAD);
  3427   if (k != NULL) {
  3428     // SystemDictionary::resolve_or_null will return null if there was
  3429     // an exception.  If we cannot load the Shutdown class, just don't
  3430     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
  3431     // and finalizers (if runFinalizersOnExit is set) won't be run.
  3432     // Note that if a shutdown hook was registered or runFinalizersOnExit
  3433     // was called, the Shutdown class would have already been loaded
  3434     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
  3435     instanceKlassHandle shutdown_klass (THREAD, k);
  3436     JavaValue result(T_VOID);
  3437     JavaCalls::call_static(&result,
  3438                            shutdown_klass,
  3439                            vmSymbolHandles::shutdown_method_name(),
  3440                            vmSymbolHandles::void_method_signature(),
  3441                            THREAD);
  3443   CLEAR_PENDING_EXCEPTION;
  3446 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
  3447 // the program falls off the end of main(). Another VM exit path is through
  3448 // vm_exit() when the program calls System.exit() to return a value or when
  3449 // there is a serious error in VM. The two shutdown paths are not exactly
  3450 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
  3451 // and VM_Exit op at VM level.
  3452 //
  3453 // Shutdown sequence:
  3454 //   + Wait until we are the last non-daemon thread to execute
  3455 //     <-- every thing is still working at this moment -->
  3456 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
  3457 //        shutdown hooks, run finalizers if finalization-on-exit
  3458 //   + Call before_exit(), prepare for VM exit
  3459 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
  3460 //        currently the only user of this mechanism is File.deleteOnExit())
  3461 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
  3462 //        post thread end and vm death events to JVMTI,
  3463 //        stop signal thread
  3464 //   + Call JavaThread::exit(), it will:
  3465 //      > release JNI handle blocks, remove stack guard pages
  3466 //      > remove this thread from Threads list
  3467 //     <-- no more Java code from this thread after this point -->
  3468 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
  3469 //     the compiler threads at safepoint
  3470 //     <-- do not use anything that could get blocked by Safepoint -->
  3471 //   + Disable tracing at JNI/JVM barriers
  3472 //   + Set _vm_exited flag for threads that are still running native code
  3473 //   + Delete this thread
  3474 //   + Call exit_globals()
  3475 //      > deletes tty
  3476 //      > deletes PerfMemory resources
  3477 //   + Return to caller
  3479 bool Threads::destroy_vm() {
  3480   JavaThread* thread = JavaThread::current();
  3482   // Wait until we are the last non-daemon thread to execute
  3483   { MutexLocker nu(Threads_lock);
  3484     while (Threads::number_of_non_daemon_threads() > 1 )
  3485       // This wait should make safepoint checks, wait without a timeout,
  3486       // and wait as a suspend-equivalent condition.
  3487       //
  3488       // Note: If the FlatProfiler is running and this thread is waiting
  3489       // for another non-daemon thread to finish, then the FlatProfiler
  3490       // is waiting for the external suspend request on this thread to
  3491       // complete. wait_for_ext_suspend_completion() will eventually
  3492       // timeout, but that takes time. Making this wait a suspend-
  3493       // equivalent condition solves that timeout problem.
  3494       //
  3495       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
  3496                          Mutex::_as_suspend_equivalent_flag);
  3499   // Hang forever on exit if we are reporting an error.
  3500   if (ShowMessageBoxOnError && is_error_reported()) {
  3501     os::infinite_sleep();
  3504   if (JDK_Version::is_jdk12x_version()) {
  3505     // We are the last thread running, so check if finalizers should be run.
  3506     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
  3507     HandleMark rm(thread);
  3508     Universe::run_finalizers_on_exit();
  3509   } else {
  3510     // run Java level shutdown hooks
  3511     thread->invoke_shutdown_hooks();
  3514   before_exit(thread);
  3516   thread->exit(true);
  3518   // Stop VM thread.
  3520     // 4945125 The vm thread comes to a safepoint during exit.
  3521     // GC vm_operations can get caught at the safepoint, and the
  3522     // heap is unparseable if they are caught. Grab the Heap_lock
  3523     // to prevent this. The GC vm_operations will not be able to
  3524     // queue until after the vm thread is dead.
