src/share/vm/gc_interface/collectedHeap.hpp

Tue, 27 Mar 2012 10:29:59 +0200

author
brutisso
date
Tue, 27 Mar 2012 10:29:59 +0200
changeset 3675
9a9bb0010c91
parent 3668
cc74fa5a91a9
child 3711
b632e80fc9dc
permissions
-rw-r--r--

7156764: Remove unused size parameter from some CollectedHeap methods
Summary: Some minor cleanups
Reviewed-by: tonyp, jwilhelm

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
    28 #include "gc_interface/gcCause.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "memory/barrierSet.hpp"
    31 #include "runtime/handles.hpp"
    32 #include "runtime/perfData.hpp"
    33 #include "runtime/safepoint.hpp"
    34 #include "utilities/events.hpp"
    36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    37 // is an abstract class: there may be many different kinds of heaps.  This
    38 // class defines the functions that a heap must implement, and contains
    39 // infrastructure common to all heaps.
    41 class BarrierSet;
    42 class ThreadClosure;
    43 class AdaptiveSizePolicy;
    44 class Thread;
    45 class CollectorPolicy;
    47 class GCMessage : public FormatBuffer<1024> {
    48  public:
    49   bool is_before;
    51  public:
    52   GCMessage() {}
    53 };
    55 class GCHeapLog : public EventLogBase<GCMessage> {
    56  private:
    57   void log_heap(bool before);
    59  public:
    60   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
    62   void log_heap_before() {
    63     log_heap(true);
    64   }
    65   void log_heap_after() {
    66     log_heap(false);
    67   }
    68 };
    70 //
    71 // CollectedHeap
    72 //   SharedHeap
    73 //     GenCollectedHeap
    74 //     G1CollectedHeap
    75 //   ParallelScavengeHeap
    76 //
    77 class CollectedHeap : public CHeapObj {
    78   friend class VMStructs;
    79   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    80   friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
    82 #ifdef ASSERT
    83   static int       _fire_out_of_memory_count;
    84 #endif
    86   // Used for filler objects (static, but initialized in ctor).
    87   static size_t _filler_array_max_size;
    89   GCHeapLog* _gc_heap_log;
    91   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
    92   bool _defer_initial_card_mark;
    94  protected:
    95   MemRegion _reserved;
    96   BarrierSet* _barrier_set;
    97   bool _is_gc_active;
    98   uint _n_par_threads;
   100   unsigned int _total_collections;          // ... started
   101   unsigned int _total_full_collections;     // ... started
   102   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
   103   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
   105   // Reason for current garbage collection.  Should be set to
   106   // a value reflecting no collection between collections.
   107   GCCause::Cause _gc_cause;
   108   GCCause::Cause _gc_lastcause;
   109   PerfStringVariable* _perf_gc_cause;
   110   PerfStringVariable* _perf_gc_lastcause;
   112   // Constructor
   113   CollectedHeap();
   115   // Do common initializations that must follow instance construction,
   116   // for example, those needing virtual calls.
   117   // This code could perhaps be moved into initialize() but would
   118   // be slightly more awkward because we want the latter to be a
   119   // pure virtual.
   120   void pre_initialize();
   122   // Create a new tlab. All TLAB allocations must go through this.
   123   virtual HeapWord* allocate_new_tlab(size_t size);
   125   // Accumulate statistics on all tlabs.
   126   virtual void accumulate_statistics_all_tlabs();
   128   // Reinitialize tlabs before resuming mutators.
   129   virtual void resize_all_tlabs();
   131   // Allocate from the current thread's TLAB, with broken-out slow path.
   132   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
   133   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
   135   // Allocate an uninitialized block of the given size, or returns NULL if
   136   // this is impossible.
   137   inline static HeapWord* common_mem_allocate_noinit(size_t size, TRAPS);
   139   // Like allocate_init, but the block returned by a successful allocation
   140   // is guaranteed initialized to zeros.
   141   inline static HeapWord* common_mem_allocate_init(size_t size, TRAPS);
   143   // Same as common_mem version, except memory is allocated in the permanent area
   144   // If there is no permanent area, revert to common_mem_allocate_noinit
   145   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   147   // Same as common_mem version, except memory is allocated in the permanent area
   148   // If there is no permanent area, revert to common_mem_allocate_init
   149   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   151   // Helper functions for (VM) allocation.
