src/share/vm/interpreter/bytecodeInterpreter.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 955
52a431267315
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2002-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    26 // no precompiled headers
    27 #include "incls/_bytecodeInterpreter.cpp.incl"
    29 #ifdef CC_INTERP
    31 /*
    32  * USELABELS - If using GCC, then use labels for the opcode dispatching
    33  * rather -then a switch statement. This improves performance because it
    34  * gives us the oportunity to have the instructions that calculate the
    35  * next opcode to jump to be intermixed with the rest of the instructions
    36  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
    37  */
    38 #undef USELABELS
    39 #ifdef __GNUC__
    40 /*
    41    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
    42    don't use the computed goto approach.
    43 */
    44 #ifndef ASSERT
    45 #define USELABELS
    46 #endif
    47 #endif
    49 #undef CASE
    50 #ifdef USELABELS
    51 #define CASE(opcode) opc ## opcode
    52 #define DEFAULT opc_default
    53 #else
    54 #define CASE(opcode) case Bytecodes:: opcode
    55 #define DEFAULT default
    56 #endif
    58 /*
    59  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
    60  * opcode before going back to the top of the while loop, rather then having
    61  * the top of the while loop handle it. This provides a better opportunity
    62  * for instruction scheduling. Some compilers just do this prefetch
    63  * automatically. Some actually end up with worse performance if you
    64  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
    65  */
    66 #undef PREFETCH_OPCCODE
    67 #define PREFETCH_OPCCODE
    69 /*
    70   Interpreter safepoint: it is expected that the interpreter will have no live
    71   handles of its own creation live at an interpreter safepoint. Therefore we
    72   run a HandleMarkCleaner and trash all handles allocated in the call chain
    73   since the JavaCalls::call_helper invocation that initiated the chain.
    74   There really shouldn't be any handles remaining to trash but this is cheap
    75   in relation to a safepoint.
    76 */
    77 #define SAFEPOINT                                                                 \
    78     if ( SafepointSynchronize::is_synchronizing()) {                              \
    79         {                                                                         \
    80           /* zap freed handles rather than GC'ing them */                         \
    81           HandleMarkCleaner __hmc(THREAD);                                        \
    82         }                                                                         \
    83         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
    84     }
    86 /*
    87  * VM_JAVA_ERROR - Macro for throwing a java exception from
    88  * the interpreter loop. Should really be a CALL_VM but there
    89  * is no entry point to do the transition to vm so we just
    90  * do it by hand here.
    91  */
    92 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
    93     DECACHE_STATE();                                                              \
    94     SET_LAST_JAVA_FRAME();                                                        \
    95     {                                                                             \
    96        ThreadInVMfromJava trans(THREAD);                                          \
    97        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
    98     }                                                                             \
    99     RESET_LAST_JAVA_FRAME();                                                      \
   100     CACHE_STATE();
   102 // Normal throw of a java error
   103 #define VM_JAVA_ERROR(name, msg)                                                  \
   104     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
   105     goto handle_exception;
   107 #ifdef PRODUCT
   108 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
   109 #else
   110 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
   111 {                                                                                                    \
   112     BytecodeCounter::_counter_value++;                                                               \
   113     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
   114     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
   115     if (TraceBytecodes) {                                                                            \
   116       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
   117                                    topOfStack[Interpreter::expr_index_at(1)],   \
   118                                    topOfStack[Interpreter::expr_index_at(2)]),  \
   119                                    handle_exception);                      \
   120     }                                                                      \
   121 }
   122 #endif
   124 #undef DEBUGGER_SINGLE_STEP_NOTIFY
   125 #ifdef VM_JVMTI
   126 /* NOTE: (kbr) This macro must be called AFTER the PC has been
   127    incremented. JvmtiExport::at_single_stepping_point() may cause a
   128    breakpoint opcode to get inserted at the current PC to allow the
   129    debugger to coalesce single-step events.
   131    As a result if we call at_single_stepping_point() we refetch opcode
   132    to get the current opcode. This will override any other prefetching
   133    that might have occurred.
   134 */
   135 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
   136 {                                                                                \
   137       if (_jvmti_interp_events) {                                                \
   138         if (JvmtiExport::should_post_single_step()) {                            \
   139           DECACHE_STATE();                                                       \
   140           SET_LAST_JAVA_FRAME();                                                 \
   141           ThreadInVMfromJava trans(THREAD);                                      \
   142           JvmtiExport::at_single_stepping_point(THREAD,                          \
   143                                           istate->method(),                      \
   144                                           pc);                                   \
   145           RESET_LAST_JAVA_FRAME();                                               \
   146           CACHE_STATE();                                                         \
   147           if (THREAD->pop_frame_pending() &&                                     \
   148               !THREAD->pop_frame_in_process()) {                                 \
   149             goto handle_Pop_Frame;                                               \
   150           }                                                                      \
   151           opcode = *pc;                                                          \
   152         }                                                                        \
   153       }                                                                          \
   154 }
   155 #else
   156 #define DEBUGGER_SINGLE_STEP_NOTIFY()
   157 #endif
   159 /*
   160  * CONTINUE - Macro for executing the next opcode.
   161  */
   162 #undef CONTINUE
   163 #ifdef USELABELS
   164 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
   165 // initialization (which is is the initialization of the table pointer...)
   166 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
   167 #define CONTINUE {                              \
   168         opcode = *pc;                           \
   169         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   170         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   171         DISPATCH(opcode);                       \
   172     }
   173 #else
   174 #ifdef PREFETCH_OPCCODE
   175 #define CONTINUE {                              \
   176         opcode = *pc;                           \
   177         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   178         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   179         continue;                               \
   180     }
   181 #else
   182 #define CONTINUE {                              \
   183         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
   184         DEBUGGER_SINGLE_STEP_NOTIFY();          \
   185         continue;                               \
   186     }
   187 #endif
   188 #endif
   190 // JavaStack Implementation
   191 #define MORE_STACK(count)  \
   192     (topOfStack -= ((count) * Interpreter::stackElementWords()))
   195 #define UPDATE_PC(opsize) {pc += opsize; }
   196 /*
   197  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
   198  */
   199 #undef UPDATE_PC_AND_TOS
   200 #define UPDATE_PC_AND_TOS(opsize, stack) \
   201     {pc += opsize; MORE_STACK(stack); }
   203 /*
   204  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
   205  * and executing the next opcode. It's somewhat similar to the combination
   206  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
   207  */
   208 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
   209 #ifdef USELABELS
   210 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   211         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   212         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   213         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   214         DISPATCH(opcode);                                       \
   215     }
   217 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   218         pc += opsize; opcode = *pc;                             \
   219         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   220         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   221         DISPATCH(opcode);                                       \
   222     }
   223 #else
   224 #ifdef PREFETCH_OPCCODE
   225 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
   226         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
   227         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   228         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   229         goto do_continue;                                       \
   230     }
   232 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
   233         pc += opsize; opcode = *pc;                             \
   234         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
   235         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
   236         goto do_continue;                                       \
   237     }
   238 #else
   239 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
   240         pc += opsize; MORE_STACK(stack);                \
   241         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   242         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   243         goto do_continue;                               \
   244     }
   246 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
   247         pc += opsize;                                   \
   248         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
   249         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
   250         goto do_continue;                               \
   251     }
   252 #endif /* PREFETCH_OPCCODE */
   253 #endif /* USELABELS */
   255 // About to call a new method, update the save the adjusted pc and return to frame manager
   256 #define UPDATE_PC_AND_RETURN(opsize)  \
   257    DECACHE_TOS();                     \
   258    istate->set_bcp(pc+opsize);        \
   259    return;
   262 #define METHOD istate->method()
   263 #define INVOCATION_COUNT METHOD->invocation_counter()
   264 #define BACKEDGE_COUNT METHOD->backedge_counter()
   267 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
   268 #define OSR_REQUEST(res, branch_pc) \
   269             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
   270 /*
   271  * For those opcodes that need to have a GC point on a backwards branch
   272  */
   274 // Backedge counting is kind of strange. The asm interpreter will increment
   275 // the backedge counter as a separate counter but it does it's comparisons
   276 // to the sum (scaled) of invocation counter and backedge count to make
   277 // a decision. Seems kind of odd to sum them together like that
   279 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
   282 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
   283     if ((skip) <= 0) {                                                                              \
   284       if (UseCompiler && UseLoopCounter) {                                                          \
   285         bool do_OSR = UseOnStackReplacement;                                                        \
   286         BACKEDGE_COUNT->increment();                                                                \
   287         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
   288         if (do_OSR) {                                                                               \
   289           nmethod*  osr_nmethod;                                                                    \
   290           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
   291           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
   292             intptr_t* buf;                                                                          \
   293             CALL_VM(buf=SharedRuntime::OSR_migration_begin(THREAD), handle_exception);              \
   294             istate->set_msg(do_osr);                                                                \
   295             istate->set_osr_buf((address)buf);                                                      \
   296             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
   297             return;                                                                                 \
   298           }                                                                                         \
   299         } else {                                                                                    \
   300           INCR_INVOCATION_COUNT;                                                                    \
   301           SAFEPOINT;                                                                                \
   302         }                                                                                           \
   303       }  /* UseCompiler ... */                                                                      \
   304       INCR_INVOCATION_COUNT;                                                                        \
   305       SAFEPOINT;                                                                                    \
   306     }
   308 /*
   309  * For those opcodes that need to have a GC point on a backwards branch
   310  */
   312 /*
   313  * Macros for caching and flushing the interpreter state. Some local
   314  * variables need to be flushed out to the frame before we do certain
   315  * things (like pushing frames or becomming gc safe) and some need to
   316  * be recached later (like after popping a frame). We could use one
   317  * macro to cache or decache everything, but this would be less then
   318  * optimal because we don't always need to cache or decache everything
   319  * because some things we know are already cached or decached.
   320  */
   321 #undef DECACHE_TOS
   322 #undef CACHE_TOS
   323 #undef CACHE_PREV_TOS
   324 #define DECACHE_TOS()    istate->set_stack(topOfStack);
   326 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
   328 #undef DECACHE_PC
   329 #undef CACHE_PC
   330 #define DECACHE_PC()    istate->set_bcp(pc);
   331 #define CACHE_PC()      pc = istate->bcp();
   332 #define CACHE_CP()      cp = istate->constants();
   333 #define CACHE_LOCALS()  locals = istate->locals();
   334 #undef CACHE_FRAME
   335 #define CACHE_FRAME()
   337 /*
   338  * CHECK_NULL - Macro for throwing a NullPointerException if the object
   339  * passed is a null ref.
   340  * On some architectures/platforms it should be possible to do this implicitly
   341  */
   342 #undef CHECK_NULL
   343 #define CHECK_NULL(obj_)                                                 \
   344     if ((obj_) == NULL) {                                                \
   345         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
   346     }
   348 #define VMdoubleConstZero() 0.0
   349 #define VMdoubleConstOne() 1.0
   350 #define VMlongConstZero() (max_jlong-max_jlong)
   351 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
   353 /*
   354  * Alignment
   355  */
   356 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
   358 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
   359 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
   361 // Reload interpreter state after calling the VM or a possible GC
   362 #define CACHE_STATE()   \
   363         CACHE_TOS();    \
   364         CACHE_PC();     \
   365         CACHE_CP();     \
   366         CACHE_LOCALS();
   368 // Call the VM don't check for pending exceptions
   369 #define CALL_VM_NOCHECK(func)                                     \
   370           DECACHE_STATE();                                        \
   371           SET_LAST_JAVA_FRAME();                                  \
   372           func;                                                   \
   373           RESET_LAST_JAVA_FRAME();                                \
   374           CACHE_STATE();                                          \
   375           if (THREAD->pop_frame_pending() &&                      \
   376               !THREAD->pop_frame_in_process()) {                  \
   377             goto handle_Pop_Frame;                                \
   378           }
   380 // Call the VM and check for pending exceptions
   381 #define CALL_VM(func, label) {                                    \
   382           CALL_VM_NOCHECK(func);                                  \
   383           if (THREAD->has_pending_exception()) goto label;        \
   384         }
   386 /*
   387  * BytecodeInterpreter::run(interpreterState istate)
   388  * BytecodeInterpreter::runWithChecks(interpreterState istate)
   389  *
   390  * The real deal. This is where byte codes actually get interpreted.
