src/share/vm/opto/library_call.cpp

Fri, 31 Jul 2009 17:12:33 -0700

author
cfang
date
Fri, 31 Jul 2009 17:12:33 -0700
changeset 1335
9987d9d5eb0e
parent 1331
1cef5ec3ca56
child 1337
fc2281ddce3c
permissions
-rw-r--r--

6833129: specjvm98 fails with NullPointerException in the compiler with -XX:DeoptimizeALot
Summary: developed a reexecute logic for the interpreter to reexecute the bytecode when deopt happens
Reviewed-by: kvn, never, jrose, twisti

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_library_call.cpp.incl"
    28 class LibraryIntrinsic : public InlineCallGenerator {
    29   // Extend the set of intrinsics known to the runtime:
    30  public:
    31  private:
    32   bool             _is_virtual;
    33   vmIntrinsics::ID _intrinsic_id;
    35  public:
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    37     : InlineCallGenerator(m),
    38       _is_virtual(is_virtual),
    39       _intrinsic_id(id)
    40   {
    41   }
    42   virtual bool is_intrinsic() const { return true; }
    43   virtual bool is_virtual()   const { return _is_virtual; }
    44   virtual JVMState* generate(JVMState* jvms);
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    46 };
    49 // Local helper class for LibraryIntrinsic:
    50 class LibraryCallKit : public GraphKit {
    51  private:
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    54  public:
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    56     : GraphKit(caller),
    57       _intrinsic(intrinsic)
    58   {
    59   }
    61   ciMethod*         caller()    const    { return jvms()->method(); }
    62   int               bci()       const    { return jvms()->bci(); }
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
    66   ciSignature*      signature() const    { return callee()->signature(); }
    67   int               arg_size()  const    { return callee()->arg_size(); }
    69   bool try_to_inline();
    71   // Helper functions to inline natives
    72   void push_result(RegionNode* region, PhiNode* value);
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
    77                                 // resulting CastII of index:
    78                                 Node* *pos_index = NULL);
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    80                                    // resulting CastII of index:
    81                                    Node* *pos_index = NULL);
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    83                              Node* array_length,
    84                              RegionNode* region);
    85   Node* generate_current_thread(Node* &tls_output);
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    87                               bool disjoint_bases, const char* &name);
    88   Node* load_mirror_from_klass(Node* klass);
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    90                                       int nargs,
    91                                       RegionNode* region, int null_path,
    92                                       int offset);
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    94                                RegionNode* region, int null_path) {
    95     int offset = java_lang_Class::klass_offset_in_bytes();
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
    97                                          region, null_path,
    98                                          offset);
    99   }
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   101                                      int nargs,
   102                                      RegionNode* region, int null_path) {
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   105                                          region, null_path,
   106                                          offset);
   107   }
   108   Node* generate_access_flags_guard(Node* kls,
   109                                     int modifier_mask, int modifier_bits,
   110                                     RegionNode* region);
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
   113     return generate_array_guard_common(kls, region, false, false);
   114   }
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   116     return generate_array_guard_common(kls, region, false, true);
   117   }
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   119     return generate_array_guard_common(kls, region, true, false);
   120   }
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   122     return generate_array_guard_common(kls, region, true, true);
   123   }
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   125                                     bool obj_array, bool not_array);
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   128                                      bool is_virtual = false, bool is_static = false);
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   130     return generate_method_call(method_id, false, true);
   131   }
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   133     return generate_method_call(method_id, true, false);
   134   }
   136   bool inline_string_compareTo();
   137   bool inline_string_indexOf();
   138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   139   bool inline_string_equals();
   140   Node* pop_math_arg();
   141   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   142   bool inline_math_native(vmIntrinsics::ID id);
   143   bool inline_trig(vmIntrinsics::ID id);
   144   bool inline_trans(vmIntrinsics::ID id);
   145   bool inline_abs(vmIntrinsics::ID id);
   146   bool inline_sqrt(vmIntrinsics::ID id);
   147   bool inline_pow(vmIntrinsics::ID id);
   148   bool inline_exp(vmIntrinsics::ID id);
   149   bool inline_min_max(vmIntrinsics::ID id);
   150   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   151   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   152   int classify_unsafe_addr(Node* &base, Node* &offset);
   153   Node* make_unsafe_address(Node* base, Node* offset);
   154   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   155   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   156   bool inline_unsafe_allocate();
   157   bool inline_unsafe_copyMemory();
   158   bool inline_native_currentThread();
   159   bool inline_native_time_funcs(bool isNano);
   160   bool inline_native_isInterrupted();
   161   bool inline_native_Class_query(vmIntrinsics::ID id);
   162   bool inline_native_subtype_check();
   164   bool inline_native_newArray();
   165   bool inline_native_getLength();
   166   bool inline_array_copyOf(bool is_copyOfRange);
   167   bool inline_array_equals();
   168   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   169   bool inline_native_clone(bool is_virtual);
   170   bool inline_native_Reflection_getCallerClass();
   171   bool inline_native_AtomicLong_get();
   172   bool inline_native_AtomicLong_attemptUpdate();
   173   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   174   // Helper function for inlining native object hash method
   175   bool inline_native_hashcode(bool is_virtual, bool is_static);
   176   bool inline_native_getClass();
   178   // Helper functions for inlining arraycopy
   179   bool inline_arraycopy();
   180   void generate_arraycopy(const TypePtr* adr_type,
   181                           BasicType basic_elem_type,
   182                           Node* src,  Node* src_offset,
   183                           Node* dest, Node* dest_offset,
   184                           Node* copy_length,
   185                           bool disjoint_bases = false,
   186                           bool length_never_negative = false,
   187                           RegionNode* slow_region = NULL);
   188   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   189                                                 RegionNode* slow_region);
   190   void generate_clear_array(const TypePtr* adr_type,
   191                             Node* dest,
   192                             BasicType basic_elem_type,
   193                             Node* slice_off,
   194                             Node* slice_len,
   195                             Node* slice_end);
   196   bool generate_block_arraycopy(const TypePtr* adr_type,
   197                                 BasicType basic_elem_type,
   198                                 AllocateNode* alloc,
   199                                 Node* src,  Node* src_offset,
   200                                 Node* dest, Node* dest_offset,
   201                                 Node* dest_size);
   202   void generate_slow_arraycopy(const TypePtr* adr_type,
   203                                Node* src,  Node* src_offset,
   204                                Node* dest, Node* dest_offset,
   205                                Node* copy_length);
   206   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   207                                      Node* dest_elem_klass,
   208                                      Node* src,  Node* src_offset,
   209                                      Node* dest, Node* dest_offset,
   210                                      Node* copy_length);
   211   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   212                                    Node* src,  Node* src_offset,
   213                                    Node* dest, Node* dest_offset,
   214                                    Node* copy_length);
   215   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   216                                     BasicType basic_elem_type,
   217                                     bool disjoint_bases,
   218                                     Node* src,  Node* src_offset,
   219                                     Node* dest, Node* dest_offset,
   220                                     Node* copy_length);
   221   bool inline_unsafe_CAS(BasicType type);
   222   bool inline_unsafe_ordered_store(BasicType type);
   223   bool inline_fp_conversions(vmIntrinsics::ID id);
   224   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   225   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   226   bool inline_bitCount(vmIntrinsics::ID id);
   227   bool inline_reverseBytes(vmIntrinsics::ID id);
   228 };
   231 //---------------------------make_vm_intrinsic----------------------------
   232 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   233   vmIntrinsics::ID id = m->intrinsic_id();
   234   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   236   if (DisableIntrinsic[0] != '\0'
   237       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   238     // disabled by a user request on the command line:
   239     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   240     return NULL;
   241   }
   243   if (!m->is_loaded()) {
   244     // do not attempt to inline unloaded methods
   245     return NULL;
   246   }
   248   // Only a few intrinsics implement a virtual dispatch.
   249   // They are expensive calls which are also frequently overridden.
   250   if (is_virtual) {
   251     switch (id) {
   252     case vmIntrinsics::_hashCode:
   253     case vmIntrinsics::_clone:
   254       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   255       break;
   256     default:
   257       return NULL;
   258     }
   259   }
   261   // -XX:-InlineNatives disables nearly all intrinsics:
   262   if (!InlineNatives) {
   263     switch (id) {
   264     case vmIntrinsics::_indexOf:
   265     case vmIntrinsics::_compareTo:
   266     case vmIntrinsics::_equals:
   267     case vmIntrinsics::_equalsC:
   268       break;  // InlineNatives does not control String.compareTo
   269     default:
   270       return NULL;
   271     }
   272   }
   274   switch (id) {
   275   case vmIntrinsics::_compareTo:
   276     if (!SpecialStringCompareTo)  return NULL;
   277     break;
   278   case vmIntrinsics::_indexOf:
   279     if (!SpecialStringIndexOf)  return NULL;
   280     break;
   281   case vmIntrinsics::_equals:
   282     if (!SpecialStringEquals)  return NULL;
   283     break;
   284   case vmIntrinsics::_equalsC:
   285     if (!SpecialArraysEquals)  return NULL;
   286     break;
   287   case vmIntrinsics::_arraycopy:
   288     if (!InlineArrayCopy)  return NULL;
   289     break;
   290   case vmIntrinsics::_copyMemory:
   291     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   292     if (!InlineArrayCopy)  return NULL;
   293     break;
   294   case vmIntrinsics::_hashCode:
   295     if (!InlineObjectHash)  return NULL;
   296     break;
   297   case vmIntrinsics::_clone:
   298   case vmIntrinsics::_copyOf:
   299   case vmIntrinsics::_copyOfRange:
   300     if (!InlineObjectCopy)  return NULL;
   301     // These also use the arraycopy intrinsic mechanism:
   302     if (!InlineArrayCopy)  return NULL;
   303     break;
   304   case vmIntrinsics::_checkIndex:
   305     // We do not intrinsify this.  The optimizer does fine with it.
   306     return NULL;
   308   case vmIntrinsics::_get_AtomicLong:
   309   case vmIntrinsics::_attemptUpdate:
   310     if (!InlineAtomicLong)  return NULL;
   311     break;
   313   case vmIntrinsics::_getCallerClass:
   314     if (!UseNewReflection)  return NULL;
   315     if (!InlineReflectionGetCallerClass)  return NULL;
   316     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   317     break;
   319   case vmIntrinsics::_bitCount_i:
   320   case vmIntrinsics::_bitCount_l:
   321     if (!UsePopCountInstruction)  return NULL;
   322     break;
   324  default:
   325     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   326     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   327     break;
   328   }
   330   // -XX:-InlineClassNatives disables natives from the Class class.
   331   // The flag applies to all reflective calls, notably Array.newArray
   332   // (visible to Java programmers as Array.newInstance).
   333   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   334       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   335     if (!InlineClassNatives)  return NULL;
   336   }
   338   // -XX:-InlineThreadNatives disables natives from the Thread class.
   339   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   340     if (!InlineThreadNatives)  return NULL;
   341   }
   343   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   344   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   345       m->holder()->name() == ciSymbol::java_lang_Float() ||
   346       m->holder()->name() == ciSymbol::java_lang_Double()) {
   347     if (!InlineMathNatives)  return NULL;
   348   }
   350   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   351   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   352     if (!InlineUnsafeOps)  return NULL;
   353   }
   355   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   356 }
   358 //----------------------register_library_intrinsics-----------------------
   359 // Initialize this file's data structures, for each Compile instance.
   360 void Compile::register_library_intrinsics() {
   361   // Nothing to do here.
   362 }
   364 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   365   LibraryCallKit kit(jvms, this);
   366   Compile* C = kit.C;
   367   int nodes = C->unique();
   368 #ifndef PRODUCT
   369   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   370     char buf[1000];
   371     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   372     tty->print_cr("Intrinsic %s", str);
   373   }
   374 #endif
   375   if (kit.try_to_inline()) {
   376     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   377       tty->print("Inlining intrinsic %s%s at bci:%d in",
   378                  vmIntrinsics::name_at(intrinsic_id()),
   379                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   380       kit.caller()->print_short_name(tty);
   381       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   382     }
   383     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   384     if (C->log()) {
   385       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   386                      vmIntrinsics::name_at(intrinsic_id()),
   387                      (is_virtual() ? " virtual='1'" : ""),
   388                      C->unique() - nodes);
   389     }
   390     return kit.transfer_exceptions_into_jvms();
   391   }
   393   if (PrintIntrinsics) {
   394     tty->print("Did not inline intrinsic %s%s at bci:%d in",
   395                vmIntrinsics::name_at(intrinsic_id()),
   396                (is_virtual() ? " (virtual)" : ""), kit.bci());
   397     kit.caller()->print_short_name(tty);
   398     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   399   }
   400   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   401   return NULL;
   402 }
   404 bool LibraryCallKit::try_to_inline() {
   405   // Handle symbolic names for otherwise undistinguished boolean switches:
   406   const bool is_store       = true;
   407   const bool is_native_ptr  = true;
   408   const bool is_static      = true;
   410   switch (intrinsic_id()) {
   411   case vmIntrinsics::_hashCode:
   412     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   413   case vmIntrinsics::_identityHashCode:
   414     return inline_native_hashcode(/*!virtual*/ false, is_static);
   415   case vmIntrinsics::_getClass:
   416     return inline_native_getClass();
   418   case vmIntrinsics::_dsin:
   419   case vmIntrinsics::_dcos:
   420   case vmIntrinsics::_dtan:
   421   case vmIntrinsics::_dabs:
   422   case vmIntrinsics::_datan2:
   423   case vmIntrinsics::_dsqrt:
   424   case vmIntrinsics::_dexp:
   425   case vmIntrinsics::_dlog:
   426   case vmIntrinsics::_dlog10:
   427   case vmIntrinsics::_dpow:
   428     return inline_math_native(intrinsic_id());
   430   case vmIntrinsics::_min:
   431   case vmIntrinsics::_max:
   432     return inline_min_max(intrinsic_id());
   434   case vmIntrinsics::_arraycopy:
   435     return inline_arraycopy();
   437   case vmIntrinsics::_compareTo:
   438     return inline_string_compareTo();
   439   case vmIntrinsics::_indexOf:
   440     return inline_string_indexOf();
   441   case vmIntrinsics::_equals:
   442     return inline_string_equals();
   444   case vmIntrinsics::_getObject:
   445     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   446   case vmIntrinsics::_getBoolean:
   447     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   448   case vmIntrinsics::_getByte:
   449     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   450   case vmIntrinsics::_getShort:
   451     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   452   case vmIntrinsics::_getChar:
   453     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   454   case vmIntrinsics::_getInt:
   455     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   456   case vmIntrinsics::_getLong:
   457     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   458   case vmIntrinsics::_getFloat:
   459     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   460   case vmIntrinsics::_getDouble:
   461     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   463   case vmIntrinsics::_putObject:
   464     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   465   case vmIntrinsics::_putBoolean:
   466     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   467   case vmIntrinsics::_putByte:
   468     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   469   case vmIntrinsics::_putShort:
   470     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   471   case vmIntrinsics::_putChar:
   472     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   473   case vmIntrinsics::_putInt:
   474     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   475   case vmIntrinsics::_putLong:
   476     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   477   case vmIntrinsics::_putFloat:
   478     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   479   case vmIntrinsics::_putDouble:
   480     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   482   case vmIntrinsics::_getByte_raw:
   483     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   484   case vmIntrinsics::_getShort_raw:
   485     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   486   case vmIntrinsics::_getChar_raw:
   487     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   488   case vmIntrinsics::_getInt_raw:
   489     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   490   case vmIntrinsics::_getLong_raw:
   491     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   492   case vmIntrinsics::_getFloat_raw:
   493     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   494   case vmIntrinsics::_getDouble_raw:
   495     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   496   case vmIntrinsics::_getAddress_raw:
   497     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   499   case vmIntrinsics::_putByte_raw:
   500     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   501   case vmIntrinsics::_putShort_raw:
   502     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   503   case vmIntrinsics::_putChar_raw:
   504     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   505   case vmIntrinsics::_putInt_raw:
   506     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   507   case vmIntrinsics::_putLong_raw:
   508     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   509   case vmIntrinsics::_putFloat_raw:
   510     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   511   case vmIntrinsics::_putDouble_raw:
   512     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   513   case vmIntrinsics::_putAddress_raw:
   514     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   516   case vmIntrinsics::_getObjectVolatile:
   517     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   518   case vmIntrinsics::_getBooleanVolatile:
   519     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   520   case vmIntrinsics::_getByteVolatile:
   521     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   522   case vmIntrinsics::_getShortVolatile:
   523     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   524   case vmIntrinsics::_getCharVolatile:
   525     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   526   case vmIntrinsics::_getIntVolatile:
   527     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   528   case vmIntrinsics::_getLongVolatile:
   529     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   530   case vmIntrinsics::_getFloatVolatile:
   531     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   532   case vmIntrinsics::_getDoubleVolatile:
   533     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   535   case vmIntrinsics::_putObjectVolatile:
   536     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   537   case vmIntrinsics::_putBooleanVolatile:
   538     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   539   case vmIntrinsics::_putByteVolatile:
   540     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   541   case vmIntrinsics::_putShortVolatile:
   542     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   543   case vmIntrinsics::_putCharVolatile:
   544     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   545   case vmIntrinsics::_putIntVolatile:
   546     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   547   case vmIntrinsics::_putLongVolatile:
   548     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   549   case vmIntrinsics::_putFloatVolatile:
   550     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   551   case vmIntrinsics::_putDoubleVolatile:
   552     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   554   case vmIntrinsics::_prefetchRead:
   555     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   556   case vmIntrinsics::_prefetchWrite:
   557     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   558   case vmIntrinsics::_prefetchReadStatic:
   559     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   560   case vmIntrinsics::_prefetchWriteStatic:
   561     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   563   case vmIntrinsics::_compareAndSwapObject:
   564     return inline_unsafe_CAS(T_OBJECT);
   565   case vmIntrinsics::_compareAndSwapInt:
   566     return inline_unsafe_CAS(T_INT);
   567   case vmIntrinsics::_compareAndSwapLong:
   568     return inline_unsafe_CAS(T_LONG);
   570   case vmIntrinsics::_putOrderedObject:
   571     return inline_unsafe_ordered_store(T_OBJECT);
   572   case vmIntrinsics::_putOrderedInt:
   573     return inline_unsafe_ordered_store(T_INT);
   574   case vmIntrinsics::_putOrderedLong:
   575     return inline_unsafe_ordered_store(T_LONG);
   577   case vmIntrinsics::_currentThread:
   578     return inline_native_currentThread();
   579   case vmIntrinsics::_isInterrupted:
   580     return inline_native_isInterrupted();
   582   case vmIntrinsics::_currentTimeMillis:
   583     return inline_native_time_funcs(false);
   584   case vmIntrinsics::_nanoTime:
   585     return inline_native_time_funcs(true);
   586   case vmIntrinsics::_allocateInstance:
   587     return inline_unsafe_allocate();
   588   case vmIntrinsics::_copyMemory:
   589     return inline_unsafe_copyMemory();
   590   case vmIntrinsics::_newArray:
   591     return inline_native_newArray();
   592   case vmIntrinsics::_getLength:
   593     return inline_native_getLength();
   594   case vmIntrinsics::_copyOf:
   595     return inline_array_copyOf(false);
   596   case vmIntrinsics::_copyOfRange:
   597     return inline_array_copyOf(true);
   598   case vmIntrinsics::_equalsC:
   599     return inline_array_equals();
   600   case vmIntrinsics::_clone:
   601     return inline_native_clone(intrinsic()->is_virtual());
   603   case vmIntrinsics::_isAssignableFrom:
   604     return inline_native_subtype_check();
   606   case vmIntrinsics::_isInstance:
   607   case vmIntrinsics::_getModifiers:
   608   case vmIntrinsics::_isInterface:
   609   case vmIntrinsics::_isArray:
   610   case vmIntrinsics::_isPrimitive:
   611   case vmIntrinsics::_getSuperclass:
   612   case vmIntrinsics::_getComponentType:
   613   case vmIntrinsics::_getClassAccessFlags:
   614     return inline_native_Class_query(intrinsic_id());
   616   case vmIntrinsics::_floatToRawIntBits:
   617   case vmIntrinsics::_floatToIntBits:
   618   case vmIntrinsics::_intBitsToFloat:
   619   case vmIntrinsics::_doubleToRawLongBits:
   620   case vmIntrinsics::_doubleToLongBits:
   621   case vmIntrinsics::_longBitsToDouble:
   622     return inline_fp_conversions(intrinsic_id());
   624   case vmIntrinsics::_numberOfLeadingZeros_i:
   625   case vmIntrinsics::_numberOfLeadingZeros_l:
   626     return inline_numberOfLeadingZeros(intrinsic_id());
   628   case vmIntrinsics::_numberOfTrailingZeros_i:
   629   case vmIntrinsics::_numberOfTrailingZeros_l:
   630     return inline_numberOfTrailingZeros(intrinsic_id());
   632   case vmIntrinsics::_bitCount_i:
   633   case vmIntrinsics::_bitCount_l:
   634     return inline_bitCount(intrinsic_id());
   636   case vmIntrinsics::_reverseBytes_i:
   637   case vmIntrinsics::_reverseBytes_l:
   638     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   640   case vmIntrinsics::_get_AtomicLong:
   641     return inline_native_AtomicLong_get();
   642   case vmIntrinsics::_attemptUpdate:
   643     return inline_native_AtomicLong_attemptUpdate();
   645   case vmIntrinsics::_getCallerClass:
   646     return inline_native_Reflection_getCallerClass();
   648   default:
   649     // If you get here, it may be that someone has added a new intrinsic
   650     // to the list in vmSymbols.hpp without implementing it here.