   152   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
   153   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   154                                                             HeapWord* objPtr);
   156   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj);
   158   inline static void post_allocation_setup_array(KlassHandle klass,
   159                                                  HeapWord* obj, int length);
   161   // Clears an allocated object.
   162   inline static void init_obj(HeapWord* obj, size_t size);
   164   // Filler object utilities.
   165   static inline size_t filler_array_hdr_size();
   166   static inline size_t filler_array_min_size();
   168   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   169   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
   171   // Fill with a single array; caller must ensure filler_array_min_size() <=
   172   // words <= filler_array_max_size().
   173   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
   175   // Fill with a single object (either an int array or a java.lang.Object).
   176   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
   178   // Verification functions
   179   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   180     PRODUCT_RETURN;
   181   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   182     PRODUCT_RETURN;
   183   debug_only(static void check_for_valid_allocation_state();)
   185  public:
   186   enum Name {
   187     Abstract,
   188     SharedHeap,
   189     GenCollectedHeap,
   190     ParallelScavengeHeap,
   191     G1CollectedHeap
   192   };
   194   static inline size_t filler_array_max_size() {
   195     return _filler_array_max_size;
   196   }
   198   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   200   /**
   201    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   202    * and JNI_OK on success.
   203    */
   204   virtual jint initialize() = 0;
   206   // In many heaps, there will be a need to perform some initialization activities
   207   // after the Universe is fully formed, but before general heap allocation is allowed.
   208   // This is the correct place to place such initialization methods.
   209   virtual void post_initialize() = 0;
   211   MemRegion reserved_region() const { return _reserved; }
   212   address base() const { return (address)reserved_region().start(); }
   214   // Future cleanup here. The following functions should specify bytes or
   215   // heapwords as part of their signature.
   216   virtual size_t capacity() const = 0;
   217   virtual size_t used() const = 0;
   219   // Return "true" if the part of the heap that allocates Java
   220   // objects has reached the maximal committed limit that it can
   221   // reach, without a garbage collection.
   222   virtual bool is_maximal_no_gc() const = 0;
   224   virtual size_t permanent_capacity() const = 0;
   225   virtual size_t permanent_used() const = 0;
   227   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   228   // memory that the vm could make available for storing 'normal' java objects.
   229   // This is based on the reserved address space, but should not include space
   230   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   231   // perm gen space or, in the case of the young gen, one of the survivor
   232   // spaces).
   233   virtual size_t max_capacity() const = 0;
   235   // Returns "TRUE" if "p" points into the reserved area of the heap.
   236   bool is_in_reserved(const void* p) const {
   237     return _reserved.contains(p);
   238   }
   240   bool is_in_reserved_or_null(const void* p) const {
   241     return p == NULL || is_in_reserved(p);
   242   }
   244   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   245   // Since this method can be expensive in general, we restrict its
   246   // use to assertion checking only.
   247   virtual bool is_in(const void* p) const = 0;
   249   bool is_in_or_null(const void* p) const {
   250     return p == NULL || is_in(p);
   251   }
   253   // Let's define some terms: a "closed" subset of a heap is one that
   254   //
   255   // 1) contains all currently-allocated objects, and
   256   //
   257   // 2) is closed under reference: no object in the closed subset
   258   //    references one outside the closed subset.
   259   //
   260   // Membership in a heap's closed subset is useful for assertions.
   261   // Clearly, the entire heap is a closed subset, so the default
   262   // implementation is to use "is_in_reserved".  But this may not be too
   263   // liberal to perform useful checking.  Also, the "is_in" predicate
   264   // defines a closed subset, but may be too expensive, since "is_in"
   265   // verifies that its argument points to an object head.  The
   266   // "closed_subset" method allows a heap to define an intermediate
   267   // predicate, allowing more precise checking than "is_in_reserved" at
   268   // lower cost than "is_in."
   270   // One important case is a heap composed of disjoint contiguous spaces,
   271   // such as the Garbage-First collector.  Such heaps have a convenient
   272   // closed subset consisting of the allocated portions of those
   273   // contiguous spaces.
   275   // Return "TRUE" iff the given pointer points into the heap's defined
   276   // closed subset (which defaults to the entire heap).
