src/share/vm/c1/c1_IR.cpp

Fri, 31 Jul 2009 17:12:33 -0700

author
cfang
date
Fri, 31 Jul 2009 17:12:33 -0700
changeset 1335
9987d9d5eb0e
parent 905
ad8c8ca4ab0f
child 1383
89e0543e1737
permissions
-rw-r--r--

6833129: specjvm98 fails with NullPointerException in the compiler with -XX:DeoptimizeALot
Summary: developed a reexecute logic for the interpreter to reexecute the bytecode when deopt happens
Reviewed-by: kvn, never, jrose, twisti

     1 /*
     2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_IR.cpp.incl"
    29 // Implementation of XHandlers
    30 //
    31 // Note: This code could eventually go away if we are
    32 //       just using the ciExceptionHandlerStream.
    34 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
    35   ciExceptionHandlerStream s(method);
    36   while (!s.is_done()) {
    37     _list.append(new XHandler(s.handler()));
    38     s.next();
    39   }
    40   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
    41 }
    43 // deep copy of all XHandler contained in list
    44 XHandlers::XHandlers(XHandlers* other) :
    45   _list(other->length())
    46 {
    47   for (int i = 0; i < other->length(); i++) {
    48     _list.append(new XHandler(other->handler_at(i)));
    49   }
    50 }
    52 // Returns whether a particular exception type can be caught.  Also
    53 // returns true if klass is unloaded or any exception handler
    54 // classes are unloaded.  type_is_exact indicates whether the throw
    55 // is known to be exactly that class or it might throw a subtype.
    56 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
    57   // the type is unknown so be conservative
    58   if (!klass->is_loaded()) {
    59     return true;
    60   }
    62   for (int i = 0; i < length(); i++) {
    63     XHandler* handler = handler_at(i);
    64     if (handler->is_catch_all()) {
    65       // catch of ANY
    66       return true;
    67     }
    68     ciInstanceKlass* handler_klass = handler->catch_klass();
    69     // if it's unknown it might be catchable
    70     if (!handler_klass->is_loaded()) {
    71       return true;
    72     }
    73     // if the throw type is definitely a subtype of the catch type
    74     // then it can be caught.
    75     if (klass->is_subtype_of(handler_klass)) {
    76       return true;
    77     }
    78     if (!type_is_exact) {
    79       // If the type isn't exactly known then it can also be caught by
    80       // catch statements where the inexact type is a subtype of the
    81       // catch type.
    82       // given: foo extends bar extends Exception
    83       // throw bar can be caught by catch foo, catch bar, and catch
    84       // Exception, however it can't be caught by any handlers without
    85       // bar in its type hierarchy.
    86       if (handler_klass->is_subtype_of(klass)) {
    87         return true;
    88       }
    89     }
    90   }
    92   return false;
    93 }
    96 bool XHandlers::equals(XHandlers* others) const {
    97   if (others == NULL) return false;
    98   if (length() != others->length()) return false;
   100   for (int i = 0; i < length(); i++) {
   101     if (!handler_at(i)->equals(others->handler_at(i))) return false;
   102   }
   103   return true;
   104 }
   106 bool XHandler::equals(XHandler* other) const {
   107   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
   109   if (entry_pco() != other->entry_pco()) return false;
   110   if (scope_count() != other->scope_count()) return false;
   111   if (_desc != other->_desc) return false;
   113   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
   114   return true;
   115 }
   118 // Implementation of IRScope
   120 BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
   121   if (entry == NULL) return NULL;
   122   assert(entry->is_set(f), "entry/flag mismatch");
   123   // create header block
   124   BlockBegin* h = new BlockBegin(entry->bci());
   125   BlockEnd* g = new Goto(entry, false);
   126   h->set_next(g, entry->bci());
   127   h->set_end(g);
   128   h->set(f);
   129   // setup header block end state
   130   ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
   131   assert(s->stack_is_empty(), "must have empty stack at entry point");
   132   g->set_state(s);
   133   return h;
   134 }
   137 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
   138   GraphBuilder gm(compilation, this);
   139   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
   140   if (compilation->bailed_out()) return NULL;
   141   return gm.start();
   142 }
   145 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
   146 : _callees(2)
   147 , _compilation(compilation)
   148 , _lock_stack_size(-1)
   149 , _requires_phi_function(method->max_locals())
   150 {
   151   _caller             = caller;
   152   _caller_bci         = caller == NULL ? -1 : caller_bci;
   153   _caller_state       = NULL; // Must be set later if needed
