src/share/vm/opto/memnode.hpp

Fri, 14 Mar 2008 15:26:33 -0700

author
kvn
date
Fri, 14 Mar 2008 15:26:33 -0700
changeset 500
99269dbf4ba8
parent 499
b8f5ba577b02
child 509
2a9af0b9cb1c
permissions
-rw-r--r--

6674588: (Escape Analysis) Improve Escape Analysis code
Summary: Current EA code has several problems which have to be fixed.
Reviewed-by: jrose, sgoldman

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 class MultiNode;
    28 class PhaseCCP;
    29 class PhaseTransform;
    31 //------------------------------MemNode----------------------------------------
    32 // Load or Store, possibly throwing a NULL pointer exception
    33 class MemNode : public Node {
    34 protected:
    35 #ifdef ASSERT
    36   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    37 #endif
    38   virtual uint size_of() const; // Size is bigger (ASSERT only)
    39 public:
    40   enum { Control,               // When is it safe to do this load?
    41          Memory,                // Chunk of memory is being loaded from
    42          Address,               // Actually address, derived from base
    43          ValueIn,               // Value to store
    44          OopStore               // Preceeding oop store, only in StoreCM
    45   };
    46 protected:
    47   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    48     : Node(c0,c1,c2   ) {
    49     init_class_id(Class_Mem);
    50     debug_only(_adr_type=at; adr_type();)
    51   }
    52   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    53     : Node(c0,c1,c2,c3) {
    54     init_class_id(Class_Mem);
    55     debug_only(_adr_type=at; adr_type();)
    56   }
    57   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    58     : Node(c0,c1,c2,c3,c4) {
    59     init_class_id(Class_Mem);
    60     debug_only(_adr_type=at; adr_type();)
    61   }
    63 public:
    64   // Helpers for the optimizer.  Documented in memnode.cpp.
    65   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    66                                       Node* p2, AllocateNode* a2,
    67                                       PhaseTransform* phase);
    68   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    70   // This one should probably be a phase-specific function:
    71   static bool detect_dominating_control(Node* dom, Node* sub);
    73   // Is this Node a MemNode or some descendent?  Default is YES.
    74   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    76   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    78   // Shared code for Ideal methods:
    79   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    81   // Helper function for adr_type() implementations.
    82   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    84   // Raw access function, to allow copying of adr_type efficiently in
    85   // product builds and retain the debug info for debug builds.
    86   const TypePtr *raw_adr_type() const {
    87 #ifdef ASSERT
    88     return _adr_type;
    89 #else
    90     return 0;
    91 #endif
    92   }
    94   // Map a load or store opcode to its corresponding store opcode.
    95   // (Return -1 if unknown.)
    96   virtual int store_Opcode() const { return -1; }
    98   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
    99   virtual BasicType memory_type() const = 0;
   100   virtual int memory_size() const {
   101 #ifdef ASSERT
   102     return type2aelembytes(memory_type(), true);
   103 #else
   104     return type2aelembytes(memory_type());
   105 #endif
   106   }
   108   // Search through memory states which precede this node (load or store).
   109   // Look for an exact match for the address, with no intervening
   110   // aliased stores.
   111   Node* find_previous_store(PhaseTransform* phase);
   113   // Can this node (load or store) accurately see a stored value in
   114   // the given memory state?  (The state may or may not be in(Memory).)
   115   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   117 #ifndef PRODUCT
   118   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   119   virtual void dump_spec(outputStream *st) const;
   120 #endif
   121 };
   123 //------------------------------LoadNode---------------------------------------
   124 // Load value; requires Memory and Address
   125 class LoadNode : public MemNode {
   126 protected:
   127   virtual uint cmp( const Node &n ) const;
   128   virtual uint size_of() const; // Size is bigger
   129   const Type* const _type;      // What kind of value is loaded?
   130 public:
   132   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
   133     : MemNode(c,mem,adr,at), _type(rt) {
   134     init_class_id(Class_Load);
   135   }
   137   // Polymorphic factory method:
   138   static LoadNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, BasicType bt );
   140   virtual uint hash()   const;  // Check the type
   142   // Handle algebraic identities here.  If we have an identity, return the Node
   143   // we are equivalent to.  We look for Load of a Store.
   144   virtual Node *Identity( PhaseTransform *phase );
   146   // If the load is from Field memory and the pointer is non-null, we can
   147   // zero out the control input.
   148   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   150   // Recover original value from boxed values
   151   Node *eliminate_autobox(PhaseGVN *phase);
   153   // Compute a new Type for this node.  Basically we just do the pre-check,
   154   // then call the virtual add() to set the type.