   277   virtual bool is_in_closed_subset(const void* p) const {
   278     return is_in_reserved(p);
   279   }
   281   bool is_in_closed_subset_or_null(const void* p) const {
   282     return p == NULL || is_in_closed_subset(p);
   283   }
   285   // XXX is_permanent() and is_in_permanent() should be better named
   286   // to distinguish one from the other.
   288   // Returns "TRUE" if "p" is allocated as "permanent" data.
   289   // If the heap does not use "permanent" data, returns the same
   290   // value is_in_reserved() would return.
   291   // NOTE: this actually returns true if "p" is in reserved space
   292   // for the space not that it is actually allocated (i.e. in committed
   293   // space). If you need the more conservative answer use is_permanent().
   294   virtual bool is_in_permanent(const void *p) const = 0;
   297 #ifdef ASSERT
   298   // Returns true if "p" is in the part of the
   299   // heap being collected.
   300   virtual bool is_in_partial_collection(const void *p) = 0;
   301 #endif
   303   bool is_in_permanent_or_null(const void *p) const {
   304     return p == NULL || is_in_permanent(p);
   305   }
   307   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   308   // If the heap does not use "permanent" data, returns the same
   309   // value is_in() would return.
   310   virtual bool is_permanent(const void *p) const = 0;
   312   bool is_permanent_or_null(const void *p) const {
   313     return p == NULL || is_permanent(p);
   314   }
   316   // An object is scavengable if its location may move during a scavenge.
   317   // (A scavenge is a GC which is not a full GC.)
   318   virtual bool is_scavengable(const void *p) = 0;
   320   // Returns "TRUE" if "p" is a method oop in the
   321   // current heap, with high probability. This predicate
   322   // is not stable, in general.
   323   bool is_valid_method(oop p) const;
   325   void set_gc_cause(GCCause::Cause v) {
   326      if (UsePerfData) {
   327        _gc_lastcause = _gc_cause;
   328        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   329        _perf_gc_cause->set_value(GCCause::to_string(v));
   330      }
   331     _gc_cause = v;
   332   }
   333   GCCause::Cause gc_cause() { return _gc_cause; }
   335   // Number of threads currently working on GC tasks.
   336   uint n_par_threads() { return _n_par_threads; }
   338   // May be overridden to set additional parallelism.
   339   virtual void set_par_threads(uint t) { _n_par_threads = t; };
   341   // Preload classes into the shared portion of the heap, and then dump
   342   // that data to a file so that it can be loaded directly by another
   343   // VM (then terminate).
   344   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   346   // Allocate and initialize instances of Class
   347   static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS);
   349   // General obj/array allocation facilities.
   350   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   351   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   352   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
   354   // Special obj/array allocation facilities.
   355   // Some heaps may want to manage "permanent" data uniquely. These default
   356   // to the general routines if the heap does not support such handling.
   357   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   358   // permanent_obj_allocate_no_klass_install() does not do the installation of
   359   // the klass pointer in the newly created object (as permanent_obj_allocate()
   360   // above does).  This allows for a delay in the installation of the klass
   361   // pointer that is needed during the create of klassKlass's.  The
   362   // method post_allocation_install_obj_klass() is used to install the
   363   // klass pointer.
   364   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   365                                                             int size,
   366                                                             TRAPS);
   367   inline static void post_allocation_install_obj_klass(KlassHandle klass, oop obj);
   368   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   370   // Raw memory allocation facilities
   371   // The obj and array allocate methods are covers for these methods.
   372   // The permanent allocation method should default to mem_allocate if
   373   // permanent memory isn't supported. mem_allocate() should never be
   374   // called to allocate TLABs, only individual objects.
   375   virtual HeapWord* mem_allocate(size_t size,
   376                                  bool* gc_overhead_limit_was_exceeded) = 0;
   377   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   379   // Utilities for turning raw memory into filler objects.
   380   //
   381   // min_fill_size() is the smallest region that can be filled.
   382   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   383   // multiple objects.  fill_with_object() is for regions known to be smaller
   384   // than the largest array of integers; it uses a single object to fill the
   385   // region and has slightly less overhead.
