src/share/vm/opto/superword.cpp

Fri, 14 Mar 2008 15:26:33 -0700

author
kvn
date
Fri, 14 Mar 2008 15:26:33 -0700
changeset 500
99269dbf4ba8
parent 464
d5fc211aea19
child 507
f705f25597eb
permissions
-rw-r--r--

6674588: (Escape Analysis) Improve Escape Analysis code
Summary: Current EA code has several problems which have to be fixed.
Reviewed-by: jrose, sgoldman

     1 /*
     2  * Copyright 2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  */
    24 #include "incls/_precompiled.incl"
    25 #include "incls/_superword.cpp.incl"
    27 //
    28 //                  S U P E R W O R D   T R A N S F O R M
    29 //=============================================================================
    31 //------------------------------SuperWord---------------------------
    32 SuperWord::SuperWord(PhaseIdealLoop* phase) :
    33   _phase(phase),
    34   _igvn(phase->_igvn),
    35   _arena(phase->C->comp_arena()),
    36   _packset(arena(), 8,  0, NULL),         // packs for the current block
    37   _bb_idx(arena(), (int)(1.10 * phase->C->unique()), 0, 0), // node idx to index in bb
    38   _block(arena(), 8,  0, NULL),           // nodes in current block
    39   _data_entry(arena(), 8,  0, NULL),      // nodes with all inputs from outside
    40   _mem_slice_head(arena(), 8,  0, NULL),  // memory slice heads
    41   _mem_slice_tail(arena(), 8,  0, NULL),  // memory slice tails
    42   _node_info(arena(), 8,  0, SWNodeInfo::initial), // info needed per node
    43   _align_to_ref(NULL),                    // memory reference to align vectors to
    44   _disjoint_ptrs(arena(), 8,  0, OrderedPair::initial), // runtime disambiguated pointer pairs
    45   _dg(_arena),                            // dependence graph
    46   _visited(arena()),                      // visited node set
    47   _post_visited(arena()),                 // post visited node set
    48   _n_idx_list(arena(), 8),                // scratch list of (node,index) pairs
    49   _stk(arena(), 8, 0, NULL),              // scratch stack of nodes
    50   _nlist(arena(), 8, 0, NULL),            // scratch list of nodes
    51   _lpt(NULL),                             // loop tree node
    52   _lp(NULL),                              // LoopNode
    53   _bb(NULL),                              // basic block
    54   _iv(NULL)                               // induction var
    55 {}
    57 //------------------------------transform_loop---------------------------
    58 void SuperWord::transform_loop(IdealLoopTree* lpt) {
    59   assert(lpt->_head->is_CountedLoop(), "must be");
    60   CountedLoopNode *cl = lpt->_head->as_CountedLoop();
    62   if (!cl->is_main_loop() ) return; // skip normal, pre, and post loops
    64   // Check for no control flow in body (other than exit)
    65   Node *cl_exit = cl->loopexit();
    66   if (cl_exit->in(0) != lpt->_head) return;
    68   // Check for pre-loop ending with CountedLoopEnd(Bool(Cmp(x,Opaque1(limit))))
    69   CountedLoopEndNode* pre_end = get_pre_loop_end(cl);
    70   if (pre_end == NULL) return;
    71   Node *pre_opaq1 = pre_end->limit();
    72   if (pre_opaq1->Opcode() != Op_Opaque1) return;
    74   // Do vectors exist on this architecture?
    75   if (vector_width_in_bytes() == 0) return;
    77   init(); // initialize data structures
    79   set_lpt(lpt);
    80   set_lp(cl);
    82  // For now, define one block which is the entire loop body
    83   set_bb(cl);
    85   assert(_packset.length() == 0, "packset must be empty");
    86   SLP_extract();
    87 }
    89 //------------------------------SLP_extract---------------------------
    90 // Extract the superword level parallelism
    91 //
    92 // 1) A reverse post-order of nodes in the block is constructed.  By scanning
    93 //    this list from first to last, all definitions are visited before their uses.
    94 //
    95 // 2) A point-to-point dependence graph is constructed between memory references.
    96 //    This simplies the upcoming "independence" checker.
    97 //
    98 // 3) The maximum depth in the node graph from the beginning of the block
    99 //    to each node is computed.  This is used to prune the graph search
   100 //    in the independence checker.
   101 //
   102 // 4) For integer types, the necessary bit width is propagated backwards
   103 //    from stores to allow packed operations on byte, char, and short
   104 //    integers.  This reverses the promotion to type "int" that javac
   105 //    did for operations like: char c1,c2,c3;  c1 = c2 + c3.
   106 //
   107 // 5) One of the memory references is picked to be an aligned vector reference.
   108 //    The pre-loop trip count is adjusted to align this reference in the
   109 //    unrolled body.
   110 //
   111 // 6) The initial set of pack pairs is seeded with memory references.
   112 //
   113 // 7) The set of pack pairs is extended by following use->def and def->use links.
   114 //
   115 // 8) The pairs are combined into vector sized packs.
   116 //
   117 // 9) Reorder the memory slices to co-locate members of the memory packs.
   118 //
   119 // 10) Generate ideal vector nodes for the final set of packs and where necessary,
   120 //    inserting scalar promotion, vector creation from multiple scalars, and
   121 //    extraction of scalar values from vectors.
   122 //
   123 void SuperWord::SLP_extract() {
   125   // Ready the block
   127   construct_bb();
   129   dependence_graph();
   131   compute_max_depth();
   133   compute_vector_element_type();
   135   // Attempt vectorization
   137   find_adjacent_refs();
   139   extend_packlist();
   141   combine_packs();
   143   construct_my_pack_map();
   145   filter_packs();
   147   schedule();
   149   output();
   150 }
   152 //------------------------------find_adjacent_refs---------------------------
   153 // Find the adjacent memory references and create pack pairs for them.
   154 // This is the initial set of packs that will then be extended by
   155 // following use->def and def->use links.  The align positions are
   156 // assigned relative to the reference "align_to_ref"
   157 void SuperWord::find_adjacent_refs() {
   158   // Get list of memory operations
   159   Node_List memops;
   160   for (int i = 0; i < _block.length(); i++) {
   161     Node* n = _block.at(i);
   162     if (n->is_Mem() && in_bb(n) &&
   163         is_java_primitive(n->as_Mem()->memory_type())) {
   164       int align = memory_alignment(n->as_Mem(), 0);
   165       if (align != bottom_align) {
   166         memops.push(n);
   167       }
   168     }
   169   }
   170   if (memops.size() == 0) return;
   172   // Find a memory reference to align to.  The pre-loop trip count
   173   // is modified to align this reference to a vector-aligned address
   174   find_align_to_ref(memops);
   175   if (align_to_ref() == NULL) return;
   177   SWPointer align_to_ref_p(align_to_ref(), this);
   178   int offset = align_to_ref_p.offset_in_bytes();
   179   int scale  = align_to_ref_p.scale_in_bytes();
   180   int vw              = vector_width_in_bytes();
   181   int stride_sign     = (scale * iv_stride()) > 0 ? 1 : -1;
   182   int iv_adjustment   = (stride_sign * vw - (offset % vw)) % vw;
   184 #ifndef PRODUCT
   185   if (TraceSuperWord)
   186     tty->print_cr("\noffset = %d iv_adjustment = %d  elt_align = %d",
   187                   offset, iv_adjustment, align_to_ref_p.memory_size());
   188 #endif
   190   // Set alignment relative to "align_to_ref"
   191   for (int i = memops.size() - 1; i >= 0; i--) {
   192     MemNode* s = memops.at(i)->as_Mem();
   193     SWPointer p2(s, this);
   194     if (p2.comparable(align_to_ref_p)) {
   195       int align = memory_alignment(s, iv_adjustment);
   196       set_alignment(s, align);
   197     } else {
   198       memops.remove(i);
   199     }
   200   }
   202   // Create initial pack pairs of memory operations
   203   for (uint i = 0; i < memops.size(); i++) {
   204     Node* s1 = memops.at(i);
   205     for (uint j = 0; j < memops.size(); j++) {
   206       Node* s2 = memops.at(j);
   207       if (s1 != s2 && are_adjacent_refs(s1, s2)) {
   208         int align = alignment(s1);
   209         if (stmts_can_pack(s1, s2, align)) {
   210           Node_List* pair = new Node_List();
   211           pair->push(s1);
   212           pair->push(s2);
   213           _packset.append(pair);
   214         }
   215       }
   216     }
   217   }
   219 #ifndef PRODUCT
   220   if (TraceSuperWord) {
   221     tty->print_cr("\nAfter find_adjacent_refs");
   222     print_packset();
   223   }
   224 #endif
   225 }
   227 //------------------------------find_align_to_ref---------------------------
   228 // Find a memory reference to align the loop induction variable to.
   229 // Looks first at stores then at loads, looking for a memory reference
   230 // with the largest number of references similar to it.