   155   virtual const Type *Value( PhaseTransform *phase ) const;
   157   virtual uint ideal_reg() const;
   158   virtual const Type *bottom_type() const;
   159   // Following method is copied from TypeNode:
   160   void set_type(const Type* t) {
   161     assert(t != NULL, "sanity");
   162     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   163     *(const Type**)&_type = t;   // cast away const-ness
   164     // If this node is in the hash table, make sure it doesn't need a rehash.
   165     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   166   }
   167   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   169   // Do not match memory edge
   170   virtual uint match_edge(uint idx) const;
   172   // Map a load opcode to its corresponding store opcode.
   173   virtual int store_Opcode() const = 0;
   175   // Check if the load's memory input is a Phi node with the same control.
   176   bool is_instance_field_load_with_local_phi(Node* ctrl);
   178 #ifndef PRODUCT
   179   virtual void dump_spec(outputStream *st) const;
   180 #endif
   181 protected:
   182   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   183                                      ciKlass* klass) const;
   184 };
   186 //------------------------------LoadBNode--------------------------------------
   187 // Load a byte (8bits signed) from memory
   188 class LoadBNode : public LoadNode {
   189 public:
   190   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
   191     : LoadNode(c,mem,adr,at,ti) {}
   192   virtual int Opcode() const;
   193   virtual uint ideal_reg() const { return Op_RegI; }
   194   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   195   virtual int store_Opcode() const { return Op_StoreB; }
   196   virtual BasicType memory_type() const { return T_BYTE; }
   197 };
   199 //------------------------------LoadCNode--------------------------------------
   200 // Load a char (16bits unsigned) from memory
   201 class LoadCNode : public LoadNode {
   202 public:
   203   LoadCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
   204     : LoadNode(c,mem,adr,at,ti) {}
   205   virtual int Opcode() const;
   206   virtual uint ideal_reg() const { return Op_RegI; }
   207   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   208   virtual int store_Opcode() const { return Op_StoreC; }
   209   virtual BasicType memory_type() const { return T_CHAR; }
   210 };
   212 //------------------------------LoadINode--------------------------------------
   213 // Load an integer from memory
   214 class LoadINode : public LoadNode {
   215 public:
   216   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
   217     : LoadNode(c,mem,adr,at,ti) {}
   218   virtual int Opcode() const;
   219   virtual uint ideal_reg() const { return Op_RegI; }
   220   virtual int store_Opcode() const { return Op_StoreI; }
   221   virtual BasicType memory_type() const { return T_INT; }
   222 };
   224 //------------------------------LoadRangeNode----------------------------------
   225 // Load an array length from the array
   226 class LoadRangeNode : public LoadINode {
   227 public:
   228   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
   229     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
   230   virtual int Opcode() const;
   231   virtual const Type *Value( PhaseTransform *phase ) const;
   232   virtual Node *Identity( PhaseTransform *phase );
   233 };
   235 //------------------------------LoadLNode--------------------------------------
   236 // Load a long from memory
   237 class LoadLNode : public LoadNode {
   238   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   239   virtual uint cmp( const Node &n ) const {
   240     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   241       && LoadNode::cmp(n);
   242   }
   243   virtual uint size_of() const { return sizeof(*this); }
   244   const bool _require_atomic_access;  // is piecewise load forbidden?
