src/share/vm/opto/compile.cpp

Fri, 22 Nov 2013 14:14:26 +0100

author
rbackman
date
Fri, 22 Nov 2013 14:14:26 +0100
changeset 6152
9949533a8623
parent 6071
613e6a6fc328
child 6217
849eb7bfceac
child 6485
da862781b584
permissions
-rw-r--r--

8028997: mathexact intrinsics are unstable
Reviewed-by: iveresov, kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/exceptionHandlerTable.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "compiler/compileLog.hpp"
    32 #include "compiler/disassembler.hpp"
    33 #include "compiler/oopMap.hpp"
    34 #include "opto/addnode.hpp"
    35 #include "opto/block.hpp"
    36 #include "opto/c2compiler.hpp"
    37 #include "opto/callGenerator.hpp"
    38 #include "opto/callnode.hpp"
    39 #include "opto/cfgnode.hpp"
    40 #include "opto/chaitin.hpp"
    41 #include "opto/compile.hpp"
    42 #include "opto/connode.hpp"
    43 #include "opto/divnode.hpp"
    44 #include "opto/escape.hpp"
    45 #include "opto/idealGraphPrinter.hpp"
    46 #include "opto/loopnode.hpp"
    47 #include "opto/machnode.hpp"
    48 #include "opto/macro.hpp"
    49 #include "opto/matcher.hpp"
    50 #include "opto/mathexactnode.hpp"
    51 #include "opto/memnode.hpp"
    52 #include "opto/mulnode.hpp"
    53 #include "opto/node.hpp"
    54 #include "opto/opcodes.hpp"
    55 #include "opto/output.hpp"
    56 #include "opto/parse.hpp"
    57 #include "opto/phaseX.hpp"
    58 #include "opto/rootnode.hpp"
    59 #include "opto/runtime.hpp"
    60 #include "opto/stringopts.hpp"
    61 #include "opto/type.hpp"
    62 #include "opto/vectornode.hpp"
    63 #include "runtime/arguments.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/stubRoutines.hpp"
    66 #include "runtime/timer.hpp"
    67 #include "trace/tracing.hpp"
    68 #include "utilities/copy.hpp"
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc
    85 # include "adfiles/ad_ppc.hpp"
    86 #endif
    89 // -------------------- Compile::mach_constant_base_node -----------------------
    90 // Constant table base node singleton.
    91 MachConstantBaseNode* Compile::mach_constant_base_node() {
    92   if (_mach_constant_base_node == NULL) {
    93     _mach_constant_base_node = new (C) MachConstantBaseNode();
    94     _mach_constant_base_node->add_req(C->root());
    95   }
    96   return _mach_constant_base_node;
    97 }
   100 /// Support for intrinsics.
   102 // Return the index at which m must be inserted (or already exists).
   103 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   104 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   105 #ifdef ASSERT
   106   for (int i = 1; i < _intrinsics->length(); i++) {
   107     CallGenerator* cg1 = _intrinsics->at(i-1);
   108     CallGenerator* cg2 = _intrinsics->at(i);
   109     assert(cg1->method() != cg2->method()
   110            ? cg1->method()     < cg2->method()
   111            : cg1->is_virtual() < cg2->is_virtual(),
   112            "compiler intrinsics list must stay sorted");
   113   }
   114 #endif
   115   // Binary search sorted list, in decreasing intervals [lo, hi].
   116   int lo = 0, hi = _intrinsics->length()-1;
   117   while (lo <= hi) {
   118     int mid = (uint)(hi + lo) / 2;
   119     ciMethod* mid_m = _intrinsics->at(mid)->method();
   120     if (m < mid_m) {
   121       hi = mid-1;
   122     } else if (m > mid_m) {
   123       lo = mid+1;
   124     } else {
   125       // look at minor sort key
   126       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   127       if (is_virtual < mid_virt) {
   128         hi = mid-1;
   129       } else if (is_virtual > mid_virt) {
   130         lo = mid+1;
   131       } else {
   132         return mid;  // exact match
   133       }
   134     }
   135   }
   136   return lo;  // inexact match
   137 }
   139 void Compile::register_intrinsic(CallGenerator* cg) {
   140   if (_intrinsics == NULL) {
   141     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   142   }
   143   // This code is stolen from ciObjectFactory::insert.
   144   // Really, GrowableArray should have methods for
   145   // insert_at, remove_at, and binary_search.
   146   int len = _intrinsics->length();
   147   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   148   if (index == len) {
   149     _intrinsics->append(cg);
   150   } else {
   151 #ifdef ASSERT
   152     CallGenerator* oldcg = _intrinsics->at(index);
   153     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   154 #endif
   155     _intrinsics->append(_intrinsics->at(len-1));
   156     int pos;
   157     for (pos = len-2; pos >= index; pos--) {
   158       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   159     }
   160     _intrinsics->at_put(index, cg);
   161   }
   162   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   163 }
   165 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   166   assert(m->is_loaded(), "don't try this on unloaded methods");
   167   if (_intrinsics != NULL) {
   168     int index = intrinsic_insertion_index(m, is_virtual);
   169     if (index < _intrinsics->length()
   170         && _intrinsics->at(index)->method() == m
   171         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   172       return _intrinsics->at(index);
   173     }
   174   }
   175   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   176   if (m->intrinsic_id() != vmIntrinsics::_none &&
   177       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   178     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   179     if (cg != NULL) {
   180       // Save it for next time:
   181       register_intrinsic(cg);
   182       return cg;
   183     } else {
   184       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   185     }
   186   }
   187   return NULL;
   188 }
   190 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   191 // in library_call.cpp.
   194 #ifndef PRODUCT
   195 // statistics gathering...
   197 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   198 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   200 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   201   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   202   int oflags = _intrinsic_hist_flags[id];
   203   assert(flags != 0, "what happened?");
   204   if (is_virtual) {
   205     flags |= _intrinsic_virtual;
   206   }
   207   bool changed = (flags != oflags);
   208   if ((flags & _intrinsic_worked) != 0) {
   209     juint count = (_intrinsic_hist_count[id] += 1);
   210     if (count == 1) {
   211       changed = true;           // first time
   212     }
   213     // increment the overall count also:
   214     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   215   }
   216   if (changed) {
   217     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   218       // Something changed about the intrinsic's virtuality.
   219       if ((flags & _intrinsic_virtual) != 0) {
   220         // This is the first use of this intrinsic as a virtual call.
   221         if (oflags != 0) {
   222           // We already saw it as a non-virtual, so note both cases.
   223           flags |= _intrinsic_both;
   224         }
   225       } else if ((oflags & _intrinsic_both) == 0) {
   226         // This is the first use of this intrinsic as a non-virtual
   227         flags |= _intrinsic_both;
   228       }
   229     }
   230     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   231   }
   232   // update the overall flags also:
   233   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   234   return changed;
   235 }
   237 static char* format_flags(int flags, char* buf) {
   238   buf[0] = 0;
   239   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   240   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   241   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   242   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   243   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   244   if (buf[0] == 0)  strcat(buf, ",");
   245   assert(buf[0] == ',', "must be");
   246   return &buf[1];
   247 }
   249 void Compile::print_intrinsic_statistics() {
   250   char flagsbuf[100];
   251   ttyLocker ttyl;
   252   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   253   tty->print_cr("Compiler intrinsic usage:");
   254   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   255   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   256   #define PRINT_STAT_LINE(name, c, f) \
   257     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   258   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   259     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   260     int   flags = _intrinsic_hist_flags[id];
   261     juint count = _intrinsic_hist_count[id];
   262     if ((flags | count) != 0) {
   263       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   264     }
   265   }
   266   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   267   if (xtty != NULL)  xtty->tail("statistics");
   268 }
   270 void Compile::print_statistics() {
   271   { ttyLocker ttyl;
   272     if (xtty != NULL)  xtty->head("statistics type='opto'");
   273     Parse::print_statistics();
   274     PhaseCCP::print_statistics();
   275     PhaseRegAlloc::print_statistics();
   276     Scheduling::print_statistics();
   277     PhasePeephole::print_statistics();
   278     PhaseIdealLoop::print_statistics();
   279     if (xtty != NULL)  xtty->tail("statistics");
   280   }
   281   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   282     // put this under its own <statistics> element.
   283     print_intrinsic_statistics();
   284   }
   285 }
   286 #endif //PRODUCT
   288 // Support for bundling info
   289 Bundle* Compile::node_bundling(const Node *n) {
   290   assert(valid_bundle_info(n), "oob");
   291   return &_node_bundling_base[n->_idx];
   292 }
   294 bool Compile::valid_bundle_info(const Node *n) {
   295   return (_node_bundling_limit > n->_idx);
   296 }
   299 void Compile::gvn_replace_by(Node* n, Node* nn) {
   300   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   301     Node* use = n->last_out(i);
   302     bool is_in_table = initial_gvn()->hash_delete(use);
   303     uint uses_found = 0;
   304     for (uint j = 0; j < use->len(); j++) {
   305       if (use->in(j) == n) {
   306         if (j < use->req())
   307           use->set_req(j, nn);
   308         else
   309           use->set_prec(j, nn);
   310         uses_found++;
   311       }
   312     }
   313     if (is_in_table) {
   314       // reinsert into table
   315       initial_gvn()->hash_find_insert(use);
   316     }
   317     record_for_igvn(use);
   318     i -= uses_found;    // we deleted 1 or more copies of this edge
   319   }
   320 }
   323 static inline bool not_a_node(const Node* n) {
   324   if (n == NULL)                   return true;
   325   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   326   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   327   return false;
   328 }
   330 // Identify all nodes that are reachable from below, useful.
   331 // Use breadth-first pass that records state in a Unique_Node_List,
   332 // recursive traversal is slower.
   333 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   334   int estimated_worklist_size = unique();
   335   useful.map( estimated_worklist_size, NULL );  // preallocate space
   337   // Initialize worklist
   338   if (root() != NULL)     { useful.push(root()); }
   339   // If 'top' is cached, declare it useful to preserve cached node
   340   if( cached_top_node() ) { useful.push(cached_top_node()); }
   342   // Push all useful nodes onto the list, breadthfirst
   343   for( uint next = 0; next < useful.size(); ++next ) {
   344     assert( next < unique(), "Unique useful nodes < total nodes");
   345     Node *n  = useful.at(next);
   346     uint max = n->len();
   347     for( uint i = 0; i < max; ++i ) {
   348       Node *m = n->in(i);
   349       if (not_a_node(m))  continue;
   350       useful.push(m);
   351     }
   352   }
   353 }
   355 // Update dead_node_list with any missing dead nodes using useful
   356 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   357 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   358   uint max_idx = unique();
   359   VectorSet& useful_node_set = useful.member_set();
   361   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   362     // If node with index node_idx is not in useful set,
   363     // mark it as dead in dead node list.
   364     if (! useful_node_set.test(node_idx) ) {
   365       record_dead_node(node_idx);
   366     }
   367   }
   368 }
   370 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   371   int shift = 0;
   372   for (int i = 0; i < inlines->length(); i++) {
   373     CallGenerator* cg = inlines->at(i);
   374     CallNode* call = cg->call_node();
   375     if (shift > 0) {
   376       inlines->at_put(i-shift, cg);
   377     }
   378     if (!useful.member(call)) {
   379       shift++;
   380     }
   381   }
   382   inlines->trunc_to(inlines->length()-shift);
   383 }
   385 // Disconnect all useless nodes by disconnecting those at the boundary.
   386 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   387   uint next = 0;
   388   while (next < useful.size()) {
   389     Node *n = useful.at(next++);
   390     // Use raw traversal of out edges since this code removes out edges
   391     int max = n->outcnt();
   392     for (int j = 0; j < max; ++j) {
   393       Node* child = n->raw_out(j);
   394       if (! useful.member(child)) {
   395         assert(!child->is_top() || child != top(),
   396                "If top is cached in Compile object it is in useful list");
   397         // Only need to remove this out-edge to the useless node
   398         n->raw_del_out(j);
   399         --j;
   400         --max;
   401       }
   402     }
   403     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   404       record_for_igvn(n->unique_out());
   405     }
   406   }
   407   // Remove useless macro and predicate opaq nodes
   408   for (int i = C->macro_count()-1; i >= 0; i--) {
   409     Node* n = C->macro_node(i);
   410     if (!useful.member(n)) {
   411       remove_macro_node(n);
   412     }
   413   }
   414   // Remove useless expensive node
   415   for (int i = C->expensive_count()-1; i >= 0; i--) {
   416     Node* n = C->expensive_node(i);
   417     if (!useful.member(n)) {
   418       remove_expensive_node(n);
   419     }
   420   }
   421   // clean up the late inline lists
   422   remove_useless_late_inlines(&_string_late_inlines, useful);
   423   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   424   remove_useless_late_inlines(&_late_inlines, useful);
   425   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   426 }
   428 //------------------------------frame_size_in_words-----------------------------
   429 // frame_slots in units of words
   430 int Compile::frame_size_in_words() const {
   431   // shift is 0 in LP32 and 1 in LP64
   432   const int shift = (LogBytesPerWord - LogBytesPerInt);
   433   int words = _frame_slots >> shift;
   434   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   435   return words;
   436 }
   438 // ============================================================================
   439 //------------------------------CompileWrapper---------------------------------
   440 class CompileWrapper : public StackObj {
   441   Compile *const _compile;
   442  public:
   443   CompileWrapper(Compile* compile);
   445   ~CompileWrapper();
   446 };
   448 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   449   // the Compile* pointer is stored in the current ciEnv:
   450   ciEnv* env = compile->env();
   451   assert(env == ciEnv::current(), "must already be a ciEnv active");
   452   assert(env->compiler_data() == NULL, "compile already active?");
   453   env->set_compiler_data(compile);
   454   assert(compile == Compile::current(), "sanity");
   456   compile->set_type_dict(NULL);
   457   compile->set_type_hwm(NULL);
   458   compile->set_type_last_size(0);
   459   compile->set_last_tf(NULL, NULL);
   460   compile->set_indexSet_arena(NULL);
   461   compile->set_indexSet_free_block_list(NULL);
   462   compile->init_type_arena();
   463   Type::Initialize(compile);
   464   _compile->set_scratch_buffer_blob(NULL);
   465   _compile->begin_method();
   466 }
   467 CompileWrapper::~CompileWrapper() {
   468   _compile->end_method();
   469   if (_compile->scratch_buffer_blob() != NULL)
   470     BufferBlob::free(_compile->scratch_buffer_blob());
   471   _compile->env()->set_compiler_data(NULL);
   472 }
   475 //----------------------------print_compile_messages---------------------------
   476 void Compile::print_compile_messages() {
   477 #ifndef PRODUCT
   478   // Check if recompiling
   479   if (_subsume_loads == false && PrintOpto) {
   480     // Recompiling without allowing machine instructions to subsume loads
   481     tty->print_cr("*********************************************************");
   482     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   483     tty->print_cr("*********************************************************");
   484   }
   485   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   486     // Recompiling without escape analysis
   487     tty->print_cr("*********************************************************");
   488     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   489     tty->print_cr("*********************************************************");
   490   }
   491   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   492     // Recompiling without boxing elimination
   493     tty->print_cr("*********************************************************");
   494     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   495     tty->print_cr("*********************************************************");
   496   }
   497   if (env()->break_at_compile()) {
   498     // Open the debugger when compiling this method.