   154   _level              = caller == NULL ?  0 : caller->level() + 1;
   155   _method             = method;
   156   _xhandlers          = new XHandlers(method);
   157   _number_of_locks    = 0;
   158   _monitor_pairing_ok = method->has_balanced_monitors();
   159   _start              = NULL;
   161   if (osr_bci == -1) {
   162     _requires_phi_function.clear();
   163   } else {
   164         // selective creation of phi functions is not possibel in osr-methods
   165     _requires_phi_function.set_range(0, method->max_locals());
   166   }
   168   assert(method->holder()->is_loaded() , "method holder must be loaded");
   170   // build graph if monitor pairing is ok
   171   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
   172 }
   175 int IRScope::max_stack() const {
   176   int my_max = method()->max_stack();
   177   int callee_max = 0;
   178   for (int i = 0; i < number_of_callees(); i++) {
   179     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
   180   }
   181   return my_max + callee_max;
   182 }
   185 void IRScope::compute_lock_stack_size() {
   186   if (!InlineMethodsWithExceptionHandlers) {
   187     _lock_stack_size = 0;
   188     return;
   189   }
   191   // Figure out whether we have to preserve expression stack elements
   192   // for parent scopes, and if so, how many
   193   IRScope* cur_scope = this;
   194   while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
   195     cur_scope = cur_scope->caller();
   196   }
   197   _lock_stack_size = (cur_scope == NULL ? 0 :
   198                       (cur_scope->caller_state() == NULL ? 0 :
   199                        cur_scope->caller_state()->stack_size()));
   200 }
   202 int IRScope::top_scope_bci() const {
   203   assert(!is_top_scope(), "no correct answer for top scope possible");
   204   const IRScope* scope = this;
   205   while (!scope->caller()->is_top_scope()) {
   206     scope = scope->caller();
   207   }
   208   return scope->caller_bci();
   209 }
   211 bool IRScopeDebugInfo::should_reexecute() {
   212   ciMethod* cur_method = scope()->method();
   213   int       cur_bci    = bci();
   214   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
   215     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   216     return Interpreter::bytecode_should_reexecute(code);
   217   } else
   218     return false;
   219 }
   222 // Implementation of CodeEmitInfo
   224 // Stack must be NON-null
   225 CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
   226   : _scope(stack->scope())
   227   , _bci(bci)
   228   , _scope_debug_info(NULL)
   229   , _oop_map(NULL)
   230   , _stack(stack)
   231   , _exception_handlers(exception_handlers)
   232   , _next(NULL)
   233   , _id(-1) {
   234   assert(_stack != NULL, "must be non null");
   235   assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
   236 }
   239 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
   240   : _scope(info->_scope)
   241   , _exception_handlers(NULL)
   242   , _bci(info->_bci)
   243   , _scope_debug_info(NULL)
   244   , _oop_map(NULL) {
   245   if (lock_stack_only) {
   246     if (info->_stack != NULL) {
   247       _stack = info->_stack->copy_locks();
   248     } else {
   249       _stack = NULL;
   250     }
   251   } else {
   252     _stack = info->_stack;
   253   }
   255   // deep copy of exception handlers
   256   if (info->_exception_handlers != NULL) {
   257     _exception_handlers = new XHandlers(info->_exception_handlers);
   258   }
   259 }
   262 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
   263   // record the safepoint before recording the debug info for enclosing scopes
   264   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
   265   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/);
   266   recorder->end_safepoint(pc_offset);
   267 }
   270 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
   271   assert(_oop_map != NULL, "oop map must already exist");
   272   assert(opr->is_single_cpu(), "should not call otherwise");
   274   int frame_size = frame_map()->framesize();
   275   int arg_count = frame_map()->oop_map_arg_count();
   276   VMReg name = frame_map()->regname(opr);
   277   _oop_map->set_oop(name);
   278 }
   283 // Implementation of IR
   285 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
   286     _locals_size(in_WordSize(-1))
   287   , _num_loops(0) {
   288   // initialize data structures
   289   ValueType::initialize();
   290   Instruction::initialize();
   291   BlockBegin::initialize();
   292   GraphBuilder::initialize();
   293   // setup IR fields
   294   _compilation = compilation;
   295   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
   296   _code        = NULL;
   297 }
   300 void IR::optimize() {
   301   Optimizer opt(this);
   302   if (DoCEE) {
   303     opt.eliminate_conditional_expressions();
   304 #ifndef PRODUCT
