src/share/vm/opto/domgraph.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 435
a61af66fc99e
child 1356
046932b72aa2
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2005 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_domgraph.cpp.incl"
    32 //------------------------------Tarjan-----------------------------------------
    33 // A data structure that holds all the information needed to find dominators.
    34 struct Tarjan {
    35   Block *_block;                // Basic block for this info
    37   uint _semi;                   // Semi-dominators
    38   uint _size;                   // Used for faster LINK and EVAL
    39   Tarjan *_parent;              // Parent in DFS
    40   Tarjan *_label;               // Used for LINK and EVAL
    41   Tarjan *_ancestor;            // Used for LINK and EVAL
    42   Tarjan *_child;               // Used for faster LINK and EVAL
    43   Tarjan *_dom;                 // Parent in dominator tree (immediate dom)
    44   Tarjan *_bucket;              // Set of vertices with given semidominator
    46   Tarjan *_dom_child;           // Child in dominator tree
    47   Tarjan *_dom_next;            // Next in dominator tree
    49   // Fast union-find work
    50   void COMPRESS();
    51   Tarjan *EVAL(void);
    52   void LINK( Tarjan *w, Tarjan *tarjan0 );
    54   void setdepth( uint size );
    56 };
    58 //------------------------------Dominator--------------------------------------
    59 // Compute the dominator tree of the CFG.  The CFG must already have been
    60 // constructed.  This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
    61 void PhaseCFG::Dominators( ) {
    62   // Pre-grow the blocks array, prior to the ResourceMark kicking in
    63   _blocks.map(_num_blocks,0);
    65   ResourceMark rm;
    66   // Setup mappings from my Graph to Tarjan's stuff and back
    67   // Note: Tarjan uses 1-based arrays
    68   Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1);
    70   // Tarjan's algorithm, almost verbatim:
    71   // Step 1:
    72   _rpo_ctr = _num_blocks;
    73   uint dfsnum = DFS( tarjan );
    74   if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops!
    75     // If the returned dfsnum does not match the number of blocks, then we
    76     // must have some unreachable loops.  These can be made at any time by
    77     // IterGVN.  They are cleaned up by CCP or the loop opts, but the last
    78     // IterGVN can always make more that are not cleaned up.  Highly unlikely
    79     // except in ZKM.jar, where endless irreducible loops cause the loop opts
    80     // to not get run.
    81     //
    82     // Having found unreachable loops, we have made a bad RPO _block layout.
    83     // We can re-run the above DFS pass with the correct number of blocks,
    84     // and hack the Tarjan algorithm below to be robust in the presence of
    85     // such dead loops (as was done for the NTarjan code farther below).
    86     // Since this situation is so unlikely, instead I've decided to bail out.
    87     // CNC 7/24/2001
    88     C->record_method_not_compilable("unreachable loop");
    89     return;
    90   }
    91   _blocks._cnt = _num_blocks;
    93   // Tarjan is using 1-based arrays, so these are some initialize flags
    94   tarjan[0]._size = tarjan[0]._semi = 0;
    95   tarjan[0]._label = &tarjan[0];
    97   uint i;
    98   for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order
    99     Tarjan *w = &tarjan[i];     // Get vertex from DFS
   101     // Step 2:
   102     Node *whead = w->_block->head();
   103     for( uint j=1; j < whead->req(); j++ ) {
   104       Block *b = _bbs[whead->in(j)->_idx];
   105       Tarjan *vx = &tarjan[b->_pre_order];
   106       Tarjan *u = vx->EVAL();
   107       if( u->_semi < w->_semi )
   108         w->_semi = u->_semi;
   109     }
   111     // w is added to a bucket here, and only here.
   112     // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
   113     // Thus bucket can be a linked list.
   114     // Thus we do not need a small integer name for each Block.