   391  * Basically it's a big while loop that iterates until we return from
   392  * the method passed in.
   393  *
   394  * The runWithChecks is used if JVMTI is enabled.
   395  *
   396  */
   397 #if defined(VM_JVMTI)
   398 void
   399 BytecodeInterpreter::runWithChecks(interpreterState istate) {
   400 #else
   401 void
   402 BytecodeInterpreter::run(interpreterState istate) {
   403 #endif
   405   // In order to simplify some tests based on switches set at runtime
   406   // we invoke the interpreter a single time after switches are enabled
   407   // and set simpler to to test variables rather than method calls or complex
   408   // boolean expressions.
   410   static int initialized = 0;
   411   static int checkit = 0;
   412   static intptr_t* c_addr = NULL;
   413   static intptr_t  c_value;
   415   if (checkit && *c_addr != c_value) {
   416     os::breakpoint();
   417   }
   418 #ifdef VM_JVMTI
   419   static bool _jvmti_interp_events = 0;
   420 #endif
   422   static int _compiling;  // (UseCompiler || CountCompiledCalls)
   424 #ifdef ASSERT
   425   if (istate->_msg != initialize) {
   426     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
   427   IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
   428   }
   429   // Verify linkages.
   430   interpreterState l = istate;
   431   do {
   432     assert(l == l->_self_link, "bad link");
   433     l = l->_prev_link;
   434   } while (l != NULL);
   435   // Screwups with stack management usually cause us to overwrite istate
   436   // save a copy so we can verify it.
   437   interpreterState orig = istate;
   438 #endif
   440   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
   442   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
   443   register address          pc = istate->bcp();
   444   register jubyte opcode;
   445   register intptr_t*        locals = istate->locals();
   446   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
   447 #ifdef LOTS_OF_REGS
   448   register JavaThread*      THREAD = istate->thread();
   449   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
   450 #else
   451 #undef THREAD
   452 #define THREAD istate->thread()
   453 #undef BYTE_MAP_BASE
   454 #define BYTE_MAP_BASE _byte_map_base
   455 #endif
   457 #ifdef USELABELS
   458   const static void* const opclabels_data[256] = {
   459 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
   460 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
   461 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
   462 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
   464 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
   465 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
   466 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
   467 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
   469 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
   470 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
   471 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
   472 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
   474 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
   475 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
   476 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
   477 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
   479 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
   480 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
   481 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
   482 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
   484 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
   485 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
   486 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
   487 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
   489 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
   490 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
   491 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
   492 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
   494 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
   495 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
   496 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
   497 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
   499 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
   500 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
   501 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
   502 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
   504 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
   505 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
   506 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
   507 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
   509 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
   510 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
   511 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
   512 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
   514 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
   515 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
   516 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,NULL,               &&opc_new,
   517 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
   519 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
   520 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
   521 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
   522 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   524 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   525 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   526 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   527 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   529 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   530 /* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
   531 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   532 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   534 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   535 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   536 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
   537 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
   538   };
   539   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
   540 #endif /* USELABELS */
   542 #ifdef ASSERT
   543   // this will trigger a VERIFY_OOP on entry
   544   if (istate->msg() != initialize && ! METHOD->is_static()) {
   545     oop rcvr = LOCALS_OBJECT(0);
   546   }
   547 #endif
   548 // #define HACK
   549 #ifdef HACK
   550   bool interesting = false;
   551 #endif // HACK
   553   /* QQQ this should be a stack method so we don't know actual direction */
   554   assert(istate->msg() == initialize ||
   555          topOfStack >= istate->stack_limit() &&
   556          topOfStack < istate->stack_base(),
   557          "Stack top out of range");
   559   switch (istate->msg()) {
   560     case initialize: {
   561       if (initialized++) ShouldNotReachHere(); // Only one initialize call
   562       _compiling = (UseCompiler || CountCompiledCalls);
   563 #ifdef VM_JVMTI
   564       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
   565 #endif
   566       BarrierSet* bs = Universe::heap()->barrier_set();
   567       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
   568       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
   569       return;
   570     }
   571     break;
   572     case method_entry: {
   573       THREAD->set_do_not_unlock();
   574       // count invocations
   575       assert(initialized, "Interpreter not initialized");
   576       if (_compiling) {
   577         if (ProfileInterpreter) {
   578           METHOD->increment_interpreter_invocation_count();
   579         }
   580         INCR_INVOCATION_COUNT;
   581         if (INVOCATION_COUNT->reached_InvocationLimit()) {
   582             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
   584             // We no longer retry on a counter overflow
   586             // istate->set_msg(retry_method);
   587             // THREAD->clr_do_not_unlock();
   588             // return;
   589         }
   590         SAFEPOINT;
   591       }
   593       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   594         // initialize
   595         os::breakpoint();
   596       }
   598 #ifdef HACK
   599       {
   600         ResourceMark rm;
   601         char *method_name = istate->method()->name_and_sig_as_C_string();
   602         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   603           tty->print_cr("entering: depth %d bci: %d",
   604                          (istate->_stack_base - istate->_stack),
   605                          istate->_bcp - istate->_method->code_base());
   606           interesting = true;
   607         }
   608       }
   609 #endif // HACK
   612       // lock method if synchronized
   613       if (METHOD->is_synchronized()) {
   614           // oop rcvr = locals[0].j.r;
   615           oop rcvr;
   616           if (METHOD->is_static()) {
   617             rcvr = METHOD->constants()->pool_holder()->klass_part()->java_mirror();
   618           } else {
   619             rcvr = LOCALS_OBJECT(0);
   620           }
   621           // The initial monitor is ours for the taking
   622           BasicObjectLock* mon = &istate->monitor_base()[-1];
   623           oop monobj = mon->obj();
   624           assert(mon->obj() == rcvr, "method monitor mis-initialized");
   626           bool success = UseBiasedLocking;
   627           if (UseBiasedLocking) {
   628             markOop mark = rcvr->mark();
   629             if (mark->has_bias_pattern()) {
   630               // The bias pattern is present in the object's header. Need to check
   631               // whether the bias owner and the epoch are both still current.
   632               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
   633               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
   634               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
   635               if (yy != 0 ) {
   636                 // At this point we know that the header has the bias pattern and
   637                 // that we are not the bias owner in the current epoch. We need to
   638                 // figure out more details about the state of the header in order to
   639                 // know what operations can be legally performed on the object's
   640                 // header.
   642                 // If the low three bits in the xor result aren't clear, that means
   643                 // the prototype header is no longer biased and we have to revoke
   644                 // the bias on this object.
   646                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
   647                   // Biasing is still enabled for this data type. See whether the
   648                   // epoch of the current bias is still valid, meaning that the epoch
   649                   // bits of the mark word are equal to the epoch bits of the
   650                   // prototype header. (Note that the prototype header's epoch bits
   651                   // only change at a safepoint.) If not, attempt to rebias the object
   652                   // toward the current thread. Note that we must be absolutely sure
   653                   // that the current epoch is invalid in order to do this because
   654                   // otherwise the manipulations it performs on the mark word are
   655                   // illegal.
   656                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
   657                     // The epoch of the current bias is still valid but we know nothing
   658                     // about the owner; it might be set or it might be clear. Try to
   659                     // acquire the bias of the object using an atomic operation. If this
   660                     // fails we will go in to the runtime to revoke the object's bias.
   661                     // Note that we first construct the presumed unbiased header so we
   662                     // don't accidentally blow away another thread's valid bias.
   663                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
   664                                                            markOopDesc::age_mask_in_place |
   665                                                            markOopDesc::epoch_mask_in_place);
   666                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
   667                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   668                     }
   669                   } else {
   670                     try_rebias:
   671                     // At this point we know the epoch has expired, meaning that the
   672                     // current "bias owner", if any, is actually invalid. Under these
   673                     // circumstances _only_, we are allowed to use the current header's
   674                     // value as the comparison value when doing the cas to acquire the
   675                     // bias in the current epoch. In other words, we allow transfer of
   676                     // the bias from one thread to another directly in this situation.
   677                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   678                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
   679                                             (intptr_t*) rcvr->mark_addr(),
   680                                             (intptr_t) mark) != (intptr_t) mark) {
   681                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   682                     }
   683                   }
   684                 } else {
   685                   try_revoke_bias:
   686                   // The prototype mark in the klass doesn't have the bias bit set any
   687                   // more, indicating that objects of this data type are not supposed
   688                   // to be biased any more. We are going to try to reset the mark of
   689                   // this object to the prototype value and fall through to the
   690                   // CAS-based locking scheme. Note that if our CAS fails, it means
   691                   // that another thread raced us for the privilege of revoking the
   692                   // bias of this particular object, so it's okay to continue in the
   693                   // normal locking code.
   694                   //
   695                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
   696                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
   697                                           (intptr_t*) rcvr->mark_addr(),
   698                                           mark) == mark) {
   699                     // (*counters->revoked_lock_entry_count_addr())++;
   700                   success = false;
   701                   }
   702                 }
   703               }
   704             } else {
   705               cas_label:
   706               success = false;
   707             }
   708           }
   709           if (!success) {
   710             markOop displaced = rcvr->mark()->set_unlocked();
   711             mon->lock()->set_displaced_header(displaced);
   712             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
   713               // Is it simple recursive case?
   714               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   715                 mon->lock()->set_displaced_header(NULL);
   716               } else {
   717                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
   718               }
   719             }
   720           }
   721       }
   722       THREAD->clr_do_not_unlock();
   724       // Notify jvmti
   725 #ifdef VM_JVMTI
   726       if (_jvmti_interp_events) {
   727         // Whenever JVMTI puts a thread in interp_only_mode, method
   728         // entry/exit events are sent for that thread to track stack depth.
   729         if (THREAD->is_interp_only_mode()) {
   730           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
   731                   handle_exception);
   732         }
   733       }
   734 #endif /* VM_JVMTI */
   736       goto run;
   737     }
   739     case popping_frame: {
   740       // returned from a java call to pop the frame, restart the call
   741       // clear the message so we don't confuse ourselves later
   742       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
   743       istate->set_msg(no_request);
   744       THREAD->clr_pop_frame_in_process();
   745       goto run;
   746     }
   748     case method_resume: {
   749       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
   750         // resume
   751         os::breakpoint();
   752       }
   753 #ifdef HACK
   754       {
   755         ResourceMark rm;
   756         char *method_name = istate->method()->name_and_sig_as_C_string();
   757         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
   758           tty->print_cr("resume: depth %d bci: %d",
   759                          (istate->_stack_base - istate->_stack) ,
   760                          istate->_bcp - istate->_method->code_base());
   761           interesting = true;
   762         }
   763       }
   764 #endif // HACK
   765       // returned from a java call, continue executing.
   766       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
   767         goto handle_Pop_Frame;
   768       }
   770       if (THREAD->has_pending_exception()) goto handle_exception;
   771       // Update the pc by the saved amount of the invoke bytecode size
   772       UPDATE_PC(istate->bcp_advance());
   773       goto run;
   774     }
   776     case deopt_resume2: {
   777       // Returned from an opcode that will reexecute. Deopt was
   778       // a result of a PopFrame request.