   305     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
   306     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
   307 #endif
   308   }
   309   if (EliminateBlocks) {
   310     opt.eliminate_blocks();
   311 #ifndef PRODUCT
   312     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
   313     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
   314 #endif
   315   }
   316   if (EliminateNullChecks) {
   317     opt.eliminate_null_checks();
   318 #ifndef PRODUCT
   319     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
   320     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
   321 #endif
   322   }
   323 }
   326 static int sort_pairs(BlockPair** a, BlockPair** b) {
   327   if ((*a)->from() == (*b)->from()) {
   328     return (*a)->to()->block_id() - (*b)->to()->block_id();
   329   } else {
   330     return (*a)->from()->block_id() - (*b)->from()->block_id();
   331   }
   332 }
   335 class CriticalEdgeFinder: public BlockClosure {
   336   BlockPairList blocks;
   337   IR*       _ir;
   339  public:
   340   CriticalEdgeFinder(IR* ir): _ir(ir) {}
   341   void block_do(BlockBegin* bb) {
   342     BlockEnd* be = bb->end();
   343     int nos = be->number_of_sux();
   344     if (nos >= 2) {
   345       for (int i = 0; i < nos; i++) {
   346         BlockBegin* sux = be->sux_at(i);
   347         if (sux->number_of_preds() >= 2) {
   348           blocks.append(new BlockPair(bb, sux));
   349         }
   350       }
   351     }
   352   }
   354   void split_edges() {
   355     BlockPair* last_pair = NULL;
   356     blocks.sort(sort_pairs);
   357     for (int i = 0; i < blocks.length(); i++) {
   358       BlockPair* pair = blocks.at(i);
   359       if (last_pair != NULL && pair->is_same(last_pair)) continue;
   360       BlockBegin* from = pair->from();
   361       BlockBegin* to = pair->to();
   362       BlockBegin* split = from->insert_block_between(to);
   363 #ifndef PRODUCT
   364       if ((PrintIR || PrintIR1) && Verbose) {
   365         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
   366                       from->block_id(), to->block_id(), split->block_id());
   367       }
   368 #endif
   369       last_pair = pair;
   370     }
   371   }
   372 };
   374 void IR::split_critical_edges() {
   375   CriticalEdgeFinder cef(this);
   377   iterate_preorder(&cef);
   378   cef.split_edges();
   379 }
   382 class UseCountComputer: public AllStatic {
   383  private:
   384   static void update_use_count(Value* n) {
   385     // Local instructions and Phis for expression stack values at the
   386     // start of basic blocks are not added to the instruction list
   387     if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
   388         (*n)->as_Phi() == NULL) {
   389       assert(false, "a node was not appended to the graph");
   390       Compilation::current_compilation()->bailout("a node was not appended to the graph");
   391     }
   392     // use n's input if not visited before
   393     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
   394       // note: a) if the instruction is pinned, it will be handled by compute_use_count
   395       //       b) if the instruction has uses, it was touched before
   396       //       => in both cases we don't need to update n's values
   397       uses_do(n);
   398     }
   399     // use n
   400     (*n)->_use_count++;
   401   }
   403   static Values* worklist;
   404   static int depth;
   405   enum {
   406     max_recurse_depth = 20
   407   };
   409   static void uses_do(Value* n) {
   410     depth++;
   411     if (depth > max_recurse_depth) {
   412       // don't allow the traversal to recurse too deeply
   413       worklist->push(*n);
   414     } else {
   415       (*n)->input_values_do(update_use_count);
   416       // special handling for some instructions
   417       if ((*n)->as_BlockEnd() != NULL) {
   418         // note on BlockEnd:
   419         //   must 'use' the stack only if the method doesn't
   420         //   terminate, however, in those cases stack is empty
   421         (*n)->state_values_do(update_use_count);
   422       }
   423     }
   424     depth--;
   425   }
   427   static void basic_compute_use_count(BlockBegin* b) {
   428     depth = 0;
   429     // process all pinned nodes as the roots of expression trees
   430     for (Instruction* n = b; n != NULL; n = n->next()) {
   431       if (n->is_pinned()) uses_do(&n);
   432     }
   433     assert(depth == 0, "should have counted back down");
   435     // now process any unpinned nodes which recursed too deeply
   436     while (worklist->length() > 0) {
   437       Value t = worklist->pop();
   438       if (!t->is_pinned()) {
   439         // compute the use count
   440         uses_do(&t);
   442         // pin the instruction so that LIRGenerator doesn't recurse
   443         // too deeply during it's evaluation.
