src/share/vm/opto/matcher.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1021
6bea93606c11
child 1063
7bb995fbd3c0
child 1077
660978a2a31a
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_matcher.cpp.incl"
    28 OptoReg::Name OptoReg::c_frame_pointer;
    32 const int Matcher::base2reg[Type::lastype] = {
    33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
    34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
    35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
    36   0, 0/*abio*/,
    37   Op_RegP /* Return address */, 0, /* the memories */
    38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
    39   0  /*bottom*/
    40 };
    42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    44 RegMask Matcher::STACK_ONLY_mask;
    45 RegMask Matcher::c_frame_ptr_mask;
    46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    49 //---------------------------Matcher-------------------------------------------
    50 Matcher::Matcher( Node_List &proj_list ) :
    51   PhaseTransform( Phase::Ins_Select ),
    52 #ifdef ASSERT
    53   _old2new_map(C->comp_arena()),
    54   _new2old_map(C->comp_arena()),
    55 #endif
    56   _shared_nodes(C->comp_arena()),
    57   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    58   _swallowed(swallowed),
    59   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    60   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    61   _must_clone(must_clone), _proj_list(proj_list),
    62   _register_save_policy(register_save_policy),
    63   _c_reg_save_policy(c_reg_save_policy),
    64   _register_save_type(register_save_type),
    65   _ruleName(ruleName),
    66   _allocation_started(false),
    67   _states_arena(Chunk::medium_size),
    68   _visited(&_states_arena),
    69   _shared(&_states_arena),
    70   _dontcare(&_states_arena) {
    71   C->set_matcher(this);
    73   idealreg2spillmask[Op_RegI] = NULL;
    74   idealreg2spillmask[Op_RegN] = NULL;
    75   idealreg2spillmask[Op_RegL] = NULL;
    76   idealreg2spillmask[Op_RegF] = NULL;
    77   idealreg2spillmask[Op_RegD] = NULL;
    78   idealreg2spillmask[Op_RegP] = NULL;
    80   idealreg2debugmask[Op_RegI] = NULL;
    81   idealreg2debugmask[Op_RegN] = NULL;
    82   idealreg2debugmask[Op_RegL] = NULL;
    83   idealreg2debugmask[Op_RegF] = NULL;
    84   idealreg2debugmask[Op_RegD] = NULL;
    85   idealreg2debugmask[Op_RegP] = NULL;
    86   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
    87 }
    89 //------------------------------warp_incoming_stk_arg------------------------
    90 // This warps a VMReg into an OptoReg::Name
    91 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
    92   OptoReg::Name warped;
    93   if( reg->is_stack() ) {  // Stack slot argument?
    94     warped = OptoReg::add(_old_SP, reg->reg2stack() );
    95     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
    96     if( warped >= _in_arg_limit )
    97       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
    98     if (!RegMask::can_represent(warped)) {
    99       // the compiler cannot represent this method's calling sequence
   100       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   101       return OptoReg::Bad;
   102     }
   103     return warped;
   104   }
   105   return OptoReg::as_OptoReg(reg);
   106 }
   108 //---------------------------compute_old_SP------------------------------------
   109 OptoReg::Name Compile::compute_old_SP() {
   110   int fixed    = fixed_slots();
   111   int preserve = in_preserve_stack_slots();
   112   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   113 }
   117 #ifdef ASSERT
   118 void Matcher::verify_new_nodes_only(Node* xroot) {
   119   // Make sure that the new graph only references new nodes
   120   ResourceMark rm;
   121   Unique_Node_List worklist;
   122   VectorSet visited(Thread::current()->resource_area());
   123   worklist.push(xroot);
   124   while (worklist.size() > 0) {
   125     Node* n = worklist.pop();
   126     visited <<= n->_idx;
   127     assert(C->node_arena()->contains(n), "dead node");
   128     for (uint j = 0; j < n->req(); j++) {
   129       Node* in = n->in(j);
   130       if (in != NULL) {
   131         assert(C->node_arena()->contains(in), "dead node");
   132         if (!visited.test(in->_idx)) {
   133           worklist.push(in);
   134         }
   135       }
   136     }
   137   }
   138 }
   139 #endif
   142 //---------------------------match---------------------------------------------
   143 void Matcher::match( ) {
   144   // One-time initialization of some register masks.
   145   init_spill_mask( C->root()->in(1) );
   146   _return_addr_mask = return_addr();
   147 #ifdef _LP64
   148   // Pointers take 2 slots in 64-bit land
   149   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   150 #endif
   152   // Map a Java-signature return type into return register-value
   153   // machine registers for 0, 1 and 2 returned values.
   154   const TypeTuple *range = C->tf()->range();
   155   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   156     // Get ideal-register return type
   157     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
   158     // Get machine return register
   159     uint sop = C->start()->Opcode();
   160     OptoRegPair regs = return_value(ireg, false);
   162     // And mask for same
   163     _return_value_mask = RegMask(regs.first());
   164     if( OptoReg::is_valid(regs.second()) )
   165       _return_value_mask.Insert(regs.second());
   166   }
   168   // ---------------
   169   // Frame Layout
   171   // Need the method signature to determine the incoming argument types,
   172   // because the types determine which registers the incoming arguments are
   173   // in, and this affects the matched code.
   174   const TypeTuple *domain = C->tf()->domain();
   175   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   176   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   177   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   178   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   179   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   180   uint i;
   181   for( i = 0; i<argcnt; i++ ) {
   182     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   183   }
   185   // Pass array of ideal registers and length to USER code (from the AD file)
   186   // that will convert this to an array of register numbers.
   187   const StartNode *start = C->start();
   188   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   189 #ifdef ASSERT
   190   // Sanity check users' calling convention.  Real handy while trying to
   191   // get the initial port correct.
   192   { for (uint i = 0; i<argcnt; i++) {
   193       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   194         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   195         _parm_regs[i].set_bad();
   196         continue;
   197       }
   198       VMReg parm_reg = vm_parm_regs[i].first();
   199       assert(parm_reg->is_valid(), "invalid arg?");
   200       if (parm_reg->is_reg()) {
   201         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   202         assert(can_be_java_arg(opto_parm_reg) ||
   203                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   204                opto_parm_reg == inline_cache_reg(),
   205                "parameters in register must be preserved by runtime stubs");
   206       }
   207       for (uint j = 0; j < i; j++) {
   208         assert(parm_reg != vm_parm_regs[j].first(),
   209                "calling conv. must produce distinct regs");
   210       }
   211     }
   212   }
   213 #endif
   215   // Do some initial frame layout.
   217   // Compute the old incoming SP (may be called FP) as
   218   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   219   _old_SP = C->compute_old_SP();
   220   assert( is_even(_old_SP), "must be even" );
   222   // Compute highest incoming stack argument as
   223   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   224   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   225   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   226   for( i = 0; i < argcnt; i++ ) {
   227     // Permit args to have no register
   228     _calling_convention_mask[i].Clear();
   229     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   230       continue;
   231     }
   232     // calling_convention returns stack arguments as a count of
   233     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   234     // the allocators point of view, taking into account all the
   235     // preserve area, locks & pad2.
   237     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   238     if( OptoReg::is_valid(reg1))
   239       _calling_convention_mask[i].Insert(reg1);
   241     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   242     if( OptoReg::is_valid(reg2))
   243       _calling_convention_mask[i].Insert(reg2);
   245     // Saved biased stack-slot register number
   246     _parm_regs[i].set_pair(reg2, reg1);
   247   }
   249   // Finally, make sure the incoming arguments take up an even number of
   250   // words, in case the arguments or locals need to contain doubleword stack
   251   // slots.  The rest of the system assumes that stack slot pairs (in
   252   // particular, in the spill area) which look aligned will in fact be
   253   // aligned relative to the stack pointer in the target machine.  Double
   254   // stack slots will always be allocated aligned.
   255   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   257   // Compute highest outgoing stack argument as
   258   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   259   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   260   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   262   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
   263     // the compiler cannot represent this method's calling sequence
   264     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   265   }
   267   if (C->failing())  return;  // bailed out on incoming arg failure
   269   // ---------------
   270   // Collect roots of matcher trees.  Every node for which
   271   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   272   // can be a valid interior of some tree.
   273   find_shared( C->root() );
   274   find_shared( C->top() );
   276   C->print_method("Before Matching");
   278   // Swap out to old-space; emptying new-space
   279   Arena *old = C->node_arena()->move_contents(C->old_arena());
   281   // Save debug and profile information for nodes in old space:
   282   _old_node_note_array = C->node_note_array();
   283   if (_old_node_note_array != NULL) {
   284     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   285                            (C->comp_arena(), _old_node_note_array->length(),
   286                             0, NULL));
   287   }
   289   // Pre-size the new_node table to avoid the need for range checks.
   290   grow_new_node_array(C->unique());
   292   // Reset node counter so MachNodes start with _idx at 0
   293   int nodes = C->unique(); // save value
   294   C->set_unique(0);
   296   // Recursively match trees from old space into new space.
   297   // Correct leaves of new-space Nodes; they point to old-space.
   298   _visited.Clear();             // Clear visit bits for xform call
   299   C->set_cached_top_node(xform( C->top(), nodes ));
   300   if (!C->failing()) {
   301     Node* xroot =        xform( C->root(), 1 );
   302     if (xroot == NULL) {
   303       Matcher::soft_match_failure();  // recursive matching process failed
   304       C->record_method_not_compilable("instruction match failed");
   305     } else {
   306       // During matching shared constants were attached to C->root()
   307       // because xroot wasn't available yet, so transfer the uses to
   308       // the xroot.