   231 void SuperWord::find_align_to_ref(Node_List &memops) {
   232   GrowableArray<int> cmp_ct(arena(), memops.size(), memops.size(), 0);
   234   // Count number of comparable memory ops
   235   for (uint i = 0; i < memops.size(); i++) {
   236     MemNode* s1 = memops.at(i)->as_Mem();
   237     SWPointer p1(s1, this);
   238     // Discard if pre loop can't align this reference
   239     if (!ref_is_alignable(p1)) {
   240       *cmp_ct.adr_at(i) = 0;
   241       continue;
   242     }
   243     for (uint j = i+1; j < memops.size(); j++) {
   244       MemNode* s2 = memops.at(j)->as_Mem();
   245       if (isomorphic(s1, s2)) {
   246         SWPointer p2(s2, this);
   247         if (p1.comparable(p2)) {
   248           (*cmp_ct.adr_at(i))++;
   249           (*cmp_ct.adr_at(j))++;
   250         }
   251       }
   252     }
   253   }
   255   // Find Store (or Load) with the greatest number of "comparable" references
   256   int max_ct        = 0;
   257   int max_idx       = -1;
   258   int min_size      = max_jint;
   259   int min_iv_offset = max_jint;
   260   for (uint j = 0; j < memops.size(); j++) {
   261     MemNode* s = memops.at(j)->as_Mem();
   262     if (s->is_Store()) {
   263       SWPointer p(s, this);
   264       if (cmp_ct.at(j) > max_ct ||
   265           cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   266                                      data_size(s) == min_size &&
   267                                         p.offset_in_bytes() < min_iv_offset)) {
   268         max_ct = cmp_ct.at(j);
   269         max_idx = j;
   270         min_size = data_size(s);
   271         min_iv_offset = p.offset_in_bytes();
   272       }
   273     }
   274   }
   275   // If no stores, look at loads
   276   if (max_ct == 0) {
   277     for (uint j = 0; j < memops.size(); j++) {
   278       MemNode* s = memops.at(j)->as_Mem();
   279       if (s->is_Load()) {
   280         SWPointer p(s, this);
   281         if (cmp_ct.at(j) > max_ct ||
   282             cmp_ct.at(j) == max_ct && (data_size(s) < min_size ||
   283                                        data_size(s) == min_size &&
   284                                           p.offset_in_bytes() < min_iv_offset)) {
   285           max_ct = cmp_ct.at(j);
   286           max_idx = j;
   287           min_size = data_size(s);
   288           min_iv_offset = p.offset_in_bytes();
   289         }
   290       }
   291     }
   292   }
   294   if (max_ct > 0)
   295     set_align_to_ref(memops.at(max_idx)->as_Mem());
   297 #ifndef PRODUCT
   298   if (TraceSuperWord && Verbose) {
   299     tty->print_cr("\nVector memops after find_align_to_refs");
   300     for (uint i = 0; i < memops.size(); i++) {
   301       MemNode* s = memops.at(i)->as_Mem();
   302       s->dump();
   303     }
   304   }
   305 #endif
   306 }
   308 //------------------------------ref_is_alignable---------------------------
   309 // Can the preloop align the reference to position zero in the vector?
   310 bool SuperWord::ref_is_alignable(SWPointer& p) {
   311   if (!p.has_iv()) {
   312     return true;   // no induction variable
   313   }
   314   CountedLoopEndNode* pre_end = get_pre_loop_end(lp()->as_CountedLoop());
   315   assert(pre_end->stride_is_con(), "pre loop stride is constant");
   316   int preloop_stride = pre_end->stride_con();
   318   int span = preloop_stride * p.scale_in_bytes();
   320   // Stride one accesses are alignable.
   321   if (ABS(span) == p.memory_size())
   322     return true;
   324   // If initial offset from start of object is computable,
   325   // compute alignment within the vector.
   326   int vw = vector_width_in_bytes();
   327   if (vw % span == 0) {
   328     Node* init_nd = pre_end->init_trip();
   329     if (init_nd->is_Con() && p.invar() == NULL) {
   330       int init = init_nd->bottom_type()->is_int()->get_con();
   332       int init_offset = init * p.scale_in_bytes() + p.offset_in_bytes();
   333       assert(init_offset >= 0, "positive offset from object start");
   335       if (span > 0) {
   336         return (vw - (init_offset % vw)) % span == 0;
   337       } else {
   338         assert(span < 0, "nonzero stride * scale");
   339         return (init_offset % vw) % -span == 0;
   340       }
   341     }
   342   }
   343   return false;
   344 }
   346 //---------------------------dependence_graph---------------------------
   347 // Construct dependency graph.
   348 // Add dependence edges to load/store nodes for memory dependence
   349 //    A.out()->DependNode.in(1) and DependNode.out()->B.prec(x)
   350 void SuperWord::dependence_graph() {
   351   // First, assign a dependence node to each memory node
   352   for (int i = 0; i < _block.length(); i++ ) {
   353     Node *n = _block.at(i);
   354     if (n->is_Mem() || n->is_Phi() && n->bottom_type() == Type::MEMORY) {
   355       _dg.make_node(n);
   356     }
   357   }
   359   // For each memory slice, create the dependences
   360   for (int i = 0; i < _mem_slice_head.length(); i++) {
   361     Node* n      = _mem_slice_head.at(i);
   362     Node* n_tail = _mem_slice_tail.at(i);
   364     // Get slice in predecessor order (last is first)
   365     mem_slice_preds(n_tail, n, _nlist);
   367     // Make the slice dependent on the root
   368     DepMem* slice = _dg.dep(n);
   369     _dg.make_edge(_dg.root(), slice);
   371     // Create a sink for the slice
   372     DepMem* slice_sink = _dg.make_node(NULL);
   373     _dg.make_edge(slice_sink, _dg.tail());
   375     // Now visit each pair of memory ops, creating the edges
   376     for (int j = _nlist.length() - 1; j >= 0 ; j--) {
   377       Node* s1 = _nlist.at(j);
   379       // If no dependency yet, use slice
   380       if (_dg.dep(s1)->in_cnt() == 0) {
   381         _dg.make_edge(slice, s1);
   382       }
   383       SWPointer p1(s1->as_Mem(), this);
   384       bool sink_dependent = true;
   385       for (int k = j - 1; k >= 0; k--) {
   386         Node* s2 = _nlist.at(k);
   387         if (s1->is_Load() && s2->is_Load())
   388           continue;
   389         SWPointer p2(s2->as_Mem(), this);
   391         int cmp = p1.cmp(p2);
   392         if (SuperWordRTDepCheck &&
   393             p1.base() != p2.base() && p1.valid() && p2.valid()) {
   394           // Create a runtime check to disambiguate
   395           OrderedPair pp(p1.base(), p2.base());
   396           _disjoint_ptrs.append_if_missing(pp);
   397         } else if (!SWPointer::not_equal(cmp)) {
   398           // Possibly same address
   399           _dg.make_edge(s1, s2);
   400           sink_dependent = false;
   401         }
   402       }
   403       if (sink_dependent) {
   404         _dg.make_edge(s1, slice_sink);
   405       }
   406     }
   407 #ifndef PRODUCT
   408     if (TraceSuperWord) {
   409       tty->print_cr("\nDependence graph for slice: %d", n->_idx);
   410       for (int q = 0; q < _nlist.length(); q++) {
   411         _dg.print(_nlist.at(q));
   412       }
   413       tty->cr();
   414     }
   415 #endif
   416     _nlist.clear();
   417   }
   419 #ifndef PRODUCT
   420   if (TraceSuperWord) {
   421     tty->print_cr("\ndisjoint_ptrs: %s", _disjoint_ptrs.length() > 0 ? "" : "NONE");
   422     for (int r = 0; r < _disjoint_ptrs.length(); r++) {
   423       _disjoint_ptrs.at(r).print();
   424       tty->cr();
   425     }
   426     tty->cr();
   427   }
   428 #endif
   429 }
   431 //---------------------------mem_slice_preds---------------------------
   432 // Return a memory slice (node list) in predecessor order starting at "start"
   433 void SuperWord::mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds) {
   434   assert(preds.length() == 0, "start empty");
   435   Node* n = start;
   436   Node* prev = NULL;
   437   while (true) {
   438     assert(in_bb(n), "must be in block");
   439     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   440       Node* out = n->fast_out(i);
   441       if (out->is_Load()) {
   442         if (in_bb(out)) {
   443           preds.push(out);
   444         }
   445       } else {
   446         // FIXME
   447         if (out->is_MergeMem() && !in_bb(out)) {
   448           // Either unrolling is causing a memory edge not to disappear,
   449           // or need to run igvn.optimize() again before SLP
   450         } else if (out->is_Phi() && out->bottom_type() == Type::MEMORY && !in_bb(out)) {
   451           // Ditto.  Not sure what else to check further.
   452         } else if (out->Opcode() == Op_StoreCM && out->in(4) == n) {
   453           // StoreCM has an input edge used as a precedence edge.
   454           // Maybe an issue when oop stores are vectorized.
   455         } else {
   456           assert(out == prev || prev == NULL, "no branches off of store slice");
   457         }
   458       }
   459     }
   460     if (n == stop) break;
   461     preds.push(n);
   462     prev = n;
   463     n = n->in(MemNode::Memory);
   464   }
   465 }
   467 //------------------------------stmts_can_pack---------------------------
   468 // Can s1 and s2 be in a pack with s1 immediately preceeding s2 and
   469 // s1 aligned at "align"
   470 bool SuperWord::stmts_can_pack(Node* s1, Node* s2, int align) {
   471   if (isomorphic(s1, s2)) {
   472     if (independent(s1, s2)) {
   473       if (!exists_at(s1, 0) && !exists_at(s2, 1)) {
   474         if (!s1->is_Mem() || are_adjacent_refs(s1, s2)) {
   475           int s1_align = alignment(s1);
   476           int s2_align = alignment(s2);
   477           if (s1_align == top_align || s1_align == align) {
   478             if (s2_align == top_align || s2_align == align + data_size(s1)) {
   479               return true;
   480             }
   481           }
   482         }
   483       }
   484     }
   485   }
   486   return false;
   487 }
   489 //------------------------------exists_at---------------------------
   490 // Does s exist in a pack at position pos?
   491 bool SuperWord::exists_at(Node* s, uint pos) {
   492   for (int i = 0; i < _packset.length(); i++) {
   493     Node_List* p = _packset.at(i);
   494     if (p->at(pos) == s) {
   495       return true;
   496     }
   497   }
   498   return false;
   499 }
   501 //------------------------------are_adjacent_refs---------------------------
   502 // Is s1 immediately before s2 in memory?