   779       //
   780       goto run;
   781     }
   783     case deopt_resume: {
   784       // Returned from an opcode that has completed. The stack has
   785       // the result all we need to do is skip across the bytecode
   786       // and continue (assuming there is no exception pending)
   787       //
   788       // compute continuation length
   789       //
   790       // Note: it is possible to deopt at a return_register_finalizer opcode
   791       // because this requires entering the vm to do the registering. While the
   792       // opcode is complete we can't advance because there are no more opcodes
   793       // much like trying to deopt at a poll return. In that has we simply
   794       // get out of here
   795       //
   796       if ( Bytecodes::code_at(pc, METHOD) == Bytecodes::_return_register_finalizer) {
   797         // this will do the right thing even if an exception is pending.
   798         goto handle_return;
   799       }
   800       UPDATE_PC(Bytecodes::length_at(pc));
   801       if (THREAD->has_pending_exception()) goto handle_exception;
   802       goto run;
   803     }
   804     case got_monitors: {
   805       // continue locking now that we have a monitor to use
   806       // we expect to find newly allocated monitor at the "top" of the monitor stack.
   807       oop lockee = STACK_OBJECT(-1);
   808       // derefing's lockee ought to provoke implicit null check
   809       // find a free monitor
   810       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
   811       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
   812       entry->set_obj(lockee);
   814       markOop displaced = lockee->mark()->set_unlocked();
   815       entry->lock()->set_displaced_header(displaced);
   816       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
   817         // Is it simple recursive case?
   818         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
   819           entry->lock()->set_displaced_header(NULL);
   820         } else {
   821           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
   822         }
   823       }
   824       UPDATE_PC_AND_TOS(1, -1);
   825       goto run;
   826     }
   827     default: {
   828       fatal("Unexpected message from frame manager");
   829     }
   830   }
   832 run:
   834   DO_UPDATE_INSTRUCTION_COUNT(*pc)
   835   DEBUGGER_SINGLE_STEP_NOTIFY();
   836 #ifdef PREFETCH_OPCCODE
   837   opcode = *pc;  /* prefetch first opcode */
   838 #endif
   840 #ifndef USELABELS
   841   while (1)
   842 #endif
   843   {
   844 #ifndef PREFETCH_OPCCODE
   845       opcode = *pc;
   846 #endif
   847       // Seems like this happens twice per opcode. At worst this is only
   848       // need at entry to the loop.
   849       // DEBUGGER_SINGLE_STEP_NOTIFY();
   850       /* Using this labels avoids double breakpoints when quickening and
   851        * when returing from transition frames.
   852        */
   853   opcode_switch:
   854       assert(istate == orig, "Corrupted istate");
   855       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
   856       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
   857       assert(topOfStack < istate->stack_base(), "Stack underrun");
   859 #ifdef USELABELS
   860       DISPATCH(opcode);
   861 #else
   862       switch (opcode)
   863 #endif
   864       {
   865       CASE(_nop):
   866           UPDATE_PC_AND_CONTINUE(1);
   868           /* Push miscellaneous constants onto the stack. */
   870       CASE(_aconst_null):
   871           SET_STACK_OBJECT(NULL, 0);
   872           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   874 #undef  OPC_CONST_n
   875 #define OPC_CONST_n(opcode, const_type, value)                          \
   876       CASE(opcode):                                                     \
   877           SET_STACK_ ## const_type(value, 0);                           \
   878           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
   880           OPC_CONST_n(_iconst_m1,   INT,       -1);
   881           OPC_CONST_n(_iconst_0,    INT,        0);
   882           OPC_CONST_n(_iconst_1,    INT,        1);
   883           OPC_CONST_n(_iconst_2,    INT,        2);
   884           OPC_CONST_n(_iconst_3,    INT,        3);
   885           OPC_CONST_n(_iconst_4,    INT,        4);
   886           OPC_CONST_n(_iconst_5,    INT,        5);
   887           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
   888           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
   889           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
   891 #undef  OPC_CONST2_n
   892 #define OPC_CONST2_n(opcname, value, key, kind)                         \
   893       CASE(_##opcname):                                                 \
   894       {                                                                 \
   895           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
   896           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   897       }
   898          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
   899          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
   900          OPC_CONST2_n(lconst_0, Zero, long, LONG);
   901          OPC_CONST2_n(lconst_1, One,  long, LONG);
   903          /* Load constant from constant pool: */
   905           /* Push a 1-byte signed integer value onto the stack. */
   906       CASE(_bipush):
   907           SET_STACK_INT((jbyte)(pc[1]), 0);
   908           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   910           /* Push a 2-byte signed integer constant onto the stack. */
   911       CASE(_sipush):
   912           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
   913           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
   915           /* load from local variable */
   917       CASE(_aload):
   918           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
   919           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   921       CASE(_iload):
   922       CASE(_fload):
   923           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
   924           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
   926       CASE(_lload):
   927           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
   928           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   930       CASE(_dload):
   931           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
   932           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
   934 #undef  OPC_LOAD_n
   935 #define OPC_LOAD_n(num)                                                 \
   936       CASE(_aload_##num):                                               \
   937           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
   938           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   939                                                                         \
   940       CASE(_iload_##num):                                               \
   941       CASE(_fload_##num):                                               \
   942           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
   943           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
   944                                                                         \
   945       CASE(_lload_##num):                                               \
   946           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
   947           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
   948       CASE(_dload_##num):                                               \
   949           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
   950           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
   952           OPC_LOAD_n(0);
   953           OPC_LOAD_n(1);
   954           OPC_LOAD_n(2);
   955           OPC_LOAD_n(3);
   957           /* store to a local variable */
   959       CASE(_astore):
   960           astore(topOfStack, -1, locals, pc[1]);
   961           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
   963       CASE(_istore):
   964       CASE(_fstore):
   965           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
   966           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
   968       CASE(_lstore):
   969           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
   970           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
   972       CASE(_dstore):
   973           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
   974           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
   976       CASE(_wide): {
   977           uint16_t reg = Bytes::get_Java_u2(pc + 2);
   979           opcode = pc[1];
   980           switch(opcode) {
   981               case Bytecodes::_aload:
   982                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
   983                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
   985               case Bytecodes::_iload:
   986               case Bytecodes::_fload:
   987                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
   988                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
   990               case Bytecodes::_lload:
   991                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
   992                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
   994               case Bytecodes::_dload:
   995                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
   996                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
   998               case Bytecodes::_astore:
   999                   astore(topOfStack, -1, locals, reg);
  1000                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1002               case Bytecodes::_istore:
  1003               case Bytecodes::_fstore:
  1004                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
  1005                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
  1007               case Bytecodes::_lstore:
  1008                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
  1009                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1011               case Bytecodes::_dstore:
  1012                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
  1013                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
  1015               case Bytecodes::_iinc: {
  1016                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
  1017                   // Be nice to see what this generates.... QQQ
  1018                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
  1019                   UPDATE_PC_AND_CONTINUE(6);
  1021               case Bytecodes::_ret:
  1022                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
  1023                   UPDATE_PC_AND_CONTINUE(0);
  1024               default:
  1025                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
  1030 #undef  OPC_STORE_n
  1031 #define OPC_STORE_n(num)                                                \
  1032       CASE(_astore_##num):                                              \
  1033           astore(topOfStack, -1, locals, num);                          \
  1034           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1035       CASE(_istore_##num):                                              \
  1036       CASE(_fstore_##num):                                              \
  1037           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
  1038           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1040           OPC_STORE_n(0);
  1041           OPC_STORE_n(1);
  1042           OPC_STORE_n(2);
  1043           OPC_STORE_n(3);
  1045 #undef  OPC_DSTORE_n
  1046 #define OPC_DSTORE_n(num)                                               \
  1047       CASE(_dstore_##num):                                              \
  1048           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
  1049           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1050       CASE(_lstore_##num):                                              \
  1051           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
  1052           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1054           OPC_DSTORE_n(0);
  1055           OPC_DSTORE_n(1);
  1056           OPC_DSTORE_n(2);
  1057           OPC_DSTORE_n(3);
  1059           /* stack pop, dup, and insert opcodes */
  1062       CASE(_pop):                /* Discard the top item on the stack */
  1063           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1066       CASE(_pop2):               /* Discard the top 2 items on the stack */
  1067           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
  1070       CASE(_dup):               /* Duplicate the top item on the stack */
  1071           dup(topOfStack);
  1072           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1074       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
  1075           dup2(topOfStack);
  1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1078       CASE(_dup_x1):    /* insert top word two down */
  1079           dup_x1(topOfStack);
  1080           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1082       CASE(_dup_x2):    /* insert top word three down  */
  1083           dup_x2(topOfStack);
  1084           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1086       CASE(_dup2_x1):   /* insert top 2 slots three down */
  1087           dup2_x1(topOfStack);
  1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1090       CASE(_dup2_x2):   /* insert top 2 slots four down */
  1091           dup2_x2(topOfStack);
  1092           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1094       CASE(_swap): {        /* swap top two elements on the stack */
  1095           swap(topOfStack);
  1096           UPDATE_PC_AND_CONTINUE(1);
  1099           /* Perform various binary integer operations */
  1101 #undef  OPC_INT_BINARY
  1102 #define OPC_INT_BINARY(opcname, opname, test)                           \
  1103       CASE(_i##opcname):                                                \
  1104           if (test && (STACK_INT(-1) == 0)) {                           \
  1105               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1106                             "/ by int zero");                           \
  1107           }                                                             \
  1108           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
  1109                                       STACK_INT(-1)),                   \
  1110                                       -2);                              \
  1111           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
  1112       CASE(_l##opcname):                                                \
  1113       {                                                                 \
  1114           if (test) {                                                   \
  1115             jlong l1 = STACK_LONG(-1);                                  \
  1116             if (VMlongEqz(l1)) {                                        \
  1117               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
  1118                             "/ by long zero");                          \
  1119             }                                                           \
  1120           }                                                             \
  1121           /* First long at (-1,-2) next long at (-3,-4) */              \
  1122           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
  1123                                         STACK_LONG(-1)),                \
  1124                                         -3);                            \
  1125           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
  1128       OPC_INT_BINARY(add, Add, 0);
  1129       OPC_INT_BINARY(sub, Sub, 0);
  1130       OPC_INT_BINARY(mul, Mul, 0);
  1131       OPC_INT_BINARY(and, And, 0);
  1132       OPC_INT_BINARY(or,  Or,  0);
  1133       OPC_INT_BINARY(xor, Xor, 0);
  1134       OPC_INT_BINARY(div, Div, 1);
  1135       OPC_INT_BINARY(rem, Rem, 1);
  1138       /* Perform various binary floating number operations */
  1139       /* On some machine/platforms/compilers div zero check can be implicit */
  1141 #undef  OPC_FLOAT_BINARY
  1142 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
  1143       CASE(_d##opcname): {                                                 \
  1144           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
  1145                                             STACK_DOUBLE(-1)),             \
  1146                                             -3);                           \
  1147           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
  1148       }                                                                    \
  1149       CASE(_f##opcname):                                                   \
  1150           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
  1151                                           STACK_FLOAT(-1)),                \
  1152                                           -2);                             \
  1153           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1156      OPC_FLOAT_BINARY(add, Add);
  1157      OPC_FLOAT_BINARY(sub, Sub);
  1158      OPC_FLOAT_BINARY(mul, Mul);
  1159      OPC_FLOAT_BINARY(div, Div);
  1160      OPC_FLOAT_BINARY(rem, Rem);
  1162       /* Shift operations
  1163        * Shift left int and long: ishl, lshl
  1164        * Logical shift right int and long w/zero extension: iushr, lushr
  1165        * Arithmetic shift right int and long w/sign extension: ishr, lshr