   651 #ifndef PRODUCT
   652     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   653       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   654                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   655     }
   656 #endif
   657     return false;
   658   }
   659 }
   661 //------------------------------push_result------------------------------
   662 // Helper function for finishing intrinsics.
   663 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   664   record_for_igvn(region);
   665   set_control(_gvn.transform(region));
   666   BasicType value_type = value->type()->basic_type();
   667   push_node(value_type, _gvn.transform(value));
   668 }
   670 //------------------------------generate_guard---------------------------
   671 // Helper function for generating guarded fast-slow graph structures.
   672 // The given 'test', if true, guards a slow path.  If the test fails
   673 // then a fast path can be taken.  (We generally hope it fails.)
   674 // In all cases, GraphKit::control() is updated to the fast path.
   675 // The returned value represents the control for the slow path.
   676 // The return value is never 'top'; it is either a valid control
   677 // or NULL if it is obvious that the slow path can never be taken.
   678 // Also, if region and the slow control are not NULL, the slow edge
   679 // is appended to the region.
   680 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   681   if (stopped()) {
   682     // Already short circuited.
   683     return NULL;
   684   }
   686   // Build an if node and its projections.
   687   // If test is true we take the slow path, which we assume is uncommon.
   688   if (_gvn.type(test) == TypeInt::ZERO) {
   689     // The slow branch is never taken.  No need to build this guard.
   690     return NULL;
   691   }
   693   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   695   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   696   if (if_slow == top()) {
   697     // The slow branch is never taken.  No need to build this guard.
   698     return NULL;
   699   }
   701   if (region != NULL)
   702     region->add_req(if_slow);
   704   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   705   set_control(if_fast);
   707   return if_slow;
   708 }
   710 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   711   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   712 }
   713 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   714   return generate_guard(test, region, PROB_FAIR);
   715 }
   717 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   718                                                      Node* *pos_index) {
   719   if (stopped())
   720     return NULL;                // already stopped
   721   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   722     return NULL;                // index is already adequately typed
   723   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   724   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   725   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   726   if (is_neg != NULL && pos_index != NULL) {
   727     // Emulate effect of Parse::adjust_map_after_if.
   728     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   729     ccast->set_req(0, control());
   730     (*pos_index) = _gvn.transform(ccast);
   731   }
   732   return is_neg;
   733 }
   735 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   736                                                         Node* *pos_index) {
   737   if (stopped())
   738     return NULL;                // already stopped
   739   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   740     return NULL;                // index is already adequately typed
   741   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   742   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   743   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   744   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   745   if (is_notp != NULL && pos_index != NULL) {
   746     // Emulate effect of Parse::adjust_map_after_if.
   747     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   748     ccast->set_req(0, control());
   749     (*pos_index) = _gvn.transform(ccast);
   750   }
   751   return is_notp;
   752 }
   754 // Make sure that 'position' is a valid limit index, in [0..length].
   755 // There are two equivalent plans for checking this:
   756 //   A. (offset + copyLength)  unsigned<=  arrayLength
   757 //   B. offset  <=  (arrayLength - copyLength)
   758 // We require that all of the values above, except for the sum and
   759 // difference, are already known to be non-negative.
   760 // Plan A is robust in the face of overflow, if offset and copyLength
   761 // are both hugely positive.
   762 //
   763 // Plan B is less direct and intuitive, but it does not overflow at
   764 // all, since the difference of two non-negatives is always
   765 // representable.  Whenever Java methods must perform the equivalent
   766 // check they generally use Plan B instead of Plan A.
   767 // For the moment we use Plan A.
   768 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   769                                                   Node* subseq_length,
   770                                                   Node* array_length,
   771                                                   RegionNode* region) {
   772   if (stopped())
   773     return NULL;                // already stopped
   774   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   775   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   776     return NULL;                // common case of whole-array copy
   777   Node* last = subseq_length;
   778   if (!zero_offset)             // last += offset
   779     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   780   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   781   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   782   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   783   return is_over;
   784 }
   787 //--------------------------generate_current_thread--------------------
   788 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   789   ciKlass*    thread_klass = env()->Thread_klass();
   790   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   791   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   792   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   793   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   794   tls_output = thread;
   795   return threadObj;
   796 }
   799 //------------------------------inline_string_compareTo------------------------
   800 bool LibraryCallKit::inline_string_compareTo() {
   802   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   804   const int value_offset = java_lang_String::value_offset_in_bytes();
   805   const int count_offset = java_lang_String::count_offset_in_bytes();
   806   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   808   _sp += 2;
   809   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   810   Node *receiver = pop();
   812   // Null check on self without removing any arguments.  The argument
   813   // null check technically happens in the wrong place, which can lead to
   814   // invalid stack traces when string compare is inlined into a method
   815   // which handles NullPointerExceptions.
   816   _sp += 2;
   817   receiver = do_null_check(receiver, T_OBJECT);
   818   argument = do_null_check(argument, T_OBJECT);
   819   _sp -= 2;
   820   if (stopped()) {
   821     return true;
   822   }
   824   ciInstanceKlass* klass = env()->String_klass();
   825   const TypeInstPtr* string_type =
   826     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   828   Node* compare =
   829     _gvn.transform(new (C, 7) StrCompNode(
   830                         control(),
   831                         memory(TypeAryPtr::CHARS),
   832                         memory(string_type->add_offset(value_offset)),
   833                         memory(string_type->add_offset(count_offset)),
   834                         memory(string_type->add_offset(offset_offset)),
   835                         receiver,
   836                         argument));
   837   push(compare);
   838   return true;
   839 }
   841 //------------------------------inline_string_equals------------------------
   842 bool LibraryCallKit::inline_string_equals() {
   844   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   846   const int value_offset = java_lang_String::value_offset_in_bytes();
   847   const int count_offset = java_lang_String::count_offset_in_bytes();
   848   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   850   _sp += 2;
   851   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   852   Node* receiver = pop();
   854   // Null check on self without removing any arguments.  The argument
   855   // null check technically happens in the wrong place, which can lead to
   856   // invalid stack traces when string compare is inlined into a method
   857   // which handles NullPointerExceptions.
   858   _sp += 2;
   859   receiver = do_null_check(receiver, T_OBJECT);
   860   //should not do null check for argument for String.equals(), because spec
   861   //allows to specify NULL as argument.
   862   _sp -= 2;
   864   if (stopped()) {
   865     return true;
   866   }
   868   // get String klass for instanceOf
   869   ciInstanceKlass* klass = env()->String_klass();
   871   // two paths (plus control) merge
   872   RegionNode* region = new (C, 3) RegionNode(3);
   873   Node* phi = new (C, 3) PhiNode(region, TypeInt::BOOL);
   875   Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   876   Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   877   Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   879   IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
   881   Node* if_true  = _gvn.transform(new (C, 1) IfTrueNode(iff));
   882   set_control(if_true);
   884   const TypeInstPtr* string_type =
   885     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
   887   // instanceOf == true
   888   Node* equals =
   889     _gvn.transform(new (C, 7) StrEqualsNode(
   890                         control(),
   891                         memory(TypeAryPtr::CHARS),
   892                         memory(string_type->add_offset(value_offset)),
   893                         memory(string_type->add_offset(count_offset)),
   894                         memory(string_type->add_offset(offset_offset)),
   895                         receiver,
   896                         argument));
   898   phi->init_req(1, _gvn.transform(equals));
   899   region->init_req(1, if_true);
   901   //instanceOf == false, fallthrough
   902   Node* if_false = _gvn.transform(new (C, 1) IfFalseNode(iff));
   903   set_control(if_false);
   905   phi->init_req(2, _gvn.transform(intcon(0)));
   906   region->init_req(2, if_false);
   908   // post merge
   909   set_control(_gvn.transform(region));
   910   record_for_igvn(region);
   912   push(_gvn.transform(phi));
   914   return true;
   915 }
   917 //------------------------------inline_array_equals----------------------------
   918 bool LibraryCallKit::inline_array_equals() {
   920   if (!Matcher::has_match_rule(Op_AryEq)) return false;
   922   _sp += 2;
   923   Node *argument2 = pop();
   924   Node *argument1 = pop();
   926   Node* equals =
   927     _gvn.transform(new (C, 3) AryEqNode(control(),
   928                                         argument1,
   929                                         argument2)
   930                    );
   931   push(equals);
   932   return true;
   933 }
   935 // Java version of String.indexOf(constant string)
   936 // class StringDecl {
   937 //   StringDecl(char[] ca) {
   938 //     offset = 0;
   939 //     count = ca.length;
   940 //     value = ca;
   941 //   }
   942 //   int offset;
   943 //   int count;
   944 //   char[] value;
   945 // }
   946 //
   947 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
   948 //                             int targetOffset, int cache_i, int md2) {
   949 //   int cache = cache_i;
   950 //   int sourceOffset = string_object.offset;
   951 //   int sourceCount = string_object.count;
   952 //   int targetCount = target_object.length;
   953 //
   954 //   int targetCountLess1 = targetCount - 1;
   955 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
   956 //
   957 //   char[] source = string_object.value;
   958 //   char[] target = target_object;
   959 //   int lastChar = target[targetCountLess1];
   960 //
   961 //  outer_loop:
   962 //   for (int i = sourceOffset; i < sourceEnd; ) {
   963 //     int src = source[i + targetCountLess1];
   964 //     if (src == lastChar) {
   965 //       // With random strings and a 4-character alphabet,
   966 //       // reverse matching at this point sets up 0.8% fewer
   967 //       // frames, but (paradoxically) makes 0.3% more probes.
   968 //       // Since those probes are nearer the lastChar probe,
   969 //       // there is may be a net D$ win with reverse matching.
   970 //       // But, reversing loop inhibits unroll of inner loop
   971 //       // for unknown reason.  So, does running outer loop from
   972 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
   973 //       for (int j = 0; j < targetCountLess1; j++) {
   974 //         if (target[targetOffset + j] != source[i+j]) {
   975 //           if ((cache & (1 << source[i+j])) == 0) {
   976 //             if (md2 < j+1) {
   977 //               i += j+1;
   978 //               continue outer_loop;
   979 //             }
   980 //           }
   981 //           i += md2;
   982 //           continue outer_loop;
   983 //         }
   984 //       }
   985 //       return i - sourceOffset;
   986 //     }
   987 //     if ((cache & (1 << src)) == 0) {
   988 //       i += targetCountLess1;
   989 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
   990 //     i++;
   991 //   }
   992 //   return -1;
   993 // }
   995 //------------------------------string_indexOf------------------------
   996 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
   997                                      jint cache_i, jint md2_i) {
   999   Node* no_ctrl  = NULL;
  1000   float likely   = PROB_LIKELY(0.9);
  1001   float unlikely = PROB_UNLIKELY(0.9);
  1003   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1004   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1005   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1007   ciInstanceKlass* klass = env()->String_klass();
  1008   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
  1009   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1011   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1012   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1013   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1014   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1015   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1016   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1018   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
  1019   jint target_length = target_array->length();
  1020   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1021   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1023   IdealKit kit(gvn(), control(), merged_memory(), false, true);
  1024 #define __ kit.
  1025   Node* zero             = __ ConI(0);
  1026   Node* one              = __ ConI(1);
  1027   Node* cache            = __ ConI(cache_i);
  1028   Node* md2              = __ ConI(md2_i);
  1029   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1030   Node* targetCount      = __ ConI(target_length);
  1031   Node* targetCountLess1 = __ ConI(target_length - 1);
  1032   Node* targetOffset     = __ ConI(targetOffset_i);
  1033   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1035   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1036   Node* outer_loop = __ make_label(2 /* goto */);
  1037   Node* return_    = __ make_label(1);
  1039   __ set(rtn,__ ConI(-1));
  1040   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
  1041        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1042        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1043        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1044        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1045          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
  1046               Node* tpj = __ AddI(targetOffset, __ value(j));
  1047               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1048               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1049               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1050               __ if_then(targ, BoolTest::ne, src2); {
  1051                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1052                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1053                     __ increment(i, __ AddI(__ value(j), one));
  1054                     __ goto_(outer_loop);
  1055                   } __ end_if(); __ dead(j);
  1056                 }__ end_if(); __ dead(j);
  1057                 __ increment(i, md2);
  1058                 __ goto_(outer_loop);
  1059               }__ end_if();
  1060               __ increment(j, one);
  1061          }__ end_loop(); __ dead(j);
  1062          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1063          __ goto_(return_);
  1064        }__ end_if();
  1065        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1066          __ increment(i, targetCountLess1);
  1067        }__ end_if();
  1068        __ increment(i, one);
  1069        __ bind(outer_loop);
  1070   }__ end_loop(); __ dead(i);
  1071   __ bind(return_);
  1073   // Final sync IdealKit and GraphKit.
  1074   sync_kit(kit);
  1075   Node* result = __ value(rtn);
  1076 #undef __
  1077   C->set_has_loops(true);
  1078   return result;
  1081 //------------------------------inline_string_indexOf------------------------
  1082 bool LibraryCallKit::inline_string_indexOf() {
  1084   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1085   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1086   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1088   _sp += 2;
  1089   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1090   Node *receiver = pop();
  1092   Node* result;
  1093   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1094       UseSSE42Intrinsics) {
  1095     // Generate SSE4.2 version of indexOf
  1096     // We currently only have match rules that use SSE4.2
  1098     // Null check on self without removing any arguments.  The argument
  1099     // null check technically happens in the wrong place, which can lead to
  1100     // invalid stack traces when string compare is inlined into a method
  1101     // which handles NullPointerExceptions.
  1102     _sp += 2;
  1103     receiver = do_null_check(receiver, T_OBJECT);
  1104     argument = do_null_check(argument, T_OBJECT);
  1105     _sp -= 2;
  1107     if (stopped()) {
  1108       return true;
  1111     ciInstanceKlass* klass = env()->String_klass();
  1112     const TypeInstPtr* string_type =
  1113       TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
  1115     result =
  1116       _gvn.transform(new (C, 7)
  1117                      StrIndexOfNode(control(),
  1118                                     memory(TypeAryPtr::CHARS),
  1119                                     memory(string_type->add_offset(value_offset)),
  1120                                     memory(string_type->add_offset(count_offset)),
  1121                                     memory(string_type->add_offset(offset_offset)),
  1122                                     receiver,
  1123                                     argument));
  1124   } else { //Use LibraryCallKit::string_indexOf
  1125     // don't intrinsify is argument isn't a constant string.
  1126     if (!argument->is_Con()) {
  1127      return false;
  1129     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1130     if (str_type == NULL) {
  1131       return false;
  1133     ciInstanceKlass* klass = env()->String_klass();
  1134     ciObject* str_const = str_type->const_oop();
  1135     if (str_const == NULL || str_const->klass() != klass) {
  1136       return false;
  1138     ciInstance* str = str_const->as_instance();
  1139     assert(str != NULL, "must be instance");
  1141     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1142     int       o = str->field_value_by_offset(offset_offset).as_int();
  1143     int       c = str->field_value_by_offset(count_offset).as_int();
  1144     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1146     // constant strings have no offset and count == length which
  1147     // simplifies the resulting code somewhat so lets optimize for that.
  1148     if (o != 0 || c != pat->length()) {
  1149      return false;
  1152     // Null check on self without removing any arguments.  The argument
  1153     // null check technically happens in the wrong place, which can lead to
  1154     // invalid stack traces when string compare is inlined into a method
  1155     // which handles NullPointerExceptions.
  1156     _sp += 2;
  1157     receiver = do_null_check(receiver, T_OBJECT);
  1158     // No null check on the argument is needed since it's a constant String oop.
  1159     _sp -= 2;
  1160     if (stopped()) {
  1161      return true;
  1164     // The null string as a pattern always returns 0 (match at beginning of string)
  1165     if (c == 0) {
  1166       push(intcon(0));
  1167       return true;
  1170     // Generate default indexOf
  1171     jchar lastChar = pat->char_at(o + (c - 1));
  1172     int cache = 0;
  1173     int i;
  1174     for (i = 0; i < c - 1; i++) {
  1175       assert(i < pat->length(), "out of range");
  1176       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1179     int md2 = c;
  1180     for (i = 0; i < c - 1; i++) {
  1181       assert(i < pat->length(), "out of range");
  1182       if (pat->char_at(o + i) == lastChar) {
  1183         md2 = (c - 1) - i;
  1187     result = string_indexOf(receiver, pat, o, cache, md2);
  1190   push(result);
  1191   return true;
  1194 //--------------------------pop_math_arg--------------------------------
  1195 // Pop a double argument to a math function from the stack
  1196 // rounding it if necessary.
  1197 Node * LibraryCallKit::pop_math_arg() {
  1198   Node *arg = pop_pair();
  1199   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1200     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1201   return arg;
  1204 //------------------------------inline_trig----------------------------------
  1205 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1206 // argument reduction which will turn into a fast/slow diamond.
  1207 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1208   _sp += arg_size();            // restore stack pointer
  1209   Node* arg = pop_math_arg();
  1210   Node* trig = NULL;
  1212   switch (id) {
  1213   case vmIntrinsics::_dsin:
  1214     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1215     break;
  1216   case vmIntrinsics::_dcos:
  1217     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1218     break;
  1219   case vmIntrinsics::_dtan:
  1220     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1221     break;
  1222   default:
  1223     assert(false, "bad intrinsic was passed in");
  1224     return false;
  1227   // Rounding required?  Check for argument reduction!
  1228   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1230     static const double     pi_4 =  0.7853981633974483;
  1231     static const double neg_pi_4 = -0.7853981633974483;
  1232     // pi/2 in 80-bit extended precision
  1233     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1234     // -pi/2 in 80-bit extended precision
  1235     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1236     // Cutoff value for using this argument reduction technique
  1237     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1238     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1240     // Pseudocode for sin:
  1241     // if (x <= Math.PI / 4.0) {
  1242     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1243     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1244     // } else {
  1245     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1246     // }
  1247     // return StrictMath.sin(x);
  1249     // Pseudocode for cos:
  1250     // if (x <= Math.PI / 4.0) {
  1251     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1252     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1253     // } else {
  1254     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1255     // }
  1256     // return StrictMath.cos(x);
  1258     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1259     // requires a special machine instruction to load it.  Instead we'll try
  1260     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1261     // probably do the math inside the SIN encoding.
  1263     // Make the merge point
  1264     RegionNode *r = new (C, 3) RegionNode(3);
  1265     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1267     // Flatten arg so we need only 1 test
  1268     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1269     // Node for PI/4 constant
  1270     Node *pi4 = makecon(TypeD::make(pi_4));
  1271     // Check PI/4 : abs(arg)
  1272     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1273     // Check: If PI/4 < abs(arg) then go slow
  1274     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1275     // Branch either way
  1276     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1277     set_control(opt_iff(r,iff));
  1279     // Set fast path result
  1280     phi->init_req(2,trig);
  1282     // Slow path - non-blocking leaf call
  1283     Node* call = NULL;
  1284     switch (id) {
  1285     case vmIntrinsics::_dsin:
  1286       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1287                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1288                                "Sin", NULL, arg, top());
  1289       break;
  1290     case vmIntrinsics::_dcos:
  1291       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1292                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1293                                "Cos", NULL, arg, top());
  1294       break;
  1295     case vmIntrinsics::_dtan:
  1296       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1297                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1298                                "Tan", NULL, arg, top());
  1299       break;
  1301     assert(control()->in(0) == call, "");
  1302     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1303     r->init_req(1,control());
  1304     phi->init_req(1,slow_result);
  1306     // Post-merge
  1307     set_control(_gvn.transform(r));
  1308     record_for_igvn(r);
  1309     trig = _gvn.transform(phi);
  1311     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1313   // Push result back on JVM stack
  1314   push_pair(trig);
  1315   return true;
  1318 //------------------------------inline_sqrt-------------------------------------
  1319 // Inline square root instruction, if possible.