   444         t->pin();
   445       }
   446     }
   447     assert(depth == 0, "should have counted back down");
   448   }
   450  public:
   451   static void compute(BlockList* blocks) {
   452     worklist = new Values();
   453     blocks->blocks_do(basic_compute_use_count);
   454     worklist = NULL;
   455   }
   456 };
   459 Values* UseCountComputer::worklist = NULL;
   460 int UseCountComputer::depth = 0;
   462 // helper macro for short definition of trace-output inside code
   463 #ifndef PRODUCT
   464   #define TRACE_LINEAR_SCAN(level, code)       \
   465     if (TraceLinearScanLevel >= level) {       \
   466       code;                                    \
   467     }
   468 #else
   469   #define TRACE_LINEAR_SCAN(level, code)
   470 #endif
   472 class ComputeLinearScanOrder : public StackObj {
   473  private:
   474   int        _max_block_id;        // the highest block_id of a block
   475   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
   476   int        _num_loops;           // total number of loops
   477   bool       _iterative_dominators;// method requires iterative computation of dominatiors
   479   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
   481   BitMap     _visited_blocks;      // used for recursive processing of blocks
   482   BitMap     _active_blocks;       // used for recursive processing of blocks
   483   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
   484   intArray   _forward_branches;    // number of incoming forward branches for each block
   485   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
   486   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
   487   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
   489   // accessors for _visited_blocks and _active_blocks
   490   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
   491   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
   492   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
   493   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
   494   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
   495   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
   497   // accessors for _forward_branches
   498   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
   499   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
   501   // accessors for _loop_map
   502   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
   503   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
   504   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
   506   // count edges between blocks
   507   void count_edges(BlockBegin* cur, BlockBegin* parent);
   509   // loop detection
   510   void mark_loops();
   511   void clear_non_natural_loops(BlockBegin* start_block);
   512   void assign_loop_depth(BlockBegin* start_block);
   514   // computation of final block order
   515   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
   516   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
   517   int  compute_weight(BlockBegin* cur);
   518   bool ready_for_processing(BlockBegin* cur);
   519   void sort_into_work_list(BlockBegin* b);
   520   void append_block(BlockBegin* cur);
   521   void compute_order(BlockBegin* start_block);
   523   // fixup of dominators for non-natural loops
   524   bool compute_dominators_iter();
   525   void compute_dominators();
   527   // debug functions
   528   NOT_PRODUCT(void print_blocks();)
   529   DEBUG_ONLY(void verify();)
   531  public:
   532   ComputeLinearScanOrder(BlockBegin* start_block);
   534   // accessors for final result
   535   BlockList* linear_scan_order() const    { return _linear_scan_order; }
   536   int        num_loops() const            { return _num_loops; }
   537 };
   540 ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
   541   _max_block_id(BlockBegin::number_of_blocks()),
   542   _num_blocks(0),
   543   _num_loops(0),
   544   _iterative_dominators(false),
   545   _visited_blocks(_max_block_id),
   546   _active_blocks(_max_block_id),
   547   _dominator_blocks(_max_block_id),
   548   _forward_branches(_max_block_id, 0),
   549   _loop_end_blocks(8),
   550   _work_list(8),
   551   _linear_scan_order(NULL), // initialized later with correct size
   552   _loop_map(0, 0)           // initialized later with correct size
   553 {
   554   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
   556   init_visited();
   557   count_edges(start_block, NULL);
   559   if (_num_loops > 0) {
   560     mark_loops();
   561     clear_non_natural_loops(start_block);
   562     assign_loop_depth(start_block);
   563   }
   565   compute_order(start_block);
   566   compute_dominators();
   568   NOT_PRODUCT(print_blocks());
   569   DEBUG_ONLY(verify());
   570 }
   573 // Traverse the CFG:
   574 // * count total number of blocks
   575 // * count all incoming edges and backward incoming edges
   576 // * number loop header blocks
   577 // * create a list with all loop end blocks
   578 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
   579   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
   580   assert(cur->dominator() == NULL, "dominator already initialized");
   582   if (is_active(cur)) {
   583     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
   584     assert(is_visited(cur), "block must be visisted when block is active");
   585     assert(parent != NULL, "must have parent");
   587     cur->set(BlockBegin::linear_scan_loop_header_flag);
   588     cur->set(BlockBegin::backward_branch_target_flag);
   590     parent->set(BlockBegin::linear_scan_loop_end_flag);
   592     // When a loop header is also the start of an exception handler, then the backward branch is
   593     // an exception edge. Because such edges are usually critical edges which cannot be split, the
   594     // loop must be excluded here from processing.
   595     if (cur->is_set(BlockBegin::exception_entry_flag)) {
   596       // Make sure that dominators are correct in this weird situation
   597       _iterative_dominators = true;
   598       return;
   599     }
   600     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
   601            "loop end blocks must have one successor (critical edges are split)");
   603     _loop_end_blocks.append(parent);
   604     return;
   605   }
   607   // increment number of incoming forward branches
   608   inc_forward_branches(cur);
   610   if (is_visited(cur)) {
   611     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
   612     return;
   613   }
   615   _num_blocks++;
   616   set_visited(cur);
   617   set_active(cur);
   619   // recursive call for all successors
   620   int i;
   621   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   622     count_edges(cur->sux_at(i), cur);
   623   }
   624   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   625     count_edges(cur->exception_handler_at(i), cur);
   626   }
   628   clear_active(cur);
   630   // Each loop has a unique number.
   631   // When multiple loops are nested, assign_loop_depth assumes that the
   632   // innermost loop has the lowest number. This is guaranteed by setting
   633   // the loop number after the recursive calls for the successors above
   634   // have returned.