  1166        */
  1168 #undef  OPC_SHIFT_BINARY
  1169 #define OPC_SHIFT_BINARY(opcname, opname)                               \
  1170       CASE(_i##opcname):                                                \
  1171          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
  1172                                      STACK_INT(-1)),                    \
  1173                                      -2);                               \
  1174          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1175       CASE(_l##opcname):                                                \
  1176       {                                                                 \
  1177          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
  1178                                        STACK_INT(-1)),                  \
  1179                                        -2);                             \
  1180          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
  1183       OPC_SHIFT_BINARY(shl, Shl);
  1184       OPC_SHIFT_BINARY(shr, Shr);
  1185       OPC_SHIFT_BINARY(ushr, Ushr);
  1187      /* Increment local variable by constant */
  1188       CASE(_iinc):
  1190           // locals[pc[1]].j.i += (jbyte)(pc[2]);
  1191           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
  1192           UPDATE_PC_AND_CONTINUE(3);
  1195      /* negate the value on the top of the stack */
  1197       CASE(_ineg):
  1198          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
  1199          UPDATE_PC_AND_CONTINUE(1);
  1201       CASE(_fneg):
  1202          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
  1203          UPDATE_PC_AND_CONTINUE(1);
  1205       CASE(_lneg):
  1207          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
  1208          UPDATE_PC_AND_CONTINUE(1);
  1211       CASE(_dneg):
  1213          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
  1214          UPDATE_PC_AND_CONTINUE(1);
  1217       /* Conversion operations */
  1219       CASE(_i2f):       /* convert top of stack int to float */
  1220          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
  1221          UPDATE_PC_AND_CONTINUE(1);
  1223       CASE(_i2l):       /* convert top of stack int to long */
  1225           // this is ugly QQQ
  1226           jlong r = VMint2Long(STACK_INT(-1));
  1227           MORE_STACK(-1); // Pop
  1228           SET_STACK_LONG(r, 1);
  1230           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1233       CASE(_i2d):       /* convert top of stack int to double */
  1235           // this is ugly QQQ (why cast to jlong?? )
  1236           jdouble r = (jlong)STACK_INT(-1);
  1237           MORE_STACK(-1); // Pop
  1238           SET_STACK_DOUBLE(r, 1);
  1240           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1243       CASE(_l2i):       /* convert top of stack long to int */
  1245           jint r = VMlong2Int(STACK_LONG(-1));
  1246           MORE_STACK(-2); // Pop
  1247           SET_STACK_INT(r, 0);
  1248           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1251       CASE(_l2f):   /* convert top of stack long to float */
  1253           jlong r = STACK_LONG(-1);
  1254           MORE_STACK(-2); // Pop
  1255           SET_STACK_FLOAT(VMlong2Float(r), 0);
  1256           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1259       CASE(_l2d):       /* convert top of stack long to double */
  1261           jlong r = STACK_LONG(-1);
  1262           MORE_STACK(-2); // Pop
  1263           SET_STACK_DOUBLE(VMlong2Double(r), 1);
  1264           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1267       CASE(_f2i):  /* Convert top of stack float to int */
  1268           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
  1269           UPDATE_PC_AND_CONTINUE(1);
  1271       CASE(_f2l):  /* convert top of stack float to long */
  1273           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
  1274           MORE_STACK(-1); // POP
  1275           SET_STACK_LONG(r, 1);
  1276           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1279       CASE(_f2d):  /* convert top of stack float to double */
  1281           jfloat f;
  1282           jdouble r;
  1283           f = STACK_FLOAT(-1);
  1284 #ifdef IA64
  1285           // IA64 gcc bug
  1286           r = ( f == 0.0f ) ? (jdouble) f : (jdouble) f + ia64_double_zero;
  1287 #else
  1288           r = (jdouble) f;
  1289 #endif
  1290           MORE_STACK(-1); // POP
  1291           SET_STACK_DOUBLE(r, 1);
  1292           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1295       CASE(_d2i): /* convert top of stack double to int */
  1297           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
  1298           MORE_STACK(-2);
  1299           SET_STACK_INT(r1, 0);
  1300           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1303       CASE(_d2f): /* convert top of stack double to float */
  1305           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
  1306           MORE_STACK(-2);
  1307           SET_STACK_FLOAT(r1, 0);
  1308           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1311       CASE(_d2l): /* convert top of stack double to long */
  1313           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
  1314           MORE_STACK(-2);
  1315           SET_STACK_LONG(r1, 1);
  1316           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
  1319       CASE(_i2b):
  1320           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
  1321           UPDATE_PC_AND_CONTINUE(1);
  1323       CASE(_i2c):
  1324           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
  1325           UPDATE_PC_AND_CONTINUE(1);
  1327       CASE(_i2s):
  1328           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
  1329           UPDATE_PC_AND_CONTINUE(1);
  1331       /* comparison operators */
  1334 #define COMPARISON_OP(name, comparison)                                      \
  1335       CASE(_if_icmp##name): {                                                \
  1336           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
  1337                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1338           address branch_pc = pc;                                            \
  1339           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1340           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1341           CONTINUE;                                                          \
  1342       }                                                                      \
  1343       CASE(_if##name): {                                                     \
  1344           int skip = (STACK_INT(-1) comparison 0)                            \
  1345                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1346           address branch_pc = pc;                                            \
  1347           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1348           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1349           CONTINUE;                                                          \
  1352 #define COMPARISON_OP2(name, comparison)                                     \
  1353       COMPARISON_OP(name, comparison)                                        \
  1354       CASE(_if_acmp##name): {                                                \
  1355           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
  1356                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
  1357           address branch_pc = pc;                                            \
  1358           UPDATE_PC_AND_TOS(skip, -2);                                       \
  1359           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1360           CONTINUE;                                                          \
  1363 #define NULL_COMPARISON_NOT_OP(name)                                         \
  1364       CASE(_if##name): {                                                     \
  1365           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
  1366                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1367           address branch_pc = pc;                                            \
  1368           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1369           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1370           CONTINUE;                                                          \
  1373 #define NULL_COMPARISON_OP(name)                                             \
  1374       CASE(_if##name): {                                                     \
  1375           int skip = ((STACK_OBJECT(-1) == NULL))                            \
  1376                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
  1377           address branch_pc = pc;                                            \
  1378           UPDATE_PC_AND_TOS(skip, -1);                                       \
  1379           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
  1380           CONTINUE;                                                          \
  1382       COMPARISON_OP(lt, <);
  1383       COMPARISON_OP(gt, >);
  1384       COMPARISON_OP(le, <=);
  1385       COMPARISON_OP(ge, >=);
  1386       COMPARISON_OP2(eq, ==);  /* include ref comparison */
  1387       COMPARISON_OP2(ne, !=);  /* include ref comparison */
  1388       NULL_COMPARISON_OP(null);
  1389       NULL_COMPARISON_NOT_OP(nonnull);
  1391       /* Goto pc at specified offset in switch table. */
  1393       CASE(_tableswitch): {
  1394           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1395           int32_t  key  = STACK_INT(-1);
  1396           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
  1397           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
  1398           int32_t  skip;
  1399           key -= low;
  1400           skip = ((uint32_t) key > (uint32_t)(high - low))
  1401                       ? Bytes::get_Java_u4((address)&lpc[0])
  1402                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
  1403           // Does this really need a full backedge check (osr?)
  1404           address branch_pc = pc;
  1405           UPDATE_PC_AND_TOS(skip, -1);
  1406           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1407           CONTINUE;
  1410       /* Goto pc whose table entry matches specified key */
  1412       CASE(_lookupswitch): {
  1413           jint* lpc  = (jint*)VMalignWordUp(pc+1);
  1414           int32_t  key  = STACK_INT(-1);
  1415           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
  1416           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
  1417           while (--npairs >= 0) {
  1418               lpc += 2;
  1419               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
  1420                   skip = Bytes::get_Java_u4((address)&lpc[1]);
  1421                   break;
  1424           address branch_pc = pc;
  1425           UPDATE_PC_AND_TOS(skip, -1);
  1426           DO_BACKEDGE_CHECKS(skip, branch_pc);
  1427           CONTINUE;
  1430       CASE(_fcmpl):
  1431       CASE(_fcmpg):
  1433           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
  1434                                         STACK_FLOAT(-1),
  1435                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
  1436                         -2);
  1437           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1440       CASE(_dcmpl):
  1441       CASE(_dcmpg):
  1443           int r = VMdoubleCompare(STACK_DOUBLE(-3),
  1444                                   STACK_DOUBLE(-1),
  1445                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
  1446           MORE_STACK(-4); // Pop
  1447           SET_STACK_INT(r, 0);
  1448           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1451       CASE(_lcmp):
  1453           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
  1454           MORE_STACK(-4);
  1455           SET_STACK_INT(r, 0);
  1456           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
  1460       /* Return from a method */
  1462       CASE(_areturn):
  1463       CASE(_ireturn):
  1464       CASE(_freturn):
  1466           // Allow a safepoint before returning to frame manager.
  1467           SAFEPOINT;
  1469           goto handle_return;
  1472       CASE(_lreturn):
  1473       CASE(_dreturn):
  1475           // Allow a safepoint before returning to frame manager.
  1476           SAFEPOINT;
  1477           goto handle_return;
  1480       CASE(_return_register_finalizer): {
  1482           oop rcvr = LOCALS_OBJECT(0);
  1483           if (rcvr->klass()->klass_part()->has_finalizer()) {
  1484             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
  1486           goto handle_return;
  1488       CASE(_return): {
  1490           // Allow a safepoint before returning to frame manager.
  1491           SAFEPOINT;
  1492           goto handle_return;
  1495       /* Array access byte-codes */
  1497       /* Every array access byte-code starts out like this */
  1498 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
  1499 #define ARRAY_INTRO(arrayOff)                                                  \
  1500       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
  1501       jint     index  = STACK_INT(arrayOff + 1);                               \
  1502       char message[jintAsStringSize];                                          \
  1503       CHECK_NULL(arrObj);                                                      \
  1504       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
  1505           sprintf(message, "%d", index);                                       \
  1506           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
  1507                         message);                                              \
  1510       /* 32-bit loads. These handle conversion from < 32-bit types */
  1511 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
  1512       {                                                                               \
  1513           ARRAY_INTRO(-2);                                                            \
  1514           extra;                                                                      \
  1515           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
  1516                            -2);                                                       \
  1517           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
  1520       /* 64-bit loads */
  1521 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
  1522       {                                                                                    \
  1523           ARRAY_INTRO(-2);                                                                 \
  1524           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
  1525           extra;                                                                           \
  1526           UPDATE_PC_AND_CONTINUE(1);                                            \
  1529       CASE(_iaload):
  1530           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
  1531       CASE(_faload):
  1532           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1533       CASE(_aaload):
  1534           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
  1535       CASE(_baload):
  1536           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1537       CASE(_caload):
  1538           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
  1539       CASE(_saload):
  1540           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1541       CASE(_laload):
  1542           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
  1543       CASE(_daload):
  1544           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1546       /* 32-bit stores. These handle conversion to < 32-bit types */
  1547 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
  1548       {                                                                              \
  1549           ARRAY_INTRO(-3);                                                           \
  1550           extra;                                                                     \
  1551           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1552           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
  1555       /* 64-bit stores */
  1556 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
  1557       {                                                                              \
  1558           ARRAY_INTRO(-4);                                                           \
  1559           extra;                                                                     \
  1560           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
  1561           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
  1564       CASE(_iastore):
  1565           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
  1566       CASE(_fastore):
  1567           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
  1568       /*
  1569        * This one looks different because of the assignability check
  1570        */
  1571       CASE(_aastore): {
  1572           oop rhsObject = STACK_OBJECT(-1);
  1573           ARRAY_INTRO( -3);
  1574           // arrObj, index are set
  1575           if (rhsObject != NULL) {
  1576             /* Check assignability of rhsObject into arrObj */
  1577             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
  1578             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
  1579             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
  1580             //
  1581             // Check for compatibilty. This check must not GC!!