   115     w->_bucket = tarjan[w->_semi]._bucket;
   116     tarjan[w->_semi]._bucket = w;
   118     w->_parent->LINK( w, &tarjan[0] );
   120     // Step 3:
   121     for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
   122       Tarjan *u = vx->EVAL();
   123       vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
   124     }
   125   }
   127   // Step 4:
   128   for( i=2; i <= _num_blocks; i++ ) {
   129     Tarjan *w = &tarjan[i];
   130     if( w->_dom != &tarjan[w->_semi] )
   131       w->_dom = w->_dom->_dom;
   132     w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
   133   }
   134   // No immediate dominator for the root
   135   Tarjan *w = &tarjan[_broot->_pre_order];
   136   w->_dom = NULL;
   137   w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
   139   // Convert the dominator tree array into my kind of graph
   140   for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices
   141     Tarjan *t = &tarjan[i];     // Handy access
   142     Tarjan *tdom = t->_dom;     // Handy access to immediate dominator
   143     if( tdom )  {               // Root has no immediate dominator
   144       t->_block->_idom = tdom->_block; // Set immediate dominator
   145       t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
   146       tdom->_dom_child = t;     // Make me a child of my parent
   147     } else
   148       t->_block->_idom = NULL;  // Root
   149   }
   150   w->setdepth( _num_blocks+1 ); // Set depth in dominator tree
   152 }
   154 //----------------------------Block_Stack--------------------------------------
   155 class Block_Stack {
   156   private:
   157     struct Block_Descr {
   158       Block  *block;     // Block
   159       int    index;      // Index of block's successor pushed on stack
   160       int    freq_idx;   // Index of block's most frequent successor
   161     };
   162     Block_Descr *_stack_top;
   163     Block_Descr *_stack_max;
   164     Block_Descr *_stack;
   165     Tarjan *_tarjan;
   166     uint most_frequent_successor( Block *b );
   167   public:
   168     Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
   169       _stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
   170       _stack_max = _stack + size;
   171       _stack_top = _stack - 1; // stack is empty
   172     }
   173     void push(uint pre_order, Block *b) {
   174       Tarjan *t = &_tarjan[pre_order]; // Fast local access
   175       b->_pre_order = pre_order;    // Flag as visited
   176       t->_block = b;                // Save actual block
   177       t->_semi = pre_order;         // Block to DFS map
   178       t->_label = t;                // DFS to vertex map
   179       t->_ancestor = NULL;          // Fast LINK & EVAL setup
   180       t->_child = &_tarjan[0];      // Sentenial
   181       t->_size = 1;
   182       t->_bucket = NULL;
   183       if (pre_order == 1)
   184         t->_parent = NULL;          // first block doesn't have parent
   185       else {
   186         // Save parent (current top block on stack) in DFS
   187         t->_parent = &_tarjan[_stack_top->block->_pre_order];
   188       }
   189       // Now put this block on stack
   190       ++_stack_top;
   191       assert(_stack_top < _stack_max, ""); // assert if stack have to grow
   192       _stack_top->block  = b;
   193       _stack_top->index  = -1;
   194       // Find the index into b->succs[] array of the most frequent successor.
   195       _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
   196     }
   197     Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
   198     bool is_nonempty() { return (_stack_top >= _stack); }
   199     bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
   200     Block* next_successor()  {
   201       int i = _stack_top->index;
   202       i++;
   203       if (i == _stack_top->freq_idx) i++;
   204       if (i >= (int)(_stack_top->block->_num_succs)) {
   205         i = _stack_top->freq_idx;   // process most frequent successor last
   206       }
   207       _stack_top->index = i;
   208       return _stack_top->block->_succs[ i ];
   209     }
   210 };
   212 //-------------------------most_frequent_successor-----------------------------
   213 // Find the index into the b->succs[] array of the most frequent successor.
   214 uint Block_Stack::most_frequent_successor( Block *b ) {
   215   uint freq_idx = 0;
   216   int eidx = b->end_idx();
   217   Node *n = b->_nodes[eidx];
   218   int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
   219   switch( op ) {
   220   case Op_CountedLoopEnd:
   221   case Op_If: {               // Split frequency amongst children
   222     float prob = n->as_MachIf()->_prob;
   223     // Is succ[0] the TRUE branch or the FALSE branch?