  1320 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1321   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1322   _sp += arg_size();        // restore stack pointer
  1323   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1324   return true;
  1327 //------------------------------inline_abs-------------------------------------
  1328 // Inline absolute value instruction, if possible.
  1329 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1330   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1331   _sp += arg_size();        // restore stack pointer
  1332   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1333   return true;
  1336 //------------------------------inline_exp-------------------------------------
  1337 // Inline exp instructions, if possible.  The Intel hardware only misses
  1338 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1339 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1340   assert(id == vmIntrinsics::_dexp, "Not exp");
  1342   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1343   // every again.  NaN results requires StrictMath.exp handling.
  1344   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1346   // Do not intrinsify on older platforms which lack cmove.
  1347   if (ConditionalMoveLimit == 0)  return false;
  1349   _sp += arg_size();        // restore stack pointer
  1350   Node *x = pop_math_arg();
  1351   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1353   //-------------------
  1354   //result=(result.isNaN())? StrictMath::exp():result;
  1355   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1356   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1357   // Build the boolean node
  1358   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1360   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1361     // End the current control-flow path
  1362     push_pair(x);
  1363     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1364     // to handle.  Recompile without intrinsifying Math.exp
  1365     uncommon_trap(Deoptimization::Reason_intrinsic,
  1366                   Deoptimization::Action_make_not_entrant);
  1369   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1371   push_pair(result);
  1373   return true;
  1376 //------------------------------inline_pow-------------------------------------
  1377 // Inline power instructions, if possible.
  1378 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1379   assert(id == vmIntrinsics::_dpow, "Not pow");
  1381   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1382   // every again.  NaN results requires StrictMath.pow handling.
  1383   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1385   // Do not intrinsify on older platforms which lack cmove.
  1386   if (ConditionalMoveLimit == 0)  return false;
  1388   // Pseudocode for pow
  1389   // if (x <= 0.0) {
  1390   //   if ((double)((int)y)==y) { // if y is int
  1391   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1392   //   } else {
  1393   //     result = NaN;
  1394   //   }
  1395   // } else {
  1396   //   result = DPow(x,y);
  1397   // }
  1398   // if (result != result)?  {
  1399   //   uncommon_trap();
  1400   // }
  1401   // return result;
  1403   _sp += arg_size();        // restore stack pointer
  1404   Node* y = pop_math_arg();
  1405   Node* x = pop_math_arg();
  1407   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1409   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1410   // inside of something) then skip the fancy tests and just check for
  1411   // NaN result.
  1412   Node *result = NULL;
  1413   if( jvms()->depth() >= 1 ) {
  1414     result = fast_result;
  1415   } else {
  1417     // Set the merge point for If node with condition of (x <= 0.0)
  1418     // There are four possible paths to region node and phi node
  1419     RegionNode *r = new (C, 4) RegionNode(4);
  1420     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1422     // Build the first if node: if (x <= 0.0)
  1423     // Node for 0 constant
  1424     Node *zeronode = makecon(TypeD::ZERO);
  1425     // Check x:0
  1426     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1427     // Check: If (x<=0) then go complex path
  1428     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1429     // Branch either way
  1430     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1431     Node *opt_test = _gvn.transform(if1);
  1432     //assert( opt_test->is_If(), "Expect an IfNode");
  1433     IfNode *opt_if1 = (IfNode*)opt_test;
  1434     // Fast path taken; set region slot 3
  1435     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1436     r->init_req(3,fast_taken); // Capture fast-control
  1438     // Fast path not-taken, i.e. slow path
  1439     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1441     // Set fast path result
  1442     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1443     phi->init_req(3, fast_result);
  1445     // Complex path
  1446     // Build the second if node (if y is int)
  1447     // Node for (int)y
  1448     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1449     // Node for (double)((int) y)
  1450     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1451     // Check (double)((int) y) : y
  1452     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1453     // Check if (y isn't int) then go to slow path
  1455     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1456     // Branch either way
  1457     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1458     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1460     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1461     // Node for constant 1
  1462     Node *conone = intcon(1);
  1463     // 1& (int)y
  1464     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1465     // zero node
  1466     Node *conzero = intcon(0);
  1467     // Check (1&(int)y)==0?
  1468     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1469     // Check if (1&(int)y)!=0?, if so the result is negative
  1470     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1471     // abs(x)
  1472     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1473     // abs(x)^y
  1474     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1475     // -abs(x)^y
  1476     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1477     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1478     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1479     // Set complex path fast result
  1480     phi->init_req(2, signresult);
  1482     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1483     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1484     r->init_req(1,slow_path);
  1485     phi->init_req(1,slow_result);
  1487     // Post merge
  1488     set_control(_gvn.transform(r));
  1489     record_for_igvn(r);
  1490     result=_gvn.transform(phi);
  1493   //-------------------
  1494   //result=(result.isNaN())? uncommon_trap():result;
  1495   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1496   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1497   // Build the boolean node
  1498   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1500   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1501     // End the current control-flow path
  1502     push_pair(x);
  1503     push_pair(y);
  1504     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1505     // to handle.  Recompile without intrinsifying Math.pow.
  1506     uncommon_trap(Deoptimization::Reason_intrinsic,
  1507                   Deoptimization::Action_make_not_entrant);
  1510   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1512   push_pair(result);
  1514   return true;
  1517 //------------------------------inline_trans-------------------------------------
  1518 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1519 // these right, no funny corner cases missed.
  1520 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1521   _sp += arg_size();        // restore stack pointer
  1522   Node* arg = pop_math_arg();
  1523   Node* trans = NULL;
  1525   switch (id) {
  1526   case vmIntrinsics::_dlog:
  1527     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1528     break;
  1529   case vmIntrinsics::_dlog10:
  1530     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1531     break;
  1532   default:
  1533     assert(false, "bad intrinsic was passed in");
  1534     return false;
  1537   // Push result back on JVM stack
  1538   push_pair(trans);
  1539   return true;
  1542 //------------------------------runtime_math-----------------------------
  1543 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1544   Node* a = NULL;
  1545   Node* b = NULL;
  1547   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1548          "must be (DD)D or (D)D type");
  1550   // Inputs
  1551   _sp += arg_size();        // restore stack pointer
  1552   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1553     b = pop_math_arg();
  1555   a = pop_math_arg();
  1557   const TypePtr* no_memory_effects = NULL;
  1558   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1559                                  no_memory_effects,
  1560                                  a, top(), b, b ? top() : NULL);
  1561   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1562 #ifdef ASSERT
  1563   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1564   assert(value_top == top(), "second value must be top");
  1565 #endif
  1567   push_pair(value);
  1568   return true;
  1571 //------------------------------inline_math_native-----------------------------
  1572 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1573   switch (id) {
  1574     // These intrinsics are not properly supported on all hardware
  1575   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1576     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1577   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1578     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1579   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1580     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1582   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1583     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1584   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1585     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1587     // These intrinsics are supported on all hardware
  1588   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1589   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1591     // These intrinsics don't work on X86.  The ad implementation doesn't
  1592     // handle NaN's properly.  Instead of returning infinity, the ad
  1593     // implementation returns a NaN on overflow. See bug: 6304089
  1594     // Once the ad implementations are fixed, change the code below
  1595     // to match the intrinsics above
  1597   case vmIntrinsics::_dexp:  return
  1598     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1599   case vmIntrinsics::_dpow:  return
  1600     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1602    // These intrinsics are not yet correctly implemented
  1603   case vmIntrinsics::_datan2:
  1604     return false;
  1606   default:
  1607     ShouldNotReachHere();
  1608     return false;
  1612 static bool is_simple_name(Node* n) {
  1613   return (n->req() == 1         // constant
  1614           || (n->is_Type() && n->as_Type()->type()->singleton())
  1615           || n->is_Proj()       // parameter or return value
  1616           || n->is_Phi()        // local of some sort
  1617           );
  1620 //----------------------------inline_min_max-----------------------------------
  1621 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1622   push(generate_min_max(id, argument(0), argument(1)));
  1624   return true;
  1627 Node*
  1628 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1629   // These are the candidate return value:
  1630   Node* xvalue = x0;
  1631   Node* yvalue = y0;
  1633   if (xvalue == yvalue) {
  1634     return xvalue;
  1637   bool want_max = (id == vmIntrinsics::_max);
  1639   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1640   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1641   if (txvalue == NULL || tyvalue == NULL)  return top();
  1642   // This is not really necessary, but it is consistent with a
  1643   // hypothetical MaxINode::Value method:
  1644   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1646   // %%% This folding logic should (ideally) be in a different place.
  1647   // Some should be inside IfNode, and there to be a more reliable
  1648   // transformation of ?: style patterns into cmoves.  We also want
  1649   // more powerful optimizations around cmove and min/max.
  1651   // Try to find a dominating comparison of these guys.
  1652   // It can simplify the index computation for Arrays.copyOf
  1653   // and similar uses of System.arraycopy.
  1654   // First, compute the normalized version of CmpI(x, y).
  1655   int   cmp_op = Op_CmpI;
  1656   Node* xkey = xvalue;
  1657   Node* ykey = yvalue;
  1658   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1659   if (ideal_cmpxy->is_Cmp()) {
  1660     // E.g., if we have CmpI(length - offset, count),
  1661     // it might idealize to CmpI(length, count + offset)
  1662     cmp_op = ideal_cmpxy->Opcode();
  1663     xkey = ideal_cmpxy->in(1);
  1664     ykey = ideal_cmpxy->in(2);
  1667   // Start by locating any relevant comparisons.
  1668   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1669   Node* cmpxy = NULL;
  1670   Node* cmpyx = NULL;
  1671   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1672     Node* cmp = start_from->fast_out(k);
  1673     if (cmp->outcnt() > 0 &&            // must have prior uses
  1674         cmp->in(0) == NULL &&           // must be context-independent
  1675         cmp->Opcode() == cmp_op) {      // right kind of compare
  1676       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1677       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1681   const int NCMPS = 2;
  1682   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1683   int cmpn;
  1684   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1685     if (cmps[cmpn] != NULL)  break;     // find a result
  1687   if (cmpn < NCMPS) {
  1688     // Look for a dominating test that tells us the min and max.
  1689     int depth = 0;                // Limit search depth for speed
  1690     Node* dom = control();
  1691     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1692       if (++depth >= 100)  break;
  1693       Node* ifproj = dom;
  1694       if (!ifproj->is_Proj())  continue;
  1695       Node* iff = ifproj->in(0);
  1696       if (!iff->is_If())  continue;
  1697       Node* bol = iff->in(1);
  1698       if (!bol->is_Bool())  continue;
  1699       Node* cmp = bol->in(1);
  1700       if (cmp == NULL)  continue;
  1701       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1702         if (cmps[cmpn] == cmp)  break;
  1703       if (cmpn == NCMPS)  continue;
  1704       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1705       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1706       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1707       // At this point, we know that 'x btest y' is true.
  1708       switch (btest) {
  1709       case BoolTest::eq:
  1710         // They are proven equal, so we can collapse the min/max.
  1711         // Either value is the answer.  Choose the simpler.
  1712         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1713           return yvalue;
  1714         return xvalue;
  1715       case BoolTest::lt:          // x < y
  1716       case BoolTest::le:          // x <= y
  1717         return (want_max ? yvalue : xvalue);
  1718       case BoolTest::gt:          // x > y
  1719       case BoolTest::ge:          // x >= y
  1720         return (want_max ? xvalue : yvalue);
  1725   // We failed to find a dominating test.
  1726   // Let's pick a test that might GVN with prior tests.
  1727   Node*          best_bol   = NULL;
  1728   BoolTest::mask best_btest = BoolTest::illegal;
  1729   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1730     Node* cmp = cmps[cmpn];
  1731     if (cmp == NULL)  continue;
  1732     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1733       Node* bol = cmp->fast_out(j);
  1734       if (!bol->is_Bool())  continue;
  1735       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1736       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1737       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1738       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1739         best_bol   = bol->as_Bool();
  1740         best_btest = btest;
  1745   Node* answer_if_true  = NULL;
  1746   Node* answer_if_false = NULL;
  1747   switch (best_btest) {
  1748   default:
  1749     if (cmpxy == NULL)
  1750       cmpxy = ideal_cmpxy;
  1751     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1752     // and fall through:
  1753   case BoolTest::lt:          // x < y
  1754   case BoolTest::le:          // x <= y
  1755     answer_if_true  = (want_max ? yvalue : xvalue);
  1756     answer_if_false = (want_max ? xvalue : yvalue);
  1757     break;
  1758   case BoolTest::gt:          // x > y
  1759   case BoolTest::ge:          // x >= y
  1760     answer_if_true  = (want_max ? xvalue : yvalue);
  1761     answer_if_false = (want_max ? yvalue : xvalue);
  1762     break;
  1765   jint hi, lo;
  1766   if (want_max) {
  1767     // We can sharpen the minimum.
  1768     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1769     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1770   } else {
  1771     // We can sharpen the maximum.
  1772     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1773     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1776   // Use a flow-free graph structure, to avoid creating excess control edges
  1777   // which could hinder other optimizations.
  1778   // Since Math.min/max is often used with arraycopy, we want
  1779   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1780   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1781                                answer_if_false, answer_if_true,
  1782                                TypeInt::make(lo, hi, widen));
  1784   return _gvn.transform(cmov);
  1786   /*
  1787   // This is not as desirable as it may seem, since Min and Max
  1788   // nodes do not have a full set of optimizations.
  1789   // And they would interfere, anyway, with 'if' optimizations
  1790   // and with CMoveI canonical forms.
  1791   switch (id) {
  1792   case vmIntrinsics::_min:
  1793     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1794   case vmIntrinsics::_max:
  1795     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1796   default:
  1797     ShouldNotReachHere();
  1799   */
  1802 inline int
  1803 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1804   const TypePtr* base_type = TypePtr::NULL_PTR;
  1805   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1806   if (base_type == NULL) {
  1807     // Unknown type.
  1808     return Type::AnyPtr;
  1809   } else if (base_type == TypePtr::NULL_PTR) {
  1810     // Since this is a NULL+long form, we have to switch to a rawptr.
  1811     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1812     offset = MakeConX(0);
  1813     return Type::RawPtr;
  1814   } else if (base_type->base() == Type::RawPtr) {
  1815     return Type::RawPtr;
  1816   } else if (base_type->isa_oopptr()) {
  1817     // Base is never null => always a heap address.
  1818     if (base_type->ptr() == TypePtr::NotNull) {
  1819       return Type::OopPtr;
  1821     // Offset is small => always a heap address.
  1822     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1823     if (offset_type != NULL &&
  1824         base_type->offset() == 0 &&     // (should always be?)
  1825         offset_type->_lo >= 0 &&
  1826         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1827       return Type::OopPtr;
  1829     // Otherwise, it might either be oop+off or NULL+addr.
  1830     return Type::AnyPtr;
  1831   } else {
  1832     // No information:
  1833     return Type::AnyPtr;
  1837 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1838   int kind = classify_unsafe_addr(base, offset);
  1839   if (kind == Type::RawPtr) {
  1840     return basic_plus_adr(top(), base, offset);
  1841   } else {
  1842     return basic_plus_adr(base, offset);
  1846 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  1847 // inline int Integer.numberOfLeadingZeros(int)
  1848 // inline int Long.numberOfLeadingZeros(long)
  1849 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  1850   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  1851   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  1852   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  1853   _sp += arg_size();  // restore stack pointer
  1854   switch (id) {
  1855   case vmIntrinsics::_numberOfLeadingZeros_i:
  1856     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  1857     break;
  1858   case vmIntrinsics::_numberOfLeadingZeros_l:
  1859     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  1860     break;
  1861   default:
  1862     ShouldNotReachHere();
  1864   return true;
  1867 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  1868 // inline int Integer.numberOfTrailingZeros(int)
  1869 // inline int Long.numberOfTrailingZeros(long)
  1870 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  1871   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  1872   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  1873   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  1874   _sp += arg_size();  // restore stack pointer
  1875   switch (id) {
  1876   case vmIntrinsics::_numberOfTrailingZeros_i:
  1877     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  1878     break;
  1879   case vmIntrinsics::_numberOfTrailingZeros_l:
  1880     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  1881     break;
  1882   default:
  1883     ShouldNotReachHere();
  1885   return true;
  1888 //----------------------------inline_bitCount_int/long-----------------------
  1889 // inline int Integer.bitCount(int)
  1890 // inline int Long.bitCount(long)
  1891 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  1892   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  1893   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  1894   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  1895   _sp += arg_size();  // restore stack pointer
  1896   switch (id) {
  1897   case vmIntrinsics::_bitCount_i:
  1898     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  1899     break;
  1900   case vmIntrinsics::_bitCount_l:
  1901     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  1902     break;
  1903   default:
  1904     ShouldNotReachHere();
  1906   return true;
  1909 //----------------------------inline_reverseBytes_int/long-------------------
  1910 // inline Integer.reverseBytes(int)
  1911 // inline Long.reverseBytes(long)
  1912 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  1913   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
  1914   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
  1915   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
  1916   _sp += arg_size();        // restore stack pointer
  1917   switch (id) {
  1918   case vmIntrinsics::_reverseBytes_i:
  1919     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  1920     break;
  1921   case vmIntrinsics::_reverseBytes_l:
  1922     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  1923     break;
  1924   default:
  1927   return true;
  1930 //----------------------------inline_unsafe_access----------------------------
  1932 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  1934 // Interpret Unsafe.fieldOffset cookies correctly:
  1935 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  1937 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  1938   if (callee()->is_static())  return false;  // caller must have the capability!
  1940 #ifndef PRODUCT
  1942     ResourceMark rm;
  1943     // Check the signatures.
  1944     ciSignature* sig = signature();
  1945 #ifdef ASSERT
  1946     if (!is_store) {
  1947       // Object getObject(Object base, int/long offset), etc.
  1948       BasicType rtype = sig->return_type()->basic_type();
  1949       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  1950           rtype = T_ADDRESS;  // it is really a C void*
  1951       assert(rtype == type, "getter must return the expected value");
  1952       if (!is_native_ptr) {
  1953         assert(sig->count() == 2, "oop getter has 2 arguments");
  1954         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  1955         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  1956       } else {
  1957         assert(sig->count() == 1, "native getter has 1 argument");
  1958         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  1960     } else {
  1961       // void putObject(Object base, int/long offset, Object x), etc.
  1962       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  1963       if (!is_native_ptr) {
  1964         assert(sig->count() == 3, "oop putter has 3 arguments");
  1965         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  1966         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  1967       } else {
  1968         assert(sig->count() == 2, "native putter has 2 arguments");
  1969         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  1971       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  1972       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  1973         vtype = T_ADDRESS;  // it is really a C void*
  1974       assert(vtype == type, "putter must accept the expected value");
  1976 #endif // ASSERT
  1978 #endif //PRODUCT
  1980   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  1982   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  1984   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  1985   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  1987   debug_only(int saved_sp = _sp);
  1988   _sp += nargs;
  1990   Node* val;
  1991   debug_only(val = (Node*)(uintptr_t)-1);
  1994   if (is_store) {
  1995     // Get the value being stored.  (Pop it first; it was pushed last.)
  1996     switch (type) {
  1997     case T_DOUBLE:
  1998     case T_LONG:
  1999     case T_ADDRESS:
  2000       val = pop_pair();
  2001       break;
  2002     default:
  2003       val = pop();
  2007   // Build address expression.  See the code in inline_unsafe_prefetch.
  2008   Node *adr;
  2009   Node *heap_base_oop = top();
  2010   if (!is_native_ptr) {
  2011     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2012     Node* offset = pop_pair();
  2013     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2014     Node* base   = pop();
  2015     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2016     // to be plain byte offsets, which are also the same as those accepted
  2017     // by oopDesc::field_base.