  1582             // Seems way more expensive now that we must dispatch
  1583             //
  1584             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
  1585               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
  1588           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
  1589           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
  1590           *elem_loc = rhsObject;
  1591           // Mark the card
  1592           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
  1593           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
  1595       CASE(_bastore):
  1596           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
  1597       CASE(_castore):
  1598           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
  1599       CASE(_sastore):
  1600           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
  1601       CASE(_lastore):
  1602           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
  1603       CASE(_dastore):
  1604           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
  1606       CASE(_arraylength):
  1608           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
  1609           CHECK_NULL(ary);
  1610           SET_STACK_INT(ary->length(), -1);
  1611           UPDATE_PC_AND_CONTINUE(1);
  1614       /* monitorenter and monitorexit for locking/unlocking an object */
  1616       CASE(_monitorenter): {
  1617         oop lockee = STACK_OBJECT(-1);
  1618         // derefing's lockee ought to provoke implicit null check
  1619         CHECK_NULL(lockee);
  1620         // find a free monitor or one already allocated for this object
  1621         // if we find a matching object then we need a new monitor
  1622         // since this is recursive enter
  1623         BasicObjectLock* limit = istate->monitor_base();
  1624         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1625         BasicObjectLock* entry = NULL;
  1626         while (most_recent != limit ) {
  1627           if (most_recent->obj() == NULL) entry = most_recent;
  1628           else if (most_recent->obj() == lockee) break;
  1629           most_recent++;
  1631         if (entry != NULL) {
  1632           entry->set_obj(lockee);
  1633           markOop displaced = lockee->mark()->set_unlocked();
  1634           entry->lock()->set_displaced_header(displaced);
  1635           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
  1636             // Is it simple recursive case?
  1637             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
  1638               entry->lock()->set_displaced_header(NULL);
  1639             } else {
  1640               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
  1643           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1644         } else {
  1645           istate->set_msg(more_monitors);
  1646           UPDATE_PC_AND_RETURN(0); // Re-execute
  1650       CASE(_monitorexit): {
  1651         oop lockee = STACK_OBJECT(-1);
  1652         CHECK_NULL(lockee);
  1653         // derefing's lockee ought to provoke implicit null check
  1654         // find our monitor slot
  1655         BasicObjectLock* limit = istate->monitor_base();
  1656         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  1657         while (most_recent != limit ) {
  1658           if ((most_recent)->obj() == lockee) {
  1659             BasicLock* lock = most_recent->lock();
  1660             markOop header = lock->displaced_header();
  1661             most_recent->set_obj(NULL);
  1662             // If it isn't recursive we either must swap old header or call the runtime
  1663             if (header != NULL) {
  1664               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  1665                 // restore object for the slow case
  1666                 most_recent->set_obj(lockee);
  1667                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
  1670             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  1672           most_recent++;
  1674         // Need to throw illegal monitor state exception
  1675         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
  1676         // Should never reach here...
  1677         assert(false, "Should have thrown illegal monitor exception");
  1680       /* All of the non-quick opcodes. */
  1682       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
  1683        *  constant pool index in the instruction.
  1684        */
  1685       CASE(_getfield):
  1686       CASE(_getstatic):
  1688           u2 index;
  1689           ConstantPoolCacheEntry* cache;
  1690           index = Bytes::get_native_u2(pc+1);
  1692           // QQQ Need to make this as inlined as possible. Probably need to
  1693           // split all the bytecode cases out so c++ compiler has a chance
  1694           // for constant prop to fold everything possible away.
  1696           cache = cp->entry_at(index);
  1697           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1698             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1699                     handle_exception);
  1700             cache = cp->entry_at(index);
  1703 #ifdef VM_JVMTI
  1704           if (_jvmti_interp_events) {
  1705             int *count_addr;
  1706             oop obj;
  1707             // Check to see if a field modification watch has been set
  1708             // before we take the time to call into the VM.
  1709             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
  1710             if ( *count_addr > 0 ) {
  1711               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1712                 obj = (oop)NULL;
  1713               } else {
  1714                 obj = (oop) STACK_OBJECT(-1);
  1716               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
  1717                                           obj,
  1718                                           cache),
  1719                                           handle_exception);
  1722 #endif /* VM_JVMTI */
  1724           oop obj;
  1725           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
  1726             obj = (oop) cache->f1();
  1727             MORE_STACK(1);  // Assume single slot push
  1728           } else {
  1729             obj = (oop) STACK_OBJECT(-1);
  1730             CHECK_NULL(obj);
  1733           //
  1734           // Now store the result on the stack
  1735           //
  1736           TosState tos_type = cache->flag_state();
  1737           int field_offset = cache->f2();
  1738           if (cache->is_volatile()) {
  1739             if (tos_type == atos) {
  1740               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
  1741             } else if (tos_type == itos) {
  1742               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
  1743             } else if (tos_type == ltos) {
  1744               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
  1745               MORE_STACK(1);
  1746             } else if (tos_type == btos) {
  1747               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
  1748             } else if (tos_type == ctos) {
  1749               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
  1750             } else if (tos_type == stos) {
  1751               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
  1752             } else if (tos_type == ftos) {
  1753               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
  1754             } else {
  1755               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
  1756               MORE_STACK(1);
  1758           } else {
  1759             if (tos_type == atos) {
  1760               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
  1761             } else if (tos_type == itos) {
  1762               SET_STACK_INT(obj->int_field(field_offset), -1);
  1763             } else if (tos_type == ltos) {
  1764               SET_STACK_LONG(obj->long_field(field_offset), 0);
  1765               MORE_STACK(1);
  1766             } else if (tos_type == btos) {
  1767               SET_STACK_INT(obj->byte_field(field_offset), -1);
  1768             } else if (tos_type == ctos) {
  1769               SET_STACK_INT(obj->char_field(field_offset), -1);
  1770             } else if (tos_type == stos) {
  1771               SET_STACK_INT(obj->short_field(field_offset), -1);
  1772             } else if (tos_type == ftos) {
  1773               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
  1774             } else {
  1775               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
  1776               MORE_STACK(1);
  1780           UPDATE_PC_AND_CONTINUE(3);
  1783       CASE(_putfield):
  1784       CASE(_putstatic):
  1786           u2 index = Bytes::get_native_u2(pc+1);
  1787           ConstantPoolCacheEntry* cache = cp->entry_at(index);
  1788           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  1789             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
  1790                     handle_exception);
  1791             cache = cp->entry_at(index);
  1794 #ifdef VM_JVMTI
  1795           if (_jvmti_interp_events) {
  1796             int *count_addr;
  1797             oop obj;
  1798             // Check to see if a field modification watch has been set
  1799             // before we take the time to call into the VM.
  1800             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
  1801             if ( *count_addr > 0 ) {
  1802               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1803                 obj = (oop)NULL;
  1805               else {
  1806                 if (cache->is_long() || cache->is_double()) {
  1807                   obj = (oop) STACK_OBJECT(-3);
  1808                 } else {
  1809                   obj = (oop) STACK_OBJECT(-2);
  1813               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
  1814                                           obj,
  1815                                           cache,
  1816                                           (jvalue *)STACK_SLOT(-1)),
  1817                                           handle_exception);
  1820 #endif /* VM_JVMTI */
  1822           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  1823           // out so c++ compiler has a chance for constant prop to fold everything possible away.
  1825           oop obj;
  1826           int count;
  1827           TosState tos_type = cache->flag_state();
  1829           count = -1;
  1830           if (tos_type == ltos || tos_type == dtos) {
  1831             --count;
  1833           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
  1834             obj = (oop) cache->f1();
  1835           } else {
  1836             --count;
  1837             obj = (oop) STACK_OBJECT(count);
  1838             CHECK_NULL(obj);
  1841           //
  1842           // Now store the result
  1843           //
  1844           int field_offset = cache->f2();
  1845           if (cache->is_volatile()) {
  1846             if (tos_type == itos) {
  1847               obj->release_int_field_put(field_offset, STACK_INT(-1));
  1848             } else if (tos_type == atos) {
  1849               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
  1850               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1851             } else if (tos_type == btos) {
  1852               obj->release_byte_field_put(field_offset, STACK_INT(-1));
  1853             } else if (tos_type == ltos) {
  1854               obj->release_long_field_put(field_offset, STACK_LONG(-1));
  1855             } else if (tos_type == ctos) {
  1856               obj->release_char_field_put(field_offset, STACK_INT(-1));
  1857             } else if (tos_type == stos) {
  1858               obj->release_short_field_put(field_offset, STACK_INT(-1));
  1859             } else if (tos_type == ftos) {
  1860               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
  1861             } else {
  1862               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
  1864             OrderAccess::storeload();
  1865           } else {
  1866             if (tos_type == itos) {
  1867               obj->int_field_put(field_offset, STACK_INT(-1));
  1868             } else if (tos_type == atos) {
  1869               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
  1870               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
  1871             } else if (tos_type == btos) {
  1872               obj->byte_field_put(field_offset, STACK_INT(-1));
  1873             } else if (tos_type == ltos) {
  1874               obj->long_field_put(field_offset, STACK_LONG(-1));
  1875             } else if (tos_type == ctos) {
  1876               obj->char_field_put(field_offset, STACK_INT(-1));
  1877             } else if (tos_type == stos) {
  1878               obj->short_field_put(field_offset, STACK_INT(-1));
  1879             } else if (tos_type == ftos) {
  1880               obj->float_field_put(field_offset, STACK_FLOAT(-1));
  1881             } else {
  1882               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
  1886           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
  1889       CASE(_new): {
  1890         u2 index = Bytes::get_Java_u2(pc+1);
  1891         constantPoolOop constants = istate->method()->constants();
  1892         if (!constants->tag_at(index).is_unresolved_klass()) {
  1893           // Make sure klass is initialized and doesn't have a finalizer
  1894           oop entry = (klassOop) *constants->obj_at_addr(index);
  1895           assert(entry->is_klass(), "Should be resolved klass");
  1896           klassOop k_entry = (klassOop) entry;
  1897           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
  1898           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
  1899           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
  1900             size_t obj_size = ik->size_helper();
  1901             oop result = NULL;
  1902             // If the TLAB isn't pre-zeroed then we'll have to do it
  1903             bool need_zero = !ZeroTLAB;
  1904             if (UseTLAB) {
  1905               result = (oop) THREAD->tlab().allocate(obj_size);
  1907             if (result == NULL) {
  1908               need_zero = true;
  1909               // Try allocate in shared eden
  1910         retry:
  1911               HeapWord* compare_to = *Universe::heap()->top_addr();
  1912               HeapWord* new_top = compare_to + obj_size;
  1913               if (new_top <= *Universe::heap()->end_addr()) {
  1914                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
  1915                   goto retry;
  1917                 result = (oop) compare_to;
  1920             if (result != NULL) {
  1921               // Initialize object (if nonzero size and need) and then the header
  1922               if (need_zero ) {
  1923                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
  1924                 obj_size -= sizeof(oopDesc) / oopSize;
  1925                 if (obj_size > 0 ) {
  1926                   memset(to_zero, 0, obj_size * HeapWordSize);
  1929               if (UseBiasedLocking) {
  1930                 result->set_mark(ik->prototype_header());
  1931               } else {
  1932                 result->set_mark(markOopDesc::prototype());
  1934               result->set_klass_gap(0);
  1935               result->set_klass(k_entry);
  1936               SET_STACK_OBJECT(result, 0);
  1937               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1941         // Slow case allocation
  1942         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
  1943                 handle_exception);
  1944         SET_STACK_OBJECT(THREAD->vm_result(), 0);
  1945         THREAD->set_vm_result(NULL);
  1946         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
  1948       CASE(_anewarray): {
  1949         u2 index = Bytes::get_Java_u2(pc+1);
  1950         jint size = STACK_INT(-1);
  1951         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
  1952                 handle_exception);
  1953         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  1954         THREAD->set_vm_result(NULL);
  1955         UPDATE_PC_AND_CONTINUE(3);
  1957       CASE(_multianewarray): {
  1958         jint dims = *(pc+3);
  1959         jint size = STACK_INT(-1);
  1960         // stack grows down, dimensions are up!