   224     if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse )
   225       prob = 1.0f - prob;
   226     freq_idx = prob < PROB_FAIR;      // freq=1 for succ[0] < 0.5 prob
   227     break;
   228   }
   229   case Op_Catch:                // Split frequency amongst children
   230     for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
   231       if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index )
   232         break;
   233     // Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
   234     if( freq_idx == b->_num_succs ) freq_idx = 0;
   235     break;
   236     // Currently there is no support for finding out the most
   237     // frequent successor for jumps, so lets just make it the first one
   238   case Op_Jump:
   239   case Op_Root:
   240   case Op_Goto:
   241   case Op_NeverBranch:
   242     freq_idx = 0;               // fall thru
   243     break;
   244   case Op_TailCall:
   245   case Op_TailJump:
   246   case Op_Return:
   247   case Op_Halt:
   248   case Op_Rethrow:
   249     break;
   250   default:
   251     ShouldNotReachHere();
   252   }
   253   return freq_idx;
   254 }
   256 //------------------------------DFS--------------------------------------------
   257 // Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
   258 // 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
   259 uint PhaseCFG::DFS( Tarjan *tarjan ) {
   260   Block *b = _broot;
   261   uint pre_order = 1;
   262   // Allocate stack of size _num_blocks+1 to avoid frequent realloc
   263   Block_Stack bstack(tarjan, _num_blocks+1);
   265   // Push on stack the state for the first block
   266   bstack.push(pre_order, b);
   267   ++pre_order;
   269   while (bstack.is_nonempty()) {
   270     if (!bstack.last_successor()) {
   271       // Walk over all successors in pre-order (DFS).
   272       Block *s = bstack.next_successor();
   273       if (s->_pre_order == 0) { // Check for no-pre-order, not-visited
   274         // Push on stack the state of successor
   275         bstack.push(pre_order, s);
   276         ++pre_order;
   277       }
   278     }
   279     else {
   280       // Build a reverse post-order in the CFG _blocks array
   281       Block *stack_top = bstack.pop();
   282       stack_top->_rpo = --_rpo_ctr;
   283       _blocks.map(stack_top->_rpo, stack_top);
   284     }
   285   }
   286   return pre_order;
   287 }
   289 //------------------------------COMPRESS---------------------------------------
   290 void Tarjan::COMPRESS()
   291 {
   292   assert( _ancestor != 0, "" );
   293   if( _ancestor->_ancestor != 0 ) {
   294     _ancestor->COMPRESS( );
   295     if( _ancestor->_label->_semi < _label->_semi )
   296       _label = _ancestor->_label;
   297     _ancestor = _ancestor->_ancestor;
   298   }
   299 }
   301 //------------------------------EVAL-------------------------------------------
   302 Tarjan *Tarjan::EVAL() {
   303   if( !_ancestor ) return _label;
   304   COMPRESS();
   305   return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
   306 }
   308 //------------------------------LINK-------------------------------------------
   309 void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
   310   Tarjan *s = w;
   311   while( w->_label->_semi < s->_child->_label->_semi ) {
   312     if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
   313       s->_child->_ancestor = s;
   314       s->_child = s->_child->_child;
   315     } else {
   316       s->_child->_size = s->_size;
   317       s = s->_ancestor = s->_child;
   318     }
   319   }
   320   s->_label = w->_label;
   321   _size += w->_size;
   322   if( _size < (w->_size << 1) ) {
   323     Tarjan *tmp = s; s = _child; _child = tmp;
   324   }
   325   while( s != tarjan0 ) {
   326     s->_ancestor = this;
   327     s = s->_child;
   328   }
   329 }
   331 //------------------------------setdepth---------------------------------------
   332 void Tarjan::setdepth( uint stack_size ) {
   333   Tarjan **top  = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
   334   Tarjan **next = top;
   335   Tarjan **last;
   336   uint depth = 0;
   337   *top = this;
   338   ++top;
   339   do {
   340     // next level
   341     ++depth;
   342     last = top;
   343     do {
   344       // Set current depth for all tarjans on this level
   345       Tarjan *t = *next;     // next tarjan from stack
   346       ++next;
   347       do {
   348         t->_block->_dom_depth = depth; // Set depth in dominator tree
   349         Tarjan *dom_child = t->_dom_child;
   350         t = t->_dom_next;    // next tarjan
   351         if (dom_child != NULL) {
   352           *top = dom_child;  // save child on stack
   353           ++top;
   354         }
   355       } while (t != NULL);
   356     } while (next < last);
   357   } while (last < top);
   358 }
   360 //*********************** DOMINATORS ON THE SEA OF NODES***********************
   361 //------------------------------NTarjan----------------------------------------
   362 // A data structure that holds all the information needed to find dominators.