  3525     MutexLocker ml(Heap_lock);
  3527     VMThread::wait_for_vm_thread_exit();
  3528     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
  3529     VMThread::destroy();
  3532   // clean up ideal graph printers
  3533 #if defined(COMPILER2) && !defined(PRODUCT)
  3534   IdealGraphPrinter::clean_up();
  3535 #endif
  3537   // Now, all Java threads are gone except daemon threads. Daemon threads
  3538   // running Java code or in VM are stopped by the Safepoint. However,
  3539   // daemon threads executing native code are still running.  But they
  3540   // will be stopped at native=>Java/VM barriers. Note that we can't
  3541   // simply kill or suspend them, as it is inherently deadlock-prone.
  3543 #ifndef PRODUCT
  3544   // disable function tracing at JNI/JVM barriers
  3545   TraceHPI = false;
  3546   TraceJNICalls = false;
  3547   TraceJVMCalls = false;
  3548   TraceRuntimeCalls = false;
  3549 #endif
  3551   VM_Exit::set_vm_exited();
  3553   notify_vm_shutdown();
  3555   delete thread;
  3557   // exit_globals() will delete tty
  3558   exit_globals();
  3560   return true;
  3564 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
  3565   if (version == JNI_VERSION_1_1) return JNI_TRUE;
  3566   return is_supported_jni_version(version);
  3570 jboolean Threads::is_supported_jni_version(jint version) {
  3571   if (version == JNI_VERSION_1_2) return JNI_TRUE;
  3572   if (version == JNI_VERSION_1_4) return JNI_TRUE;
  3573   if (version == JNI_VERSION_1_6) return JNI_TRUE;
  3574   return JNI_FALSE;
  3578 void Threads::add(JavaThread* p, bool force_daemon) {
  3579   // The threads lock must be owned at this point
  3580   assert_locked_or_safepoint(Threads_lock);
  3581   p->set_next(_thread_list);
  3582   _thread_list = p;
  3583   _number_of_threads++;
  3584   oop threadObj = p->threadObj();
  3585   bool daemon = true;
  3586   // Bootstrapping problem: threadObj can be null for initial
  3587   // JavaThread (or for threads attached via JNI)
  3588   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
  3589     _number_of_non_daemon_threads++;
  3590     daemon = false;
  3593   ThreadService::add_thread(p, daemon);
  3595   // Possible GC point.
  3596   Events::log("Thread added: " INTPTR_FORMAT, p);
  3599 void Threads::remove(JavaThread* p) {
  3600   // Extra scope needed for Thread_lock, so we can check
  3601   // that we do not remove thread without safepoint code notice
  3602   { MutexLocker ml(Threads_lock);
  3604     assert(includes(p), "p must be present");
  3606     JavaThread* current = _thread_list;
  3607     JavaThread* prev    = NULL;
  3609     while (current != p) {
  3610       prev    = current;
  3611       current = current->next();
  3614     if (prev) {
  3615       prev->set_next(current->next());
  3616     } else {
  3617       _thread_list = p->next();
  3619     _number_of_threads--;
  3620     oop threadObj = p->threadObj();
  3621     bool daemon = true;
  3622     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
  3623       _number_of_non_daemon_threads--;
  3624       daemon = false;
  3626       // Only one thread left, do a notify on the Threads_lock so a thread waiting
  3627       // on destroy_vm will wake up.
  3628       if (number_of_non_daemon_threads() == 1)
  3629         Threads_lock->notify_all();
  3631     ThreadService::remove_thread(p, daemon);
  3633     // Make sure that safepoint code disregard this thread. This is needed since
  3634     // the thread might mess around with locks after this point. This can cause it
  3635     // to do callbacks into the safepoint code. However, the safepoint code is not aware
  3636     // of this thread since it is removed from the queue.