  1961         jint *dimarray =
  1962                    (jint*)&topOfStack[dims * Interpreter::stackElementWords()+
  1963                                       Interpreter::stackElementWords()-1];
  1964         //adjust pointer to start of stack element
  1965         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
  1966                 handle_exception);
  1967         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
  1968         THREAD->set_vm_result(NULL);
  1969         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
  1971       CASE(_checkcast):
  1972           if (STACK_OBJECT(-1) != NULL) {
  1973             u2 index = Bytes::get_Java_u2(pc+1);
  1974             if (ProfileInterpreter) {
  1975               // needs Profile_checkcast QQQ
  1976               ShouldNotReachHere();
  1978             // Constant pool may have actual klass or unresolved klass. If it is
  1979             // unresolved we must resolve it
  1980             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  1981               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  1983             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
  1984             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
  1985             //
  1986             // Check for compatibilty. This check must not GC!!
  1987             // Seems way more expensive now that we must dispatch
  1988             //
  1989             if (objKlassOop != klassOf &&
  1990                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  1991               ResourceMark rm(THREAD);
  1992               const char* objName = Klass::cast(objKlassOop)->external_name();
  1993               const char* klassName = Klass::cast(klassOf)->external_name();
  1994               char* message = SharedRuntime::generate_class_cast_message(
  1995                 objName, klassName);
  1996               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
  1998           } else {
  1999             if (UncommonNullCast) {
  2000 //              istate->method()->set_null_cast_seen();
  2001 // [RGV] Not sure what to do here!
  2005           UPDATE_PC_AND_CONTINUE(3);
  2007       CASE(_instanceof):
  2008           if (STACK_OBJECT(-1) == NULL) {
  2009             SET_STACK_INT(0, -1);
  2010           } else {
  2011             u2 index = Bytes::get_Java_u2(pc+1);
  2012             // Constant pool may have actual klass or unresolved klass. If it is
  2013             // unresolved we must resolve it
  2014             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
  2015               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
  2017             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
  2018             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
  2019             //
  2020             // Check for compatibilty. This check must not GC!!
  2021             // Seems way more expensive now that we must dispatch
  2022             //
  2023             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
  2024               SET_STACK_INT(1, -1);
  2025             } else {
  2026               SET_STACK_INT(0, -1);
  2029           UPDATE_PC_AND_CONTINUE(3);
  2031       CASE(_ldc_w):
  2032       CASE(_ldc):
  2034           u2 index;
  2035           bool wide = false;
  2036           int incr = 2; // frequent case
  2037           if (opcode == Bytecodes::_ldc) {
  2038             index = pc[1];
  2039           } else {
  2040             index = Bytes::get_Java_u2(pc+1);
  2041             incr = 3;
  2042             wide = true;
  2045           constantPoolOop constants = METHOD->constants();
  2046           switch (constants->tag_at(index).value()) {
  2047           case JVM_CONSTANT_Integer:
  2048             SET_STACK_INT(constants->int_at(index), 0);
  2049             break;
  2051           case JVM_CONSTANT_Float:
  2052             SET_STACK_FLOAT(constants->float_at(index), 0);
  2053             break;
  2055           case JVM_CONSTANT_String:
  2056             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
  2057             break;
  2059           case JVM_CONSTANT_Class:
  2060             SET_STACK_OBJECT(constants->resolved_klass_at(index)->klass_part()->java_mirror(), 0);
  2061             break;
  2063           case JVM_CONSTANT_UnresolvedString:
  2064           case JVM_CONSTANT_UnresolvedClass:
  2065           case JVM_CONSTANT_UnresolvedClassInError:
  2066             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
  2067             SET_STACK_OBJECT(THREAD->vm_result(), 0);
  2068             THREAD->set_vm_result(NULL);
  2069             break;
  2071 #if 0
  2072           CASE(_fast_igetfield):
  2073           CASE(_fastagetfield):
  2074           CASE(_fast_aload_0):
  2075           CASE(_fast_iaccess_0):
  2076           CASE(__fast_aaccess_0):
  2077           CASE(_fast_linearswitch):
  2078           CASE(_fast_binaryswitch):
  2079             fatal("unsupported fast bytecode");
  2080 #endif
  2082           default:  ShouldNotReachHere();
  2084           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
  2087       CASE(_ldc2_w):
  2089           u2 index = Bytes::get_Java_u2(pc+1);
  2091           constantPoolOop constants = METHOD->constants();
  2092           switch (constants->tag_at(index).value()) {
  2094           case JVM_CONSTANT_Long:
  2095              SET_STACK_LONG(constants->long_at(index), 1);
  2096             break;
  2098           case JVM_CONSTANT_Double:
  2099              SET_STACK_DOUBLE(constants->double_at(index), 1);
  2100             break;
  2101           default:  ShouldNotReachHere();
  2103           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
  2106       CASE(_invokeinterface): {
  2107         u2 index = Bytes::get_native_u2(pc+1);
  2109         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2110         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2112         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2113         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2114           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2115                   handle_exception);
  2116           cache = cp->entry_at(index);
  2119         istate->set_msg(call_method);
  2121         // Special case of invokeinterface called for virtual method of
  2122         // java.lang.Object.  See cpCacheOop.cpp for details.
  2123         // This code isn't produced by javac, but could be produced by
  2124         // another compliant java compiler.
  2125         if (cache->is_methodInterface()) {
  2126           methodOop callee;
  2127           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2128           if (cache->is_vfinal()) {
  2129             callee = (methodOop) cache->f2();
  2130           } else {
  2131             // get receiver
  2132             int parms = cache->parameter_size();
  2133             // Same comments as invokevirtual apply here
  2134             instanceKlass* rcvrKlass = (instanceKlass*)
  2135                                  STACK_OBJECT(-parms)->klass()->klass_part();
  2136             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2138           istate->set_callee(callee);
  2139           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2140 #ifdef VM_JVMTI
  2141           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2142             istate->set_callee_entry_point(callee->interpreter_entry());
  2144 #endif /* VM_JVMTI */
  2145           istate->set_bcp_advance(5);
  2146           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2149         // this could definitely be cleaned up QQQ
  2150         methodOop callee;
  2151         klassOop iclass = (klassOop)cache->f1();
  2152         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
  2153         // get receiver
  2154         int parms = cache->parameter_size();
  2155         oop rcvr = STACK_OBJECT(-parms);
  2156         CHECK_NULL(rcvr);
  2157         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
  2158         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
  2159         int i;
  2160         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
  2161           if (ki->interface_klass() == iclass) break;
  2163         // If the interface isn't found, this class doesn't implement this
  2164         // interface.  The link resolver checks this but only for the first
  2165         // time this interface is called.
  2166         if (i == int2->itable_length()) {
  2167           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
  2169         int mindex = cache->f2();
  2170         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
  2171         callee = im[mindex].method();
  2172         if (callee == NULL) {
  2173           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
  2176         istate->set_callee(callee);
  2177         istate->set_callee_entry_point(callee->from_interpreted_entry());
  2178 #ifdef VM_JVMTI
  2179         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2180           istate->set_callee_entry_point(callee->interpreter_entry());
  2182 #endif /* VM_JVMTI */
  2183         istate->set_bcp_advance(5);
  2184         UPDATE_PC_AND_RETURN(0); // I'll be back...
  2187       CASE(_invokevirtual):
  2188       CASE(_invokespecial):
  2189       CASE(_invokestatic): {
  2190         u2 index = Bytes::get_native_u2(pc+1);
  2192         ConstantPoolCacheEntry* cache = cp->entry_at(index);
  2193         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
  2194         // out so c++ compiler has a chance for constant prop to fold everything possible away.
  2196         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
  2197           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
  2198                   handle_exception);
  2199           cache = cp->entry_at(index);
  2202         istate->set_msg(call_method);
  2204           methodOop callee;
  2205           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
  2206             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2207             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
  2208             else {
  2209               // get receiver
  2210               int parms = cache->parameter_size();
  2211               // this works but needs a resourcemark and seems to create a vtable on every call:
  2212               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
  2213               //
  2214               // this fails with an assert
  2215               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
  2216               // but this works
  2217               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
  2218               /*
  2219                 Executing this code in java.lang.String:
  2220                     public String(char value[]) {
  2221                           this.count = value.length;
  2222                           this.value = (char[])value.clone();
  2225                  a find on rcvr->klass()->klass_part() reports:
  2226                  {type array char}{type array class}
  2227                   - klass: {other class}
  2229                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
  2230                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
  2231                   However it seems to have a vtable in the right location. Huh?
  2233               */
  2234               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
  2236           } else {
  2237             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
  2238               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
  2240             callee = (methodOop) cache->f1();
  2243           istate->set_callee(callee);
  2244           istate->set_callee_entry_point(callee->from_interpreted_entry());
  2245 #ifdef VM_JVMTI
  2246           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
  2247             istate->set_callee_entry_point(callee->interpreter_entry());
  2249 #endif /* VM_JVMTI */
  2250           istate->set_bcp_advance(3);
  2251           UPDATE_PC_AND_RETURN(0); // I'll be back...
  2255       /* Allocate memory for a new java object. */
  2257       CASE(_newarray): {
  2258         BasicType atype = (BasicType) *(pc+1);
  2259         jint size = STACK_INT(-1);
  2260         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
  2261                 handle_exception);
  2262         SET_STACK_OBJECT(THREAD->vm_result(), -1);
  2263         THREAD->set_vm_result(NULL);
  2265         UPDATE_PC_AND_CONTINUE(2);
  2268       /* Throw an exception. */
  2270       CASE(_athrow): {
  2271           oop except_oop = STACK_OBJECT(-1);
  2272           CHECK_NULL(except_oop);
  2273           // set pending_exception so we use common code
  2274           THREAD->set_pending_exception(except_oop, NULL, 0);
  2275           goto handle_exception;
  2278       /* goto and jsr. They are exactly the same except jsr pushes
  2279        * the address of the next instruction first.