   363 struct NTarjan {
   364   Node *_control;               // Control node associated with this info
   366   uint _semi;                   // Semi-dominators
   367   uint _size;                   // Used for faster LINK and EVAL
   368   NTarjan *_parent;             // Parent in DFS
   369   NTarjan *_label;              // Used for LINK and EVAL
   370   NTarjan *_ancestor;           // Used for LINK and EVAL
   371   NTarjan *_child;              // Used for faster LINK and EVAL
   372   NTarjan *_dom;                // Parent in dominator tree (immediate dom)
   373   NTarjan *_bucket;             // Set of vertices with given semidominator
   375   NTarjan *_dom_child;          // Child in dominator tree
   376   NTarjan *_dom_next;           // Next in dominator tree
   378   // Perform DFS search.
   379   // Setup 'vertex' as DFS to vertex mapping.
   380   // Setup 'semi' as vertex to DFS mapping.
   381   // Set 'parent' to DFS parent.
   382   static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
   383   void setdepth( uint size, uint *dom_depth );
   385   // Fast union-find work
   386   void COMPRESS();
   387   NTarjan *EVAL(void);
   388   void LINK( NTarjan *w, NTarjan *ntarjan0 );
   389 #ifndef PRODUCT
   390   void dump(int offset) const;
   391 #endif
   392 };
   394 //------------------------------Dominator--------------------------------------
   395 // Compute the dominator tree of the sea of nodes.  This version walks all CFG
   396 // nodes (using the is_CFG() call) and places them in a dominator tree.  Thus,
   397 // it needs a count of the CFG nodes for the mapping table. This is the
   398 // Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
   399 void PhaseIdealLoop::Dominators( ) {
   400   ResourceMark rm;
   401   // Setup mappings from my Graph to Tarjan's stuff and back
   402   // Note: Tarjan uses 1-based arrays
   403   NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
   404   // Initialize _control field for fast reference
   405   int i;
   406   for( i= C->unique()-1; i>=0; i-- )
   407     ntarjan[i]._control = NULL;
   409   // Store the DFS order for the main loop
   410   uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
   411   memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
   413   // Tarjan's algorithm, almost verbatim:
   414   // Step 1:
   415   VectorSet visited(Thread::current()->resource_area());
   416   int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
   418   // Tarjan is using 1-based arrays, so these are some initialize flags
   419   ntarjan[0]._size = ntarjan[0]._semi = 0;
   420   ntarjan[0]._label = &ntarjan[0];
   422   for( i = dfsnum-1; i>1; i-- ) {        // For all nodes in reverse DFS order
   423     NTarjan *w = &ntarjan[i];            // Get Node from DFS
   424     assert(w->_control != NULL,"bad DFS walk");
   426     // Step 2:
   427     Node *whead = w->_control;
   428     for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
   429       if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
   430         continue;                            // Only process control nodes
   431       uint b = dfsorder[whead->in(j)->_idx];
   432       if(b == max_uint) continue;
   433       NTarjan *vx = &ntarjan[b];
   434       NTarjan *u = vx->EVAL();
   435       if( u->_semi < w->_semi )
   436         w->_semi = u->_semi;
   437     }
   439     // w is added to a bucket here, and only here.
   440     // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
   441     // Thus bucket can be a linked list.