   246 public:
   247   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
   248              const TypeLong *tl = TypeLong::LONG,
   249              bool require_atomic_access = false )
   250     : LoadNode(c,mem,adr,at,tl)
   251     , _require_atomic_access(require_atomic_access)
   252   {}
   253   virtual int Opcode() const;
   254   virtual uint ideal_reg() const { return Op_RegL; }
   255   virtual int store_Opcode() const { return Op_StoreL; }
   256   virtual BasicType memory_type() const { return T_LONG; }
   257   bool require_atomic_access() { return _require_atomic_access; }
   258   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
   259 #ifndef PRODUCT
   260   virtual void dump_spec(outputStream *st) const {
   261     LoadNode::dump_spec(st);
   262     if (_require_atomic_access)  st->print(" Atomic!");
   263   }
   264 #endif
   265 };
   267 //------------------------------LoadL_unalignedNode----------------------------
   268 // Load a long from unaligned memory
   269 class LoadL_unalignedNode : public LoadLNode {
   270 public:
   271   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   272     : LoadLNode(c,mem,adr,at) {}
   273   virtual int Opcode() const;
   274 };
   276 //------------------------------LoadFNode--------------------------------------
   277 // Load a float (64 bits) from memory
   278 class LoadFNode : public LoadNode {
   279 public:
   280   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
   281     : LoadNode(c,mem,adr,at,t) {}
   282   virtual int Opcode() const;
   283   virtual uint ideal_reg() const { return Op_RegF; }
   284   virtual int store_Opcode() const { return Op_StoreF; }
   285   virtual BasicType memory_type() const { return T_FLOAT; }
   286 };
   288 //------------------------------LoadDNode--------------------------------------
   289 // Load a double (64 bits) from memory
   290 class LoadDNode : public LoadNode {
   291 public:
   292   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
   293     : LoadNode(c,mem,adr,at,t) {}
   294   virtual int Opcode() const;
   295   virtual uint ideal_reg() const { return Op_RegD; }
   296   virtual int store_Opcode() const { return Op_StoreD; }
   297   virtual BasicType memory_type() const { return T_DOUBLE; }
   298 };
   300 //------------------------------LoadD_unalignedNode----------------------------
   301 // Load a double from unaligned memory
   302 class LoadD_unalignedNode : public LoadDNode {
   303 public:
   304   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   305     : LoadDNode(c,mem,adr,at) {}
   306   virtual int Opcode() const;
   307 };
   309 //------------------------------LoadPNode--------------------------------------
   310 // Load a pointer from memory (either object or array)
   311 class LoadPNode : public LoadNode {
   312 public:
   313   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
   314     : LoadNode(c,mem,adr,at,t) {}
   315   virtual int Opcode() const;
   316   virtual uint ideal_reg() const { return Op_RegP; }
   317   virtual int store_Opcode() const { return Op_StoreP; }
   318   virtual BasicType memory_type() const { return T_ADDRESS; }
   319   // depends_only_on_test is almost always true, and needs to be almost always
   320   // true to enable key hoisting & commoning optimizations.  However, for the
   321   // special case of RawPtr loads from TLS top & end, the control edge carries
   322   // the dependence preventing hoisting past a Safepoint instead of the memory
   323   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   324   // Memory; itself an unfortunate consequence of having Nodes which produce
   325   // results (new raw memory state) inside of loops preventing all manner of
   326   // other optimizations).  Basically, it's ugly but so is the alternative.
   327   // See comment in macro.cpp, around line 125 expand_allocate_common().
   328   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   329 };
   331 //------------------------------LoadKlassNode----------------------------------
   332 // Load a Klass from an object
   333 class LoadKlassNode : public LoadPNode {
   334 public:
   335   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk = TypeKlassPtr::OBJECT )
   336     : LoadPNode(c,mem,adr,at,tk) {}
   337   virtual int Opcode() const;
   338   virtual const Type *Value( PhaseTransform *phase ) const;
   339   virtual Node *Identity( PhaseTransform *phase );
   340   virtual bool depends_only_on_test() const { return true; }
   341 };
   343 //------------------------------LoadSNode--------------------------------------
   344 // Load a short (16bits signed) from memory
   345 class LoadSNode : public LoadNode {
   346 public:
   347   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
   348     : LoadNode(c,mem,adr,at,ti) {}
   349   virtual int Opcode() const;
   350   virtual uint ideal_reg() const { return Op_RegI; }
   351   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   352   virtual int store_Opcode() const { return Op_StoreC; }
   353   virtual BasicType memory_type() const { return T_SHORT; }
   354 };
   356 //------------------------------StoreNode--------------------------------------
   357 // Store value; requires Store, Address and Value
   358 class StoreNode : public MemNode {
   359 protected:
   360   virtual uint cmp( const Node &n ) const;
   361   virtual bool depends_only_on_test() const { return false; }
   363   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   364   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   366 public:
   367   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
   368     : MemNode(c,mem,adr,at,val) {
   369     init_class_id(Class_Store);
   370   }
   371   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
   372     : MemNode(c,mem,adr,at,val,oop_store) {
   373     init_class_id(Class_Store);
   374   }
   376   // Polymorphic factory method:
   377   static StoreNode* make( Compile *C, Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, BasicType bt );
   379   virtual uint hash() const;    // Check the type
   381   // If the store is to Field memory and the pointer is non-null, we can
   382   // zero out the control input.
   383   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   385   // Compute a new Type for this node.  Basically we just do the pre-check,
   386   // then call the virtual add() to set the type.
   387   virtual const Type *Value( PhaseTransform *phase ) const;
   389   // Check for identity function on memory (Load then Store at same address)
   390   virtual Node *Identity( PhaseTransform *phase );
   392   // Do not match memory edge
   393   virtual uint match_edge(uint idx) const;
   395   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   397   // Map a store opcode to its corresponding own opcode, trivially.
   398   virtual int store_Opcode() const { return Opcode(); }
   400   // have all possible loads of the value stored been optimized away?