   386   static size_t min_fill_size() {
   387     return size_t(align_object_size(oopDesc::header_size()));
   388   }
   390   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
   392   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
   393   static void fill_with_object(MemRegion region, bool zap = true) {
   394     fill_with_object(region.start(), region.word_size(), zap);
   395   }
   396   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
   397     fill_with_object(start, pointer_delta(end, start), zap);
   398   }
   400   // Some heaps may offer a contiguous region for shared non-blocking
   401   // allocation, via inlined code (by exporting the address of the top and
   402   // end fields defining the extent of the contiguous allocation region.)
   404   // This function returns "true" iff the heap supports this kind of
   405   // allocation.  (Default is "no".)
   406   virtual bool supports_inline_contig_alloc() const {
   407     return false;
   408   }
   409   // These functions return the addresses of the fields that define the
   410   // boundaries of the contiguous allocation area.  (These fields should be
   411   // physically near to one another.)
   412   virtual HeapWord** top_addr() const {
   413     guarantee(false, "inline contiguous allocation not supported");
   414     return NULL;
   415   }
   416   virtual HeapWord** end_addr() const {
   417     guarantee(false, "inline contiguous allocation not supported");
   418     return NULL;
   419   }
   421   // Some heaps may be in an unparseable state at certain times between
   422   // collections. This may be necessary for efficient implementation of
   423   // certain allocation-related activities. Calling this function before
   424   // attempting to parse a heap ensures that the heap is in a parsable
   425   // state (provided other concurrent activity does not introduce
   426   // unparsability). It is normally expected, therefore, that this
   427   // method is invoked with the world stopped.
   428   // NOTE: if you override this method, make sure you call
   429   // super::ensure_parsability so that the non-generational
   430   // part of the work gets done. See implementation of
   431   // CollectedHeap::ensure_parsability and, for instance,
   432   // that of GenCollectedHeap::ensure_parsability().
   433   // The argument "retire_tlabs" controls whether existing TLABs
   434   // are merely filled or also retired, thus preventing further
   435   // allocation from them and necessitating allocation of new TLABs.
   436   virtual void ensure_parsability(bool retire_tlabs);
   438   // Return an estimate of the maximum allocation that could be performed
   439   // without triggering any collection or expansion activity.  In a
   440   // generational collector, for example, this is probably the largest
   441   // allocation that could be supported (without expansion) in the youngest
   442   // generation.  It is "unsafe" because no locks are taken; the result
   443   // should be treated as an approximation, not a guarantee, for use in
   444   // heuristic resizing decisions.
   445   virtual size_t unsafe_max_alloc() = 0;
   447   // Section on thread-local allocation buffers (TLABs)
   448   // If the heap supports thread-local allocation buffers, it should override
   449   // the following methods:
   450   // Returns "true" iff the heap supports thread-local allocation buffers.
   451   // The default is "no".
   452   virtual bool supports_tlab_allocation() const {
   453     return false;
   454   }
   455   // The amount of space available for thread-local allocation buffers.
   456   virtual size_t tlab_capacity(Thread *thr) const {
   457     guarantee(false, "thread-local allocation buffers not supported");
   458     return 0;
   459   }
   460   // An estimate of the maximum allocation that could be performed
   461   // for thread-local allocation buffers without triggering any
   462   // collection or expansion activity.
   463   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   464     guarantee(false, "thread-local allocation buffers not supported");
   465     return 0;
   466   }
   468   // Can a compiler initialize a new object without store barriers?
   469   // This permission only extends from the creation of a new object
   470   // via a TLAB up to the first subsequent safepoint. If such permission
   471   // is granted for this heap type, the compiler promises to call
   472   // defer_store_barrier() below on any slow path allocation of
   473   // a new object for which such initializing store barriers will
   474   // have been elided.
   475   virtual bool can_elide_tlab_store_barriers() const = 0;
   477   // If a compiler is eliding store barriers for TLAB-allocated objects,
   478   // there is probably a corresponding slow path which can produce
   479   // an object allocated anywhere.  The compiler's runtime support
   480   // promises to call this function on such a slow-path-allocated
   481   // object before performing initializations that have elided
   482   // store barriers. Returns new_obj, or maybe a safer copy thereof.
   483   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
   485   // Answers whether an initializing store to a new object currently
   486   // allocated at the given address doesn't need a store
   487   // barrier. Returns "true" if it doesn't need an initializing
   488   // store barrier; answers "false" if it does.