   499     tty->print("### Breaking when compiling: ");
   500     method()->print_short_name();
   501     tty->cr();
   502     BREAKPOINT;
   503   }
   505   if( PrintOpto ) {
   506     if (is_osr_compilation()) {
   507       tty->print("[OSR]%3d", _compile_id);
   508     } else {
   509       tty->print("%3d", _compile_id);
   510     }
   511   }
   512 #endif
   513 }
   516 //-----------------------init_scratch_buffer_blob------------------------------
   517 // Construct a temporary BufferBlob and cache it for this compile.
   518 void Compile::init_scratch_buffer_blob(int const_size) {
   519   // If there is already a scratch buffer blob allocated and the
   520   // constant section is big enough, use it.  Otherwise free the
   521   // current and allocate a new one.
   522   BufferBlob* blob = scratch_buffer_blob();
   523   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   524     // Use the current blob.
   525   } else {
   526     if (blob != NULL) {
   527       BufferBlob::free(blob);
   528     }
   530     ResourceMark rm;
   531     _scratch_const_size = const_size;
   532     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   533     blob = BufferBlob::create("Compile::scratch_buffer", size);
   534     // Record the buffer blob for next time.
   535     set_scratch_buffer_blob(blob);
   536     // Have we run out of code space?
   537     if (scratch_buffer_blob() == NULL) {
   538       // Let CompilerBroker disable further compilations.
   539       record_failure("Not enough space for scratch buffer in CodeCache");
   540       return;
   541     }
   542   }
   544   // Initialize the relocation buffers
   545   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   546   set_scratch_locs_memory(locs_buf);
   547 }
   550 //-----------------------scratch_emit_size-------------------------------------
   551 // Helper function that computes size by emitting code
   552 uint Compile::scratch_emit_size(const Node* n) {
   553   // Start scratch_emit_size section.
   554   set_in_scratch_emit_size(true);
   556   // Emit into a trash buffer and count bytes emitted.
   557   // This is a pretty expensive way to compute a size,
   558   // but it works well enough if seldom used.
   559   // All common fixed-size instructions are given a size
   560   // method by the AD file.
   561   // Note that the scratch buffer blob and locs memory are
   562   // allocated at the beginning of the compile task, and
   563   // may be shared by several calls to scratch_emit_size.
   564   // The allocation of the scratch buffer blob is particularly
   565   // expensive, since it has to grab the code cache lock.
   566   BufferBlob* blob = this->scratch_buffer_blob();
   567   assert(blob != NULL, "Initialize BufferBlob at start");
   568   assert(blob->size() > MAX_inst_size, "sanity");
   569   relocInfo* locs_buf = scratch_locs_memory();
   570   address blob_begin = blob->content_begin();
   571   address blob_end   = (address)locs_buf;
   572   assert(blob->content_contains(blob_end), "sanity");
   573   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   574   buf.initialize_consts_size(_scratch_const_size);
   575   buf.initialize_stubs_size(MAX_stubs_size);
   576   assert(locs_buf != NULL, "sanity");
   577   int lsize = MAX_locs_size / 3;
   578   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   579   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   580   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   582   // Do the emission.
   584   Label fakeL; // Fake label for branch instructions.
   585   Label*   saveL = NULL;
   586   uint save_bnum = 0;
   587   bool is_branch = n->is_MachBranch();
   588   if (is_branch) {
   589     MacroAssembler masm(&buf);
   590     masm.bind(fakeL);
   591     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   592     n->as_MachBranch()->label_set(&fakeL, 0);
   593   }
   594   n->emit(buf, this->regalloc());
   595   if (is_branch) // Restore label.
   596     n->as_MachBranch()->label_set(saveL, save_bnum);
   598   // End scratch_emit_size section.
   599   set_in_scratch_emit_size(false);
   601   return buf.insts_size();
   602 }
   605 // ============================================================================
   606 //------------------------------Compile standard-------------------------------
   607 debug_only( int Compile::_debug_idx = 100000; )
   609 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   610 // the continuation bci for on stack replacement.
   613 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   614                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   615                 : Phase(Compiler),
   616                   _env(ci_env),
   617                   _log(ci_env->log()),
   618                   _compile_id(ci_env->compile_id()),
   619                   _save_argument_registers(false),
   620                   _stub_name(NULL),
   621                   _stub_function(NULL),
   622                   _stub_entry_point(NULL),
   623                   _method(target),
   624                   _entry_bci(osr_bci),
   625                   _initial_gvn(NULL),
   626                   _for_igvn(NULL),
   627                   _warm_calls(NULL),
   628                   _subsume_loads(subsume_loads),
   629                   _do_escape_analysis(do_escape_analysis),
   630                   _eliminate_boxing(eliminate_boxing),
   631                   _failure_reason(NULL),
   632                   _code_buffer("Compile::Fill_buffer"),
   633                   _orig_pc_slot(0),
   634                   _orig_pc_slot_offset_in_bytes(0),
   635                   _has_method_handle_invokes(false),
   636                   _mach_constant_base_node(NULL),
   637                   _node_bundling_limit(0),
   638                   _node_bundling_base(NULL),
   639                   _java_calls(0),
   640                   _inner_loops(0),
   641                   _scratch_const_size(-1),
   642                   _in_scratch_emit_size(false),
   643                   _dead_node_list(comp_arena()),
   644                   _dead_node_count(0),
   645 #ifndef PRODUCT
   646                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   647                   _printer(IdealGraphPrinter::printer()),
   648 #endif
   649                   _congraph(NULL),
   650                   _late_inlines(comp_arena(), 2, 0, NULL),
   651                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   652                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   653                   _late_inlines_pos(0),
   654                   _number_of_mh_late_inlines(0),
   655                   _inlining_progress(false),
   656                   _inlining_incrementally(false),
   657                   _print_inlining_list(NULL),
   658                   _print_inlining_idx(0),
   659                   _preserve_jvm_state(0) {
   660   C = this;
   662   CompileWrapper cw(this);
   663 #ifndef PRODUCT
   664   if (TimeCompiler2) {
   665     tty->print(" ");
   666     target->holder()->name()->print();
   667     tty->print(".");
   668     target->print_short_name();
   669     tty->print("  ");
   670   }
   671   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   672   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   673   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   674   if (!print_opto_assembly) {
   675     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   676     if (print_assembly && !Disassembler::can_decode()) {
   677       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   678       print_opto_assembly = true;
   679     }
   680   }
   681   set_print_assembly(print_opto_assembly);
   682   set_parsed_irreducible_loop(false);
   683 #endif
   684   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
   685   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
   687   if (ProfileTraps) {
   688     // Make sure the method being compiled gets its own MDO,
   689     // so we can at least track the decompile_count().
   690     method()->ensure_method_data();
   691   }
   693   Init(::AliasLevel);
   696   print_compile_messages();
   698   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   699     _ilt = InlineTree::build_inline_tree_root();
   700   else
   701     _ilt = NULL;
   703   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   704   assert(num_alias_types() >= AliasIdxRaw, "");
   706 #define MINIMUM_NODE_HASH  1023
   707   // Node list that Iterative GVN will start with
   708   Unique_Node_List for_igvn(comp_arena());
   709   set_for_igvn(&for_igvn);
   711   // GVN that will be run immediately on new nodes
   712   uint estimated_size = method()->code_size()*4+64;
   713   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   714   PhaseGVN gvn(node_arena(), estimated_size);
   715   set_initial_gvn(&gvn);
   717   if (print_inlining() || print_intrinsics()) {
   718     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   719   }
   720   { // Scope for timing the parser
   721     TracePhase t3("parse", &_t_parser, true);
   723     // Put top into the hash table ASAP.
   724     initial_gvn()->transform_no_reclaim(top());
   726     // Set up tf(), start(), and find a CallGenerator.
   727     CallGenerator* cg = NULL;
   728     if (is_osr_compilation()) {
   729       const TypeTuple *domain = StartOSRNode::osr_domain();
   730       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   731       init_tf(TypeFunc::make(domain, range));
   732       StartNode* s = new (this) StartOSRNode(root(), domain);
   733       initial_gvn()->set_type_bottom(s);
   734       init_start(s);
   735       cg = CallGenerator::for_osr(method(), entry_bci());
   736     } else {
   737       // Normal case.
   738       init_tf(TypeFunc::make(method()));
   739       StartNode* s = new (this) StartNode(root(), tf()->domain());
   740       initial_gvn()->set_type_bottom(s);
   741       init_start(s);
   742       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   743         // With java.lang.ref.reference.get() we must go through the
   744         // intrinsic when G1 is enabled - even when get() is the root
   745         // method of the compile - so that, if necessary, the value in
   746         // the referent field of the reference object gets recorded by
   747         // the pre-barrier code.
   748         // Specifically, if G1 is enabled, the value in the referent
   749         // field is recorded by the G1 SATB pre barrier. This will
   750         // result in the referent being marked live and the reference
   751         // object removed from the list of discovered references during
   752         // reference processing.
   753         cg = find_intrinsic(method(), false);
   754       }
   755       if (cg == NULL) {
   756         float past_uses = method()->interpreter_invocation_count();
   757         float expected_uses = past_uses;
   758         cg = CallGenerator::for_inline(method(), expected_uses);
   759       }
   760     }
   761     if (failing())  return;
   762     if (cg == NULL) {
   763       record_method_not_compilable_all_tiers("cannot parse method");
   764       return;
   765     }
   766     JVMState* jvms = build_start_state(start(), tf());
   767     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
   768       record_method_not_compilable("method parse failed");
   769       return;
   770     }
   771     GraphKit kit(jvms);
   773     if (!kit.stopped()) {
   774       // Accept return values, and transfer control we know not where.
   775       // This is done by a special, unique ReturnNode bound to root.
   776       return_values(kit.jvms());
   777     }
   779     if (kit.has_exceptions()) {
   780       // Any exceptions that escape from this call must be rethrown
   781       // to whatever caller is dynamically above us on the stack.
   782       // This is done by a special, unique RethrowNode bound to root.
   783       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   784     }
   786     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   788     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   789       inline_string_calls(true);
   790     }
   792     if (failing())  return;
   794     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   796     // Remove clutter produced by parsing.
   797     if (!failing()) {
   798       ResourceMark rm;
   799       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   800     }
   801   }
   803   // Note:  Large methods are capped off in do_one_bytecode().
   804   if (failing())  return;
   806   // After parsing, node notes are no longer automagic.
   807   // They must be propagated by register_new_node_with_optimizer(),
   808   // clone(), or the like.
   809   set_default_node_notes(NULL);
   811   for (;;) {
   812     int successes = Inline_Warm();
   813     if (failing())  return;
   814     if (successes == 0)  break;
   815   }
   817   // Drain the list.
   818   Finish_Warm();
   819 #ifndef PRODUCT
   820   if (_printer) {
   821     _printer->print_inlining(this);
   822   }
   823 #endif
   825   if (failing())  return;
   826   NOT_PRODUCT( verify_graph_edges(); )
   828   // Now optimize
   829   Optimize();
   830   if (failing())  return;
   831   NOT_PRODUCT( verify_graph_edges(); )
   833 #ifndef PRODUCT
   834   if (PrintIdeal) {
   835     ttyLocker ttyl;  // keep the following output all in one block
   836     // This output goes directly to the tty, not the compiler log.
   837     // To enable tools to match it up with the compilation activity,
   838     // be sure to tag this tty output with the compile ID.
   839     if (xtty != NULL) {
   840       xtty->head("ideal compile_id='%d'%s", compile_id(),
   841                  is_osr_compilation()    ? " compile_kind='osr'" :
   842                  "");
   843     }
   844     root()->dump(9999);
   845     if (xtty != NULL) {
   846       xtty->tail("ideal");
   847     }
   848   }
   849 #endif
   851   NOT_PRODUCT( verify_barriers(); )
   852   // Now that we know the size of all the monitors we can add a fixed slot
   853   // for the original deopt pc.
   855   _orig_pc_slot =  fixed_slots();
   856   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   857   set_fixed_slots(next_slot);
   859   // Now generate code
   860   Code_Gen();
   861   if (failing())  return;
   863   // Check if we want to skip execution of all compiled code.
   864   {
   865 #ifndef PRODUCT
   866     if (OptoNoExecute) {
   867       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   868       return;
   869     }
   870     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   871 #endif
   873     if (is_osr_compilation()) {
   874       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   875       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   876     } else {
   877       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   878       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   879     }
   881     env()->register_method(_method, _entry_bci,
   882                            &_code_offsets,
   883                            _orig_pc_slot_offset_in_bytes,
   884                            code_buffer(),
   885                            frame_size_in_words(), _oop_map_set,
   886                            &_handler_table, &_inc_table,
   887                            compiler,
   888                            env()->comp_level(),
   889                            has_unsafe_access(),
   890                            SharedRuntime::is_wide_vector(max_vector_size())
   891                            );
   893     if (log() != NULL) // Print code cache state into compiler log
   894       log()->code_cache_state();
   895   }
   896 }
   898 //------------------------------Compile----------------------------------------
   899 // Compile a runtime stub
   900 Compile::Compile( ciEnv* ci_env,
   901                   TypeFunc_generator generator,
   902                   address stub_function,
   903                   const char *stub_name,
   904                   int is_fancy_jump,
   905                   bool pass_tls,
   906                   bool save_arg_registers,
   907                   bool return_pc )
   908   : Phase(Compiler),
   909     _env(ci_env),
   910     _log(ci_env->log()),
   911     _compile_id(0),
   912     _save_argument_registers(save_arg_registers),
   913     _method(NULL),
   914     _stub_name(stub_name),
   915     _stub_function(stub_function),
   916     _stub_entry_point(NULL),
   917     _entry_bci(InvocationEntryBci),
   918     _initial_gvn(NULL),
   919     _for_igvn(NULL),
   920     _warm_calls(NULL),
   921     _orig_pc_slot(0),
   922     _orig_pc_slot_offset_in_bytes(0),
   923     _subsume_loads(true),
   924     _do_escape_analysis(false),
   925     _eliminate_boxing(false),
   926     _failure_reason(NULL),
   927     _code_buffer("Compile::Fill_buffer"),
   928     _has_method_handle_invokes(false),
   929     _mach_constant_base_node(NULL),
   930     _node_bundling_limit(0),
   931     _node_bundling_base(NULL),
   932     _java_calls(0),
   933     _inner_loops(0),
   934 #ifndef PRODUCT
   935     _trace_opto_output(TraceOptoOutput),
   936     _printer(NULL),
   937 #endif
   938     _dead_node_list(comp_arena()),
   939     _dead_node_count(0),
   940     _congraph(NULL),
   941     _number_of_mh_late_inlines(0),
   942     _inlining_progress(false),
   943     _inlining_incrementally(false),
   944     _print_inlining_list(NULL),
   945     _print_inlining_idx(0),
   946     _preserve_jvm_state(0) {
   947   C = this;
   949 #ifndef PRODUCT
   950   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   951   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   952   set_print_assembly(PrintFrameConverterAssembly);
   953   set_parsed_irreducible_loop(false);
   954 #endif
   955   CompileWrapper cw(this);
   956   Init(/*AliasLevel=*/ 0);
   957   init_tf((*generator)());
   959   {
   960     // The following is a dummy for the sake of GraphKit::gen_stub
   961     Unique_Node_List for_igvn(comp_arena());
   962     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   963     PhaseGVN gvn(Thread::current()->resource_area(),255);
   964     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   965     gvn.transform_no_reclaim(top());
   967     GraphKit kit;
   968     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   969   }
   971   NOT_PRODUCT( verify_graph_edges(); )
   972   Code_Gen();
   973   if (failing())  return;
   976   // Entry point will be accessed using compile->stub_entry_point();
   977   if (code_buffer() == NULL) {
   978     Matcher::soft_match_failure();
   979   } else {
   980     if (PrintAssembly && (WizardMode || Verbose))
   981       tty->print_cr("### Stub::%s", stub_name);
   983     if (!failing()) {
   984       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   986       // Make the NMethod
   987       // For now we mark the frame as never safe for profile stackwalking
   988       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   989                                                       code_buffer(),
   990                                                       CodeOffsets::frame_never_safe,
   991                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   992                                                       frame_size_in_words(),
   993                                                       _oop_map_set,
   994                                                       save_arg_registers);
   995       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   997       _stub_entry_point = rs->entry_point();
   998     }
   999   }
  1002 //------------------------------Init-------------------------------------------
  1003 // Prepare for a single compilation
  1004 void Compile::Init(int aliaslevel) {
  1005   _unique  = 0;
  1006   _regalloc = NULL;
  1008   _tf      = NULL;  // filled in later
  1009   _top     = NULL;  // cached later
  1010   _matcher = NULL;  // filled in later
  1011   _cfg     = NULL;  // filled in later
  1013   set_24_bit_selection_and_mode(Use24BitFP, false);
  1015   _node_note_array = NULL;
  1016   _default_node_notes = NULL;
  1018   _immutable_memory = NULL; // filled in at first inquiry
  1020   // Globally visible Nodes
  1021   // First set TOP to NULL to give safe behavior during creation of RootNode
  1022   set_cached_top_node(NULL);
  1023   set_root(new (this) RootNode());
  1024   // Now that you have a Root to point to, create the real TOP
  1025   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1026   set_recent_alloc(NULL, NULL);
  1028   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1029   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1030   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1031   env()->set_dependencies(new Dependencies(env()));
  1033   _fixed_slots = 0;
  1034   set_has_split_ifs(false);
  1035   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1036   set_has_stringbuilder(false);
  1037   set_has_boxed_value(false);
  1038   _trap_can_recompile = false;  // no traps emitted yet
  1039   _major_progress = true; // start out assuming good things will happen
  1040   set_has_unsafe_access(false);
  1041   set_max_vector_size(0);
  1042   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1043   set_decompile_count(0);
  1045   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1046   set_num_loop_opts(LoopOptsCount);
  1047   set_do_inlining(Inline);
  1048   set_max_inline_size(MaxInlineSize);
  1049   set_freq_inline_size(FreqInlineSize);
  1050   set_do_scheduling(OptoScheduling);
  1051   set_do_count_invocations(false);
  1052   set_do_method_data_update(false);
  1054   if (debug_info()->recording_non_safepoints()) {
  1055     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1056                         (comp_arena(), 8, 0, NULL));
  1057     set_default_node_notes(Node_Notes::make(this));
  1060   // // -- Initialize types before each compile --
  1061   // // Update cached type information
  1062   // if( _method && _method->constants() )
  1063   //   Type::update_loaded_types(_method, _method->constants());
  1065   // Init alias_type map.