  2018     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2019            "fieldOffset must be byte-scaled");
  2020     // 32-bit machines ignore the high half!
  2021     offset = ConvL2X(offset);
  2022     adr = make_unsafe_address(base, offset);
  2023     heap_base_oop = base;
  2024   } else {
  2025     Node* ptr = pop_pair();
  2026     // Adjust Java long to machine word:
  2027     ptr = ConvL2X(ptr);
  2028     adr = make_unsafe_address(NULL, ptr);
  2031   // Pop receiver last:  it was pushed first.
  2032   Node *receiver = pop();
  2034   assert(saved_sp == _sp, "must have correct argument count");
  2036   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2038   // First guess at the value type.
  2039   const Type *value_type = Type::get_const_basic_type(type);
  2041   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2042   // there was not enough information to nail it down.
  2043   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2044   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2046   // We will need memory barriers unless we can determine a unique
  2047   // alias category for this reference.  (Note:  If for some reason
  2048   // the barriers get omitted and the unsafe reference begins to "pollute"
  2049   // the alias analysis of the rest of the graph, either Compile::can_alias
  2050   // or Compile::must_alias will throw a diagnostic assert.)
  2051   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2053   if (!is_store && type == T_OBJECT) {
  2054     // Attempt to infer a sharper value type from the offset and base type.
  2055     ciKlass* sharpened_klass = NULL;
  2057     // See if it is an instance field, with an object type.
  2058     if (alias_type->field() != NULL) {
  2059       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2060       if (alias_type->field()->type()->is_klass()) {
  2061         sharpened_klass = alias_type->field()->type()->as_klass();
  2065     // See if it is a narrow oop array.
  2066     if (adr_type->isa_aryptr()) {
  2067       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2068         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2069         if (elem_type != NULL) {
  2070           sharpened_klass = elem_type->klass();
  2075     if (sharpened_klass != NULL) {
  2076       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2078       // Sharpen the value type.
  2079       value_type = tjp;
  2081 #ifndef PRODUCT
  2082       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2083         tty->print("  from base type:  ");   adr_type->dump();
  2084         tty->print("  sharpened value: "); value_type->dump();
  2086 #endif
  2090   // Null check on self without removing any arguments.  The argument
  2091   // null check technically happens in the wrong place, which can lead to
  2092   // invalid stack traces when the primitive is inlined into a method
  2093   // which handles NullPointerExceptions.
  2094   _sp += nargs;
  2095   do_null_check(receiver, T_OBJECT);
  2096   _sp -= nargs;
  2097   if (stopped()) {
  2098     return true;
  2100   // Heap pointers get a null-check from the interpreter,
  2101   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2102   // and it is not possible to fully distinguish unintended nulls
  2103   // from intended ones in this API.
  2105   if (is_volatile) {
  2106     // We need to emit leading and trailing CPU membars (see below) in
  2107     // addition to memory membars when is_volatile. This is a little
  2108     // too strong, but avoids the need to insert per-alias-type
  2109     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2110     // we cannot do effectively here because we probably only have a
  2111     // rough approximation of type.
  2112     need_mem_bar = true;
  2113     // For Stores, place a memory ordering barrier now.
  2114     if (is_store)
  2115       insert_mem_bar(Op_MemBarRelease);
  2118   // Memory barrier to prevent normal and 'unsafe' accesses from
  2119   // bypassing each other.  Happens after null checks, so the
  2120   // exception paths do not take memory state from the memory barrier,
  2121   // so there's no problems making a strong assert about mixing users
  2122   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2123   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2124   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2126   if (!is_store) {
  2127     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2128     // load value and push onto stack
  2129     switch (type) {
  2130     case T_BOOLEAN:
  2131     case T_CHAR:
  2132     case T_BYTE:
  2133     case T_SHORT:
  2134     case T_INT:
  2135     case T_FLOAT:
  2136     case T_OBJECT:
  2137       push( p );
  2138       break;
  2139     case T_ADDRESS:
  2140       // Cast to an int type.
  2141       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2142       p = ConvX2L(p);
  2143       push_pair(p);
  2144       break;
  2145     case T_DOUBLE:
  2146     case T_LONG:
  2147       push_pair( p );
  2148       break;
  2149     default: ShouldNotReachHere();
  2151   } else {
  2152     // place effect of store into memory
  2153     switch (type) {
  2154     case T_DOUBLE:
  2155       val = dstore_rounding(val);
  2156       break;
  2157     case T_ADDRESS:
  2158       // Repackage the long as a pointer.
  2159       val = ConvL2X(val);
  2160       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2161       break;
  2164     if (type != T_OBJECT ) {
  2165       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2166     } else {
  2167       // Possibly an oop being stored to Java heap or native memory
  2168       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2169         // oop to Java heap.
  2170         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2171       } else {
  2172         // We can't tell at compile time if we are storing in the Java heap or outside
  2173         // of it. So we need to emit code to conditionally do the proper type of
  2174         // store.
  2176         IdealKit ideal(gvn(), control(),  merged_memory());
  2177 #define __ ideal.
  2178         // QQQ who knows what probability is here??
  2179         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2180           // Sync IdealKit and graphKit.
  2181           set_all_memory( __ merged_memory());
  2182           set_control(__ ctrl());
  2183           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2184           // Update IdealKit memory.
  2185           __ set_all_memory(merged_memory());
  2186           __ set_ctrl(control());
  2187         } __ else_(); {
  2188           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2189         } __ end_if();
  2190         // Final sync IdealKit and GraphKit.
  2191         sync_kit(ideal);
  2192 #undef __
  2197   if (is_volatile) {
  2198     if (!is_store)
  2199       insert_mem_bar(Op_MemBarAcquire);
  2200     else
  2201       insert_mem_bar(Op_MemBarVolatile);
  2204   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2206   return true;
  2209 //----------------------------inline_unsafe_prefetch----------------------------
  2211 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2212 #ifndef PRODUCT
  2214     ResourceMark rm;
  2215     // Check the signatures.
  2216     ciSignature* sig = signature();
  2217 #ifdef ASSERT
  2218     // Object getObject(Object base, int/long offset), etc.
  2219     BasicType rtype = sig->return_type()->basic_type();
  2220     if (!is_native_ptr) {
  2221       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2222       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2223       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2224     } else {
  2225       assert(sig->count() == 1, "native prefetch has 1 argument");
  2226       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2228 #endif // ASSERT
  2230 #endif // !PRODUCT
  2232   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2234   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2235   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2237   debug_only(int saved_sp = _sp);
  2238   _sp += nargs;
  2240   // Build address expression.  See the code in inline_unsafe_access.
  2241   Node *adr;
  2242   if (!is_native_ptr) {
  2243     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2244     Node* offset = pop_pair();
  2245     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2246     Node* base   = pop();
  2247     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2248     // to be plain byte offsets, which are also the same as those accepted
  2249     // by oopDesc::field_base.
  2250     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2251            "fieldOffset must be byte-scaled");
  2252     // 32-bit machines ignore the high half!
  2253     offset = ConvL2X(offset);
  2254     adr = make_unsafe_address(base, offset);
  2255   } else {
  2256     Node* ptr = pop_pair();
  2257     // Adjust Java long to machine word:
  2258     ptr = ConvL2X(ptr);
  2259     adr = make_unsafe_address(NULL, ptr);
  2262   if (is_static) {
  2263     assert(saved_sp == _sp, "must have correct argument count");
  2264   } else {
  2265     // Pop receiver last:  it was pushed first.
  2266     Node *receiver = pop();
  2267     assert(saved_sp == _sp, "must have correct argument count");
  2269     // Null check on self without removing any arguments.  The argument
  2270     // null check technically happens in the wrong place, which can lead to
  2271     // invalid stack traces when the primitive is inlined into a method
  2272     // which handles NullPointerExceptions.
  2273     _sp += nargs;
  2274     do_null_check(receiver, T_OBJECT);
  2275     _sp -= nargs;
  2276     if (stopped()) {
  2277       return true;
  2281   // Generate the read or write prefetch
  2282   Node *prefetch;
  2283   if (is_store) {
  2284     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2285   } else {
  2286     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2288   prefetch->init_req(0, control());
  2289   set_i_o(_gvn.transform(prefetch));
  2291   return true;
  2294 //----------------------------inline_unsafe_CAS----------------------------
  2296 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2297   // This basic scheme here is the same as inline_unsafe_access, but
  2298   // differs in enough details that combining them would make the code
  2299   // overly confusing.  (This is a true fact! I originally combined
  2300   // them, but even I was confused by it!) As much code/comments as
  2301   // possible are retained from inline_unsafe_access though to make
  2302   // the correspondences clearer. - dl
  2304   if (callee()->is_static())  return false;  // caller must have the capability!
  2306 #ifndef PRODUCT
  2308     ResourceMark rm;
  2309     // Check the signatures.
  2310     ciSignature* sig = signature();
  2311 #ifdef ASSERT
  2312     BasicType rtype = sig->return_type()->basic_type();
  2313     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2314     assert(sig->count() == 4, "CAS has 4 arguments");
  2315     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2316     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2317 #endif // ASSERT
  2319 #endif //PRODUCT
  2321   // number of stack slots per value argument (1 or 2)
  2322   int type_words = type2size[type];
  2324   // Cannot inline wide CAS on machines that don't support it natively
  2325   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2326     return false;
  2328   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2330   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2331   int nargs = 1 + 1 + 2  + type_words + type_words;
  2333   // pop arguments: newval, oldval, offset, base, and receiver
  2334   debug_only(int saved_sp = _sp);
  2335   _sp += nargs;
  2336   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2337   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2338   Node *offset   = pop_pair();
  2339   Node *base     = pop();
  2340   Node *receiver = pop();
  2341   assert(saved_sp == _sp, "must have correct argument count");
  2343   //  Null check receiver.
  2344   _sp += nargs;
  2345   do_null_check(receiver, T_OBJECT);
  2346   _sp -= nargs;
  2347   if (stopped()) {
  2348     return true;
  2351   // Build field offset expression.
  2352   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2353   // to be plain byte offsets, which are also the same as those accepted
  2354   // by oopDesc::field_base.
  2355   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2356   // 32-bit machines ignore the high half of long offsets
  2357   offset = ConvL2X(offset);
  2358   Node* adr = make_unsafe_address(base, offset);
  2359   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2361   // (Unlike inline_unsafe_access, there seems no point in trying
  2362   // to refine types. Just use the coarse types here.
  2363   const Type *value_type = Type::get_const_basic_type(type);
  2364   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2365   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2366   int alias_idx = C->get_alias_index(adr_type);
  2368   // Memory-model-wise, a CAS acts like a little synchronized block,
  2369   // so needs barriers on each side.  These don't translate into
  2370   // actual barriers on most machines, but we still need rest of
  2371   // compiler to respect ordering.
  2373   insert_mem_bar(Op_MemBarRelease);
  2374   insert_mem_bar(Op_MemBarCPUOrder);
  2376   // 4984716: MemBars must be inserted before this
  2377   //          memory node in order to avoid a false
  2378   //          dependency which will confuse the scheduler.
  2379   Node *mem = memory(alias_idx);
  2381   // For now, we handle only those cases that actually exist: ints,
  2382   // longs, and Object. Adding others should be straightforward.
  2383   Node* cas;
  2384   switch(type) {
  2385   case T_INT:
  2386     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2387     break;
  2388   case T_LONG:
  2389     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2390     break;
  2391   case T_OBJECT:
  2392      // reference stores need a store barrier.
  2393     // (They don't if CAS fails, but it isn't worth checking.)
  2394     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
  2395 #ifdef _LP64
  2396     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2397       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2398       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2399       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2400                                                           newval_enc, oldval_enc));
  2401     } else
  2402 #endif
  2404       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2406     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2407     break;
  2408   default:
  2409     ShouldNotReachHere();
  2410     break;
  2413   // SCMemProjNodes represent the memory state of CAS. Their main
  2414   // role is to prevent CAS nodes from being optimized away when their
  2415   // results aren't used.
  2416   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2417   set_memory(proj, alias_idx);
  2419   // Add the trailing membar surrounding the access
  2420   insert_mem_bar(Op_MemBarCPUOrder);
  2421   insert_mem_bar(Op_MemBarAcquire);
  2423   push(cas);
  2424   return true;
  2427 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2428   // This is another variant of inline_unsafe_access, differing in
  2429   // that it always issues store-store ("release") barrier and ensures
  2430   // store-atomicity (which only matters for "long").
  2432   if (callee()->is_static())  return false;  // caller must have the capability!
  2434 #ifndef PRODUCT
  2436     ResourceMark rm;
  2437     // Check the signatures.
  2438     ciSignature* sig = signature();
  2439 #ifdef ASSERT
  2440     BasicType rtype = sig->return_type()->basic_type();
  2441     assert(rtype == T_VOID, "must return void");
  2442     assert(sig->count() == 3, "has 3 arguments");
  2443     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2444     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2445 #endif // ASSERT
  2447 #endif //PRODUCT
  2449   // number of stack slots per value argument (1 or 2)
  2450   int type_words = type2size[type];
  2452   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2454   // Argument words:  "this" plus oop plus offset plus value;
  2455   int nargs = 1 + 1 + 2 + type_words;
  2457   // pop arguments: val, offset, base, and receiver
  2458   debug_only(int saved_sp = _sp);
  2459   _sp += nargs;
  2460   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2461   Node *offset   = pop_pair();
  2462   Node *base     = pop();
  2463   Node *receiver = pop();
  2464   assert(saved_sp == _sp, "must have correct argument count");
  2466   //  Null check receiver.
  2467   _sp += nargs;
  2468   do_null_check(receiver, T_OBJECT);
  2469   _sp -= nargs;
  2470   if (stopped()) {
  2471     return true;
  2474   // Build field offset expression.
  2475   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2476   // 32-bit machines ignore the high half of long offsets
  2477   offset = ConvL2X(offset);
  2478   Node* adr = make_unsafe_address(base, offset);
  2479   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2480   const Type *value_type = Type::get_const_basic_type(type);
  2481   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2483   insert_mem_bar(Op_MemBarRelease);
  2484   insert_mem_bar(Op_MemBarCPUOrder);
  2485   // Ensure that the store is atomic for longs:
  2486   bool require_atomic_access = true;
  2487   Node* store;
  2488   if (type == T_OBJECT) // reference stores need a store barrier.
  2489     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2490   else {
  2491     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2493   insert_mem_bar(Op_MemBarCPUOrder);
  2494   return true;
  2497 bool LibraryCallKit::inline_unsafe_allocate() {
  2498   if (callee()->is_static())  return false;  // caller must have the capability!
  2499   int nargs = 1 + 1;
  2500   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2501   null_check_receiver(callee());  // check then ignore argument(0)
  2502   _sp += nargs;  // set original stack for use by uncommon_trap
  2503   Node* cls = do_null_check(argument(1), T_OBJECT);
  2504   _sp -= nargs;
  2505   if (stopped())  return true;
  2507   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2508   _sp += nargs;  // set original stack for use by uncommon_trap
  2509   kls = do_null_check(kls, T_OBJECT);
  2510   _sp -= nargs;
  2511   if (stopped())  return true;  // argument was like int.class
  2513   // Note:  The argument might still be an illegal value like
  2514   // Serializable.class or Object[].class.   The runtime will handle it.
  2515   // But we must make an explicit check for initialization.
  2516   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2517   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2518   Node* bits = intcon(instanceKlass::fully_initialized);
  2519   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2520   // The 'test' is non-zero if we need to take a slow path.
  2522   Node* obj = new_instance(kls, test);
  2523   push(obj);
  2525   return true;
  2528 //------------------------inline_native_time_funcs--------------
  2529 // inline code for System.currentTimeMillis() and System.nanoTime()
  2530 // these have the same type and signature
  2531 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2532   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2533                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2534   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2535   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2536   const TypePtr* no_memory_effects = NULL;
  2537   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2538   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2539 #ifdef ASSERT
  2540   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2541   assert(value_top == top(), "second value must be top");
  2542 #endif
  2543   push_pair(value);
  2544   return true;
  2547 //------------------------inline_native_currentThread------------------
  2548 bool LibraryCallKit::inline_native_currentThread() {
  2549   Node* junk = NULL;
  2550   push(generate_current_thread(junk));
  2551   return true;
  2554 //------------------------inline_native_isInterrupted------------------
  2555 bool LibraryCallKit::inline_native_isInterrupted() {
  2556   const int nargs = 1+1;  // receiver + boolean
  2557   assert(nargs == arg_size(), "sanity");
  2558   // Add a fast path to t.isInterrupted(clear_int):
  2559   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2560   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2561   // So, in the common case that the interrupt bit is false,
  2562   // we avoid making a call into the VM.  Even if the interrupt bit
  2563   // is true, if the clear_int argument is false, we avoid the VM call.
  2564   // However, if the receiver is not currentThread, we must call the VM,
  2565   // because there must be some locking done around the operation.
  2567   // We only go to the fast case code if we pass two guards.
  2568   // Paths which do not pass are accumulated in the slow_region.
  2569   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2570   record_for_igvn(slow_region);
  2571   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2572   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2573   enum { no_int_result_path   = 1,
  2574          no_clear_result_path = 2,
  2575          slow_result_path     = 3
  2576   };
  2578   // (a) Receiving thread must be the current thread.
  2579   Node* rec_thr = argument(0);
  2580   Node* tls_ptr = NULL;
  2581   Node* cur_thr = generate_current_thread(tls_ptr);
  2582   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2583   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2585   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2586   if (!known_current_thread)
  2587     generate_slow_guard(bol_thr, slow_region);
  2589   // (b) Interrupt bit on TLS must be false.
  2590   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2591   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2592   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2593   // Set the control input on the field _interrupted read to prevent it floating up.
  2594   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2595   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2596   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2598   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2600   // First fast path:  if (!TLS._interrupted) return false;
  2601   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2602   result_rgn->init_req(no_int_result_path, false_bit);
  2603   result_val->init_req(no_int_result_path, intcon(0));
  2605   // drop through to next case
  2606   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2608   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2609   Node* clr_arg = argument(1);
  2610   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2611   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2612   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2614   // Second fast path:  ... else if (!clear_int) return true;
  2615   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2616   result_rgn->init_req(no_clear_result_path, false_arg);
  2617   result_val->init_req(no_clear_result_path, intcon(1));
  2619   // drop through to next case
  2620   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2622   // (d) Otherwise, go to the slow path.
  2623   slow_region->add_req(control());
  2624   set_control( _gvn.transform(slow_region) );
  2626   if (stopped()) {
  2627     // There is no slow path.
  2628     result_rgn->init_req(slow_result_path, top());
  2629     result_val->init_req(slow_result_path, top());
  2630   } else {
  2631     // non-virtual because it is a private non-static
  2632     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2634     Node* slow_val = set_results_for_java_call(slow_call);
  2635     // this->control() comes from set_results_for_java_call
  2637     // If we know that the result of the slow call will be true, tell the optimizer!
  2638     if (known_current_thread)  slow_val = intcon(1);
  2640     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2641     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2642     // These two phis are pre-filled with copies of of the fast IO and Memory
  2643     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2644     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2646     result_rgn->init_req(slow_result_path, control());
  2647     io_phi    ->init_req(slow_result_path, i_o());
  2648     mem_phi   ->init_req(slow_result_path, reset_memory());
  2649     result_val->init_req(slow_result_path, slow_val);
  2651     set_all_memory( _gvn.transform(mem_phi) );
  2652     set_i_o(        _gvn.transform(io_phi) );
  2655   push_result(result_rgn, result_val);
  2656   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2658   return true;
  2661 //---------------------------load_mirror_from_klass----------------------------
  2662 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2663 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2664   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2665   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2668 //-----------------------load_klass_from_mirror_common-------------------------
  2669 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2670 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2671 // and branch to the given path on the region.
  2672 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2673 // compile for the non-null case.
  2674 // If the region is NULL, force never_see_null = true.
  2675 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2676                                                     bool never_see_null,
  2677                                                     int nargs,
  2678                                                     RegionNode* region,
  2679                                                     int null_path,
  2680                                                     int offset) {
  2681   if (region == NULL)  never_see_null = true;
  2682   Node* p = basic_plus_adr(mirror, offset);
  2683   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2684   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2685   _sp += nargs; // any deopt will start just before call to enclosing method
  2686   Node* null_ctl = top();
  2687   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2688   if (region != NULL) {
  2689     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2690     region->init_req(null_path, null_ctl);
  2691   } else {
  2692     assert(null_ctl == top(), "no loose ends");
  2694   _sp -= nargs;
  2695   return kls;
  2698 //--------------------(inline_native_Class_query helpers)---------------------
  2699 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2700 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2701 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2702   // Branch around if the given klass has the given modifier bit set.