   401   bool value_never_loaded(PhaseTransform *phase) const;
   402 };
   404 //------------------------------StoreBNode-------------------------------------
   405 // Store byte to memory
   406 class StoreBNode : public StoreNode {
   407 public:
   408   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   409   virtual int Opcode() const;
   410   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   411   virtual BasicType memory_type() const { return T_BYTE; }
   412 };
   414 //------------------------------StoreCNode-------------------------------------
   415 // Store char/short to memory
   416 class StoreCNode : public StoreNode {
   417 public:
   418   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   419   virtual int Opcode() const;
   420   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   421   virtual BasicType memory_type() const { return T_CHAR; }
   422 };
   424 //------------------------------StoreINode-------------------------------------
   425 // Store int to memory
   426 class StoreINode : public StoreNode {
   427 public:
   428   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   429   virtual int Opcode() const;
   430   virtual BasicType memory_type() const { return T_INT; }
   431 };
   433 //------------------------------StoreLNode-------------------------------------
   434 // Store long to memory
   435 class StoreLNode : public StoreNode {
   436   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   437   virtual uint cmp( const Node &n ) const {
   438     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   439       && StoreNode::cmp(n);
   440   }
   441   virtual uint size_of() const { return sizeof(*this); }
   442   const bool _require_atomic_access;  // is piecewise store forbidden?
   444 public:
   445   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   446               bool require_atomic_access = false )
   447     : StoreNode(c,mem,adr,at,val)
   448     , _require_atomic_access(require_atomic_access)
   449   {}
   450   virtual int Opcode() const;
   451   virtual BasicType memory_type() const { return T_LONG; }
   452   bool require_atomic_access() { return _require_atomic_access; }
   453   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
   454 #ifndef PRODUCT
   455   virtual void dump_spec(outputStream *st) const {
   456     StoreNode::dump_spec(st);
   457     if (_require_atomic_access)  st->print(" Atomic!");
   458   }
   459 #endif
   460 };
   462 //------------------------------StoreFNode-------------------------------------
   463 // Store float to memory
   464 class StoreFNode : public StoreNode {
   465 public:
   466   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   467   virtual int Opcode() const;
   468   virtual BasicType memory_type() const { return T_FLOAT; }
   469 };
   471 //------------------------------StoreDNode-------------------------------------
   472 // Store double to memory
   473 class StoreDNode : public StoreNode {
   474 public:
   475   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   476   virtual int Opcode() const;
   477   virtual BasicType memory_type() const { return T_DOUBLE; }
   478 };
   480 //------------------------------StorePNode-------------------------------------
   481 // Store pointer to memory
   482 class StorePNode : public StoreNode {
   483 public:
   484   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   485   virtual int Opcode() const;
   486   virtual BasicType memory_type() const { return T_ADDRESS; }
   487 };
   489 //------------------------------StoreCMNode-----------------------------------
   490 // Store card-mark byte to memory for CM
   491 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   492 // Preceeding equivalent StoreCMs may be eliminated.
   493 class StoreCMNode : public StoreNode {
   494 public:
   495   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store ) : StoreNode(c,mem,adr,at,val,oop_store) {}
   496   virtual int Opcode() const;
   497   virtual Node *Identity( PhaseTransform *phase );
   498   virtual const Type *Value( PhaseTransform *phase ) const;
   499   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   500 };
   502 //------------------------------LoadPLockedNode---------------------------------
   503 // Load-locked a pointer from memory (either object or array).
   504 // On Sparc & Intel this is implemented as a normal pointer load.
   505 // On PowerPC and friends it's a real load-locked.
   506 class LoadPLockedNode : public LoadPNode {
   507 public:
   508   LoadPLockedNode( Node *c, Node *mem, Node *adr )
   509     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
   510   virtual int Opcode() const;
   511   virtual int store_Opcode() const { return Op_StorePConditional; }
   512   virtual bool depends_only_on_test() const { return true; }
   513 };
   515 //------------------------------LoadLLockedNode---------------------------------
   516 // Load-locked a pointer from memory (either object or array).
   517 // On Sparc & Intel this is implemented as a normal long load.
   518 class LoadLLockedNode : public LoadLNode {
   519 public:
   520   LoadLLockedNode( Node *c, Node *mem, Node *adr )
   521     : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
   522   virtual int Opcode() const;
   523   virtual int store_Opcode() const { return Op_StoreLConditional; }
   524 };
   526 //------------------------------SCMemProjNode---------------------------------------
   527 // This class defines a projection of the memory  state of a store conditional node.
   528 // These nodes return a value, but also update memory.