   503 bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
   504   if (!s1->is_Mem() || !s2->is_Mem()) return false;
   505   if (!in_bb(s1)    || !in_bb(s2))    return false;
   506   // FIXME - co_locate_pack fails on Stores in different mem-slices, so
   507   // only pack memops that are in the same alias set until that's fixed.
   508   if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
   509       _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
   510     return false;
   511   SWPointer p1(s1->as_Mem(), this);
   512   SWPointer p2(s2->as_Mem(), this);
   513   if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
   514   int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
   515   return diff == data_size(s1);
   516 }
   518 //------------------------------isomorphic---------------------------
   519 // Are s1 and s2 similar?
   520 bool SuperWord::isomorphic(Node* s1, Node* s2) {
   521   if (s1->Opcode() != s2->Opcode()) return false;
   522   if (s1->req() != s2->req()) return false;
   523   if (s1->in(0) != s2->in(0)) return false;
   524   if (velt_type(s1) != velt_type(s2)) return false;
   525   return true;
   526 }
   528 //------------------------------independent---------------------------
   529 // Is there no data path from s1 to s2 or s2 to s1?
   530 bool SuperWord::independent(Node* s1, Node* s2) {
   531   //  assert(s1->Opcode() == s2->Opcode(), "check isomorphic first");
   532   int d1 = depth(s1);
   533   int d2 = depth(s2);
   534   if (d1 == d2) return s1 != s2;
   535   Node* deep    = d1 > d2 ? s1 : s2;
   536   Node* shallow = d1 > d2 ? s2 : s1;
   538   visited_clear();
   540   return independent_path(shallow, deep);
   541 }
   543 //------------------------------independent_path------------------------------
   544 // Helper for independent
   545 bool SuperWord::independent_path(Node* shallow, Node* deep, uint dp) {
   546   if (dp >= 1000) return false; // stop deep recursion
   547   visited_set(deep);
   548   int shal_depth = depth(shallow);
   549   assert(shal_depth <= depth(deep), "must be");
   550   for (DepPreds preds(deep, _dg); !preds.done(); preds.next()) {
   551     Node* pred = preds.current();
   552     if (in_bb(pred) && !visited_test(pred)) {
   553       if (shallow == pred) {
   554         return false;
   555       }
   556       if (shal_depth < depth(pred) && !independent_path(shallow, pred, dp+1)) {
   557         return false;
   558       }
   559     }
   560   }
   561   return true;
   562 }
   564 //------------------------------set_alignment---------------------------
   565 void SuperWord::set_alignment(Node* s1, Node* s2, int align) {
   566   set_alignment(s1, align);
   567   set_alignment(s2, align + data_size(s1));
   568 }
   570 //------------------------------data_size---------------------------
   571 int SuperWord::data_size(Node* s) {
   572   const Type* t = velt_type(s);
   573   BasicType  bt = t->array_element_basic_type();
   574   int bsize = type2aelembytes(bt);
   575   assert(bsize != 0, "valid size");
   576   return bsize;
   577 }
   579 //------------------------------extend_packlist---------------------------
   580 // Extend packset by following use->def and def->use links from pack members.
   581 void SuperWord::extend_packlist() {
   582   bool changed;
   583   do {
   584     changed = false;
   585     for (int i = 0; i < _packset.length(); i++) {
   586       Node_List* p = _packset.at(i);
   587       changed |= follow_use_defs(p);
   588       changed |= follow_def_uses(p);
   589     }
   590   } while (changed);
   592 #ifndef PRODUCT
   593   if (TraceSuperWord) {
   594     tty->print_cr("\nAfter extend_packlist");
   595     print_packset();
   596   }
   597 #endif
   598 }
   600 //------------------------------follow_use_defs---------------------------
   601 // Extend the packset by visiting operand definitions of nodes in pack p
   602 bool SuperWord::follow_use_defs(Node_List* p) {
   603   Node* s1 = p->at(0);
   604   Node* s2 = p->at(1);
   605   assert(p->size() == 2, "just checking");
   606   assert(s1->req() == s2->req(), "just checking");
   607   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   609   if (s1->is_Load()) return false;
   611   int align = alignment(s1);
   612   bool changed = false;
   613   int start = s1->is_Store() ? MemNode::ValueIn   : 1;
   614   int end   = s1->is_Store() ? MemNode::ValueIn+1 : s1->req();
   615   for (int j = start; j < end; j++) {
   616     Node* t1 = s1->in(j);
   617     Node* t2 = s2->in(j);
   618     if (!in_bb(t1) || !in_bb(t2))
   619       continue;
   620     if (stmts_can_pack(t1, t2, align)) {
   621       if (est_savings(t1, t2) >= 0) {
   622         Node_List* pair = new Node_List();
   623         pair->push(t1);
   624         pair->push(t2);
   625         _packset.append(pair);
   626         set_alignment(t1, t2, align);
   627         changed = true;
   628       }
   629     }
   630   }
   631   return changed;
   632 }
   634 //------------------------------follow_def_uses---------------------------
   635 // Extend the packset by visiting uses of nodes in pack p
   636 bool SuperWord::follow_def_uses(Node_List* p) {
   637   bool changed = false;
   638   Node* s1 = p->at(0);
   639   Node* s2 = p->at(1);
   640   assert(p->size() == 2, "just checking");
   641   assert(s1->req() == s2->req(), "just checking");
   642   assert(alignment(s1) + data_size(s1) == alignment(s2), "just checking");
   644   if (s1->is_Store()) return false;
   646   int align = alignment(s1);
   647   int savings = -1;
   648   Node* u1 = NULL;
   649   Node* u2 = NULL;
   650   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   651     Node* t1 = s1->fast_out(i);
   652     if (!in_bb(t1)) continue;
   653     for (DUIterator_Fast jmax, j = s2->fast_outs(jmax); j < jmax; j++) {
   654       Node* t2 = s2->fast_out(j);
   655       if (!in_bb(t2)) continue;
   656       if (!opnd_positions_match(s1, t1, s2, t2))
   657         continue;
   658       if (stmts_can_pack(t1, t2, align)) {
   659         int my_savings = est_savings(t1, t2);
   660         if (my_savings > savings) {
   661           savings = my_savings;
   662           u1 = t1;
   663           u2 = t2;
   664         }
   665       }
   666     }
   667   }
   668   if (savings >= 0) {
   669     Node_List* pair = new Node_List();
   670     pair->push(u1);
   671     pair->push(u2);
   672     _packset.append(pair);
   673     set_alignment(u1, u2, align);
   674     changed = true;
   675   }
   676   return changed;
   677 }
   679 //---------------------------opnd_positions_match-------------------------
   680 // Is the use of d1 in u1 at the same operand position as d2 in u2?
   681 bool SuperWord::opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2) {
   682   uint ct = u1->req();
   683   if (ct != u2->req()) return false;
   684   uint i1 = 0;
   685   uint i2 = 0;
   686   do {
   687     for (i1++; i1 < ct; i1++) if (u1->in(i1) == d1) break;
   688     for (i2++; i2 < ct; i2++) if (u2->in(i2) == d2) break;
   689     if (i1 != i2) {
   690       return false;
   691     }
   692   } while (i1 < ct);
   693   return true;
   694 }
   696 //------------------------------est_savings---------------------------
   697 // Estimate the savings from executing s1 and s2 as a pack
   698 int SuperWord::est_savings(Node* s1, Node* s2) {
   699   int save = 2 - 1; // 2 operations per instruction in packed form
   701   // inputs
   702   for (uint i = 1; i < s1->req(); i++) {
   703     Node* x1 = s1->in(i);
   704     Node* x2 = s2->in(i);
   705     if (x1 != x2) {
   706       if (are_adjacent_refs(x1, x2)) {
   707         save += adjacent_profit(x1, x2);
   708       } else if (!in_packset(x1, x2)) {
   709         save -= pack_cost(2);
   710       } else {
   711         save += unpack_cost(2);
   712       }
   713     }
   714   }
   716   // uses of result
   717   uint ct = 0;
   718   for (DUIterator_Fast imax, i = s1->fast_outs(imax); i < imax; i++) {
   719     Node* s1_use = s1->fast_out(i);
   720     for (int j = 0; j < _packset.length(); j++) {
   721       Node_List* p = _packset.at(j);
   722       if (p->at(0) == s1_use) {
   723         for (DUIterator_Fast kmax, k = s2->fast_outs(kmax); k < kmax; k++) {
   724           Node* s2_use = s2->fast_out(k);
   725           if (p->at(p->size()-1) == s2_use) {
   726             ct++;
   727             if (are_adjacent_refs(s1_use, s2_use)) {
   728               save += adjacent_profit(s1_use, s2_use);
   729             }
   730           }
   731         }
   732       }
   733     }
   734   }
   736   if (ct < s1->outcnt()) save += unpack_cost(1);
   737   if (ct < s2->outcnt()) save += unpack_cost(1);
   739   return save;
   740 }
   742 //------------------------------costs---------------------------
   743 int SuperWord::adjacent_profit(Node* s1, Node* s2) { return 2; }
   744 int SuperWord::pack_cost(int ct)   { return ct; }
   745 int SuperWord::unpack_cost(int ct) { return ct; }
   747 //------------------------------combine_packs---------------------------
   748 // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   749 void SuperWord::combine_packs() {
   750   bool changed;
   751   do {
   752     changed = false;
   753     for (int i = 0; i < _packset.length(); i++) {
   754       Node_List* p1 = _packset.at(i);
   755       if (p1 == NULL) continue;
   756       for (int j = 0; j < _packset.length(); j++) {
   757         Node_List* p2 = _packset.at(j);
   758         if (p2 == NULL) continue;
   759         if (p1->at(p1->size()-1) == p2->at(0)) {
   760           for (uint k = 1; k < p2->size(); k++) {
   761             p1->push(p2->at(k));
   762           }
   763           _packset.at_put(j, NULL);
   764           changed = true;
   765         }
   766       }
   767     }
   768   } while (changed);
   770   for (int i = _packset.length() - 1; i >= 0; i--) {
   771     Node_List* p1 = _packset.at(i);
   772     if (p1 == NULL) {
   773       _packset.remove_at(i);
   774     }
   775   }
   777 #ifndef PRODUCT
   778   if (TraceSuperWord) {
   779     tty->print_cr("\nAfter combine_packs");
   780     print_packset();
   781   }
   782 #endif
   783 }
   785 //-----------------------------construct_my_pack_map--------------------------
   786 // Construct the map from nodes to packs.  Only valid after the
   787 // point where a node is only in one pack (after combine_packs).