   635   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
   636     assert(cur->loop_index() == -1, "cannot set loop-index twice");
   637     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
   639     cur->set_loop_index(_num_loops);
   640     _num_loops++;
   641   }
   643   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
   644 }
   647 void ComputeLinearScanOrder::mark_loops() {
   648   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
   650   _loop_map = BitMap2D(_num_loops, _max_block_id);
   651   _loop_map.clear();
   653   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
   654     BlockBegin* loop_end   = _loop_end_blocks.at(i);
   655     BlockBegin* loop_start = loop_end->sux_at(0);
   656     int         loop_idx   = loop_start->loop_index();
   658     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
   659     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
   660     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
   661     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
   662     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
   663     assert(_work_list.is_empty(), "work list must be empty before processing");
   665     // add the end-block of the loop to the working list
   666     _work_list.push(loop_end);
   667     set_block_in_loop(loop_idx, loop_end);
   668     do {
   669       BlockBegin* cur = _work_list.pop();
   671       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
   672       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
   674       // recursive processing of all predecessors ends when start block of loop is reached
   675       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
   676         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
   677           BlockBegin* pred = cur->pred_at(j);
   679           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
   680             // this predecessor has not been processed yet, so add it to work list
   681             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
   682             _work_list.push(pred);
   683             set_block_in_loop(loop_idx, pred);
   684           }
   685         }
   686       }
   687     } while (!_work_list.is_empty());
   688   }
   689 }
   692 // check for non-natural loops (loops where the loop header does not dominate
   693 // all other loop blocks = loops with mulitple entries).
   694 // such loops are ignored
   695 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
   696   for (int i = _num_loops - 1; i >= 0; i--) {
   697     if (is_block_in_loop(i, start_block)) {
   698       // loop i contains the entry block of the method
   699       // -> this is not a natural loop, so ignore it
   700       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
   702       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
   703         clear_block_in_loop(i, block_id);
   704       }
   705       _iterative_dominators = true;
   706     }
   707   }
   708 }
   710 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
   711   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
   712   init_visited();
   714   assert(_work_list.is_empty(), "work list must be empty before processing");
   715   _work_list.append(start_block);
   717   do {
   718     BlockBegin* cur = _work_list.pop();
   720     if (!is_visited(cur)) {
   721       set_visited(cur);
   722       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
   724       // compute loop-depth and loop-index for the block
   725       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
   726       int i;
   727       int loop_depth = 0;
   728       int min_loop_idx = -1;
   729       for (i = _num_loops - 1; i >= 0; i--) {
   730         if (is_block_in_loop(i, cur)) {
   731           loop_depth++;
   732           min_loop_idx = i;
   733         }
   734       }
   735       cur->set_loop_depth(loop_depth);
   736       cur->set_loop_index(min_loop_idx);
   738       // append all unvisited successors to work list
   739       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
   740         _work_list.append(cur->sux_at(i));
   741       }
   742       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
   743         _work_list.append(cur->exception_handler_at(i));
   744       }
   745     }
   746   } while (!_work_list.is_empty());
   747 }
   750 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
   751   assert(a != NULL && b != NULL, "must have input blocks");
   753   _dominator_blocks.clear();
   754   while (a != NULL) {
   755     _dominator_blocks.set_bit(a->block_id());
   756     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
   757     a = a->dominator();
   758   }
   759   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
   760     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
   761     b = b->dominator();
   762   }
   764   assert(b != NULL, "could not find dominator");
   765   return b;
   766 }
   768 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
   769   if (cur->dominator() == NULL) {
   770     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
   771     cur->set_dominator(parent);
   773   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
   774     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
   775     assert(cur->number_of_preds() > 1, "");
   776     cur->set_dominator(common_dominator(cur->dominator(), parent));
   777   }
   778 }
   781 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
   782   BlockBegin* single_sux = NULL;
   783   if (cur->number_of_sux() == 1) {
   784     single_sux = cur->sux_at(0);
   785   }
   787   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
   788   int weight = (cur->loop_depth() & 0x7FFF) << 16;
   790   // general macro for short definition of weight flags
   791   // the first instance of INC_WEIGHT_IF has the highest priority
   792   int cur_bit = 15;
   793   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
   795   // this is necessery for the (very rare) case that two successing blocks have
   796   // the same loop depth, but a different loop index (can happen for endless loops
   797   // with exception handlers)
   798   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
   800   // loop end blocks (blocks that end with a backward branch) are added
   801   // after all other blocks of the loop.
   802   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
   804   // critical edge split blocks are prefered because than they have a bigger
   805   // proability to be completely empty
   806   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
   808   // exceptions should not be thrown in normal control flow, so these blocks
   809   // are added as late as possible
   810   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
   811   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
   813   // exceptions handlers are added as late as possible
   814   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
   816   // guarantee that weight is > 0
   817   weight |= 1;
   819   #undef INC_WEIGHT_IF
   820   assert(cur_bit >= 0, "too many flags");
   821   assert(weight > 0, "weight cannot become negative");
   823   return weight;
   824 }
   826 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
   827   // Discount the edge just traveled.