   309       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   310         Node* n = C->root()->fast_out(j);
   311         if (C->node_arena()->contains(n)) {
   312           assert(n->in(0) == C->root(), "should be control user");
   313           n->set_req(0, xroot);
   314           --j;
   315           --jmax;
   316         }
   317       }
   319       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   320 #ifdef ASSERT
   321       verify_new_nodes_only(xroot);
   322 #endif
   323     }
   324   }
   325   if (C->top() == NULL || C->root() == NULL) {
   326     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   327   }
   328   if (C->failing()) {
   329     // delete old;
   330     old->destruct_contents();
   331     return;
   332   }
   333   assert( C->top(), "" );
   334   assert( C->root(), "" );
   335   validate_null_checks();
   337   // Now smoke old-space
   338   NOT_DEBUG( old->destruct_contents() );
   340   // ------------------------
   341   // Set up save-on-entry registers
   342   Fixup_Save_On_Entry( );
   343 }
   346 //------------------------------Fixup_Save_On_Entry----------------------------
   347 // The stated purpose of this routine is to take care of save-on-entry
   348 // registers.  However, the overall goal of the Match phase is to convert into
   349 // machine-specific instructions which have RegMasks to guide allocation.
   350 // So what this procedure really does is put a valid RegMask on each input
   351 // to the machine-specific variations of all Return, TailCall and Halt
   352 // instructions.  It also adds edgs to define the save-on-entry values (and of
   353 // course gives them a mask).
   355 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   356   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   357   // Do all the pre-defined register masks
   358   rms[TypeFunc::Control  ] = RegMask::Empty;
   359   rms[TypeFunc::I_O      ] = RegMask::Empty;
   360   rms[TypeFunc::Memory   ] = RegMask::Empty;
   361   rms[TypeFunc::ReturnAdr] = ret_adr;
   362   rms[TypeFunc::FramePtr ] = fp;
   363   return rms;
   364 }
   366 //---------------------------init_first_stack_mask-----------------------------
   367 // Create the initial stack mask used by values spilling to the stack.
   368 // Disallow any debug info in outgoing argument areas by setting the
   369 // initial mask accordingly.
   370 void Matcher::init_first_stack_mask() {
   372   // Allocate storage for spill masks as masks for the appropriate load type.
   373   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*12);
   374   idealreg2spillmask[Op_RegN] = &rms[0];
   375   idealreg2spillmask[Op_RegI] = &rms[1];
   376   idealreg2spillmask[Op_RegL] = &rms[2];
   377   idealreg2spillmask[Op_RegF] = &rms[3];
   378   idealreg2spillmask[Op_RegD] = &rms[4];
   379   idealreg2spillmask[Op_RegP] = &rms[5];
   380   idealreg2debugmask[Op_RegN] = &rms[6];
   381   idealreg2debugmask[Op_RegI] = &rms[7];
   382   idealreg2debugmask[Op_RegL] = &rms[8];
   383   idealreg2debugmask[Op_RegF] = &rms[9];
   384   idealreg2debugmask[Op_RegD] = &rms[10];
   385   idealreg2debugmask[Op_RegP] = &rms[11];
   387   OptoReg::Name i;
   389   // At first, start with the empty mask
   390   C->FIRST_STACK_mask().Clear();
   392   // Add in the incoming argument area
   393   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   394   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   395     C->FIRST_STACK_mask().Insert(i);
   397   // Add in all bits past the outgoing argument area
   398   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
   399             "must be able to represent all call arguments in reg mask");
   400   init = _out_arg_limit;
   401   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   402     C->FIRST_STACK_mask().Insert(i);
   404   // Finally, set the "infinite stack" bit.
   405   C->FIRST_STACK_mask().set_AllStack();
   407   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   408 #ifdef _LP64
   409   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   410    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   411 #endif
   412   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   413    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   414   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   415    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
   416   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   417    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   418   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   419    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
   420   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   421    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   423   // Make up debug masks.  Any spill slot plus callee-save registers.
   424   // Caller-save registers are assumed to be trashable by the various
   425   // inline-cache fixup routines.
   426   *idealreg2debugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   427   *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   428   *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   429   *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   430   *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   431   *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   433   // Prevent stub compilations from attempting to reference
   434   // callee-saved registers from debug info
   435   bool exclude_soe = !Compile::current()->is_method_compilation();
   437   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   438     // registers the caller has to save do not work
   439     if( _register_save_policy[i] == 'C' ||
   440         _register_save_policy[i] == 'A' ||
   441         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   442       idealreg2debugmask[Op_RegN]->Remove(i);
   443       idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
   444       idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
   445       idealreg2debugmask[Op_RegF]->Remove(i); // masks
   446       idealreg2debugmask[Op_RegD]->Remove(i);
   447       idealreg2debugmask[Op_RegP]->Remove(i);
   448     }
   449   }
   450 }
   452 //---------------------------is_save_on_entry----------------------------------
   453 bool Matcher::is_save_on_entry( int reg ) {
   454   return
   455     _register_save_policy[reg] == 'E' ||
   456     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   457     // Also save argument registers in the trampolining stubs
   458     (C->save_argument_registers() && is_spillable_arg(reg));
   459 }
   461 //---------------------------Fixup_Save_On_Entry-------------------------------
   462 void Matcher::Fixup_Save_On_Entry( ) {
   463   init_first_stack_mask();
   465   Node *root = C->root();       // Short name for root
   466   // Count number of save-on-entry registers.
   467   uint soe_cnt = number_of_saved_registers();
   468   uint i;
   470   // Find the procedure Start Node
   471   StartNode *start = C->start();
   472   assert( start, "Expect a start node" );
   474   // Save argument registers in the trampolining stubs
   475   if( C->save_argument_registers() )
   476     for( i = 0; i < _last_Mach_Reg; i++ )
   477       if( is_spillable_arg(i) )
   478         soe_cnt++;
   480   // Input RegMask array shared by all Returns.
   481   // The type for doubles and longs has a count of 2, but
   482   // there is only 1 returned value
   483   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   484   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   485   // Returns have 0 or 1 returned values depending on call signature.
   486   // Return register is specified by return_value in the AD file.
   487   if (ret_edge_cnt > TypeFunc::Parms)
   488     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   490   // Input RegMask array shared by all Rethrows.
   491   uint reth_edge_cnt = TypeFunc::Parms+1;
   492   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   493   // Rethrow takes exception oop only, but in the argument 0 slot.
   494   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   495 #ifdef _LP64
   496   // Need two slots for ptrs in 64-bit land
   497   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   498 #endif
   500   // Input RegMask array shared by all TailCalls
   501   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   502   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   504   // Input RegMask array shared by all TailJumps
   505   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   506   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   508   // TailCalls have 2 returned values (target & moop), whose masks come
   509   // from the usual MachNode/MachOper mechanism.  Find a sample
   510   // TailCall to extract these masks and put the correct masks into
   511   // the tail_call_rms array.
   512   for( i=1; i < root->req(); i++ ) {
   513     MachReturnNode *m = root->in(i)->as_MachReturn();
   514     if( m->ideal_Opcode() == Op_TailCall ) {
   515       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   516       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   517       break;
   518     }
   519   }
   521   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   522   // from the usual MachNode/MachOper mechanism.  Find a sample
   523   // TailJump to extract these masks and put the correct masks into
   524   // the tail_jump_rms array.
   525   for( i=1; i < root->req(); i++ ) {
   526     MachReturnNode *m = root->in(i)->as_MachReturn();
   527     if( m->ideal_Opcode() == Op_TailJump ) {
   528       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   529       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   530       break;
   531     }
   532   }
   534   // Input RegMask array shared by all Halts
   535   uint halt_edge_cnt = TypeFunc::Parms;
   536   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   538   // Capture the return input masks into each exit flavor
   539   for( i=1; i < root->req(); i++ ) {
   540     MachReturnNode *exit = root->in(i)->as_MachReturn();
   541     switch( exit->ideal_Opcode() ) {
   542       case Op_Return   : exit->_in_rms = ret_rms;  break;
   543       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   544       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   545       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   546       case Op_Halt     : exit->_in_rms = halt_rms; break;
   547       default          : ShouldNotReachHere();
   548     }
   549   }
   551   // Next unused projection number from Start.
   552   int proj_cnt = C->tf()->domain()->cnt();
   554   // Do all the save-on-entry registers.  Make projections from Start for
   555   // them, and give them a use at the exit points.  To the allocator, they
   556   // look like incoming register arguments.
   557   for( i = 0; i < _last_Mach_Reg; i++ ) {
   558     if( is_save_on_entry(i) ) {
   560       // Add the save-on-entry to the mask array
   561       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   562       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   563       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   564       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   565       // Halts need the SOE registers, but only in the stack as debug info.
   566       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   567       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   569       Node *mproj;
   571       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   572       // into a single RegD.
   573       if( (i&1) == 0 &&
   574           _register_save_type[i  ] == Op_RegF &&
   575           _register_save_type[i+1] == Op_RegF &&
   576           is_save_on_entry(i+1) ) {
   577         // Add other bit for double
   578         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   579         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   580         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   581         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   582         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   583         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   584         proj_cnt += 2;          // Skip 2 for doubles
   585       }
   586       else if( (i&1) == 1 &&    // Else check for high half of double
   587                _register_save_type[i-1] == Op_RegF &&
   588                _register_save_type[i  ] == Op_RegF &&
   589                is_save_on_entry(i-1) ) {
   590         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   591         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   592         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   593         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   594         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   595         mproj = C->top();
   596       }
   597       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   598       // into a single RegL.