   788 void SuperWord::construct_my_pack_map() {
   789   Node_List* rslt = NULL;
   790   for (int i = 0; i < _packset.length(); i++) {
   791     Node_List* p = _packset.at(i);
   792     for (uint j = 0; j < p->size(); j++) {
   793       Node* s = p->at(j);
   794       assert(my_pack(s) == NULL, "only in one pack");
   795       set_my_pack(s, p);
   796     }
   797   }
   798 }
   800 //------------------------------filter_packs---------------------------
   801 // Remove packs that are not implemented or not profitable.
   802 void SuperWord::filter_packs() {
   804   // Remove packs that are not implemented
   805   for (int i = _packset.length() - 1; i >= 0; i--) {
   806     Node_List* pk = _packset.at(i);
   807     bool impl = implemented(pk);
   808     if (!impl) {
   809 #ifndef PRODUCT
   810       if (TraceSuperWord && Verbose) {
   811         tty->print_cr("Unimplemented");
   812         pk->at(0)->dump();
   813       }
   814 #endif
   815       remove_pack_at(i);
   816     }
   817   }
   819   // Remove packs that are not profitable
   820   bool changed;
   821   do {
   822     changed = false;
   823     for (int i = _packset.length() - 1; i >= 0; i--) {
   824       Node_List* pk = _packset.at(i);
   825       bool prof = profitable(pk);
   826       if (!prof) {
   827 #ifndef PRODUCT
   828         if (TraceSuperWord && Verbose) {
   829           tty->print_cr("Unprofitable");
   830           pk->at(0)->dump();
   831         }
   832 #endif
   833         remove_pack_at(i);
   834         changed = true;
   835       }
   836     }
   837   } while (changed);
   839 #ifndef PRODUCT
   840   if (TraceSuperWord) {
   841     tty->print_cr("\nAfter filter_packs");
   842     print_packset();
   843     tty->cr();
   844   }
   845 #endif
   846 }
   848 //------------------------------implemented---------------------------
   849 // Can code be generated for pack p?
   850 bool SuperWord::implemented(Node_List* p) {
   851   Node* p0 = p->at(0);
   852   int vopc = VectorNode::opcode(p0->Opcode(), p->size(), velt_type(p0));
   853   return vopc > 0 && Matcher::has_match_rule(vopc);
   854 }
   856 //------------------------------profitable---------------------------
   857 // For pack p, are all operands and all uses (with in the block) vector?
   858 bool SuperWord::profitable(Node_List* p) {
   859   Node* p0 = p->at(0);
   860   uint start, end;
   861   vector_opd_range(p0, &start, &end);
   863   // Return false if some input is not vector and inside block
   864   for (uint i = start; i < end; i++) {
   865     if (!is_vector_use(p0, i)) {
   866       // For now, return false if not scalar promotion case (inputs are the same.)
   867       // Later, implement PackNode and allow differring, non-vector inputs
   868       // (maybe just the ones from outside the block.)
   869       Node* p0_def = p0->in(i);
   870       for (uint j = 1; j < p->size(); j++) {
   871         Node* use = p->at(j);
   872         Node* def = use->in(i);
   873         if (p0_def != def)
   874           return false;
   875       }
   876     }
   877   }
   878   if (!p0->is_Store()) {
   879     // For now, return false if not all uses are vector.
   880     // Later, implement ExtractNode and allow non-vector uses (maybe
   881     // just the ones outside the block.)
   882     for (uint i = 0; i < p->size(); i++) {
   883       Node* def = p->at(i);
   884       for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
   885         Node* use = def->fast_out(j);
   886         for (uint k = 0; k < use->req(); k++) {
   887           Node* n = use->in(k);
   888           if (def == n) {
   889             if (!is_vector_use(use, k)) {
   890               return false;
   891             }
   892           }
   893         }
   894       }
   895     }
   896   }
   897   return true;
   898 }
   900 //------------------------------schedule---------------------------
   901 // Adjust the memory graph for the packed operations
   902 void SuperWord::schedule() {
   904   // Co-locate in the memory graph the members of each memory pack
   905   for (int i = 0; i < _packset.length(); i++) {
   906     co_locate_pack(_packset.at(i));
   907   }
   908 }
   910 //------------------------------co_locate_pack---------------------------
   911 // Within a pack, move stores down to the last executed store,
   912 // and move loads up to the first executed load.
   913 void SuperWord::co_locate_pack(Node_List* pk) {
   914   if (pk->at(0)->is_Store()) {
   915     // Push Stores down towards last executed pack member
   916     MemNode* first     = executed_first(pk)->as_Mem();
   917     MemNode* last      = executed_last(pk)->as_Mem();
   918     MemNode* insert_pt = last;
   919     MemNode* current   = last->in(MemNode::Memory)->as_Mem();
   920     while (true) {
   921       assert(in_bb(current), "stay in block");
   922       Node* my_mem = current->in(MemNode::Memory);
   923       if (in_pack(current, pk)) {
   924         // Forward users of my memory state to my input memory state
   925         _igvn.hash_delete(current);
   926         _igvn.hash_delete(my_mem);
   927         for (DUIterator i = current->outs(); current->has_out(i); i++) {
   928           Node* use = current->out(i);
   929           if (use->is_Mem()) {
   930             assert(use->in(MemNode::Memory) == current, "must be");
   931             _igvn.hash_delete(use);
   932             use->set_req(MemNode::Memory, my_mem);
   933             _igvn._worklist.push(use);
   934             --i; // deleted this edge; rescan position
   935           }
   936         }
   937         // put current immediately before insert_pt
   938         current->set_req(MemNode::Memory, insert_pt->in(MemNode::Memory));
   939         _igvn.hash_delete(insert_pt);
   940         insert_pt->set_req(MemNode::Memory, current);
   941         _igvn._worklist.push(insert_pt);
   942         _igvn._worklist.push(current);
   943         insert_pt = current;
   944       }
   945       if (current == first) break;
   946       current = my_mem->as_Mem();
   947     }
   948   } else if (pk->at(0)->is_Load()) {
   949     // Pull Loads up towards first executed pack member
   950     LoadNode* first = executed_first(pk)->as_Load();
   951     Node* first_mem = first->in(MemNode::Memory);
   952     _igvn.hash_delete(first_mem);
   953     // Give each load same memory state as first
   954     for (uint i = 0; i < pk->size(); i++) {
   955       LoadNode* ld = pk->at(i)->as_Load();
   956       _igvn.hash_delete(ld);
   957       ld->set_req(MemNode::Memory, first_mem);
   958       _igvn._worklist.push(ld);
   959     }
   960   }
   961 }
   963 //------------------------------output---------------------------
   964 // Convert packs into vector node operations
   965 void SuperWord::output() {
   966   if (_packset.length() == 0) return;
   968   // MUST ENSURE main loop's initial value is properly aligned:
   969   //  (iv_initial_value + min_iv_offset) % vector_width_in_bytes() == 0
   971   align_initial_loop_index(align_to_ref());
   973   // Insert extract (unpack) operations for scalar uses
   974   for (int i = 0; i < _packset.length(); i++) {
   975     insert_extracts(_packset.at(i));
   976   }
   978   for (int i = 0; i < _block.length(); i++) {
   979     Node* n = _block.at(i);
   980     Node_List* p = my_pack(n);
   981     if (p && n == executed_last(p)) {
   982       uint vlen = p->size();
   983       Node* vn = NULL;
   984       Node* low_adr = p->at(0);
   985       Node* first   = executed_first(p);
   986       if (n->is_Load()) {
   987         int   opc = n->Opcode();
   988         Node* ctl = n->in(MemNode::Control);
   989         Node* mem = first->in(MemNode::Memory);
   990         Node* adr = low_adr->in(MemNode::Address);
   991         const TypePtr* atyp = n->adr_type();
   992         vn = VectorLoadNode::make(_phase->C, opc, ctl, mem, adr, atyp, vlen);
   994       } else if (n->is_Store()) {
   995         // Promote value to be stored to vector
   996         VectorNode* val = vector_opd(p, MemNode::ValueIn);
   998         int   opc = n->Opcode();
   999         Node* ctl = n->in(MemNode::Control);
  1000         Node* mem = first->in(MemNode::Memory);
  1001         Node* adr = low_adr->in(MemNode::Address);
  1002         const TypePtr* atyp = n->adr_type();
  1003         vn = VectorStoreNode::make(_phase->C, opc, ctl, mem, adr, atyp, val, vlen);
  1005       } else if (n->req() == 3) {
  1006         // Promote operands to vector
  1007         Node* in1 = vector_opd(p, 1);
  1008         Node* in2 = vector_opd(p, 2);
  1009         vn = VectorNode::make(_phase->C, n->Opcode(), in1, in2, vlen, velt_type(n));
  1011       } else {
  1012         ShouldNotReachHere();
  1015       _phase->_igvn.register_new_node_with_optimizer(vn);
  1016       _phase->set_ctrl(vn, _phase->get_ctrl(p->at(0)));
  1017       for (uint j = 0; j < p->size(); j++) {
  1018         Node* pm = p->at(j);
  1019         _igvn.hash_delete(pm);
  1020         _igvn.subsume_node(pm, vn);
  1022       _igvn._worklist.push(vn);
  1027 //------------------------------vector_opd---------------------------
  1028 // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
  1029 VectorNode* SuperWord::vector_opd(Node_List* p, int opd_idx) {
  1030   Node* p0 = p->at(0);
  1031   uint vlen = p->size();
  1032   Node* opd = p0->in(opd_idx);
  1034   bool same_opd = true;
  1035   for (uint i = 1; i < vlen; i++) {
  1036     Node* pi = p->at(i);
  1037     Node* in = pi->in(opd_idx);
  1038     if (opd != in) {
  1039       same_opd = false;
  1040       break;
  1044   if (same_opd) {
  1045     if (opd->is_Vector()) {
  1046       return (VectorNode*)opd; // input is matching vector
  1048     // Convert scalar input to vector. Use p0's type because it's container
  1049     // maybe smaller than the operand's container.