  3637     p->set_terminated_value();
  3638   } // unlock Threads_lock
  3640   // Since Events::log uses a lock, we grab it outside the Threads_lock
  3641   Events::log("Thread exited: " INTPTR_FORMAT, p);
  3644 // Threads_lock must be held when this is called (or must be called during a safepoint)
  3645 bool Threads::includes(JavaThread* p) {
  3646   assert(Threads_lock->is_locked(), "sanity check");
  3647   ALL_JAVA_THREADS(q) {
  3648     if (q == p ) {
  3649       return true;
  3652   return false;
  3655 // Operations on the Threads list for GC.  These are not explicitly locked,
  3656 // but the garbage collector must provide a safe context for them to run.
  3657 // In particular, these things should never be called when the Threads_lock
  3658 // is held by some other thread. (Note: the Safepoint abstraction also
  3659 // uses the Threads_lock to gurantee this property. It also makes sure that
  3660 // all threads gets blocked when exiting or starting).
  3662 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3663   ALL_JAVA_THREADS(p) {
  3664     p->oops_do(f, cf);
  3666   VMThread::vm_thread()->oops_do(f, cf);
  3669 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
  3670   // Introduce a mechanism allowing parallel threads to claim threads as
  3671   // root groups.  Overhead should be small enough to use all the time,
  3672   // even in sequential code.
  3673   SharedHeap* sh = SharedHeap::heap();
  3674   bool is_par = (sh->n_par_threads() > 0);
  3675   int cp = SharedHeap::heap()->strong_roots_parity();
  3676   ALL_JAVA_THREADS(p) {
  3677     if (p->claim_oops_do(is_par, cp)) {
  3678       p->oops_do(f, cf);
  3681   VMThread* vmt = VMThread::vm_thread();
  3682   if (vmt->claim_oops_do(is_par, cp))
  3683     vmt->oops_do(f, cf);
  3686 #ifndef SERIALGC
  3687 // Used by ParallelScavenge
  3688 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
  3689   ALL_JAVA_THREADS(p) {
  3690     q->enqueue(new ThreadRootsTask(p));
  3692   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
  3695 // Used by Parallel Old
  3696 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
  3697   ALL_JAVA_THREADS(p) {
  3698     q->enqueue(new ThreadRootsMarkingTask(p));
  3700   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
  3702 #endif // SERIALGC
  3704 void Threads::nmethods_do(CodeBlobClosure* cf) {
  3705   ALL_JAVA_THREADS(p) {
  3706     p->nmethods_do(cf);
  3708   VMThread::vm_thread()->nmethods_do(cf);
  3711 void Threads::gc_epilogue() {
  3712   ALL_JAVA_THREADS(p) {
  3713     p->gc_epilogue();
  3717 void Threads::gc_prologue() {
  3718   ALL_JAVA_THREADS(p) {
  3719     p->gc_prologue();
  3723 void Threads::deoptimized_wrt_marked_nmethods() {
  3724   ALL_JAVA_THREADS(p) {
  3725     p->deoptimized_wrt_marked_nmethods();
  3730 // Get count Java threads that are waiting to enter the specified monitor.
  3731 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
  3732   address monitor, bool doLock) {
  3733   assert(doLock || SafepointSynchronize::is_at_safepoint(),
  3734     "must grab Threads_lock or be at safepoint");
  3735   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
  3737   int i = 0;
  3739     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3740     ALL_JAVA_THREADS(p) {
  3741       if (p->is_Compiler_thread()) continue;
  3743       address pending = (address)p->current_pending_monitor();
  3744       if (pending == monitor) {             // found a match
  3745         if (i < count) result->append(p);   // save the first count matches
  3746         i++;
  3750   return result;
  3754 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
  3755   assert(doLock ||
  3756          Threads_lock->owned_by_self() ||
  3757          SafepointSynchronize::is_at_safepoint(),
  3758          "must grab Threads_lock or be at safepoint");
  3760   // NULL owner means not locked so we can skip the search
  3761   if (owner == NULL) return NULL;
  3764     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3765     ALL_JAVA_THREADS(p) {
  3766       // first, see if owner is the address of a Java thread
  3767       if (owner == (address)p) return p;
  3770   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
  3771   if (UseHeavyMonitors) return NULL;
  3773   //
  3774   // If we didn't find a matching Java thread and we didn't force use of
  3775   // heavyweight monitors, then the owner is the stack address of the
  3776   // Lock Word in the owning Java thread's stack.