  1066   if (!_do_escape_analysis && aliaslevel == 3)
  1067     aliaslevel = 2;  // No unique types without escape analysis
  1068   _AliasLevel = aliaslevel;
  1069   const int grow_ats = 16;
  1070   _max_alias_types = grow_ats;
  1071   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1072   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1073   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1075     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1077   // Initialize the first few types.
  1078   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1079   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1080   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1081   _num_alias_types = AliasIdxRaw+1;
  1082   // Zero out the alias type cache.
  1083   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1084   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1085   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1087   _intrinsics = NULL;
  1088   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1089   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1090   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1091   register_library_intrinsics();
  1094 //---------------------------init_start----------------------------------------
  1095 // Install the StartNode on this compile object.
  1096 void Compile::init_start(StartNode* s) {
  1097   if (failing())
  1098     return; // already failing
  1099   assert(s == start(), "");
  1102 StartNode* Compile::start() const {
  1103   assert(!failing(), "");
  1104   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1105     Node* start = root()->fast_out(i);
  1106     if( start->is_Start() )
  1107       return start->as_Start();
  1109   ShouldNotReachHere();
  1110   return NULL;
  1113 //-------------------------------immutable_memory-------------------------------------
  1114 // Access immutable memory
  1115 Node* Compile::immutable_memory() {
  1116   if (_immutable_memory != NULL) {
  1117     return _immutable_memory;
  1119   StartNode* s = start();
  1120   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1121     Node *p = s->fast_out(i);
  1122     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1123       _immutable_memory = p;
  1124       return _immutable_memory;
  1127   ShouldNotReachHere();
  1128   return NULL;
  1131 //----------------------set_cached_top_node------------------------------------
  1132 // Install the cached top node, and make sure Node::is_top works correctly.
  1133 void Compile::set_cached_top_node(Node* tn) {
  1134   if (tn != NULL)  verify_top(tn);
  1135   Node* old_top = _top;
  1136   _top = tn;
  1137   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1138   // their _out arrays.
  1139   if (_top != NULL)     _top->setup_is_top();
  1140   if (old_top != NULL)  old_top->setup_is_top();
  1141   assert(_top == NULL || top()->is_top(), "");
  1144 #ifdef ASSERT
  1145 uint Compile::count_live_nodes_by_graph_walk() {
  1146   Unique_Node_List useful(comp_arena());
  1147   // Get useful node list by walking the graph.
  1148   identify_useful_nodes(useful);
  1149   return useful.size();
  1152 void Compile::print_missing_nodes() {
  1154   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1155   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1156     return;
  1159   // This is an expensive function. It is executed only when the user
  1160   // specifies VerifyIdealNodeCount option or otherwise knows the
  1161   // additional work that needs to be done to identify reachable nodes
  1162   // by walking the flow graph and find the missing ones using
  1163   // _dead_node_list.
  1165   Unique_Node_List useful(comp_arena());
  1166   // Get useful node list by walking the graph.
  1167   identify_useful_nodes(useful);
  1169   uint l_nodes = C->live_nodes();
  1170   uint l_nodes_by_walk = useful.size();
  1172   if (l_nodes != l_nodes_by_walk) {
  1173     if (_log != NULL) {
  1174       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1175       _log->stamp();
  1176       _log->end_head();
  1178     VectorSet& useful_member_set = useful.member_set();
  1179     int last_idx = l_nodes_by_walk;
  1180     for (int i = 0; i < last_idx; i++) {
  1181       if (useful_member_set.test(i)) {
  1182         if (_dead_node_list.test(i)) {
  1183           if (_log != NULL) {
  1184             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1186           if (PrintIdealNodeCount) {
  1187             // Print the log message to tty
  1188               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1189               useful.at(i)->dump();
  1193       else if (! _dead_node_list.test(i)) {
  1194         if (_log != NULL) {
  1195           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1197         if (PrintIdealNodeCount) {
  1198           // Print the log message to tty
  1199           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1203     if (_log != NULL) {
  1204       _log->tail("mismatched_nodes");
  1208 #endif
  1210 #ifndef PRODUCT
  1211 void Compile::verify_top(Node* tn) const {
  1212   if (tn != NULL) {
  1213     assert(tn->is_Con(), "top node must be a constant");
  1214     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1215     assert(tn->in(0) != NULL, "must have live top node");
  1218 #endif
  1221 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1223 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1224   guarantee(arr != NULL, "");
  1225   int num_blocks = arr->length();
  1226   if (grow_by < num_blocks)  grow_by = num_blocks;
  1227   int num_notes = grow_by * _node_notes_block_size;
  1228   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1229   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1230   while (num_notes > 0) {
  1231     arr->append(notes);
  1232     notes     += _node_notes_block_size;
  1233     num_notes -= _node_notes_block_size;
  1235   assert(num_notes == 0, "exact multiple, please");
  1238 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1239   if (source == NULL || dest == NULL)  return false;
  1241   if (dest->is_Con())
  1242     return false;               // Do not push debug info onto constants.
  1244 #ifdef ASSERT
  1245   // Leave a bread crumb trail pointing to the original node:
  1246   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1247     dest->set_debug_orig(source);
  1249 #endif
  1251   if (node_note_array() == NULL)
  1252     return false;               // Not collecting any notes now.
  1254   // This is a copy onto a pre-existing node, which may already have notes.
  1255   // If both nodes have notes, do not overwrite any pre-existing notes.
  1256   Node_Notes* source_notes = node_notes_at(source->_idx);
  1257   if (source_notes == NULL || source_notes->is_clear())  return false;
  1258   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1259   if (dest_notes == NULL || dest_notes->is_clear()) {
  1260     return set_node_notes_at(dest->_idx, source_notes);
  1263   Node_Notes merged_notes = (*source_notes);
  1264   // The order of operations here ensures that dest notes will win...
  1265   merged_notes.update_from(dest_notes);
  1266   return set_node_notes_at(dest->_idx, &merged_notes);
  1270 //--------------------------allow_range_check_smearing-------------------------
  1271 // Gating condition for coalescing similar range checks.
  1272 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1273 // single covering check that is at least as strong as any of them.
  1274 // If the optimization succeeds, the simplified (strengthened) range check
  1275 // will always succeed.  If it fails, we will deopt, and then give up
  1276 // on the optimization.
  1277 bool Compile::allow_range_check_smearing() const {
  1278   // If this method has already thrown a range-check,
  1279   // assume it was because we already tried range smearing
  1280   // and it failed.
  1281   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1282   return !already_trapped;
  1286 //------------------------------flatten_alias_type-----------------------------
  1287 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1288   int offset = tj->offset();
  1289   TypePtr::PTR ptr = tj->ptr();
  1291   // Known instance (scalarizable allocation) alias only with itself.
  1292   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1293                        tj->is_oopptr()->is_known_instance();
  1295   // Process weird unsafe references.
  1296   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1297     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1298     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1299     tj = TypeOopPtr::BOTTOM;
  1300     ptr = tj->ptr();
  1301     offset = tj->offset();
  1304   // Array pointers need some flattening
  1305   const TypeAryPtr *ta = tj->isa_aryptr();
  1306   if (ta && ta->is_stable()) {
  1307     // Erase stability property for alias analysis.
  1308     tj = ta = ta->cast_to_stable(false);
  1310   if( ta && is_known_inst ) {
  1311     if ( offset != Type::OffsetBot &&
  1312          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1313       offset = Type::OffsetBot; // Flatten constant access into array body only
  1314       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1316   } else if( ta && _AliasLevel >= 2 ) {
  1317     // For arrays indexed by constant indices, we flatten the alias
  1318     // space to include all of the array body.  Only the header, klass
  1319     // and array length can be accessed un-aliased.
  1320     if( offset != Type::OffsetBot ) {
  1321       if( ta->const_oop() ) { // MethodData* or Method*
  1322         offset = Type::OffsetBot;   // Flatten constant access into array body
  1323         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1324       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1325         // range is OK as-is.
  1326         tj = ta = TypeAryPtr::RANGE;
  1327       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1328         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1329         ta = TypeAryPtr::RANGE; // generic ignored junk
  1330         ptr = TypePtr::BotPTR;
  1331       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1332         tj = TypeInstPtr::MARK;
  1333         ta = TypeAryPtr::RANGE; // generic ignored junk
  1334         ptr = TypePtr::BotPTR;
  1335       } else {                  // Random constant offset into array body
  1336         offset = Type::OffsetBot;   // Flatten constant access into array body
  1337         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1340     // Arrays of fixed size alias with arrays of unknown size.
  1341     if (ta->size() != TypeInt::POS) {
  1342       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1343       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1345     // Arrays of known objects become arrays of unknown objects.
  1346     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1347       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1348       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1350     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1351       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1352       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1354     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1355     // cannot be distinguished by bytecode alone.
  1356     if (ta->elem() == TypeInt::BOOL) {
  1357       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1358       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1359       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1361     // During the 2nd round of IterGVN, NotNull castings are removed.
  1362     // Make sure the Bottom and NotNull variants alias the same.
  1363     // Also, make sure exact and non-exact variants alias the same.
  1364     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
  1365       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1369   // Oop pointers need some flattening
  1370   const TypeInstPtr *to = tj->isa_instptr();
  1371   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1372     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1373     if( ptr == TypePtr::Constant ) {
  1374       if (to->klass() != ciEnv::current()->Class_klass() ||
  1375           offset < k->size_helper() * wordSize) {
  1376         // No constant oop pointers (such as Strings); they alias with
  1377         // unknown strings.
  1378         assert(!is_known_inst, "not scalarizable allocation");
  1379         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1381     } else if( is_known_inst ) {
  1382       tj = to; // Keep NotNull and klass_is_exact for instance type
  1383     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1384       // During the 2nd round of IterGVN, NotNull castings are removed.
  1385       // Make sure the Bottom and NotNull variants alias the same.
  1386       // Also, make sure exact and non-exact variants alias the same.
  1387       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1389     if (to->speculative() != NULL) {
  1390       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
  1392     // Canonicalize the holder of this field
  1393     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1394       // First handle header references such as a LoadKlassNode, even if the
  1395       // object's klass is unloaded at compile time (4965979).
  1396       if (!is_known_inst) { // Do it only for non-instance types
  1397         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1399     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1400       // Static fields are in the space above the normal instance
  1401       // fields in the java.lang.Class instance.
  1402       if (to->klass() != ciEnv::current()->Class_klass()) {
  1403         to = NULL;
  1404         tj = TypeOopPtr::BOTTOM;
  1405         offset = tj->offset();
  1407     } else {
  1408       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1409       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1410         if( is_known_inst ) {
  1411           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1412         } else {
  1413           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1419   // Klass pointers to object array klasses need some flattening
  1420   const TypeKlassPtr *tk = tj->isa_klassptr();
  1421   if( tk ) {
  1422     // If we are referencing a field within a Klass, we need
  1423     // to assume the worst case of an Object.  Both exact and
  1424     // inexact types must flatten to the same alias class so
  1425     // use NotNull as the PTR.
  1426     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1428       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1429                                    TypeKlassPtr::OBJECT->klass(),
  1430                                    offset);
  1433     ciKlass* klass = tk->klass();
  1434     if( klass->is_obj_array_klass() ) {
  1435       ciKlass* k = TypeAryPtr::OOPS->klass();
  1436       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1437         k = TypeInstPtr::BOTTOM->klass();
  1438       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1441     // Check for precise loads from the primary supertype array and force them
  1442     // to the supertype cache alias index.  Check for generic array loads from
  1443     // the primary supertype array and also force them to the supertype cache
  1444     // alias index.  Since the same load can reach both, we need to merge
  1445     // these 2 disparate memories into the same alias class.  Since the
  1446     // primary supertype array is read-only, there's no chance of confusion
  1447     // where we bypass an array load and an array store.
  1448     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1449     if (offset == Type::OffsetBot ||
  1450         (offset >= primary_supers_offset &&
  1451          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1452         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1453       offset = in_bytes(Klass::secondary_super_cache_offset());
  1454       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1458   // Flatten all Raw pointers together.