  1050     const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
  1051     const Type* p0_t  = velt_type(p0);
  1052     if (p0_t->higher_equal(opd_t)) opd_t = p0_t;
  1053     VectorNode* vn    = VectorNode::scalar2vector(_phase->C, opd, vlen, opd_t);
  1055     _phase->_igvn.register_new_node_with_optimizer(vn);
  1056     _phase->set_ctrl(vn, _phase->get_ctrl(opd));
  1057     return vn;
  1060   // Insert pack operation
  1061   const Type* opd_t = velt_type(!in_bb(opd) ? p0 : opd);
  1062   PackNode* pk = PackNode::make(_phase->C, opd, opd_t);
  1064   for (uint i = 1; i < vlen; i++) {
  1065     Node* pi = p->at(i);
  1066     Node* in = pi->in(opd_idx);
  1067     assert(my_pack(in) == NULL, "Should already have been unpacked");
  1068     assert(opd_t == velt_type(!in_bb(in) ? pi : in), "all same type");
  1069     pk->add_opd(in);
  1071   _phase->_igvn.register_new_node_with_optimizer(pk);
  1072   _phase->set_ctrl(pk, _phase->get_ctrl(opd));
  1073   return pk;
  1076 //------------------------------insert_extracts---------------------------
  1077 // If a use of pack p is not a vector use, then replace the
  1078 // use with an extract operation.
  1079 void SuperWord::insert_extracts(Node_List* p) {
  1080   if (p->at(0)->is_Store()) return;
  1081   assert(_n_idx_list.is_empty(), "empty (node,index) list");
  1083   // Inspect each use of each pack member.  For each use that is
  1084   // not a vector use, replace the use with an extract operation.
  1086   for (uint i = 0; i < p->size(); i++) {
  1087     Node* def = p->at(i);
  1088     for (DUIterator_Fast jmax, j = def->fast_outs(jmax); j < jmax; j++) {
  1089       Node* use = def->fast_out(j);
  1090       for (uint k = 0; k < use->req(); k++) {
  1091         Node* n = use->in(k);
  1092         if (def == n) {
  1093           if (!is_vector_use(use, k)) {
  1094             _n_idx_list.push(use, k);
  1101   while (_n_idx_list.is_nonempty()) {
  1102     Node* use = _n_idx_list.node();
  1103     int   idx = _n_idx_list.index();
  1104     _n_idx_list.pop();
  1105     Node* def = use->in(idx);
  1107     // Insert extract operation
  1108     _igvn.hash_delete(def);
  1109     _igvn.hash_delete(use);
  1110     int def_pos = alignment(def) / data_size(def);
  1111     const Type* def_t = velt_type(def);
  1113     Node* ex = ExtractNode::make(_phase->C, def, def_pos, def_t);
  1114     _phase->_igvn.register_new_node_with_optimizer(ex);
  1115     _phase->set_ctrl(ex, _phase->get_ctrl(def));
  1116     use->set_req(idx, ex);
  1117     _igvn._worklist.push(def);
  1118     _igvn._worklist.push(use);
  1120     bb_insert_after(ex, bb_idx(def));
  1121     set_velt_type(ex, def_t);
  1125 //------------------------------is_vector_use---------------------------
  1126 // Is use->in(u_idx) a vector use?
  1127 bool SuperWord::is_vector_use(Node* use, int u_idx) {
  1128   Node_List* u_pk = my_pack(use);
  1129   if (u_pk == NULL) return false;
  1130   Node* def = use->in(u_idx);
  1131   Node_List* d_pk = my_pack(def);
  1132   if (d_pk == NULL) {
  1133     // check for scalar promotion
  1134     Node* n = u_pk->at(0)->in(u_idx);
  1135     for (uint i = 1; i < u_pk->size(); i++) {
  1136       if (u_pk->at(i)->in(u_idx) != n) return false;
  1138     return true;
  1140   if (u_pk->size() != d_pk->size())
  1141     return false;
  1142   for (uint i = 0; i < u_pk->size(); i++) {
  1143     Node* ui = u_pk->at(i);
  1144     Node* di = d_pk->at(i);
  1145     if (ui->in(u_idx) != di || alignment(ui) != alignment(di))
  1146       return false;
  1148   return true;
  1151 //------------------------------construct_bb---------------------------
  1152 // Construct reverse postorder list of block members
  1153 void SuperWord::construct_bb() {
  1154   Node* entry = bb();
  1156   assert(_stk.length() == 0,            "stk is empty");
  1157   assert(_block.length() == 0,          "block is empty");
  1158   assert(_data_entry.length() == 0,     "data_entry is empty");
  1159   assert(_mem_slice_head.length() == 0, "mem_slice_head is empty");
  1160   assert(_mem_slice_tail.length() == 0, "mem_slice_tail is empty");
  1162   // Find non-control nodes with no inputs from within block,
  1163   // create a temporary map from node _idx to bb_idx for use
  1164   // by the visited and post_visited sets,
  1165   // and count number of nodes in block.
  1166   int bb_ct = 0;
  1167   for (uint i = 0; i < lpt()->_body.size(); i++ ) {
  1168     Node *n = lpt()->_body.at(i);
  1169     set_bb_idx(n, i); // Create a temporary map
  1170     if (in_bb(n)) {
  1171       bb_ct++;
  1172       if (!n->is_CFG()) {
  1173         bool found = false;
  1174         for (uint j = 0; j < n->req(); j++) {
  1175           Node* def = n->in(j);
  1176           if (def && in_bb(def)) {
  1177             found = true;
  1178             break;
  1181         if (!found) {
  1182           assert(n != entry, "can't be entry");
  1183           _data_entry.push(n);
  1189   // Find memory slices (head and tail)
  1190   for (DUIterator_Fast imax, i = lp()->fast_outs(imax); i < imax; i++) {
  1191     Node *n = lp()->fast_out(i);
  1192     if (in_bb(n) && (n->is_Phi() && n->bottom_type() == Type::MEMORY)) {
  1193       Node* n_tail  = n->in(LoopNode::LoopBackControl);
  1194       _mem_slice_head.push(n);
  1195       _mem_slice_tail.push(n_tail);
  1199   // Create an RPO list of nodes in block
  1201   visited_clear();
  1202   post_visited_clear();
  1204   // Push all non-control nodes with no inputs from within block, then control entry
  1205   for (int j = 0; j < _data_entry.length(); j++) {
  1206     Node* n = _data_entry.at(j);
  1207     visited_set(n);
  1208     _stk.push(n);
  1210   visited_set(entry);
  1211   _stk.push(entry);
  1213   // Do a depth first walk over out edges
  1214   int rpo_idx = bb_ct - 1;
  1215   int size;
  1216   while ((size = _stk.length()) > 0) {
  1217     Node* n = _stk.top(); // Leave node on stack
  1218     if (!visited_test_set(n)) {
  1219       // forward arc in graph
  1220     } else if (!post_visited_test(n)) {
  1221       // cross or back arc
  1222       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1223         Node *use = n->fast_out(i);
  1224         if (in_bb(use) && !visited_test(use) &&
  1225             // Don't go around backedge
  1226             (!use->is_Phi() || n == entry)) {
  1227           _stk.push(use);
  1230       if (_stk.length() == size) {
  1231         // There were no additional uses, post visit node now
  1232         _stk.pop(); // Remove node from stack
  1233         assert(rpo_idx >= 0, "");
  1234         _block.at_put_grow(rpo_idx, n);
  1235         rpo_idx--;
  1236         post_visited_set(n);
  1237         assert(rpo_idx >= 0 || _stk.is_empty(), "");
  1239     } else {
  1240       _stk.pop(); // Remove post-visited node from stack
  1244   // Create real map of block indices for nodes
  1245   for (int j = 0; j < _block.length(); j++) {
  1246     Node* n = _block.at(j);
  1247     set_bb_idx(n, j);
  1250   initialize_bb(); // Ensure extra info is allocated.