   529 class SCMemProjNode : public ProjNode {
   530 public:
   531   enum {SCMEMPROJCON = (uint)-2};
   532   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   533   virtual int Opcode() const;
   534   virtual bool      is_CFG() const  { return false; }
   535   virtual const Type *bottom_type() const {return Type::MEMORY;}
   536   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   537   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   538   virtual const Type *Value( PhaseTransform *phase ) const;
   539 #ifndef PRODUCT
   540   virtual void dump_spec(outputStream *st) const {};
   541 #endif
   542 };
   544 //------------------------------LoadStoreNode---------------------------
   545 class LoadStoreNode : public Node {
   546 public:
   547   enum {
   548     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   549   };
   550   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   551   virtual bool depends_only_on_test() const { return false; }
   552   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
   553   virtual uint ideal_reg() const { return Op_RegI; }
   554   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   555 };
   557 //------------------------------StorePConditionalNode---------------------------
   558 // Conditionally store pointer to memory, if no change since prior
   559 // load-locked.  Sets flags for success or failure of the store.
   560 class StorePConditionalNode : public LoadStoreNode {
   561 public:
   562   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   563   virtual int Opcode() const;
   564   // Produces flags
   565   virtual uint ideal_reg() const { return Op_RegFlags; }
   566 };
   568 //------------------------------StoreLConditionalNode---------------------------
   569 // Conditionally store long to memory, if no change since prior
   570 // load-locked.  Sets flags for success or failure of the store.
   571 class StoreLConditionalNode : public LoadStoreNode {
   572 public:
   573   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
   574   virtual int Opcode() const;
   575 };
   578 //------------------------------CompareAndSwapLNode---------------------------
   579 class CompareAndSwapLNode : public LoadStoreNode {
   580 public:
   581   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   582   virtual int Opcode() const;
   583 };
   586 //------------------------------CompareAndSwapINode---------------------------
   587 class CompareAndSwapINode : public LoadStoreNode {
   588 public:
   589   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   590   virtual int Opcode() const;
   591 };
   594 //------------------------------CompareAndSwapPNode---------------------------
   595 class CompareAndSwapPNode : public LoadStoreNode {
   596 public:
   597   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
   598   virtual int Opcode() const;
   599 };
   601 //------------------------------ClearArray-------------------------------------
   602 class ClearArrayNode: public Node {
   603 public:
   604   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) {}
   605   virtual int         Opcode() const;
   606   virtual const Type *bottom_type() const { return Type::MEMORY; }
   607   // ClearArray modifies array elements, and so affects only the
   608   // array memory addressed by the bottom_type of its base address.
   609   virtual const class TypePtr *adr_type() const;
   610   virtual Node *Identity( PhaseTransform *phase );
   611   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   612   virtual uint match_edge(uint idx) const;
   614   // Clear the given area of an object or array.
   615   // The start offset must always be aligned mod BytesPerInt.
   616   // The end offset must always be aligned mod BytesPerLong.
   617   // Return the new memory.
   618   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   619                             intptr_t start_offset,
   620                             intptr_t end_offset,
   621                             PhaseGVN* phase);
   622   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   623                             intptr_t start_offset,
   624                             Node* end_offset,
   625                             PhaseGVN* phase);
   626   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   627                             Node* start_offset,
   628                             Node* end_offset,
   629                             PhaseGVN* phase);
   630 };
   632 //------------------------------StrComp-------------------------------------
   633 class StrCompNode: public Node {
   634 public:
   635   StrCompNode(Node *control,
   636               Node* char_array_mem,
   637               Node* value_mem,
   638               Node* count_mem,
   639               Node* offset_mem,
   640               Node* s1, Node* s2): Node(control,
   641                                         char_array_mem,
   642                                         value_mem,
   643                                         count_mem,
   644                                         offset_mem,
   645                                         s1, s2) {};
   646   virtual int Opcode() const;
   647   virtual bool depends_only_on_test() const { return false; }
   648   virtual const Type* bottom_type() const { return TypeInt::INT; }
   649   // a StrCompNode (conservatively) aliases with everything:
   650   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
   651   virtual uint match_edge(uint idx) const;
   652   virtual uint ideal_reg() const { return Op_RegI; }
   653   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   654 };
   656 //------------------------------MemBar-----------------------------------------
   657 // There are different flavors of Memory Barriers to match the Java Memory
   658 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
   659 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
   660 // volatile-load.  Monitor-exit and volatile-store act as Release: no
   661 // preceeding ref can be moved to after them.  We insert a MemBar-Release
   662 // before a FastUnlock or volatile-store.  All volatiles need to be
   663 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
   664 // seperate it from any following volatile-load.