  1459   if (tj->base() == Type::RawPtr)
  1460     tj = TypeRawPtr::BOTTOM;
  1462   if (tj->base() == Type::AnyPtr)
  1463     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1465   // Flatten all to bottom for now
  1466   switch( _AliasLevel ) {
  1467   case 0:
  1468     tj = TypePtr::BOTTOM;
  1469     break;
  1470   case 1:                       // Flatten to: oop, static, field or array
  1471     switch (tj->base()) {
  1472     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1473     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1474     case Type::AryPtr:   // do not distinguish arrays at all
  1475     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1476     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1477     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1478     default: ShouldNotReachHere();
  1480     break;
  1481   case 2:                       // No collapsing at level 2; keep all splits
  1482   case 3:                       // No collapsing at level 3; keep all splits
  1483     break;
  1484   default:
  1485     Unimplemented();
  1488   offset = tj->offset();
  1489   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1491   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1492           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1493           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1494           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1495           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1496           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1497           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1498           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1499   assert( tj->ptr() != TypePtr::TopPTR &&
  1500           tj->ptr() != TypePtr::AnyNull &&
  1501           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1502 //    assert( tj->ptr() != TypePtr::Constant ||
  1503 //            tj->base() == Type::RawPtr ||
  1504 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1506   return tj;
  1509 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1510   _index = i;
  1511   _adr_type = at;
  1512   _field = NULL;
  1513   _element = NULL;
  1514   _is_rewritable = true; // default
  1515   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1516   if (atoop != NULL && atoop->is_known_instance()) {
  1517     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1518     _general_index = Compile::current()->get_alias_index(gt);
  1519   } else {
  1520     _general_index = 0;
  1524 //---------------------------------print_on------------------------------------
  1525 #ifndef PRODUCT
  1526 void Compile::AliasType::print_on(outputStream* st) {
  1527   if (index() < 10)
  1528         st->print("@ <%d> ", index());
  1529   else  st->print("@ <%d>",  index());
  1530   st->print(is_rewritable() ? "   " : " RO");
  1531   int offset = adr_type()->offset();
  1532   if (offset == Type::OffsetBot)
  1533         st->print(" +any");
  1534   else  st->print(" +%-3d", offset);
  1535   st->print(" in ");
  1536   adr_type()->dump_on(st);
  1537   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1538   if (field() != NULL && tjp) {
  1539     if (tjp->klass()  != field()->holder() ||
  1540         tjp->offset() != field()->offset_in_bytes()) {
  1541       st->print(" != ");
  1542       field()->print();
  1543       st->print(" ***");
  1548 void print_alias_types() {
  1549   Compile* C = Compile::current();
  1550   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1551   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1552     C->alias_type(idx)->print_on(tty);
  1553     tty->cr();
  1556 #endif
  1559 //----------------------------probe_alias_cache--------------------------------
  1560 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1561   intptr_t key = (intptr_t) adr_type;
  1562   key ^= key >> logAliasCacheSize;
  1563   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1567 //-----------------------------grow_alias_types--------------------------------
  1568 void Compile::grow_alias_types() {
  1569   const int old_ats  = _max_alias_types; // how many before?
  1570   const int new_ats  = old_ats;          // how many more?
  1571   const int grow_ats = old_ats+new_ats;  // how many now?
  1572   _max_alias_types = grow_ats;
  1573   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1574   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1575   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1576   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1580 //--------------------------------find_alias_type------------------------------
  1581 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1582   if (_AliasLevel == 0)
  1583     return alias_type(AliasIdxBot);
  1585   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1586   if (ace->_adr_type == adr_type) {
  1587     return alias_type(ace->_index);
  1590   // Handle special cases.
  1591   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1592   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1594   // Do it the slow way.
  1595   const TypePtr* flat = flatten_alias_type(adr_type);
  1597 #ifdef ASSERT
  1598   assert(flat == flatten_alias_type(flat), "idempotent");
  1599   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1600   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1601     const TypeOopPtr* foop = flat->is_oopptr();
  1602     // Scalarizable allocations have exact klass always.
  1603     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1604     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1605     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1607   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1608 #endif
  1610   int idx = AliasIdxTop;
  1611   for (int i = 0; i < num_alias_types(); i++) {
  1612     if (alias_type(i)->adr_type() == flat) {
  1613       idx = i;
  1614       break;
  1618   if (idx == AliasIdxTop) {
  1619     if (no_create)  return NULL;
  1620     // Grow the array if necessary.
  1621     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1622     // Add a new alias type.
  1623     idx = _num_alias_types++;
  1624     _alias_types[idx]->Init(idx, flat);
  1625     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1626     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1627     if (flat->isa_instptr()) {
  1628       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1629           && flat->is_instptr()->klass() == env()->Class_klass())
  1630         alias_type(idx)->set_rewritable(false);
  1632     if (flat->isa_aryptr()) {
  1633 #ifdef ASSERT
  1634       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1635       // (T_BYTE has the weakest alignment and size restrictions...)
  1636       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1637 #endif
  1638       if (flat->offset() == TypePtr::OffsetBot) {
  1639         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1642     if (flat->isa_klassptr()) {
  1643       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1644         alias_type(idx)->set_rewritable(false);
  1645       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1646         alias_type(idx)->set_rewritable(false);
  1647       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1648         alias_type(idx)->set_rewritable(false);
  1649       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1650         alias_type(idx)->set_rewritable(false);
  1652     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1653     // but the base pointer type is not distinctive enough to identify
  1654     // references into JavaThread.)
  1656     // Check for final fields.
  1657     const TypeInstPtr* tinst = flat->isa_instptr();
  1658     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1659       ciField* field;
  1660       if (tinst->const_oop() != NULL &&
  1661           tinst->klass() == ciEnv::current()->Class_klass() &&
  1662           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1663         // static field
  1664         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1665         field = k->get_field_by_offset(tinst->offset(), true);
  1666       } else {
  1667         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1668         field = k->get_field_by_offset(tinst->offset(), false);
  1670       assert(field == NULL ||
  1671              original_field == NULL ||
  1672              (field->holder() == original_field->holder() &&
  1673               field->offset() == original_field->offset() &&
  1674               field->is_static() == original_field->is_static()), "wrong field?");
  1675       // Set field() and is_rewritable() attributes.
  1676       if (field != NULL)  alias_type(idx)->set_field(field);
  1680   // Fill the cache for next time.
  1681   ace->_adr_type = adr_type;
  1682   ace->_index    = idx;
  1683   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1685   // Might as well try to fill the cache for the flattened version, too.
  1686   AliasCacheEntry* face = probe_alias_cache(flat);
  1687   if (face->_adr_type == NULL) {
  1688     face->_adr_type = flat;
  1689     face->_index    = idx;
  1690     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1693   return alias_type(idx);
  1697 Compile::AliasType* Compile::alias_type(ciField* field) {
  1698   const TypeOopPtr* t;
  1699   if (field->is_static())
  1700     t = TypeInstPtr::make(field->holder()->java_mirror());
  1701   else
  1702     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1703   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1704   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1705   return atp;
  1709 //------------------------------have_alias_type--------------------------------
  1710 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1711   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1712   if (ace->_adr_type == adr_type) {
  1713     return true;
  1716   // Handle special cases.
  1717   if (adr_type == NULL)             return true;
  1718   if (adr_type == TypePtr::BOTTOM)  return true;
  1720   return find_alias_type(adr_type, true, NULL) != NULL;
  1723 //-----------------------------must_alias--------------------------------------
  1724 // True if all values of the given address type are in the given alias category.
  1725 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1726   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1727   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1728   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1729   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1731   // the only remaining possible overlap is identity
  1732   int adr_idx = get_alias_index(adr_type);
  1733   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1734   assert(adr_idx == alias_idx ||
  1735          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1736           && adr_type                       != TypeOopPtr::BOTTOM),
  1737          "should not be testing for overlap with an unsafe pointer");
  1738   return adr_idx == alias_idx;
  1741 //------------------------------can_alias--------------------------------------
  1742 // True if any values of the given address type are in the given alias category.
  1743 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1744   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1745   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1746   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1747   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1749   // the only remaining possible overlap is identity
  1750   int adr_idx = get_alias_index(adr_type);
  1751   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1752   return adr_idx == alias_idx;
  1757 //---------------------------pop_warm_call-------------------------------------
  1758 WarmCallInfo* Compile::pop_warm_call() {
  1759   WarmCallInfo* wci = _warm_calls;
  1760   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1761   return wci;
  1764 //----------------------------Inline_Warm--------------------------------------
  1765 int Compile::Inline_Warm() {
  1766   // If there is room, try to inline some more warm call sites.
  1767   // %%% Do a graph index compaction pass when we think we're out of space?
  1768   if (!InlineWarmCalls)  return 0;
  1770   int calls_made_hot = 0;
  1771   int room_to_grow   = NodeCountInliningCutoff - unique();
  1772   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1773   int amount_grown   = 0;
  1774   WarmCallInfo* call;
  1775   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1776     int est_size = (int)call->size();
  1777     if (est_size > (room_to_grow - amount_grown)) {
  1778       // This one won't fit anyway.  Get rid of it.
  1779       call->make_cold();
  1780       continue;
  1782     call->make_hot();
  1783     calls_made_hot++;
  1784     amount_grown   += est_size;
  1785     amount_to_grow -= est_size;
  1788   if (calls_made_hot > 0)  set_major_progress();
  1789   return calls_made_hot;
  1793 //----------------------------Finish_Warm--------------------------------------
  1794 void Compile::Finish_Warm() {
  1795   if (!InlineWarmCalls)  return;
  1796   if (failing())  return;
  1797   if (warm_calls() == NULL)  return;
  1799   // Clean up loose ends, if we are out of space for inlining.
  1800   WarmCallInfo* call;
  1801   while ((call = pop_warm_call()) != NULL) {
  1802     call->make_cold();
  1806 //---------------------cleanup_loop_predicates-----------------------
  1807 // Remove the opaque nodes that protect the predicates so that all unused
  1808 // checks and uncommon_traps will be eliminated from the ideal graph
  1809 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1810   if (predicate_count()==0) return;
  1811   for (int i = predicate_count(); i > 0; i--) {
  1812     Node * n = predicate_opaque1_node(i-1);
  1813     assert(n->Opcode() == Op_Opaque1, "must be");
  1814     igvn.replace_node(n, n->in(1));
  1816   assert(predicate_count()==0, "should be clean!");
  1819 // StringOpts and late inlining of string methods
  1820 void Compile::inline_string_calls(bool parse_time) {
  1822     // remove useless nodes to make the usage analysis simpler
  1823     ResourceMark rm;
  1824     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1828     ResourceMark rm;
  1829     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1830     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1831     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1834   // now inline anything that we skipped the first time around
  1835   if (!parse_time) {
  1836     _late_inlines_pos = _late_inlines.length();
  1839   while (_string_late_inlines.length() > 0) {
  1840     CallGenerator* cg = _string_late_inlines.pop();
  1841     cg->do_late_inline();
  1842     if (failing())  return;
  1844   _string_late_inlines.trunc_to(0);
  1847 // Late inlining of boxing methods
  1848 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1849   if (_boxing_late_inlines.length() > 0) {
  1850     assert(has_boxed_value(), "inconsistent");
  1852     PhaseGVN* gvn = initial_gvn();
  1853     set_inlining_incrementally(true);
  1855     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1856     for_igvn()->clear();
  1857     gvn->replace_with(&igvn);
  1859     while (_boxing_late_inlines.length() > 0) {
  1860       CallGenerator* cg = _boxing_late_inlines.pop();
  1861       cg->do_late_inline();
  1862       if (failing())  return;
  1864     _boxing_late_inlines.trunc_to(0);
  1867       ResourceMark rm;
  1868       PhaseRemoveUseless pru(gvn, for_igvn());
  1871     igvn = PhaseIterGVN(gvn);
  1872     igvn.optimize();
  1874     set_inlining_progress(false);
  1875     set_inlining_incrementally(false);
  1879 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1880   assert(IncrementalInline, "incremental inlining should be on");
  1881   PhaseGVN* gvn = initial_gvn();
  1883   set_inlining_progress(false);
  1884   for_igvn()->clear();
  1885   gvn->replace_with(&igvn);
  1887   int i = 0;
  1889   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1890     CallGenerator* cg = _late_inlines.at(i);
  1891     _late_inlines_pos = i+1;
  1892     cg->do_late_inline();
  1893     if (failing())  return;
  1895   int j = 0;
  1896   for (; i < _late_inlines.length(); i++, j++) {
  1897     _late_inlines.at_put(j, _late_inlines.at(i));
  1899   _late_inlines.trunc_to(j);
  1902     ResourceMark rm;
  1903     PhaseRemoveUseless pru(gvn, for_igvn());
  1906   igvn = PhaseIterGVN(gvn);
  1909 // Perform incremental inlining until bound on number of live nodes is reached
  1910 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1911   PhaseGVN* gvn = initial_gvn();
  1913   set_inlining_incrementally(true);
  1914   set_inlining_progress(true);
  1915   uint low_live_nodes = 0;
  1917   while(inlining_progress() && _late_inlines.length() > 0) {
  1919     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1920       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  1921         // PhaseIdealLoop is expensive so we only try it once we are
  1922         // out of loop and we only try it again if the previous helped
  1923         // got the number of nodes down significantly
  1924         PhaseIdealLoop ideal_loop( igvn, false, true );
  1925         if (failing())  return;
  1926         low_live_nodes = live_nodes();
  1927         _major_progress = true;
  1930       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  1931         break;
  1935     inline_incrementally_one(igvn);
  1937     if (failing())  return;
  1939     igvn.optimize();
  1941     if (failing())  return;
  1944   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1946   if (_string_late_inlines.length() > 0) {
  1947     assert(has_stringbuilder(), "inconsistent");
  1948     for_igvn()->clear();
  1949     initial_gvn()->replace_with(&igvn);
  1951     inline_string_calls(false);
  1953     if (failing())  return;
  1956       ResourceMark rm;
  1957       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1960     igvn = PhaseIterGVN(gvn);
  1962     igvn.optimize();
  1965   set_inlining_incrementally(false);
  1969 //------------------------------Optimize---------------------------------------
  1970 // Given a graph, optimize it.
  1971 void Compile::Optimize() {
  1972   TracePhase t1("optimizer", &_t_optimizer, true);
  1974 #ifndef PRODUCT
  1975   if (env()->break_at_compile()) {
  1976     BREAKPOINT;
  1979 #endif
  1981   ResourceMark rm;
  1982   int          loop_opts_cnt;
  1984   NOT_PRODUCT( verify_graph_edges(); )
  1986   print_method(PHASE_AFTER_PARSING);
  1989   // Iterative Global Value Numbering, including ideal transforms
  1990   // Initialize IterGVN with types and values from parse-time GVN
  1991   PhaseIterGVN igvn(initial_gvn());
  1993     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1994     igvn.optimize();
  1997   print_method(PHASE_ITER_GVN1, 2);
  1999   if (failing())  return;
  2002     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2003     inline_incrementally(igvn);
  2006   print_method(PHASE_INCREMENTAL_INLINE, 2);
  2008   if (failing())  return;
  2010   if (eliminate_boxing()) {
  2011     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2012     // Inline valueOf() methods now.
  2013     inline_boxing_calls(igvn);
  2015     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2017     if (failing())  return;
  2020   // Remove the speculative part of types and clean up the graph from
  2021   // the extra CastPP nodes whose only purpose is to carry them. Do
  2022   // that early so that optimizations are not disrupted by the extra
  2023   // CastPP nodes.
  2024   remove_speculative_types(igvn);
  2026   // No more new expensive nodes will be added to the list from here
  2027   // so keep only the actual candidates for optimizations.
  2028   cleanup_expensive_nodes(igvn);
  2030   // Perform escape analysis
  2031   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2032     if (has_loops()) {
  2033       // Cleanup graph (remove dead nodes).