  1252 #ifndef PRODUCT
  1253   if (TraceSuperWord) {
  1254     print_bb();
  1255     tty->print_cr("\ndata entry nodes: %s", _data_entry.length() > 0 ? "" : "NONE");
  1256     for (int m = 0; m < _data_entry.length(); m++) {
  1257       tty->print("%3d ", m);
  1258       _data_entry.at(m)->dump();
  1260     tty->print_cr("\nmemory slices: %s", _mem_slice_head.length() > 0 ? "" : "NONE");
  1261     for (int m = 0; m < _mem_slice_head.length(); m++) {
  1262       tty->print("%3d ", m); _mem_slice_head.at(m)->dump();
  1263       tty->print("    ");    _mem_slice_tail.at(m)->dump();
  1266 #endif
  1267   assert(rpo_idx == -1 && bb_ct == _block.length(), "all block members found");
  1270 //------------------------------initialize_bb---------------------------
  1271 // Initialize per node info
  1272 void SuperWord::initialize_bb() {
  1273   Node* last = _block.at(_block.length() - 1);
  1274   grow_node_info(bb_idx(last));
  1277 //------------------------------bb_insert_after---------------------------
  1278 // Insert n into block after pos
  1279 void SuperWord::bb_insert_after(Node* n, int pos) {
  1280   int n_pos = pos + 1;
  1281   // Make room
  1282   for (int i = _block.length() - 1; i >= n_pos; i--) {
  1283     _block.at_put_grow(i+1, _block.at(i));
  1285   for (int j = _node_info.length() - 1; j >= n_pos; j--) {
  1286     _node_info.at_put_grow(j+1, _node_info.at(j));
  1288   // Set value
  1289   _block.at_put_grow(n_pos, n);
  1290   _node_info.at_put_grow(n_pos, SWNodeInfo::initial);
  1291   // Adjust map from node->_idx to _block index
  1292   for (int i = n_pos; i < _block.length(); i++) {
  1293     set_bb_idx(_block.at(i), i);
  1297 //------------------------------compute_max_depth---------------------------
  1298 // Compute max depth for expressions from beginning of block
  1299 // Use to prune search paths during test for independence.
  1300 void SuperWord::compute_max_depth() {
  1301   int ct = 0;
  1302   bool again;
  1303   do {
  1304     again = false;
  1305     for (int i = 0; i < _block.length(); i++) {
  1306       Node* n = _block.at(i);
  1307       if (!n->is_Phi()) {
  1308         int d_orig = depth(n);
  1309         int d_in   = 0;
  1310         for (DepPreds preds(n, _dg); !preds.done(); preds.next()) {
  1311           Node* pred = preds.current();
  1312           if (in_bb(pred)) {
  1313             d_in = MAX2(d_in, depth(pred));
  1316         if (d_in + 1 != d_orig) {
  1317           set_depth(n, d_in + 1);
  1318           again = true;
  1322     ct++;
  1323   } while (again);
  1324 #ifndef PRODUCT
  1325   if (TraceSuperWord && Verbose)
  1326     tty->print_cr("compute_max_depth iterated: %d times", ct);
  1327 #endif
  1330 //-------------------------compute_vector_element_type-----------------------
  1331 // Compute necessary vector element type for expressions
  1332 // This propagates backwards a narrower integer type when the
  1333 // upper bits of the value are not needed.
  1334 // Example:  char a,b,c;  a = b + c;
  1335 // Normally the type of the add is integer, but for packed character
  1336 // operations the type of the add needs to be char.
  1337 void SuperWord::compute_vector_element_type() {
  1338 #ifndef PRODUCT
  1339   if (TraceSuperWord && Verbose)
  1340     tty->print_cr("\ncompute_velt_type:");
  1341 #endif
  1343   // Initial type
  1344   for (int i = 0; i < _block.length(); i++) {
  1345     Node* n = _block.at(i);
  1346     const Type* t  = n->is_Mem() ? Type::get_const_basic_type(n->as_Mem()->memory_type())
  1347                                  : _igvn.type(n);
  1348     const Type* vt = container_type(t);
  1349     set_velt_type(n, vt);
  1352   // Propagate narrowed type backwards through operations
  1353   // that don't depend on higher order bits
  1354   for (int i = _block.length() - 1; i >= 0; i--) {
  1355     Node* n = _block.at(i);
  1356     // Only integer types need be examined
  1357     if (n->bottom_type()->isa_int()) {
  1358       uint start, end;
  1359       vector_opd_range(n, &start, &end);
  1360       const Type* vt = velt_type(n);
  1362       for (uint j = start; j < end; j++) {
  1363         Node* in  = n->in(j);
  1364         // Don't propagate through a type conversion
  1365         if (n->bottom_type() != in->bottom_type())
  1366           continue;
  1367         switch(in->Opcode()) {
  1368         case Op_AddI:    case Op_AddL:
  1369         case Op_SubI:    case Op_SubL:
  1370         case Op_MulI:    case Op_MulL:
  1371         case Op_AndI:    case Op_AndL:
  1372         case Op_OrI:     case Op_OrL:
  1373         case Op_XorI:    case Op_XorL:
  1374         case Op_LShiftI: case Op_LShiftL:
  1375         case Op_CMoveI:  case Op_CMoveL:
  1376           if (in_bb(in)) {
  1377             bool same_type = true;
  1378             for (DUIterator_Fast kmax, k = in->fast_outs(kmax); k < kmax; k++) {
  1379               Node *use = in->fast_out(k);
  1380               if (!in_bb(use) || velt_type(use) != vt) {
  1381                 same_type = false;
  1382                 break;
  1385             if (same_type) {
  1386               set_velt_type(in, vt);
  1393 #ifndef PRODUCT
  1394   if (TraceSuperWord && Verbose) {
  1395     for (int i = 0; i < _block.length(); i++) {
  1396       Node* n = _block.at(i);
  1397       velt_type(n)->dump();
  1398       tty->print("\t");
  1399       n->dump();
  1402 #endif
  1405 //------------------------------memory_alignment---------------------------
  1406 // Alignment within a vector memory reference
  1407 int SuperWord::memory_alignment(MemNode* s, int iv_adjust_in_bytes) {
  1408   SWPointer p(s, this);
  1409   if (!p.valid()) {
  1410     return bottom_align;
  1412   int offset  = p.offset_in_bytes();
  1413   offset     += iv_adjust_in_bytes;
  1414   int off_rem = offset % vector_width_in_bytes();
  1415   int off_mod = off_rem >= 0 ? off_rem : off_rem + vector_width_in_bytes();
  1416   return off_mod;
  1419 //---------------------------container_type---------------------------
  1420 // Smallest type containing range of values
  1421 const Type* SuperWord::container_type(const Type* t) {
  1422   if (t->isa_aryptr()) {
  1423     t = t->is_aryptr()->elem();
  1425   if (t->basic_type() == T_INT) {
  1426     if (t->higher_equal(TypeInt::BOOL))  return TypeInt::BOOL;
  1427     if (t->higher_equal(TypeInt::BYTE))  return TypeInt::BYTE;
  1428     if (t->higher_equal(TypeInt::CHAR))  return TypeInt::CHAR;
  1429     if (t->higher_equal(TypeInt::SHORT)) return TypeInt::SHORT;
  1430     return TypeInt::INT;
  1432   return t;
  1435 //-------------------------vector_opd_range-----------------------
  1436 // (Start, end] half-open range defining which operands are vector
  1437 void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
  1438   switch (n->Opcode()) {
  1439   case Op_LoadB:   case Op_LoadC:
  1440   case Op_LoadI:   case Op_LoadL:
  1441   case Op_LoadF:   case Op_LoadD:
  1442   case Op_LoadP:
  1443     *start = 0;
  1444     *end   = 0;
  1445     return;
  1446   case Op_StoreB:  case Op_StoreC:
  1447   case Op_StoreI:  case Op_StoreL:
  1448   case Op_StoreF:  case Op_StoreD:
  1449   case Op_StoreP:
  1450     *start = MemNode::ValueIn;
  1451     *end   = *start + 1;
  1452     return;
  1453   case Op_LShiftI: case Op_LShiftL:
  1454     *start = 1;
  1455     *end   = 2;
  1456     return;
  1457   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
  1458     *start = 2;
  1459     *end   = n->req();
  1460     return;
  1462   *start = 1;
  1463   *end   = n->req(); // default is all operands
  1466 //------------------------------in_packset---------------------------
  1467 // Are s1 and s2 in a pack pair and ordered as s1,s2?
  1468 bool SuperWord::in_packset(Node* s1, Node* s2) {
  1469   for (int i = 0; i < _packset.length(); i++) {
  1470     Node_List* p = _packset.at(i);
  1471     assert(p->size() == 2, "must be");
  1472     if (p->at(0) == s1 && p->at(p->size()-1) == s2) {
  1473       return true;
  1476   return false;
  1479 //------------------------------in_pack---------------------------
  1480 // Is s in pack p?
  1481 Node_List* SuperWord::in_pack(Node* s, Node_List* p) {
  1482   for (uint i = 0; i < p->size(); i++) {
  1483     if (p->at(i) == s) {
  1484       return p;
  1487   return NULL;
  1490 //------------------------------remove_pack_at---------------------------
  1491 // Remove the pack at position pos in the packset
  1492 void SuperWord::remove_pack_at(int pos) {
  1493   Node_List* p = _packset.at(pos);
  1494   for (uint i = 0; i < p->size(); i++) {
  1495     Node* s = p->at(i);
  1496     set_my_pack(s, NULL);
  1498   _packset.remove_at(pos);
  1501 //------------------------------executed_first---------------------------
  1502 // Return the node executed first in pack p.  Uses the RPO block list
  1503 // to determine order.
  1504 Node* SuperWord::executed_first(Node_List* p) {
  1505   Node* n = p->at(0);
  1506   int n_rpo = bb_idx(n);
  1507   for (uint i = 1; i < p->size(); i++) {
  1508     Node* s = p->at(i);
  1509     int s_rpo = bb_idx(s);
  1510     if (s_rpo < n_rpo) {
  1511       n = s;
  1512       n_rpo = s_rpo;
  1515   return n;
  1518 //------------------------------executed_last---------------------------
  1519 // Return the node executed last in pack p.