  2703   // Like generate_guard, adds a new path onto the region.
  2704   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2705   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2706   Node* mask = intcon(modifier_mask);
  2707   Node* bits = intcon(modifier_bits);
  2708   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2709   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2710   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2711   return generate_fair_guard(bol, region);
  2713 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2714   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2717 //-------------------------inline_native_Class_query-------------------
  2718 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2719   int nargs = 1+0;  // just the Class mirror, in most cases
  2720   const Type* return_type = TypeInt::BOOL;
  2721   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2722   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2723   bool expect_prim = false;     // most of these guys expect to work on refs
  2725   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2727   switch (id) {
  2728   case vmIntrinsics::_isInstance:
  2729     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2730     // nothing is an instance of a primitive type
  2731     prim_return_value = intcon(0);
  2732     break;
  2733   case vmIntrinsics::_getModifiers:
  2734     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2735     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2736     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2737     break;
  2738   case vmIntrinsics::_isInterface:
  2739     prim_return_value = intcon(0);
  2740     break;
  2741   case vmIntrinsics::_isArray:
  2742     prim_return_value = intcon(0);
  2743     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2744     break;
  2745   case vmIntrinsics::_isPrimitive:
  2746     prim_return_value = intcon(1);
  2747     expect_prim = true;  // obviously
  2748     break;
  2749   case vmIntrinsics::_getSuperclass:
  2750     prim_return_value = null();
  2751     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2752     break;
  2753   case vmIntrinsics::_getComponentType:
  2754     prim_return_value = null();
  2755     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2756     break;
  2757   case vmIntrinsics::_getClassAccessFlags:
  2758     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2759     return_type = TypeInt::INT;  // not bool!  6297094
  2760     break;
  2761   default:
  2762     ShouldNotReachHere();
  2765   Node* mirror =                      argument(0);
  2766   Node* obj    = (nargs <= 1)? top(): argument(1);
  2768   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2769   if (mirror_con == NULL)  return false;  // cannot happen?
  2771 #ifndef PRODUCT
  2772   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2773     ciType* k = mirror_con->java_mirror_type();
  2774     if (k) {
  2775       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2776       k->print_name();
  2777       tty->cr();
  2780 #endif
  2782   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2783   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2784   record_for_igvn(region);
  2785   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2787   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2788   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2789   // if it is. See bug 4774291.
  2791   // For Reflection.getClassAccessFlags(), the null check occurs in
  2792   // the wrong place; see inline_unsafe_access(), above, for a similar
  2793   // situation.
  2794   _sp += nargs;  // set original stack for use by uncommon_trap
  2795   mirror = do_null_check(mirror, T_OBJECT);
  2796   _sp -= nargs;
  2797   // If mirror or obj is dead, only null-path is taken.
  2798   if (stopped())  return true;
  2800   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2802   // Now load the mirror's klass metaobject, and null-check it.
  2803   // Side-effects region with the control path if the klass is null.
  2804   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2805                                      region, _prim_path);
  2806   // If kls is null, we have a primitive mirror.
  2807   phi->init_req(_prim_path, prim_return_value);
  2808   if (stopped()) { push_result(region, phi); return true; }
  2810   Node* p;  // handy temp
  2811   Node* null_ctl;
  2813   // Now that we have the non-null klass, we can perform the real query.
  2814   // For constant classes, the query will constant-fold in LoadNode::Value.
  2815   Node* query_value = top();
  2816   switch (id) {
  2817   case vmIntrinsics::_isInstance:
  2818     // nothing is an instance of a primitive type
  2819     query_value = gen_instanceof(obj, kls);
  2820     break;
  2822   case vmIntrinsics::_getModifiers:
  2823     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2824     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2825     break;
  2827   case vmIntrinsics::_isInterface:
  2828     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2829     if (generate_interface_guard(kls, region) != NULL)
  2830       // A guard was added.  If the guard is taken, it was an interface.
  2831       phi->add_req(intcon(1));
  2832     // If we fall through, it's a plain class.
  2833     query_value = intcon(0);
  2834     break;
  2836   case vmIntrinsics::_isArray:
  2837     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2838     if (generate_array_guard(kls, region) != NULL)
  2839       // A guard was added.  If the guard is taken, it was an array.
  2840       phi->add_req(intcon(1));
  2841     // If we fall through, it's a plain class.
  2842     query_value = intcon(0);
  2843     break;
  2845   case vmIntrinsics::_isPrimitive:
  2846     query_value = intcon(0); // "normal" path produces false
  2847     break;
  2849   case vmIntrinsics::_getSuperclass:
  2850     // The rules here are somewhat unfortunate, but we can still do better
  2851     // with random logic than with a JNI call.
  2852     // Interfaces store null or Object as _super, but must report null.
  2853     // Arrays store an intermediate super as _super, but must report Object.
  2854     // Other types can report the actual _super.
  2855     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2856     if (generate_interface_guard(kls, region) != NULL)
  2857       // A guard was added.  If the guard is taken, it was an interface.
  2858       phi->add_req(null());
  2859     if (generate_array_guard(kls, region) != NULL)
  2860       // A guard was added.  If the guard is taken, it was an array.
  2861       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  2862     // If we fall through, it's a plain class.  Get its _super.
  2863     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  2864     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  2865     null_ctl = top();
  2866     kls = null_check_oop(kls, &null_ctl);
  2867     if (null_ctl != top()) {
  2868       // If the guard is taken, Object.superClass is null (both klass and mirror).
  2869       region->add_req(null_ctl);
  2870       phi   ->add_req(null());
  2872     if (!stopped()) {
  2873       query_value = load_mirror_from_klass(kls);
  2875     break;
  2877   case vmIntrinsics::_getComponentType:
  2878     if (generate_array_guard(kls, region) != NULL) {
  2879       // Be sure to pin the oop load to the guard edge just created:
  2880       Node* is_array_ctrl = region->in(region->req()-1);
  2881       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  2882       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  2883       phi->add_req(cmo);
  2885     query_value = null();  // non-array case is null
  2886     break;
  2888   case vmIntrinsics::_getClassAccessFlags:
  2889     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2890     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2891     break;
  2893   default:
  2894     ShouldNotReachHere();
  2897   // Fall-through is the normal case of a query to a real class.
  2898   phi->init_req(1, query_value);
  2899   region->init_req(1, control());
  2901   push_result(region, phi);
  2902   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2904   return true;
  2907 //--------------------------inline_native_subtype_check------------------------
  2908 // This intrinsic takes the JNI calls out of the heart of
  2909 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  2910 bool LibraryCallKit::inline_native_subtype_check() {
  2911   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  2913   // Pull both arguments off the stack.
  2914   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  2915   args[0] = argument(0);
  2916   args[1] = argument(1);
  2917   Node* klasses[2];             // corresponding Klasses: superk, subk
  2918   klasses[0] = klasses[1] = top();
  2920   enum {
  2921     // A full decision tree on {superc is prim, subc is prim}:
  2922     _prim_0_path = 1,           // {P,N} => false
  2923                                 // {P,P} & superc!=subc => false
  2924     _prim_same_path,            // {P,P} & superc==subc => true
  2925     _prim_1_path,               // {N,P} => false
  2926     _ref_subtype_path,          // {N,N} & subtype check wins => true
  2927     _both_ref_path,             // {N,N} & subtype check loses => false
  2928     PATH_LIMIT
  2929   };
  2931   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2932   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2933   record_for_igvn(region);
  2935   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  2936   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2937   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  2939   // First null-check both mirrors and load each mirror's klass metaobject.
  2940   int which_arg;
  2941   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2942     Node* arg = args[which_arg];
  2943     _sp += nargs;  // set original stack for use by uncommon_trap
  2944     arg = do_null_check(arg, T_OBJECT);
  2945     _sp -= nargs;
  2946     if (stopped())  break;
  2947     args[which_arg] = _gvn.transform(arg);
  2949     Node* p = basic_plus_adr(arg, class_klass_offset);
  2950     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  2951     klasses[which_arg] = _gvn.transform(kls);
  2954   // Having loaded both klasses, test each for null.
  2955   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2956   for (which_arg = 0; which_arg <= 1; which_arg++) {
  2957     Node* kls = klasses[which_arg];
  2958     Node* null_ctl = top();
  2959     _sp += nargs;  // set original stack for use by uncommon_trap
  2960     kls = null_check_oop(kls, &null_ctl, never_see_null);
  2961     _sp -= nargs;
  2962     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  2963     region->init_req(prim_path, null_ctl);
  2964     if (stopped())  break;
  2965     klasses[which_arg] = kls;
  2968   if (!stopped()) {
  2969     // now we have two reference types, in klasses[0..1]
  2970     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  2971     Node* superk = klasses[0];  // the receiver
  2972     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  2973     // now we have a successful reference subtype check
  2974     region->set_req(_ref_subtype_path, control());
  2977   // If both operands are primitive (both klasses null), then
  2978   // we must return true when they are identical primitives.
  2979   // It is convenient to test this after the first null klass check.
  2980   set_control(region->in(_prim_0_path)); // go back to first null check
  2981   if (!stopped()) {
  2982     // Since superc is primitive, make a guard for the superc==subc case.
  2983     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  2984     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  2985     generate_guard(bol_eq, region, PROB_FAIR);
  2986     if (region->req() == PATH_LIMIT+1) {
  2987       // A guard was added.  If the added guard is taken, superc==subc.
  2988       region->swap_edges(PATH_LIMIT, _prim_same_path);
  2989       region->del_req(PATH_LIMIT);
  2991     region->set_req(_prim_0_path, control()); // Not equal after all.
  2994   // these are the only paths that produce 'true':
  2995   phi->set_req(_prim_same_path,   intcon(1));
  2996   phi->set_req(_ref_subtype_path, intcon(1));
  2998   // pull together the cases:
  2999   assert(region->req() == PATH_LIMIT, "sane region");
  3000   for (uint i = 1; i < region->req(); i++) {
  3001     Node* ctl = region->in(i);
  3002     if (ctl == NULL || ctl == top()) {
  3003       region->set_req(i, top());
  3004       phi   ->set_req(i, top());
  3005     } else if (phi->in(i) == NULL) {
  3006       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3010   set_control(_gvn.transform(region));
  3011   push(_gvn.transform(phi));
  3013   return true;
  3016 //---------------------generate_array_guard_common------------------------
  3017 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3018                                                   bool obj_array, bool not_array) {
  3019   // If obj_array/non_array==false/false:
  3020   // Branch around if the given klass is in fact an array (either obj or prim).
  3021   // If obj_array/non_array==false/true:
  3022   // Branch around if the given klass is not an array klass of any kind.
  3023   // If obj_array/non_array==true/true:
  3024   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3025   // If obj_array/non_array==true/false:
  3026   // Branch around if the kls is an oop array (Object[] or subtype)
  3027   //
  3028   // Like generate_guard, adds a new path onto the region.
  3029   jint  layout_con = 0;
  3030   Node* layout_val = get_layout_helper(kls, layout_con);
  3031   if (layout_val == NULL) {
  3032     bool query = (obj_array
  3033                   ? Klass::layout_helper_is_objArray(layout_con)
  3034                   : Klass::layout_helper_is_javaArray(layout_con));
  3035     if (query == not_array) {
  3036       return NULL;                       // never a branch
  3037     } else {                             // always a branch
  3038       Node* always_branch = control();
  3039       if (region != NULL)
  3040         region->add_req(always_branch);
  3041       set_control(top());
  3042       return always_branch;
  3045   // Now test the correct condition.
  3046   jint  nval = (obj_array
  3047                 ? ((jint)Klass::_lh_array_tag_type_value
  3048                    <<    Klass::_lh_array_tag_shift)
  3049                 : Klass::_lh_neutral_value);
  3050   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3051   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3052   // invert the test if we are looking for a non-array
  3053   if (not_array)  btest = BoolTest(btest).negate();
  3054   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3055   return generate_fair_guard(bol, region);
  3059 //-----------------------inline_native_newArray--------------------------
  3060 bool LibraryCallKit::inline_native_newArray() {
  3061   int nargs = 2;
  3062   Node* mirror    = argument(0);
  3063   Node* count_val = argument(1);
  3065   _sp += nargs;  // set original stack for use by uncommon_trap
  3066   mirror = do_null_check(mirror, T_OBJECT);
  3067   _sp -= nargs;
  3068   // If mirror or obj is dead, only null-path is taken.
  3069   if (stopped())  return true;
  3071   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3072   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3073   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3074                                                       TypeInstPtr::NOTNULL);
  3075   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3076   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3077                                                       TypePtr::BOTTOM);
  3079   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3080   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3081                                                   nargs,
  3082                                                   result_reg, _slow_path);
  3083   Node* normal_ctl   = control();
  3084   Node* no_array_ctl = result_reg->in(_slow_path);
  3086   // Generate code for the slow case.  We make a call to newArray().
  3087   set_control(no_array_ctl);
  3088   if (!stopped()) {
  3089     // Either the input type is void.class, or else the
  3090     // array klass has not yet been cached.  Either the
  3091     // ensuing call will throw an exception, or else it
  3092     // will cache the array klass for next time.
  3093     PreserveJVMState pjvms(this);
  3094     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3095     Node* slow_result = set_results_for_java_call(slow_call);
  3096     // this->control() comes from set_results_for_java_call
  3097     result_reg->set_req(_slow_path, control());
  3098     result_val->set_req(_slow_path, slow_result);
  3099     result_io ->set_req(_slow_path, i_o());
  3100     result_mem->set_req(_slow_path, reset_memory());
  3103   set_control(normal_ctl);
  3104   if (!stopped()) {
  3105     // Normal case:  The array type has been cached in the java.lang.Class.
  3106     // The following call works fine even if the array type is polymorphic.
  3107     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3108     Node* obj = new_array(klass_node, count_val, nargs);
  3109     result_reg->init_req(_normal_path, control());
  3110     result_val->init_req(_normal_path, obj);
  3111     result_io ->init_req(_normal_path, i_o());
  3112     result_mem->init_req(_normal_path, reset_memory());
  3115   // Return the combined state.
  3116   set_i_o(        _gvn.transform(result_io)  );
  3117   set_all_memory( _gvn.transform(result_mem) );
  3118   push_result(result_reg, result_val);
  3119   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3121   return true;
  3124 //----------------------inline_native_getLength--------------------------
  3125 bool LibraryCallKit::inline_native_getLength() {
  3126   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3128   int nargs = 1;
  3129   Node* array = argument(0);
  3131   _sp += nargs;  // set original stack for use by uncommon_trap
  3132   array = do_null_check(array, T_OBJECT);
  3133   _sp -= nargs;
  3135   // If array is dead, only null-path is taken.
  3136   if (stopped())  return true;
  3138   // Deoptimize if it is a non-array.
  3139   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3141   if (non_array != NULL) {
  3142     PreserveJVMState pjvms(this);
  3143     set_control(non_array);
  3144     _sp += nargs;  // push the arguments back on the stack
  3145     uncommon_trap(Deoptimization::Reason_intrinsic,
  3146                   Deoptimization::Action_maybe_recompile);
  3149   // If control is dead, only non-array-path is taken.
  3150   if (stopped())  return true;
  3152   // The works fine even if the array type is polymorphic.
  3153   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3154   push( load_array_length(array) );
  3156   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3158   return true;
  3161 //------------------------inline_array_copyOf----------------------------
  3162 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3163   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3165   // Restore the stack and pop off the arguments.
  3166   int nargs = 3 + (is_copyOfRange? 1: 0);
  3167   Node* original          = argument(0);
  3168   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3169   Node* end               = is_copyOfRange? argument(2): argument(1);
  3170   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3172   _sp += nargs;  // set original stack for use by uncommon_trap
  3173   array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3174   original          = do_null_check(original, T_OBJECT);
  3175   _sp -= nargs;
  3177   // Check if a null path was taken unconditionally.
  3178   if (stopped())  return true;
  3180   Node* orig_length = load_array_length(original);
  3182   Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
  3183                                             NULL, 0);
  3184   _sp += nargs;  // set original stack for use by uncommon_trap
  3185   klass_node = do_null_check(klass_node, T_OBJECT);
  3186   _sp -= nargs;
  3188   RegionNode* bailout = new (C, 1) RegionNode(1);
  3189   record_for_igvn(bailout);
  3191   // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3192   // Bail out if that is so.
  3193   Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3194   if (not_objArray != NULL) {
  3195     // Improve the klass node's type from the new optimistic assumption:
  3196     ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3197     const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3198     Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3199     cast->init_req(0, control());
  3200     klass_node = _gvn.transform(cast);
  3203   // Bail out if either start or end is negative.
  3204   generate_negative_guard(start, bailout, &start);
  3205   generate_negative_guard(end,   bailout, &end);
  3207   Node* length = end;
  3208   if (_gvn.type(start) != TypeInt::ZERO) {
  3209     length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3212   // Bail out if length is negative.
  3213   // ...Not needed, since the new_array will throw the right exception.
  3214   //generate_negative_guard(length, bailout, &length);
  3216   if (bailout->req() > 1) {
  3217     PreserveJVMState pjvms(this);
  3218     set_control( _gvn.transform(bailout) );
  3219     _sp += nargs;  // push the arguments back on the stack
  3220     uncommon_trap(Deoptimization::Reason_intrinsic,
  3221                   Deoptimization::Action_maybe_recompile);
  3224   if (!stopped()) {
  3225     Node *newcopy;
  3226     //set the original stack and the reexecute bit for the interpreter to reexecute
  3227     //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3228     { PreserveReexecuteState preexecs(this);
  3229       _sp += nargs;
  3230       jvms()->set_should_reexecute(true);
  3232       // How many elements will we copy from the original?
  3233       // The answer is MinI(orig_length - start, length).
  3234       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3235       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3237       const bool raw_mem_only = true;
  3238       newcopy = new_array(klass_node, length, 0, raw_mem_only);
  3240       // Generate a direct call to the right arraycopy function(s).
  3241       // We know the copy is disjoint but we might not know if the
  3242       // oop stores need checking.
  3243       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3244       // This will fail a store-check if x contains any non-nulls.
  3245       bool disjoint_bases = true;
  3246       bool length_never_negative = true;
  3247       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3248                          original, start, newcopy, intcon(0), moved,
  3249                          disjoint_bases, length_never_negative);
  3250     } //original reexecute and sp are set back here
  3252     push(newcopy);
  3255   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3257   return true;
  3261 //----------------------generate_virtual_guard---------------------------
  3262 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3263 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3264                                              RegionNode* slow_region) {
  3265   ciMethod* method = callee();
  3266   int vtable_index = method->vtable_index();
  3267   // Get the methodOop out of the appropriate vtable entry.
  3268   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3269                      vtable_index*vtableEntry::size()) * wordSize +
  3270                      vtableEntry::method_offset_in_bytes();
  3271   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3272   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3274   // Compare the target method with the expected method (e.g., Object.hashCode).
  3275   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3277   Node* native_call = makecon(native_call_addr);
  3278   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3279   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3281   return generate_slow_guard(test_native, slow_region);
  3284 //-----------------------generate_method_call----------------------------
  3285 // Use generate_method_call to make a slow-call to the real
  3286 // method if the fast path fails.  An alternative would be to
  3287 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3288 // This only works for expanding the current library call,
  3289 // not another intrinsic.  (E.g., don't use this for making an
  3290 // arraycopy call inside of the copyOf intrinsic.)
  3291 CallJavaNode*
  3292 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3293   // When compiling the intrinsic method itself, do not use this technique.
  3294   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3296   ciMethod* method = callee();
  3297   // ensure the JVMS we have will be correct for this call
  3298   guarantee(method_id == method->intrinsic_id(), "must match");
  3300   const TypeFunc* tf = TypeFunc::make(method);
  3301   int tfdc = tf->domain()->cnt();
  3302   CallJavaNode* slow_call;
  3303   if (is_static) {
  3304     assert(!is_virtual, "");
  3305     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3306                                 SharedRuntime::get_resolve_static_call_stub(),
  3307                                 method, bci());
  3308   } else if (is_virtual) {
  3309     null_check_receiver(method);
  3310     int vtable_index = methodOopDesc::invalid_vtable_index;
  3311     if (UseInlineCaches) {
  3312       // Suppress the vtable call
  3313     } else {
  3314       // hashCode and clone are not a miranda methods,
  3315       // so the vtable index is fixed.