  2034       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2035       PhaseIdealLoop ideal_loop( igvn, false, true );
  2036       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2037       if (failing())  return;
  2039     ConnectionGraph::do_analysis(this, &igvn);
  2041     if (failing())  return;
  2043     // Optimize out fields loads from scalar replaceable allocations.
  2044     igvn.optimize();
  2045     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2047     if (failing())  return;
  2049     if (congraph() != NULL && macro_count() > 0) {
  2050       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2051       PhaseMacroExpand mexp(igvn);
  2052       mexp.eliminate_macro_nodes();
  2053       igvn.set_delay_transform(false);
  2055       igvn.optimize();
  2056       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2058       if (failing())  return;
  2062   // Loop transforms on the ideal graph.  Range Check Elimination,
  2063   // peeling, unrolling, etc.
  2065   // Set loop opts counter
  2066   loop_opts_cnt = num_loop_opts();
  2067   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2069       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2070       PhaseIdealLoop ideal_loop( igvn, true );
  2071       loop_opts_cnt--;
  2072       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2073       if (failing())  return;
  2075     // Loop opts pass if partial peeling occurred in previous pass
  2076     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2077       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2078       PhaseIdealLoop ideal_loop( igvn, false );
  2079       loop_opts_cnt--;
  2080       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2081       if (failing())  return;
  2083     // Loop opts pass for loop-unrolling before CCP
  2084     if(major_progress() && (loop_opts_cnt > 0)) {
  2085       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2086       PhaseIdealLoop ideal_loop( igvn, false );
  2087       loop_opts_cnt--;
  2088       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2090     if (!failing()) {
  2091       // Verify that last round of loop opts produced a valid graph
  2092       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2093       PhaseIdealLoop::verify(igvn);
  2096   if (failing())  return;
  2098   // Conditional Constant Propagation;
  2099   PhaseCCP ccp( &igvn );
  2100   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2102     TracePhase t2("ccp", &_t_ccp, true);
  2103     ccp.do_transform();
  2105   print_method(PHASE_CPP1, 2);
  2107   assert( true, "Break here to ccp.dump_old2new_map()");
  2109   // Iterative Global Value Numbering, including ideal transforms
  2111     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2112     igvn = ccp;
  2113     igvn.optimize();
  2116   print_method(PHASE_ITER_GVN2, 2);
  2118   if (failing())  return;
  2120   // Loop transforms on the ideal graph.  Range Check Elimination,
  2121   // peeling, unrolling, etc.
  2122   if(loop_opts_cnt > 0) {
  2123     debug_only( int cnt = 0; );
  2124     while(major_progress() && (loop_opts_cnt > 0)) {
  2125       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2126       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2127       PhaseIdealLoop ideal_loop( igvn, true);
  2128       loop_opts_cnt--;
  2129       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2130       if (failing())  return;
  2135     // Verify that all previous optimizations produced a valid graph
  2136     // at least to this point, even if no loop optimizations were done.
  2137     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2138     PhaseIdealLoop::verify(igvn);
  2142     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2143     PhaseMacroExpand  mex(igvn);
  2144     if (mex.expand_macro_nodes()) {
  2145       assert(failing(), "must bail out w/ explicit message");
  2146       return;
  2150  } // (End scope of igvn; run destructor if necessary for asserts.)
  2152   dump_inlining();
  2153   // A method with only infinite loops has no edges entering loops from root
  2155     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2156     if (final_graph_reshaping()) {
  2157       assert(failing(), "must bail out w/ explicit message");
  2158       return;
  2162   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2166 //------------------------------Code_Gen---------------------------------------
  2167 // Given a graph, generate code for it
  2168 void Compile::Code_Gen() {
  2169   if (failing()) {
  2170     return;
  2173   // Perform instruction selection.  You might think we could reclaim Matcher
  2174   // memory PDQ, but actually the Matcher is used in generating spill code.
  2175   // Internals of the Matcher (including some VectorSets) must remain live
  2176   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2177   // set a bit in reclaimed memory.
  2179   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2180   // nodes.  Mapping is only valid at the root of each matched subtree.
  2181   NOT_PRODUCT( verify_graph_edges(); )
  2183   Matcher matcher;
  2184   _matcher = &matcher;
  2186     TracePhase t2("matcher", &_t_matcher, true);
  2187     matcher.match();
  2189   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2190   // nodes.  Mapping is only valid at the root of each matched subtree.
  2191   NOT_PRODUCT( verify_graph_edges(); )
  2193   // If you have too many nodes, or if matching has failed, bail out
  2194   check_node_count(0, "out of nodes matching instructions");
  2195   if (failing()) {
  2196     return;
  2199   // Build a proper-looking CFG
  2200   PhaseCFG cfg(node_arena(), root(), matcher);
  2201   _cfg = &cfg;
  2203     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2204     bool success = cfg.do_global_code_motion();
  2205     if (!success) {
  2206       return;
  2209     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2210     NOT_PRODUCT( verify_graph_edges(); )
  2211     debug_only( cfg.verify(); )
  2214   PhaseChaitin regalloc(unique(), cfg, matcher);
  2215   _regalloc = &regalloc;
  2217     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2218     // Perform register allocation.  After Chaitin, use-def chains are
  2219     // no longer accurate (at spill code) and so must be ignored.
  2220     // Node->LRG->reg mappings are still accurate.
  2221     _regalloc->Register_Allocate();
  2223     // Bail out if the allocator builds too many nodes
  2224     if (failing()) {
  2225       return;
  2229   // Prior to register allocation we kept empty basic blocks in case the
  2230   // the allocator needed a place to spill.  After register allocation we
  2231   // are not adding any new instructions.  If any basic block is empty, we
  2232   // can now safely remove it.
  2234     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2235     cfg.remove_empty_blocks();
  2236     if (do_freq_based_layout()) {
  2237       PhaseBlockLayout layout(cfg);
  2238     } else {
  2239       cfg.set_loop_alignment();
  2241     cfg.fixup_flow();
  2244   // Apply peephole optimizations
  2245   if( OptoPeephole ) {
  2246     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2247     PhasePeephole peep( _regalloc, cfg);
  2248     peep.do_transform();
  2251   // Convert Nodes to instruction bits in a buffer
  2253     // %%%% workspace merge brought two timers together for one job
  2254     TracePhase t2a("output", &_t_output, true);
  2255     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2256     Output();
  2259   print_method(PHASE_FINAL_CODE);
  2261   // He's dead, Jim.
  2262   _cfg     = (PhaseCFG*)0xdeadbeef;
  2263   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2267 //------------------------------dump_asm---------------------------------------
  2268 // Dump formatted assembly
  2269 #ifndef PRODUCT
  2270 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2271   bool cut_short = false;
  2272   tty->print_cr("#");
  2273   tty->print("#  ");  _tf->dump();  tty->cr();
  2274   tty->print_cr("#");
  2276   // For all blocks
  2277   int pc = 0x0;                 // Program counter
  2278   char starts_bundle = ' ';
  2279   _regalloc->dump_frame();
  2281   Node *n = NULL;
  2282   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2283     if (VMThread::should_terminate()) {
  2284       cut_short = true;
  2285       break;
  2287     Block* block = _cfg->get_block(i);
  2288     if (block->is_connector() && !Verbose) {
  2289       continue;
  2291     n = block->head();
  2292     if (pcs && n->_idx < pc_limit) {
  2293       tty->print("%3.3x   ", pcs[n->_idx]);
  2294     } else {
  2295       tty->print("      ");
  2297     block->dump_head(_cfg);
  2298     if (block->is_connector()) {
  2299       tty->print_cr("        # Empty connector block");
  2300     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2301       tty->print_cr("        # Block is sole successor of call");
  2304     // For all instructions
  2305     Node *delay = NULL;
  2306     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2307       if (VMThread::should_terminate()) {
  2308         cut_short = true;
  2309         break;
  2311       n = block->get_node(j);
  2312       if (valid_bundle_info(n)) {
  2313         Bundle* bundle = node_bundling(n);
  2314         if (bundle->used_in_unconditional_delay()) {
  2315           delay = n;
  2316           continue;
  2318         if (bundle->starts_bundle()) {
  2319           starts_bundle = '+';
  2323       if (WizardMode) {
  2324         n->dump();
  2327       if( !n->is_Region() &&    // Dont print in the Assembly
  2328           !n->is_Phi() &&       // a few noisely useless nodes
  2329           !n->is_Proj() &&
  2330           !n->is_MachTemp() &&
  2331           !n->is_SafePointScalarObject() &&
  2332           !n->is_Catch() &&     // Would be nice to print exception table targets
  2333           !n->is_MergeMem() &&  // Not very interesting
  2334           !n->is_top() &&       // Debug info table constants
  2335           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2336           ) {
  2337         if (pcs && n->_idx < pc_limit)
  2338           tty->print("%3.3x", pcs[n->_idx]);
  2339         else
  2340           tty->print("   ");
  2341         tty->print(" %c ", starts_bundle);
  2342         starts_bundle = ' ';
  2343         tty->print("\t");
  2344         n->format(_regalloc, tty);
  2345         tty->cr();
  2348       // If we have an instruction with a delay slot, and have seen a delay,
  2349       // then back up and print it
  2350       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2351         assert(delay != NULL, "no unconditional delay instruction");
  2352         if (WizardMode) delay->dump();
  2354         if (node_bundling(delay)->starts_bundle())
  2355           starts_bundle = '+';
  2356         if (pcs && n->_idx < pc_limit)
  2357           tty->print("%3.3x", pcs[n->_idx]);
  2358         else
  2359           tty->print("   ");
  2360         tty->print(" %c ", starts_bundle);
  2361         starts_bundle = ' ';
  2362         tty->print("\t");
  2363         delay->format(_regalloc, tty);
  2364         tty->print_cr("");
  2365         delay = NULL;
  2368       // Dump the exception table as well
  2369       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2370         // Print the exception table for this offset
  2371         _handler_table.print_subtable_for(pc);
  2375     if (pcs && n->_idx < pc_limit)
  2376       tty->print_cr("%3.3x", pcs[n->_idx]);
  2377     else
  2378       tty->print_cr("");
  2380     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2382   } // End of per-block dump
  2383   tty->print_cr("");
  2385   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2387 #endif
  2389 //------------------------------Final_Reshape_Counts---------------------------
  2390 // This class defines counters to help identify when a method
  2391 // may/must be executed using hardware with only 24-bit precision.
  2392 struct Final_Reshape_Counts : public StackObj {
  2393   int  _call_count;             // count non-inlined 'common' calls
  2394   int  _float_count;            // count float ops requiring 24-bit precision
  2395   int  _double_count;           // count double ops requiring more precision
  2396   int  _java_call_count;        // count non-inlined 'java' calls
  2397   int  _inner_loop_count;       // count loops which need alignment
  2398   VectorSet _visited;           // Visitation flags
  2399   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2401   Final_Reshape_Counts() :
  2402     _call_count(0), _float_count(0), _double_count(0),
  2403     _java_call_count(0), _inner_loop_count(0),
  2404     _visited( Thread::current()->resource_area() ) { }
  2406   void inc_call_count  () { _call_count  ++; }
  2407   void inc_float_count () { _float_count ++; }
  2408   void inc_double_count() { _double_count++; }
  2409   void inc_java_call_count() { _java_call_count++; }
  2410   void inc_inner_loop_count() { _inner_loop_count++; }
  2412   int  get_call_count  () const { return _call_count  ; }
  2413   int  get_float_count () const { return _float_count ; }
  2414   int  get_double_count() const { return _double_count; }
  2415   int  get_java_call_count() const { return _java_call_count; }
  2416   int  get_inner_loop_count() const { return _inner_loop_count; }
  2417 };
  2419 #ifdef ASSERT
  2420 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2421   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2422   // Make sure the offset goes inside the instance layout.
  2423   return k->contains_field_offset(tp->offset());
  2424   // Note that OffsetBot and OffsetTop are very negative.
  2426 #endif
  2428 // Eliminate trivially redundant StoreCMs and accumulate their
  2429 // precedence edges.
  2430 void Compile::eliminate_redundant_card_marks(Node* n) {
  2431   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2432   if (n->in(MemNode::Address)->outcnt() > 1) {
  2433     // There are multiple users of the same address so it might be
  2434     // possible to eliminate some of the StoreCMs
  2435     Node* mem = n->in(MemNode::Memory);
  2436     Node* adr = n->in(MemNode::Address);
  2437     Node* val = n->in(MemNode::ValueIn);
  2438     Node* prev = n;
  2439     bool done = false;
  2440     // Walk the chain of StoreCMs eliminating ones that match.  As
  2441     // long as it's a chain of single users then the optimization is
  2442     // safe.  Eliminating partially redundant StoreCMs would require
  2443     // cloning copies down the other paths.
  2444     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2445       if (adr == mem->in(MemNode::Address) &&
  2446           val == mem->in(MemNode::ValueIn)) {
  2447         // redundant StoreCM
  2448         if (mem->req() > MemNode::OopStore) {
  2449           // Hasn't been processed by this code yet.
  2450           n->add_prec(mem->in(MemNode::OopStore));
  2451         } else {
  2452           // Already converted to precedence edge
  2453           for (uint i = mem->req(); i < mem->len(); i++) {
  2454             // Accumulate any precedence edges
  2455             if (mem->in(i) != NULL) {
  2456               n->add_prec(mem->in(i));
  2459           // Everything above this point has been processed.
  2460           done = true;
  2462         // Eliminate the previous StoreCM
  2463         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2464         assert(mem->outcnt() == 0, "should be dead");
  2465         mem->disconnect_inputs(NULL, this);
  2466       } else {
  2467         prev = mem;
  2469       mem = prev->in(MemNode::Memory);
  2474 //------------------------------final_graph_reshaping_impl----------------------
  2475 // Implement items 1-5 from final_graph_reshaping below.
  2476 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2478   if ( n->outcnt() == 0 ) return; // dead node
  2479   uint nop = n->Opcode();
  2481   // Check for 2-input instruction with "last use" on right input.
  2482   // Swap to left input.  Implements item (2).
  2483   if( n->req() == 3 &&          // two-input instruction
  2484       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2485       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2486       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2487       !n->in(2)->is_Con() ) {   // right use is not a constant
  2488     // Check for commutative opcode
  2489     switch( nop ) {
  2490     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2491     case Op_MaxI:  case Op_MinI:
  2492     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2493     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2494     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2495       // Move "last use" input to left by swapping inputs
  2496       n->swap_edges(1, 2);
  2497       break;
  2499     default:
  2500       break;
  2504 #ifdef ASSERT
  2505   if( n->is_Mem() ) {
  2506     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2507     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2508             // oop will be recorded in oop map if load crosses safepoint
  2509             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2510                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2511             "raw memory operations should have control edge");
  2513 #endif
  2514   // Count FPU ops and common calls, implements item (3)
  2515   switch( nop ) {
  2516   // Count all float operations that may use FPU
  2517   case Op_AddF:
  2518   case Op_SubF:
  2519   case Op_MulF:
  2520   case Op_DivF:
  2521   case Op_NegF:
  2522   case Op_ModF:
  2523   case Op_ConvI2F:
  2524   case Op_ConF:
  2525   case Op_CmpF:
  2526   case Op_CmpF3:
  2527   // case Op_ConvL2F: // longs are split into 32-bit halves
  2528     frc.inc_float_count();
  2529     break;
  2531   case Op_ConvF2D:
  2532   case Op_ConvD2F:
  2533     frc.inc_float_count();
  2534     frc.inc_double_count();
  2535     break;
  2537   // Count all double operations that may use FPU
  2538   case Op_AddD:
  2539   case Op_SubD:
  2540   case Op_MulD:
  2541   case Op_DivD:
  2542   case Op_NegD:
  2543   case Op_ModD:
  2544   case Op_ConvI2D:
  2545   case Op_ConvD2I:
  2546   // case Op_ConvL2D: // handled by leaf call
  2547   // case Op_ConvD2L: // handled by leaf call
  2548   case Op_ConD:
  2549   case Op_CmpD:
  2550   case Op_CmpD3:
  2551     frc.inc_double_count();
  2552     break;
  2553   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2554   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2555     n->subsume_by(n->in(1), this);
  2556     break;
  2557   case Op_CallStaticJava:
  2558   case Op_CallJava:
  2559   case Op_CallDynamicJava:
  2560     frc.inc_java_call_count(); // Count java call site;
  2561   case Op_CallRuntime:
  2562   case Op_CallLeaf:
  2563   case Op_CallLeafNoFP: {
  2564     assert( n->is_Call(), "" );
  2565     CallNode *call = n->as_Call();
  2566     // Count call sites where the FP mode bit would have to be flipped.