   828   // When the number drops to zero, all forward branches were processed
   829   if (dec_forward_branches(cur) != 0) {
   830     return false;
   831   }
   833   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
   834   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
   835   return true;
   836 }
   838 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
   839   assert(_work_list.index_of(cur) == -1, "block already in work list");
   841   int cur_weight = compute_weight(cur);
   843   // the linear_scan_number is used to cache the weight of a block
   844   cur->set_linear_scan_number(cur_weight);
   846 #ifndef PRODUCT
   847   if (StressLinearScan) {
   848     _work_list.insert_before(0, cur);
   849     return;
   850   }
   851 #endif
   853   _work_list.append(NULL); // provide space for new element
   855   int insert_idx = _work_list.length() - 1;
   856   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
   857     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
   858     insert_idx--;
   859   }
   860   _work_list.at_put(insert_idx, cur);
   862   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
   863   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
   865 #ifdef ASSERT
   866   for (int i = 0; i < _work_list.length(); i++) {
   867     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
   868     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
   869   }
   870 #endif
   871 }
   873 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
   874   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
   875   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
   877   // currently, the linear scan order and code emit order are equal.
   878   // therefore the linear_scan_number and the weight of a block must also
   879   // be equal.
   880   cur->set_linear_scan_number(_linear_scan_order->length());
   881   _linear_scan_order->append(cur);
   882 }
   884 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
   885   TRACE_LINEAR_SCAN(3, "----- computing final block order");
   887   // the start block is always the first block in the linear scan order
   888   _linear_scan_order = new BlockList(_num_blocks);
   889   append_block(start_block);
   891   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
   892   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
   893   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
   895   BlockBegin* sux_of_osr_entry = NULL;
   896   if (osr_entry != NULL) {
   897     // special handling for osr entry:
   898     // ignore the edge between the osr entry and its successor for processing
   899     // the osr entry block is added manually below
   900     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
   901     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
   903     sux_of_osr_entry = osr_entry->sux_at(0);
   904     dec_forward_branches(sux_of_osr_entry);
   906     compute_dominator(osr_entry, start_block);
   907     _iterative_dominators = true;
   908   }
   909   compute_dominator(std_entry, start_block);
   911   // start processing with standard entry block
   912   assert(_work_list.is_empty(), "list must be empty before processing");
   914   if (ready_for_processing(std_entry)) {
   915     sort_into_work_list(std_entry);
   916   } else {
   917     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
   918   }
   920   do {
   921     BlockBegin* cur = _work_list.pop();
   923     if (cur == sux_of_osr_entry) {
   924       // the osr entry block is ignored in normal processing, it is never added to the
   925       // work list. Instead, it is added as late as possible manually here.
   926       append_block(osr_entry);
   927       compute_dominator(cur, osr_entry);
   928     }
   929     append_block(cur);
   931     int i;
   932     int num_sux = cur->number_of_sux();
   933     // changed loop order to get "intuitive" order of if- and else-blocks
   934     for (i = 0; i < num_sux; i++) {
   935       BlockBegin* sux = cur->sux_at(i);
   936       compute_dominator(sux, cur);
   937       if (ready_for_processing(sux)) {
   938         sort_into_work_list(sux);
   939       }
   940     }
   941     num_sux = cur->number_of_exception_handlers();
   942     for (i = 0; i < num_sux; i++) {
   943       BlockBegin* sux = cur->exception_handler_at(i);
   944       compute_dominator(sux, cur);
   945       if (ready_for_processing(sux)) {
   946         sort_into_work_list(sux);
   947       }
   948     }
   949   } while (_work_list.length() > 0);
   950 }
   953 bool ComputeLinearScanOrder::compute_dominators_iter() {
   954   bool changed = false;
   955   int num_blocks = _linear_scan_order->length();
   957   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
   958   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
   959   for (int i = 1; i < num_blocks; i++) {
   960     BlockBegin* block = _linear_scan_order->at(i);
   962     BlockBegin* dominator = block->pred_at(0);
   963     int num_preds = block->number_of_preds();
   964     for (int i = 1; i < num_preds; i++) {
   965       dominator = common_dominator(dominator, block->pred_at(i));
   966     }
   968     if (dominator != block->dominator()) {
   969       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
   971       block->set_dominator(dominator);
   972       changed = true;
   973     }
   974   }
   975   return changed;
   976 }
   978 void ComputeLinearScanOrder::compute_dominators() {
   979   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
   981   // iterative computation of dominators is only required for methods with non-natural loops
   982   // and OSR-methods. For all other methods, the dominators computed when generating the
   983   // linear scan block order are correct.