  3316       // No need to use the linkResolver to get it.
  3317        vtable_index = method->vtable_index();
  3319     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3320                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3321                                 method, vtable_index, bci());
  3322   } else {  // neither virtual nor static:  opt_virtual
  3323     null_check_receiver(method);
  3324     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3325                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3326                                 method, bci());
  3327     slow_call->set_optimized_virtual(true);
  3329   set_arguments_for_java_call(slow_call);
  3330   set_edges_for_java_call(slow_call);
  3331   return slow_call;
  3335 //------------------------------inline_native_hashcode--------------------
  3336 // Build special case code for calls to hashCode on an object.
  3337 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3338   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3339   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3341   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3343   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3344   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3345                                                       TypeInt::INT);
  3346   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3347   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3348                                                       TypePtr::BOTTOM);
  3349   Node* obj = NULL;
  3350   if (!is_static) {
  3351     // Check for hashing null object
  3352     obj = null_check_receiver(callee());
  3353     if (stopped())  return true;        // unconditionally null
  3354     result_reg->init_req(_null_path, top());
  3355     result_val->init_req(_null_path, top());
  3356   } else {
  3357     // Do a null check, and return zero if null.
  3358     // System.identityHashCode(null) == 0
  3359     obj = argument(0);
  3360     Node* null_ctl = top();
  3361     obj = null_check_oop(obj, &null_ctl);
  3362     result_reg->init_req(_null_path, null_ctl);
  3363     result_val->init_req(_null_path, _gvn.intcon(0));
  3366   // Unconditionally null?  Then return right away.
  3367   if (stopped()) {
  3368     set_control( result_reg->in(_null_path) );
  3369     if (!stopped())
  3370       push(      result_val ->in(_null_path) );
  3371     return true;
  3374   // After null check, get the object's klass.
  3375   Node* obj_klass = load_object_klass(obj);
  3377   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3378   // For each case we generate slightly different code.
  3380   // We only go to the fast case code if we pass a number of guards.  The
  3381   // paths which do not pass are accumulated in the slow_region.
  3382   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3383   record_for_igvn(slow_region);
  3385   // If this is a virtual call, we generate a funny guard.  We pull out
  3386   // the vtable entry corresponding to hashCode() from the target object.
  3387   // If the target method which we are calling happens to be the native
  3388   // Object hashCode() method, we pass the guard.  We do not need this
  3389   // guard for non-virtual calls -- the caller is known to be the native
  3390   // Object hashCode().
  3391   if (is_virtual) {
  3392     generate_virtual_guard(obj_klass, slow_region);
  3395   // Get the header out of the object, use LoadMarkNode when available
  3396   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3397   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
  3398   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
  3400   // Test the header to see if it is unlocked.
  3401   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3402   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3403   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3404   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3405   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3407   generate_slow_guard(test_unlocked, slow_region);
  3409   // Get the hash value and check to see that it has been properly assigned.
  3410   // We depend on hash_mask being at most 32 bits and avoid the use of
  3411   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3412   // vm: see markOop.hpp.
  3413   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3414   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3415   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3416   // This hack lets the hash bits live anywhere in the mark object now, as long
  3417   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3418   // Java spec says that HashCode is an int so there's no point in capturing
  3419   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3420   hshifted_header      = ConvX2I(hshifted_header);
  3421   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3423   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3424   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3425   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3427   generate_slow_guard(test_assigned, slow_region);
  3429   Node* init_mem = reset_memory();
  3430   // fill in the rest of the null path:
  3431   result_io ->init_req(_null_path, i_o());
  3432   result_mem->init_req(_null_path, init_mem);
  3434   result_val->init_req(_fast_path, hash_val);
  3435   result_reg->init_req(_fast_path, control());
  3436   result_io ->init_req(_fast_path, i_o());
  3437   result_mem->init_req(_fast_path, init_mem);
  3439   // Generate code for the slow case.  We make a call to hashCode().
  3440   set_control(_gvn.transform(slow_region));
  3441   if (!stopped()) {
  3442     // No need for PreserveJVMState, because we're using up the present state.
  3443     set_all_memory(init_mem);
  3444     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3445     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3446     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3447     Node* slow_result = set_results_for_java_call(slow_call);
  3448     // this->control() comes from set_results_for_java_call
  3449     result_reg->init_req(_slow_path, control());
  3450     result_val->init_req(_slow_path, slow_result);
  3451     result_io  ->set_req(_slow_path, i_o());
  3452     result_mem ->set_req(_slow_path, reset_memory());
  3455   // Return the combined state.
  3456   set_i_o(        _gvn.transform(result_io)  );
  3457   set_all_memory( _gvn.transform(result_mem) );
  3458   push_result(result_reg, result_val);
  3460   return true;
  3463 //---------------------------inline_native_getClass----------------------------
  3464 // Build special case code for calls to getClass on an object.
  3465 bool LibraryCallKit::inline_native_getClass() {
  3466   Node* obj = null_check_receiver(callee());
  3467   if (stopped())  return true;
  3468   push( load_mirror_from_klass(load_object_klass(obj)) );
  3469   return true;
  3472 //-----------------inline_native_Reflection_getCallerClass---------------------
  3473 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3474 //
  3475 // NOTE that this code must perform the same logic as
  3476 // vframeStream::security_get_caller_frame in that it must skip
  3477 // Method.invoke() and auxiliary frames.
  3482 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3483   ciMethod*       method = callee();
  3485 #ifndef PRODUCT
  3486   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3487     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3489 #endif
  3491   debug_only(int saved_sp = _sp);
  3493   // Argument words:  (int depth)
  3494   int nargs = 1;
  3496   _sp += nargs;
  3497   Node* caller_depth_node = pop();
  3499   assert(saved_sp == _sp, "must have correct argument count");
  3501   // The depth value must be a constant in order for the runtime call
  3502   // to be eliminated.
  3503   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3504   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3505 #ifndef PRODUCT
  3506     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3507       tty->print_cr("  Bailing out because caller depth was not a constant");
  3509 #endif
  3510     return false;
  3512   // Note that the JVM state at this point does not include the
  3513   // getCallerClass() frame which we are trying to inline. The
  3514   // semantics of getCallerClass(), however, are that the "first"
  3515   // frame is the getCallerClass() frame, so we subtract one from the
  3516   // requested depth before continuing. We don't inline requests of
  3517   // getCallerClass(0).
  3518   int caller_depth = caller_depth_type->get_con() - 1;
  3519   if (caller_depth < 0) {
  3520 #ifndef PRODUCT
  3521     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3522       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3524 #endif
  3525     return false;
  3528   if (!jvms()->has_method()) {
  3529 #ifndef PRODUCT
  3530     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3531       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3533 #endif
  3534     return false;
  3536   int _depth = jvms()->depth();  // cache call chain depth
  3538   // Walk back up the JVM state to find the caller at the required
  3539   // depth. NOTE that this code must perform the same logic as
  3540   // vframeStream::security_get_caller_frame in that it must skip
  3541   // Method.invoke() and auxiliary frames. Note also that depth is
  3542   // 1-based (1 is the bottom of the inlining).
  3543   int inlining_depth = _depth;
  3544   JVMState* caller_jvms = NULL;
  3546   if (inlining_depth > 0) {
  3547     caller_jvms = jvms();
  3548     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3549     do {
  3550       // The following if-tests should be performed in this order
  3551       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3552         // Skip a Method.invoke() or auxiliary frame
  3553       } else if (caller_depth > 0) {
  3554         // Skip real frame
  3555         --caller_depth;
  3556       } else {
  3557         // We're done: reached desired caller after skipping.
  3558         break;
  3560       caller_jvms = caller_jvms->caller();
  3561       --inlining_depth;
  3562     } while (inlining_depth > 0);
  3565   if (inlining_depth == 0) {
  3566 #ifndef PRODUCT
  3567     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3568       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3569       tty->print_cr("  JVM state at this point:");
  3570       for (int i = _depth; i >= 1; i--) {
  3571         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3574 #endif
  3575     return false; // Reached end of inlining
  3578   // Acquire method holder as java.lang.Class
  3579   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3580   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3581   // Push this as a constant
  3582   push(makecon(TypeInstPtr::make(caller_mirror)));
  3583 #ifndef PRODUCT
  3584   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3585     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3586     tty->print_cr("  JVM state at this point:");
  3587     for (int i = _depth; i >= 1; i--) {
  3588       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3591 #endif
  3592   return true;
  3595 // Helper routine for above
  3596 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3597   // Is this the Method.invoke method itself?
  3598   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
  3599     return true;
  3601   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3602   ciKlass* k = jvms->method()->holder();
  3603   if (k->is_instance_klass()) {
  3604     ciInstanceKlass* ik = k->as_instance_klass();
  3605     for (; ik != NULL; ik = ik->super()) {
  3606       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3607           ik == env()->find_system_klass(ik->name())) {
  3608         return true;
  3613   return false;
  3616 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3617                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3618                                      // computing it since there is no lookup field by name function in the
  3619                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3620                                      // Using a static variable here is safe even if we have multiple compilation
  3621                                      // threads because the offset is constant.  At worst the same offset will be
  3622                                      // computed and  stored multiple
  3624 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3625   // Restore the stack and pop off the argument
  3626   _sp+=1;
  3627   Node *obj = pop();
  3629   // get the offset of the "value" field. Since the CI interfaces
  3630   // does not provide a way to look up a field by name, we scan the bytecodes
  3631   // to get the field index.  We expect the first 2 instructions of the method
  3632   // to be:
  3633   //    0 aload_0
  3634   //    1 getfield "value"
  3635   ciMethod* method = callee();
  3636   if (value_field_offset == -1)
  3638     ciField* value_field;
  3639     ciBytecodeStream iter(method);
  3640     Bytecodes::Code bc = iter.next();
  3642     if ((bc != Bytecodes::_aload_0) &&
  3643               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3644       return false;
  3645     bc = iter.next();
  3646     if (bc != Bytecodes::_getfield)
  3647       return false;
  3648     bool ignore;
  3649     value_field = iter.get_field(ignore);
  3650     value_field_offset = value_field->offset_in_bytes();
  3653   // Null check without removing any arguments.
  3654   _sp++;
  3655   obj = do_null_check(obj, T_OBJECT);
  3656   _sp--;
  3657   // Check for locking null object
  3658   if (stopped()) return true;
  3660   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3661   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3662   int alias_idx = C->get_alias_index(adr_type);
  3664   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3666   push_pair(result);
  3668   return true;
  3671 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3672   // Restore the stack and pop off the arguments
  3673   _sp+=5;
  3674   Node *newVal = pop_pair();
  3675   Node *oldVal = pop_pair();
  3676   Node *obj = pop();
  3678   // we need the offset of the "value" field which was computed when
  3679   // inlining the get() method.  Give up if we don't have it.
  3680   if (value_field_offset == -1)
  3681     return false;
  3683   // Null check without removing any arguments.
  3684   _sp+=5;
  3685   obj = do_null_check(obj, T_OBJECT);
  3686   _sp-=5;
  3687   // Check for locking null object
  3688   if (stopped()) return true;
  3690   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3691   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3692   int alias_idx = C->get_alias_index(adr_type);
  3694   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3695   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3696   set_memory(store_proj, alias_idx);
  3697   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3699   Node *result;
  3700   // CMove node is not used to be able fold a possible check code
  3701   // after attemptUpdate() call. This code could be transformed
  3702   // into CMove node by loop optimizations.
  3704     RegionNode *r = new (C, 3) RegionNode(3);
  3705     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3707     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3708     Node *iftrue = opt_iff(r, iff);
  3709     r->init_req(1, iftrue);
  3710     result->init_req(1, intcon(1));
  3711     result->init_req(2, intcon(0));
  3713     set_control(_gvn.transform(r));
  3714     record_for_igvn(r);
  3716     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3719   push(_gvn.transform(result));
  3720   return true;
  3723 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3724   // restore the arguments
  3725   _sp += arg_size();
  3727   switch (id) {
  3728   case vmIntrinsics::_floatToRawIntBits:
  3729     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3730     break;
  3732   case vmIntrinsics::_intBitsToFloat:
  3733     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3734     break;
  3736   case vmIntrinsics::_doubleToRawLongBits:
  3737     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3738     break;
  3740   case vmIntrinsics::_longBitsToDouble:
  3741     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3742     break;
  3744   case vmIntrinsics::_doubleToLongBits: {
  3745     Node* value = pop_pair();
  3747     // two paths (plus control) merge in a wood
  3748     RegionNode *r = new (C, 3) RegionNode(3);
  3749     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3751     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3752     // Build the boolean node
  3753     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3755     // Branch either way.
  3756     // NaN case is less traveled, which makes all the difference.
  3757     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3758     Node *opt_isnan = _gvn.transform(ifisnan);
  3759     assert( opt_isnan->is_If(), "Expect an IfNode");
  3760     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3761     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3763     set_control(iftrue);
  3765     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3766     Node *slow_result = longcon(nan_bits); // return NaN
  3767     phi->init_req(1, _gvn.transform( slow_result ));
  3768     r->init_req(1, iftrue);
  3770     // Else fall through
  3771     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3772     set_control(iffalse);
  3774     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3775     r->init_req(2, iffalse);
  3777     // Post merge
  3778     set_control(_gvn.transform(r));
  3779     record_for_igvn(r);
  3781     Node* result = _gvn.transform(phi);
  3782     assert(result->bottom_type()->isa_long(), "must be");
  3783     push_pair(result);
  3785     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3787     break;
  3790   case vmIntrinsics::_floatToIntBits: {
  3791     Node* value = pop();
  3793     // two paths (plus control) merge in a wood
  3794     RegionNode *r = new (C, 3) RegionNode(3);
  3795     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3797     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3798     // Build the boolean node
  3799     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3801     // Branch either way.
  3802     // NaN case is less traveled, which makes all the difference.
  3803     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3804     Node *opt_isnan = _gvn.transform(ifisnan);
  3805     assert( opt_isnan->is_If(), "Expect an IfNode");
  3806     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3807     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3809     set_control(iftrue);
  3811     static const jint nan_bits = 0x7fc00000;
  3812     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3813     phi->init_req(1, _gvn.transform( slow_result ));
  3814     r->init_req(1, iftrue);
  3816     // Else fall through
  3817     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3818     set_control(iffalse);
  3820     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3821     r->init_req(2, iffalse);
  3823     // Post merge
  3824     set_control(_gvn.transform(r));
  3825     record_for_igvn(r);
  3827     Node* result = _gvn.transform(phi);
  3828     assert(result->bottom_type()->isa_int(), "must be");
  3829     push(result);
  3831     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3833     break;
  3836   default:
  3837     ShouldNotReachHere();
  3840   return true;
  3843 #ifdef _LP64
  3844 #define XTOP ,top() /*additional argument*/
  3845 #else  //_LP64
  3846 #define XTOP        /*no additional argument*/
  3847 #endif //_LP64
  3849 //----------------------inline_unsafe_copyMemory-------------------------
  3850 bool LibraryCallKit::inline_unsafe_copyMemory() {
  3851   if (callee()->is_static())  return false;  // caller must have the capability!
  3852   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  3853   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  3854   null_check_receiver(callee());  // check then ignore argument(0)
  3855   if (stopped())  return true;
  3857   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3859   Node* src_ptr = argument(1);
  3860   Node* src_off = ConvL2X(argument(2));
  3861   assert(argument(3)->is_top(), "2nd half of long");
  3862   Node* dst_ptr = argument(4);
  3863   Node* dst_off = ConvL2X(argument(5));
  3864   assert(argument(6)->is_top(), "2nd half of long");
  3865   Node* size    = ConvL2X(argument(7));
  3866   assert(argument(8)->is_top(), "2nd half of long");
  3868   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  3869          "fieldOffset must be byte-scaled");
  3871   Node* src = make_unsafe_address(src_ptr, src_off);
  3872   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  3874   // Conservatively insert a memory barrier on all memory slices.
  3875   // Do not let writes of the copy source or destination float below the copy.
  3876   insert_mem_bar(Op_MemBarCPUOrder);
  3878   // Call it.  Note that the length argument is not scaled.
  3879   make_runtime_call(RC_LEAF|RC_NO_FP,
  3880                     OptoRuntime::fast_arraycopy_Type(),
  3881                     StubRoutines::unsafe_arraycopy(),
  3882                     "unsafe_arraycopy",
  3883                     TypeRawPtr::BOTTOM,
  3884                     src, dst, size XTOP);
  3886   // Do not let reads of the copy destination float above the copy.
  3887   insert_mem_bar(Op_MemBarCPUOrder);
  3889   return true;
  3892 //------------------------clone_coping-----------------------------------
  3893 // Helper function for inline_native_clone.
  3894 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  3895   assert(obj_size != NULL, "");
  3896   Node* raw_obj = alloc_obj->in(1);
  3897   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  3899   if (ReduceBulkZeroing) {
  3900     // We will be completely responsible for initializing this object -
  3901     // mark Initialize node as complete.
  3902     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  3903     // The object was just allocated - there should be no any stores!
  3904     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  3907   // Cast to Object for arraycopy.
  3908   // We can't use the original CheckCastPP since it should be moved
  3909   // after the arraycopy to prevent stores flowing above it.
  3910   Node* new_obj = new(C, 2) CheckCastPPNode(alloc_obj->in(0), raw_obj,
  3911                                             TypeInstPtr::NOTNULL);
  3912   new_obj = _gvn.transform(new_obj);
  3913   // Substitute in the locally valid dest_oop.
  3914   replace_in_map(alloc_obj, new_obj);
  3916   // Copy the fastest available way.
  3917   // TODO: generate fields copies for small objects instead.
  3918   Node* src  = obj;
  3919   Node* dest = new_obj;
  3920   Node* size = _gvn.transform(obj_size);
  3922   // Exclude the header but include array length to copy by 8 bytes words.
  3923   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  3924   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  3925                             instanceOopDesc::base_offset_in_bytes();
  3926   // base_off:
  3927   // 8  - 32-bit VM
  3928   // 12 - 64-bit VM, compressed oops
  3929   // 16 - 64-bit VM, normal oops
  3930   if (base_off % BytesPerLong != 0) {
  3931     assert(UseCompressedOops, "");
  3932     if (is_array) {
  3933       // Exclude length to copy by 8 bytes words.
  3934       base_off += sizeof(int);
  3935     } else {
  3936       // Include klass to copy by 8 bytes words.
  3937       base_off = instanceOopDesc::klass_offset_in_bytes();
  3939     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  3941   src  = basic_plus_adr(src,  base_off);
  3942   dest = basic_plus_adr(dest, base_off);
  3944   // Compute the length also, if needed:
  3945   Node* countx = size;
  3946   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  3947   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  3949   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  3950   bool disjoint_bases = true;
  3951   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  3952                                src, NULL, dest, NULL, countx);
  3954   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  3955   if (card_mark) {
  3956     assert(!is_array, "");
  3957     // Put in store barrier for any and all oops we are sticking
  3958     // into this object.  (We could avoid this if we could prove
  3959     // that the object type contains no oop fields at all.)
  3960     Node* no_particular_value = NULL;
  3961     Node* no_particular_field = NULL;
  3962     int raw_adr_idx = Compile::AliasIdxRaw;
  3963     post_barrier(control(),
  3964                  memory(raw_adr_type),
  3965                  new_obj,
  3966                  no_particular_field,
  3967                  raw_adr_idx,
  3968                  no_particular_value,
  3969                  T_OBJECT,
  3970                  false);
  3973   // Move the original CheckCastPP after arraycopy.
  3974   _gvn.hash_delete(alloc_obj);
  3975   alloc_obj->set_req(0, control());
  3976   // Replace raw memory edge with new CheckCastPP to have a live oop
  3977   // at safepoints instead of raw value.
  3978   assert(new_obj->is_CheckCastPP() && new_obj->in(1) == alloc_obj->in(1), "sanity");
  3979   alloc_obj->set_req(1, new_obj);    // cast to the original type
  3980   _gvn.hash_find_insert(alloc_obj);  // put back into GVN table
  3981   // Restore in the locally valid dest_oop.
  3982   replace_in_map(new_obj, alloc_obj);
  3985 //------------------------inline_native_clone----------------------------
  3986 // Here are the simple edge cases:
  3987 //  null receiver => normal trap
  3988 //  virtual and clone was overridden => slow path to out-of-line clone
  3989 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  3990 //
  3991 // The general case has two steps, allocation and copying.