  1520 Node* SuperWord::executed_last(Node_List* p) {
  1521   Node* n = p->at(0);
  1522   int n_rpo = bb_idx(n);
  1523   for (uint i = 1; i < p->size(); i++) {
  1524     Node* s = p->at(i);
  1525     int s_rpo = bb_idx(s);
  1526     if (s_rpo > n_rpo) {
  1527       n = s;
  1528       n_rpo = s_rpo;
  1531   return n;
  1534 //----------------------------align_initial_loop_index---------------------------
  1535 // Adjust pre-loop limit so that in main loop, a load/store reference
  1536 // to align_to_ref will be a position zero in the vector.
  1537 //   (iv + k) mod vector_align == 0
  1538 void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
  1539   CountedLoopNode *main_head = lp()->as_CountedLoop();
  1540   assert(main_head->is_main_loop(), "");
  1541   CountedLoopEndNode* pre_end = get_pre_loop_end(main_head);
  1542   assert(pre_end != NULL, "");
  1543   Node *pre_opaq1 = pre_end->limit();
  1544   assert(pre_opaq1->Opcode() == Op_Opaque1, "");
  1545   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1546   Node *pre_limit = pre_opaq->in(1);
  1548   // Where we put new limit calculations
  1549   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1551   // Ensure the original loop limit is available from the
  1552   // pre-loop Opaque1 node.
  1553   Node *orig_limit = pre_opaq->original_loop_limit();
  1554   assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
  1556   SWPointer align_to_ref_p(align_to_ref, this);
  1558   // Let l0 == original pre_limit, l == new pre_limit, V == v_align
  1559   //
  1560   // For stride > 0
  1561   //   Need l such that l > l0 && (l+k)%V == 0
  1562   //   Find n such that l = (l0 + n)
  1563   //   (l0 + n + k) % V == 0
  1564   //   n = [V - (l0 + k)%V]%V
  1565   //   new limit = l0 + [V - (l0 + k)%V]%V
  1566   // For stride < 0
  1567   //   Need l such that l < l0 && (l+k)%V == 0
  1568   //   Find n such that l = (l0 - n)
  1569   //   (l0 - n + k) % V == 0
  1570   //   n = (l0 + k)%V
  1571   //   new limit = l0 - (l0 + k)%V
  1573   int elt_size = align_to_ref_p.memory_size();
  1574   int v_align  = vector_width_in_bytes() / elt_size;
  1575   int k        = align_to_ref_p.offset_in_bytes() / elt_size;
  1577   Node *kn   = _igvn.intcon(k);
  1578   Node *limk = new (_phase->C, 3) AddINode(pre_limit, kn);
  1579   _phase->_igvn.register_new_node_with_optimizer(limk);
  1580   _phase->set_ctrl(limk, pre_ctrl);
  1581   if (align_to_ref_p.invar() != NULL) {
  1582     Node* log2_elt = _igvn.intcon(exact_log2(elt_size));
  1583     Node* aref     = new (_phase->C, 3) URShiftINode(align_to_ref_p.invar(), log2_elt);
  1584     _phase->_igvn.register_new_node_with_optimizer(aref);
  1585     _phase->set_ctrl(aref, pre_ctrl);
  1586     if (!align_to_ref_p.negate_invar()) {
  1587       limk = new (_phase->C, 3) AddINode(limk, aref);
  1588     } else {
  1589       limk = new (_phase->C, 3) SubINode(limk, aref);
  1591     _phase->_igvn.register_new_node_with_optimizer(limk);
  1592     _phase->set_ctrl(limk, pre_ctrl);
  1594   Node* va_msk = _igvn.intcon(v_align - 1);
  1595   Node* n      = new (_phase->C, 3) AndINode(limk, va_msk);
  1596   _phase->_igvn.register_new_node_with_optimizer(n);
  1597   _phase->set_ctrl(n, pre_ctrl);
  1598   Node* newlim;
  1599   if (iv_stride() > 0) {
  1600     Node* va  = _igvn.intcon(v_align);
  1601     Node* adj = new (_phase->C, 3) SubINode(va, n);
  1602     _phase->_igvn.register_new_node_with_optimizer(adj);
  1603     _phase->set_ctrl(adj, pre_ctrl);
  1604     Node* adj2 = new (_phase->C, 3) AndINode(adj, va_msk);
  1605     _phase->_igvn.register_new_node_with_optimizer(adj2);
  1606     _phase->set_ctrl(adj2, pre_ctrl);
  1607     newlim = new (_phase->C, 3) AddINode(pre_limit, adj2);
  1608   } else {
  1609     newlim = new (_phase->C, 3) SubINode(pre_limit, n);
  1611   _phase->_igvn.register_new_node_with_optimizer(newlim);
  1612   _phase->set_ctrl(newlim, pre_ctrl);
  1613   Node* constrained =
  1614     (iv_stride() > 0) ? (Node*) new (_phase->C,3) MinINode(newlim, orig_limit)
  1615                       : (Node*) new (_phase->C,3) MaxINode(newlim, orig_limit);
  1616   _phase->_igvn.register_new_node_with_optimizer(constrained);
  1617   _phase->set_ctrl(constrained, pre_ctrl);
  1618   _igvn.hash_delete(pre_opaq);
  1619   pre_opaq->set_req(1, constrained);
  1622 //----------------------------get_pre_loop_end---------------------------
  1623 // Find pre loop end from main loop.  Returns null if none.
  1624 CountedLoopEndNode* SuperWord::get_pre_loop_end(CountedLoopNode *cl) {
  1625   Node *ctrl = cl->in(LoopNode::EntryControl);
  1626   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return NULL;
  1627   Node *iffm = ctrl->in(0);
  1628   if (!iffm->is_If()) return NULL;
  1629   Node *p_f = iffm->in(0);
  1630   if (!p_f->is_IfFalse()) return NULL;
  1631   if (!p_f->in(0)->is_CountedLoopEnd()) return NULL;
  1632   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1633   if (!pre_end->loopnode()->is_pre_loop()) return NULL;
  1634   return pre_end;
  1638 //------------------------------init---------------------------
  1639 void SuperWord::init() {
  1640   _dg.init();
  1641   _packset.clear();
  1642   _disjoint_ptrs.clear();
  1643   _block.clear();
  1644   _data_entry.clear();
  1645   _mem_slice_head.clear();
  1646   _mem_slice_tail.clear();
  1647   _node_info.clear();
  1648   _align_to_ref = NULL;
  1649   _lpt = NULL;
  1650   _lp = NULL;
  1651   _bb = NULL;
  1652   _iv = NULL;
  1655 //------------------------------print_packset---------------------------
  1656 void SuperWord::print_packset() {
  1657 #ifndef PRODUCT
  1658   tty->print_cr("packset");
  1659   for (int i = 0; i < _packset.length(); i++) {
  1660     tty->print_cr("Pack: %d", i);
  1661     Node_List* p = _packset.at(i);
  1662     print_pack(p);
  1664 #endif
  1667 //------------------------------print_pack---------------------------
  1668 void SuperWord::print_pack(Node_List* p) {
  1669   for (uint i = 0; i < p->size(); i++) {
  1670     print_stmt(p->at(i));
  1674 //------------------------------print_bb---------------------------
  1675 void SuperWord::print_bb() {
  1676 #ifndef PRODUCT
  1677   tty->print_cr("\nBlock");
  1678   for (int i = 0; i < _block.length(); i++) {
  1679     Node* n = _block.at(i);
  1680     tty->print("%d ", i);
  1681     if (n) {
  1682       n->dump();
  1685 #endif
  1688 //------------------------------print_stmt---------------------------
  1689 void SuperWord::print_stmt(Node* s) {
  1690 #ifndef PRODUCT
  1691   tty->print(" align: %d \t", alignment(s));
  1692   s->dump();
  1693 #endif
  1696 //------------------------------blank---------------------------
  1697 char* SuperWord::blank(uint depth) {
  1698   static char blanks[101];
  1699   assert(depth < 101, "too deep");
  1700   for (uint i = 0; i < depth; i++) blanks[i] = ' ';
  1701   blanks[depth] = '\0';
  1702   return blanks;
  1706 //==============================SWPointer===========================
  1708 //----------------------------SWPointer------------------------
  1709 SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
  1710   _mem(mem), _slp(slp),  _base(NULL),  _adr(NULL),
  1711   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {
  1713   Node* adr = mem->in(MemNode::Address);
  1714   if (!adr->is_AddP()) {
  1715     assert(!valid(), "too complex");
  1716     return;
  1718   // Match AddP(base, AddP(ptr, k*iv [+ invariant]), constant)
  1719   Node* base = adr->in(AddPNode::Base);
  1720   for (int i = 0; i < 3; i++) {
  1721     if (!scaled_iv_plus_offset(adr->in(AddPNode::Offset))) {
  1722       assert(!valid(), "too complex");
  1723       return;
  1725     adr = adr->in(AddPNode::Address);
  1726     if (base == adr || !adr->is_AddP()) {
  1727       break; // stop looking at addp's
  1730   _base = base;
  1731   _adr  = adr;
  1732   assert(valid(), "Usable");
  1735 // Following is used to create a temporary object during
  1736 // the pattern match of an address expression.