   599       else if( (i&1) == 0 &&
   600           _register_save_type[i  ] == Op_RegI &&
   601           _register_save_type[i+1] == Op_RegI &&
   602         is_save_on_entry(i+1) ) {
   603         // Add other bit for long
   604         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   605         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   606         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   607         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   608         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   609         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   610         proj_cnt += 2;          // Skip 2 for longs
   611       }
   612       else if( (i&1) == 1 &&    // Else check for high half of long
   613                _register_save_type[i-1] == Op_RegI &&
   614                _register_save_type[i  ] == Op_RegI &&
   615                is_save_on_entry(i-1) ) {
   616         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   617         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   618         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   619         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   620         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   621         mproj = C->top();
   622       } else {
   623         // Make a projection for it off the Start
   624         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   625       }
   627       ret_edge_cnt ++;
   628       reth_edge_cnt ++;
   629       tail_call_edge_cnt ++;
   630       tail_jump_edge_cnt ++;
   631       halt_edge_cnt ++;
   633       // Add a use of the SOE register to all exit paths
   634       for( uint j=1; j < root->req(); j++ )
   635         root->in(j)->add_req(mproj);
   636     } // End of if a save-on-entry register
   637   } // End of for all machine registers
   638 }
   640 //------------------------------init_spill_mask--------------------------------
   641 void Matcher::init_spill_mask( Node *ret ) {
   642   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   644   OptoReg::c_frame_pointer = c_frame_pointer();
   645   c_frame_ptr_mask = c_frame_pointer();
   646 #ifdef _LP64
   647   // pointers are twice as big
   648   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   649 #endif
   651   // Start at OptoReg::stack0()
   652   STACK_ONLY_mask.Clear();
   653   OptoReg::Name init = OptoReg::stack2reg(0);
   654   // STACK_ONLY_mask is all stack bits
   655   OptoReg::Name i;
   656   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   657     STACK_ONLY_mask.Insert(i);
   658   // Also set the "infinite stack" bit.
   659   STACK_ONLY_mask.set_AllStack();
   661   // Copy the register names over into the shared world
   662   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   663     // SharedInfo::regName[i] = regName[i];
   664     // Handy RegMasks per machine register
   665     mreg2regmask[i].Insert(i);
   666   }
   668   // Grab the Frame Pointer
   669   Node *fp  = ret->in(TypeFunc::FramePtr);
   670   Node *mem = ret->in(TypeFunc::Memory);
   671   const TypePtr* atp = TypePtr::BOTTOM;
   672   // Share frame pointer while making spill ops
   673   set_shared(fp);
   675   // Compute generic short-offset Loads
   676 #ifdef _LP64
   677   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   678 #endif
   679   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
   680   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
   681   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
   682   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
   683   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   684   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   685          spillD != NULL && spillP != NULL, "");
   687   // Get the ADLC notion of the right regmask, for each basic type.
   688 #ifdef _LP64
   689   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   690 #endif
   691   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   692   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   693   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   694   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   695   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   696 }
   698 #ifdef ASSERT
   699 static void match_alias_type(Compile* C, Node* n, Node* m) {
   700   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   701   const TypePtr* nat = n->adr_type();
   702   const TypePtr* mat = m->adr_type();
   703   int nidx = C->get_alias_index(nat);
   704   int midx = C->get_alias_index(mat);
   705   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   706   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   707     for (uint i = 1; i < n->req(); i++) {
   708       Node* n1 = n->in(i);
   709       const TypePtr* n1at = n1->adr_type();
   710       if (n1at != NULL) {
   711         nat = n1at;
   712         nidx = C->get_alias_index(n1at);
   713       }
   714     }
   715   }
   716   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   717   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   718     switch (n->Opcode()) {
   719     case Op_PrefetchRead:
   720     case Op_PrefetchWrite:
   721       nidx = Compile::AliasIdxRaw;
   722       nat = TypeRawPtr::BOTTOM;
   723       break;
   724     }
   725   }
   726   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   727     switch (n->Opcode()) {
   728     case Op_ClearArray:
   729       midx = Compile::AliasIdxRaw;
   730       mat = TypeRawPtr::BOTTOM;
   731       break;
   732     }
   733   }
   734   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   735     switch (n->Opcode()) {
   736     case Op_Return:
   737     case Op_Rethrow:
   738     case Op_Halt:
   739     case Op_TailCall:
   740     case Op_TailJump:
   741       nidx = Compile::AliasIdxBot;
   742       nat = TypePtr::BOTTOM;
   743       break;
   744     }
   745   }
   746   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   747     switch (n->Opcode()) {
   748     case Op_StrComp:
   749     case Op_AryEq:
   750     case Op_MemBarVolatile:
   751     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   752       nidx = Compile::AliasIdxTop;
   753       nat = NULL;
   754       break;
   755     }
   756   }
   757   if (nidx != midx) {
   758     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   759       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   760       n->dump();
   761       m->dump();
   762     }
   763     assert(C->subsume_loads() && C->must_alias(nat, midx),
   764            "must not lose alias info when matching");
   765   }
   766 }
   767 #endif
   770 //------------------------------MStack-----------------------------------------
   771 // State and MStack class used in xform() and find_shared() iterative methods.
   772 enum Node_State { Pre_Visit,  // node has to be pre-visited
   773                       Visit,  // visit node
   774                  Post_Visit,  // post-visit node
   775              Alt_Post_Visit   // alternative post-visit path
   776                 };
   778 class MStack: public Node_Stack {
   779   public:
   780     MStack(int size) : Node_Stack(size) { }
   782     void push(Node *n, Node_State ns) {
   783       Node_Stack::push(n, (uint)ns);
   784     }
   785     void push(Node *n, Node_State ns, Node *parent, int indx) {
   786       ++_inode_top;
   787       if ((_inode_top + 1) >= _inode_max) grow();
   788       _inode_top->node = parent;
   789       _inode_top->indx = (uint)indx;
   790       ++_inode_top;
   791       _inode_top->node = n;
   792       _inode_top->indx = (uint)ns;
   793     }
   794     Node *parent() {
   795       pop();
   796       return node();
   797     }
   798     Node_State state() const {
   799       return (Node_State)index();
   800     }
   801     void set_state(Node_State ns) {
   802       set_index((uint)ns);
   803     }
   804 };
   807 //------------------------------xform------------------------------------------
   808 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   809 // Node in new-space.  Given a new-space Node, recursively walk his children.
   810 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   811 Node *Matcher::xform( Node *n, int max_stack ) {
   812   // Use one stack to keep both: child's node/state and parent's node/index
   813   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   814   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   816   while (mstack.is_nonempty()) {
   817     n = mstack.node();          // Leave node on stack
   818     Node_State nstate = mstack.state();
   819     if (nstate == Visit) {
   820       mstack.set_state(Post_Visit);
   821       Node *oldn = n;
   822       // Old-space or new-space check
   823       if (!C->node_arena()->contains(n)) {
   824         // Old space!
   825         Node* m;
   826         if (has_new_node(n)) {  // Not yet Label/Reduced
   827           m = new_node(n);
   828         } else {
   829           if (!is_dontcare(n)) { // Matcher can match this guy
   830             // Calls match special.  They match alone with no children.
   831             // Their children, the incoming arguments, match normally.
   832             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
   833             if (C->failing())  return NULL;
   834             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
   835           } else {                  // Nothing the matcher cares about
   836             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
   837               // Convert to machine-dependent projection
   838               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
   839 #ifdef ASSERT
   840               _new2old_map.map(m->_idx, n);
   841 #endif
   842               if (m->in(0) != NULL) // m might be top
   843                 collect_null_checks(m, n);
   844             } else {                // Else just a regular 'ol guy
   845               m = n->clone();       // So just clone into new-space
   846 #ifdef ASSERT
   847               _new2old_map.map(m->_idx, n);
   848 #endif
   849               // Def-Use edges will be added incrementally as Uses
   850               // of this node are matched.
   851               assert(m->outcnt() == 0, "no Uses of this clone yet");
   852             }
   853           }
   855           set_new_node(n, m);       // Map old to new
   856           if (_old_node_note_array != NULL) {
   857             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
   858                                                   n->_idx);
   859             C->set_node_notes_at(m->_idx, nn);
   860           }
   861           debug_only(match_alias_type(C, n, m));
   862         }
   863         n = m;    // n is now a new-space node
   864         mstack.set_node(n);
   865       }
   867       // New space!
   868       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
   870       int i;
   871       // Put precedence edges on stack first (match them last).
   872       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
   873         Node *m = oldn->in(i);
   874         if (m == NULL) break;
   875         // set -1 to call add_prec() instead of set_req() during Step1
   876         mstack.push(m, Visit, n, -1);
   877       }
   879       // For constant debug info, I'd rather have unmatched constants.
   880       int cnt = n->req();
   881       JVMState* jvms = n->jvms();
   882       int debug_cnt = jvms ? jvms->debug_start() : cnt;
   884       // Now do only debug info.  Clone constants rather than matching.
   885       // Constants are represented directly in the debug info without
   886       // the need for executable machine instructions.
   887       // Monitor boxes are also represented directly.
   888       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
   889         Node *m = n->in(i);          // Get input
   890         int op = m->Opcode();
   891         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
   892         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
   893             op == Op_ConF || op == Op_ConD || op == Op_ConL
   894             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
   895             ) {
   896           m = m->clone();
   897 #ifdef ASSERT
   898           _new2old_map.map(m->_idx, n);
   899 #endif
   900           mstack.push(m, Post_Visit, n, i); // Don't need to visit
   901           mstack.push(m->in(0), Visit, m, 0);
   902         } else {
   903           mstack.push(m, Visit, n, i);
   904         }
   905       }
   907       // And now walk his children, and convert his inputs to new-space.