   984   if (_iterative_dominators) {
   985     do {
   986       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
   987     } while (compute_dominators_iter());
   988   }
   990   // check that dominators are correct
   991   assert(!compute_dominators_iter(), "fix point not reached");
   992 }
   995 #ifndef PRODUCT
   996 void ComputeLinearScanOrder::print_blocks() {
   997   if (TraceLinearScanLevel >= 2) {
   998     tty->print_cr("----- loop information:");
   999     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
  1000       BlockBegin* cur = _linear_scan_order->at(block_idx);
  1002       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
  1003       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1004         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
  1006       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
  1010   if (TraceLinearScanLevel >= 1) {
  1011     tty->print_cr("----- linear-scan block order:");
  1012     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
  1013       BlockBegin* cur = _linear_scan_order->at(block_idx);
  1014       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
  1016       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
  1017       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
  1018       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
  1019       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
  1021       if (cur->dominator() != NULL) {
  1022         tty->print("    dom: B%d ", cur->dominator()->block_id());
  1023       } else {
  1024         tty->print("    dom: NULL ");
  1027       if (cur->number_of_preds() > 0) {
  1028         tty->print("    preds: ");
  1029         for (int j = 0; j < cur->number_of_preds(); j++) {
  1030           BlockBegin* pred = cur->pred_at(j);
  1031           tty->print("B%d ", pred->block_id());
  1034       if (cur->number_of_sux() > 0) {
  1035         tty->print("    sux: ");
  1036         for (int j = 0; j < cur->number_of_sux(); j++) {
  1037           BlockBegin* sux = cur->sux_at(j);
  1038           tty->print("B%d ", sux->block_id());
  1041       if (cur->number_of_exception_handlers() > 0) {
  1042         tty->print("    ex: ");
  1043         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
  1044           BlockBegin* ex = cur->exception_handler_at(j);
  1045           tty->print("B%d ", ex->block_id());
  1048       tty->cr();
  1052 #endif
  1054 #ifdef ASSERT
  1055 void ComputeLinearScanOrder::verify() {
  1056   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
  1058   if (StressLinearScan) {
  1059     // blocks are scrambled when StressLinearScan is used
  1060     return;
  1063   // check that all successors of a block have a higher linear-scan-number
  1064   // and that all predecessors of a block have a lower linear-scan-number
  1065   // (only backward branches of loops are ignored)
  1066   int i;
  1067   for (i = 0; i < _linear_scan_order->length(); i++) {
  1068     BlockBegin* cur = _linear_scan_order->at(i);
  1070     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
  1071     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
  1073     int j;
  1074     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
  1075       BlockBegin* sux = cur->sux_at(j);
  1077       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
  1078       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
  1079         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
  1081       if (cur->loop_depth() == sux->loop_depth()) {
  1082         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1086     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
  1087       BlockBegin* pred = cur->pred_at(j);
  1089       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
  1090       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
  1091         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
  1093       if (cur->loop_depth() == pred->loop_depth()) {
  1094         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
  1097       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
  1100     // check dominator
  1101     if (i == 0) {
  1102       assert(cur->dominator() == NULL, "first block has no dominator");
  1103     } else {
  1104       assert(cur->dominator() != NULL, "all but first block must have dominator");
  1106     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
  1109   // check that all loops are continuous
  1110   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
  1111     int block_idx = 0;
  1112     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
  1114     // skip blocks before the loop
  1115     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1116       block_idx++;
  1118     // skip blocks of loop
  1119     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
  1120       block_idx++;
  1122     // after the first non-loop block, there must not be another loop-block
  1123     while (block_idx < _num_blocks) {
  1124       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
  1125       block_idx++;
  1129 #endif
  1132 void IR::compute_code() {
  1133   assert(is_valid(), "IR must be valid");
  1135   ComputeLinearScanOrder compute_order(start());
  1136   _num_loops = compute_order.num_loops();
  1137   _code = compute_order.linear_scan_order();
  1141 void IR::compute_use_counts() {
  1142   // make sure all values coming out of this block get evaluated.