  1737 SWPointer::SWPointer(SWPointer* p) :
  1738   _mem(p->_mem), _slp(p->_slp),  _base(NULL),  _adr(NULL),
  1739   _scale(0), _offset(0), _invar(NULL), _negate_invar(false) {}
  1741 //------------------------scaled_iv_plus_offset--------------------
  1742 // Match: k*iv + offset
  1743 // where: k is a constant that maybe zero, and
  1744 //        offset is (k2 [+/- invariant]) where k2 maybe zero and invariant is optional
  1745 bool SWPointer::scaled_iv_plus_offset(Node* n) {
  1746   if (scaled_iv(n)) {
  1747     return true;
  1749   if (offset_plus_k(n)) {
  1750     return true;
  1752   int opc = n->Opcode();
  1753   if (opc == Op_AddI) {
  1754     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2))) {
  1755       return true;
  1757     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1758       return true;
  1760   } else if (opc == Op_SubI) {
  1761     if (scaled_iv(n->in(1)) && offset_plus_k(n->in(2), true)) {
  1762       return true;
  1764     if (scaled_iv(n->in(2)) && offset_plus_k(n->in(1))) {
  1765       _scale *= -1;
  1766       return true;
  1769   return false;
  1772 //----------------------------scaled_iv------------------------
  1773 // Match: k*iv where k is a constant that's not zero
  1774 bool SWPointer::scaled_iv(Node* n) {
  1775   if (_scale != 0) {
  1776     return false;  // already found a scale
  1778   if (n == iv()) {
  1779     _scale = 1;
  1780     return true;
  1782   int opc = n->Opcode();
  1783   if (opc == Op_MulI) {
  1784     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  1785       _scale = n->in(2)->get_int();
  1786       return true;
  1787     } else if (n->in(2) == iv() && n->in(1)->is_Con()) {
  1788       _scale = n->in(1)->get_int();
  1789       return true;
  1791   } else if (opc == Op_LShiftI) {
  1792     if (n->in(1) == iv() && n->in(2)->is_Con()) {
  1793       _scale = 1 << n->in(2)->get_int();
  1794       return true;
  1796   } else if (opc == Op_ConvI2L) {
  1797     if (scaled_iv_plus_offset(n->in(1))) {
  1798       return true;
  1800   } else if (opc == Op_LShiftL) {
  1801     if (!has_iv() && _invar == NULL) {
  1802       // Need to preserve the current _offset value, so
  1803       // create a temporary object for this expression subtree.
  1804       // Hacky, so should re-engineer the address pattern match.
  1805       SWPointer tmp(this);
  1806       if (tmp.scaled_iv_plus_offset(n->in(1))) {
  1807         if (tmp._invar == NULL) {
  1808           int mult = 1 << n->in(2)->get_int();
  1809           _scale   = tmp._scale  * mult;
  1810           _offset += tmp._offset * mult;
  1811           return true;
  1816   return false;
  1819 //----------------------------offset_plus_k------------------------
  1820 // Match: offset is (k [+/- invariant])
  1821 // where k maybe zero and invariant is optional, but not both.
  1822 bool SWPointer::offset_plus_k(Node* n, bool negate) {
  1823   int opc = n->Opcode();
  1824   if (opc == Op_ConI) {
  1825     _offset += negate ? -(n->get_int()) : n->get_int();
  1826     return true;
  1827   } else if (opc == Op_ConL) {
  1828     // Okay if value fits into an int
  1829     const TypeLong* t = n->find_long_type();
  1830     if (t->higher_equal(TypeLong::INT)) {
  1831       jlong loff = n->get_long();
  1832       jint  off  = (jint)loff;
  1833       _offset += negate ? -off : loff;
  1834       return true;
  1836     return false;
  1838   if (_invar != NULL) return false; // already have an invariant
  1839   if (opc == Op_AddI) {
  1840     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  1841       _negate_invar = negate;
  1842       _invar = n->in(1);
  1843       _offset += negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  1844       return true;
  1845     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  1846       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  1847       _negate_invar = negate;
  1848       _invar = n->in(2);
  1849       return true;
  1852   if (opc == Op_SubI) {
  1853     if (n->in(2)->is_Con() && invariant(n->in(1))) {
  1854       _negate_invar = negate;
  1855       _invar = n->in(1);
  1856       _offset += !negate ? -(n->in(2)->get_int()) : n->in(2)->get_int();
  1857       return true;
  1858     } else if (n->in(1)->is_Con() && invariant(n->in(2))) {
  1859       _offset += negate ? -(n->in(1)->get_int()) : n->in(1)->get_int();
  1860       _negate_invar = !negate;
  1861       _invar = n->in(2);
  1862       return true;
  1865   if (invariant(n)) {
  1866     _negate_invar = negate;
  1867     _invar = n;
  1868     return true;
  1870   return false;
  1873 //----------------------------print------------------------
  1874 void SWPointer::print() {
  1875 #ifndef PRODUCT
  1876   tty->print("base: %d  adr: %d  scale: %d  offset: %d  invar: %c%d\n",
  1877              _base != NULL ? _base->_idx : 0,
  1878              _adr  != NULL ? _adr->_idx  : 0,
  1879              _scale, _offset,
  1880              _negate_invar?'-':'+',
  1881              _invar != NULL ? _invar->_idx : 0);
  1882 #endif
  1885 // ========================= OrderedPair =====================
  1887 const OrderedPair OrderedPair::initial;
  1889 // ========================= SWNodeInfo =====================
  1891 const SWNodeInfo SWNodeInfo::initial;
  1894 // ============================ DepGraph ===========================
  1896 //------------------------------make_node---------------------------
  1897 // Make a new dependence graph node for an ideal node.
  1898 DepMem* DepGraph::make_node(Node* node) {
  1899   DepMem* m = new (_arena) DepMem(node);
  1900   if (node != NULL) {
  1901     assert(_map.at_grow(node->_idx) == NULL, "one init only");
  1902     _map.at_put_grow(node->_idx, m);
  1904   return m;
  1907 //------------------------------make_edge---------------------------
  1908 // Make a new dependence graph edge from dpred -> dsucc
  1909 DepEdge* DepGraph::make_edge(DepMem* dpred, DepMem* dsucc) {
  1910   DepEdge* e = new (_arena) DepEdge(dpred, dsucc, dsucc->in_head(), dpred->out_head());
  1911   dpred->set_out_head(e);
  1912   dsucc->set_in_head(e);
  1913   return e;
  1916 // ========================== DepMem ========================
  1918 //------------------------------in_cnt---------------------------
  1919 int DepMem::in_cnt() {
  1920   int ct = 0;
  1921   for (DepEdge* e = _in_head; e != NULL; e = e->next_in()) ct++;
  1922   return ct;
  1925 //------------------------------out_cnt---------------------------
  1926 int DepMem::out_cnt() {
  1927   int ct = 0;
  1928   for (DepEdge* e = _out_head; e != NULL; e = e->next_out()) ct++;
  1929   return ct;
  1932 //------------------------------print-----------------------------
  1933 void DepMem::print() {
  1934 #ifndef PRODUCT
  1935   tty->print("  DepNode %d (", _node->_idx);
  1936   for (DepEdge* p = _in_head; p != NULL; p = p->next_in()) {
  1937     Node* pred = p->pred()->node();
  1938     tty->print(" %d", pred != NULL ? pred->_idx : 0);
  1940   tty->print(") [");
  1941   for (DepEdge* s = _out_head; s != NULL; s = s->next_out()) {
  1942     Node* succ = s->succ()->node();
  1943     tty->print(" %d", succ != NULL ? succ->_idx : 0);
  1945   tty->print_cr(" ]");
  1946 #endif
  1949 // =========================== DepEdge =========================
  1951 //------------------------------DepPreds---------------------------
  1952 void DepEdge::print() {
  1953 #ifndef PRODUCT
  1954   tty->print_cr("DepEdge: %d [ %d ]", _pred->node()->_idx, _succ->node()->_idx);
  1955 #endif
  1958 // =========================== DepPreds =========================
  1959 // Iterator over predecessor edges in the dependence graph.
  1961 //------------------------------DepPreds---------------------------
  1962 DepPreds::DepPreds(Node* n, DepGraph& dg) {
  1963   _n = n;
  1964   _done = false;
  1965   if (_n->is_Store() || _n->is_Load()) {
  1966     _next_idx = MemNode::Address;
  1967     _end_idx  = n->req();
  1968     _dep_next = dg.dep(_n)->in_head();
  1969   } else if (_n->is_Mem()) {
  1970     _next_idx = 0;
  1971     _end_idx  = 0;
  1972     _dep_next = dg.dep(_n)->in_head();
  1973   } else {
  1974     _next_idx = 1;
  1975     _end_idx  = _n->req();
  1976     _dep_next = NULL;
  1978   next();
  1981 //------------------------------next---------------------------
  1982 void DepPreds::next() {
  1983   if (_dep_next != NULL) {
  1984     _current  = _dep_next->pred()->node();
  1985     _dep_next = _dep_next->next_in();
  1986   } else if (_next_idx < _end_idx) {
  1987     _current  = _n->in(_next_idx++);
  1988   } else {
  1989     _done = true;
  1993 // =========================== DepSuccs =========================
  1994 // Iterator over successor edges in the dependence graph.
  1996 //------------------------------DepSuccs---------------------------
  1997 DepSuccs::DepSuccs(Node* n, DepGraph& dg) {
  1998   _n = n;
  1999   _done = false;
  2000   if (_n->is_Load()) {
  2001     _next_idx = 0;
  2002     _end_idx  = _n->outcnt();
  2003     _dep_next = dg.dep(_n)->out_head();
  2004   } else if (_n->is_Mem() || _n->is_Phi() && _n->bottom_type() == Type::MEMORY) {
  2005     _next_idx = 0;
  2006     _end_idx  = 0;
  2007     _dep_next = dg.dep(_n)->out_head();
  2008   } else {
  2009     _next_idx = 0;
  2010     _end_idx  = _n->outcnt();
  2011     _dep_next = NULL;
  2013   next();
  2016 //-------------------------------next---------------------------
  2017 void DepSuccs::next() {
  2018   if (_dep_next != NULL) {
  2019     _current  = _dep_next->succ()->node();
  2020     _dep_next = _dep_next->next_out();
  2021   } else if (_next_idx < _end_idx) {
  2022     _current  = _n->raw_out(_next_idx++);
  2023   } else {
  2024     _done = true;

mercurial