  3777   //
  3778   JavaThread* the_owner = NULL;
  3780     MutexLockerEx ml(doLock ? Threads_lock : NULL);
  3781     ALL_JAVA_THREADS(q) {
  3782       if (q->is_lock_owned(owner)) {
  3783         the_owner = q;
  3784         break;
  3788   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
  3789   return the_owner;
  3792 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
  3793 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
  3794   char buf[32];
  3795   st->print_cr(os::local_time_string(buf, sizeof(buf)));
  3797   st->print_cr("Full thread dump %s (%s %s):",
  3798                 Abstract_VM_Version::vm_name(),
  3799                 Abstract_VM_Version::vm_release(),
  3800                 Abstract_VM_Version::vm_info_string()
  3801                );
  3802   st->cr();
  3804 #ifndef SERIALGC
  3805   // Dump concurrent locks
  3806   ConcurrentLocksDump concurrent_locks;
  3807   if (print_concurrent_locks) {
  3808     concurrent_locks.dump_at_safepoint();
  3810 #endif // SERIALGC
  3812   ALL_JAVA_THREADS(p) {
  3813     ResourceMark rm;
  3814     p->print_on(st);
  3815     if (print_stacks) {
  3816       if (internal_format) {
  3817         p->trace_stack();
  3818       } else {
  3819         p->print_stack_on(st);
  3822     st->cr();
  3823 #ifndef SERIALGC
  3824     if (print_concurrent_locks) {
  3825       concurrent_locks.print_locks_on(p, st);
  3827 #endif // SERIALGC
  3830   VMThread::vm_thread()->print_on(st);
  3831   st->cr();
  3832   Universe::heap()->print_gc_threads_on(st);
  3833   WatcherThread* wt = WatcherThread::watcher_thread();
  3834   if (wt != NULL) wt->print_on(st);
  3835   st->cr();
  3836   CompileBroker::print_compiler_threads_on(st);
  3837   st->flush();
  3840 // Threads::print_on_error() is called by fatal error handler. It's possible
  3841 // that VM is not at safepoint and/or current thread is inside signal handler.
  3842 // Don't print stack trace, as the stack may not be walkable. Don't allocate
  3843 // memory (even in resource area), it might deadlock the error handler.
  3844 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
  3845   bool found_current = false;
  3846   st->print_cr("Java Threads: ( => current thread )");
  3847   ALL_JAVA_THREADS(thread) {
  3848     bool is_current = (current == thread);
  3849     found_current = found_current || is_current;
  3851     st->print("%s", is_current ? "=>" : "  ");
  3853     st->print(PTR_FORMAT, thread);
  3854     st->print(" ");
  3855     thread->print_on_error(st, buf, buflen);
  3856     st->cr();
  3858   st->cr();
  3860   st->print_cr("Other Threads:");
  3861   if (VMThread::vm_thread()) {
  3862     bool is_current = (current == VMThread::vm_thread());
  3863     found_current = found_current || is_current;
  3864     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
  3866     st->print(PTR_FORMAT, VMThread::vm_thread());
  3867     st->print(" ");
  3868     VMThread::vm_thread()->print_on_error(st, buf, buflen);
  3869     st->cr();
  3871   WatcherThread* wt = WatcherThread::watcher_thread();
  3872   if (wt != NULL) {
  3873     bool is_current = (current == wt);
  3874     found_current = found_current || is_current;
  3875     st->print("%s", is_current ? "=>" : "  ");
  3877     st->print(PTR_FORMAT, wt);
  3878     st->print(" ");
  3879     wt->print_on_error(st, buf, buflen);
  3880     st->cr();
  3882   if (!found_current) {
  3883     st->cr();
  3884     st->print("=>" PTR_FORMAT " (exited) ", current);
  3885     current->print_on_error(st, buf, buflen);
  3886     st->cr();
  3891 // Lifecycle management for TSM ParkEvents.
  3892 // ParkEvents are type-stable (TSM).
  3893 // In our particular implementation they happen to be immortal.