   665 class MemBarNode: public MultiNode {
   666   virtual uint hash() const ;                  // { return NO_HASH; }
   667   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   669   virtual uint size_of() const { return sizeof(*this); }
   670   // Memory type this node is serializing.  Usually either rawptr or bottom.
   671   const TypePtr* _adr_type;
   673 public:
   674   enum {
   675     Precedent = TypeFunc::Parms  // optional edge to force precedence
   676   };
   677   MemBarNode(Compile* C, int alias_idx, Node* precedent);
   678   virtual int Opcode() const = 0;
   679   virtual const class TypePtr *adr_type() const { return _adr_type; }
   680   virtual const Type *Value( PhaseTransform *phase ) const;
   681   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   682   virtual uint match_edge(uint idx) const { return 0; }
   683   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
   684   virtual Node *match( const ProjNode *proj, const Matcher *m );
   685   // Factory method.  Builds a wide or narrow membar.
   686   // Optional 'precedent' becomes an extra edge if not null.
   687   static MemBarNode* make(Compile* C, int opcode,
   688                           int alias_idx = Compile::AliasIdxBot,
   689                           Node* precedent = NULL);
   690 };
   692 // "Acquire" - no following ref can move before (but earlier refs can
   693 // follow, like an early Load stalled in cache).  Requires multi-cpu
   694 // visibility.  Inserted after a volatile load or FastLock.
   695 class MemBarAcquireNode: public MemBarNode {
   696 public:
   697   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
   698     : MemBarNode(C, alias_idx, precedent) {}
   699   virtual int Opcode() const;
   700 };
   702 // "Release" - no earlier ref can move after (but later refs can move
   703 // up, like a speculative pipelined cache-hitting Load).  Requires
   704 // multi-cpu visibility.  Inserted before a volatile store or FastUnLock.
   705 class MemBarReleaseNode: public MemBarNode {
   706 public:
   707   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
   708     : MemBarNode(C, alias_idx, precedent) {}
   709   virtual int Opcode() const;
   710 };
   712 // Ordering between a volatile store and a following volatile load.
   713 // Requires multi-CPU visibility?
   714 class MemBarVolatileNode: public MemBarNode {
   715 public:
   716   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
   717     : MemBarNode(C, alias_idx, precedent) {}
   718   virtual int Opcode() const;
   719 };
   721 // Ordering within the same CPU.  Used to order unsafe memory references
   722 // inside the compiler when we lack alias info.  Not needed "outside" the
   723 // compiler because the CPU does all the ordering for us.
   724 class MemBarCPUOrderNode: public MemBarNode {
   725 public:
   726   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
   727     : MemBarNode(C, alias_idx, precedent) {}
   728   virtual int Opcode() const;
   729   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   730 };
   732 // Isolation of object setup after an AllocateNode and before next safepoint.
   733 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
   734 class InitializeNode: public MemBarNode {
   735   friend class AllocateNode;
   737   bool _is_complete;
   739 public:
   740   enum {
   741     Control    = TypeFunc::Control,
   742     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
   743     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
   744     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
   745   };
   747   InitializeNode(Compile* C, int adr_type, Node* rawoop);
   748   virtual int Opcode() const;
   749   virtual uint size_of() const { return sizeof(*this); }
   750   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
   751   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
   753   // Manage incoming memory edges via a MergeMem on in(Memory):
   754   Node* memory(uint alias_idx);
   756   // The raw memory edge coming directly from the Allocation.
   757   // The contents of this memory are *always* all-zero-bits.
   758   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
   760   // Return the corresponding allocation for this initialization (or null if none).
   761   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   762   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   763   AllocateNode* allocation();
   765   // Anything other than zeroing in this init?
   766   bool is_non_zero();
   768   // An InitializeNode must completed before macro expansion is done.
   769   // Completion requires that the AllocateNode must be followed by
   770   // initialization of the new memory to zero, then to any initializers.
   771   bool is_complete() { return _is_complete; }
   773   // Mark complete.  (Must not yet be complete.)
   774   void set_complete(PhaseGVN* phase);
   776 #ifdef ASSERT
   777   // ensure all non-degenerate stores are ordered and non-overlapping
   778   bool stores_are_sane(PhaseTransform* phase);
   779 #endif //ASSERT
   781   // See if this store can be captured; return offset where it initializes.
   782   // Return 0 if the store cannot be moved (any sort of problem).
   783   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
   785   // Capture another store; reformat it to write my internal raw memory.
   786   // Return the captured copy, else NULL if there is some sort of problem.
   787   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
   789   // Find captured store which corresponds to the range [start..start+size).
   790   // Return my own memory projection (meaning the initial zero bits)
   791   // if there is no such store.  Return NULL if there is a problem.