   908       for( ; i >= 0; --i ) { // For all normal inputs do
   909         Node *m = n->in(i);  // Get input
   910         if(m != NULL)
   911           mstack.push(m, Visit, n, i);
   912       }
   914     }
   915     else if (nstate == Post_Visit) {
   916       // Set xformed input
   917       Node *p = mstack.parent();
   918       if (p != NULL) { // root doesn't have parent
   919         int i = (int)mstack.index();
   920         if (i >= 0)
   921           p->set_req(i, n); // required input
   922         else if (i == -1)
   923           p->add_prec(n);   // precedence input
   924         else
   925           ShouldNotReachHere();
   926       }
   927       mstack.pop(); // remove processed node from stack
   928     }
   929     else {
   930       ShouldNotReachHere();
   931     }
   932   } // while (mstack.is_nonempty())
   933   return n; // Return new-space Node
   934 }
   936 //------------------------------warp_outgoing_stk_arg------------------------
   937 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
   938   // Convert outgoing argument location to a pre-biased stack offset
   939   if (reg->is_stack()) {
   940     OptoReg::Name warped = reg->reg2stack();
   941     // Adjust the stack slot offset to be the register number used
   942     // by the allocator.
   943     warped = OptoReg::add(begin_out_arg_area, warped);
   944     // Keep track of the largest numbered stack slot used for an arg.
   945     // Largest used slot per call-site indicates the amount of stack
   946     // that is killed by the call.
   947     if( warped >= out_arg_limit_per_call )
   948       out_arg_limit_per_call = OptoReg::add(warped,1);
   949     if (!RegMask::can_represent(warped)) {
   950       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
   951       return OptoReg::Bad;
   952     }
   953     return warped;
   954   }
   955   return OptoReg::as_OptoReg(reg);
   956 }
   959 //------------------------------match_sfpt-------------------------------------
   960 // Helper function to match call instructions.  Calls match special.
   961 // They match alone with no children.  Their children, the incoming
   962 // arguments, match normally.
   963 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
   964   MachSafePointNode *msfpt = NULL;
   965   MachCallNode      *mcall = NULL;
   966   uint               cnt;
   967   // Split out case for SafePoint vs Call
   968   CallNode *call;
   969   const TypeTuple *domain;
   970   ciMethod*        method = NULL;
   971   if( sfpt->is_Call() ) {
   972     call = sfpt->as_Call();
   973     domain = call->tf()->domain();
   974     cnt = domain->cnt();
   976     // Match just the call, nothing else
   977     MachNode *m = match_tree(call);
   978     if (C->failing())  return NULL;
   979     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
   981     // Copy data from the Ideal SafePoint to the machine version
   982     mcall = m->as_MachCall();
   984     mcall->set_tf(         call->tf());
   985     mcall->set_entry_point(call->entry_point());
   986     mcall->set_cnt(        call->cnt());
   988     if( mcall->is_MachCallJava() ) {
   989       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
   990       const CallJavaNode *call_java =  call->as_CallJava();
   991       method = call_java->method();
   992       mcall_java->_method = method;
   993       mcall_java->_bci = call_java->_bci;
   994       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
   995       if( mcall_java->is_MachCallStaticJava() )
   996         mcall_java->as_MachCallStaticJava()->_name =
   997          call_java->as_CallStaticJava()->_name;
   998       if( mcall_java->is_MachCallDynamicJava() )
   999         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1000          call_java->as_CallDynamicJava()->_vtable_index;
  1002     else if( mcall->is_MachCallRuntime() ) {
  1003       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1005     msfpt = mcall;
  1007   // This is a non-call safepoint
  1008   else {
  1009     call = NULL;
  1010     domain = NULL;
  1011     MachNode *mn = match_tree(sfpt);
  1012     if (C->failing())  return NULL;
  1013     msfpt = mn->as_MachSafePoint();
  1014     cnt = TypeFunc::Parms;
  1017   // Advertise the correct memory effects (for anti-dependence computation).
  1018   msfpt->set_adr_type(sfpt->adr_type());
  1020   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1021   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1022   // Empty them all.
  1023   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1025   // Do all the pre-defined non-Empty register masks
  1026   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1027   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1029   // Place first outgoing argument can possibly be put.
  1030   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1031   assert( is_even(begin_out_arg_area), "" );
  1032   // Compute max outgoing register number per call site.
  1033   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1034   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1035   // These are usually backing store for register arguments for varargs.
  1036   if( call != NULL && call->is_CallRuntime() )
  1037     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1040   // Do the normal argument list (parameters) register masks
  1041   int argcnt = cnt - TypeFunc::Parms;
  1042   if( argcnt > 0 ) {          // Skip it all if we have no args
  1043     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1044     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1045     int i;
  1046     for( i = 0; i < argcnt; i++ ) {
  1047       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1049     // V-call to pick proper calling convention
  1050     call->calling_convention( sig_bt, parm_regs, argcnt );
  1052 #ifdef ASSERT
  1053     // Sanity check users' calling convention.  Really handy during
  1054     // the initial porting effort.  Fairly expensive otherwise.
  1055     { for (int i = 0; i<argcnt; i++) {
  1056       if( !parm_regs[i].first()->is_valid() &&
  1057           !parm_regs[i].second()->is_valid() ) continue;
  1058       VMReg reg1 = parm_regs[i].first();
  1059       VMReg reg2 = parm_regs[i].second();
  1060       for (int j = 0; j < i; j++) {
  1061         if( !parm_regs[j].first()->is_valid() &&
  1062             !parm_regs[j].second()->is_valid() ) continue;
  1063         VMReg reg3 = parm_regs[j].first();
  1064         VMReg reg4 = parm_regs[j].second();
  1065         if( !reg1->is_valid() ) {
  1066           assert( !reg2->is_valid(), "valid halvsies" );
  1067         } else if( !reg3->is_valid() ) {
  1068           assert( !reg4->is_valid(), "valid halvsies" );
  1069         } else {
  1070           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1071           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1072           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1073           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1074           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1075           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1080 #endif
  1082     // Visit each argument.  Compute its outgoing register mask.
  1083     // Return results now can have 2 bits returned.
  1084     // Compute max over all outgoing arguments both per call-site
  1085     // and over the entire method.
  1086     for( i = 0; i < argcnt; i++ ) {
  1087       // Address of incoming argument mask to fill in
  1088       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1089       if( !parm_regs[i].first()->is_valid() &&
  1090           !parm_regs[i].second()->is_valid() ) {
  1091         continue;               // Avoid Halves
  1093       // Grab first register, adjust stack slots and insert in mask.
  1094       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1095       if (OptoReg::is_valid(reg1))
  1096         rm->Insert( reg1 );
  1097       // Grab second register (if any), adjust stack slots and insert in mask.
  1098       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1099       if (OptoReg::is_valid(reg2))
  1100         rm->Insert( reg2 );
  1101     } // End of for all arguments
  1103     // Compute number of stack slots needed to restore stack in case of
  1104     // Pascal-style argument popping.
  1105     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1108   // Compute the max stack slot killed by any call.  These will not be
  1109   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1110   // after all call sites have been visited.
  1111   if( _out_arg_limit < out_arg_limit_per_call)
  1112     _out_arg_limit = out_arg_limit_per_call;
  1114   if (mcall) {
  1115     // Kill the outgoing argument area, including any non-argument holes and
  1116     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1117     // Since the max-per-method covers the max-per-call-site and debug info
  1118     // is excluded on the max-per-method basis, debug info cannot land in
  1119     // this killed area.
  1120     uint r_cnt = mcall->tf()->range()->cnt();
  1121     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1122     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
  1123       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1124     } else {
  1125       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1126         proj->_rout.Insert(OptoReg::Name(i));
  1128     if( proj->_rout.is_NotEmpty() )
  1129       _proj_list.push(proj);
  1131   // Transfer the safepoint information from the call to the mcall
  1132   // Move the JVMState list
  1133   msfpt->set_jvms(sfpt->jvms());
  1134   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1135     jvms->set_map(sfpt);
  1138   // Debug inputs begin just after the last incoming parameter
  1139   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1140           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1142   // Move the OopMap
  1143   msfpt->_oop_map = sfpt->_oop_map;
  1145   // Registers killed by the call are set in the local scheduling pass
  1146   // of Global Code Motion.
  1147   return msfpt;
  1150 //---------------------------match_tree----------------------------------------
  1151 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1152 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1153 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1154 // a Load's result RegMask for memoization in idealreg2regmask[]
  1155 MachNode *Matcher::match_tree( const Node *n ) {
  1156   assert( n->Opcode() != Op_Phi, "cannot match" );
  1157   assert( !n->is_block_start(), "cannot match" );
  1158   // Set the mark for all locally allocated State objects.
  1159   // When this call returns, the _states_arena arena will be reset
  1160   // freeing all State objects.