  3894 //
  3895 // We manage concurrency on the FreeList with a CAS-based
  3896 // detach-modify-reattach idiom that avoids the ABA problems
  3897 // that would otherwise be present in a simple CAS-based
  3898 // push-pop implementation.   (push-one and pop-all)
  3899 //
  3900 // Caveat: Allocate() and Release() may be called from threads
  3901 // other than the thread associated with the Event!
  3902 // If we need to call Allocate() when running as the thread in
  3903 // question then look for the PD calls to initialize native TLS.
  3904 // Native TLS (Win32/Linux/Solaris) can only be initialized or
  3905 // accessed by the associated thread.
  3906 // See also pd_initialize().
  3907 //
  3908 // Note that we could defer associating a ParkEvent with a thread
  3909 // until the 1st time the thread calls park().  unpark() calls to
  3910 // an unprovisioned thread would be ignored.  The first park() call
  3911 // for a thread would allocate and associate a ParkEvent and return
  3912 // immediately.
  3914 volatile int ParkEvent::ListLock = 0 ;
  3915 ParkEvent * volatile ParkEvent::FreeList = NULL ;
  3917 ParkEvent * ParkEvent::Allocate (Thread * t) {
  3918   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
  3919   ParkEvent * ev ;
  3921   // Start by trying to recycle an existing but unassociated
  3922   // ParkEvent from the global free list.
  3923   for (;;) {
  3924     ev = FreeList ;
  3925     if (ev == NULL) break ;
  3926     // 1: Detach - sequester or privatize the list
  3927     // Tantamount to ev = Swap (&FreeList, NULL)
  3928     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
  3929        continue ;
  3932     // We've detached the list.  The list in-hand is now
  3933     // local to this thread.   This thread can operate on the
  3934     // list without risk of interference from other threads.
  3935     // 2: Extract -- pop the 1st element from the list.
  3936     ParkEvent * List = ev->FreeNext ;
  3937     if (List == NULL) break ;
  3938     for (;;) {
  3939         // 3: Try to reattach the residual list
  3940         guarantee (List != NULL, "invariant") ;
  3941         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
  3942         if (Arv == NULL) break ;
  3944         // New nodes arrived.  Try to detach the recent arrivals.
  3945         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
  3946             continue ;
  3948         guarantee (Arv != NULL, "invariant") ;
  3949         // 4: Merge Arv into List
  3950         ParkEvent * Tail = List ;
  3951         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
  3952         Tail->FreeNext = Arv ;
  3954     break ;
  3957   if (ev != NULL) {
  3958     guarantee (ev->AssociatedWith == NULL, "invariant") ;
  3959   } else {
  3960     // Do this the hard way -- materialize a new ParkEvent.
  3961     // In rare cases an allocating thread might detach a long list --
  3962     // installing null into FreeList -- and then stall or be obstructed.
  3963     // A 2nd thread calling Allocate() would see FreeList == null.
  3964     // The list held privately by the 1st thread is unavailable to the 2nd thread.
  3965     // In that case the 2nd thread would have to materialize a new ParkEvent,
  3966     // even though free ParkEvents existed in the system.  In this case we end up
  3967     // with more ParkEvents in circulation than we need, but the race is
  3968     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
  3969     // is equal to the maximum # of threads that existed at any one time.
  3970     // Because of the race mentioned above, segments of the freelist
  3971     // can be transiently inaccessible.  At worst we may end up with the
  3972     // # of ParkEvents in circulation slightly above the ideal.
  3973     // Note that if we didn't have the TSM/immortal constraint, then
  3974     // when reattaching, above, we could trim the list.
  3975     ev = new ParkEvent () ;
  3976     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
  3978   ev->reset() ;                     // courtesy to caller
  3979   ev->AssociatedWith = t ;          // Associate ev with t
  3980   ev->FreeNext       = NULL ;
  3981   return ev ;
  3984 void ParkEvent::Release (ParkEvent * ev) {
  3985   if (ev == NULL) return ;
  3986   guarantee (ev->FreeNext == NULL      , "invariant") ;
  3987   ev->AssociatedWith = NULL ;
  3988   for (;;) {
  3989     // Push ev onto FreeList
  3990     // The mechanism is "half" lock-free.