   792   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
   794   // Called when the associated AllocateNode is expanded into CFG.
   795   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
   796                         intptr_t header_size, Node* size_in_bytes,
   797                         PhaseGVN* phase);
   799  private:
   800   void remove_extra_zeroes();
   802   // Find out where a captured store should be placed (or already is placed).
   803   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
   804                                      PhaseTransform* phase);
   806   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
   808   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
   810   bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
   812   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
   813                                PhaseGVN* phase);
   815   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
   816 };
   818 //------------------------------MergeMem---------------------------------------
   819 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
   820 class MergeMemNode: public Node {
   821   virtual uint hash() const ;                  // { return NO_HASH; }
   822   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   823   friend class MergeMemStream;
   824   MergeMemNode(Node* def);  // clients use MergeMemNode::make
   826 public:
   827   // If the input is a whole memory state, clone it with all its slices intact.
   828   // Otherwise, make a new memory state with just that base memory input.
   829   // In either case, the result is a newly created MergeMem.
   830   static MergeMemNode* make(Compile* C, Node* base_memory);
   832   virtual int Opcode() const;
   833   virtual Node *Identity( PhaseTransform *phase );
   834   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   835   virtual uint ideal_reg() const { return NotAMachineReg; }
   836   virtual uint match_edge(uint idx) const { return 0; }
   837   virtual const RegMask &out_RegMask() const;
   838   virtual const Type *bottom_type() const { return Type::MEMORY; }
   839   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
   840   // sparse accessors
   841   // Fetch the previously stored "set_memory_at", or else the base memory.
   842   // (Caller should clone it if it is a phi-nest.)
   843   Node* memory_at(uint alias_idx) const;
   844   // set the memory, regardless of its previous value
   845   void set_memory_at(uint alias_idx, Node* n);
   846   // the "base" is the memory that provides the non-finite support
   847   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
   848   // warning: setting the base can implicitly set any of the other slices too
   849   void set_base_memory(Node* def);
   850   // sentinel value which denotes a copy of the base memory:
   851   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
   852   static Node* make_empty_memory(); // where the sentinel comes from
   853   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
   854   // hook for the iterator, to perform any necessary setup
   855   void iteration_setup(const MergeMemNode* other = NULL);
   856   // push sentinels until I am at least as long as the other (semantic no-op)
   857   void grow_to_match(const MergeMemNode* other);
   858   bool verify_sparse() const PRODUCT_RETURN0;
   859 #ifndef PRODUCT
   860   virtual void dump_spec(outputStream *st) const;
   861 #endif
   862 };
   864 class MergeMemStream : public StackObj {
   865  private:
   866   MergeMemNode*       _mm;
   867   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
   868   Node*               _mm_base;  // loop-invariant base memory of _mm
   869   int                 _idx;
   870   int                 _cnt;
   871   Node*               _mem;
   872   Node*               _mem2;
   873   int                 _cnt2;
   875   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
   876     // subsume_node will break sparseness at times, whenever a memory slice
   877     // folds down to a copy of the base ("fat") memory.  In such a case,
   878     // the raw edge will update to base, although it should be top.
   879     // This iterator will recognize either top or base_memory as an
   880     // "empty" slice.  See is_empty, is_empty2, and next below.
   881     //
   882     // The sparseness property is repaired in MergeMemNode::Ideal.
   883     // As long as access to a MergeMem goes through this iterator
   884     // or the memory_at accessor, flaws in the sparseness will
   885     // never be observed.
   886     //
   887     // Also, iteration_setup repairs sparseness.