  2280        */
  2282       CASE(_jsr): {
  2283           /* push bytecode index on stack */
  2284           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
  2285           MORE_STACK(1);
  2286           /* FALL THROUGH */
  2289       CASE(_goto):
  2291           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
  2292           address branch_pc = pc;
  2293           UPDATE_PC(offset);
  2294           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2295           CONTINUE;
  2298       CASE(_jsr_w): {
  2299           /* push return address on the stack */
  2300           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
  2301           MORE_STACK(1);
  2302           /* FALL THROUGH */
  2305       CASE(_goto_w):
  2307           int32_t offset = Bytes::get_Java_u4(pc + 1);
  2308           address branch_pc = pc;
  2309           UPDATE_PC(offset);
  2310           DO_BACKEDGE_CHECKS(offset, branch_pc);
  2311           CONTINUE;
  2314       /* return from a jsr or jsr_w */
  2316       CASE(_ret): {
  2317           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
  2318           UPDATE_PC_AND_CONTINUE(0);
  2321       /* debugger breakpoint */
  2323       CASE(_breakpoint): {
  2324           Bytecodes::Code original_bytecode;
  2325           DECACHE_STATE();
  2326           SET_LAST_JAVA_FRAME();
  2327           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
  2328                               METHOD, pc);
  2329           RESET_LAST_JAVA_FRAME();
  2330           CACHE_STATE();
  2331           if (THREAD->has_pending_exception()) goto handle_exception;
  2332             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
  2333                                                     handle_exception);
  2335           opcode = (jubyte)original_bytecode;
  2336           goto opcode_switch;
  2339       DEFAULT:
  2340           fatal2("\t*** Unimplemented opcode: %d = %s\n",
  2341                  opcode, Bytecodes::name((Bytecodes::Code)opcode));
  2342           goto finish;
  2344       } /* switch(opc) */
  2347 #ifdef USELABELS
  2348     check_for_exception:
  2349 #endif
  2351       if (!THREAD->has_pending_exception()) {
  2352         CONTINUE;
  2354       /* We will be gcsafe soon, so flush our state. */
  2355       DECACHE_PC();
  2356       goto handle_exception;
  2358   do_continue: ;
  2360   } /* while (1) interpreter loop */
  2363   // An exception exists in the thread state see whether this activation can handle it
  2364   handle_exception: {
  2366     HandleMarkCleaner __hmc(THREAD);
  2367     Handle except_oop(THREAD, THREAD->pending_exception());
  2368     // Prevent any subsequent HandleMarkCleaner in the VM
  2369     // from freeing the except_oop handle.
  2370     HandleMark __hm(THREAD);
  2372     THREAD->clear_pending_exception();
  2373     assert(except_oop(), "No exception to process");
  2374     intptr_t continuation_bci;
  2375     // expression stack is emptied
  2376     topOfStack = istate->stack_base() - Interpreter::stackElementWords();
  2377     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
  2378             handle_exception);
  2380     except_oop = (oop) THREAD->vm_result();
  2381     THREAD->set_vm_result(NULL);
  2382     if (continuation_bci >= 0) {
  2383       // Place exception on top of stack
  2384       SET_STACK_OBJECT(except_oop(), 0);
  2385       MORE_STACK(1);
  2386       pc = METHOD->code_base() + continuation_bci;
  2387       if (TraceExceptions) {
  2388         ttyLocker ttyl;
  2389         ResourceMark rm;
  2390         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2391         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2392         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
  2393                       pc - (intptr_t)METHOD->code_base(),
  2394                       continuation_bci, THREAD);
  2396       // for AbortVMOnException flag
  2397       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2398       goto run;
  2400     if (TraceExceptions) {
  2401       ttyLocker ttyl;
  2402       ResourceMark rm;
  2403       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
  2404       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
  2405       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
  2406                     pc  - (intptr_t) METHOD->code_base(),
  2407                     THREAD);
  2409     // for AbortVMOnException flag
  2410     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
  2411     // No handler in this activation, unwind and try again
  2412     THREAD->set_pending_exception(except_oop(), NULL, 0);
  2413     goto handle_return;
  2414   }  /* handle_exception: */
  2418   // Return from an interpreter invocation with the result of the interpretation
  2419   // on the top of the Java Stack (or a pending exception)
  2421 handle_Pop_Frame:
  2423   // We don't really do anything special here except we must be aware
  2424   // that we can get here without ever locking the method (if sync).
  2425   // Also we skip the notification of the exit.
  2427   istate->set_msg(popping_frame);
  2428   // Clear pending so while the pop is in process
  2429   // we don't start another one if a call_vm is done.
  2430   THREAD->clr_pop_frame_pending();
  2431   // Let interpreter (only) see the we're in the process of popping a frame
  2432   THREAD->set_pop_frame_in_process();
  2434 handle_return:
  2436     DECACHE_STATE();
  2438     bool suppress_error = istate->msg() == popping_frame;
  2439     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
  2440     Handle original_exception(THREAD, THREAD->pending_exception());
  2441     Handle illegal_state_oop(THREAD, NULL);
  2443     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
  2444     // in any following VM entries from freeing our live handles, but illegal_state_oop
  2445     // isn't really allocated yet and so doesn't become live until later and
  2446     // in unpredicatable places. Instead we must protect the places where we enter the
  2447     // VM. It would be much simpler (and safer) if we could allocate a real handle with
  2448     // a NULL oop in it and then overwrite the oop later as needed. This isn't
  2449     // unfortunately isn't possible.
  2451     THREAD->clear_pending_exception();
  2453     //
  2454     // As far as we are concerned we have returned. If we have a pending exception
  2455     // that will be returned as this invocation's result. However if we get any
  2456     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
  2457     // will be our final result (i.e. monitor exception trumps a pending exception).
  2458     //
  2460     // If we never locked the method (or really passed the point where we would have),
  2461     // there is no need to unlock it (or look for other monitors), since that
  2462     // could not have happened.
  2464     if (THREAD->do_not_unlock()) {
  2466       // Never locked, reset the flag now because obviously any caller must
  2467       // have passed their point of locking for us to have gotten here.
  2469       THREAD->clr_do_not_unlock();
  2470     } else {
  2471       // At this point we consider that we have returned. We now check that the
  2472       // locks were properly block structured. If we find that they were not
  2473       // used properly we will return with an illegal monitor exception.
  2474       // The exception is checked by the caller not the callee since this
  2475       // checking is considered to be part of the invocation and therefore
  2476       // in the callers scope (JVM spec 8.13).
  2477       //
  2478       // Another weird thing to watch for is if the method was locked
  2479       // recursively and then not exited properly. This means we must
  2480       // examine all the entries in reverse time(and stack) order and
  2481       // unlock as we find them. If we find the method monitor before
  2482       // we are at the initial entry then we should throw an exception.
  2483       // It is not clear the template based interpreter does this
  2484       // correctly
  2486       BasicObjectLock* base = istate->monitor_base();
  2487       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
  2488       bool method_unlock_needed = METHOD->is_synchronized();
  2489       // We know the initial monitor was used for the method don't check that
  2490       // slot in the loop
  2491       if (method_unlock_needed) base--;
  2493       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
  2494       while (end < base) {
  2495         oop lockee = end->obj();
  2496         if (lockee != NULL) {
  2497           BasicLock* lock = end->lock();
  2498           markOop header = lock->displaced_header();
  2499           end->set_obj(NULL);
  2500           // If it isn't recursive we either must swap old header or call the runtime
  2501           if (header != NULL) {
  2502             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
  2503               // restore object for the slow case
  2504               end->set_obj(lockee);
  2506                 // Prevent any HandleMarkCleaner from freeing our live handles
  2507                 HandleMark __hm(THREAD);
  2508                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
  2512           // One error is plenty
  2513           if (illegal_state_oop() == NULL && !suppress_error) {
  2515               // Prevent any HandleMarkCleaner from freeing our live handles
  2516               HandleMark __hm(THREAD);
  2517               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2519             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2520             illegal_state_oop = THREAD->pending_exception();
  2521             THREAD->clear_pending_exception();
  2524         end++;
  2526       // Unlock the method if needed
  2527       if (method_unlock_needed) {
  2528         if (base->obj() == NULL) {
  2529           // The method is already unlocked this is not good.
  2530           if (illegal_state_oop() == NULL && !suppress_error) {
  2532               // Prevent any HandleMarkCleaner from freeing our live handles
  2533               HandleMark __hm(THREAD);
  2534               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
  2536             assert(THREAD->has_pending_exception(), "Lost our exception!");
  2537             illegal_state_oop = THREAD->pending_exception();
  2538             THREAD->clear_pending_exception();
  2540         } else {
  2541           //
  2542           // The initial monitor is always used for the method
  2543           // However if that slot is no longer the oop for the method it was unlocked
  2544           // and reused by something that wasn't unlocked!
  2545           //
  2546           // deopt can come in with rcvr dead because c2 knows
  2547           // its value is preserved in the monitor. So we can't use locals[0] at all
  2548           // and must use first monitor slot.
  2549           //
  2550           oop rcvr = base->obj();
  2551           if (rcvr == NULL) {
  2552             if (!suppress_error) {
  2553               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
  2554               illegal_state_oop = THREAD->pending_exception();
  2555               THREAD->clear_pending_exception();
  2557           } else {
  2558             BasicLock* lock = base->lock();
  2559             markOop header = lock->displaced_header();
  2560             base->set_obj(NULL);
  2561             // If it isn't recursive we either must swap old header or call the runtime
  2562             if (header != NULL) {
  2563               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
  2564                 // restore object for the slow case
  2565                 base->set_obj(rcvr);
  2567                   // Prevent any HandleMarkCleaner from freeing our live handles
  2568                   HandleMark __hm(THREAD);
  2569                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
  2571                 if (THREAD->has_pending_exception()) {
  2572                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
  2573                   THREAD->clear_pending_exception();
  2582     //
  2583     // Notify jvmti/jvmdi
  2584     //
  2585     // NOTE: we do not notify a method_exit if we have a pending exception,
  2586     // including an exception we generate for unlocking checks.  In the former
  2587     // case, JVMDI has already been notified by our call for the exception handler
  2588     // and in both cases as far as JVMDI is concerned we have already returned.
  2589     // If we notify it again JVMDI will be all confused about how many frames
  2590     // are still on the stack (4340444).
  2591     //
  2592     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
  2593     // method_exit events whenever we leave an activation unless it was done
  2594     // for popframe. This is nothing like jvmdi. However we are passing the
  2595     // tests at the moment (apparently because they are jvmdi based) so rather
  2596     // than change this code and possibly fail tests we will leave it alone
  2597     // (with this note) in anticipation of changing the vm and the tests
  2598     // simultaneously.
  2601     //
  2602     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
  2606 #ifdef VM_JVMTI
  2607       if (_jvmti_interp_events) {
  2608         // Whenever JVMTI puts a thread in interp_only_mode, method
  2609         // entry/exit events are sent for that thread to track stack depth.
  2610         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
  2612             // Prevent any HandleMarkCleaner from freeing our live handles
  2613             HandleMark __hm(THREAD);
  2614             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
  2618 #endif /* VM_JVMTI */
  2620     //
  2621     // See if we are returning any exception
  2622     // A pending exception that was pending prior to a possible popping frame
  2623     // overrides the popping frame.
  2624     //
  2625     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
  2626     if (illegal_state_oop() != NULL || original_exception() != NULL) {
  2627       // inform the frame manager we have no result
  2628       istate->set_msg(throwing_exception);
  2629       if (illegal_state_oop() != NULL)
  2630         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
  2631       else
  2632         THREAD->set_pending_exception(original_exception(), NULL, 0);
  2633       istate->set_return_kind((Bytecodes::Code)opcode);
  2634       UPDATE_PC_AND_RETURN(0);
  2637     if (istate->msg() == popping_frame) {
  2638       // Make it simpler on the assembly code and set the message for the frame pop.
  2639       // returns
  2640       if (istate->prev() == NULL) {
  2641         // We must be returning to a deoptimized frame (because popframe only happens between
  2642         // two interpreted frames). We need to save the current arguments in C heap so that
  2643         // the deoptimized frame when it restarts can copy the arguments to its expression
  2644         // stack and re-execute the call. We also have to notify deoptimization that this
  2645         // has occurred and to pick the preserved args copy them to the deoptimized frame's
  2646         // java expression stack. Yuck.
  2647         //
  2648         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
  2649                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
  2650         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
  2652       UPDATE_PC_AND_RETURN(1);
  2653     } else {
  2654       // Normal return
  2655       // Advance the pc and return to frame manager
  2656       istate->set_msg(return_from_method);
  2657       istate->set_return_kind((Bytecodes::Code)opcode);
  2658       UPDATE_PC_AND_RETURN(1);
  2660   } /* handle_return: */
  2662 // This is really a fatal error return
  2664 finish:
  2665   DECACHE_TOS();
  2666   DECACHE_PC();
  2668   return;
  2671 /*
  2672  * All the code following this point is only produced once and is not present
  2673  * in the JVMTI version of the interpreter
  2674 */
  2676 #ifndef VM_JVMTI
  2678 // This constructor should only be used to contruct the object to signal
  2679 // interpreter initialization. All other instances should be created by
  2680 // the frame manager.