  3991     ParkEvent * List = FreeList ;
  3992     ev->FreeNext = List ;
  3993     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
  3997 // Override operator new and delete so we can ensure that the
  3998 // least significant byte of ParkEvent addresses is 0.
  3999 // Beware that excessive address alignment is undesirable
  4000 // as it can result in D$ index usage imbalance as
  4001 // well as bank access imbalance on Niagara-like platforms,
  4002 // although Niagara's hash function should help.
  4004 void * ParkEvent::operator new (size_t sz) {
  4005   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
  4008 void ParkEvent::operator delete (void * a) {
  4009   // ParkEvents are type-stable and immortal ...
  4010   ShouldNotReachHere();
  4014 // 6399321 As a temporary measure we copied & modified the ParkEvent::
  4015 // allocate() and release() code for use by Parkers.  The Parker:: forms
  4016 // will eventually be removed as we consolide and shift over to ParkEvents
  4017 // for both builtin synchronization and JSR166 operations.
  4019 volatile int Parker::ListLock = 0 ;
  4020 Parker * volatile Parker::FreeList = NULL ;
  4022 Parker * Parker::Allocate (JavaThread * t) {
  4023   guarantee (t != NULL, "invariant") ;
  4024   Parker * p ;
  4026   // Start by trying to recycle an existing but unassociated
  4027   // Parker from the global free list.
  4028   for (;;) {
  4029     p = FreeList ;
  4030     if (p  == NULL) break ;
  4031     // 1: Detach
  4032     // Tantamount to p = Swap (&FreeList, NULL)
  4033     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
  4034        continue ;
  4037     // We've detached the list.  The list in-hand is now
  4038     // local to this thread.   This thread can operate on the
  4039     // list without risk of interference from other threads.
  4040     // 2: Extract -- pop the 1st element from the list.
  4041     Parker * List = p->FreeNext ;
  4042     if (List == NULL) break ;
  4043     for (;;) {
  4044         // 3: Try to reattach the residual list
  4045         guarantee (List != NULL, "invariant") ;
  4046         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
  4047         if (Arv == NULL) break ;
  4049         // New nodes arrived.  Try to detach the recent arrivals.
  4050         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
  4051             continue ;
  4053         guarantee (Arv != NULL, "invariant") ;
  4054         // 4: Merge Arv into List
  4055         Parker * Tail = List ;
  4056         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
  4057         Tail->FreeNext = Arv ;
  4059     break ;
  4062   if (p != NULL) {
  4063     guarantee (p->AssociatedWith == NULL, "invariant") ;
  4064   } else {
  4065     // Do this the hard way -- materialize a new Parker..
  4066     // In rare cases an allocating thread might detach
  4067     // a long list -- installing null into FreeList --and
  4068     // then stall.  Another thread calling Allocate() would see
  4069     // FreeList == null and then invoke the ctor.  In this case we
  4070     // end up with more Parkers in circulation than we need, but
  4071     // the race is rare and the outcome is benign.
  4072     // Ideally, the # of extant Parkers is equal to the
  4073     // maximum # of threads that existed at any one time.
  4074     // Because of the race mentioned above, segments of the
  4075     // freelist can be transiently inaccessible.  At worst
  4076     // we may end up with the # of Parkers in circulation
  4077     // slightly above the ideal.
  4078     p = new Parker() ;
  4080   p->AssociatedWith = t ;          // Associate p with t
  4081   p->FreeNext       = NULL ;
  4082   return p ;
  4086 void Parker::Release (Parker * p) {
  4087   if (p == NULL) return ;
  4088   guarantee (p->AssociatedWith != NULL, "invariant") ;
  4089   guarantee (p->FreeNext == NULL      , "invariant") ;
  4090   p->AssociatedWith = NULL ;
  4091   for (;;) {
  4092     // Push p onto FreeList
  4093     Parker * List = FreeList ;
  4094     p->FreeNext = List ;
  4095     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
  4099 void Threads::verify() {
  4100   ALL_JAVA_THREADS(p) {
  4101     p->verify();
  4103   VMThread* thread = VMThread::vm_thread();
  4104   if (thread != NULL) thread->verify();

mercurial