   442     w->_bucket = ntarjan[w->_semi]._bucket;
   443     ntarjan[w->_semi]._bucket = w;
   445     w->_parent->LINK( w, &ntarjan[0] );
   447     // Step 3:
   448     for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
   449       NTarjan *u = vx->EVAL();
   450       vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
   451     }
   453     // Cleanup any unreachable loops now.  Unreachable loops are loops that
   454     // flow into the main graph (and hence into ROOT) but are not reachable
   455     // from above.  Such code is dead, but requires a global pass to detect
   456     // it; this global pass was the 'build_loop_tree' pass run just prior.
   457     if( whead->is_Region() ) {
   458       for( uint i = 1; i < whead->req(); i++ ) {
   459         if (!has_node(whead->in(i))) {
   460           // Kill dead input path
   461           assert( !visited.test(whead->in(i)->_idx),
   462                   "input with no loop must be dead" );
   463           _igvn.hash_delete(whead);
   464           whead->del_req(i);
   465           _igvn._worklist.push(whead);
   466           for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
   467             Node* p = whead->fast_out(j);
   468             if( p->is_Phi() ) {
   469               _igvn.hash_delete(p);
   470               p->del_req(i);
   471               _igvn._worklist.push(p);
   472             }
   473           }
   474           i--;                  // Rerun same iteration
   475         } // End of if dead input path
   476       } // End of for all input paths
   477     } // End if if whead is a Region
   478   } // End of for all Nodes in reverse DFS order
   480   // Step 4:
   481   for( i=2; i < dfsnum; i++ ) { // DFS order
   482     NTarjan *w = &ntarjan[i];
   483     assert(w->_control != NULL,"Bad DFS walk");
   484     if( w->_dom != &ntarjan[w->_semi] )
   485       w->_dom = w->_dom->_dom;
   486     w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
   487   }
   488   // No immediate dominator for the root
   489   NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
   490   w->_dom = NULL;
   491   w->_parent = NULL;
   492   w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
   494   // Convert the dominator tree array into my kind of graph
   495   for( i=1; i<dfsnum; i++ ) {          // For all Tarjan vertices
   496     NTarjan *t = &ntarjan[i];          // Handy access
   497     assert(t->_control != NULL,"Bad DFS walk");
   498     NTarjan *tdom = t->_dom;           // Handy access to immediate dominator
   499     if( tdom )  {                      // Root has no immediate dominator
   500       _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
   501       t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
   502       tdom->_dom_child = t;            // Make me a child of my parent
   503     } else
   504       _idom[C->root()->_idx] = NULL; // Root
   505   }
   506   w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
   507   // Pick up the 'top' node as well
   508   _idom     [C->top()->_idx] = C->root();
   509   _dom_depth[C->top()->_idx] = 1;
   511   // Debug Print of Dominator tree
   512   if( PrintDominators ) {
   513 #ifndef PRODUCT
   514     w->dump(0);
   515 #endif
   516   }
   517 }
   519 //------------------------------DFS--------------------------------------------
   520 // Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
   521 // 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
   522 int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
   523   // Allocate stack of size C->unique()/8 to avoid frequent realloc
   524   GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
   525   Node *b = pil->C->root();
   526   int dfsnum = 1;
   527   dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
   528   dfstack.push(b);
   530   while (dfstack.is_nonempty()) {
   531     b = dfstack.pop();
   532     if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
   533       NTarjan *w = &ntarjan[dfsnum];
   534       // Only fully process control nodes
   535       w->_control = b;                 // Save actual node
   536       // Use parent's cached dfsnum to identify "Parent in DFS"
   537       w->_parent = &ntarjan[dfsorder[b->_idx]];
   538       dfsorder[b->_idx] = dfsnum;      // Save DFS order info
   539       w->_semi = dfsnum;               // Node to DFS map
   540       w->_label = w;                   // DFS to vertex map
   541       w->_ancestor = NULL;             // Fast LINK & EVAL setup
   542       w->_child = &ntarjan[0];         // Sentinal
   543       w->_size = 1;
   544       w->_bucket = NULL;
   546       // Need DEF-USE info for this pass
   547       for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
   548         Node* s = b->raw_out(i);       // Get a use
   549         // CFG nodes only and not dead stuff
   550         if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
   551           dfsorder[s->_idx] = dfsnum;  // Cache parent's dfsnum for a later use
   552           dfstack.push(s);
   553         }
   554       }
   555       dfsnum++;  // update after parent's dfsnum has been cached.