  2681 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
  2682   if (msg != initialize) ShouldNotReachHere();
  2683   _msg = msg;
  2684   _self_link = this;
  2685   _prev_link = NULL;
  2688 // Inline static functions for Java Stack and Local manipulation
  2690 // The implementations are platform dependent. We have to worry about alignment
  2691 // issues on some machines which can change on the same platform depending on
  2692 // whether it is an LP64 machine also.
  2693 #ifdef ASSERT
  2694 void BytecodeInterpreter::verify_stack_tag(intptr_t *tos, frame::Tag tag, int offset) {
  2695   if (TaggedStackInterpreter) {
  2696     frame::Tag t = (frame::Tag)tos[Interpreter::expr_tag_index_at(-offset)];
  2697     assert(t == tag, "stack tag mismatch");
  2700 #endif // ASSERT
  2702 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
  2703   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
  2704   return (address) tos[Interpreter::expr_index_at(-offset)];
  2707 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
  2708   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
  2709   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
  2712 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
  2713   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
  2714   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
  2717 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
  2718   debug_only(verify_stack_tag(tos, frame::TagReference, offset));
  2719   return (oop)tos [Interpreter::expr_index_at(-offset)];
  2722 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
  2723   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
  2724   debug_only(verify_stack_tag(tos, frame::TagValue, offset-1));
  2725   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
  2728 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
  2729   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
  2730   debug_only(verify_stack_tag(tos, frame::TagValue, offset-1));
  2731   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
  2734 void BytecodeInterpreter::tag_stack(intptr_t *tos, frame::Tag tag, int offset) {
  2735   if (TaggedStackInterpreter)
  2736     tos[Interpreter::expr_tag_index_at(-offset)] = (intptr_t)tag;
  2739 // only used for value types
  2740 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
  2741                                                         int offset) {
  2742   tag_stack(tos, frame::TagValue, offset);
  2743   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2746 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
  2747                                                        int offset) {
  2748   tag_stack(tos, frame::TagValue, offset);
  2749   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2752 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
  2753                                                          int offset) {
  2754   tag_stack(tos, frame::TagValue, offset);
  2755   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2758 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
  2759                                                           int offset) {
  2760   tag_stack(tos, frame::TagReference, offset);
  2761   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
  2764 // needs to be platform dep for the 32 bit platforms.
  2765 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
  2766                                                           int offset) {
  2767   tag_stack(tos, frame::TagValue, offset);
  2768   tag_stack(tos, frame::TagValue, offset-1);
  2769   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
  2772 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
  2773                                               address addr, int offset) {
  2774   tag_stack(tos, frame::TagValue, offset);
  2775   tag_stack(tos, frame::TagValue, offset-1);
  2776   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
  2777                         ((VMJavaVal64*)addr)->d);
  2780 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
  2781                                                         int offset) {
  2782   tag_stack(tos, frame::TagValue, offset);
  2783   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2784   tag_stack(tos, frame::TagValue, offset-1);
  2785   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
  2788 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
  2789                                             address addr, int offset) {
  2790   tag_stack(tos, frame::TagValue, offset);
  2791   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
  2792   tag_stack(tos, frame::TagValue, offset-1);
  2793   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
  2794                         ((VMJavaVal64*)addr)->l;
  2797 // Locals
  2799 #ifdef ASSERT
  2800 void BytecodeInterpreter::verify_locals_tag(intptr_t *locals, frame::Tag tag,
  2801                                      int offset) {
  2802   if (TaggedStackInterpreter) {
  2803     frame::Tag t = (frame::Tag)locals[Interpreter::local_tag_index_at(-offset)];
  2804     assert(t == tag, "locals tag mismatch");
  2807 #endif // ASSERT
  2808 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
  2809   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
  2810   return (address)locals[Interpreter::local_index_at(-offset)];
  2812 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
  2813   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
  2814   return (jint)locals[Interpreter::local_index_at(-offset)];
  2816 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
  2817   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
  2818   return (jfloat)locals[Interpreter::local_index_at(-offset)];
  2820 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
  2821   debug_only(verify_locals_tag(locals, frame::TagReference, offset));
  2822   return (oop)locals[Interpreter::local_index_at(-offset)];
  2824 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
  2825   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
  2826   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
  2827   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
  2829 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
  2830   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
  2831   debug_only(verify_locals_tag(locals, frame::TagValue, offset+1));
  2832   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
  2835 // Returns the address of locals value.
  2836 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
  2837   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
  2838   debug_only(verify_locals_tag(locals, frame::TagValue, offset+1));
  2839   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2841 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
  2842   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
  2843   debug_only(verify_locals_tag(locals, frame::TagValue, offset+1));
  2844   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
  2847 void BytecodeInterpreter::tag_locals(intptr_t *locals, frame::Tag tag, int offset) {
  2848   if (TaggedStackInterpreter)
  2849     locals[Interpreter::local_tag_index_at(-offset)] = (intptr_t)tag;
  2852 // Used for local value or returnAddress
  2853 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
  2854                                    address value, int offset) {
  2855   tag_locals(locals, frame::TagValue, offset);
  2856   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
  2858 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
  2859                                    jint value, int offset) {
  2860   tag_locals(locals, frame::TagValue, offset);
  2861   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2863 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
  2864                                    jfloat value, int offset) {
  2865   tag_locals(locals, frame::TagValue, offset);
  2866   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2868 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
  2869                                    oop value, int offset) {
  2870   tag_locals(locals, frame::TagReference, offset);
  2871   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
  2873 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
  2874                                    jdouble value, int offset) {
  2875   tag_locals(locals, frame::TagValue, offset);
  2876   tag_locals(locals, frame::TagValue, offset+1);
  2877   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
  2879 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
  2880                                    jlong value, int offset) {
  2881   tag_locals(locals, frame::TagValue, offset);
  2882   tag_locals(locals, frame::TagValue, offset+1);
  2883   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
  2885 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
  2886                                    address addr, int offset) {
  2887   tag_locals(locals, frame::TagValue, offset);
  2888   tag_locals(locals, frame::TagValue, offset+1);
  2889   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
  2891 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
  2892                                    address addr, int offset) {
  2893   tag_locals(locals, frame::TagValue, offset);
  2894   tag_locals(locals, frame::TagValue, offset+1);
  2895   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
  2898 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
  2899                           intptr_t* locals, int locals_offset) {
  2900   // Copy tag from stack to locals.  astore's operand can be returnAddress
  2901   // and may not be TagReference
  2902   if (TaggedStackInterpreter) {
  2903     frame::Tag t = (frame::Tag) tos[Interpreter::expr_tag_index_at(-stack_offset)];
  2904     locals[Interpreter::local_tag_index_at(-locals_offset)] = (intptr_t)t;
  2906   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
  2907   locals[Interpreter::local_index_at(-locals_offset)] = value;
  2911 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
  2912                                    int to_offset) {
  2913   if (TaggedStackInterpreter) {
  2914     tos[Interpreter::expr_tag_index_at(-to_offset)] =
  2915                       (intptr_t)tos[Interpreter::expr_tag_index_at(-from_offset)];
  2917   tos[Interpreter::expr_index_at(-to_offset)] =
  2918                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
  2921 void BytecodeInterpreter::dup(intptr_t *tos) {
  2922   copy_stack_slot(tos, -1, 0);
  2924 void BytecodeInterpreter::dup2(intptr_t *tos) {
  2925   copy_stack_slot(tos, -2, 0);
  2926   copy_stack_slot(tos, -1, 1);
  2929 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
  2930   /* insert top word two down */
  2931   copy_stack_slot(tos, -1, 0);
  2932   copy_stack_slot(tos, -2, -1);
  2933   copy_stack_slot(tos, 0, -2);
  2936 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
  2937   /* insert top word three down  */
  2938   copy_stack_slot(tos, -1, 0);
  2939   copy_stack_slot(tos, -2, -1);
  2940   copy_stack_slot(tos, -3, -2);
  2941   copy_stack_slot(tos, 0, -3);
  2943 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
  2944   /* insert top 2 slots three down */
  2945   copy_stack_slot(tos, -1, 1);
  2946   copy_stack_slot(tos, -2, 0);
  2947   copy_stack_slot(tos, -3, -1);
  2948   copy_stack_slot(tos, 1, -2);
  2949   copy_stack_slot(tos, 0, -3);
  2951 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
  2952   /* insert top 2 slots four down */
  2953   copy_stack_slot(tos, -1, 1);
  2954   copy_stack_slot(tos, -2, 0);
  2955   copy_stack_slot(tos, -3, -1);
  2956   copy_stack_slot(tos, -4, -2);
  2957   copy_stack_slot(tos, 1, -3);
  2958   copy_stack_slot(tos, 0, -4);
  2962 void BytecodeInterpreter::swap(intptr_t *tos) {
  2963   // swap top two elements
  2964   intptr_t val = tos[Interpreter::expr_index_at(1)];
  2965   frame::Tag t;
  2966   if (TaggedStackInterpreter) {
  2967     t = (frame::Tag) tos[Interpreter::expr_tag_index_at(1)];
  2969   // Copy -2 entry to -1
  2970   copy_stack_slot(tos, -2, -1);
  2971   // Store saved -1 entry into -2
  2972   if (TaggedStackInterpreter) {
  2973     tos[Interpreter::expr_tag_index_at(2)] = (intptr_t)t;
  2975   tos[Interpreter::expr_index_at(2)] = val;
  2977 // --------------------------------------------------------------------------------
  2978 // Non-product code
  2979 #ifndef PRODUCT
  2981 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
  2982   switch (msg) {
  2983      case BytecodeInterpreter::no_request:  return("no_request");
  2984      case BytecodeInterpreter::initialize:  return("initialize");
  2985      // status message to C++ interpreter
  2986      case BytecodeInterpreter::method_entry:  return("method_entry");
  2987      case BytecodeInterpreter::method_resume:  return("method_resume");
  2988      case BytecodeInterpreter::got_monitors:  return("got_monitors");
  2989      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
  2990      // requests to frame manager from C++ interpreter
  2991      case BytecodeInterpreter::call_method:  return("call_method");
  2992      case BytecodeInterpreter::return_from_method:  return("return_from_method");
  2993      case BytecodeInterpreter::more_monitors:  return("more_monitors");
  2994      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
  2995      case BytecodeInterpreter::popping_frame:  return("popping_frame");
  2996      case BytecodeInterpreter::do_osr:  return("do_osr");
  2997      // deopt
  2998      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
  2999      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
  3000      default: return("BAD MSG");
  3003 void
  3004 BytecodeInterpreter::print() {
  3005   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
  3006   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
  3007   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
  3008   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
  3010     ResourceMark rm;
  3011     char *method_name = _method->name_and_sig_as_C_string();
  3012     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
  3014   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
  3015   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
  3016   tty->print_cr("msg: %s", C_msg(this->_msg));
  3017   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
  3018   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
  3019   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
  3020   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
  3021   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
  3022   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
  3023   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
  3024   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
  3025   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
  3026   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
  3027   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
  3028 #ifdef SPARC
  3029   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
  3030   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
  3031   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
  3032   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
  3033 #endif
  3034 #ifdef IA64
  3035   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
  3036 #endif // IA64
  3037   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
  3040 extern "C" {
  3041     void PI(uintptr_t arg) {
  3042         ((BytecodeInterpreter*)arg)->print();
  3045 #endif // PRODUCT
  3047 #endif // JVMTI
  3048 #endif // CC_INTERP

mercurial