  1161   ResourceMark rm( &_states_arena );
  1163   LabelRootDepth = 0;
  1165   // StoreNodes require their Memory input to match any LoadNodes
  1166   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1167 #ifdef ASSERT
  1168   Node* save_mem_node = _mem_node;
  1169   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1170 #endif
  1171   // State object for root node of match tree
  1172   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1173   State *s = new (&_states_arena) State;
  1174   s->_kids[0] = NULL;
  1175   s->_kids[1] = NULL;
  1176   s->_leaf = (Node*)n;
  1177   // Label the input tree, allocating labels from top-level arena
  1178   Label_Root( n, s, n->in(0), mem );
  1179   if (C->failing())  return NULL;
  1181   // The minimum cost match for the whole tree is found at the root State
  1182   uint mincost = max_juint;
  1183   uint cost = max_juint;
  1184   uint i;
  1185   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1186     if( s->valid(i) &&                // valid entry and
  1187         s->_cost[i] < cost &&         // low cost and
  1188         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1189       cost = s->_cost[mincost=i];
  1191   if (mincost == max_juint) {
  1192 #ifndef PRODUCT
  1193     tty->print("No matching rule for:");
  1194     s->dump();
  1195 #endif
  1196     Matcher::soft_match_failure();
  1197     return NULL;
  1199   // Reduce input tree based upon the state labels to machine Nodes
  1200   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1201 #ifdef ASSERT
  1202   _old2new_map.map(n->_idx, m);
  1203   _new2old_map.map(m->_idx, (Node*)n);
  1204 #endif
  1206   // Add any Matcher-ignored edges
  1207   uint cnt = n->req();
  1208   uint start = 1;
  1209   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1210   if( n->is_AddP() ) {
  1211     assert( mem == (Node*)1, "" );
  1212     start = AddPNode::Base+1;
  1214   for( i = start; i < cnt; i++ ) {
  1215     if( !n->match_edge(i) ) {
  1216       if( i < m->req() )
  1217         m->ins_req( i, n->in(i) );
  1218       else
  1219         m->add_req( n->in(i) );
  1223   debug_only( _mem_node = save_mem_node; )
  1224   return m;
  1228 //------------------------------match_into_reg---------------------------------
  1229 // Choose to either match this Node in a register or part of the current
  1230 // match tree.  Return true for requiring a register and false for matching
  1231 // as part of the current match tree.
  1232 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1234   const Type *t = m->bottom_type();
  1236   if( t->singleton() ) {
  1237     // Never force constants into registers.  Allow them to match as
  1238     // constants or registers.  Copies of the same value will share
  1239     // the same register.  See find_shared_node.
  1240     return false;
  1241   } else {                      // Not a constant
  1242     // Stop recursion if they have different Controls.
  1243     // Slot 0 of constants is not really a Control.
  1244     if( control && m->in(0) && control != m->in(0) ) {
  1246       // Actually, we can live with the most conservative control we
  1247       // find, if it post-dominates the others.  This allows us to
  1248       // pick up load/op/store trees where the load can float a little
  1249       // above the store.
  1250       Node *x = control;
  1251       const uint max_scan = 6;   // Arbitrary scan cutoff
  1252       uint j;
  1253       for( j=0; j<max_scan; j++ ) {
  1254         if( x->is_Region() )    // Bail out at merge points
  1255           return true;
  1256         x = x->in(0);
  1257         if( x == m->in(0) )     // Does 'control' post-dominate
  1258           break;                // m->in(0)?  If so, we can use it
  1260       if( j == max_scan )       // No post-domination before scan end?
  1261         return true;            // Then break the match tree up
  1263     if (m->is_DecodeN() && Matcher::clone_shift_expressions) {
  1264       // These are commonly used in address expressions and can
  1265       // efficiently fold into them on X64 in some cases.
  1266       return false;
  1270   // Not forceable cloning.  If shared, put it into a register.
  1271   return shared;
  1275 //------------------------------Instruction Selection--------------------------
  1276 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1277 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1278 // things the Matcher does not match (e.g., Memory), and things with different
  1279 // Controls (hence forced into different blocks).  We pass in the Control
  1280 // selected for this entire State tree.
  1282 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1283 // Store and the Load must have identical Memories (as well as identical
  1284 // pointers).  Since the Matcher does not have anything for Memory (and
  1285 // does not handle DAGs), I have to match the Memory input myself.  If the
  1286 // Tree root is a Store, I require all Loads to have the identical memory.
  1287 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1288   // Since Label_Root is a recursive function, its possible that we might run
  1289   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1290   LabelRootDepth++;
  1291   if (LabelRootDepth > MaxLabelRootDepth) {
  1292     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1293     return NULL;
  1295   uint care = 0;                // Edges matcher cares about
  1296   uint cnt = n->req();
  1297   uint i = 0;
  1299   // Examine children for memory state
  1300   // Can only subsume a child into your match-tree if that child's memory state
  1301   // is not modified along the path to another input.
  1302   // It is unsafe even if the other inputs are separate roots.
  1303   Node *input_mem = NULL;
  1304   for( i = 1; i < cnt; i++ ) {
  1305     if( !n->match_edge(i) ) continue;
  1306     Node *m = n->in(i);         // Get ith input
  1307     assert( m, "expect non-null children" );
  1308     if( m->is_Load() ) {
  1309       if( input_mem == NULL ) {
  1310         input_mem = m->in(MemNode::Memory);
  1311       } else if( input_mem != m->in(MemNode::Memory) ) {
  1312         input_mem = NodeSentinel;
  1317   for( i = 1; i < cnt; i++ ){// For my children
  1318     if( !n->match_edge(i) ) continue;
  1319     Node *m = n->in(i);         // Get ith input
  1320     // Allocate states out of a private arena
  1321     State *s = new (&_states_arena) State;
  1322     svec->_kids[care++] = s;
  1323     assert( care <= 2, "binary only for now" );
  1325     // Recursively label the State tree.
  1326     s->_kids[0] = NULL;
  1327     s->_kids[1] = NULL;
  1328     s->_leaf = m;
  1330     // Check for leaves of the State Tree; things that cannot be a part of
  1331     // the current tree.  If it finds any, that value is matched as a
  1332     // register operand.  If not, then the normal matching is used.
  1333     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1334         //
  1335         // Stop recursion if this is LoadNode and the root of this tree is a
  1336         // StoreNode and the load & store have different memories.
  1337         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1338         // Can NOT include the match of a subtree when its memory state
  1339         // is used by any of the other subtrees
  1340         (input_mem == NodeSentinel) ) {
  1341 #ifndef PRODUCT
  1342       // Print when we exclude matching due to different memory states at input-loads
  1343       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1344         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1345         tty->print_cr("invalid input_mem");
  1347 #endif
  1348       // Switch to a register-only opcode; this value must be in a register
  1349       // and cannot be subsumed as part of a larger instruction.
  1350       s->DFA( m->ideal_reg(), m );
  1352     } else {
  1353       // If match tree has no control and we do, adopt it for entire tree
  1354       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1355         control = m->in(0);         // Pick up control
  1356       // Else match as a normal part of the match tree.
  1357       control = Label_Root(m,s,control,mem);
  1358       if (C->failing()) return NULL;
  1363   // Call DFA to match this node, and return
  1364   svec->DFA( n->Opcode(), n );
  1366 #ifdef ASSERT
  1367   uint x;
  1368   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1369     if( svec->valid(x) )
  1370       break;
  1372   if (x >= _LAST_MACH_OPER) {
  1373     n->dump();
  1374     svec->dump();
  1375     assert( false, "bad AD file" );
  1377 #endif
  1378   return control;
  1382 // Con nodes reduced using the same rule can share their MachNode
  1383 // which reduces the number of copies of a constant in the final
  1384 // program.  The register allocator is free to split uses later to
  1385 // split live ranges.
  1386 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1387   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
  1389   // See if this Con has already been reduced using this rule.
  1390   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1391   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1392   if (last != NULL && rule == last->rule()) {
  1393     // Don't expect control change for DecodeN
  1394     if (leaf->is_DecodeN())
  1395       return last;
  1396     // Get the new space root.
  1397     Node* xroot = new_node(C->root());
  1398     if (xroot == NULL) {
  1399       // This shouldn't happen give the order of matching.
  1400       return NULL;
  1403     // Shared constants need to have their control be root so they
  1404     // can be scheduled properly.
  1405     Node* control = last->in(0);
  1406     if (control != xroot) {
  1407       if (control == NULL || control == C->root()) {
  1408         last->set_req(0, xroot);
  1409       } else {
  1410         assert(false, "unexpected control");
  1411         return NULL;
  1414     return last;
  1416   return NULL;
  1420 //------------------------------ReduceInst-------------------------------------
  1421 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1422 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1423 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1424 // Each MachNode has a number of complicated MachOper operands; each
  1425 // MachOper also covers a further tree of Ideal Nodes.
  1427 // The root of the Ideal match tree is always an instruction, so we enter
  1428 // the recursion here.  After building the MachNode, we need to recurse
  1429 // the tree checking for these cases:
  1430 // (1) Child is an instruction -
  1431 //     Build the instruction (recursively), add it as an edge.
  1432 //     Build a simple operand (register) to hold the result of the instruction.
  1433 // (2) Child is an interior part of an instruction -
  1434 //     Skip over it (do nothing)
  1435 // (3) Child is the start of a operand -
  1436 //     Build the operand, place it inside the instruction
  1437 //     Call ReduceOper.
  1438 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1439   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1441   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1442   if (shared_node != NULL) {
  1443     return shared_node;
  1446   // Build the object to represent this state & prepare for recursive calls
  1447   MachNode *mach = s->MachNodeGenerator( rule, C );
  1448   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1449   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1450   Node *leaf = s->_leaf;
  1451   // Check for instruction or instruction chain rule
  1452   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1453     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1454            "duplicating node that's already been matched");
  1455     // Instruction
  1456     mach->add_req( leaf->in(0) ); // Set initial control
  1457     // Reduce interior of complex instruction
  1458     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1459   } else {
  1460     // Instruction chain rules are data-dependent on their inputs
  1461     mach->add_req(0);             // Set initial control to none
  1462     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1465   // If a Memory was used, insert a Memory edge
  1466   if( mem != (Node*)1 ) {
  1467     mach->ins_req(MemNode::Memory,mem);
  1468 #ifdef ASSERT
  1469     // Verify adr type after matching memory operation
  1470     const MachOper* oper = mach->memory_operand();
  1471     if (oper != NULL && oper != (MachOper*)-1 &&
  1472         mach->adr_type() != TypeRawPtr::BOTTOM) { // non-direct addressing mode
  1473       // It has a unique memory operand.  Find corresponding ideal mem node.