  2567     // Do not count uncommon runtime calls:
  2568     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2569     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2570     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2571       frc.inc_call_count();   // Count the call site
  2572     } else {                  // See if uncommon argument is shared
  2573       Node *n = call->in(TypeFunc::Parms);
  2574       int nop = n->Opcode();
  2575       // Clone shared simple arguments to uncommon calls, item (1).
  2576       if( n->outcnt() > 1 &&
  2577           !n->is_Proj() &&
  2578           nop != Op_CreateEx &&
  2579           nop != Op_CheckCastPP &&
  2580           nop != Op_DecodeN &&
  2581           nop != Op_DecodeNKlass &&
  2582           !n->is_Mem() ) {
  2583         Node *x = n->clone();
  2584         call->set_req( TypeFunc::Parms, x );
  2587     break;
  2590   case Op_StoreD:
  2591   case Op_LoadD:
  2592   case Op_LoadD_unaligned:
  2593     frc.inc_double_count();
  2594     goto handle_mem;
  2595   case Op_StoreF:
  2596   case Op_LoadF:
  2597     frc.inc_float_count();
  2598     goto handle_mem;
  2600   case Op_StoreCM:
  2602       // Convert OopStore dependence into precedence edge
  2603       Node* prec = n->in(MemNode::OopStore);
  2604       n->del_req(MemNode::OopStore);
  2605       n->add_prec(prec);
  2606       eliminate_redundant_card_marks(n);
  2609     // fall through
  2611   case Op_StoreB:
  2612   case Op_StoreC:
  2613   case Op_StorePConditional:
  2614   case Op_StoreI:
  2615   case Op_StoreL:
  2616   case Op_StoreIConditional:
  2617   case Op_StoreLConditional:
  2618   case Op_CompareAndSwapI:
  2619   case Op_CompareAndSwapL:
  2620   case Op_CompareAndSwapP:
  2621   case Op_CompareAndSwapN:
  2622   case Op_GetAndAddI:
  2623   case Op_GetAndAddL:
  2624   case Op_GetAndSetI:
  2625   case Op_GetAndSetL:
  2626   case Op_GetAndSetP:
  2627   case Op_GetAndSetN:
  2628   case Op_StoreP:
  2629   case Op_StoreN:
  2630   case Op_StoreNKlass:
  2631   case Op_LoadB:
  2632   case Op_LoadUB:
  2633   case Op_LoadUS:
  2634   case Op_LoadI:
  2635   case Op_LoadKlass:
  2636   case Op_LoadNKlass:
  2637   case Op_LoadL:
  2638   case Op_LoadL_unaligned:
  2639   case Op_LoadPLocked:
  2640   case Op_LoadP:
  2641   case Op_LoadN:
  2642   case Op_LoadRange:
  2643   case Op_LoadS: {
  2644   handle_mem:
  2645 #ifdef ASSERT
  2646     if( VerifyOptoOopOffsets ) {
  2647       assert( n->is_Mem(), "" );
  2648       MemNode *mem  = (MemNode*)n;
  2649       // Check to see if address types have grounded out somehow.
  2650       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2651       assert( !tp || oop_offset_is_sane(tp), "" );
  2653 #endif
  2654     break;
  2657   case Op_AddP: {               // Assert sane base pointers
  2658     Node *addp = n->in(AddPNode::Address);
  2659     assert( !addp->is_AddP() ||
  2660             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2661             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2662             "Base pointers must match" );
  2663 #ifdef _LP64
  2664     if ((UseCompressedOops || UseCompressedClassPointers) &&
  2665         addp->Opcode() == Op_ConP &&
  2666         addp == n->in(AddPNode::Base) &&
  2667         n->in(AddPNode::Offset)->is_Con()) {
  2668       // Use addressing with narrow klass to load with offset on x86.
  2669       // On sparc loading 32-bits constant and decoding it have less
  2670       // instructions (4) then load 64-bits constant (7).
  2671       // Do this transformation here since IGVN will convert ConN back to ConP.
  2672       const Type* t = addp->bottom_type();
  2673       if (t->isa_oopptr() || t->isa_klassptr()) {
  2674         Node* nn = NULL;
  2676         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2678         // Look for existing ConN node of the same exact type.
  2679         Node* r  = root();
  2680         uint cnt = r->outcnt();
  2681         for (uint i = 0; i < cnt; i++) {
  2682           Node* m = r->raw_out(i);
  2683           if (m!= NULL && m->Opcode() == op &&
  2684               m->bottom_type()->make_ptr() == t) {
  2685             nn = m;
  2686             break;
  2689         if (nn != NULL) {
  2690           // Decode a narrow oop to match address
  2691           // [R12 + narrow_oop_reg<<3 + offset]
  2692           if (t->isa_oopptr()) {
  2693             nn = new (this) DecodeNNode(nn, t);
  2694           } else {
  2695             nn = new (this) DecodeNKlassNode(nn, t);
  2697           n->set_req(AddPNode::Base, nn);
  2698           n->set_req(AddPNode::Address, nn);
  2699           if (addp->outcnt() == 0) {
  2700             addp->disconnect_inputs(NULL, this);
  2705 #endif
  2706     break;
  2709 #ifdef _LP64
  2710   case Op_CastPP:
  2711     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2712       Node* in1 = n->in(1);
  2713       const Type* t = n->bottom_type();
  2714       Node* new_in1 = in1->clone();
  2715       new_in1->as_DecodeN()->set_type(t);
  2717       if (!Matcher::narrow_oop_use_complex_address()) {
  2718         //
  2719         // x86, ARM and friends can handle 2 adds in addressing mode
  2720         // and Matcher can fold a DecodeN node into address by using
  2721         // a narrow oop directly and do implicit NULL check in address:
  2722         //
  2723         // [R12 + narrow_oop_reg<<3 + offset]
  2724         // NullCheck narrow_oop_reg
  2725         //
  2726         // On other platforms (Sparc) we have to keep new DecodeN node and
  2727         // use it to do implicit NULL check in address:
  2728         //
  2729         // decode_not_null narrow_oop_reg, base_reg
  2730         // [base_reg + offset]
  2731         // NullCheck base_reg
  2732         //
  2733         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2734         // to keep the information to which NULL check the new DecodeN node
  2735         // corresponds to use it as value in implicit_null_check().
  2736         //
  2737         new_in1->set_req(0, n->in(0));
  2740       n->subsume_by(new_in1, this);
  2741       if (in1->outcnt() == 0) {
  2742         in1->disconnect_inputs(NULL, this);
  2745     break;
  2747   case Op_CmpP:
  2748     // Do this transformation here to preserve CmpPNode::sub() and
  2749     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2750     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2751       Node* in1 = n->in(1);
  2752       Node* in2 = n->in(2);
  2753       if (!in1->is_DecodeNarrowPtr()) {
  2754         in2 = in1;
  2755         in1 = n->in(2);
  2757       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2759       Node* new_in2 = NULL;
  2760       if (in2->is_DecodeNarrowPtr()) {
  2761         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2762         new_in2 = in2->in(1);
  2763       } else if (in2->Opcode() == Op_ConP) {
  2764         const Type* t = in2->bottom_type();
  2765         if (t == TypePtr::NULL_PTR) {
  2766           assert(in1->is_DecodeN(), "compare klass to null?");
  2767           // Don't convert CmpP null check into CmpN if compressed
  2768           // oops implicit null check is not generated.
  2769           // This will allow to generate normal oop implicit null check.
  2770           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2771             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2772           //
  2773           // This transformation together with CastPP transformation above
  2774           // will generated code for implicit NULL checks for compressed oops.
  2775           //
  2776           // The original code after Optimize()
  2777           //
  2778           //    LoadN memory, narrow_oop_reg
  2779           //    decode narrow_oop_reg, base_reg
  2780           //    CmpP base_reg, NULL
  2781           //    CastPP base_reg // NotNull
  2782           //    Load [base_reg + offset], val_reg
  2783           //
  2784           // after these transformations will be
  2785           //
  2786           //    LoadN memory, narrow_oop_reg
  2787           //    CmpN narrow_oop_reg, NULL
  2788           //    decode_not_null narrow_oop_reg, base_reg
  2789           //    Load [base_reg + offset], val_reg
  2790           //
  2791           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2792           // since narrow oops can be used in debug info now (see the code in
  2793           // final_graph_reshaping_walk()).
  2794           //
  2795           // At the end the code will be matched to
  2796           // on x86:
  2797           //
  2798           //    Load_narrow_oop memory, narrow_oop_reg
  2799           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2800           //    NullCheck narrow_oop_reg
  2801           //
  2802           // and on sparc:
  2803           //
  2804           //    Load_narrow_oop memory, narrow_oop_reg
  2805           //    decode_not_null narrow_oop_reg, base_reg
  2806           //    Load [base_reg + offset], val_reg
  2807           //    NullCheck base_reg
  2808           //
  2809         } else if (t->isa_oopptr()) {
  2810           new_in2 = ConNode::make(this, t->make_narrowoop());
  2811         } else if (t->isa_klassptr()) {
  2812           new_in2 = ConNode::make(this, t->make_narrowklass());
  2815       if (new_in2 != NULL) {
  2816         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2817         n->subsume_by(cmpN, this);
  2818         if (in1->outcnt() == 0) {
  2819           in1->disconnect_inputs(NULL, this);
  2821         if (in2->outcnt() == 0) {
  2822           in2->disconnect_inputs(NULL, this);
  2826     break;
  2828   case Op_DecodeN:
  2829   case Op_DecodeNKlass:
  2830     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2831     // DecodeN could be pinned when it can't be fold into
  2832     // an address expression, see the code for Op_CastPP above.
  2833     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2834     break;
  2836   case Op_EncodeP:
  2837   case Op_EncodePKlass: {
  2838     Node* in1 = n->in(1);
  2839     if (in1->is_DecodeNarrowPtr()) {
  2840       n->subsume_by(in1->in(1), this);
  2841     } else if (in1->Opcode() == Op_ConP) {
  2842       const Type* t = in1->bottom_type();
  2843       if (t == TypePtr::NULL_PTR) {
  2844         assert(t->isa_oopptr(), "null klass?");
  2845         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2846       } else if (t->isa_oopptr()) {
  2847         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2848       } else if (t->isa_klassptr()) {
  2849         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2852     if (in1->outcnt() == 0) {
  2853       in1->disconnect_inputs(NULL, this);
  2855     break;
  2858   case Op_Proj: {
  2859     if (OptimizeStringConcat) {
  2860       ProjNode* p = n->as_Proj();
  2861       if (p->_is_io_use) {
  2862         // Separate projections were used for the exception path which
  2863         // are normally removed by a late inline.  If it wasn't inlined
  2864         // then they will hang around and should just be replaced with
  2865         // the original one.
  2866         Node* proj = NULL;
  2867         // Replace with just one
  2868         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2869           Node *use = i.get();
  2870           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2871             proj = use;
  2872             break;
  2875         assert(proj != NULL, "must be found");
  2876         p->subsume_by(proj, this);
  2879     break;
  2882   case Op_Phi:
  2883     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  2884       // The EncodeP optimization may create Phi with the same edges
  2885       // for all paths. It is not handled well by Register Allocator.
  2886       Node* unique_in = n->in(1);
  2887       assert(unique_in != NULL, "");
  2888       uint cnt = n->req();
  2889       for (uint i = 2; i < cnt; i++) {
  2890         Node* m = n->in(i);
  2891         assert(m != NULL, "");
  2892         if (unique_in != m)
  2893           unique_in = NULL;
  2895       if (unique_in != NULL) {
  2896         n->subsume_by(unique_in, this);
  2899     break;
  2901 #endif
  2903   case Op_ModI:
  2904     if (UseDivMod) {
  2905       // Check if a%b and a/b both exist
  2906       Node* d = n->find_similar(Op_DivI);
  2907       if (d) {
  2908         // Replace them with a fused divmod if supported
  2909         if (Matcher::has_match_rule(Op_DivModI)) {
  2910           DivModINode* divmod = DivModINode::make(this, n);
  2911           d->subsume_by(divmod->div_proj(), this);
  2912           n->subsume_by(divmod->mod_proj(), this);
  2913         } else {
  2914           // replace a%b with a-((a/b)*b)
  2915           Node* mult = new (this) MulINode(d, d->in(2));
  2916           Node* sub  = new (this) SubINode(d->in(1), mult);
  2917           n->subsume_by(sub, this);
  2921     break;
  2923   case Op_ModL:
  2924     if (UseDivMod) {
  2925       // Check if a%b and a/b both exist
  2926       Node* d = n->find_similar(Op_DivL);
  2927       if (d) {
  2928         // Replace them with a fused divmod if supported
  2929         if (Matcher::has_match_rule(Op_DivModL)) {
  2930           DivModLNode* divmod = DivModLNode::make(this, n);
  2931           d->subsume_by(divmod->div_proj(), this);
  2932           n->subsume_by(divmod->mod_proj(), this);
  2933         } else {
  2934           // replace a%b with a-((a/b)*b)
  2935           Node* mult = new (this) MulLNode(d, d->in(2));
  2936           Node* sub  = new (this) SubLNode(d->in(1), mult);
  2937           n->subsume_by(sub, this);
  2941     break;
  2943   case Op_LoadVector:
  2944   case Op_StoreVector:
  2945     break;
  2947   case Op_PackB:
  2948   case Op_PackS:
  2949   case Op_PackI:
  2950   case Op_PackF:
  2951   case Op_PackL:
  2952   case Op_PackD:
  2953     if (n->req()-1 > 2) {
  2954       // Replace many operand PackNodes with a binary tree for matching
  2955       PackNode* p = (PackNode*) n;
  2956       Node* btp = p->binary_tree_pack(this, 1, n->req());
  2957       n->subsume_by(btp, this);
  2959     break;
  2960   case Op_Loop:
  2961   case Op_CountedLoop:
  2962     if (n->as_Loop()->is_inner_loop()) {
  2963       frc.inc_inner_loop_count();
  2965     break;
  2966   case Op_LShiftI:
  2967   case Op_RShiftI:
  2968   case Op_URShiftI:
  2969   case Op_LShiftL:
  2970   case Op_RShiftL:
  2971   case Op_URShiftL:
  2972     if (Matcher::need_masked_shift_count) {
  2973       // The cpu's shift instructions don't restrict the count to the
  2974       // lower 5/6 bits. We need to do the masking ourselves.