  3992 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  3993 //
  3994 // Copying also has two cases, oop arrays and everything else.
  3995 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  3996 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  3997 //
  3998 // These steps fold up nicely if and when the cloned object's klass
  3999 // can be sharply typed as an object array, a type array, or an instance.
  4000 //
  4001 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4002   int nargs = 1;
  4003   Node* obj = null_check_receiver(callee());
  4004   if (stopped())  return true;
  4005   Node* obj_klass = load_object_klass(obj);
  4006   const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4007   const TypeOopPtr*   toop   = ((tklass != NULL)
  4008                                 ? tklass->as_instance_type()
  4009                                 : TypeInstPtr::NOTNULL);
  4011   // Conservatively insert a memory barrier on all memory slices.
  4012   // Do not let writes into the original float below the clone.
  4013   insert_mem_bar(Op_MemBarCPUOrder);
  4015   // paths into result_reg:
  4016   enum {
  4017     _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4018     _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4019     _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4020     _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4021     PATH_LIMIT
  4022   };
  4023   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4024   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  4025                                                       TypeInstPtr::NOTNULL);
  4026   PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4027   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4028                                                       TypePtr::BOTTOM);
  4029   record_for_igvn(result_reg);
  4031   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4032   int raw_adr_idx = Compile::AliasIdxRaw;
  4033   const bool raw_mem_only = true;
  4035   //set the original stack and the reexecute bit for the interpreter to reexecute
  4036   //the bytecode that invokes Object.clone if deoptimization happens
  4037   { PreserveReexecuteState preexecs(this);
  4038     _sp += nargs;
  4039     jvms()->set_should_reexecute(true);
  4041     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4042     if (array_ctl != NULL) {
  4043       // It's an array.
  4044       PreserveJVMState pjvms(this);
  4045       set_control(array_ctl);
  4046       Node* obj_length = load_array_length(obj);
  4047       Node* obj_size  = NULL;
  4048       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
  4049                                   raw_mem_only, &obj_size);
  4051       if (!use_ReduceInitialCardMarks()) {
  4052         // If it is an oop array, it requires very special treatment,
  4053         // because card marking is required on each card of the array.
  4054         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4055         if (is_obja != NULL) {
  4056           PreserveJVMState pjvms2(this);
  4057           set_control(is_obja);
  4058           // Generate a direct call to the right arraycopy function(s).
  4059           bool disjoint_bases = true;
  4060           bool length_never_negative = true;
  4061           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4062                              obj, intcon(0), alloc_obj, intcon(0),
  4063                              obj_length,
  4064                              disjoint_bases, length_never_negative);
  4065           result_reg->init_req(_objArray_path, control());
  4066           result_val->init_req(_objArray_path, alloc_obj);
  4067           result_i_o ->set_req(_objArray_path, i_o());
  4068           result_mem ->set_req(_objArray_path, reset_memory());
  4071       // We can dispense with card marks if we know the allocation
  4072       // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4073       // causes the non-eden paths to simulate a fresh allocation,
  4074       // insofar that no further card marks are required to initialize
  4075       // the object.
  4077       // Otherwise, there are no card marks to worry about.
  4079       if (!stopped()) {
  4080         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4082         // Present the results of the copy.
  4083         result_reg->init_req(_array_path, control());
  4084         result_val->init_req(_array_path, alloc_obj);
  4085         result_i_o ->set_req(_array_path, i_o());
  4086         result_mem ->set_req(_array_path, reset_memory());
  4090     // We only go to the instance fast case code if we pass a number of guards.
  4091     // The paths which do not pass are accumulated in the slow_region.
  4092     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4093     record_for_igvn(slow_region);
  4094     if (!stopped()) {
  4095       // It's an instance (we did array above).  Make the slow-path tests.
  4096       // If this is a virtual call, we generate a funny guard.  We grab
  4097       // the vtable entry corresponding to clone() from the target object.
  4098       // If the target method which we are calling happens to be the
  4099       // Object clone() method, we pass the guard.  We do not need this
  4100       // guard for non-virtual calls; the caller is known to be the native
  4101       // Object clone().
  4102       if (is_virtual) {
  4103         generate_virtual_guard(obj_klass, slow_region);
  4106       // The object must be cloneable and must not have a finalizer.
  4107       // Both of these conditions may be checked in a single test.
  4108       // We could optimize the cloneable test further, but we don't care.
  4109       generate_access_flags_guard(obj_klass,
  4110                                   // Test both conditions:
  4111                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4112                                   // Must be cloneable but not finalizer:
  4113                                   JVM_ACC_IS_CLONEABLE,
  4114                                   slow_region);
  4117     if (!stopped()) {
  4118       // It's an instance, and it passed the slow-path tests.
  4119       PreserveJVMState pjvms(this);
  4120       Node* obj_size  = NULL;
  4121       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  4123       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4125       // Present the results of the slow call.
  4126       result_reg->init_req(_instance_path, control());
  4127       result_val->init_req(_instance_path, alloc_obj);
  4128       result_i_o ->set_req(_instance_path, i_o());
  4129       result_mem ->set_req(_instance_path, reset_memory());
  4132     // Generate code for the slow case.  We make a call to clone().
  4133     set_control(_gvn.transform(slow_region));
  4134     if (!stopped()) {
  4135       PreserveJVMState pjvms(this);
  4136       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4137       Node* slow_result = set_results_for_java_call(slow_call);
  4138       // this->control() comes from set_results_for_java_call
  4139       result_reg->init_req(_slow_path, control());
  4140       result_val->init_req(_slow_path, slow_result);
  4141       result_i_o ->set_req(_slow_path, i_o());
  4142       result_mem ->set_req(_slow_path, reset_memory());
  4144   } //original reexecute and sp are set back here
  4146   // Return the combined state.
  4147   set_control(    _gvn.transform(result_reg) );
  4148   set_i_o(        _gvn.transform(result_i_o) );
  4149   set_all_memory( _gvn.transform(result_mem) );
  4151   push(_gvn.transform(result_val));
  4153   return true;
  4157 // constants for computing the copy function
  4158 enum {
  4159   COPYFUNC_UNALIGNED = 0,
  4160   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  4161   COPYFUNC_CONJOINT = 0,
  4162   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  4163 };
  4165 // Note:  The condition "disjoint" applies also for overlapping copies
  4166 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  4167 static address
  4168 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  4169   int selector =
  4170     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  4171     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  4173 #define RETURN_STUB(xxx_arraycopy) { \
  4174   name = #xxx_arraycopy; \
  4175   return StubRoutines::xxx_arraycopy(); }
  4177   switch (t) {
  4178   case T_BYTE:
  4179   case T_BOOLEAN:
  4180     switch (selector) {
  4181     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  4182     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  4183     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  4184     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  4186   case T_CHAR:
  4187   case T_SHORT:
  4188     switch (selector) {
  4189     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  4190     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  4191     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  4192     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  4194   case T_INT:
  4195   case T_FLOAT:
  4196     switch (selector) {
  4197     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  4198     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  4199     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  4200     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  4202   case T_DOUBLE:
  4203   case T_LONG:
  4204     switch (selector) {
  4205     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4206     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4207     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4208     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4210   case T_ARRAY:
  4211   case T_OBJECT:
  4212     switch (selector) {
  4213     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  4214     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  4215     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  4216     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  4218   default:
  4219     ShouldNotReachHere();
  4220     return NULL;
  4223 #undef RETURN_STUB
  4226 //------------------------------basictype2arraycopy----------------------------
  4227 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4228                                             Node* src_offset,
  4229                                             Node* dest_offset,
  4230                                             bool disjoint_bases,
  4231                                             const char* &name) {
  4232   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4233   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4235   bool aligned = false;
  4236   bool disjoint = disjoint_bases;
  4238   // if the offsets are the same, we can treat the memory regions as
  4239   // disjoint, because either the memory regions are in different arrays,
  4240   // or they are identical (which we can treat as disjoint.)  We can also
  4241   // treat a copy with a destination index  less that the source index
  4242   // as disjoint since a low->high copy will work correctly in this case.
  4243   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4244       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4245     // both indices are constants
  4246     int s_offs = src_offset_inttype->get_con();
  4247     int d_offs = dest_offset_inttype->get_con();
  4248     int element_size = type2aelembytes(t);
  4249     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4250               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4251     if (s_offs >= d_offs)  disjoint = true;
  4252   } else if (src_offset == dest_offset && src_offset != NULL) {
  4253     // This can occur if the offsets are identical non-constants.
  4254     disjoint = true;
  4257   return select_arraycopy_function(t, aligned, disjoint, name);
  4261 //------------------------------inline_arraycopy-----------------------
  4262 bool LibraryCallKit::inline_arraycopy() {
  4263   // Restore the stack and pop off the arguments.
  4264   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4265   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4267   Node *src         = argument(0);
  4268   Node *src_offset  = argument(1);
  4269   Node *dest        = argument(2);
  4270   Node *dest_offset = argument(3);
  4271   Node *length      = argument(4);
  4273   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4274   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4275   // is.  The checks we choose to mandate at compile time are:
  4276   //
  4277   // (1) src and dest are arrays.
  4278   const Type* src_type = src->Value(&_gvn);
  4279   const Type* dest_type = dest->Value(&_gvn);
  4280   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4281   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4282   if (top_src  == NULL || top_src->klass()  == NULL ||
  4283       top_dest == NULL || top_dest->klass() == NULL) {
  4284     // Conservatively insert a memory barrier on all memory slices.
  4285     // Do not let writes into the source float below the arraycopy.
  4286     insert_mem_bar(Op_MemBarCPUOrder);
  4288     // Call StubRoutines::generic_arraycopy stub.
  4289     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4290                        src, src_offset, dest, dest_offset, length);
  4292     // Do not let reads from the destination float above the arraycopy.
  4293     // Since we cannot type the arrays, we don't know which slices
  4294     // might be affected.  We could restrict this barrier only to those
  4295     // memory slices which pertain to array elements--but don't bother.
  4296     if (!InsertMemBarAfterArraycopy)
  4297       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4298       insert_mem_bar(Op_MemBarCPUOrder);
  4299     return true;
  4302   // (2) src and dest arrays must have elements of the same BasicType
  4303   // Figure out the size and type of the elements we will be copying.
  4304   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4305   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4306   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4307   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4309   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4310     // The component types are not the same or are not recognized.  Punt.
  4311     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4312     generate_slow_arraycopy(TypePtr::BOTTOM,
  4313                             src, src_offset, dest, dest_offset, length);
  4314     return true;
  4317   //---------------------------------------------------------------------------
  4318   // We will make a fast path for this call to arraycopy.
  4320   // We have the following tests left to perform:
  4321   //
  4322   // (3) src and dest must not be null.
  4323   // (4) src_offset must not be negative.
  4324   // (5) dest_offset must not be negative.
  4325   // (6) length must not be negative.
  4326   // (7) src_offset + length must not exceed length of src.
  4327   // (8) dest_offset + length must not exceed length of dest.
  4328   // (9) each element of an oop array must be assignable
  4330   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4331   record_for_igvn(slow_region);
  4333   // (3) operands must not be null
  4334   // We currently perform our null checks with the do_null_check routine.
  4335   // This means that the null exceptions will be reported in the caller
  4336   // rather than (correctly) reported inside of the native arraycopy call.
  4337   // This should be corrected, given time.  We do our null check with the
  4338   // stack pointer restored.
  4339   _sp += nargs;
  4340   src  = do_null_check(src,  T_ARRAY);
  4341   dest = do_null_check(dest, T_ARRAY);
  4342   _sp -= nargs;
  4344   // (4) src_offset must not be negative.
  4345   generate_negative_guard(src_offset, slow_region);
  4347   // (5) dest_offset must not be negative.
  4348   generate_negative_guard(dest_offset, slow_region);
  4350   // (6) length must not be negative (moved to generate_arraycopy()).
  4351   // generate_negative_guard(length, slow_region);
  4353   // (7) src_offset + length must not exceed length of src.
  4354   generate_limit_guard(src_offset, length,
  4355                        load_array_length(src),
  4356                        slow_region);
  4358   // (8) dest_offset + length must not exceed length of dest.
  4359   generate_limit_guard(dest_offset, length,
  4360                        load_array_length(dest),
  4361                        slow_region);
  4363   // (9) each element of an oop array must be assignable
  4364   // The generate_arraycopy subroutine checks this.
  4366   // This is where the memory effects are placed:
  4367   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4368   generate_arraycopy(adr_type, dest_elem,
  4369                      src, src_offset, dest, dest_offset, length,
  4370                      false, false, slow_region);
  4372   return true;
  4375 //-----------------------------generate_arraycopy----------------------
  4376 // Generate an optimized call to arraycopy.
  4377 // Caller must guard against non-arrays.
  4378 // Caller must determine a common array basic-type for both arrays.
  4379 // Caller must validate offsets against array bounds.
  4380 // The slow_region has already collected guard failure paths
  4381 // (such as out of bounds length or non-conformable array types).
  4382 // The generated code has this shape, in general:
  4383 //
  4384 //     if (length == 0)  return   // via zero_path
  4385 //     slowval = -1
  4386 //     if (types unknown) {
  4387 //       slowval = call generic copy loop
  4388 //       if (slowval == 0)  return  // via checked_path
  4389 //     } else if (indexes in bounds) {
  4390 //       if ((is object array) && !(array type check)) {
  4391 //         slowval = call checked copy loop
  4392 //         if (slowval == 0)  return  // via checked_path
  4393 //       } else {
  4394 //         call bulk copy loop
  4395 //         return  // via fast_path
  4396 //       }
  4397 //     }
  4398 //     // adjust params for remaining work:
  4399 //     if (slowval != -1) {
  4400 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4401 //     }
  4402 //   slow_region:
  4403 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4404 //     return  // via slow_call_path
  4405 //
  4406 // This routine is used from several intrinsics:  System.arraycopy,
  4407 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4408 //
  4409 void
  4410 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4411                                    BasicType basic_elem_type,
  4412                                    Node* src,  Node* src_offset,
  4413                                    Node* dest, Node* dest_offset,
  4414                                    Node* copy_length,
  4415                                    bool disjoint_bases,
  4416                                    bool length_never_negative,
  4417                                    RegionNode* slow_region) {
  4419   if (slow_region == NULL) {
  4420     slow_region = new(C,1) RegionNode(1);
  4421     record_for_igvn(slow_region);
  4424   Node* original_dest      = dest;
  4425   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4426   bool  must_clear_dest    = false;
  4428   // See if this is the initialization of a newly-allocated array.
  4429   // If so, we will take responsibility here for initializing it to zero.
  4430   // (Note:  Because tightly_coupled_allocation performs checks on the
  4431   // out-edges of the dest, we need to avoid making derived pointers
  4432   // from it until we have checked its uses.)
  4433   if (ReduceBulkZeroing
  4434       && !ZeroTLAB              // pointless if already zeroed
  4435       && basic_elem_type != T_CONFLICT // avoid corner case
  4436       && !_gvn.eqv_uncast(src, dest)
  4437       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4438           != NULL)
  4439       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4440       && alloc->maybe_set_complete(&_gvn)) {
  4441     // "You break it, you buy it."
  4442     InitializeNode* init = alloc->initialization();
  4443     assert(init->is_complete(), "we just did this");
  4444     assert(dest->is_CheckCastPP(), "sanity");
  4445     assert(dest->in(0)->in(0) == init, "dest pinned");
  4447     // Cast to Object for arraycopy.
  4448     // We can't use the original CheckCastPP since it should be moved
  4449     // after the arraycopy to prevent stores flowing above it.
  4450     Node* new_obj = new(C, 2) CheckCastPPNode(dest->in(0), dest->in(1),
  4451                                               TypeInstPtr::NOTNULL);
  4452     dest = _gvn.transform(new_obj);
  4453     // Substitute in the locally valid dest_oop.
  4454     replace_in_map(original_dest, dest);
  4455     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4456     // From this point on, every exit path is responsible for
  4457     // initializing any non-copied parts of the object to zero.
  4458     must_clear_dest = true;
  4459   } else {
  4460     // No zeroing elimination here.
  4461     alloc             = NULL;
  4462     //original_dest   = dest;
  4463     //must_clear_dest = false;
  4466   // Results are placed here:
  4467   enum { fast_path        = 1,  // normal void-returning assembly stub
  4468          checked_path     = 2,  // special assembly stub with cleanup
  4469          slow_call_path   = 3,  // something went wrong; call the VM
  4470          zero_path        = 4,  // bypass when length of copy is zero
  4471          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4472          PATH_LIMIT       = 6
  4473   };
  4474   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4475   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4476   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4477   record_for_igvn(result_region);
  4478   _gvn.set_type_bottom(result_i_o);
  4479   _gvn.set_type_bottom(result_memory);
  4480   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4482   // The slow_control path:
  4483   Node* slow_control;
  4484   Node* slow_i_o = i_o();
  4485   Node* slow_mem = memory(adr_type);
  4486   debug_only(slow_control = (Node*) badAddress);
  4488   // Checked control path:
  4489   Node* checked_control = top();
  4490   Node* checked_mem     = NULL;
  4491   Node* checked_i_o     = NULL;
  4492   Node* checked_value   = NULL;
  4494   if (basic_elem_type == T_CONFLICT) {
  4495     assert(!must_clear_dest, "");
  4496     Node* cv = generate_generic_arraycopy(adr_type,
  4497                                           src, src_offset, dest, dest_offset,
  4498                                           copy_length);
  4499     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4500     checked_control = control();
  4501     checked_i_o     = i_o();
  4502     checked_mem     = memory(adr_type);
  4503     checked_value   = cv;
  4504     set_control(top());         // no fast path
  4507   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4508   if (not_pos != NULL) {
  4509     PreserveJVMState pjvms(this);
  4510     set_control(not_pos);
  4512     // (6) length must not be negative.
  4513     if (!length_never_negative) {
  4514       generate_negative_guard(copy_length, slow_region);
  4517     // copy_length is 0.
  4518     if (!stopped() && must_clear_dest) {
  4519       Node* dest_length = alloc->in(AllocateNode::ALength);
  4520       if (_gvn.eqv_uncast(copy_length, dest_length)
  4521           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4522         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4523       } else {
  4524         // Clear the whole thing since there are no source elements to copy.
  4525         generate_clear_array(adr_type, dest, basic_elem_type,
  4526                              intcon(0), NULL,
  4527                              alloc->in(AllocateNode::AllocSize));
  4528         // Use a secondary InitializeNode as raw memory barrier.
  4529         // Currently it is needed only on this path since other
  4530         // paths have stub or runtime calls as raw memory barriers.
  4531         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4532                                                        Compile::AliasIdxRaw,
  4533                                                        top())->as_Initialize();
  4534         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4538     // Present the results of the fast call.
  4539     result_region->init_req(zero_path, control());
  4540     result_i_o   ->init_req(zero_path, i_o());
  4541     result_memory->init_req(zero_path, memory(adr_type));
  4544   if (!stopped() && must_clear_dest) {
  4545     // We have to initialize the *uncopied* part of the array to zero.
  4546     // The copy destination is the slice dest[off..off+len].  The other slices
  4547     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4548     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4549     Node* dest_length = alloc->in(AllocateNode::ALength);
  4550     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4551                                                           copy_length) );
  4553     // If there is a head section that needs zeroing, do it now.
  4554     if (find_int_con(dest_offset, -1) != 0) {
  4555       generate_clear_array(adr_type, dest, basic_elem_type,
  4556                            intcon(0), dest_offset,
  4557                            NULL);
  4560     // Next, perform a dynamic check on the tail length.
  4561     // It is often zero, and we can win big if we prove this.
  4562     // There are two wins:  Avoid generating the ClearArray
  4563     // with its attendant messy index arithmetic, and upgrade
  4564     // the copy to a more hardware-friendly word size of 64 bits.
  4565     Node* tail_ctl = NULL;
  4566     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4567       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4568       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4569       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4570       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4573     // At this point, let's assume there is no tail.
  4574     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4575       // There is no tail.  Try an upgrade to a 64-bit copy.
  4576       bool didit = false;
  4577       { PreserveJVMState pjvms(this);
  4578         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4579                                          src, src_offset, dest, dest_offset,
  4580                                          dest_size);
  4581         if (didit) {
  4582           // Present the results of the block-copying fast call.