  1474       Node* m = NULL;
  1475       if (leaf->is_Mem()) {
  1476         m = leaf;
  1477       } else {
  1478         m = _mem_node;
  1479         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1481       const Type* mach_at = mach->adr_type();
  1482       // DecodeN node consumed by an address may have different type
  1483       // then its input. Don't compare types for such case.
  1484       if (m->adr_type() != mach_at && m->in(MemNode::Address)->is_AddP() &&
  1485           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN()) {
  1486         mach_at = m->adr_type();
  1488       if (m->adr_type() != mach_at) {
  1489         m->dump();
  1490         tty->print_cr("mach:");
  1491         mach->dump(1);
  1493       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1495 #endif
  1498   // If the _leaf is an AddP, insert the base edge
  1499   if( leaf->is_AddP() )
  1500     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1502   uint num_proj = _proj_list.size();
  1504   // Perform any 1-to-many expansions required
  1505   MachNode *ex = mach->Expand(s,_proj_list);
  1506   if( ex != mach ) {
  1507     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1508     if( ex->in(1)->is_Con() )
  1509       ex->in(1)->set_req(0, C->root());
  1510     // Remove old node from the graph
  1511     for( uint i=0; i<mach->req(); i++ ) {
  1512       mach->set_req(i,NULL);
  1514 #ifdef ASSERT
  1515     _new2old_map.map(ex->_idx, s->_leaf);
  1516 #endif
  1519   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1520   // via the matcher.  By the time, nodes have been wired into the CFG,
  1521   // and any further nodes generated by expand rules will be left hanging
  1522   // in space, and will not get emitted as output code.  Catch this.
  1523   // Also, catch any new register allocation constraints ("projections")
  1524   // generated belatedly during spill code generation.
  1525   if (_allocation_started) {
  1526     guarantee(ex == mach, "no expand rules during spill generation");
  1527     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1530   if (leaf->is_Con() || leaf->is_DecodeN()) {
  1531     // Record the con for sharing
  1532     _shared_nodes.map(leaf->_idx, ex);
  1535   return ex;
  1538 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1539   // 'op' is what I am expecting to receive
  1540   int op = _leftOp[rule];
  1541   // Operand type to catch childs result
  1542   // This is what my child will give me.
  1543   int opnd_class_instance = s->_rule[op];
  1544   // Choose between operand class or not.
  1545   // This is what I will receive.
  1546   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1547   // New rule for child.  Chase operand classes to get the actual rule.
  1548   int newrule = s->_rule[catch_op];
  1550   if( newrule < NUM_OPERANDS ) {
  1551     // Chain from operand or operand class, may be output of shared node
  1552     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1553             "Bad AD file: Instruction chain rule must chain from operand");
  1554     // Insert operand into array of operands for this instruction
  1555     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1557     ReduceOper( s, newrule, mem, mach );
  1558   } else {
  1559     // Chain from the result of an instruction
  1560     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1561     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1562     Node *mem1 = (Node*)1;
  1563     debug_only(Node *save_mem_node = _mem_node;)
  1564     mach->add_req( ReduceInst(s, newrule, mem1) );
  1565     debug_only(_mem_node = save_mem_node;)
  1567   return;
  1571 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1572   if( s->_leaf->is_Load() ) {
  1573     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1574     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1575     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1576     mem = mem2;
  1578   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1579     if( mach->in(0) == NULL )
  1580       mach->set_req(0, s->_leaf->in(0));
  1583   // Now recursively walk the state tree & add operand list.
  1584   for( uint i=0; i<2; i++ ) {   // binary tree
  1585     State *newstate = s->_kids[i];
  1586     if( newstate == NULL ) break;      // Might only have 1 child
  1587     // 'op' is what I am expecting to receive
  1588     int op;
  1589     if( i == 0 ) {
  1590       op = _leftOp[rule];
  1591     } else {
  1592       op = _rightOp[rule];
  1594     // Operand type to catch childs result
  1595     // This is what my child will give me.
  1596     int opnd_class_instance = newstate->_rule[op];
  1597     // Choose between operand class or not.
  1598     // This is what I will receive.
  1599     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1600     // New rule for child.  Chase operand classes to get the actual rule.
  1601     int newrule = newstate->_rule[catch_op];
  1603     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1604       // Operand/operandClass
  1605       // Insert operand into array of operands for this instruction
  1606       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1607       ReduceOper( newstate, newrule, mem, mach );
  1609     } else {                    // Child is internal operand or new instruction
  1610       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1611         // internal operand --> call ReduceInst_Interior
  1612         // Interior of complex instruction.  Do nothing but recurse.
  1613         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1614       } else {
  1615         // instruction --> call build operand(  ) to catch result
  1616         //             --> ReduceInst( newrule )
  1617         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1618         Node *mem1 = (Node*)1;
  1619         debug_only(Node *save_mem_node = _mem_node;)
  1620         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1621         debug_only(_mem_node = save_mem_node;)
  1624     assert( mach->_opnds[num_opnds-1], "" );
  1626   return num_opnds;
  1629 // This routine walks the interior of possible complex operands.
  1630 // At each point we check our children in the match tree:
  1631 // (1) No children -
  1632 //     We are a leaf; add _leaf field as an input to the MachNode
  1633 // (2) Child is an internal operand -
  1634 //     Skip over it ( do nothing )
  1635 // (3) Child is an instruction -
  1636 //     Call ReduceInst recursively and
  1637 //     and instruction as an input to the MachNode
  1638 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1639   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1640   State *kid = s->_kids[0];
  1641   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1643   // Leaf?  And not subsumed?
  1644   if( kid == NULL && !_swallowed[rule] ) {
  1645     mach->add_req( s->_leaf );  // Add leaf pointer
  1646     return;                     // Bail out
  1649   if( s->_leaf->is_Load() ) {
  1650     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1651     mem = s->_leaf->in(MemNode::Memory);
  1652     debug_only(_mem_node = s->_leaf;)
  1654   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1655     if( !mach->in(0) )
  1656       mach->set_req(0,s->_leaf->in(0));
  1657     else {
  1658       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1662   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1663     int newrule;
  1664     if( i == 0 )
  1665       newrule = kid->_rule[_leftOp[rule]];
  1666     else
  1667       newrule = kid->_rule[_rightOp[rule]];
  1669     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1670       // Internal operand; recurse but do nothing else
  1671       ReduceOper( kid, newrule, mem, mach );
  1673     } else {                    // Child is a new instruction
  1674       // Reduce the instruction, and add a direct pointer from this
  1675       // machine instruction to the newly reduced one.
  1676       Node *mem1 = (Node*)1;
  1677       debug_only(Node *save_mem_node = _mem_node;)
  1678       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1679       debug_only(_mem_node = save_mem_node;)
  1685 // -------------------------------------------------------------------------
  1686 // Java-Java calling convention
  1687 // (what you use when Java calls Java)
  1689 //------------------------------find_receiver----------------------------------
  1690 // For a given signature, return the OptoReg for parameter 0.
  1691 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1692   VMRegPair regs;
  1693   BasicType sig_bt = T_OBJECT;
  1694   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1695   // Return argument 0 register.  In the LP64 build pointers
  1696   // take 2 registers, but the VM wants only the 'main' name.
  1697   return OptoReg::as_OptoReg(regs.first());
  1700 // A method-klass-holder may be passed in the inline_cache_reg
  1701 // and then expanded into the inline_cache_reg and a method_oop register
  1702 //   defined in ad_<arch>.cpp
  1705 //------------------------------find_shared------------------------------------
  1706 // Set bits if Node is shared or otherwise a root
  1707 void Matcher::find_shared( Node *n ) {
  1708   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1709   MStack mstack(C->unique() * 2);
  1710   // Mark nodes as address_visited if they are inputs to an address expression
  1711   VectorSet address_visited(Thread::current()->resource_area());
  1712   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1713   while (mstack.is_nonempty()) {
  1714     n = mstack.node();       // Leave node on stack
  1715     Node_State nstate = mstack.state();
  1716     uint nop = n->Opcode();
  1717     if (nstate == Pre_Visit) {
  1718       if (address_visited.test(n->_idx)) { // Visited in address already?
  1719         // Flag as visited and shared now.
  1720         set_visited(n);
  1722       if (is_visited(n)) {   // Visited already?
  1723         // Node is shared and has no reason to clone.  Flag it as shared.
  1724         // This causes it to match into a register for the sharing.
  1725         set_shared(n);       // Flag as shared and
  1726         mstack.pop();        // remove node from stack
  1727         continue;
  1729       nstate = Visit; // Not already visited; so visit now
  1731     if (nstate == Visit) {
  1732       mstack.set_state(Post_Visit);
  1733       set_visited(n);   // Flag as visited now
  1734       bool mem_op = false;
  1736       switch( nop ) {  // Handle some opcodes special
  1737       case Op_Phi:             // Treat Phis as shared roots
  1738       case Op_Parm:
  1739       case Op_Proj:            // All handled specially during matching
  1740       case Op_SafePointScalarObject:
  1741         set_shared(n);
  1742         set_dontcare(n);
  1743         break;
  1744       case Op_If:
  1745       case Op_CountedLoopEnd:
  1746         mstack.set_state(Alt_Post_Visit); // Alternative way
  1747         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1748         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1749         // Bool and CmpX side-by-side, because it can only get at constants
  1750         // that are at the leaves of Match trees, and the Bool's condition acts
  1751         // as a constant here.