   888     assert(mm->verify_sparse(), "please, no dups of base");
   889     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
   891     _mm  = mm;
   892     _mm_base = mm->base_memory();
   893     _mm2 = mm2;
   894     _cnt = mm->req();
   895     _idx = Compile::AliasIdxBot-1; // start at the base memory
   896     _mem = NULL;
   897     _mem2 = NULL;
   898   }
   900 #ifdef ASSERT
   901   Node* check_memory() const {
   902     if (at_base_memory())
   903       return _mm->base_memory();
   904     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
   905       return _mm->memory_at(_idx);
   906     else
   907       return _mm_base;
   908   }
   909   Node* check_memory2() const {
   910     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
   911   }
   912 #endif
   914   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
   915   void assert_synch() const {
   916     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
   917            "no side-effects except through the stream");
   918   }
   920  public:
   922   // expected usages:
   923   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
   924   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
   926   // iterate over one merge
   927   MergeMemStream(MergeMemNode* mm) {
   928     mm->iteration_setup();
   929     init(mm);
   930     debug_only(_cnt2 = 999);
   931   }
   932   // iterate in parallel over two merges
   933   // only iterates through non-empty elements of mm2
   934   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
   935     assert(mm2, "second argument must be a MergeMem also");
   936     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
   937     mm->iteration_setup(mm2);
   938     init(mm, mm2);
   939     _cnt2 = mm2->req();
   940   }
   941 #ifdef ASSERT
   942   ~MergeMemStream() {
   943     assert_synch();
   944   }
   945 #endif
   947   MergeMemNode* all_memory() const {
   948     return _mm;
   949   }
   950   Node* base_memory() const {
   951     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
   952     return _mm_base;
   953   }
   954   const MergeMemNode* all_memory2() const {
   955     assert(_mm2 != NULL, "");
   956     return _mm2;
   957   }
   958   bool at_base_memory() const {
   959     return _idx == Compile::AliasIdxBot;
   960   }
   961   int alias_idx() const {
   962     assert(_mem, "must call next 1st");
   963     return _idx;
   964   }
   966   const TypePtr* adr_type() const {
   967     return Compile::current()->get_adr_type(alias_idx());
   968   }
   970   const TypePtr* adr_type(Compile* C) const {
   971     return C->get_adr_type(alias_idx());
   972   }
   973   bool is_empty() const {
   974     assert(_mem, "must call next 1st");
   975     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
   976     return _mem->is_top();
   977   }
   978   bool is_empty2() const {
   979     assert(_mem2, "must call next 1st");
   980     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
   981     return _mem2->is_top();
   982   }
   983   Node* memory() const {
   984     assert(!is_empty(), "must not be empty");
   985     assert_synch();
   986     return _mem;
   987   }
   988   // get the current memory, regardless of empty or non-empty status
   989   Node* force_memory() const {
   990     assert(!is_empty() || !at_base_memory(), "");
   991     // Use _mm_base to defend against updates to _mem->base_memory().
   992     Node *mem = _mem->is_top() ? _mm_base : _mem;
   993     assert(mem == check_memory(), "");
   994     return mem;
   995   }
   996   Node* memory2() const {
   997     assert(_mem2 == check_memory2(), "");
   998     return _mem2;
   999   }
  1000   void set_memory(Node* mem) {
  1001     if (at_base_memory()) {
  1002       // Note that this does not change the invariant _mm_base.
  1003       _mm->set_base_memory(mem);
  1004     } else {
  1005       _mm->set_memory_at(_idx, mem);
  1007     _mem = mem;
  1008     assert_synch();
  1011   // Recover from a side effect to the MergeMemNode.
  1012   void set_memory() {
  1013     _mem = _mm->in(_idx);
  1016   bool next()  { return next(false); }
  1017   bool next2() { return next(true); }
  1019   bool next_non_empty()  { return next_non_empty(false); }
  1020   bool next_non_empty2() { return next_non_empty(true); }
  1021   // next_non_empty2 can yield states where is_empty() is true
  1023  private:
  1024   // find the next item, which might be empty
  1025   bool next(bool have_mm2) {
  1026     assert((_mm2 != NULL) == have_mm2, "use other next");
  1027     assert_synch();
  1028     if (++_idx < _cnt) {
  1029       // Note:  This iterator allows _mm to be non-sparse.
  1030       // It behaves the same whether _mem is top or base_memory.
  1031       _mem = _mm->in(_idx);
  1032       if (have_mm2)
  1033         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1034       return true;
  1036     return false;
  1039   // find the next non-empty item
  1040   bool next_non_empty(bool have_mm2) {
  1041     while (next(have_mm2)) {
  1042       if (!is_empty()) {
  1043         // make sure _mem2 is filled in sensibly
  1044         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1045         return true;
  1046       } else if (have_mm2 && !is_empty2()) {
  1047         return true;   // is_empty() == true
  1050     return false;
  1052 };
  1054 //------------------------------Prefetch---------------------------------------
  1056 // Non-faulting prefetch load.  Prefetch for many reads.
  1057 class PrefetchReadNode : public Node {
  1058 public:
  1059   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1060   virtual int Opcode() const;
  1061   virtual uint ideal_reg() const { return NotAMachineReg; }
  1062   virtual uint match_edge(uint idx) const { return idx==2; }
  1063   virtual const Type *bottom_type() const { return Type::ABIO; }
  1064 };
  1066 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1067 class PrefetchWriteNode : public Node {
  1068 public:
  1069   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1070   virtual int Opcode() const;
  1071   virtual uint ideal_reg() const { return NotAMachineReg; }
  1072   virtual uint match_edge(uint idx) const { return idx==2; }
  1073   virtual const Type *bottom_type() const { return Type::ABIO; }
  1074 };

mercurial