  1143   int num_blocks = _code->length();
  1144   for (int i = 0; i < num_blocks; i++) {
  1145     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
  1148   // compute use counts
  1149   UseCountComputer::compute(_code);
  1153 void IR::iterate_preorder(BlockClosure* closure) {
  1154   assert(is_valid(), "IR must be valid");
  1155   start()->iterate_preorder(closure);
  1159 void IR::iterate_postorder(BlockClosure* closure) {
  1160   assert(is_valid(), "IR must be valid");
  1161   start()->iterate_postorder(closure);
  1164 void IR::iterate_linear_scan_order(BlockClosure* closure) {
  1165   linear_scan_order()->iterate_forward(closure);
  1169 #ifndef PRODUCT
  1170 class BlockPrinter: public BlockClosure {
  1171  private:
  1172   InstructionPrinter* _ip;
  1173   bool                _cfg_only;
  1174   bool                _live_only;
  1176  public:
  1177   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
  1178     _ip       = ip;
  1179     _cfg_only = cfg_only;
  1180     _live_only = live_only;
  1183   virtual void block_do(BlockBegin* block) {
  1184     if (_cfg_only) {
  1185       _ip->print_instr(block); tty->cr();
  1186     } else {
  1187       block->print_block(*_ip, _live_only);
  1190 };
  1193 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
  1194   ttyLocker ttyl;
  1195   InstructionPrinter ip(!cfg_only);
  1196   BlockPrinter bp(&ip, cfg_only, live_only);
  1197   start->iterate_preorder(&bp);
  1198   tty->cr();
  1201 void IR::print(bool cfg_only, bool live_only) {
  1202   if (is_valid()) {
  1203     print(start(), cfg_only, live_only);
  1204   } else {
  1205     tty->print_cr("invalid IR");
  1210 define_array(BlockListArray, BlockList*)
  1211 define_stack(BlockListList, BlockListArray)
  1213 class PredecessorValidator : public BlockClosure {
  1214  private:
  1215   BlockListList* _predecessors;
  1216   BlockList*     _blocks;
  1218   static int cmp(BlockBegin** a, BlockBegin** b) {
  1219     return (*a)->block_id() - (*b)->block_id();
  1222  public:
  1223   PredecessorValidator(IR* hir) {
  1224     ResourceMark rm;
  1225     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
  1226     _blocks = new BlockList();
  1228     int i;
  1229     hir->start()->iterate_preorder(this);
  1230     if (hir->code() != NULL) {
  1231       assert(hir->code()->length() == _blocks->length(), "must match");
  1232       for (i = 0; i < _blocks->length(); i++) {
  1233         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
  1237     for (i = 0; i < _blocks->length(); i++) {
  1238       BlockBegin* block = _blocks->at(i);
  1239       BlockList* preds = _predecessors->at(block->block_id());
  1240       if (preds == NULL) {
  1241         assert(block->number_of_preds() == 0, "should be the same");
  1242         continue;
  1245       // clone the pred list so we can mutate it
  1246       BlockList* pred_copy = new BlockList();
  1247       int j;
  1248       for (j = 0; j < block->number_of_preds(); j++) {
  1249         pred_copy->append(block->pred_at(j));
  1251       // sort them in the same order
  1252       preds->sort(cmp);
  1253       pred_copy->sort(cmp);
  1254       int length = MIN2(preds->length(), block->number_of_preds());
  1255       for (j = 0; j < block->number_of_preds(); j++) {
  1256         assert(preds->at(j) == pred_copy->at(j), "must match");
  1259       assert(preds->length() == block->number_of_preds(), "should be the same");
  1263   virtual void block_do(BlockBegin* block) {
  1264     _blocks->append(block);
  1265     BlockEnd* be = block->end();
  1266     int n = be->number_of_sux();
  1267     int i;
  1268     for (i = 0; i < n; i++) {
  1269       BlockBegin* sux = be->sux_at(i);
  1270       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
  1272       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1273       if (preds == NULL) {
  1274         preds = new BlockList();
  1275         _predecessors->at_put(sux->block_id(), preds);
  1277       preds->append(block);
  1280     n = block->number_of_exception_handlers();
  1281     for (i = 0; i < n; i++) {
  1282       BlockBegin* sux = block->exception_handler_at(i);
  1283       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
  1285       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
  1286       if (preds == NULL) {
  1287         preds = new BlockList();
  1288         _predecessors->at_put(sux->block_id(), preds);
  1290       preds->append(block);
  1293 };
  1295 void IR::verify() {
  1296 #ifdef ASSERT
  1297   PredecessorValidator pv(this);
  1298 #endif
  1301 #endif // PRODUCT
  1303 void SubstitutionResolver::substitute(Value* v) {
  1304   Value v0 = *v;
  1305   if (v0) {
  1306     Value vs = v0->subst();
  1307     if (vs != v0) {
  1308       *v = v0->subst();
  1313 #ifdef ASSERT
  1314 void check_substitute(Value* v) {
  1315   Value v0 = *v;
  1316   if (v0) {
  1317     Value vs = v0->subst();
  1318     assert(vs == v0, "missed substitution");
  1321 #endif
  1324 void SubstitutionResolver::block_do(BlockBegin* block) {
  1325   Instruction* last = NULL;
  1326   for (Instruction* n = block; n != NULL;) {
  1327     n->values_do(substitute);
  1328     // need to remove this instruction from the instruction stream
  1329     if (n->subst() != n) {
  1330       assert(last != NULL, "must have last");
  1331       last->set_next(n->next(), n->next()->bci());
  1332     } else {
  1333       last = n;
  1335     n = last->next();
  1338 #ifdef ASSERT
  1339   if (block->state()) block->state()->values_do(check_substitute);
  1340   block->block_values_do(check_substitute);
  1341   if (block->end() && block->end()->state()) block->end()->state()->values_do(check_substitute);
  1342 #endif

mercurial