  1752         mstack.push(n->in(1), Visit);         // Clone the Bool
  1753         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1754         continue; // while (mstack.is_nonempty())
  1755       case Op_ConvI2D:         // These forms efficiently match with a prior
  1756       case Op_ConvI2F:         //   Load but not a following Store
  1757         if( n->in(1)->is_Load() &&        // Prior load
  1758             n->outcnt() == 1 &&           // Not already shared
  1759             n->unique_out()->is_Store() ) // Following store
  1760           set_shared(n);       // Force it to be a root
  1761         break;
  1762       case Op_ReverseBytesI:
  1763       case Op_ReverseBytesL:
  1764         if( n->in(1)->is_Load() &&        // Prior load
  1765             n->outcnt() == 1 )            // Not already shared
  1766           set_shared(n);                  // Force it to be a root
  1767         break;
  1768       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1769       case Op_IfFalse:
  1770       case Op_IfTrue:
  1771       case Op_MachProj:
  1772       case Op_MergeMem:
  1773       case Op_Catch:
  1774       case Op_CatchProj:
  1775       case Op_CProj:
  1776       case Op_JumpProj:
  1777       case Op_JProj:
  1778       case Op_NeverBranch:
  1779         set_dontcare(n);
  1780         break;
  1781       case Op_Jump:
  1782         mstack.push(n->in(1), Visit);         // Switch Value
  1783         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1784         continue;                             // while (mstack.is_nonempty())
  1785       case Op_StrComp:
  1786       case Op_AryEq:
  1787         set_shared(n); // Force result into register (it will be anyways)
  1788         break;
  1789       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1790         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1791         const TypePtr* tp = tn->type()->is_ptr();
  1792         if (tp->_ptr == TypePtr::AnyNull) {
  1793           tn->set_type(TypePtr::NULL_PTR);
  1795         break;
  1797       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  1798         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1799         const TypePtr* tp = tn->type()->make_ptr();
  1800         if (tp && tp->_ptr == TypePtr::AnyNull) {
  1801           tn->set_type(TypeNarrowOop::NULL_PTR);
  1803         break;
  1805       case Op_Binary:         // These are introduced in the Post_Visit state.
  1806         ShouldNotReachHere();
  1807         break;
  1808       case Op_StoreB:         // Do match these, despite no ideal reg
  1809       case Op_StoreC:
  1810       case Op_StoreCM:
  1811       case Op_StoreD:
  1812       case Op_StoreF:
  1813       case Op_StoreI:
  1814       case Op_StoreL:
  1815       case Op_StoreP:
  1816       case Op_StoreN:
  1817       case Op_Store16B:
  1818       case Op_Store8B:
  1819       case Op_Store4B:
  1820       case Op_Store8C:
  1821       case Op_Store4C:
  1822       case Op_Store2C:
  1823       case Op_Store4I:
  1824       case Op_Store2I:
  1825       case Op_Store2L:
  1826       case Op_Store4F:
  1827       case Op_Store2F:
  1828       case Op_Store2D:
  1829       case Op_ClearArray:
  1830       case Op_SafePoint:
  1831         mem_op = true;
  1832         break;
  1833       case Op_LoadB:
  1834       case Op_LoadUS:
  1835       case Op_LoadD:
  1836       case Op_LoadF:
  1837       case Op_LoadI:
  1838       case Op_LoadKlass:
  1839       case Op_LoadNKlass:
  1840       case Op_LoadL:
  1841       case Op_LoadS:
  1842       case Op_LoadP:
  1843       case Op_LoadN:
  1844       case Op_LoadRange:
  1845       case Op_LoadD_unaligned:
  1846       case Op_LoadL_unaligned:
  1847       case Op_Load16B:
  1848       case Op_Load8B:
  1849       case Op_Load4B:
  1850       case Op_Load4C:
  1851       case Op_Load2C:
  1852       case Op_Load8C:
  1853       case Op_Load8S:
  1854       case Op_Load4S:
  1855       case Op_Load2S:
  1856       case Op_Load4I:
  1857       case Op_Load2I:
  1858       case Op_Load2L:
  1859       case Op_Load4F:
  1860       case Op_Load2F:
  1861       case Op_Load2D:
  1862         mem_op = true;
  1863         // Must be root of match tree due to prior load conflict
  1864         if( C->subsume_loads() == false ) {
  1865           set_shared(n);
  1867         // Fall into default case
  1868       default:
  1869         if( !n->ideal_reg() )
  1870           set_dontcare(n);  // Unmatchable Nodes
  1871       } // end_switch
  1873       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  1874         Node *m = n->in(i); // Get ith input
  1875         if (m == NULL) continue;  // Ignore NULLs
  1876         uint mop = m->Opcode();
  1878         // Must clone all producers of flags, or we will not match correctly.
  1879         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  1880         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  1881         // are also there, so we may match a float-branch to int-flags and
  1882         // expect the allocator to haul the flags from the int-side to the
  1883         // fp-side.  No can do.
  1884         if( _must_clone[mop] ) {
  1885           mstack.push(m, Visit);
  1886           continue; // for(int i = ...)
  1889         // Clone addressing expressions as they are "free" in most instructions
  1890         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  1891           if (m->in(AddPNode::Base)->Opcode() == Op_DecodeN) {
  1892             // Bases used in addresses must be shared but since
  1893             // they are shared through a DecodeN they may appear
  1894             // to have a single use so force sharing here.
  1895             set_shared(m->in(AddPNode::Base)->in(1));
  1898           // Some inputs for address expression are not put on stack
  1899           // to avoid marking them as shared and forcing them into register
  1900           // if they are used only in address expressions.
  1901           // But they should be marked as shared if there are other uses
  1902           // besides address expressions.
  1904           Node *off = m->in(AddPNode::Offset);
  1905           if( off->is_Con() &&
  1906               // When there are other uses besides address expressions
  1907               // put it on stack and mark as shared.
  1908               !is_visited(m) ) {
  1909             address_visited.test_set(m->_idx); // Flag as address_visited
  1910             Node *adr = m->in(AddPNode::Address);
  1912             // Intel, ARM and friends can handle 2 adds in addressing mode
  1913             if( clone_shift_expressions && adr->is_AddP() &&
  1914                 // AtomicAdd is not an addressing expression.
  1915                 // Cheap to find it by looking for screwy base.
  1916                 !adr->in(AddPNode::Base)->is_top() &&
  1917                 // Are there other uses besides address expressions?
  1918                 !is_visited(adr) ) {
  1919               address_visited.set(adr->_idx); // Flag as address_visited
  1920               Node *shift = adr->in(AddPNode::Offset);
  1921               // Check for shift by small constant as well
  1922               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  1923                   shift->in(2)->get_int() <= 3 &&
  1924                   // Are there other uses besides address expressions?
  1925                   !is_visited(shift) ) {
  1926                 address_visited.set(shift->_idx); // Flag as address_visited
  1927                 mstack.push(shift->in(2), Visit);
  1928                 Node *conv = shift->in(1);
  1929 #ifdef _LP64
  1930                 // Allow Matcher to match the rule which bypass
  1931                 // ConvI2L operation for an array index on LP64
  1932                 // if the index value is positive.
  1933                 if( conv->Opcode() == Op_ConvI2L &&
  1934                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  1935                     // Are there other uses besides address expressions?
  1936                     !is_visited(conv) ) {
  1937                   address_visited.set(conv->_idx); // Flag as address_visited
  1938                   mstack.push(conv->in(1), Pre_Visit);
  1939                 } else
  1940 #endif
  1941                 mstack.push(conv, Pre_Visit);
  1942               } else {
  1943                 mstack.push(shift, Pre_Visit);
  1945               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  1946               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  1947             } else {  // Sparc, Alpha, PPC and friends
  1948               mstack.push(adr, Pre_Visit);
  1951             // Clone X+offset as it also folds into most addressing expressions
  1952             mstack.push(off, Visit);
  1953             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  1954             continue; // for(int i = ...)
  1955           } // if( off->is_Con() )
  1956         }   // if( mem_op &&
  1957         mstack.push(m, Pre_Visit);
  1958       }     // for(int i = ...)
  1960     else if (nstate == Alt_Post_Visit) {
  1961       mstack.pop(); // Remove node from stack
  1962       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  1963       // shared and all users of the Bool need to move the Cmp in parallel.
  1964       // This leaves both the Bool and the If pointing at the Cmp.  To
  1965       // prevent the Matcher from trying to Match the Cmp along both paths
  1966       // BoolNode::match_edge always returns a zero.
  1968       // We reorder the Op_If in a pre-order manner, so we can visit without
  1969       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  1970       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  1972     else if (nstate == Post_Visit) {
  1973       mstack.pop(); // Remove node from stack
  1975       // Now hack a few special opcodes
  1976       switch( n->Opcode() ) {       // Handle some opcodes special
  1977       case Op_StorePConditional:
  1978       case Op_StoreIConditional:
  1979       case Op_StoreLConditional:
  1980       case Op_CompareAndSwapI:
  1981       case Op_CompareAndSwapL:
  1982       case Op_CompareAndSwapP:
  1983       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  1984         Node *newval = n->in(MemNode::ValueIn );
  1985         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
  1986         Node *pair = new (C, 3) BinaryNode( oldval, newval );
  1987         n->set_req(MemNode::ValueIn,pair);
  1988         n->del_req(LoadStoreNode::ExpectedIn);
  1989         break;
  1991       case Op_CMoveD:              // Convert trinary to binary-tree
  1992       case Op_CMoveF:
  1993       case Op_CMoveI:
  1994       case Op_CMoveL:
  1995       case Op_CMoveN:
  1996       case Op_CMoveP: {
  1997         // Restructure into a binary tree for Matching.  It's possible that
  1998         // we could move this code up next to the graph reshaping for IfNodes
  1999         // or vice-versa, but I do not want to debug this for Ladybird.