   489   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
   491   // If a compiler is eliding store barriers for TLAB-allocated objects,
   492   // we will be informed of a slow-path allocation by a call
   493   // to new_store_pre_barrier() above. Such a call precedes the
   494   // initialization of the object itself, and no post-store-barriers will
   495   // be issued. Some heap types require that the barrier strictly follows
   496   // the initializing stores. (This is currently implemented by deferring the
   497   // barrier until the next slow-path allocation or gc-related safepoint.)
   498   // This interface answers whether a particular heap type needs the card
   499   // mark to be thus strictly sequenced after the stores.
   500   virtual bool card_mark_must_follow_store() const = 0;
   502   // If the CollectedHeap was asked to defer a store barrier above,
   503   // this informs it to flush such a deferred store barrier to the
   504   // remembered set.
   505   virtual void flush_deferred_store_barrier(JavaThread* thread);
   507   // Can a compiler elide a store barrier when it writes
   508   // a permanent oop into the heap?  Applies when the compiler
   509   // is storing x to the heap, where x->is_perm() is true.
   510   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
   512   // Does this heap support heap inspection (+PrintClassHistogram?)
   513   virtual bool supports_heap_inspection() const = 0;
   515   // Perform a collection of the heap; intended for use in implementing
   516   // "System.gc".  This probably implies as full a collection as the
   517   // "CollectedHeap" supports.
   518   virtual void collect(GCCause::Cause cause) = 0;
   520   // This interface assumes that it's being called by the
   521   // vm thread. It collects the heap assuming that the
   522   // heap lock is already held and that we are executing in
   523   // the context of the vm thread.
   524   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   526   // Returns the barrier set for this heap
   527   BarrierSet* barrier_set() { return _barrier_set; }
   529   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   530   // that it should answer "false" for the concurrent part of a concurrent
   531   // collector -- dld).
   532   bool is_gc_active() const { return _is_gc_active; }
   534   // Total number of GC collections (started)
   535   unsigned int total_collections() const { return _total_collections; }
   536   unsigned int total_full_collections() const { return _total_full_collections;}
   538   // Increment total number of GC collections (started)
   539   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   540   void increment_total_collections(bool full = false) {
   541     _total_collections++;
   542     if (full) {
   543       increment_total_full_collections();
   544     }
   545   }
   547   void increment_total_full_collections() { _total_full_collections++; }
   549   // Return the AdaptiveSizePolicy for the heap.
   550   virtual AdaptiveSizePolicy* size_policy() = 0;
   552   // Return the CollectorPolicy for the heap
   553   virtual CollectorPolicy* collector_policy() const = 0;
   555   // Iterate over all the ref-containing fields of all objects, calling
   556   // "cl.do_oop" on each. This includes objects in permanent memory.
   557   virtual void oop_iterate(OopClosure* cl) = 0;
   559   // Iterate over all objects, calling "cl.do_object" on each.
   560   // This includes objects in permanent memory.
   561   virtual void object_iterate(ObjectClosure* cl) = 0;
   563   // Similar to object_iterate() except iterates only
   564   // over live objects.
   565   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   567   // Behaves the same as oop_iterate, except only traverses
   568   // interior pointers contained in permanent memory. If there
   569   // is no permanent memory, does nothing.
   570   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   572   // Behaves the same as object_iterate, except only traverses
   573   // object contained in permanent memory. If there is no
   574   // permanent memory, does nothing.
   575   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   577   // NOTE! There is no requirement that a collector implement these
   578   // functions.
   579   //
   580   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   581   // each address in the (reserved) heap is a member of exactly
   582   // one block.  The defining characteristic of a block is that it is
   583   // possible to find its size, and thus to progress forward to the next
   584   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   585   // represent Java objects, or they might be free blocks in a
   586   // free-list-based heap (or subheap), as long as the two kinds are
   587   // distinguishable and the size of each is determinable.
   589   // Returns the address of the start of the "block" that contains the
   590   // address "addr".  We say "blocks" instead of "object" since some heaps
   591   // may not pack objects densely; a chunk may either be an object or a
   592   // non-object.
   593   virtual HeapWord* block_start(const void* addr) const = 0;
   595   // Requires "addr" to be the start of a chunk, and returns its size.