   556     }
   557   }
   559   return dfsnum;
   560 }
   562 //------------------------------COMPRESS---------------------------------------
   563 void NTarjan::COMPRESS()
   564 {
   565   assert( _ancestor != 0, "" );
   566   if( _ancestor->_ancestor != 0 ) {
   567     _ancestor->COMPRESS( );
   568     if( _ancestor->_label->_semi < _label->_semi )
   569       _label = _ancestor->_label;
   570     _ancestor = _ancestor->_ancestor;
   571   }
   572 }
   574 //------------------------------EVAL-------------------------------------------
   575 NTarjan *NTarjan::EVAL() {
   576   if( !_ancestor ) return _label;
   577   COMPRESS();
   578   return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
   579 }
   581 //------------------------------LINK-------------------------------------------
   582 void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
   583   NTarjan *s = w;
   584   while( w->_label->_semi < s->_child->_label->_semi ) {
   585     if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
   586       s->_child->_ancestor = s;
   587       s->_child = s->_child->_child;
   588     } else {
   589       s->_child->_size = s->_size;
   590       s = s->_ancestor = s->_child;
   591     }
   592   }
   593   s->_label = w->_label;
   594   _size += w->_size;
   595   if( _size < (w->_size << 1) ) {
   596     NTarjan *tmp = s; s = _child; _child = tmp;
   597   }
   598   while( s != ntarjan0 ) {
   599     s->_ancestor = this;
   600     s = s->_child;
   601   }
   602 }
   604 //------------------------------setdepth---------------------------------------
   605 void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
   606   NTarjan **top  = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
   607   NTarjan **next = top;
   608   NTarjan **last;
   609   uint depth = 0;
   610   *top = this;
   611   ++top;
   612   do {
   613     // next level
   614     ++depth;
   615     last = top;
   616     do {
   617       // Set current depth for all tarjans on this level
   618       NTarjan *t = *next;    // next tarjan from stack
   619       ++next;
   620       do {
   621         dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
   622         NTarjan *dom_child = t->_dom_child;
   623         t = t->_dom_next;    // next tarjan
   624         if (dom_child != NULL) {
   625           *top = dom_child;  // save child on stack
   626           ++top;
   627         }
   628       } while (t != NULL);
   629     } while (next < last);
   630   } while (last < top);
   631 }
   633 //------------------------------dump-------------------------------------------
   634 #ifndef PRODUCT
   635 void NTarjan::dump(int offset) const {
   636   // Dump the data from this node
   637   int i;
   638   for(i = offset; i >0; i--)  // Use indenting for tree structure
   639     tty->print("  ");
   640   tty->print("Dominator Node: ");
   641   _control->dump();               // Control node for this dom node
   642   tty->print("\n");
   643   for(i = offset; i >0; i--)      // Use indenting for tree structure
   644     tty->print("  ");
   645   tty->print("semi:%d, size:%d\n",_semi, _size);
   646   for(i = offset; i >0; i--)      // Use indenting for tree structure
   647     tty->print("  ");
   648   tty->print("DFS Parent: ");
   649   if(_parent != NULL)
   650     _parent->_control->dump();    // Parent in DFS
   651   tty->print("\n");
   652   for(i = offset; i >0; i--)      // Use indenting for tree structure
   653     tty->print("  ");
   654   tty->print("Dom Parent: ");
   655   if(_dom != NULL)
   656     _dom->_control->dump();       // Parent in Dominator Tree
   657   tty->print("\n");
   659   // Recurse over remaining tree
   660   if( _dom_child ) _dom_child->dump(offset+2);   // Children in dominator tree
   661   if( _dom_next  ) _dom_next ->dump(offset  );   // Siblings in dominator tree
   663 }
   664 #endif

mercurial