  2000         // 10/2/2000 CNC.
  2001         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
  2002         n->set_req(1,pair1);
  2003         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2004         n->set_req(2,pair2);
  2005         n->del_req(3);
  2006         break;
  2008       default:
  2009         break;
  2012     else {
  2013       ShouldNotReachHere();
  2015   } // end of while (mstack.is_nonempty())
  2018 #ifdef ASSERT
  2019 // machine-independent root to machine-dependent root
  2020 void Matcher::dump_old2new_map() {
  2021   _old2new_map.dump();
  2023 #endif
  2025 //---------------------------collect_null_checks-------------------------------
  2026 // Find null checks in the ideal graph; write a machine-specific node for
  2027 // it.  Used by later implicit-null-check handling.  Actually collects
  2028 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2029 // value being tested.
  2030 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2031   Node *iff = proj->in(0);
  2032   if( iff->Opcode() == Op_If ) {
  2033     // During matching If's have Bool & Cmp side-by-side
  2034     BoolNode *b = iff->in(1)->as_Bool();
  2035     Node *cmp = iff->in(2);
  2036     int opc = cmp->Opcode();
  2037     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2039     const Type* ct = cmp->in(2)->bottom_type();
  2040     if (ct == TypePtr::NULL_PTR ||
  2041         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2043       bool push_it = false;
  2044       if( proj->Opcode() == Op_IfTrue ) {
  2045         extern int all_null_checks_found;
  2046         all_null_checks_found++;
  2047         if( b->_test._test == BoolTest::ne ) {
  2048           push_it = true;
  2050       } else {
  2051         assert( proj->Opcode() == Op_IfFalse, "" );
  2052         if( b->_test._test == BoolTest::eq ) {
  2053           push_it = true;
  2056       if( push_it ) {
  2057         _null_check_tests.push(proj);
  2058         Node* val = cmp->in(1);
  2059 #ifdef _LP64
  2060         if (UseCompressedOops && !Matcher::clone_shift_expressions &&
  2061             val->bottom_type()->isa_narrowoop()) {
  2062           //
  2063           // Look for DecodeN node which should be pinned to orig_proj.
  2064           // On platforms (Sparc) which can not handle 2 adds
  2065           // in addressing mode we have to keep a DecodeN node and
  2066           // use it to do implicit NULL check in address.
  2067           //
  2068           // DecodeN node was pinned to non-null path (orig_proj) during
  2069           // CastPP transformation in final_graph_reshaping_impl().
  2070           //
  2071           uint cnt = orig_proj->outcnt();
  2072           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2073             Node* d = orig_proj->raw_out(i);
  2074             if (d->is_DecodeN() && d->in(1) == val) {
  2075               val = d;
  2076               val->set_req(0, NULL); // Unpin now.
  2077               break;
  2081 #endif
  2082         _null_check_tests.push(val);
  2088 //---------------------------validate_null_checks------------------------------
  2089 // Its possible that the value being NULL checked is not the root of a match
  2090 // tree.  If so, I cannot use the value in an implicit null check.
  2091 void Matcher::validate_null_checks( ) {
  2092   uint cnt = _null_check_tests.size();
  2093   for( uint i=0; i < cnt; i+=2 ) {
  2094     Node *test = _null_check_tests[i];
  2095     Node *val = _null_check_tests[i+1];
  2096     if (has_new_node(val)) {
  2097       // Is a match-tree root, so replace with the matched value
  2098       _null_check_tests.map(i+1, new_node(val));
  2099     } else {
  2100       // Yank from candidate list
  2101       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2102       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2103       _null_check_tests.pop();
  2104       _null_check_tests.pop();
  2105       i-=2;
  2111 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
  2112 // acting as an Acquire and thus we don't need an Acquire here.  We
  2113 // retain the Node to act as a compiler ordering barrier.
  2114 bool Matcher::prior_fast_lock( const Node *acq ) {
  2115   Node *r = acq->in(0);
  2116   if( !r->is_Region() || r->req() <= 1 ) return false;
  2117   Node *proj = r->in(1);
  2118   if( !proj->is_Proj() ) return false;
  2119   Node *call = proj->in(0);
  2120   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
  2121     return false;
  2123   return true;
  2126 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
  2127 // acting as a Release and thus we don't need a Release here.  We
  2128 // retain the Node to act as a compiler ordering barrier.
  2129 bool Matcher::post_fast_unlock( const Node *rel ) {
  2130   Compile *C = Compile::current();
  2131   assert( rel->Opcode() == Op_MemBarRelease, "" );
  2132   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
  2133   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2134   Node *ctrl = NULL;
  2135   while( true ) {
  2136     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2137     assert( ctrl->is_Proj(), "only projections here" );
  2138     ProjNode *proj = (ProjNode*)ctrl;
  2139     if( proj->_con == TypeFunc::Control &&
  2140         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2141       break;
  2142     i++;
  2144   Node *iff = NULL;
  2145   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2146     Node *x = ctrl->fast_out(j);
  2147     if( x->is_If() && x->req() > 1 &&
  2148         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2149       iff = x;
  2150       break;
  2153   if( !iff ) return false;
  2154   Node *bol = iff->in(1);
  2155   // The iff might be some random subclass of If or bol might be Con-Top
  2156   if (!bol->is_Bool())  return false;
  2157   assert( bol->req() > 1, "" );
  2158   return (bol->in(1)->Opcode() == Op_FastUnlock);
  2161 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2162 // atomic instruction acting as a store_load barrier without any
  2163 // intervening volatile load, and thus we don't need a barrier here.
  2164 // We retain the Node to act as a compiler ordering barrier.
  2165 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2166   Compile *C = Compile::current();
  2167   assert( vmb->is_MemBar(), "" );
  2168   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2169   const MemBarNode *mem = (const MemBarNode*)vmb;
  2171   // Get the Proj node, ctrl, that can be used to iterate forward
  2172   Node *ctrl = NULL;
  2173   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2174   while( true ) {
  2175     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2176     assert( ctrl->is_Proj(), "only projections here" );
  2177     ProjNode *proj = (ProjNode*)ctrl;
  2178     if( proj->_con == TypeFunc::Control &&
  2179         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2180       break;
  2181     i++;
  2184   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2185     Node *x = ctrl->fast_out(j);
  2186     int xop = x->Opcode();
  2188     // We don't need current barrier if we see another or a lock
  2189     // before seeing volatile load.
  2190     //
  2191     // Op_Fastunlock previously appeared in the Op_* list below.
  2192     // With the advent of 1-0 lock operations we're no longer guaranteed
  2193     // that a monitor exit operation contains a serializing instruction.
  2195     if (xop == Op_MemBarVolatile ||
  2196         xop == Op_FastLock ||
  2197         xop == Op_CompareAndSwapL ||
  2198         xop == Op_CompareAndSwapP ||
  2199         xop == Op_CompareAndSwapN ||
  2200         xop == Op_CompareAndSwapI)
  2201       return true;
  2203     if (x->is_MemBar()) {
  2204       // We must retain this membar if there is an upcoming volatile
  2205       // load, which will be preceded by acquire membar.
  2206       if (xop == Op_MemBarAcquire)
  2207         return false;
  2208       // For other kinds of barriers, check by pretending we
  2209       // are them, and seeing if we can be removed.
  2210       else
  2211         return post_store_load_barrier((const MemBarNode*)x);
  2214     // Delicate code to detect case of an upcoming fastlock block
  2215     if( x->is_If() && x->req() > 1 &&
  2216         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2217       Node *iff = x;
  2218       Node *bol = iff->in(1);
  2219       // The iff might be some random subclass of If or bol might be Con-Top
  2220       if (!bol->is_Bool())  return false;
  2221       assert( bol->req() > 1, "" );
  2222       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2224     // probably not necessary to check for these
  2225     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2226       return false;
  2228   return false;
  2231 //=============================================================================
  2232 //---------------------------State---------------------------------------------
  2233 State::State(void) {
  2234 #ifdef ASSERT
  2235   _id = 0;
  2236   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2237   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2238   //memset(_cost, -1, sizeof(_cost));
  2239   //memset(_rule, -1, sizeof(_rule));
  2240 #endif
  2241   memset(_valid, 0, sizeof(_valid));
  2244 #ifdef ASSERT
  2245 State::~State() {
  2246   _id = 99;
  2247   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2248   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2249   memset(_cost, -3, sizeof(_cost));
  2250   memset(_rule, -3, sizeof(_rule));
  2252 #endif
  2254 #ifndef PRODUCT
  2255 //---------------------------dump----------------------------------------------
  2256 void State::dump() {
  2257   tty->print("\n");
  2258   dump(0);
  2261 void State::dump(int depth) {
  2262   for( int j = 0; j < depth; j++ )
  2263     tty->print("   ");
  2264   tty->print("--N: ");
  2265   _leaf->dump();
  2266   uint i;
  2267   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2268     // Check for valid entry
  2269     if( valid(i) ) {
  2270       for( int j = 0; j < depth; j++ )
  2271         tty->print("   ");
  2272         assert(_cost[i] != max_juint, "cost must be a valid value");
  2273         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2274         tty->print_cr("%s  %d  %s",
  2275                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2277   tty->print_cr("");
  2279   for( i=0; i<2; i++ )
  2280     if( _kids[i] )
  2281       _kids[i]->dump(depth+1);
  2283 #endif

mercurial