  2975       Node* in2 = n->in(2);
  2976       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2977       const TypeInt* t = in2->find_int_type();
  2978       if (t != NULL && t->is_con()) {
  2979         juint shift = t->get_con();
  2980         if (shift > mask) { // Unsigned cmp
  2981           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  2983       } else {
  2984         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2985           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  2986           n->set_req(2, shift);
  2989       if (in2->outcnt() == 0) { // Remove dead node
  2990         in2->disconnect_inputs(NULL, this);
  2993     break;
  2994   case Op_MemBarStoreStore:
  2995   case Op_MemBarRelease:
  2996     // Break the link with AllocateNode: it is no longer useful and
  2997     // confuses register allocation.
  2998     if (n->req() > MemBarNode::Precedent) {
  2999       n->set_req(MemBarNode::Precedent, top());
  3001     break;
  3002     // Must set a control edge on all nodes that produce a FlagsProj
  3003     // so they can't escape the block that consumes the flags.
  3004     // Must also set the non throwing branch as the control
  3005     // for all nodes that depends on the result. Unless the node
  3006     // already have a control that isn't the control of the
  3007     // flag producer
  3008   case Op_FlagsProj:
  3010       MathExactNode* math = (MathExactNode*)  n->in(0);
  3011       Node* ctrl = math->control_node();
  3012       Node* non_throwing = math->non_throwing_branch();
  3013       math->set_req(0, ctrl);
  3015       Node* result = math->result_node();
  3016       if (result != NULL) {
  3017         for (DUIterator_Fast jmax, j = result->fast_outs(jmax); j < jmax; j++) {
  3018           Node* out = result->fast_out(j);
  3019           // Phi nodes shouldn't be moved. They would only match below if they
  3020           // had the same control as the MathExactNode. The only time that
  3021           // would happen is if the Phi is also an input to the MathExact
  3022           //
  3023           // Cmp nodes shouldn't have control set at all.
  3024           if (out->is_Phi() ||
  3025               out->is_Cmp()) {
  3026             continue;
  3029           if (out->in(0) == NULL) {
  3030             out->set_req(0, non_throwing);
  3031           } else if (out->in(0) == ctrl) {
  3032             out->set_req(0, non_throwing);
  3037     break;
  3038   default:
  3039     assert( !n->is_Call(), "" );
  3040     assert( !n->is_Mem(), "" );
  3041     break;
  3044   // Collect CFG split points
  3045   if (n->is_MultiBranch())
  3046     frc._tests.push(n);
  3049 //------------------------------final_graph_reshaping_walk---------------------
  3050 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3051 // requires that the walk visits a node's inputs before visiting the node.
  3052 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3053   ResourceArea *area = Thread::current()->resource_area();
  3054   Unique_Node_List sfpt(area);
  3056   frc._visited.set(root->_idx); // first, mark node as visited
  3057   uint cnt = root->req();
  3058   Node *n = root;
  3059   uint  i = 0;
  3060   while (true) {
  3061     if (i < cnt) {
  3062       // Place all non-visited non-null inputs onto stack
  3063       Node* m = n->in(i);
  3064       ++i;
  3065       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3066         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  3067           sfpt.push(m);
  3068         cnt = m->req();
  3069         nstack.push(n, i); // put on stack parent and next input's index
  3070         n = m;
  3071         i = 0;
  3073     } else {
  3074       // Now do post-visit work
  3075       final_graph_reshaping_impl( n, frc );
  3076       if (nstack.is_empty())
  3077         break;             // finished
  3078       n = nstack.node();   // Get node from stack
  3079       cnt = n->req();
  3080       i = nstack.index();
  3081       nstack.pop();        // Shift to the next node on stack
  3085   // Skip next transformation if compressed oops are not used.
  3086   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3087       (!UseCompressedOops && !UseCompressedClassPointers))
  3088     return;
  3090   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3091   // It could be done for an uncommon traps or any safepoints/calls
  3092   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3093   while (sfpt.size() > 0) {
  3094     n = sfpt.pop();
  3095     JVMState *jvms = n->as_SafePoint()->jvms();
  3096     assert(jvms != NULL, "sanity");
  3097     int start = jvms->debug_start();
  3098     int end   = n->req();
  3099     bool is_uncommon = (n->is_CallStaticJava() &&
  3100                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3101     for (int j = start; j < end; j++) {
  3102       Node* in = n->in(j);
  3103       if (in->is_DecodeNarrowPtr()) {
  3104         bool safe_to_skip = true;
  3105         if (!is_uncommon ) {
  3106           // Is it safe to skip?
  3107           for (uint i = 0; i < in->outcnt(); i++) {
  3108             Node* u = in->raw_out(i);
  3109             if (!u->is_SafePoint() ||
  3110                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3111               safe_to_skip = false;
  3115         if (safe_to_skip) {
  3116           n->set_req(j, in->in(1));
  3118         if (in->outcnt() == 0) {
  3119           in->disconnect_inputs(NULL, this);
  3126 //------------------------------final_graph_reshaping--------------------------
  3127 // Final Graph Reshaping.
  3128 //
  3129 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3130 //     and not commoned up and forced early.  Must come after regular
  3131 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3132 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3133 //     Remove Opaque nodes.
  3134 // (2) Move last-uses by commutative operations to the left input to encourage
  3135 //     Intel update-in-place two-address operations and better register usage
  3136 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3137 //     calls canonicalizing them back.
  3138 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3139 //     and call sites.  On Intel, we can get correct rounding either by
  3140 //     forcing singles to memory (requires extra stores and loads after each
  3141 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3142 //     clearing the mode bit around call sites).  The mode bit is only used
  3143 //     if the relative frequency of single FP ops to calls is low enough.
  3144 //     This is a key transform for SPEC mpeg_audio.
  3145 // (4) Detect infinite loops; blobs of code reachable from above but not
  3146 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3147 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3148 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3149 //     Detection is by looking for IfNodes where only 1 projection is
  3150 //     reachable from below or CatchNodes missing some targets.
  3151 // (5) Assert for insane oop offsets in debug mode.
  3153 bool Compile::final_graph_reshaping() {
  3154   // an infinite loop may have been eliminated by the optimizer,
  3155   // in which case the graph will be empty.
  3156   if (root()->req() == 1) {
  3157     record_method_not_compilable("trivial infinite loop");
  3158     return true;
  3161   // Expensive nodes have their control input set to prevent the GVN
  3162   // from freely commoning them. There's no GVN beyond this point so
  3163   // no need to keep the control input. We want the expensive nodes to
  3164   // be freely moved to the least frequent code path by gcm.
  3165   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3166   for (int i = 0; i < expensive_count(); i++) {
  3167     _expensive_nodes->at(i)->set_req(0, NULL);
  3170   Final_Reshape_Counts frc;
  3172   // Visit everybody reachable!
  3173   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  3174   Node_Stack nstack(unique() >> 1);
  3175   final_graph_reshaping_walk(nstack, root(), frc);
  3177   // Check for unreachable (from below) code (i.e., infinite loops).
  3178   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3179     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3180     // Get number of CFG targets.
  3181     // Note that PCTables include exception targets after calls.
  3182     uint required_outcnt = n->required_outcnt();
  3183     if (n->outcnt() != required_outcnt) {
  3184       // Check for a few special cases.  Rethrow Nodes never take the
  3185       // 'fall-thru' path, so expected kids is 1 less.
  3186       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3187         if (n->in(0)->in(0)->is_Call()) {
  3188           CallNode *call = n->in(0)->in(0)->as_Call();
  3189           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3190             required_outcnt--;      // Rethrow always has 1 less kid
  3191           } else if (call->req() > TypeFunc::Parms &&
  3192                      call->is_CallDynamicJava()) {
  3193             // Check for null receiver. In such case, the optimizer has
  3194             // detected that the virtual call will always result in a null
  3195             // pointer exception. The fall-through projection of this CatchNode
  3196             // will not be populated.
  3197             Node *arg0 = call->in(TypeFunc::Parms);
  3198             if (arg0->is_Type() &&
  3199                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3200               required_outcnt--;
  3202           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3203                      call->req() > TypeFunc::Parms+1 &&
  3204                      call->is_CallStaticJava()) {
  3205             // Check for negative array length. In such case, the optimizer has
  3206             // detected that the allocation attempt will always result in an
  3207             // exception. There is no fall-through projection of this CatchNode .
  3208             Node *arg1 = call->in(TypeFunc::Parms+1);
  3209             if (arg1->is_Type() &&
  3210                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3211               required_outcnt--;
  3216       // Recheck with a better notion of 'required_outcnt'
  3217       if (n->outcnt() != required_outcnt) {
  3218         record_method_not_compilable("malformed control flow");
  3219         return true;            // Not all targets reachable!
  3222     // Check that I actually visited all kids.  Unreached kids
  3223     // must be infinite loops.
  3224     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3225       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3226         record_method_not_compilable("infinite loop");
  3227         return true;            // Found unvisited kid; must be unreach
  3231   // If original bytecodes contained a mixture of floats and doubles
  3232   // check if the optimizer has made it homogenous, item (3).
  3233   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3234       frc.get_float_count() > 32 &&
  3235       frc.get_double_count() == 0 &&
  3236       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3237     set_24_bit_selection_and_mode( false,  true );
  3240   set_java_calls(frc.get_java_call_count());
  3241   set_inner_loops(frc.get_inner_loop_count());
  3243   // No infinite loops, no reason to bail out.
  3244   return false;
  3247 //-----------------------------too_many_traps----------------------------------
  3248 // Report if there are too many traps at the current method and bci.
  3249 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3250 bool Compile::too_many_traps(ciMethod* method,
  3251                              int bci,
  3252                              Deoptimization::DeoptReason reason) {
  3253   ciMethodData* md = method->method_data();
  3254   if (md->is_empty()) {
  3255     // Assume the trap has not occurred, or that it occurred only
  3256     // because of a transient condition during start-up in the interpreter.
  3257     return false;
  3259   if (md->has_trap_at(bci, reason) != 0) {
  3260     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3261     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3262     // assume the worst.
  3263     if (log())
  3264       log()->elem("observe trap='%s' count='%d'",
  3265                   Deoptimization::trap_reason_name(reason),
  3266                   md->trap_count(reason));
  3267     return true;
  3268   } else {
  3269     // Ignore method/bci and see if there have been too many globally.
  3270     return too_many_traps(reason, md);
  3274 // Less-accurate variant which does not require a method and bci.
  3275 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3276                              ciMethodData* logmd) {
  3277  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  3278     // Too many traps globally.
  3279     // Note that we use cumulative trap_count, not just md->trap_count.
  3280     if (log()) {
  3281       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3282       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3283                   Deoptimization::trap_reason_name(reason),
  3284                   mcount, trap_count(reason));
  3286     return true;
  3287   } else {
  3288     // The coast is clear.
  3289     return false;
  3293 //--------------------------too_many_recompiles--------------------------------
  3294 // Report if there are too many recompiles at the current method and bci.
  3295 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3296 // Is not eager to return true, since this will cause the compiler to use
  3297 // Action_none for a trap point, to avoid too many recompilations.
  3298 bool Compile::too_many_recompiles(ciMethod* method,
  3299                                   int bci,
  3300                                   Deoptimization::DeoptReason reason) {
  3301   ciMethodData* md = method->method_data();
  3302   if (md->is_empty()) {
  3303     // Assume the trap has not occurred, or that it occurred only
  3304     // because of a transient condition during start-up in the interpreter.
  3305     return false;
  3307   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3308   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3309   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3310   Deoptimization::DeoptReason per_bc_reason
  3311     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3312   if ((per_bc_reason == Deoptimization::Reason_none
  3313        || md->has_trap_at(bci, reason) != 0)
  3314       // The trap frequency measure we care about is the recompile count:
  3315       && md->trap_recompiled_at(bci)
  3316       && md->overflow_recompile_count() >= bc_cutoff) {
  3317     // Do not emit a trap here if it has already caused recompilations.
  3318     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3319     // assume the worst.
  3320     if (log())
  3321       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3322                   Deoptimization::trap_reason_name(reason),
  3323                   md->trap_count(reason),
  3324                   md->overflow_recompile_count());
  3325     return true;
  3326   } else if (trap_count(reason) != 0
  3327              && decompile_count() >= m_cutoff) {
  3328     // Too many recompiles globally, and we have seen this sort of trap.
  3329     // Use cumulative decompile_count, not just md->decompile_count.
  3330     if (log())
  3331       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3332                   Deoptimization::trap_reason_name(reason),
  3333                   md->trap_count(reason), trap_count(reason),
  3334                   md->decompile_count(), decompile_count());
  3335     return true;
  3336   } else {
  3337     // The coast is clear.
  3338     return false;
  3343 #ifndef PRODUCT
  3344 //------------------------------verify_graph_edges---------------------------
  3345 // Walk the Graph and verify that there is a one-to-one correspondence
  3346 // between Use-Def edges and Def-Use edges in the graph.
  3347 void Compile::verify_graph_edges(bool no_dead_code) {
  3348   if (VerifyGraphEdges) {
  3349     ResourceArea *area = Thread::current()->resource_area();
  3350     Unique_Node_List visited(area);
  3351     // Call recursive graph walk to check edges
  3352     _root->verify_edges(visited);
  3353     if (no_dead_code) {
  3354       // Now make sure that no visited node is used by an unvisited node.
  3355       bool dead_nodes = 0;
  3356       Unique_Node_List checked(area);
  3357       while (visited.size() > 0) {
  3358         Node* n = visited.pop();
  3359         checked.push(n);
  3360         for (uint i = 0; i < n->outcnt(); i++) {
  3361           Node* use = n->raw_out(i);
  3362           if (checked.member(use))  continue;  // already checked
  3363           if (visited.member(use))  continue;  // already in the graph
  3364           if (use->is_Con())        continue;  // a dead ConNode is OK
  3365           // At this point, we have found a dead node which is DU-reachable.
  3366           if (dead_nodes++ == 0)
  3367             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3368           use->dump(2);
  3369           tty->print_cr("---");
  3370           checked.push(use);  // No repeats; pretend it is now checked.
  3373       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3378 // Verify GC barriers consistency
  3379 // Currently supported:
  3380 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
  3381 void Compile::verify_barriers() {
  3382   if (UseG1GC) {
  3383     // Verify G1 pre-barriers
  3384     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
  3386     ResourceArea *area = Thread::current()->resource_area();
  3387     Unique_Node_List visited(area);
  3388     Node_List worklist(area);
  3389     // We're going to walk control flow backwards starting from the Root
  3390     worklist.push(_root);
  3391     while (worklist.size() > 0) {
  3392       Node* x = worklist.pop();
  3393       if (x == NULL || x == top()) continue;
  3394       if (visited.member(x)) {
  3395         continue;
  3396       } else {
  3397         visited.push(x);
  3400       if (x->is_Region()) {
  3401         for (uint i = 1; i < x->req(); i++) {
  3402           worklist.push(x->in(i));
  3404       } else {
  3405         worklist.push(x->in(0));
  3406         // We are looking for the pattern:
  3407         //                            /->ThreadLocal
  3408         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
  3409         //              \->ConI(0)
  3410         // We want to verify that the If and the LoadB have the same control
  3411         // See GraphKit::g1_write_barrier_pre()
  3412         if (x->is_If()) {
  3413           IfNode *iff = x->as_If();
  3414           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
  3415             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
  3416             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
  3417                 && cmp->in(1)->is_Load()) {
  3418               LoadNode* load = cmp->in(1)->as_Load();
  3419               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
  3420                   && load->in(2)->in(3)->is_Con()
  3421                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
  3423                 Node* if_ctrl = iff->in(0);
  3424                 Node* load_ctrl = load->in(0);
  3426                 if (if_ctrl != load_ctrl) {
  3427                   // Skip possible CProj->NeverBranch in infinite loops
  3428                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
  3429                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
  3430                     if_ctrl = if_ctrl->in(0)->in(0);
  3433                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
  3443 #endif
  3445 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3446 // This is required because there is not quite a 1-1 relation between the
  3447 // ciEnv and its compilation task and the Compile object.  Note that one
  3448 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3449 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3450 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3451 // by the logic in C2Compiler.