  4583           result_region->init_req(bcopy_path, control());
  4584           result_i_o   ->init_req(bcopy_path, i_o());
  4585           result_memory->init_req(bcopy_path, memory(adr_type));
  4588       if (didit)
  4589         set_control(top());     // no regular fast path
  4592     // Clear the tail, if any.
  4593     if (tail_ctl != NULL) {
  4594       Node* notail_ctl = stopped() ? NULL : control();
  4595       set_control(tail_ctl);
  4596       if (notail_ctl == NULL) {
  4597         generate_clear_array(adr_type, dest, basic_elem_type,
  4598                              dest_tail, NULL,
  4599                              dest_size);
  4600       } else {
  4601         // Make a local merge.
  4602         Node* done_ctl = new(C,3) RegionNode(3);
  4603         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4604         done_ctl->init_req(1, notail_ctl);
  4605         done_mem->init_req(1, memory(adr_type));
  4606         generate_clear_array(adr_type, dest, basic_elem_type,
  4607                              dest_tail, NULL,
  4608                              dest_size);
  4609         done_ctl->init_req(2, control());
  4610         done_mem->init_req(2, memory(adr_type));
  4611         set_control( _gvn.transform(done_ctl) );
  4612         set_memory(  _gvn.transform(done_mem), adr_type );
  4617   BasicType copy_type = basic_elem_type;
  4618   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4619   if (!stopped() && copy_type == T_OBJECT) {
  4620     // If src and dest have compatible element types, we can copy bits.
  4621     // Types S[] and D[] are compatible if D is a supertype of S.
  4622     //
  4623     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4624     // which performs a fast optimistic per-oop check, and backs off
  4625     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4626     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4628     // Get the klassOop for both src and dest
  4629     Node* src_klass  = load_object_klass(src);
  4630     Node* dest_klass = load_object_klass(dest);
  4632     // Generate the subtype check.
  4633     // This might fold up statically, or then again it might not.
  4634     //
  4635     // Non-static example:  Copying List<String>.elements to a new String[].
  4636     // The backing store for a List<String> is always an Object[],
  4637     // but its elements are always type String, if the generic types
  4638     // are correct at the source level.
  4639     //
  4640     // Test S[] against D[], not S against D, because (probably)
  4641     // the secondary supertype cache is less busy for S[] than S.
  4642     // This usually only matters when D is an interface.
  4643     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4644     // Plug failing path into checked_oop_disjoint_arraycopy
  4645     if (not_subtype_ctrl != top()) {
  4646       PreserveJVMState pjvms(this);
  4647       set_control(not_subtype_ctrl);
  4648       // (At this point we can assume disjoint_bases, since types differ.)
  4649       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4650       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4651       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4652       Node* dest_elem_klass = _gvn.transform(n1);
  4653       Node* cv = generate_checkcast_arraycopy(adr_type,
  4654                                               dest_elem_klass,
  4655                                               src, src_offset, dest, dest_offset,
  4656                                               copy_length);
  4657       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4658       checked_control = control();
  4659       checked_i_o     = i_o();
  4660       checked_mem     = memory(adr_type);
  4661       checked_value   = cv;
  4663     // At this point we know we do not need type checks on oop stores.
  4665     // Let's see if we need card marks:
  4666     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4667       // If we do not need card marks, copy using the jint or jlong stub.
  4668       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4669       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4670              "sizes agree");
  4674   if (!stopped()) {
  4675     // Generate the fast path, if possible.
  4676     PreserveJVMState pjvms(this);
  4677     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4678                                  src, src_offset, dest, dest_offset,
  4679                                  ConvI2X(copy_length));
  4681     // Present the results of the fast call.
  4682     result_region->init_req(fast_path, control());
  4683     result_i_o   ->init_req(fast_path, i_o());
  4684     result_memory->init_req(fast_path, memory(adr_type));
  4687   // Here are all the slow paths up to this point, in one bundle:
  4688   slow_control = top();
  4689   if (slow_region != NULL)
  4690     slow_control = _gvn.transform(slow_region);
  4691   debug_only(slow_region = (RegionNode*)badAddress);
  4693   set_control(checked_control);
  4694   if (!stopped()) {
  4695     // Clean up after the checked call.
  4696     // The returned value is either 0 or -1^K,
  4697     // where K = number of partially transferred array elements.
  4698     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4699     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4700     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4702     // If it is 0, we are done, so transfer to the end.
  4703     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4704     result_region->init_req(checked_path, checks_done);
  4705     result_i_o   ->init_req(checked_path, checked_i_o);
  4706     result_memory->init_req(checked_path, checked_mem);
  4708     // If it is not zero, merge into the slow call.
  4709     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4710     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4711     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4712     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4713     record_for_igvn(slow_reg2);
  4714     slow_reg2  ->init_req(1, slow_control);
  4715     slow_i_o2  ->init_req(1, slow_i_o);
  4716     slow_mem2  ->init_req(1, slow_mem);
  4717     slow_reg2  ->init_req(2, control());
  4718     slow_i_o2  ->init_req(2, checked_i_o);
  4719     slow_mem2  ->init_req(2, checked_mem);
  4721     slow_control = _gvn.transform(slow_reg2);
  4722     slow_i_o     = _gvn.transform(slow_i_o2);
  4723     slow_mem     = _gvn.transform(slow_mem2);
  4725     if (alloc != NULL) {
  4726       // We'll restart from the very beginning, after zeroing the whole thing.
  4727       // This can cause double writes, but that's OK since dest is brand new.
  4728       // So we ignore the low 31 bits of the value returned from the stub.
  4729     } else {
  4730       // We must continue the copy exactly where it failed, or else
  4731       // another thread might see the wrong number of writes to dest.
  4732       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4733       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4734       slow_offset->init_req(1, intcon(0));
  4735       slow_offset->init_req(2, checked_offset);
  4736       slow_offset  = _gvn.transform(slow_offset);
  4738       // Adjust the arguments by the conditionally incoming offset.
  4739       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4740       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4741       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4743       // Tweak the node variables to adjust the code produced below:
  4744       src_offset  = src_off_plus;
  4745       dest_offset = dest_off_plus;
  4746       copy_length = length_minus;
  4750   set_control(slow_control);
  4751   if (!stopped()) {
  4752     // Generate the slow path, if needed.
  4753     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4755     set_memory(slow_mem, adr_type);
  4756     set_i_o(slow_i_o);
  4758     if (must_clear_dest) {
  4759       generate_clear_array(adr_type, dest, basic_elem_type,
  4760                            intcon(0), NULL,
  4761                            alloc->in(AllocateNode::AllocSize));
  4764     generate_slow_arraycopy(adr_type,
  4765                             src, src_offset, dest, dest_offset,
  4766                             copy_length);
  4768     result_region->init_req(slow_call_path, control());
  4769     result_i_o   ->init_req(slow_call_path, i_o());
  4770     result_memory->init_req(slow_call_path, memory(adr_type));
  4773   // Remove unused edges.
  4774   for (uint i = 1; i < result_region->req(); i++) {
  4775     if (result_region->in(i) == NULL)
  4776       result_region->init_req(i, top());
  4779   // Finished; return the combined state.
  4780   set_control( _gvn.transform(result_region) );
  4781   set_i_o(     _gvn.transform(result_i_o)    );
  4782   set_memory(  _gvn.transform(result_memory), adr_type );
  4784   if (dest != original_dest) {
  4785     // Pin the "finished" array node after the arraycopy/zeroing operations.
  4786     _gvn.hash_delete(original_dest);
  4787     original_dest->set_req(0, control());
  4788     // Replace raw memory edge with new CheckCastPP to have a live oop
  4789     // at safepoints instead of raw value.
  4790     assert(dest->is_CheckCastPP() && dest->in(1) == original_dest->in(1), "sanity");
  4791     original_dest->set_req(1, dest);       // cast to the original type
  4792     _gvn.hash_find_insert(original_dest);  // put back into GVN table
  4793     // Restore in the locally valid dest_oop.
  4794     replace_in_map(dest, original_dest);
  4796   // The memory edges above are precise in order to model effects around
  4797   // array copies accurately to allow value numbering of field loads around
  4798   // arraycopy.  Such field loads, both before and after, are common in Java
  4799   // collections and similar classes involving header/array data structures.
  4800   //
  4801   // But with low number of register or when some registers are used or killed
  4802   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4803   // The next memory barrier is added to avoid it. If the arraycopy can be
  4804   // optimized away (which it can, sometimes) then we can manually remove
  4805   // the membar also.
  4806   if (InsertMemBarAfterArraycopy)
  4807     insert_mem_bar(Op_MemBarCPUOrder);
  4811 // Helper function which determines if an arraycopy immediately follows
  4812 // an allocation, with no intervening tests or other escapes for the object.
  4813 AllocateArrayNode*
  4814 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4815                                            RegionNode* slow_region) {
  4816   if (stopped())             return NULL;  // no fast path
  4817   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4819   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4820   if (alloc == NULL)  return NULL;
  4822   Node* rawmem = memory(Compile::AliasIdxRaw);
  4823   // Is the allocation's memory state untouched?
  4824   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4825     // Bail out if there have been raw-memory effects since the allocation.
  4826     // (Example:  There might have been a call or safepoint.)
  4827     return NULL;
  4829   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4830   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4831     return NULL;
  4834   // There must be no unexpected observers of this allocation.
  4835   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4836     Node* obs = ptr->fast_out(i);
  4837     if (obs != this->map()) {
  4838       return NULL;
  4842   // This arraycopy must unconditionally follow the allocation of the ptr.
  4843   Node* alloc_ctl = ptr->in(0);
  4844   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4846   Node* ctl = control();
  4847   while (ctl != alloc_ctl) {
  4848     // There may be guards which feed into the slow_region.
  4849     // Any other control flow means that we might not get a chance
  4850     // to finish initializing the allocated object.
  4851     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4852       IfNode* iff = ctl->in(0)->as_If();
  4853       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4854       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4855       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4856         ctl = iff->in(0);       // This test feeds the known slow_region.
  4857         continue;
  4859       // One more try:  Various low-level checks bottom out in
  4860       // uncommon traps.  If the debug-info of the trap omits
  4861       // any reference to the allocation, as we've already
  4862       // observed, then there can be no objection to the trap.
  4863       bool found_trap = false;
  4864       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4865         Node* obs = not_ctl->fast_out(j);
  4866         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4867             (obs->as_Call()->entry_point() ==
  4868              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
  4869           found_trap = true; break;
  4872       if (found_trap) {
  4873         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4874         continue;
  4877     return NULL;
  4880   // If we get this far, we have an allocation which immediately
  4881   // precedes the arraycopy, and we can take over zeroing the new object.
  4882   // The arraycopy will finish the initialization, and provide
  4883   // a new control state to which we will anchor the destination pointer.
  4885   return alloc;
  4888 // Helper for initialization of arrays, creating a ClearArray.
  4889 // It writes zero bits in [start..end), within the body of an array object.
  4890 // The memory effects are all chained onto the 'adr_type' alias category.
  4891 //
  4892 // Since the object is otherwise uninitialized, we are free
  4893 // to put a little "slop" around the edges of the cleared area,
  4894 // as long as it does not go back into the array's header,
  4895 // or beyond the array end within the heap.
  4896 //
  4897 // The lower edge can be rounded down to the nearest jint and the
  4898 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4899 //
  4900 // Arguments:
  4901 //   adr_type           memory slice where writes are generated
  4902 //   dest               oop of the destination array
  4903 //   basic_elem_type    element type of the destination
  4904 //   slice_idx          array index of first element to store
  4905 //   slice_len          number of elements to store (or NULL)
  4906 //   dest_size          total size in bytes of the array object
  4907 //
  4908 // Exactly one of slice_len or dest_size must be non-NULL.
  4909 // If dest_size is non-NULL, zeroing extends to the end of the object.
  4910 // If slice_len is non-NULL, the slice_idx value must be a constant.
  4911 void
  4912 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  4913                                      Node* dest,
  4914                                      BasicType basic_elem_type,
  4915                                      Node* slice_idx,
  4916                                      Node* slice_len,
  4917                                      Node* dest_size) {
  4918   // one or the other but not both of slice_len and dest_size:
  4919   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  4920   if (slice_len == NULL)  slice_len = top();
  4921   if (dest_size == NULL)  dest_size = top();
  4923   // operate on this memory slice:
  4924   Node* mem = memory(adr_type); // memory slice to operate on
  4926   // scaling and rounding of indexes:
  4927   int scale = exact_log2(type2aelembytes(basic_elem_type));
  4928   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  4929   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  4930   int bump_bit  = (-1 << scale) & BytesPerInt;
  4932   // determine constant starts and ends
  4933   const intptr_t BIG_NEG = -128;
  4934   assert(BIG_NEG + 2*abase < 0, "neg enough");
  4935   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  4936   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  4937   if (slice_len_con == 0) {
  4938     return;                     // nothing to do here
  4940   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  4941   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  4942   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  4943     assert(end_con < 0, "not two cons");
  4944     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  4945                        BytesPerLong);
  4948   if (start_con >= 0 && end_con >= 0) {
  4949     // Constant start and end.  Simple.
  4950     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4951                                        start_con, end_con, &_gvn);
  4952   } else if (start_con >= 0 && dest_size != top()) {
  4953     // Constant start, pre-rounded end after the tail of the array.
  4954     Node* end = dest_size;
  4955     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4956                                        start_con, end, &_gvn);
  4957   } else if (start_con >= 0 && slice_len != top()) {
  4958     // Constant start, non-constant end.  End needs rounding up.
  4959     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  4960     intptr_t end_base  = abase + (slice_idx_con << scale);
  4961     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  4962     Node*    end       = ConvI2X(slice_len);
  4963     if (scale != 0)
  4964       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  4965     end_base += end_round;
  4966     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  4967     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  4968     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  4969                                        start_con, end, &_gvn);
  4970   } else if (start_con < 0 && dest_size != top()) {
  4971     // Non-constant start, pre-rounded end after the tail of the array.
  4972     // This is almost certainly a "round-to-end" operation.
  4973     Node* start = slice_idx;
  4974     start = ConvI2X(start);
  4975     if (scale != 0)
  4976       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  4977     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  4978     if ((bump_bit | clear_low) != 0) {
  4979       int to_clear = (bump_bit | clear_low);
  4980       // Align up mod 8, then store a jint zero unconditionally
  4981       // just before the mod-8 boundary.
  4982       if (((abase + bump_bit) & ~to_clear) - bump_bit
  4983           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  4984         bump_bit = 0;
  4985         assert((abase & to_clear) == 0, "array base must be long-aligned");
  4986       } else {
  4987         // Bump 'start' up to (or past) the next jint boundary:
  4988         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  4989         assert((abase & clear_low) == 0, "array base must be int-aligned");
  4991       // Round bumped 'start' down to jlong boundary in body of array.
  4992       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  4993       if (bump_bit != 0) {
  4994         // Store a zero to the immediately preceding jint:
  4995         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  4996         Node* p1 = basic_plus_adr(dest, x1);
  4997         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  4998         mem = _gvn.transform(mem);
  5001     Node* end = dest_size; // pre-rounded
  5002     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5003                                        start, end, &_gvn);
  5004   } else {
  5005     // Non-constant start, unrounded non-constant end.
  5006     // (Nobody zeroes a random midsection of an array using this routine.)
  5007     ShouldNotReachHere();       // fix caller
  5010   // Done.
  5011   set_memory(mem, adr_type);
  5015 bool
  5016 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5017                                          BasicType basic_elem_type,
  5018                                          AllocateNode* alloc,
  5019                                          Node* src,  Node* src_offset,
  5020                                          Node* dest, Node* dest_offset,
  5021                                          Node* dest_size) {
  5022   // See if there is an advantage from block transfer.
  5023   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5024   if (scale >= LogBytesPerLong)
  5025     return false;               // it is already a block transfer
  5027   // Look at the alignment of the starting offsets.
  5028   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5029   const intptr_t BIG_NEG = -128;
  5030   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5032   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  5033   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  5034   if (src_off < 0 || dest_off < 0)
  5035     // At present, we can only understand constants.
  5036     return false;
  5038   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5039     // Non-aligned; too bad.
  5040     // One more chance:  Pick off an initial 32-bit word.
  5041     // This is a common case, since abase can be odd mod 8.
  5042     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5043         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5044       Node* sptr = basic_plus_adr(src,  src_off);
  5045       Node* dptr = basic_plus_adr(dest, dest_off);
  5046       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5047       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5048       src_off += BytesPerInt;
  5049       dest_off += BytesPerInt;
  5050     } else {
  5051       return false;
  5054   assert(src_off % BytesPerLong == 0, "");
  5055   assert(dest_off % BytesPerLong == 0, "");
  5057   // Do this copy by giant steps.
  5058   Node* sptr  = basic_plus_adr(src,  src_off);
  5059   Node* dptr  = basic_plus_adr(dest, dest_off);
  5060   Node* countx = dest_size;
  5061   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5062   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5064   bool disjoint_bases = true;   // since alloc != NULL
  5065   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5066                                sptr, NULL, dptr, NULL, countx);
  5068   return true;
  5072 // Helper function; generates code for the slow case.
  5073 // We make a call to a runtime method which emulates the native method,
  5074 // but without the native wrapper overhead.
  5075 void
  5076 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5077                                         Node* src,  Node* src_offset,
  5078                                         Node* dest, Node* dest_offset,
  5079                                         Node* copy_length) {
  5080   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5081                                  OptoRuntime::slow_arraycopy_Type(),
  5082                                  OptoRuntime::slow_arraycopy_Java(),
  5083                                  "slow_arraycopy", adr_type,
  5084                                  src, src_offset, dest, dest_offset,
  5085                                  copy_length);
  5087   // Handle exceptions thrown by this fellow:
  5088   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5091 // Helper function; generates code for cases requiring runtime checks.
  5092 Node*
  5093 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5094                                              Node* dest_elem_klass,
  5095                                              Node* src,  Node* src_offset,
  5096                                              Node* dest, Node* dest_offset,
  5097                                              Node* copy_length) {
  5098   if (stopped())  return NULL;
  5100   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  5101   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5102     return NULL;
  5105   // Pick out the parameters required to perform a store-check
  5106   // for the target array.  This is an optimistic check.  It will
  5107   // look in each non-null element's class, at the desired klass's
  5108   // super_check_offset, for the desired klass.
  5109   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5110   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5111   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
  5112   Node* check_offset = _gvn.transform(n3);
  5113   Node* check_value  = dest_elem_klass;
  5115   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5116   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5118   // (We know the arrays are never conjoint, because their types differ.)
  5119   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5120                                  OptoRuntime::checkcast_arraycopy_Type(),
  5121                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5122                                  // five arguments, of which two are
  5123                                  // intptr_t (jlong in LP64)
  5124                                  src_start, dest_start,
  5125                                  copy_length XTOP,
  5126                                  check_offset XTOP,
  5127                                  check_value);
  5129   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5133 // Helper function; generates code for cases requiring runtime checks.
  5134 Node*
  5135 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5136                                            Node* src,  Node* src_offset,
  5137                                            Node* dest, Node* dest_offset,
  5138                                            Node* copy_length) {
  5139   if (stopped())  return NULL;
  5141   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5142   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5143     return NULL;
  5146   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5147                     OptoRuntime::generic_arraycopy_Type(),
  5148                     copyfunc_addr, "generic_arraycopy", adr_type,
  5149                     src, src_offset, dest, dest_offset, copy_length);
  5151   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5154 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5155 void
  5156 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5157                                              BasicType basic_elem_type,
  5158                                              bool disjoint_bases,
  5159                                              Node* src,  Node* src_offset,
  5160                                              Node* dest, Node* dest_offset,
  5161                                              Node* copy_length) {
  5162   if (stopped())  return;               // nothing to do
  5164   Node* src_start  = src;
  5165   Node* dest_start = dest;
  5166   if (src_offset != NULL || dest_offset != NULL) {
  5167     assert(src_offset != NULL && dest_offset != NULL, "");
  5168     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5169     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5172   // Figure out which arraycopy runtime method to call.
  5173   const char* copyfunc_name = "arraycopy";
  5174   address     copyfunc_addr =
  5175       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5176                           disjoint_bases, copyfunc_name);
  5178   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5179   make_runtime_call(RC_LEAF|RC_NO_FP,
  5180                     OptoRuntime::fast_arraycopy_Type(),
  5181                     copyfunc_addr, copyfunc_name, adr_type,
  5182                     src_start, dest_start, copy_length XTOP);

mercurial