   596   // "addr + size" is required to be the start of a new chunk, or the end
   597   // of the active area of the heap.
   598   virtual size_t block_size(const HeapWord* addr) const = 0;
   600   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   601   // the block is an object.
   602   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   604   // Returns the longest time (in ms) that has elapsed since the last
   605   // time that any part of the heap was examined by a garbage collection.
   606   virtual jlong millis_since_last_gc() = 0;
   608   // Perform any cleanup actions necessary before allowing a verification.
   609   virtual void prepare_for_verify() = 0;
   611   // Generate any dumps preceding or following a full gc
   612   void pre_full_gc_dump();
   613   void post_full_gc_dump();
   615   // Print heap information on the given outputStream.
   616   virtual void print_on(outputStream* st) const = 0;
   617   // The default behavior is to call print_on() on tty.
   618   virtual void print() const {
   619     print_on(tty);
   620   }
   621   // Print more detailed heap information on the given
   622   // outputStream. The default behaviour is to call print_on(). It is
   623   // up to each subclass to override it and add any additional output
   624   // it needs.
   625   virtual void print_extended_on(outputStream* st) const {
   626     print_on(st);
   627   }
   629   // Print all GC threads (other than the VM thread)
   630   // used by this heap.
   631   virtual void print_gc_threads_on(outputStream* st) const = 0;
   632   // The default behavior is to call print_gc_threads_on() on tty.
   633   void print_gc_threads() {
   634     print_gc_threads_on(tty);
   635   }
   636   // Iterator for all GC threads (other than VM thread)
   637   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   639   // Print any relevant tracing info that flags imply.
   640   // Default implementation does nothing.
   641   virtual void print_tracing_info() const = 0;
   643   // If PrintHeapAtGC is set call the appropriate routi
   644   void print_heap_before_gc() {
   645     if (PrintHeapAtGC) {
   646       Universe::print_heap_before_gc();
   647     }
   648     if (_gc_heap_log != NULL) {
   649       _gc_heap_log->log_heap_before();
   650     }
   651   }
   652   void print_heap_after_gc() {
   653     if (PrintHeapAtGC) {
   654       Universe::print_heap_after_gc();
   655     }
   656     if (_gc_heap_log != NULL) {
   657       _gc_heap_log->log_heap_after();
   658     }
   659   }
   661   // Heap verification
   662   virtual void verify(bool allow_dirty, bool silent, VerifyOption option) = 0;
   664   // Non product verification and debugging.
   665 #ifndef PRODUCT
   666   // Support for PromotionFailureALot.  Return true if it's time to cause a
   667   // promotion failure.  The no-argument version uses
   668   // this->_promotion_failure_alot_count as the counter.
   669   inline bool promotion_should_fail(volatile size_t* count);
   670   inline bool promotion_should_fail();
   672   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   673   // GC in which promotion failure ocurred.
   674   inline void reset_promotion_should_fail(volatile size_t* count);
   675   inline void reset_promotion_should_fail();
   676 #endif  // #ifndef PRODUCT
   678 #ifdef ASSERT
   679   static int fired_fake_oom() {
   680     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   681   }
   682 #endif
   684  public:
   685   // This is a convenience method that is used in cases where
   686   // the actual number of GC worker threads is not pertinent but
   687   // only whether there more than 0.  Use of this method helps
   688   // reduce the occurrence of ParallelGCThreads to uses where the
   689   // actual number may be germane.
   690   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
   692   /////////////// Unit tests ///////////////
   694   NOT_PRODUCT(static void test_is_in();)
   695 };
   697 // Class to set and reset the GC cause for a CollectedHeap.
   699 class GCCauseSetter : StackObj {
   700   CollectedHeap* _heap;
   701   GCCause::Cause _previous_cause;
   702  public:
   703   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   704     assert(SafepointSynchronize::is_at_safepoint(),
   705            "This method manipulates heap state without locking");
   706     _heap = heap;
   707     _previous_cause = _heap->gc_cause();
   708     _heap->set_gc_cause(cause);
   709   }
   711   ~GCCauseSetter() {
   712     assert(SafepointSynchronize::is_at_safepoint(),
   713           "This method manipulates heap state without locking");
   714     _heap->set_gc_cause(_previous_cause);
   715   }
   716 };
   718 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

mercurial