  3452 void Compile::record_failure(const char* reason) {
  3453   if (log() != NULL) {
  3454     log()->elem("failure reason='%s' phase='compile'", reason);
  3456   if (_failure_reason == NULL) {
  3457     // Record the first failure reason.
  3458     _failure_reason = reason;
  3461   EventCompilerFailure event;
  3462   if (event.should_commit()) {
  3463     event.set_compileID(Compile::compile_id());
  3464     event.set_failure(reason);
  3465     event.commit();
  3468   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3469     C->print_method(PHASE_FAILURE);
  3471   _root = NULL;  // flush the graph, too
  3474 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3475   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3476     _phase_name(name), _dolog(dolog)
  3478   if (dolog) {
  3479     C = Compile::current();
  3480     _log = C->log();
  3481   } else {
  3482     C = NULL;
  3483     _log = NULL;
  3485   if (_log != NULL) {
  3486     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3487     _log->stamp();
  3488     _log->end_head();
  3492 Compile::TracePhase::~TracePhase() {
  3494   C = Compile::current();
  3495   if (_dolog) {
  3496     _log = C->log();
  3497   } else {
  3498     _log = NULL;
  3501 #ifdef ASSERT
  3502   if (PrintIdealNodeCount) {
  3503     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3504                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3507   if (VerifyIdealNodeCount) {
  3508     Compile::current()->print_missing_nodes();
  3510 #endif
  3512   if (_log != NULL) {
  3513     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3517 //=============================================================================
  3518 // Two Constant's are equal when the type and the value are equal.
  3519 bool Compile::Constant::operator==(const Constant& other) {
  3520   if (type()          != other.type()         )  return false;
  3521   if (can_be_reused() != other.can_be_reused())  return false;
  3522   // For floating point values we compare the bit pattern.
  3523   switch (type()) {
  3524   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3525   case T_LONG:
  3526   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3527   case T_OBJECT:
  3528   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3529   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3530   case T_METADATA: return (_v._metadata == other._v._metadata);
  3531   default: ShouldNotReachHere();
  3533   return false;
  3536 static int type_to_size_in_bytes(BasicType t) {
  3537   switch (t) {
  3538   case T_LONG:    return sizeof(jlong  );
  3539   case T_FLOAT:   return sizeof(jfloat );
  3540   case T_DOUBLE:  return sizeof(jdouble);
  3541   case T_METADATA: return sizeof(Metadata*);
  3542     // We use T_VOID as marker for jump-table entries (labels) which
  3543     // need an internal word relocation.
  3544   case T_VOID:
  3545   case T_ADDRESS:
  3546   case T_OBJECT:  return sizeof(jobject);
  3549   ShouldNotReachHere();
  3550   return -1;
  3553 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3554   // sort descending
  3555   if (a->freq() > b->freq())  return -1;
  3556   if (a->freq() < b->freq())  return  1;
  3557   return 0;
  3560 void Compile::ConstantTable::calculate_offsets_and_size() {
  3561   // First, sort the array by frequencies.
  3562   _constants.sort(qsort_comparator);
  3564 #ifdef ASSERT
  3565   // Make sure all jump-table entries were sorted to the end of the
  3566   // array (they have a negative frequency).
  3567   bool found_void = false;
  3568   for (int i = 0; i < _constants.length(); i++) {
  3569     Constant con = _constants.at(i);
  3570     if (con.type() == T_VOID)
  3571       found_void = true;  // jump-tables
  3572     else
  3573       assert(!found_void, "wrong sorting");
  3575 #endif
  3577   int offset = 0;
  3578   for (int i = 0; i < _constants.length(); i++) {
  3579     Constant* con = _constants.adr_at(i);
  3581     // Align offset for type.
  3582     int typesize = type_to_size_in_bytes(con->type());
  3583     offset = align_size_up(offset, typesize);
  3584     con->set_offset(offset);   // set constant's offset
  3586     if (con->type() == T_VOID) {
  3587       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3588       offset = offset + typesize * n->outcnt();  // expand jump-table
  3589     } else {
  3590       offset = offset + typesize;
  3594   // Align size up to the next section start (which is insts; see
  3595   // CodeBuffer::align_at_start).
  3596   assert(_size == -1, "already set?");
  3597   _size = align_size_up(offset, CodeEntryAlignment);
  3600 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3601   MacroAssembler _masm(&cb);
  3602   for (int i = 0; i < _constants.length(); i++) {
  3603     Constant con = _constants.at(i);
  3604     address constant_addr;
  3605     switch (con.type()) {
  3606     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3607     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3608     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3609     case T_OBJECT: {
  3610       jobject obj = con.get_jobject();
  3611       int oop_index = _masm.oop_recorder()->find_index(obj);
  3612       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3613       break;
  3615     case T_ADDRESS: {
  3616       address addr = (address) con.get_jobject();
  3617       constant_addr = _masm.address_constant(addr);
  3618       break;
  3620     // We use T_VOID as marker for jump-table entries (labels) which
  3621     // need an internal word relocation.
  3622     case T_VOID: {
  3623       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3624       // Fill the jump-table with a dummy word.  The real value is
  3625       // filled in later in fill_jump_table.
  3626       address dummy = (address) n;
  3627       constant_addr = _masm.address_constant(dummy);
  3628       // Expand jump-table
  3629       for (uint i = 1; i < n->outcnt(); i++) {
  3630         address temp_addr = _masm.address_constant(dummy + i);
  3631         assert(temp_addr, "consts section too small");
  3633       break;
  3635     case T_METADATA: {
  3636       Metadata* obj = con.get_metadata();
  3637       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3638       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3639       break;
  3641     default: ShouldNotReachHere();
  3643     assert(constant_addr, "consts section too small");
  3644     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3648 int Compile::ConstantTable::find_offset(Constant& con) const {
  3649   int idx = _constants.find(con);
  3650   assert(idx != -1, "constant must be in constant table");
  3651   int offset = _constants.at(idx).offset();
  3652   assert(offset != -1, "constant table not emitted yet?");
  3653   return offset;
  3656 void Compile::ConstantTable::add(Constant& con) {
  3657   if (con.can_be_reused()) {
  3658     int idx = _constants.find(con);
  3659     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3660       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3661       return;
  3664   (void) _constants.append(con);
  3667 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3668   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3669   Constant con(type, value, b->_freq);
  3670   add(con);
  3671   return con;
  3674 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3675   Constant con(metadata);
  3676   add(con);
  3677   return con;
  3680 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3681   jvalue value;
  3682   BasicType type = oper->type()->basic_type();
  3683   switch (type) {
  3684   case T_LONG:    value.j = oper->constantL(); break;
  3685   case T_FLOAT:   value.f = oper->constantF(); break;
  3686   case T_DOUBLE:  value.d = oper->constantD(); break;
  3687   case T_OBJECT:
  3688   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3689   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3690   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3692   return add(n, type, value);
  3695 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3696   jvalue value;
  3697   // We can use the node pointer here to identify the right jump-table
  3698   // as this method is called from Compile::Fill_buffer right before
  3699   // the MachNodes are emitted and the jump-table is filled (means the
  3700   // MachNode pointers do not change anymore).
  3701   value.l = (jobject) n;
  3702   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3703   add(con);
  3704   return con;
  3707 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3708   // If called from Compile::scratch_emit_size do nothing.
  3709   if (Compile::current()->in_scratch_emit_size())  return;
  3711   assert(labels.is_nonempty(), "must be");
  3712   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3714   // Since MachConstantNode::constant_offset() also contains
  3715   // table_base_offset() we need to subtract the table_base_offset()
  3716   // to get the plain offset into the constant table.
  3717   int offset = n->constant_offset() - table_base_offset();
  3719   MacroAssembler _masm(&cb);
  3720   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3722   for (uint i = 0; i < n->outcnt(); i++) {
  3723     address* constant_addr = &jump_table_base[i];
  3724     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
  3725     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3726     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3730 void Compile::dump_inlining() {
  3731   if (print_inlining() || print_intrinsics()) {
  3732     // Print inlining message for candidates that we couldn't inline
  3733     // for lack of space or non constant receiver
  3734     for (int i = 0; i < _late_inlines.length(); i++) {
  3735       CallGenerator* cg = _late_inlines.at(i);
  3736       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3738     Unique_Node_List useful;
  3739     useful.push(root());
  3740     for (uint next = 0; next < useful.size(); ++next) {
  3741       Node* n  = useful.at(next);
  3742       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3743         CallNode* call = n->as_Call();
  3744         CallGenerator* cg = call->generator();
  3745         cg->print_inlining_late("receiver not constant");
  3747       uint max = n->len();
  3748       for ( uint i = 0; i < max; ++i ) {
  3749         Node *m = n->in(i);
  3750         if ( m == NULL ) continue;
  3751         useful.push(m);
  3754     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3755       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
  3760 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3761   if (n1->Opcode() < n2->Opcode())      return -1;
  3762   else if (n1->Opcode() > n2->Opcode()) return 1;
  3764   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3765   for (uint i = 1; i < n1->req(); i++) {
  3766     if (n1->in(i) < n2->in(i))      return -1;
  3767     else if (n1->in(i) > n2->in(i)) return 1;
  3770   return 0;
  3773 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3774   Node* n1 = *n1p;
  3775   Node* n2 = *n2p;
  3777   return cmp_expensive_nodes(n1, n2);
  3780 void Compile::sort_expensive_nodes() {
  3781   if (!expensive_nodes_sorted()) {
  3782     _expensive_nodes->sort(cmp_expensive_nodes);
  3786 bool Compile::expensive_nodes_sorted() const {
  3787   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3788     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3789       return false;
  3792   return true;
  3795 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3796   if (_expensive_nodes->length() == 0) {
  3797     return false;
  3800   assert(OptimizeExpensiveOps, "optimization off?");
  3802   // Take this opportunity to remove dead nodes from the list
  3803   int j = 0;
  3804   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3805     Node* n = _expensive_nodes->at(i);
  3806     if (!n->is_unreachable(igvn)) {
  3807       assert(n->is_expensive(), "should be expensive");
  3808       _expensive_nodes->at_put(j, n);
  3809       j++;
  3812   _expensive_nodes->trunc_to(j);
  3814   // Then sort the list so that similar nodes are next to each other
  3815   // and check for at least two nodes of identical kind with same data
  3816   // inputs.
  3817   sort_expensive_nodes();
  3819   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3820     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3821       return true;
  3825   return false;
  3828 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3829   if (_expensive_nodes->length() == 0) {
  3830     return;
  3833   assert(OptimizeExpensiveOps, "optimization off?");
  3835   // Sort to bring similar nodes next to each other and clear the
  3836   // control input of nodes for which there's only a single copy.
  3837   sort_expensive_nodes();
  3839   int j = 0;
  3840   int identical = 0;
  3841   int i = 0;
  3842   for (; i < _expensive_nodes->length()-1; i++) {
  3843     assert(j <= i, "can't write beyond current index");
  3844     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  3845       identical++;
  3846       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3847       continue;
  3849     if (identical > 0) {
  3850       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3851       identical = 0;
  3852     } else {
  3853       Node* n = _expensive_nodes->at(i);
  3854       igvn.hash_delete(n);
  3855       n->set_req(0, NULL);
  3856       igvn.hash_insert(n);
  3859   if (identical > 0) {
  3860     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3861   } else if (_expensive_nodes->length() >= 1) {
  3862     Node* n = _expensive_nodes->at(i);
  3863     igvn.hash_delete(n);
  3864     n->set_req(0, NULL);
  3865     igvn.hash_insert(n);
  3867   _expensive_nodes->trunc_to(j);
  3870 void Compile::add_expensive_node(Node * n) {
  3871   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  3872   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  3873   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  3874   if (OptimizeExpensiveOps) {
  3875     _expensive_nodes->append(n);
  3876   } else {
  3877     // Clear control input and let IGVN optimize expensive nodes if
  3878     // OptimizeExpensiveOps is off.
  3879     n->set_req(0, NULL);
  3883 /**
  3884  * Remove the speculative part of types and clean up the graph
  3885  */
  3886 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
  3887   if (UseTypeSpeculation) {
  3888     Unique_Node_List worklist;
  3889     worklist.push(root());
  3890     int modified = 0;
  3891     // Go over all type nodes that carry a speculative type, drop the
  3892     // speculative part of the type and enqueue the node for an igvn
  3893     // which may optimize it out.
  3894     for (uint next = 0; next < worklist.size(); ++next) {
  3895       Node *n  = worklist.at(next);
  3896       if (n->is_Type() && n->as_Type()->type()->isa_oopptr() != NULL &&
  3897           n->as_Type()->type()->is_oopptr()->speculative() != NULL) {
  3898         TypeNode* tn = n->as_Type();
  3899         const TypeOopPtr* t = tn->type()->is_oopptr();
  3900         bool in_hash = igvn.hash_delete(n);
  3901         assert(in_hash, "node should be in igvn hash table");
  3902         tn->set_type(t->remove_speculative());
  3903         igvn.hash_insert(n);
  3904         igvn._worklist.push(n); // give it a chance to go away
  3905         modified++;
  3907       uint max = n->len();
  3908       for( uint i = 0; i < max; ++i ) {
  3909         Node *m = n->in(i);
  3910         if (not_a_node(m))  continue;
  3911         worklist.push(m);
  3914     // Drop the speculative part of all types in the igvn's type table
  3915     igvn.remove_speculative_types();
  3916     if (modified > 0) {
  3917       igvn.optimize();
  3922 // Auxiliary method to support randomized stressing/fuzzing.
  3923 //
  3924 // This method can be called the arbitrary number of times, with current count
  3925 // as the argument. The logic allows selecting a single candidate from the
  3926 // running list of candidates as follows:
  3927 //    int count = 0;
  3928 //    Cand* selected = null;
  3929 //    while(cand = cand->next()) {
  3930 //      if (randomized_select(++count)) {
  3931 //        selected = cand;
  3932 //      }
  3933 //    }
  3934 //
  3935 // Including count equalizes the chances any candidate is "selected".
  3936 // This is useful when we don't have the complete list of candidates to choose
  3937 // from uniformly. In this case, we need to adjust the randomicity of the
  3938 // selection, or else we will end up biasing the selection towards the latter
  3939 // candidates.
  3940 //
  3941 // Quick back-envelope calculation shows that for the list of n candidates
  3942 // the equal probability for the candidate to persist as "best" can be
  3943 // achieved by replacing it with "next" k-th candidate with the probability
  3944 // of 1/k. It can be easily shown that by the end of the run, the
  3945 // probability for any candidate is converged to 1/n, thus giving the
  3946 // uniform distribution among all the candidates.
  3947 //
  3948 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  3949 #define RANDOMIZED_DOMAIN_POW 29
  3950 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  3951 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  3952 bool Compile::randomized_select(int count) {
  3953   assert(count > 0, "only positive");
  3954   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial