src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 969
5cfd8d19e546
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_concurrentMarkSweepGeneration.cpp.incl"
    28 // statics
    29 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    30 bool          CMSCollector::_full_gc_requested          = false;
    32 //////////////////////////////////////////////////////////////////
    33 // In support of CMS/VM thread synchronization
    34 //////////////////////////////////////////////////////////////////
    35 // We split use of the CGC_lock into 2 "levels".
    36 // The low-level locking is of the usual CGC_lock monitor. We introduce
    37 // a higher level "token" (hereafter "CMS token") built on top of the
    38 // low level monitor (hereafter "CGC lock").
    39 // The token-passing protocol gives priority to the VM thread. The
    40 // CMS-lock doesn't provide any fairness guarantees, but clients
    41 // should ensure that it is only held for very short, bounded
    42 // durations.
    43 //
    44 // When either of the CMS thread or the VM thread is involved in
    45 // collection operations during which it does not want the other
    46 // thread to interfere, it obtains the CMS token.
    47 //
    48 // If either thread tries to get the token while the other has
    49 // it, that thread waits. However, if the VM thread and CMS thread
    50 // both want the token, then the VM thread gets priority while the
    51 // CMS thread waits. This ensures, for instance, that the "concurrent"
    52 // phases of the CMS thread's work do not block out the VM thread
    53 // for long periods of time as the CMS thread continues to hog
    54 // the token. (See bug 4616232).
    55 //
    56 // The baton-passing functions are, however, controlled by the
    57 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    58 // and here the low-level CMS lock, not the high level token,
    59 // ensures mutual exclusion.
    60 //
    61 // Two important conditions that we have to satisfy:
    62 // 1. if a thread does a low-level wait on the CMS lock, then it
    63 //    relinquishes the CMS token if it were holding that token
    64 //    when it acquired the low-level CMS lock.
    65 // 2. any low-level notifications on the low-level lock
    66 //    should only be sent when a thread has relinquished the token.
    67 //
    68 // In the absence of either property, we'd have potential deadlock.
    69 //
    70 // We protect each of the CMS (concurrent and sequential) phases
    71 // with the CMS _token_, not the CMS _lock_.
    72 //
    73 // The only code protected by CMS lock is the token acquisition code
    74 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
    75 // baton-passing code.
    76 //
    77 // Unfortunately, i couldn't come up with a good abstraction to factor and
    78 // hide the naked CGC_lock manipulation in the baton-passing code
    79 // further below. That's something we should try to do. Also, the proof
    80 // of correctness of this 2-level locking scheme is far from obvious,
    81 // and potentially quite slippery. We have an uneasy supsicion, for instance,
    82 // that there may be a theoretical possibility of delay/starvation in the
    83 // low-level lock/wait/notify scheme used for the baton-passing because of
    84 // potential intereference with the priority scheme embodied in the
    85 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
    86 // invocation further below and marked with "XXX 20011219YSR".
    87 // Indeed, as we note elsewhere, this may become yet more slippery
    88 // in the presence of multiple CMS and/or multiple VM threads. XXX
    90 class CMSTokenSync: public StackObj {
    91  private:
    92   bool _is_cms_thread;
    93  public:
    94   CMSTokenSync(bool is_cms_thread):
    95     _is_cms_thread(is_cms_thread) {
    96     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
    97            "Incorrect argument to constructor");
    98     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
    99   }
   101   ~CMSTokenSync() {
   102     assert(_is_cms_thread ?
   103              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   104              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   105           "Incorrect state");
   106     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   107   }
   108 };
   110 // Convenience class that does a CMSTokenSync, and then acquires
   111 // upto three locks.
   112 class CMSTokenSyncWithLocks: public CMSTokenSync {
   113  private:
   114   // Note: locks are acquired in textual declaration order
   115   // and released in the opposite order
   116   MutexLockerEx _locker1, _locker2, _locker3;
   117  public:
   118   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   119                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   120     CMSTokenSync(is_cms_thread),
   121     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   122     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   123     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   124   { }
   125 };
   128 // Wrapper class to temporarily disable icms during a foreground cms collection.
   129 class ICMSDisabler: public StackObj {
   130  public:
   131   // The ctor disables icms and wakes up the thread so it notices the change;
   132   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   133   // CMSIncrementalMode.
   134   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   135   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   136 };
   138 //////////////////////////////////////////////////////////////////
   139 //  Concurrent Mark-Sweep Generation /////////////////////////////
   140 //////////////////////////////////////////////////////////////////
   142 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   144 // This struct contains per-thread things necessary to support parallel
   145 // young-gen collection.
   146 class CMSParGCThreadState: public CHeapObj {
   147  public:
   148   CFLS_LAB lab;
   149   PromotionInfo promo;
   151   // Constructor.
   152   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   153     promo.setSpace(cfls);
   154   }
   155 };
   157 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   158      ReservedSpace rs, size_t initial_byte_size, int level,
   159      CardTableRS* ct, bool use_adaptive_freelists,
   160      FreeBlockDictionary::DictionaryChoice dictionaryChoice) :
   161   CardGeneration(rs, initial_byte_size, level, ct),
   162   _dilatation_factor(((double)MinChunkSize)/((double)(oopDesc::header_size()))),
   163   _debug_collection_type(Concurrent_collection_type)
   164 {
   165   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   166   HeapWord* end    = (HeapWord*) _virtual_space.high();
   168   _direct_allocated_words = 0;
   169   NOT_PRODUCT(
   170     _numObjectsPromoted = 0;
   171     _numWordsPromoted = 0;
   172     _numObjectsAllocated = 0;
   173     _numWordsAllocated = 0;
   174   )
   176   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   177                                            use_adaptive_freelists,
   178                                            dictionaryChoice);
   179   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   180   if (_cmsSpace == NULL) {
   181     vm_exit_during_initialization(
   182       "CompactibleFreeListSpace allocation failure");
   183   }
   184   _cmsSpace->_gen = this;
   186   _gc_stats = new CMSGCStats();
   188   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   189   // offsets match. The ability to tell free chunks from objects
   190   // depends on this property.
   191   debug_only(
   192     FreeChunk* junk = NULL;
   193     assert(UseCompressedOops ||
   194            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   195            "Offset of FreeChunk::_prev within FreeChunk must match"
   196            "  that of OopDesc::_klass within OopDesc");
   197   )
   198   if (ParallelGCThreads > 0) {
   199     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   200     _par_gc_thread_states =
   201       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads);
   202     if (_par_gc_thread_states == NULL) {
   203       vm_exit_during_initialization("Could not allocate par gc structs");
   204     }
   205     for (uint i = 0; i < ParallelGCThreads; i++) {
   206       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   207       if (_par_gc_thread_states[i] == NULL) {
   208         vm_exit_during_initialization("Could not allocate par gc structs");
   209       }
   210     }
   211   } else {
   212     _par_gc_thread_states = NULL;
   213   }
   214   _incremental_collection_failed = false;
   215   // The "dilatation_factor" is the expansion that can occur on
   216   // account of the fact that the minimum object size in the CMS
   217   // generation may be larger than that in, say, a contiguous young
   218   //  generation.
   219   // Ideally, in the calculation below, we'd compute the dilatation
   220   // factor as: MinChunkSize/(promoting_gen's min object size)
   221   // Since we do not have such a general query interface for the
   222   // promoting generation, we'll instead just use the mimimum
   223   // object size (which today is a header's worth of space);
   224   // note that all arithmetic is in units of HeapWords.
   225   assert(MinChunkSize >= oopDesc::header_size(), "just checking");
   226   assert(_dilatation_factor >= 1.0, "from previous assert");
   227 }
   230 // The field "_initiating_occupancy" represents the occupancy percentage
   231 // at which we trigger a new collection cycle.  Unless explicitly specified
   232 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
   233 // is calculated by:
   234 //
   235 //   Let "f" be MinHeapFreeRatio in
   236 //
   237 //    _intiating_occupancy = 100-f +
   238 //                           f * (CMSTrigger[Perm]Ratio/100)
   239 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
   240 //
   241 // That is, if we assume the heap is at its desired maximum occupancy at the
   242 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
   243 // space be allocated before initiating a new collection cycle.
   244 //
   245 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   246   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   247   if (io >= 0) {
   248     _initiating_occupancy = (double)io / 100.0;
   249   } else {
   250     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   251                              (double)(tr * MinHeapFreeRatio) / 100.0)
   252                             / 100.0;
   253   }
   254 }
   257 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   258   assert(collector() != NULL, "no collector");
   259   collector()->ref_processor_init();
   260 }
   262 void CMSCollector::ref_processor_init() {
   263   if (_ref_processor == NULL) {
   264     // Allocate and initialize a reference processor
   265     _ref_processor = ReferenceProcessor::create_ref_processor(
   266         _span,                               // span
   267         _cmsGen->refs_discovery_is_atomic(), // atomic_discovery
   268         _cmsGen->refs_discovery_is_mt(),     // mt_discovery
   269         &_is_alive_closure,
   270         ParallelGCThreads,
   271         ParallelRefProcEnabled);
   272     // Initialize the _ref_processor field of CMSGen
   273     _cmsGen->set_ref_processor(_ref_processor);
   275     // Allocate a dummy ref processor for perm gen.
   276     ReferenceProcessor* rp2 = new ReferenceProcessor();
   277     if (rp2 == NULL) {
   278       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
   279     }
   280     _permGen->set_ref_processor(rp2);
   281   }
   282 }
   284 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   285   GenCollectedHeap* gch = GenCollectedHeap::heap();
   286   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   287     "Wrong type of heap");
   288   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   289     gch->gen_policy()->size_policy();
   290   assert(sp->is_gc_cms_adaptive_size_policy(),
   291     "Wrong type of size policy");
   292   return sp;
   293 }
   295 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   296   CMSGCAdaptivePolicyCounters* results =
   297     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   298   assert(
   299     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   300     "Wrong gc policy counter kind");
   301   return results;
   302 }
   305 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   307   const char* gen_name = "old";
   309   // Generation Counters - generation 1, 1 subspace
   310   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   312   _space_counters = new GSpaceCounters(gen_name, 0,
   313                                        _virtual_space.reserved_size(),
   314                                        this, _gen_counters);
   315 }
   317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   318   _cms_gen(cms_gen)
   319 {
   320   assert(alpha <= 100, "bad value");
   321   _saved_alpha = alpha;
   323   // Initialize the alphas to the bootstrap value of 100.
   324   _gc0_alpha = _cms_alpha = 100;
   326   _cms_begin_time.update();
   327   _cms_end_time.update();
   329   _gc0_duration = 0.0;
   330   _gc0_period = 0.0;
   331   _gc0_promoted = 0;
   333   _cms_duration = 0.0;
   334   _cms_period = 0.0;
   335   _cms_allocated = 0;
   337   _cms_used_at_gc0_begin = 0;
   338   _cms_used_at_gc0_end = 0;
   339   _allow_duty_cycle_reduction = false;
   340   _valid_bits = 0;
   341   _icms_duty_cycle = CMSIncrementalDutyCycle;
   342 }
   344 // If promotion failure handling is on use
   345 // the padded average size of the promotion for each
   346 // young generation collection.
   347 double CMSStats::time_until_cms_gen_full() const {
   348   size_t cms_free = _cms_gen->cmsSpace()->free();
   349   GenCollectedHeap* gch = GenCollectedHeap::heap();
   350   size_t expected_promotion = gch->get_gen(0)->capacity();
   351   if (HandlePromotionFailure) {
   352     expected_promotion = MIN2(
   353         (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average(),
   354         expected_promotion);
   355   }
   356   if (cms_free > expected_promotion) {
   357     // Start a cms collection if there isn't enough space to promote
   358     // for the next minor collection.  Use the padded average as
   359     // a safety factor.
   360     cms_free -= expected_promotion;
   362     // Adjust by the safety factor.
   363     double cms_free_dbl = (double)cms_free;
   364     cms_free_dbl = cms_free_dbl * (100.0 - CMSIncrementalSafetyFactor) / 100.0;
   366     if (PrintGCDetails && Verbose) {
   367       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   368         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   369         cms_free, expected_promotion);
   370       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   371         cms_free_dbl, cms_consumption_rate() + 1.0);
   372     }
   373     // Add 1 in case the consumption rate goes to zero.
   374     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   375   }
   376   return 0.0;
   377 }
   379 // Compare the duration of the cms collection to the
   380 // time remaining before the cms generation is empty.
   381 // Note that the time from the start of the cms collection
   382 // to the start of the cms sweep (less than the total
   383 // duration of the cms collection) can be used.  This
   384 // has been tried and some applications experienced
   385 // promotion failures early in execution.  This was
   386 // possibly because the averages were not accurate
   387 // enough at the beginning.
   388 double CMSStats::time_until_cms_start() const {
   389   // We add "gc0_period" to the "work" calculation
   390   // below because this query is done (mostly) at the
   391   // end of a scavenge, so we need to conservatively
   392   // account for that much possible delay
   393   // in the query so as to avoid concurrent mode failures
   394   // due to starting the collection just a wee bit too
   395   // late.
   396   double work = cms_duration() + gc0_period();
   397   double deadline = time_until_cms_gen_full();
   398   if (work > deadline) {
   399     if (Verbose && PrintGCDetails) {
   400       gclog_or_tty->print(
   401         " CMSCollector: collect because of anticipated promotion "
   402         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   403         gc0_period(), time_until_cms_gen_full());
   404     }
   405     return 0.0;
   406   }
   407   return work - deadline;
   408 }
   410 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   411 // amount of change to prevent wild oscillation.
   412 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   413                                               unsigned int new_duty_cycle) {
   414   assert(old_duty_cycle <= 100, "bad input value");
   415   assert(new_duty_cycle <= 100, "bad input value");
   417   // Note:  use subtraction with caution since it may underflow (values are
   418   // unsigned).  Addition is safe since we're in the range 0-100.
   419   unsigned int damped_duty_cycle = new_duty_cycle;
   420   if (new_duty_cycle < old_duty_cycle) {
   421     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   422     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   423       damped_duty_cycle = old_duty_cycle - largest_delta;
   424     }
   425   } else if (new_duty_cycle > old_duty_cycle) {
   426     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   427     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   428       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   429     }
   430   }
   431   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   433   if (CMSTraceIncrementalPacing) {
   434     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   435                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   436   }
   437   return damped_duty_cycle;
   438 }
   440 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   441   assert(CMSIncrementalPacing && valid(),
   442          "should be handled in icms_update_duty_cycle()");
   444   double cms_time_so_far = cms_timer().seconds();
   445   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   446   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   448   // Avoid division by 0.
   449   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   450   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   452   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   453   if (new_duty_cycle > _icms_duty_cycle) {
   454     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   455     if (new_duty_cycle > 2) {
   456       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   457                                                 new_duty_cycle);
   458     }
   459   } else if (_allow_duty_cycle_reduction) {
   460     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   461     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   462     // Respect the minimum duty cycle.
   463     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   464     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   465   }
   467   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   468     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   469   }
   471   _allow_duty_cycle_reduction = false;
   472   return _icms_duty_cycle;
   473 }
   475 #ifndef PRODUCT
   476 void CMSStats::print_on(outputStream *st) const {
   477   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   478   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   479                gc0_duration(), gc0_period(), gc0_promoted());
   480   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   481             cms_duration(), cms_duration_per_mb(),
   482             cms_period(), cms_allocated());
   483   st->print(",cms_since_beg=%g,cms_since_end=%g",
   484             cms_time_since_begin(), cms_time_since_end());
   485   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   486             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   487   if (CMSIncrementalMode) {
   488     st->print(",dc=%d", icms_duty_cycle());
   489   }
   491   if (valid()) {
   492     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   493               promotion_rate(), cms_allocation_rate());
   494     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   495               cms_consumption_rate(), time_until_cms_gen_full());
   496   }
   497   st->print(" ");
   498 }
   499 #endif // #ifndef PRODUCT
   501 CMSCollector::CollectorState CMSCollector::_collectorState =
   502                              CMSCollector::Idling;
   503 bool CMSCollector::_foregroundGCIsActive = false;
   504 bool CMSCollector::_foregroundGCShouldWait = false;
   506 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   507                            ConcurrentMarkSweepGeneration* permGen,
   508                            CardTableRS*                   ct,
   509                            ConcurrentMarkSweepPolicy*     cp):
   510   _cmsGen(cmsGen),
   511   _permGen(permGen),
   512   _ct(ct),
   513   _ref_processor(NULL),    // will be set later
   514   _conc_workers(NULL),     // may be set later
   515   _abort_preclean(false),
   516   _start_sampling(false),
   517   _between_prologue_and_epilogue(false),
   518   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   519   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
   520   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   521                  -1 /* lock-free */, "No_lock" /* dummy */),
   522   _modUnionClosure(&_modUnionTable),
   523   _modUnionClosurePar(&_modUnionTable),
   524   // Adjust my span to cover old (cms) gen and perm gen
   525   _span(cmsGen->reserved()._union(permGen->reserved())),
   526   // Construct the is_alive_closure with _span & markBitMap
   527   _is_alive_closure(_span, &_markBitMap),
   528   _restart_addr(NULL),
   529   _overflow_list(NULL),
   530   _preserved_oop_stack(NULL),
   531   _preserved_mark_stack(NULL),
   532   _stats(cmsGen),
   533   _eden_chunk_array(NULL),     // may be set in ctor body
   534   _eden_chunk_capacity(0),     // -- ditto --
   535   _eden_chunk_index(0),        // -- ditto --
   536   _survivor_plab_array(NULL),  // -- ditto --
   537   _survivor_chunk_array(NULL), // -- ditto --
   538   _survivor_chunk_capacity(0), // -- ditto --
   539   _survivor_chunk_index(0),    // -- ditto --
   540   _ser_pmc_preclean_ovflw(0),
   541   _ser_kac_preclean_ovflw(0),
   542   _ser_pmc_remark_ovflw(0),
   543   _par_pmc_remark_ovflw(0),
   544   _ser_kac_ovflw(0),
   545   _par_kac_ovflw(0),
   546 #ifndef PRODUCT
   547   _num_par_pushes(0),
   548 #endif
   549   _collection_count_start(0),
   550   _verifying(false),
   551   _icms_start_limit(NULL),
   552   _icms_stop_limit(NULL),
   553   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   554   _completed_initialization(false),
   555   _collector_policy(cp),
   556   _should_unload_classes(false),
   557   _concurrent_cycles_since_last_unload(0),
   558   _sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   559 {
   560   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   561     ExplicitGCInvokesConcurrent = true;
   562   }
   563   // Now expand the span and allocate the collection support structures
   564   // (MUT, marking bit map etc.) to cover both generations subject to
   565   // collection.
   567   // First check that _permGen is adjacent to _cmsGen and above it.
   568   assert(   _cmsGen->reserved().word_size()  > 0
   569          && _permGen->reserved().word_size() > 0,
   570          "generations should not be of zero size");
   571   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
   572          "_cmsGen and _permGen should not overlap");
   573   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
   574          "_cmsGen->end() different from _permGen->start()");
   576   // For use by dirty card to oop closures.
   577   _cmsGen->cmsSpace()->set_collector(this);
   578   _permGen->cmsSpace()->set_collector(this);
   580   // Allocate MUT and marking bit map
   581   {
   582     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   583     if (!_markBitMap.allocate(_span)) {
   584       warning("Failed to allocate CMS Bit Map");
   585       return;
   586     }
   587     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   588   }
   589   {
   590     _modUnionTable.allocate(_span);
   591     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   592   }
   594   if (!_markStack.allocate(CMSMarkStackSize)) {
   595     warning("Failed to allocate CMS Marking Stack");
   596     return;
   597   }
   598   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
   599     warning("Failed to allocate CMS Revisit Stack");
   600     return;
   601   }
   603   // Support for multi-threaded concurrent phases
   604   if (ParallelGCThreads > 0 && CMSConcurrentMTEnabled) {
   605     if (FLAG_IS_DEFAULT(ParallelCMSThreads)) {
   606       // just for now
   607       FLAG_SET_DEFAULT(ParallelCMSThreads, (ParallelGCThreads + 3)/4);
   608     }
   609     if (ParallelCMSThreads > 1) {
   610       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   611                                  ParallelCMSThreads, true);
   612       if (_conc_workers == NULL) {
   613         warning("GC/CMS: _conc_workers allocation failure: "
   614               "forcing -CMSConcurrentMTEnabled");
   615         CMSConcurrentMTEnabled = false;
   616       }
   617     } else {
   618       CMSConcurrentMTEnabled = false;
   619     }
   620   }
   621   if (!CMSConcurrentMTEnabled) {
   622     ParallelCMSThreads = 0;
   623   } else {
   624     // Turn off CMSCleanOnEnter optimization temporarily for
   625     // the MT case where it's not fixed yet; see 6178663.
   626     CMSCleanOnEnter = false;
   627   }
   628   assert((_conc_workers != NULL) == (ParallelCMSThreads > 1),
   629          "Inconsistency");
   631   // Parallel task queues; these are shared for the
   632   // concurrent and stop-world phases of CMS, but
   633   // are not shared with parallel scavenge (ParNew).
   634   {
   635     uint i;
   636     uint num_queues = (uint) MAX2(ParallelGCThreads, ParallelCMSThreads);
   638     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   639          || ParallelRefProcEnabled)
   640         && num_queues > 0) {
   641       _task_queues = new OopTaskQueueSet(num_queues);
   642       if (_task_queues == NULL) {
   643         warning("task_queues allocation failure.");
   644         return;
   645       }
   646       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues);
   647       if (_hash_seed == NULL) {
   648         warning("_hash_seed array allocation failure");
   649         return;
   650       }
   652       // XXX use a global constant instead of 64!
   653       typedef struct OopTaskQueuePadded {
   654         OopTaskQueue work_queue;
   655         char pad[64 - sizeof(OopTaskQueue)];  // prevent false sharing
   656       } OopTaskQueuePadded;
   658       for (i = 0; i < num_queues; i++) {
   659         OopTaskQueuePadded *q_padded = new OopTaskQueuePadded();
   660         if (q_padded == NULL) {
   661           warning("work_queue allocation failure.");
   662           return;
   663         }
   664         _task_queues->register_queue(i, &q_padded->work_queue);
   665       }
   666       for (i = 0; i < num_queues; i++) {
   667         _task_queues->queue(i)->initialize();
   668         _hash_seed[i] = 17;  // copied from ParNew
   669       }
   670     }
   671   }
   673   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   674   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
   676   // Clip CMSBootstrapOccupancy between 0 and 100.
   677   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   678                          /(double)100;
   680   _full_gcs_since_conc_gc = 0;
   682   // Now tell CMS generations the identity of their collector
   683   ConcurrentMarkSweepGeneration::set_collector(this);
   685   // Create & start a CMS thread for this CMS collector
   686   _cmsThread = ConcurrentMarkSweepThread::start(this);
   687   assert(cmsThread() != NULL, "CMS Thread should have been created");
   688   assert(cmsThread()->collector() == this,
   689          "CMS Thread should refer to this gen");
   690   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   692   // Support for parallelizing young gen rescan
   693   GenCollectedHeap* gch = GenCollectedHeap::heap();
   694   _young_gen = gch->prev_gen(_cmsGen);
   695   if (gch->supports_inline_contig_alloc()) {
   696     _top_addr = gch->top_addr();
   697     _end_addr = gch->end_addr();
   698     assert(_young_gen != NULL, "no _young_gen");
   699     _eden_chunk_index = 0;
   700     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   701     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity);
   702     if (_eden_chunk_array == NULL) {
   703       _eden_chunk_capacity = 0;
   704       warning("GC/CMS: _eden_chunk_array allocation failure");
   705     }
   706   }
   707   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   709   // Support for parallelizing survivor space rescan
   710   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   711     size_t max_plab_samples = MaxNewSize/((SurvivorRatio+2)*MinTLABSize);
   712     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads);
   713     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples);
   714     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads);
   715     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   716         || _cursor == NULL) {
   717       warning("Failed to allocate survivor plab/chunk array");
   718       if (_survivor_plab_array  != NULL) {
   719         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   720         _survivor_plab_array = NULL;
   721       }
   722       if (_survivor_chunk_array != NULL) {
   723         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   724         _survivor_chunk_array = NULL;
   725       }
   726       if (_cursor != NULL) {
   727         FREE_C_HEAP_ARRAY(size_t, _cursor);
   728         _cursor = NULL;
   729       }
   730     } else {
   731       _survivor_chunk_capacity = 2*max_plab_samples;
   732       for (uint i = 0; i < ParallelGCThreads; i++) {
   733         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples);
   734         if (vec == NULL) {
   735           warning("Failed to allocate survivor plab array");
   736           for (int j = i; j > 0; j--) {
   737             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array());
   738           }
   739           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array);
   740           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array);
   741           _survivor_plab_array = NULL;
   742           _survivor_chunk_array = NULL;
   743           _survivor_chunk_capacity = 0;
   744           break;
   745         } else {
   746           ChunkArray* cur =
   747             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   748                                                         max_plab_samples);
   749           assert(cur->end() == 0, "Should be 0");
   750           assert(cur->array() == vec, "Should be vec");
   751           assert(cur->capacity() == max_plab_samples, "Error");
   752         }
   753       }
   754     }
   755   }
   756   assert(   (   _survivor_plab_array  != NULL
   757              && _survivor_chunk_array != NULL)
   758          || (   _survivor_chunk_capacity == 0
   759              && _survivor_chunk_index == 0),
   760          "Error");
   762   // Choose what strong roots should be scanned depending on verification options
   763   // and perm gen collection mode.
   764   if (!CMSClassUnloadingEnabled) {
   765     // If class unloading is disabled we want to include all classes into the root set.
   766     add_root_scanning_option(SharedHeap::SO_AllClasses);
   767   } else {
   768     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   769   }
   771   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   772   _gc_counters = new CollectorCounters("CMS", 1);
   773   _completed_initialization = true;
   774   _sweep_timer.start();  // start of time
   775 }
   777 const char* ConcurrentMarkSweepGeneration::name() const {
   778   return "concurrent mark-sweep generation";
   779 }
   780 void ConcurrentMarkSweepGeneration::update_counters() {
   781   if (UsePerfData) {
   782     _space_counters->update_all();
   783     _gen_counters->update_all();
   784   }
   785 }
   787 // this is an optimized version of update_counters(). it takes the
   788 // used value as a parameter rather than computing it.
   789 //
   790 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   791   if (UsePerfData) {
   792     _space_counters->update_used(used);
   793     _space_counters->update_capacity();
   794     _gen_counters->update_all();
   795   }
   796 }
   798 void ConcurrentMarkSweepGeneration::print() const {
   799   Generation::print();
   800   cmsSpace()->print();
   801 }
   803 #ifndef PRODUCT
   804 void ConcurrentMarkSweepGeneration::print_statistics() {
   805   cmsSpace()->printFLCensus(0);
   806 }
   807 #endif
   809 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   810   GenCollectedHeap* gch = GenCollectedHeap::heap();
   811   if (PrintGCDetails) {
   812     if (Verbose) {
   813       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   814         level(), short_name(), s, used(), capacity());
   815     } else {
   816       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   817         level(), short_name(), s, used() / K, capacity() / K);
   818     }
   819   }
   820   if (Verbose) {
   821     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   822               gch->used(), gch->capacity());
   823   } else {
   824     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   825               gch->used() / K, gch->capacity() / K);
   826   }
   827 }
   829 size_t
   830 ConcurrentMarkSweepGeneration::contiguous_available() const {
   831   // dld proposes an improvement in precision here. If the committed
   832   // part of the space ends in a free block we should add that to
   833   // uncommitted size in the calculation below. Will make this
   834   // change later, staying with the approximation below for the
   835   // time being. -- ysr.
   836   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   837 }
   839 size_t
   840 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   841   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   842 }
   844 size_t ConcurrentMarkSweepGeneration::max_available() const {
   845   return free() + _virtual_space.uncommitted_size();
   846 }
   848 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(
   849     size_t max_promotion_in_bytes,
   850     bool younger_handles_promotion_failure) const {
   852   // This is the most conservative test.  Full promotion is
   853   // guaranteed if this is used. The multiplicative factor is to
   854   // account for the worst case "dilatation".
   855   double adjusted_max_promo_bytes = _dilatation_factor * max_promotion_in_bytes;
   856   if (adjusted_max_promo_bytes > (double)max_uintx) { // larger than size_t
   857     adjusted_max_promo_bytes = (double)max_uintx;
   858   }
   859   bool result = (max_contiguous_available() >= (size_t)adjusted_max_promo_bytes);
   861   if (younger_handles_promotion_failure && !result) {
   862     // Full promotion is not guaranteed because fragmentation
   863     // of the cms generation can prevent the full promotion.
   864     result = (max_available() >= (size_t)adjusted_max_promo_bytes);
   866     if (!result) {
   867       // With promotion failure handling the test for the ability
   868       // to support the promotion does not have to be guaranteed.
   869       // Use an average of the amount promoted.
   870       result = max_available() >= (size_t)
   871         gc_stats()->avg_promoted()->padded_average();
   872       if (PrintGC && Verbose && result) {
   873         gclog_or_tty->print_cr(
   874           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   875           " max_available: " SIZE_FORMAT
   876           " avg_promoted: " SIZE_FORMAT,
   877           max_available(), (size_t)
   878           gc_stats()->avg_promoted()->padded_average());
   879       }
   880     } else {
   881       if (PrintGC && Verbose) {
   882         gclog_or_tty->print_cr(
   883           "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   884           " max_available: " SIZE_FORMAT
   885           " adj_max_promo_bytes: " SIZE_FORMAT,
   886           max_available(), (size_t)adjusted_max_promo_bytes);
   887       }
   888     }
   889   } else {
   890     if (PrintGC && Verbose) {
   891       gclog_or_tty->print_cr(
   892         "\nConcurrentMarkSweepGeneration::promotion_attempt_is_safe"
   893         " contiguous_available: " SIZE_FORMAT
   894         " adj_max_promo_bytes: " SIZE_FORMAT,
   895         max_contiguous_available(), (size_t)adjusted_max_promo_bytes);
   896     }
   897   }
   898   return result;
   899 }
   901 CompactibleSpace*
   902 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   903   return _cmsSpace;
   904 }
   906 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   907   // Clear the promotion information.  These pointers can be adjusted
   908   // along with all the other pointers into the heap but
   909   // compaction is expected to be a rare event with
   910   // a heap using cms so don't do it without seeing the need.
   911   if (ParallelGCThreads > 0) {
   912     for (uint i = 0; i < ParallelGCThreads; i++) {
   913       _par_gc_thread_states[i]->promo.reset();
   914     }
   915   }
   916 }
   918 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   919   blk->do_space(_cmsSpace);
   920 }
   922 void ConcurrentMarkSweepGeneration::compute_new_size() {
   923   assert_locked_or_safepoint(Heap_lock);
   925   // If incremental collection failed, we just want to expand
   926   // to the limit.
   927   if (incremental_collection_failed()) {
   928     clear_incremental_collection_failed();
   929     grow_to_reserved();
   930     return;
   931   }
   933   size_t expand_bytes = 0;
   934   double free_percentage = ((double) free()) / capacity();
   935   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   936   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   938   // compute expansion delta needed for reaching desired free percentage
   939   if (free_percentage < desired_free_percentage) {
   940     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   941     assert(desired_capacity >= capacity(), "invalid expansion size");
   942     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   943   }
   944   if (expand_bytes > 0) {
   945     if (PrintGCDetails && Verbose) {
   946       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   947       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   948       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   949       gclog_or_tty->print_cr("  Desired free fraction %f",
   950         desired_free_percentage);
   951       gclog_or_tty->print_cr("  Maximum free fraction %f",
   952         maximum_free_percentage);
   953       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   954       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   955         desired_capacity/1000);
   956       int prev_level = level() - 1;
   957       if (prev_level >= 0) {
   958         size_t prev_size = 0;
   959         GenCollectedHeap* gch = GenCollectedHeap::heap();
   960         Generation* prev_gen = gch->_gens[prev_level];
   961         prev_size = prev_gen->capacity();
   962           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   963                                  prev_size/1000);
   964       }
   965       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   966         unsafe_max_alloc_nogc()/1000);
   967       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   968         contiguous_available()/1000);
   969       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   970         expand_bytes);
   971     }
   972     // safe if expansion fails
   973     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   974     if (PrintGCDetails && Verbose) {
   975       gclog_or_tty->print_cr("  Expanded free fraction %f",
   976         ((double) free()) / capacity());
   977     }
   978   }
   979 }
   981 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   982   return cmsSpace()->freelistLock();
   983 }
   985 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   986                                                   bool   tlab) {
   987   CMSSynchronousYieldRequest yr;
   988   MutexLockerEx x(freelistLock(),
   989                   Mutex::_no_safepoint_check_flag);
   990   return have_lock_and_allocate(size, tlab);
   991 }
   993 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   994                                                   bool   tlab) {
   995   assert_lock_strong(freelistLock());
   996   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   997   HeapWord* res = cmsSpace()->allocate(adjustedSize);
   998   // Allocate the object live (grey) if the background collector has
   999   // started marking. This is necessary because the marker may
  1000   // have passed this address and consequently this object will
  1001   // not otherwise be greyed and would be incorrectly swept up.
  1002   // Note that if this object contains references, the writing
  1003   // of those references will dirty the card containing this object
  1004   // allowing the object to be blackened (and its references scanned)
  1005   // either during a preclean phase or at the final checkpoint.
  1006   if (res != NULL) {
  1007     collector()->direct_allocated(res, adjustedSize);
  1008     _direct_allocated_words += adjustedSize;
  1009     // allocation counters
  1010     NOT_PRODUCT(
  1011       _numObjectsAllocated++;
  1012       _numWordsAllocated += (int)adjustedSize;
  1015   return res;
  1018 // In the case of direct allocation by mutators in a generation that
  1019 // is being concurrently collected, the object must be allocated
  1020 // live (grey) if the background collector has started marking.
  1021 // This is necessary because the marker may
  1022 // have passed this address and consequently this object will
  1023 // not otherwise be greyed and would be incorrectly swept up.
  1024 // Note that if this object contains references, the writing
  1025 // of those references will dirty the card containing this object
  1026 // allowing the object to be blackened (and its references scanned)
  1027 // either during a preclean phase or at the final checkpoint.
  1028 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1029   assert(_markBitMap.covers(start, size), "Out of bounds");
  1030   if (_collectorState >= Marking) {
  1031     MutexLockerEx y(_markBitMap.lock(),
  1032                     Mutex::_no_safepoint_check_flag);
  1033     // [see comments preceding SweepClosure::do_blk() below for details]
  1034     // 1. need to mark the object as live so it isn't collected
  1035     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1036     // 3. need to mark the end of the object so sweeper can skip over it
  1037     //    if it's uninitialized when the sweeper reaches it.
  1038     _markBitMap.mark(start);          // object is live
  1039     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1040     _markBitMap.mark(start + size - 1);
  1041                                       // mark end of object
  1043   // check that oop looks uninitialized
  1044   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1047 void CMSCollector::promoted(bool par, HeapWord* start,
  1048                             bool is_obj_array, size_t obj_size) {
  1049   assert(_markBitMap.covers(start), "Out of bounds");
  1050   // See comment in direct_allocated() about when objects should
  1051   // be allocated live.
  1052   if (_collectorState >= Marking) {
  1053     // we already hold the marking bit map lock, taken in
  1054     // the prologue
  1055     if (par) {
  1056       _markBitMap.par_mark(start);
  1057     } else {
  1058       _markBitMap.mark(start);
  1060     // We don't need to mark the object as uninitialized (as
  1061     // in direct_allocated above) because this is being done with the
  1062     // world stopped and the object will be initialized by the
  1063     // time the sweeper gets to look at it.
  1064     assert(SafepointSynchronize::is_at_safepoint(),
  1065            "expect promotion only at safepoints");
  1067     if (_collectorState < Sweeping) {
  1068       // Mark the appropriate cards in the modUnionTable, so that
  1069       // this object gets scanned before the sweep. If this is
  1070       // not done, CMS generation references in the object might
  1071       // not get marked.
  1072       // For the case of arrays, which are otherwise precisely
  1073       // marked, we need to dirty the entire array, not just its head.
  1074       if (is_obj_array) {
  1075         // The [par_]mark_range() method expects mr.end() below to
  1076         // be aligned to the granularity of a bit's representation
  1077         // in the heap. In the case of the MUT below, that's a
  1078         // card size.
  1079         MemRegion mr(start,
  1080                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1081                         CardTableModRefBS::card_size /* bytes */));
  1082         if (par) {
  1083           _modUnionTable.par_mark_range(mr);
  1084         } else {
  1085           _modUnionTable.mark_range(mr);
  1087       } else {  // not an obj array; we can just mark the head
  1088         if (par) {
  1089           _modUnionTable.par_mark(start);
  1090         } else {
  1091           _modUnionTable.mark(start);
  1098 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1100   size_t delta = pointer_delta(addr, space->bottom());
  1101   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1104 void CMSCollector::icms_update_allocation_limits()
  1106   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1107   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1109   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1110   if (CMSTraceIncrementalPacing) {
  1111     stats().print();
  1114   assert(duty_cycle <= 100, "invalid duty cycle");
  1115   if (duty_cycle != 0) {
  1116     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1117     // then compute the offset from the endpoints of the space.
  1118     size_t free_words = eden->free() / HeapWordSize;
  1119     double free_words_dbl = (double)free_words;
  1120     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1121     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1123     _icms_start_limit = eden->top() + offset_words;
  1124     _icms_stop_limit = eden->end() - offset_words;
  1126     // The limits may be adjusted (shifted to the right) by
  1127     // CMSIncrementalOffset, to allow the application more mutator time after a
  1128     // young gen gc (when all mutators were stopped) and before CMS starts and
  1129     // takes away one or more cpus.
  1130     if (CMSIncrementalOffset != 0) {
  1131       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1132       size_t adjustment = (size_t)adjustment_dbl;
  1133       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1134       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1135         _icms_start_limit += adjustment;
  1136         _icms_stop_limit = tmp_stop;
  1140   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1141     _icms_start_limit = _icms_stop_limit = eden->end();
  1144   // Install the new start limit.
  1145   eden->set_soft_end(_icms_start_limit);
  1147   if (CMSTraceIncrementalMode) {
  1148     gclog_or_tty->print(" icms alloc limits:  "
  1149                            PTR_FORMAT "," PTR_FORMAT
  1150                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1151                            _icms_start_limit, _icms_stop_limit,
  1152                            percent_of_space(eden, _icms_start_limit),
  1153                            percent_of_space(eden, _icms_stop_limit));
  1154     if (Verbose) {
  1155       gclog_or_tty->print("eden:  ");
  1156       eden->print_on(gclog_or_tty);
  1161 // Any changes here should try to maintain the invariant
  1162 // that if this method is called with _icms_start_limit
  1163 // and _icms_stop_limit both NULL, then it should return NULL
  1164 // and not notify the icms thread.
  1165 HeapWord*
  1166 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1167                                        size_t word_size)
  1169   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1170   // nop.
  1171   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1172     if (top <= _icms_start_limit) {
  1173       if (CMSTraceIncrementalMode) {
  1174         space->print_on(gclog_or_tty);
  1175         gclog_or_tty->stamp();
  1176         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1177                                ", new limit=" PTR_FORMAT
  1178                                " (" SIZE_FORMAT "%%)",
  1179                                top, _icms_stop_limit,
  1180                                percent_of_space(space, _icms_stop_limit));
  1182       ConcurrentMarkSweepThread::start_icms();
  1183       assert(top < _icms_stop_limit, "Tautology");
  1184       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1185         return _icms_stop_limit;
  1188       // The allocation will cross both the _start and _stop limits, so do the
  1189       // stop notification also and return end().
  1190       if (CMSTraceIncrementalMode) {
  1191         space->print_on(gclog_or_tty);
  1192         gclog_or_tty->stamp();
  1193         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1194                                ", new limit=" PTR_FORMAT
  1195                                " (" SIZE_FORMAT "%%)",
  1196                                top, space->end(),
  1197                                percent_of_space(space, space->end()));
  1199       ConcurrentMarkSweepThread::stop_icms();
  1200       return space->end();
  1203     if (top <= _icms_stop_limit) {
  1204       if (CMSTraceIncrementalMode) {
  1205         space->print_on(gclog_or_tty);
  1206         gclog_or_tty->stamp();
  1207         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1208                                ", new limit=" PTR_FORMAT
  1209                                " (" SIZE_FORMAT "%%)",
  1210                                top, space->end(),
  1211                                percent_of_space(space, space->end()));
  1213       ConcurrentMarkSweepThread::stop_icms();
  1214       return space->end();
  1217     if (CMSTraceIncrementalMode) {
  1218       space->print_on(gclog_or_tty);
  1219       gclog_or_tty->stamp();
  1220       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1221                              ", new limit=" PTR_FORMAT,
  1222                              top, NULL);
  1226   return NULL;
  1229 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1230   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1231   // allocate, copy and if necessary update promoinfo --
  1232   // delegate to underlying space.
  1233   assert_lock_strong(freelistLock());
  1235 #ifndef PRODUCT
  1236   if (Universe::heap()->promotion_should_fail()) {
  1237     return NULL;
  1239 #endif  // #ifndef PRODUCT
  1241   oop res = _cmsSpace->promote(obj, obj_size);
  1242   if (res == NULL) {
  1243     // expand and retry
  1244     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1245     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1246       CMSExpansionCause::_satisfy_promotion);
  1247     // Since there's currently no next generation, we don't try to promote
  1248     // into a more senior generation.
  1249     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1250                                "is made to pass on a possibly failing "
  1251                                "promotion to next generation");
  1252     res = _cmsSpace->promote(obj, obj_size);
  1254   if (res != NULL) {
  1255     // See comment in allocate() about when objects should
  1256     // be allocated live.
  1257     assert(obj->is_oop(), "Will dereference klass pointer below");
  1258     collector()->promoted(false,           // Not parallel
  1259                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1260     // promotion counters
  1261     NOT_PRODUCT(
  1262       _numObjectsPromoted++;
  1263       _numWordsPromoted +=
  1264         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1267   return res;
  1271 HeapWord*
  1272 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1273                                              HeapWord* top,
  1274                                              size_t word_sz)
  1276   return collector()->allocation_limit_reached(space, top, word_sz);
  1279 // Things to support parallel young-gen collection.
  1280 oop
  1281 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1282                                            oop old, markOop m,
  1283                                            size_t word_sz) {
  1284 #ifndef PRODUCT
  1285   if (Universe::heap()->promotion_should_fail()) {
  1286     return NULL;
  1288 #endif  // #ifndef PRODUCT
  1290   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1291   PromotionInfo* promoInfo = &ps->promo;
  1292   // if we are tracking promotions, then first ensure space for
  1293   // promotion (including spooling space for saving header if necessary).
  1294   // then allocate and copy, then track promoted info if needed.
  1295   // When tracking (see PromotionInfo::track()), the mark word may
  1296   // be displaced and in this case restoration of the mark word
  1297   // occurs in the (oop_since_save_marks_)iterate phase.
  1298   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1299     // Out of space for allocating spooling buffers;
  1300     // try expanding and allocating spooling buffers.
  1301     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1302       return NULL;
  1305   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1306   HeapWord* obj_ptr = ps->lab.alloc(word_sz);
  1307   if (obj_ptr == NULL) {
  1308      obj_ptr = expand_and_par_lab_allocate(ps, word_sz);
  1309      if (obj_ptr == NULL) {
  1310        return NULL;
  1313   oop obj = oop(obj_ptr);
  1314   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1315   // Otherwise, copy the object.  Here we must be careful to insert the
  1316   // klass pointer last, since this marks the block as an allocated object.
  1317   // Except with compressed oops it's the mark word.
  1318   HeapWord* old_ptr = (HeapWord*)old;
  1319   if (word_sz > (size_t)oopDesc::header_size()) {
  1320     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1321                                  obj_ptr + oopDesc::header_size(),
  1322                                  word_sz - oopDesc::header_size());
  1325   if (UseCompressedOops) {
  1326     // Copy gap missed by (aligned) header size calculation above
  1327     obj->set_klass_gap(old->klass_gap());
  1330   // Restore the mark word copied above.
  1331   obj->set_mark(m);
  1333   // Now we can track the promoted object, if necessary.  We take care
  1334   // To delay the transition from uninitialized to full object
  1335   // (i.e., insertion of klass pointer) until after, so that it
  1336   // atomically becomes a promoted object.
  1337   if (promoInfo->tracking()) {
  1338     promoInfo->track((PromotedObject*)obj, old->klass());
  1341   // Finally, install the klass pointer (this should be volatile).
  1342   obj->set_klass(old->klass());
  1344   assert(old->is_oop(), "Will dereference klass ptr below");
  1345   collector()->promoted(true,          // parallel
  1346                         obj_ptr, old->is_objArray(), word_sz);
  1348   NOT_PRODUCT(
  1349     Atomic::inc(&_numObjectsPromoted);
  1350     Atomic::add((jint)CompactibleFreeListSpace::adjustObjectSize(obj->size()),
  1351                 &_numWordsPromoted);
  1354   return obj;
  1357 void
  1358 ConcurrentMarkSweepGeneration::
  1359 par_promote_alloc_undo(int thread_num,
  1360                        HeapWord* obj, size_t word_sz) {
  1361   // CMS does not support promotion undo.
  1362   ShouldNotReachHere();
  1365 void
  1366 ConcurrentMarkSweepGeneration::
  1367 par_promote_alloc_done(int thread_num) {
  1368   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1369   ps->lab.retire();
  1370 #if CFLS_LAB_REFILL_STATS
  1371   if (thread_num == 0) {
  1372     _cmsSpace->print_par_alloc_stats();
  1374 #endif
  1377 void
  1378 ConcurrentMarkSweepGeneration::
  1379 par_oop_since_save_marks_iterate_done(int thread_num) {
  1380   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1381   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1382   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1385 // XXXPERM
  1386 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1387                                                    size_t size,
  1388                                                    bool   tlab)
  1390   // We allow a STW collection only if a full
  1391   // collection was requested.
  1392   return full || should_allocate(size, tlab); // FIX ME !!!
  1393   // This and promotion failure handling are connected at the
  1394   // hip and should be fixed by untying them.
  1397 bool CMSCollector::shouldConcurrentCollect() {
  1398   if (_full_gc_requested) {
  1399     assert(ExplicitGCInvokesConcurrent, "Unexpected state");
  1400     if (Verbose && PrintGCDetails) {
  1401       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1402                              " gc request");
  1404     return true;
  1407   // For debugging purposes, change the type of collection.
  1408   // If the rotation is not on the concurrent collection
  1409   // type, don't start a concurrent collection.
  1410   NOT_PRODUCT(
  1411     if (RotateCMSCollectionTypes &&
  1412         (_cmsGen->debug_collection_type() !=
  1413           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1414       assert(_cmsGen->debug_collection_type() !=
  1415         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1416         "Bad cms collection type");
  1417       return false;
  1421   FreelistLocker x(this);
  1422   // ------------------------------------------------------------------
  1423   // Print out lots of information which affects the initiation of
  1424   // a collection.
  1425   if (PrintCMSInitiationStatistics && stats().valid()) {
  1426     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1427     gclog_or_tty->stamp();
  1428     gclog_or_tty->print_cr("");
  1429     stats().print_on(gclog_or_tty);
  1430     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1431       stats().time_until_cms_gen_full());
  1432     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1433     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1434                            _cmsGen->contiguous_available());
  1435     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1436     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1437     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1438     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1439     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
  1441   // ------------------------------------------------------------------
  1443   // If the estimated time to complete a cms collection (cms_duration())
  1444   // is less than the estimated time remaining until the cms generation
  1445   // is full, start a collection.
  1446   if (!UseCMSInitiatingOccupancyOnly) {
  1447     if (stats().valid()) {
  1448       if (stats().time_until_cms_start() == 0.0) {
  1449         return true;
  1451     } else {
  1452       // We want to conservatively collect somewhat early in order
  1453       // to try and "bootstrap" our CMS/promotion statistics;
  1454       // this branch will not fire after the first successful CMS
  1455       // collection because the stats should then be valid.
  1456       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1457         if (Verbose && PrintGCDetails) {
  1458           gclog_or_tty->print_cr(
  1459             " CMSCollector: collect for bootstrapping statistics:"
  1460             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1461             _bootstrap_occupancy);
  1463         return true;
  1468   // Otherwise, we start a collection cycle if either the perm gen or
  1469   // old gen want a collection cycle started. Each may use
  1470   // an appropriate criterion for making this decision.
  1471   // XXX We need to make sure that the gen expansion
  1472   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1473   if (_cmsGen->should_concurrent_collect()) {
  1474     if (Verbose && PrintGCDetails) {
  1475       gclog_or_tty->print_cr("CMS old gen initiated");
  1477     return true;
  1480   // We start a collection if we believe an incremental collection may fail;
  1481   // this is not likely to be productive in practice because it's probably too
  1482   // late anyway.
  1483   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1484   assert(gch->collector_policy()->is_two_generation_policy(),
  1485          "You may want to check the correctness of the following");
  1486   if (gch->incremental_collection_will_fail()) {
  1487     if (PrintGCDetails && Verbose) {
  1488       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1490     return true;
  1493   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
  1494     bool res = update_should_unload_classes();
  1495     if (res) {
  1496       if (Verbose && PrintGCDetails) {
  1497         gclog_or_tty->print_cr("CMS perm gen initiated");
  1499       return true;
  1502   return false;
  1505 // Clear _expansion_cause fields of constituent generations
  1506 void CMSCollector::clear_expansion_cause() {
  1507   _cmsGen->clear_expansion_cause();
  1508   _permGen->clear_expansion_cause();
  1511 // We should be conservative in starting a collection cycle.  To
  1512 // start too eagerly runs the risk of collecting too often in the
  1513 // extreme.  To collect too rarely falls back on full collections,
  1514 // which works, even if not optimum in terms of concurrent work.
  1515 // As a work around for too eagerly collecting, use the flag
  1516 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1517 // giving the user an easily understandable way of controlling the
  1518 // collections.
  1519 // We want to start a new collection cycle if any of the following
  1520 // conditions hold:
  1521 // . our current occupancy exceeds the configured initiating occupancy
  1522 //   for this generation, or
  1523 // . we recently needed to expand this space and have not, since that
  1524 //   expansion, done a collection of this generation, or
  1525 // . the underlying space believes that it may be a good idea to initiate
  1526 //   a concurrent collection (this may be based on criteria such as the
  1527 //   following: the space uses linear allocation and linear allocation is
  1528 //   going to fail, or there is believed to be excessive fragmentation in
  1529 //   the generation, etc... or ...
  1530 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1531 //   the case of the old generation, not the perm generation; see CR 6543076):
  1532 //   we may be approaching a point at which allocation requests may fail because
  1533 //   we will be out of sufficient free space given allocation rate estimates.]
  1534 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1536   assert_lock_strong(freelistLock());
  1537   if (occupancy() > initiating_occupancy()) {
  1538     if (PrintGCDetails && Verbose) {
  1539       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1540         short_name(), occupancy(), initiating_occupancy());
  1542     return true;
  1544   if (UseCMSInitiatingOccupancyOnly) {
  1545     return false;
  1547   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1548     if (PrintGCDetails && Verbose) {
  1549       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1550         short_name());
  1552     return true;
  1554   if (_cmsSpace->should_concurrent_collect()) {
  1555     if (PrintGCDetails && Verbose) {
  1556       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1557         short_name());
  1559     return true;
  1561   return false;
  1564 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1565                                             bool   clear_all_soft_refs,
  1566                                             size_t size,
  1567                                             bool   tlab)
  1569   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1572 void CMSCollector::collect(bool   full,
  1573                            bool   clear_all_soft_refs,
  1574                            size_t size,
  1575                            bool   tlab)
  1577   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1578     // For debugging purposes skip the collection if the state
  1579     // is not currently idle
  1580     if (TraceCMSState) {
  1581       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1582         Thread::current(), full, _collectorState);
  1584     return;
  1587   // The following "if" branch is present for defensive reasons.
  1588   // In the current uses of this interface, it can be replaced with:
  1589   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1590   // But I am not placing that assert here to allow future
  1591   // generality in invoking this interface.
  1592   if (GC_locker::is_active()) {
  1593     // A consistency test for GC_locker
  1594     assert(GC_locker::needs_gc(), "Should have been set already");
  1595     // Skip this foreground collection, instead
  1596     // expanding the heap if necessary.
  1597     // Need the free list locks for the call to free() in compute_new_size()
  1598     compute_new_size();
  1599     return;
  1601   acquire_control_and_collect(full, clear_all_soft_refs);
  1602   _full_gcs_since_conc_gc++;
  1606 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1607   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1608   unsigned int gc_count = gch->total_full_collections();
  1609   if (gc_count == full_gc_count) {
  1610     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1611     _full_gc_requested = true;
  1612     CGC_lock->notify();   // nudge CMS thread
  1617 // The foreground and background collectors need to coordinate in order
  1618 // to make sure that they do not mutually interfere with CMS collections.
  1619 // When a background collection is active,
  1620 // the foreground collector may need to take over (preempt) and
  1621 // synchronously complete an ongoing collection. Depending on the
  1622 // frequency of the background collections and the heap usage
  1623 // of the application, this preemption can be seldom or frequent.
  1624 // There are only certain
  1625 // points in the background collection that the "collection-baton"
  1626 // can be passed to the foreground collector.
  1627 //
  1628 // The foreground collector will wait for the baton before
  1629 // starting any part of the collection.  The foreground collector
  1630 // will only wait at one location.
  1631 //
  1632 // The background collector will yield the baton before starting a new
  1633 // phase of the collection (e.g., before initial marking, marking from roots,
  1634 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1635 // of the loop which switches the phases. The background collector does some
  1636 // of the phases (initial mark, final re-mark) with the world stopped.
  1637 // Because of locking involved in stopping the world,
  1638 // the foreground collector should not block waiting for the background
  1639 // collector when it is doing a stop-the-world phase.  The background
  1640 // collector will yield the baton at an additional point just before
  1641 // it enters a stop-the-world phase.  Once the world is stopped, the
  1642 // background collector checks the phase of the collection.  If the
  1643 // phase has not changed, it proceeds with the collection.  If the
  1644 // phase has changed, it skips that phase of the collection.  See
  1645 // the comments on the use of the Heap_lock in collect_in_background().
  1646 //
  1647 // Variable used in baton passing.
  1648 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1649 //      it wants the baton.  The foreground clears it when it has finished
  1650 //      the collection.
  1651 //   _foregroundGCShouldWait - Set to true by the background collector
  1652 //        when it is running.  The foreground collector waits while
  1653 //      _foregroundGCShouldWait is true.
  1654 //  CGC_lock - monitor used to protect access to the above variables
  1655 //      and to notify the foreground and background collectors.
  1656 //  _collectorState - current state of the CMS collection.
  1657 //
  1658 // The foreground collector
  1659 //   acquires the CGC_lock
  1660 //   sets _foregroundGCIsActive
  1661 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1662 //     various locks acquired in preparation for the collection
  1663 //     are released so as not to block the background collector
  1664 //     that is in the midst of a collection
  1665 //   proceeds with the collection
  1666 //   clears _foregroundGCIsActive
  1667 //   returns
  1668 //
  1669 // The background collector in a loop iterating on the phases of the
  1670 //      collection
  1671 //   acquires the CGC_lock
  1672 //   sets _foregroundGCShouldWait
  1673 //   if _foregroundGCIsActive is set
  1674 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1675 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1676 //     and exits the loop.
  1677 //   otherwise
  1678 //     proceed with that phase of the collection
  1679 //     if the phase is a stop-the-world phase,
  1680 //       yield the baton once more just before enqueueing
  1681 //       the stop-world CMS operation (executed by the VM thread).
  1682 //   returns after all phases of the collection are done
  1683 //
  1685 void CMSCollector::acquire_control_and_collect(bool full,
  1686         bool clear_all_soft_refs) {
  1687   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1688   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1689          "shouldn't try to acquire control from self!");
  1691   // Start the protocol for acquiring control of the
  1692   // collection from the background collector (aka CMS thread).
  1693   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1694          "VM thread should have CMS token");
  1695   // Remember the possibly interrupted state of an ongoing
  1696   // concurrent collection
  1697   CollectorState first_state = _collectorState;
  1699   // Signal to a possibly ongoing concurrent collection that
  1700   // we want to do a foreground collection.
  1701   _foregroundGCIsActive = true;
  1703   // Disable incremental mode during a foreground collection.
  1704   ICMSDisabler icms_disabler;
  1706   // release locks and wait for a notify from the background collector
  1707   // releasing the locks in only necessary for phases which
  1708   // do yields to improve the granularity of the collection.
  1709   assert_lock_strong(bitMapLock());
  1710   // We need to lock the Free list lock for the space that we are
  1711   // currently collecting.
  1712   assert(haveFreelistLocks(), "Must be holding free list locks");
  1713   bitMapLock()->unlock();
  1714   releaseFreelistLocks();
  1716     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1717     if (_foregroundGCShouldWait) {
  1718       // We are going to be waiting for action for the CMS thread;
  1719       // it had better not be gone (for instance at shutdown)!
  1720       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1721              "CMS thread must be running");
  1722       // Wait here until the background collector gives us the go-ahead
  1723       ConcurrentMarkSweepThread::clear_CMS_flag(
  1724         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1725       // Get a possibly blocked CMS thread going:
  1726       //   Note that we set _foregroundGCIsActive true above,
  1727       //   without protection of the CGC_lock.
  1728       CGC_lock->notify();
  1729       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1730              "Possible deadlock");
  1731       while (_foregroundGCShouldWait) {
  1732         // wait for notification
  1733         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1734         // Possibility of delay/starvation here, since CMS token does
  1735         // not know to give priority to VM thread? Actually, i think
  1736         // there wouldn't be any delay/starvation, but the proof of
  1737         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1739       ConcurrentMarkSweepThread::set_CMS_flag(
  1740         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1743   // The CMS_token is already held.  Get back the other locks.
  1744   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1745          "VM thread should have CMS token");
  1746   getFreelistLocks();
  1747   bitMapLock()->lock_without_safepoint_check();
  1748   if (TraceCMSState) {
  1749     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1750       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1751     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1754   // Check if we need to do a compaction, or if not, whether
  1755   // we need to start the mark-sweep from scratch.
  1756   bool should_compact    = false;
  1757   bool should_start_over = false;
  1758   decide_foreground_collection_type(clear_all_soft_refs,
  1759     &should_compact, &should_start_over);
  1761 NOT_PRODUCT(
  1762   if (RotateCMSCollectionTypes) {
  1763     if (_cmsGen->debug_collection_type() ==
  1764         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1765       should_compact = true;
  1766     } else if (_cmsGen->debug_collection_type() ==
  1767                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1768       should_compact = false;
  1773   if (PrintGCDetails && first_state > Idling) {
  1774     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1775     if (GCCause::is_user_requested_gc(cause) ||
  1776         GCCause::is_serviceability_requested_gc(cause)) {
  1777       gclog_or_tty->print(" (concurrent mode interrupted)");
  1778     } else {
  1779       gclog_or_tty->print(" (concurrent mode failure)");
  1783   if (should_compact) {
  1784     // If the collection is being acquired from the background
  1785     // collector, there may be references on the discovered
  1786     // references lists that have NULL referents (being those
  1787     // that were concurrently cleared by a mutator) or
  1788     // that are no longer active (having been enqueued concurrently
  1789     // by the mutator).
  1790     // Scrub the list of those references because Mark-Sweep-Compact
  1791     // code assumes referents are not NULL and that all discovered
  1792     // Reference objects are active.
  1793     ref_processor()->clean_up_discovered_references();
  1795     do_compaction_work(clear_all_soft_refs);
  1797     // Has the GC time limit been exceeded?
  1798     check_gc_time_limit();
  1800   } else {
  1801     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1802       should_start_over);
  1804   // Reset the expansion cause, now that we just completed
  1805   // a collection cycle.
  1806   clear_expansion_cause();
  1807   _foregroundGCIsActive = false;
  1808   return;
  1811 void CMSCollector::check_gc_time_limit() {
  1813   // Ignore explicit GC's.  Exiting here does not set the flag and
  1814   // does not reset the count.  Updating of the averages for system
  1815   // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  1816   GCCause::Cause gc_cause = GenCollectedHeap::heap()->gc_cause();
  1817   if (GCCause::is_user_requested_gc(gc_cause) ||
  1818       GCCause::is_serviceability_requested_gc(gc_cause)) {
  1819     return;
  1822   // Calculate the fraction of the CMS generation was freed during
  1823   // the last collection.
  1824   // Only consider the STW compacting cost for now.
  1825   //
  1826   // Note that the gc time limit test only works for the collections
  1827   // of the young gen + tenured gen and not for collections of the
  1828   // permanent gen.  That is because the calculation of the space
  1829   // freed by the collection is the free space in the young gen +
  1830   // tenured gen.
  1832   double fraction_free =
  1833     ((double)_cmsGen->free())/((double)_cmsGen->max_capacity());
  1834   if ((100.0 * size_policy()->compacting_gc_cost()) >
  1835          ((double) GCTimeLimit) &&
  1836         ((fraction_free * 100) < GCHeapFreeLimit)) {
  1837     size_policy()->inc_gc_time_limit_count();
  1838     if (UseGCOverheadLimit &&
  1839         (size_policy()->gc_time_limit_count() >
  1840          AdaptiveSizePolicyGCTimeLimitThreshold)) {
  1841       size_policy()->set_gc_time_limit_exceeded(true);
  1842       // Avoid consecutive OOM due to the gc time limit by resetting
  1843       // the counter.
  1844       size_policy()->reset_gc_time_limit_count();
  1845       if (PrintGCDetails) {
  1846         gclog_or_tty->print_cr("      GC is exceeding overhead limit "
  1847           "of %d%%", GCTimeLimit);
  1849     } else {
  1850       if (PrintGCDetails) {
  1851         gclog_or_tty->print_cr("      GC would exceed overhead limit "
  1852           "of %d%%", GCTimeLimit);
  1855   } else {
  1856     size_policy()->reset_gc_time_limit_count();
  1860 // Resize the perm generation and the tenured generation
  1861 // after obtaining the free list locks for the
  1862 // two generations.
  1863 void CMSCollector::compute_new_size() {
  1864   assert_locked_or_safepoint(Heap_lock);
  1865   FreelistLocker z(this);
  1866   _permGen->compute_new_size();
  1867   _cmsGen->compute_new_size();
  1870 // A work method used by foreground collection to determine
  1871 // what type of collection (compacting or not, continuing or fresh)
  1872 // it should do.
  1873 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1874 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1875 // and do away with the flags after a suitable period.
  1876 void CMSCollector::decide_foreground_collection_type(
  1877   bool clear_all_soft_refs, bool* should_compact,
  1878   bool* should_start_over) {
  1879   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1880   // flag is set, and we have either requested a System.gc() or
  1881   // the number of full gc's since the last concurrent cycle
  1882   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1883   // or if an incremental collection has failed
  1884   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1885   assert(gch->collector_policy()->is_two_generation_policy(),
  1886          "You may want to check the correctness of the following");
  1887   // Inform cms gen if this was due to partial collection failing.
  1888   // The CMS gen may use this fact to determine its expansion policy.
  1889   if (gch->incremental_collection_will_fail()) {
  1890     assert(!_cmsGen->incremental_collection_failed(),
  1891            "Should have been noticed, reacted to and cleared");
  1892     _cmsGen->set_incremental_collection_failed();
  1894   *should_compact =
  1895     UseCMSCompactAtFullCollection &&
  1896     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1897      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1898      gch->incremental_collection_will_fail());
  1899   *should_start_over = false;
  1900   if (clear_all_soft_refs && !*should_compact) {
  1901     // We are about to do a last ditch collection attempt
  1902     // so it would normally make sense to do a compaction
  1903     // to reclaim as much space as possible.
  1904     if (CMSCompactWhenClearAllSoftRefs) {
  1905       // Default: The rationale is that in this case either
  1906       // we are past the final marking phase, in which case
  1907       // we'd have to start over, or so little has been done
  1908       // that there's little point in saving that work. Compaction
  1909       // appears to be the sensible choice in either case.
  1910       *should_compact = true;
  1911     } else {
  1912       // We have been asked to clear all soft refs, but not to
  1913       // compact. Make sure that we aren't past the final checkpoint
  1914       // phase, for that is where we process soft refs. If we are already
  1915       // past that phase, we'll need to redo the refs discovery phase and
  1916       // if necessary clear soft refs that weren't previously
  1917       // cleared. We do so by remembering the phase in which
  1918       // we came in, and if we are past the refs processing
  1919       // phase, we'll choose to just redo the mark-sweep
  1920       // collection from scratch.
  1921       if (_collectorState > FinalMarking) {
  1922         // We are past the refs processing phase;
  1923         // start over and do a fresh synchronous CMS cycle
  1924         _collectorState = Resetting; // skip to reset to start new cycle
  1925         reset(false /* == !asynch */);
  1926         *should_start_over = true;
  1927       } // else we can continue a possibly ongoing current cycle
  1932 // A work method used by the foreground collector to do
  1933 // a mark-sweep-compact.
  1934 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1935   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1936   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1937   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1938     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1939       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1942   // Sample collection interval time and reset for collection pause.
  1943   if (UseAdaptiveSizePolicy) {
  1944     size_policy()->msc_collection_begin();
  1947   // Temporarily widen the span of the weak reference processing to
  1948   // the entire heap.
  1949   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1950   ReferenceProcessorSpanMutator x(ref_processor(), new_span);
  1952   // Temporarily, clear the "is_alive_non_header" field of the
  1953   // reference processor.
  1954   ReferenceProcessorIsAliveMutator y(ref_processor(), NULL);
  1956   // Temporarily make reference _processing_ single threaded (non-MT).
  1957   ReferenceProcessorMTProcMutator z(ref_processor(), false);
  1959   // Temporarily make refs discovery atomic
  1960   ReferenceProcessorAtomicMutator w(ref_processor(), true);
  1962   ref_processor()->set_enqueuing_is_done(false);
  1963   ref_processor()->enable_discovery();
  1964   ref_processor()->setup_policy(clear_all_soft_refs);
  1965   // If an asynchronous collection finishes, the _modUnionTable is
  1966   // all clear.  If we are assuming the collection from an asynchronous
  1967   // collection, clear the _modUnionTable.
  1968   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1969     "_modUnionTable should be clear if the baton was not passed");
  1970   _modUnionTable.clear_all();
  1972   // We must adjust the allocation statistics being maintained
  1973   // in the free list space. We do so by reading and clearing
  1974   // the sweep timer and updating the block flux rate estimates below.
  1975   assert(_sweep_timer.is_active(), "We should never see the timer inactive");
  1976   _sweep_timer.stop();
  1977   // Note that we do not use this sample to update the _sweep_estimate.
  1978   _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  1979                                           _sweep_estimate.padded_average());
  1981   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1982     ref_processor(), clear_all_soft_refs);
  1983   #ifdef ASSERT
  1984     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1985     size_t free_size = cms_space->free();
  1986     assert(free_size ==
  1987            pointer_delta(cms_space->end(), cms_space->compaction_top())
  1988            * HeapWordSize,
  1989       "All the free space should be compacted into one chunk at top");
  1990     assert(cms_space->dictionary()->totalChunkSize(
  1991                                       debug_only(cms_space->freelistLock())) == 0 ||
  1992            cms_space->totalSizeInIndexedFreeLists() == 0,
  1993       "All the free space should be in a single chunk");
  1994     size_t num = cms_space->totalCount();
  1995     assert((free_size == 0 && num == 0) ||
  1996            (free_size > 0  && (num == 1 || num == 2)),
  1997          "There should be at most 2 free chunks after compaction");
  1998   #endif // ASSERT
  1999   _collectorState = Resetting;
  2000   assert(_restart_addr == NULL,
  2001          "Should have been NULL'd before baton was passed");
  2002   reset(false /* == !asynch */);
  2003   _cmsGen->reset_after_compaction();
  2004   _concurrent_cycles_since_last_unload = 0;
  2006   if (verifying() && !should_unload_classes()) {
  2007     perm_gen_verify_bit_map()->clear_all();
  2010   // Clear any data recorded in the PLAB chunk arrays.
  2011   if (_survivor_plab_array != NULL) {
  2012     reset_survivor_plab_arrays();
  2015   // Adjust the per-size allocation stats for the next epoch.
  2016   _cmsGen->cmsSpace()->endSweepFLCensus(sweepCount() /* fake */);
  2017   // Restart the "sweep timer" for next epoch.
  2018   _sweep_timer.reset();
  2019   _sweep_timer.start();
  2021   // Sample collection pause time and reset for collection interval.
  2022   if (UseAdaptiveSizePolicy) {
  2023     size_policy()->msc_collection_end(gch->gc_cause());
  2026   // For a mark-sweep-compact, compute_new_size() will be called
  2027   // in the heap's do_collection() method.
  2030 // A work method used by the foreground collector to do
  2031 // a mark-sweep, after taking over from a possibly on-going
  2032 // concurrent mark-sweep collection.
  2033 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2034   CollectorState first_state, bool should_start_over) {
  2035   if (PrintGC && Verbose) {
  2036     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2037       "collector with count %d",
  2038       _full_gcs_since_conc_gc);
  2040   switch (_collectorState) {
  2041     case Idling:
  2042       if (first_state == Idling || should_start_over) {
  2043         // The background GC was not active, or should
  2044         // restarted from scratch;  start the cycle.
  2045         _collectorState = InitialMarking;
  2047       // If first_state was not Idling, then a background GC
  2048       // was in progress and has now finished.  No need to do it
  2049       // again.  Leave the state as Idling.
  2050       break;
  2051     case Precleaning:
  2052       // In the foreground case don't do the precleaning since
  2053       // it is not done concurrently and there is extra work
  2054       // required.
  2055       _collectorState = FinalMarking;
  2057   if (PrintGCDetails &&
  2058       (_collectorState > Idling ||
  2059        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2060     gclog_or_tty->print(" (concurrent mode failure)");
  2062   collect_in_foreground(clear_all_soft_refs);
  2064   // For a mark-sweep, compute_new_size() will be called
  2065   // in the heap's do_collection() method.
  2069 void CMSCollector::getFreelistLocks() const {
  2070   // Get locks for all free lists in all generations that this
  2071   // collector is responsible for
  2072   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2073   _permGen->freelistLock()->lock_without_safepoint_check();
  2076 void CMSCollector::releaseFreelistLocks() const {
  2077   // Release locks for all free lists in all generations that this
  2078   // collector is responsible for
  2079   _cmsGen->freelistLock()->unlock();
  2080   _permGen->freelistLock()->unlock();
  2083 bool CMSCollector::haveFreelistLocks() const {
  2084   // Check locks for all free lists in all generations that this
  2085   // collector is responsible for
  2086   assert_lock_strong(_cmsGen->freelistLock());
  2087   assert_lock_strong(_permGen->freelistLock());
  2088   PRODUCT_ONLY(ShouldNotReachHere());
  2089   return true;
  2092 // A utility class that is used by the CMS collector to
  2093 // temporarily "release" the foreground collector from its
  2094 // usual obligation to wait for the background collector to
  2095 // complete an ongoing phase before proceeding.
  2096 class ReleaseForegroundGC: public StackObj {
  2097  private:
  2098   CMSCollector* _c;
  2099  public:
  2100   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2101     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2102     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2103     // allow a potentially blocked foreground collector to proceed
  2104     _c->_foregroundGCShouldWait = false;
  2105     if (_c->_foregroundGCIsActive) {
  2106       CGC_lock->notify();
  2108     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2109            "Possible deadlock");
  2112   ~ReleaseForegroundGC() {
  2113     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2114     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2115     _c->_foregroundGCShouldWait = true;
  2117 };
  2119 // There are separate collect_in_background and collect_in_foreground because of
  2120 // the different locking requirements of the background collector and the
  2121 // foreground collector.  There was originally an attempt to share
  2122 // one "collect" method between the background collector and the foreground
  2123 // collector but the if-then-else required made it cleaner to have
  2124 // separate methods.
  2125 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2126   assert(Thread::current()->is_ConcurrentGC_thread(),
  2127     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2129   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2131     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2132     MutexLockerEx hl(Heap_lock, safepoint_check);
  2133     FreelistLocker fll(this);
  2134     MutexLockerEx x(CGC_lock, safepoint_check);
  2135     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2136       // The foreground collector is active or we're
  2137       // not using asynchronous collections.  Skip this
  2138       // background collection.
  2139       assert(!_foregroundGCShouldWait, "Should be clear");
  2140       return;
  2141     } else {
  2142       assert(_collectorState == Idling, "Should be idling before start.");
  2143       _collectorState = InitialMarking;
  2144       // Reset the expansion cause, now that we are about to begin
  2145       // a new cycle.
  2146       clear_expansion_cause();
  2148     // Decide if we want to enable class unloading as part of the
  2149     // ensuing concurrent GC cycle.
  2150     update_should_unload_classes();
  2151     _full_gc_requested = false;           // acks all outstanding full gc requests
  2152     // Signal that we are about to start a collection
  2153     gch->increment_total_full_collections();  // ... starting a collection cycle
  2154     _collection_count_start = gch->total_full_collections();
  2157   // Used for PrintGC
  2158   size_t prev_used;
  2159   if (PrintGC && Verbose) {
  2160     prev_used = _cmsGen->used(); // XXXPERM
  2163   // The change of the collection state is normally done at this level;
  2164   // the exceptions are phases that are executed while the world is
  2165   // stopped.  For those phases the change of state is done while the
  2166   // world is stopped.  For baton passing purposes this allows the
  2167   // background collector to finish the phase and change state atomically.
  2168   // The foreground collector cannot wait on a phase that is done
  2169   // while the world is stopped because the foreground collector already
  2170   // has the world stopped and would deadlock.
  2171   while (_collectorState != Idling) {
  2172     if (TraceCMSState) {
  2173       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2174         Thread::current(), _collectorState);
  2176     // The foreground collector
  2177     //   holds the Heap_lock throughout its collection.
  2178     //   holds the CMS token (but not the lock)
  2179     //     except while it is waiting for the background collector to yield.
  2180     //
  2181     // The foreground collector should be blocked (not for long)
  2182     //   if the background collector is about to start a phase
  2183     //   executed with world stopped.  If the background
  2184     //   collector has already started such a phase, the
  2185     //   foreground collector is blocked waiting for the
  2186     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2187     //   are executed in the VM thread.
  2188     //
  2189     // The locking order is
  2190     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2191     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2192     //   CMS token  (claimed in
  2193     //                stop_world_and_do() -->
  2194     //                  safepoint_synchronize() -->
  2195     //                    CMSThread::synchronize())
  2198       // Check if the FG collector wants us to yield.
  2199       CMSTokenSync x(true); // is cms thread
  2200       if (waitForForegroundGC()) {
  2201         // We yielded to a foreground GC, nothing more to be
  2202         // done this round.
  2203         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2204                "waitForForegroundGC()");
  2205         if (TraceCMSState) {
  2206           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2207             " exiting collection CMS state %d",
  2208             Thread::current(), _collectorState);
  2210         return;
  2211       } else {
  2212         // The background collector can run but check to see if the
  2213         // foreground collector has done a collection while the
  2214         // background collector was waiting to get the CGC_lock
  2215         // above.  If yes, break so that _foregroundGCShouldWait
  2216         // is cleared before returning.
  2217         if (_collectorState == Idling) {
  2218           break;
  2223     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2224       "should be waiting");
  2226     switch (_collectorState) {
  2227       case InitialMarking:
  2229           ReleaseForegroundGC x(this);
  2230           stats().record_cms_begin();
  2232           VM_CMS_Initial_Mark initial_mark_op(this);
  2233           VMThread::execute(&initial_mark_op);
  2235         // The collector state may be any legal state at this point
  2236         // since the background collector may have yielded to the
  2237         // foreground collector.
  2238         break;
  2239       case Marking:
  2240         // initial marking in checkpointRootsInitialWork has been completed
  2241         if (markFromRoots(true)) { // we were successful
  2242           assert(_collectorState == Precleaning, "Collector state should "
  2243             "have changed");
  2244         } else {
  2245           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2247         break;
  2248       case Precleaning:
  2249         if (UseAdaptiveSizePolicy) {
  2250           size_policy()->concurrent_precleaning_begin();
  2252         // marking from roots in markFromRoots has been completed
  2253         preclean();
  2254         if (UseAdaptiveSizePolicy) {
  2255           size_policy()->concurrent_precleaning_end();
  2257         assert(_collectorState == AbortablePreclean ||
  2258                _collectorState == FinalMarking,
  2259                "Collector state should have changed");
  2260         break;
  2261       case AbortablePreclean:
  2262         if (UseAdaptiveSizePolicy) {
  2263         size_policy()->concurrent_phases_resume();
  2265         abortable_preclean();
  2266         if (UseAdaptiveSizePolicy) {
  2267           size_policy()->concurrent_precleaning_end();
  2269         assert(_collectorState == FinalMarking, "Collector state should "
  2270           "have changed");
  2271         break;
  2272       case FinalMarking:
  2274           ReleaseForegroundGC x(this);
  2276           VM_CMS_Final_Remark final_remark_op(this);
  2277           VMThread::execute(&final_remark_op);
  2279         assert(_foregroundGCShouldWait, "block post-condition");
  2280         break;
  2281       case Sweeping:
  2282         if (UseAdaptiveSizePolicy) {
  2283           size_policy()->concurrent_sweeping_begin();
  2285         // final marking in checkpointRootsFinal has been completed
  2286         sweep(true);
  2287         assert(_collectorState == Resizing, "Collector state change "
  2288           "to Resizing must be done under the free_list_lock");
  2289         _full_gcs_since_conc_gc = 0;
  2291         // Stop the timers for adaptive size policy for the concurrent phases
  2292         if (UseAdaptiveSizePolicy) {
  2293           size_policy()->concurrent_sweeping_end();
  2294           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2295                                              gch->prev_gen(_cmsGen)->capacity(),
  2296                                              _cmsGen->free());
  2299       case Resizing: {
  2300         // Sweeping has been completed...
  2301         // At this point the background collection has completed.
  2302         // Don't move the call to compute_new_size() down
  2303         // into code that might be executed if the background
  2304         // collection was preempted.
  2306           ReleaseForegroundGC x(this);   // unblock FG collection
  2307           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2308           CMSTokenSync        z(true);   // not strictly needed.
  2309           if (_collectorState == Resizing) {
  2310             compute_new_size();
  2311             _collectorState = Resetting;
  2312           } else {
  2313             assert(_collectorState == Idling, "The state should only change"
  2314                    " because the foreground collector has finished the collection");
  2317         break;
  2319       case Resetting:
  2320         // CMS heap resizing has been completed
  2321         reset(true);
  2322         assert(_collectorState == Idling, "Collector state should "
  2323           "have changed");
  2324         stats().record_cms_end();
  2325         // Don't move the concurrent_phases_end() and compute_new_size()
  2326         // calls to here because a preempted background collection
  2327         // has it's state set to "Resetting".
  2328         break;
  2329       case Idling:
  2330       default:
  2331         ShouldNotReachHere();
  2332         break;
  2334     if (TraceCMSState) {
  2335       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2336         Thread::current(), _collectorState);
  2338     assert(_foregroundGCShouldWait, "block post-condition");
  2341   // Should this be in gc_epilogue?
  2342   collector_policy()->counters()->update_counters();
  2345     // Clear _foregroundGCShouldWait and, in the event that the
  2346     // foreground collector is waiting, notify it, before
  2347     // returning.
  2348     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2349     _foregroundGCShouldWait = false;
  2350     if (_foregroundGCIsActive) {
  2351       CGC_lock->notify();
  2353     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2354            "Possible deadlock");
  2356   if (TraceCMSState) {
  2357     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2358       " exiting collection CMS state %d",
  2359       Thread::current(), _collectorState);
  2361   if (PrintGC && Verbose) {
  2362     _cmsGen->print_heap_change(prev_used);
  2366 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2367   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2368          "Foreground collector should be waiting, not executing");
  2369   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2370     "may only be done by the VM Thread with the world stopped");
  2371   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2372          "VM thread should have CMS token");
  2374   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2375     true, gclog_or_tty);)
  2376   if (UseAdaptiveSizePolicy) {
  2377     size_policy()->ms_collection_begin();
  2379   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2381   HandleMark hm;  // Discard invalid handles created during verification
  2383   if (VerifyBeforeGC &&
  2384       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2385     Universe::verify(true);
  2388   // Snapshot the soft reference policy to be used in this collection cycle.
  2389   ref_processor()->setup_policy(clear_all_soft_refs);
  2391   bool init_mark_was_synchronous = false; // until proven otherwise
  2392   while (_collectorState != Idling) {
  2393     if (TraceCMSState) {
  2394       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2395         Thread::current(), _collectorState);
  2397     switch (_collectorState) {
  2398       case InitialMarking:
  2399         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2400         checkpointRootsInitial(false);
  2401         assert(_collectorState == Marking, "Collector state should have changed"
  2402           " within checkpointRootsInitial()");
  2403         break;
  2404       case Marking:
  2405         // initial marking in checkpointRootsInitialWork has been completed
  2406         if (VerifyDuringGC &&
  2407             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2408           gclog_or_tty->print("Verify before initial mark: ");
  2409           Universe::verify(true);
  2412           bool res = markFromRoots(false);
  2413           assert(res && _collectorState == FinalMarking, "Collector state should "
  2414             "have changed");
  2415           break;
  2417       case FinalMarking:
  2418         if (VerifyDuringGC &&
  2419             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2420           gclog_or_tty->print("Verify before re-mark: ");
  2421           Universe::verify(true);
  2423         checkpointRootsFinal(false, clear_all_soft_refs,
  2424                              init_mark_was_synchronous);
  2425         assert(_collectorState == Sweeping, "Collector state should not "
  2426           "have changed within checkpointRootsFinal()");
  2427         break;
  2428       case Sweeping:
  2429         // final marking in checkpointRootsFinal has been completed
  2430         if (VerifyDuringGC &&
  2431             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2432           gclog_or_tty->print("Verify before sweep: ");
  2433           Universe::verify(true);
  2435         sweep(false);
  2436         assert(_collectorState == Resizing, "Incorrect state");
  2437         break;
  2438       case Resizing: {
  2439         // Sweeping has been completed; the actual resize in this case
  2440         // is done separately; nothing to be done in this state.
  2441         _collectorState = Resetting;
  2442         break;
  2444       case Resetting:
  2445         // The heap has been resized.
  2446         if (VerifyDuringGC &&
  2447             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2448           gclog_or_tty->print("Verify before reset: ");
  2449           Universe::verify(true);
  2451         reset(false);
  2452         assert(_collectorState == Idling, "Collector state should "
  2453           "have changed");
  2454         break;
  2455       case Precleaning:
  2456       case AbortablePreclean:
  2457         // Elide the preclean phase
  2458         _collectorState = FinalMarking;
  2459         break;
  2460       default:
  2461         ShouldNotReachHere();
  2463     if (TraceCMSState) {
  2464       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2465         Thread::current(), _collectorState);
  2469   if (UseAdaptiveSizePolicy) {
  2470     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2471     size_policy()->ms_collection_end(gch->gc_cause());
  2474   if (VerifyAfterGC &&
  2475       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2476     Universe::verify(true);
  2478   if (TraceCMSState) {
  2479     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2480       " exiting collection CMS state %d",
  2481       Thread::current(), _collectorState);
  2485 bool CMSCollector::waitForForegroundGC() {
  2486   bool res = false;
  2487   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2488          "CMS thread should have CMS token");
  2489   // Block the foreground collector until the
  2490   // background collectors decides whether to
  2491   // yield.
  2492   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2493   _foregroundGCShouldWait = true;
  2494   if (_foregroundGCIsActive) {
  2495     // The background collector yields to the
  2496     // foreground collector and returns a value
  2497     // indicating that it has yielded.  The foreground
  2498     // collector can proceed.
  2499     res = true;
  2500     _foregroundGCShouldWait = false;
  2501     ConcurrentMarkSweepThread::clear_CMS_flag(
  2502       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2503     ConcurrentMarkSweepThread::set_CMS_flag(
  2504       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2505     // Get a possibly blocked foreground thread going
  2506     CGC_lock->notify();
  2507     if (TraceCMSState) {
  2508       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2509         Thread::current(), _collectorState);
  2511     while (_foregroundGCIsActive) {
  2512       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2514     ConcurrentMarkSweepThread::set_CMS_flag(
  2515       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2516     ConcurrentMarkSweepThread::clear_CMS_flag(
  2517       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2519   if (TraceCMSState) {
  2520     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2521       Thread::current(), _collectorState);
  2523   return res;
  2526 // Because of the need to lock the free lists and other structures in
  2527 // the collector, common to all the generations that the collector is
  2528 // collecting, we need the gc_prologues of individual CMS generations
  2529 // delegate to their collector. It may have been simpler had the
  2530 // current infrastructure allowed one to call a prologue on a
  2531 // collector. In the absence of that we have the generation's
  2532 // prologue delegate to the collector, which delegates back
  2533 // some "local" work to a worker method in the individual generations
  2534 // that it's responsible for collecting, while itself doing any
  2535 // work common to all generations it's responsible for. A similar
  2536 // comment applies to the  gc_epilogue()'s.
  2537 // The role of the varaible _between_prologue_and_epilogue is to
  2538 // enforce the invocation protocol.
  2539 void CMSCollector::gc_prologue(bool full) {
  2540   // Call gc_prologue_work() for each CMSGen and PermGen that
  2541   // we are responsible for.
  2543   // The following locking discipline assumes that we are only called
  2544   // when the world is stopped.
  2545   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2547   // The CMSCollector prologue must call the gc_prologues for the
  2548   // "generations" (including PermGen if any) that it's responsible
  2549   // for.
  2551   assert(   Thread::current()->is_VM_thread()
  2552          || (   CMSScavengeBeforeRemark
  2553              && Thread::current()->is_ConcurrentGC_thread()),
  2554          "Incorrect thread type for prologue execution");
  2556   if (_between_prologue_and_epilogue) {
  2557     // We have already been invoked; this is a gc_prologue delegation
  2558     // from yet another CMS generation that we are responsible for, just
  2559     // ignore it since all relevant work has already been done.
  2560     return;
  2563   // set a bit saying prologue has been called; cleared in epilogue
  2564   _between_prologue_and_epilogue = true;
  2565   // Claim locks for common data structures, then call gc_prologue_work()
  2566   // for each CMSGen and PermGen that we are responsible for.
  2568   getFreelistLocks();   // gets free list locks on constituent spaces
  2569   bitMapLock()->lock_without_safepoint_check();
  2571   // Should call gc_prologue_work() for all cms gens we are responsible for
  2572   bool registerClosure =    _collectorState >= Marking
  2573                          && _collectorState < Sweeping;
  2574   ModUnionClosure* muc = ParallelGCThreads > 0 ? &_modUnionClosurePar
  2575                                                : &_modUnionClosure;
  2576   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2577   _permGen->gc_prologue_work(full, registerClosure, muc);
  2579   if (!full) {
  2580     stats().record_gc0_begin();
  2584 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2585   // Delegate to CMScollector which knows how to coordinate between
  2586   // this and any other CMS generations that it is responsible for
  2587   // collecting.
  2588   collector()->gc_prologue(full);
  2591 // This is a "private" interface for use by this generation's CMSCollector.
  2592 // Not to be called directly by any other entity (for instance,
  2593 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2594 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2595   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2596   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2597   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2598     "Should be NULL");
  2599   if (registerClosure) {
  2600     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2602   cmsSpace()->gc_prologue();
  2603   // Clear stat counters
  2604   NOT_PRODUCT(
  2605     assert(_numObjectsPromoted == 0, "check");
  2606     assert(_numWordsPromoted   == 0, "check");
  2607     if (Verbose && PrintGC) {
  2608       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2609                           SIZE_FORMAT" bytes concurrently",
  2610       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2612     _numObjectsAllocated = 0;
  2613     _numWordsAllocated   = 0;
  2617 void CMSCollector::gc_epilogue(bool full) {
  2618   // The following locking discipline assumes that we are only called
  2619   // when the world is stopped.
  2620   assert(SafepointSynchronize::is_at_safepoint(),
  2621          "world is stopped assumption");
  2623   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2624   // if linear allocation blocks need to be appropriately marked to allow the
  2625   // the blocks to be parsable. We also check here whether we need to nudge the
  2626   // CMS collector thread to start a new cycle (if it's not already active).
  2627   assert(   Thread::current()->is_VM_thread()
  2628          || (   CMSScavengeBeforeRemark
  2629              && Thread::current()->is_ConcurrentGC_thread()),
  2630          "Incorrect thread type for epilogue execution");
  2632   if (!_between_prologue_and_epilogue) {
  2633     // We have already been invoked; this is a gc_epilogue delegation
  2634     // from yet another CMS generation that we are responsible for, just
  2635     // ignore it since all relevant work has already been done.
  2636     return;
  2638   assert(haveFreelistLocks(), "must have freelist locks");
  2639   assert_lock_strong(bitMapLock());
  2641   _cmsGen->gc_epilogue_work(full);
  2642   _permGen->gc_epilogue_work(full);
  2644   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2645     // in case sampling was not already enabled, enable it
  2646     _start_sampling = true;
  2648   // reset _eden_chunk_array so sampling starts afresh
  2649   _eden_chunk_index = 0;
  2651   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2652   size_t perm_used  = _permGen->cmsSpace()->used();
  2654   // update performance counters - this uses a special version of
  2655   // update_counters() that allows the utilization to be passed as a
  2656   // parameter, avoiding multiple calls to used().
  2657   //
  2658   _cmsGen->update_counters(cms_used);
  2659   _permGen->update_counters(perm_used);
  2661   if (CMSIncrementalMode) {
  2662     icms_update_allocation_limits();
  2665   bitMapLock()->unlock();
  2666   releaseFreelistLocks();
  2668   _between_prologue_and_epilogue = false;  // ready for next cycle
  2671 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2672   collector()->gc_epilogue(full);
  2674   // Also reset promotion tracking in par gc thread states.
  2675   if (ParallelGCThreads > 0) {
  2676     for (uint i = 0; i < ParallelGCThreads; i++) {
  2677       _par_gc_thread_states[i]->promo.stopTrackingPromotions();
  2682 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2683   assert(!incremental_collection_failed(), "Should have been cleared");
  2684   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2685   cmsSpace()->gc_epilogue();
  2686     // Print stat counters
  2687   NOT_PRODUCT(
  2688     assert(_numObjectsAllocated == 0, "check");
  2689     assert(_numWordsAllocated == 0, "check");
  2690     if (Verbose && PrintGC) {
  2691       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2692                           SIZE_FORMAT" bytes",
  2693                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2695     _numObjectsPromoted = 0;
  2696     _numWordsPromoted   = 0;
  2699   if (PrintGC && Verbose) {
  2700     // Call down the chain in contiguous_available needs the freelistLock
  2701     // so print this out before releasing the freeListLock.
  2702     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2703                         contiguous_available());
  2707 #ifndef PRODUCT
  2708 bool CMSCollector::have_cms_token() {
  2709   Thread* thr = Thread::current();
  2710   if (thr->is_VM_thread()) {
  2711     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2712   } else if (thr->is_ConcurrentGC_thread()) {
  2713     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2714   } else if (thr->is_GC_task_thread()) {
  2715     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2716            ParGCRareEvent_lock->owned_by_self();
  2718   return false;
  2720 #endif
  2722 // Check reachability of the given heap address in CMS generation,
  2723 // treating all other generations as roots.
  2724 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2725   // We could "guarantee" below, rather than assert, but i'll
  2726   // leave these as "asserts" so that an adventurous debugger
  2727   // could try this in the product build provided some subset of
  2728   // the conditions were met, provided they were intersted in the
  2729   // results and knew that the computation below wouldn't interfere
  2730   // with other concurrent computations mutating the structures
  2731   // being read or written.
  2732   assert(SafepointSynchronize::is_at_safepoint(),
  2733          "Else mutations in object graph will make answer suspect");
  2734   assert(have_cms_token(), "Should hold cms token");
  2735   assert(haveFreelistLocks(), "must hold free list locks");
  2736   assert_lock_strong(bitMapLock());
  2738   // Clear the marking bit map array before starting, but, just
  2739   // for kicks, first report if the given address is already marked
  2740   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2741                 _markBitMap.isMarked(addr) ? "" : " not");
  2743   if (verify_after_remark()) {
  2744     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2745     bool result = verification_mark_bm()->isMarked(addr);
  2746     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2747                            result ? "IS" : "is NOT");
  2748     return result;
  2749   } else {
  2750     gclog_or_tty->print_cr("Could not compute result");
  2751     return false;
  2755 ////////////////////////////////////////////////////////
  2756 // CMS Verification Support
  2757 ////////////////////////////////////////////////////////
  2758 // Following the remark phase, the following invariant
  2759 // should hold -- each object in the CMS heap which is
  2760 // marked in markBitMap() should be marked in the verification_mark_bm().
  2762 class VerifyMarkedClosure: public BitMapClosure {
  2763   CMSBitMap* _marks;
  2764   bool       _failed;
  2766  public:
  2767   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2769   bool do_bit(size_t offset) {
  2770     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2771     if (!_marks->isMarked(addr)) {
  2772       oop(addr)->print();
  2773       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2774       _failed = true;
  2776     return true;
  2779   bool failed() { return _failed; }
  2780 };
  2782 bool CMSCollector::verify_after_remark() {
  2783   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2784   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2785   static bool init = false;
  2787   assert(SafepointSynchronize::is_at_safepoint(),
  2788          "Else mutations in object graph will make answer suspect");
  2789   assert(have_cms_token(),
  2790          "Else there may be mutual interference in use of "
  2791          " verification data structures");
  2792   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2793          "Else marking info checked here may be obsolete");
  2794   assert(haveFreelistLocks(), "must hold free list locks");
  2795   assert_lock_strong(bitMapLock());
  2798   // Allocate marking bit map if not already allocated
  2799   if (!init) { // first time
  2800     if (!verification_mark_bm()->allocate(_span)) {
  2801       return false;
  2803     init = true;
  2806   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2808   // Turn off refs discovery -- so we will be tracing through refs.
  2809   // This is as intended, because by this time
  2810   // GC must already have cleared any refs that need to be cleared,
  2811   // and traced those that need to be marked; moreover,
  2812   // the marking done here is not going to intefere in any
  2813   // way with the marking information used by GC.
  2814   NoRefDiscovery no_discovery(ref_processor());
  2816   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2818   // Clear any marks from a previous round
  2819   verification_mark_bm()->clear_all();
  2820   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2821   assert(overflow_list_is_empty(), "overflow list should be empty");
  2823   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2824   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2825   // Update the saved marks which may affect the root scans.
  2826   gch->save_marks();
  2828   if (CMSRemarkVerifyVariant == 1) {
  2829     // In this first variant of verification, we complete
  2830     // all marking, then check if the new marks-verctor is
  2831     // a subset of the CMS marks-vector.
  2832     verify_after_remark_work_1();
  2833   } else if (CMSRemarkVerifyVariant == 2) {
  2834     // In this second variant of verification, we flag an error
  2835     // (i.e. an object reachable in the new marks-vector not reachable
  2836     // in the CMS marks-vector) immediately, also indicating the
  2837     // identify of an object (A) that references the unmarked object (B) --
  2838     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2839     verify_after_remark_work_2();
  2840   } else {
  2841     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2842             CMSRemarkVerifyVariant);
  2844   gclog_or_tty->print(" done] ");
  2845   return true;
  2848 void CMSCollector::verify_after_remark_work_1() {
  2849   ResourceMark rm;
  2850   HandleMark  hm;
  2851   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2853   // Mark from roots one level into CMS
  2854   MarkRefsIntoClosure notOlder(_span, verification_mark_bm(), true /* nmethods */);
  2855   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2857   gch->gen_process_strong_roots(_cmsGen->level(),
  2858                                 true,   // younger gens are roots
  2859                                 true,   // collecting perm gen
  2860                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2861                                 NULL, &notOlder);
  2863   // Now mark from the roots
  2864   assert(_revisitStack.isEmpty(), "Should be empty");
  2865   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2866     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
  2867     false /* don't yield */, true /* verifying */);
  2868   assert(_restart_addr == NULL, "Expected pre-condition");
  2869   verification_mark_bm()->iterate(&markFromRootsClosure);
  2870   while (_restart_addr != NULL) {
  2871     // Deal with stack overflow: by restarting at the indicated
  2872     // address.
  2873     HeapWord* ra = _restart_addr;
  2874     markFromRootsClosure.reset(ra);
  2875     _restart_addr = NULL;
  2876     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2878   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2879   verify_work_stacks_empty();
  2880   // Should reset the revisit stack above, since no class tree
  2881   // surgery is forthcoming.
  2882   _revisitStack.reset(); // throwing away all contents
  2884   // Marking completed -- now verify that each bit marked in
  2885   // verification_mark_bm() is also marked in markBitMap(); flag all
  2886   // errors by printing corresponding objects.
  2887   VerifyMarkedClosure vcl(markBitMap());
  2888   verification_mark_bm()->iterate(&vcl);
  2889   if (vcl.failed()) {
  2890     gclog_or_tty->print("Verification failed");
  2891     Universe::heap()->print();
  2892     fatal(" ... aborting");
  2896 void CMSCollector::verify_after_remark_work_2() {
  2897   ResourceMark rm;
  2898   HandleMark  hm;
  2899   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2901   // Mark from roots one level into CMS
  2902   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2903                                      markBitMap(), true /* nmethods */);
  2904   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2905   gch->gen_process_strong_roots(_cmsGen->level(),
  2906                                 true,   // younger gens are roots
  2907                                 true,   // collecting perm gen
  2908                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2909                                 NULL, &notOlder);
  2911   // Now mark from the roots
  2912   assert(_revisitStack.isEmpty(), "Should be empty");
  2913   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2914     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2915   assert(_restart_addr == NULL, "Expected pre-condition");
  2916   verification_mark_bm()->iterate(&markFromRootsClosure);
  2917   while (_restart_addr != NULL) {
  2918     // Deal with stack overflow: by restarting at the indicated
  2919     // address.
  2920     HeapWord* ra = _restart_addr;
  2921     markFromRootsClosure.reset(ra);
  2922     _restart_addr = NULL;
  2923     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2925   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2926   verify_work_stacks_empty();
  2927   // Should reset the revisit stack above, since no class tree
  2928   // surgery is forthcoming.
  2929   _revisitStack.reset(); // throwing away all contents
  2931   // Marking completed -- now verify that each bit marked in
  2932   // verification_mark_bm() is also marked in markBitMap(); flag all
  2933   // errors by printing corresponding objects.
  2934   VerifyMarkedClosure vcl(markBitMap());
  2935   verification_mark_bm()->iterate(&vcl);
  2936   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2939 void ConcurrentMarkSweepGeneration::save_marks() {
  2940   // delegate to CMS space
  2941   cmsSpace()->save_marks();
  2942   for (uint i = 0; i < ParallelGCThreads; i++) {
  2943     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  2947 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  2948   return cmsSpace()->no_allocs_since_save_marks();
  2951 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  2953 void ConcurrentMarkSweepGeneration::                            \
  2954 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  2955   cl->set_generation(this);                                     \
  2956   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  2957   cl->reset_generation();                                       \
  2958   save_marks();                                                 \
  2961 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  2963 void
  2964 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  2966   // Not currently implemented; need to do the following. -- ysr.
  2967   // dld -- I think that is used for some sort of allocation profiler.  So it
  2968   // really means the objects allocated by the mutator since the last
  2969   // GC.  We could potentially implement this cheaply by recording only
  2970   // the direct allocations in a side data structure.
  2971   //
  2972   // I think we probably ought not to be required to support these
  2973   // iterations at any arbitrary point; I think there ought to be some
  2974   // call to enable/disable allocation profiling in a generation/space,
  2975   // and the iterator ought to return the objects allocated in the
  2976   // gen/space since the enable call, or the last iterator call (which
  2977   // will probably be at a GC.)  That way, for gens like CM&S that would
  2978   // require some extra data structure to support this, we only pay the
  2979   // cost when it's in use...
  2980   cmsSpace()->object_iterate_since_last_GC(blk);
  2983 void
  2984 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  2985   cl->set_generation(this);
  2986   younger_refs_in_space_iterate(_cmsSpace, cl);
  2987   cl->reset_generation();
  2990 void
  2991 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
  2992   if (freelistLock()->owned_by_self()) {
  2993     Generation::oop_iterate(mr, cl);
  2994   } else {
  2995     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  2996     Generation::oop_iterate(mr, cl);
  3000 void
  3001 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
  3002   if (freelistLock()->owned_by_self()) {
  3003     Generation::oop_iterate(cl);
  3004   } else {
  3005     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3006     Generation::oop_iterate(cl);
  3010 void
  3011 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3012   if (freelistLock()->owned_by_self()) {
  3013     Generation::object_iterate(cl);
  3014   } else {
  3015     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3016     Generation::object_iterate(cl);
  3020 void
  3021 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
  3022   if (freelistLock()->owned_by_self()) {
  3023     Generation::safe_object_iterate(cl);
  3024   } else {
  3025     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3026     Generation::safe_object_iterate(cl);
  3030 void
  3031 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
  3034 void
  3035 ConcurrentMarkSweepGeneration::post_compact() {
  3038 void
  3039 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3040   // Fix the linear allocation blocks to look like free blocks.
  3042   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3043   // are not called when the heap is verified during universe initialization and
  3044   // at vm shutdown.
  3045   if (freelistLock()->owned_by_self()) {
  3046     cmsSpace()->prepare_for_verify();
  3047   } else {
  3048     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3049     cmsSpace()->prepare_for_verify();
  3053 void
  3054 ConcurrentMarkSweepGeneration::verify(bool allow_dirty /* ignored */) {
  3055   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3056   // are not called when the heap is verified during universe initialization and
  3057   // at vm shutdown.
  3058   if (freelistLock()->owned_by_self()) {
  3059     cmsSpace()->verify(false /* ignored */);
  3060   } else {
  3061     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3062     cmsSpace()->verify(false /* ignored */);
  3066 void CMSCollector::verify(bool allow_dirty /* ignored */) {
  3067   _cmsGen->verify(allow_dirty);
  3068   _permGen->verify(allow_dirty);
  3071 #ifndef PRODUCT
  3072 bool CMSCollector::overflow_list_is_empty() const {
  3073   assert(_num_par_pushes >= 0, "Inconsistency");
  3074   if (_overflow_list == NULL) {
  3075     assert(_num_par_pushes == 0, "Inconsistency");
  3077   return _overflow_list == NULL;
  3080 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3081 // merely consolidate assertion checks that appear to occur together frequently.
  3082 void CMSCollector::verify_work_stacks_empty() const {
  3083   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3084   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3087 void CMSCollector::verify_overflow_empty() const {
  3088   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3089   assert(no_preserved_marks(), "No preserved marks");
  3091 #endif // PRODUCT
  3093 // Decide if we want to enable class unloading as part of the
  3094 // ensuing concurrent GC cycle. We will collect the perm gen and
  3095 // unload classes if it's the case that:
  3096 // (1) an explicit gc request has been made and the flag
  3097 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3098 // (2) (a) class unloading is enabled at the command line, and
  3099 //     (b) (i)   perm gen threshold has been crossed, or
  3100 //         (ii)  old gen is getting really full, or
  3101 //         (iii) the previous N CMS collections did not collect the
  3102 //               perm gen
  3103 // NOTE: Provided there is no change in the state of the heap between
  3104 // calls to this method, it should have idempotent results. Moreover,
  3105 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3106 // but not 1 to 0) between successive calls between which the heap was
  3107 // not collected. For the implementation below, it must thus rely on
  3108 // the property that concurrent_cycles_since_last_unload()
  3109 // will not decrease unless a collection cycle happened and that
  3110 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
  3111 // themselves also monotonic in that sense. See check_monotonicity()
  3112 // below.
  3113 bool CMSCollector::update_should_unload_classes() {
  3114   _should_unload_classes = false;
  3115   // Condition 1 above
  3116   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3117     _should_unload_classes = true;
  3118   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3119     // Disjuncts 2.b.(i,ii,iii) above
  3120     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3121                               CMSClassUnloadingMaxInterval)
  3122                            || _permGen->should_concurrent_collect()
  3123                            || _cmsGen->is_too_full();
  3125   return _should_unload_classes;
  3128 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3129   bool res = should_concurrent_collect();
  3130   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3131   return res;
  3134 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3135   const  bool should_verify =    VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3136                              || VerifyBeforeExit;
  3137   const  int  rso           =    SharedHeap::SO_Symbols | SharedHeap::SO_Strings
  3138                              |   SharedHeap::SO_CodeCache;
  3140   if (should_unload_classes()) {   // Should unload classes this cycle
  3141     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3142     set_verifying(should_verify);    // Set verification state for this cycle
  3143     return;                            // Nothing else needs to be done at this time
  3146   // Not unloading classes this cycle
  3147   assert(!should_unload_classes(), "Inconsitency!");
  3148   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3149     // We were not verifying, or we _were_ unloading classes in the last cycle,
  3150     // AND some verification options are enabled this cycle; in this case,
  3151     // we must make sure that the deadness map is allocated if not already so,
  3152     // and cleared (if already allocated previously --
  3153     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
  3154     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
  3155       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
  3156         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
  3157                 "permanent generation verification disabled");
  3158         return;  // Note that we leave verification disabled, so we'll retry this
  3159                  // allocation next cycle. We _could_ remember this failure
  3160                  // and skip further attempts and permanently disable verification
  3161                  // attempts if that is considered more desirable.
  3163       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
  3164               "_perm_gen_ver_bit_map inconsistency?");
  3165     } else {
  3166       perm_gen_verify_bit_map()->clear_all();
  3168     // Include symbols, strings and code cache elements to prevent their resurrection.
  3169     add_root_scanning_option(rso);
  3170     set_verifying(true);
  3171   } else if (verifying() && !should_verify) {
  3172     // We were verifying, but some verification flags got disabled.
  3173     set_verifying(false);
  3174     // Exclude symbols, strings and code cache elements from root scanning to
  3175     // reduce IM and RM pauses.
  3176     remove_root_scanning_option(rso);
  3181 #ifndef PRODUCT
  3182 HeapWord* CMSCollector::block_start(const void* p) const {
  3183   const HeapWord* addr = (HeapWord*)p;
  3184   if (_span.contains(p)) {
  3185     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3186       return _cmsGen->cmsSpace()->block_start(p);
  3187     } else {
  3188       assert(_permGen->cmsSpace()->is_in_reserved(addr),
  3189              "Inconsistent _span?");
  3190       return _permGen->cmsSpace()->block_start(p);
  3193   return NULL;
  3195 #endif
  3197 HeapWord*
  3198 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3199                                                    bool   tlab,
  3200                                                    bool   parallel) {
  3201   assert(!tlab, "Can't deal with TLAB allocation");
  3202   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3203   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3204     CMSExpansionCause::_satisfy_allocation);
  3205   if (GCExpandToAllocateDelayMillis > 0) {
  3206     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3208   return have_lock_and_allocate(word_size, tlab);
  3211 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3212 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3213 // to CardGeneration and share it...
  3214 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3215   return CardGeneration::expand(bytes, expand_bytes);
  3218 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3219   CMSExpansionCause::Cause cause)
  3222   bool success = expand(bytes, expand_bytes);
  3224   // remember why we expanded; this information is used
  3225   // by shouldConcurrentCollect() when making decisions on whether to start
  3226   // a new CMS cycle.
  3227   if (success) {
  3228     set_expansion_cause(cause);
  3229     if (PrintGCDetails && Verbose) {
  3230       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3231         CMSExpansionCause::to_string(cause));
  3236 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3237   HeapWord* res = NULL;
  3238   MutexLocker x(ParGCRareEvent_lock);
  3239   while (true) {
  3240     // Expansion by some other thread might make alloc OK now:
  3241     res = ps->lab.alloc(word_sz);
  3242     if (res != NULL) return res;
  3243     // If there's not enough expansion space available, give up.
  3244     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3245       return NULL;
  3247     // Otherwise, we try expansion.
  3248     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3249       CMSExpansionCause::_allocate_par_lab);
  3250     // Now go around the loop and try alloc again;
  3251     // A competing par_promote might beat us to the expansion space,
  3252     // so we may go around the loop again if promotion fails agaion.
  3253     if (GCExpandToAllocateDelayMillis > 0) {
  3254       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3260 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3261   PromotionInfo* promo) {
  3262   MutexLocker x(ParGCRareEvent_lock);
  3263   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3264   while (true) {
  3265     // Expansion by some other thread might make alloc OK now:
  3266     if (promo->ensure_spooling_space()) {
  3267       assert(promo->has_spooling_space(),
  3268              "Post-condition of successful ensure_spooling_space()");
  3269       return true;
  3271     // If there's not enough expansion space available, give up.
  3272     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3273       return false;
  3275     // Otherwise, we try expansion.
  3276     expand(refill_size_bytes, MinHeapDeltaBytes,
  3277       CMSExpansionCause::_allocate_par_spooling_space);
  3278     // Now go around the loop and try alloc again;
  3279     // A competing allocation might beat us to the expansion space,
  3280     // so we may go around the loop again if allocation fails again.
  3281     if (GCExpandToAllocateDelayMillis > 0) {
  3282       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3289 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3290   assert_locked_or_safepoint(Heap_lock);
  3291   size_t size = ReservedSpace::page_align_size_down(bytes);
  3292   if (size > 0) {
  3293     shrink_by(size);
  3297 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3298   assert_locked_or_safepoint(Heap_lock);
  3299   bool result = _virtual_space.expand_by(bytes);
  3300   if (result) {
  3301     HeapWord* old_end = _cmsSpace->end();
  3302     size_t new_word_size =
  3303       heap_word_size(_virtual_space.committed_size());
  3304     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3305     _bts->resize(new_word_size);  // resize the block offset shared array
  3306     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3307     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3308     // This is quite ugly; FIX ME XXX
  3309     _cmsSpace->assert_locked();
  3310     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3312     // update the space and generation capacity counters
  3313     if (UsePerfData) {
  3314       _space_counters->update_capacity();
  3315       _gen_counters->update_all();
  3318     if (Verbose && PrintGC) {
  3319       size_t new_mem_size = _virtual_space.committed_size();
  3320       size_t old_mem_size = new_mem_size - bytes;
  3321       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3322                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3325   return result;
  3328 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3329   assert_locked_or_safepoint(Heap_lock);
  3330   bool success = true;
  3331   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3332   if (remaining_bytes > 0) {
  3333     success = grow_by(remaining_bytes);
  3334     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3336   return success;
  3339 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3340   assert_locked_or_safepoint(Heap_lock);
  3341   assert_lock_strong(freelistLock());
  3342   // XXX Fix when compaction is implemented.
  3343   warning("Shrinking of CMS not yet implemented");
  3344   return;
  3348 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3349 // phases.
  3350 class CMSPhaseAccounting: public StackObj {
  3351  public:
  3352   CMSPhaseAccounting(CMSCollector *collector,
  3353                      const char *phase,
  3354                      bool print_cr = true);
  3355   ~CMSPhaseAccounting();
  3357  private:
  3358   CMSCollector *_collector;
  3359   const char *_phase;
  3360   elapsedTimer _wallclock;
  3361   bool _print_cr;
  3363  public:
  3364   // Not MT-safe; so do not pass around these StackObj's
  3365   // where they may be accessed by other threads.
  3366   jlong wallclock_millis() {
  3367     assert(_wallclock.is_active(), "Wall clock should not stop");
  3368     _wallclock.stop();  // to record time
  3369     jlong ret = _wallclock.milliseconds();
  3370     _wallclock.start(); // restart
  3371     return ret;
  3373 };
  3375 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3376                                        const char *phase,
  3377                                        bool print_cr) :
  3378   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3380   if (PrintCMSStatistics != 0) {
  3381     _collector->resetYields();
  3383   if (PrintGCDetails && PrintGCTimeStamps) {
  3384     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3385     gclog_or_tty->stamp();
  3386     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3387       _collector->cmsGen()->short_name(), _phase);
  3389   _collector->resetTimer();
  3390   _wallclock.start();
  3391   _collector->startTimer();
  3394 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3395   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3396   _collector->stopTimer();
  3397   _wallclock.stop();
  3398   if (PrintGCDetails) {
  3399     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3400     if (PrintGCTimeStamps) {
  3401       gclog_or_tty->stamp();
  3402       gclog_or_tty->print(": ");
  3404     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3405                  _collector->cmsGen()->short_name(),
  3406                  _phase, _collector->timerValue(), _wallclock.seconds());
  3407     if (_print_cr) {
  3408       gclog_or_tty->print_cr("");
  3410     if (PrintCMSStatistics != 0) {
  3411       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3412                     _collector->yields());
  3417 // CMS work
  3419 // Checkpoint the roots into this generation from outside
  3420 // this generation. [Note this initial checkpoint need only
  3421 // be approximate -- we'll do a catch up phase subsequently.]
  3422 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3423   assert(_collectorState == InitialMarking, "Wrong collector state");
  3424   check_correct_thread_executing();
  3425   ReferenceProcessor* rp = ref_processor();
  3426   SpecializationStats::clear();
  3427   assert(_restart_addr == NULL, "Control point invariant");
  3428   if (asynch) {
  3429     // acquire locks for subsequent manipulations
  3430     MutexLockerEx x(bitMapLock(),
  3431                     Mutex::_no_safepoint_check_flag);
  3432     checkpointRootsInitialWork(asynch);
  3433     rp->verify_no_references_recorded();
  3434     rp->enable_discovery(); // enable ("weak") refs discovery
  3435     _collectorState = Marking;
  3436   } else {
  3437     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3438     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3439     // discovery; verify that they aren't meddling.
  3440     assert(!rp->discovery_is_atomic(),
  3441            "incorrect setting of discovery predicate");
  3442     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3443            "ref discovery for this generation kind");
  3444     // already have locks
  3445     checkpointRootsInitialWork(asynch);
  3446     rp->enable_discovery(); // now enable ("weak") refs discovery
  3447     _collectorState = Marking;
  3449   SpecializationStats::print();
  3452 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3453   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3454   assert(_collectorState == InitialMarking, "just checking");
  3456   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3457   // precede our marking with a collection of all
  3458   // younger generations to keep floating garbage to a minimum.
  3459   // XXX: we won't do this for now -- it's an optimization to be done later.
  3461   // already have locks
  3462   assert_lock_strong(bitMapLock());
  3463   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3465   // Setup the verification and class unloading state for this
  3466   // CMS collection cycle.
  3467   setup_cms_unloading_and_verification_state();
  3469   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3470     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3471   if (UseAdaptiveSizePolicy) {
  3472     size_policy()->checkpoint_roots_initial_begin();
  3475   // Reset all the PLAB chunk arrays if necessary.
  3476   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3477     reset_survivor_plab_arrays();
  3480   ResourceMark rm;
  3481   HandleMark  hm;
  3483   FalseClosure falseClosure;
  3484   // In the case of a synchronous collection, we will elide the
  3485   // remark step, so it's important to catch all the nmethod oops
  3486   // in this step; hence the last argument to the constrcutor below.
  3487   MarkRefsIntoClosure notOlder(_span, &_markBitMap, !asynch /* nmethods */);
  3488   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3490   verify_work_stacks_empty();
  3491   verify_overflow_empty();
  3493   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3494   // Update the saved marks which may affect the root scans.
  3495   gch->save_marks();
  3497   // weak reference processing has not started yet.
  3498   ref_processor()->set_enqueuing_is_done(false);
  3501     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3502     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3503     gch->gen_process_strong_roots(_cmsGen->level(),
  3504                                   true,   // younger gens are roots
  3505                                   true,   // collecting perm gen
  3506                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3507                                   NULL, &notOlder);
  3510   // Clear mod-union table; it will be dirtied in the prologue of
  3511   // CMS generation per each younger generation collection.
  3513   assert(_modUnionTable.isAllClear(),
  3514        "Was cleared in most recent final checkpoint phase"
  3515        " or no bits are set in the gc_prologue before the start of the next "
  3516        "subsequent marking phase.");
  3518   // Temporarily disabled, since pre/post-consumption closures don't
  3519   // care about precleaned cards
  3520   #if 0
  3522     MemRegion mr = MemRegion((HeapWord*)_virtual_space.low(),
  3523                              (HeapWord*)_virtual_space.high());
  3524     _ct->ct_bs()->preclean_dirty_cards(mr);
  3526   #endif
  3528   // Save the end of the used_region of the constituent generations
  3529   // to be used to limit the extent of sweep in each generation.
  3530   save_sweep_limits();
  3531   if (UseAdaptiveSizePolicy) {
  3532     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3534   verify_overflow_empty();
  3537 bool CMSCollector::markFromRoots(bool asynch) {
  3538   // we might be tempted to assert that:
  3539   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3540   //        "inconsistent argument?");
  3541   // However that wouldn't be right, because it's possible that
  3542   // a safepoint is indeed in progress as a younger generation
  3543   // stop-the-world GC happens even as we mark in this generation.
  3544   assert(_collectorState == Marking, "inconsistent state?");
  3545   check_correct_thread_executing();
  3546   verify_overflow_empty();
  3548   bool res;
  3549   if (asynch) {
  3551     // Start the timers for adaptive size policy for the concurrent phases
  3552     // Do it here so that the foreground MS can use the concurrent
  3553     // timer since a foreground MS might has the sweep done concurrently
  3554     // or STW.
  3555     if (UseAdaptiveSizePolicy) {
  3556       size_policy()->concurrent_marking_begin();
  3559     // Weak ref discovery note: We may be discovering weak
  3560     // refs in this generation concurrent (but interleaved) with
  3561     // weak ref discovery by a younger generation collector.
  3563     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3564     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3565     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3566     res = markFromRootsWork(asynch);
  3567     if (res) {
  3568       _collectorState = Precleaning;
  3569     } else { // We failed and a foreground collection wants to take over
  3570       assert(_foregroundGCIsActive, "internal state inconsistency");
  3571       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3572       if (PrintGCDetails) {
  3573         gclog_or_tty->print_cr("bailing out to foreground collection");
  3576     if (UseAdaptiveSizePolicy) {
  3577       size_policy()->concurrent_marking_end();
  3579   } else {
  3580     assert(SafepointSynchronize::is_at_safepoint(),
  3581            "inconsistent with asynch == false");
  3582     if (UseAdaptiveSizePolicy) {
  3583       size_policy()->ms_collection_marking_begin();
  3585     // already have locks
  3586     res = markFromRootsWork(asynch);
  3587     _collectorState = FinalMarking;
  3588     if (UseAdaptiveSizePolicy) {
  3589       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3590       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3593   verify_overflow_empty();
  3594   return res;
  3597 bool CMSCollector::markFromRootsWork(bool asynch) {
  3598   // iterate over marked bits in bit map, doing a full scan and mark
  3599   // from these roots using the following algorithm:
  3600   // . if oop is to the right of the current scan pointer,
  3601   //   mark corresponding bit (we'll process it later)
  3602   // . else (oop is to left of current scan pointer)
  3603   //   push oop on marking stack
  3604   // . drain the marking stack
  3606   // Note that when we do a marking step we need to hold the
  3607   // bit map lock -- recall that direct allocation (by mutators)
  3608   // and promotion (by younger generation collectors) is also
  3609   // marking the bit map. [the so-called allocate live policy.]
  3610   // Because the implementation of bit map marking is not
  3611   // robust wrt simultaneous marking of bits in the same word,
  3612   // we need to make sure that there is no such interference
  3613   // between concurrent such updates.
  3615   // already have locks
  3616   assert_lock_strong(bitMapLock());
  3618   // Clear the revisit stack, just in case there are any
  3619   // obsolete contents from a short-circuited previous CMS cycle.
  3620   _revisitStack.reset();
  3621   verify_work_stacks_empty();
  3622   verify_overflow_empty();
  3623   assert(_revisitStack.isEmpty(), "tabula rasa");
  3625   bool result = false;
  3626   if (CMSConcurrentMTEnabled && ParallelCMSThreads > 0) {
  3627     result = do_marking_mt(asynch);
  3628   } else {
  3629     result = do_marking_st(asynch);
  3631   return result;
  3634 // Forward decl
  3635 class CMSConcMarkingTask;
  3637 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3638   CMSCollector*       _collector;
  3639   CMSConcMarkingTask* _task;
  3640   bool _yield;
  3641  protected:
  3642   virtual void yield();
  3643  public:
  3644   // "n_threads" is the number of threads to be terminated.
  3645   // "queue_set" is a set of work queues of other threads.
  3646   // "collector" is the CMS collector associated with this task terminator.
  3647   // "yield" indicates whether we need the gang as a whole to yield.
  3648   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set,
  3649                            CMSCollector* collector, bool yield) :
  3650     ParallelTaskTerminator(n_threads, queue_set),
  3651     _collector(collector),
  3652     _yield(yield) { }
  3654   void set_task(CMSConcMarkingTask* task) {
  3655     _task = task;
  3657 };
  3659 // MT Concurrent Marking Task
  3660 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3661   CMSCollector* _collector;
  3662   YieldingFlexibleWorkGang* _workers;        // the whole gang
  3663   int           _n_workers;                  // requested/desired # workers
  3664   bool          _asynch;
  3665   bool          _result;
  3666   CompactibleFreeListSpace*  _cms_space;
  3667   CompactibleFreeListSpace* _perm_space;
  3668   HeapWord*     _global_finger;
  3669   HeapWord*     _restart_addr;
  3671   //  Exposed here for yielding support
  3672   Mutex* const _bit_map_lock;
  3674   // The per thread work queues, available here for stealing
  3675   OopTaskQueueSet*  _task_queues;
  3676   CMSConcMarkingTerminator _term;
  3678  public:
  3679   CMSConcMarkingTask(CMSCollector* collector,
  3680                  CompactibleFreeListSpace* cms_space,
  3681                  CompactibleFreeListSpace* perm_space,
  3682                  bool asynch, int n_workers,
  3683                  YieldingFlexibleWorkGang* workers,
  3684                  OopTaskQueueSet* task_queues):
  3685     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3686     _collector(collector),
  3687     _cms_space(cms_space),
  3688     _perm_space(perm_space),
  3689     _asynch(asynch), _n_workers(n_workers), _result(true),
  3690     _workers(workers), _task_queues(task_queues),
  3691     _term(n_workers, task_queues, _collector, asynch),
  3692     _bit_map_lock(collector->bitMapLock())
  3694     assert(n_workers <= workers->total_workers(),
  3695            "Else termination won't work correctly today"); // XXX FIX ME!
  3696     _requested_size = n_workers;
  3697     _term.set_task(this);
  3698     assert(_cms_space->bottom() < _perm_space->bottom(),
  3699            "Finger incorrectly initialized below");
  3700     _restart_addr = _global_finger = _cms_space->bottom();
  3704   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3706   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3708   HeapWord** global_finger_addr() { return &_global_finger; }
  3710   CMSConcMarkingTerminator* terminator() { return &_term; }
  3712   void work(int i);
  3714   virtual void coordinator_yield();  // stuff done by coordinator
  3715   bool result() { return _result; }
  3717   void reset(HeapWord* ra) {
  3718     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
  3719     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
  3720     assert(ra             <  _perm_space->end(), "ra too large");
  3721     _restart_addr = _global_finger = ra;
  3722     _term.reset_for_reuse();
  3725   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3726                                            OopTaskQueue* work_q);
  3728  private:
  3729   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3730   void do_work_steal(int i);
  3731   void bump_global_finger(HeapWord* f);
  3732 };
  3734 void CMSConcMarkingTerminator::yield() {
  3735   if (ConcurrentMarkSweepThread::should_yield() &&
  3736       !_collector->foregroundGCIsActive() &&
  3737       _yield) {
  3738     _task->yield();
  3739   } else {
  3740     ParallelTaskTerminator::yield();
  3744 ////////////////////////////////////////////////////////////////
  3745 // Concurrent Marking Algorithm Sketch
  3746 ////////////////////////////////////////////////////////////////
  3747 // Until all tasks exhausted (both spaces):
  3748 // -- claim next available chunk
  3749 // -- bump global finger via CAS
  3750 // -- find first object that starts in this chunk
  3751 //    and start scanning bitmap from that position
  3752 // -- scan marked objects for oops
  3753 // -- CAS-mark target, and if successful:
  3754 //    . if target oop is above global finger (volatile read)
  3755 //      nothing to do
  3756 //    . if target oop is in chunk and above local finger
  3757 //        then nothing to do
  3758 //    . else push on work-queue
  3759 // -- Deal with possible overflow issues:
  3760 //    . local work-queue overflow causes stuff to be pushed on
  3761 //      global (common) overflow queue
  3762 //    . always first empty local work queue
  3763 //    . then get a batch of oops from global work queue if any
  3764 //    . then do work stealing
  3765 // -- When all tasks claimed (both spaces)
  3766 //    and local work queue empty,
  3767 //    then in a loop do:
  3768 //    . check global overflow stack; steal a batch of oops and trace
  3769 //    . try to steal from other threads oif GOS is empty
  3770 //    . if neither is available, offer termination
  3771 // -- Terminate and return result
  3772 //
  3773 void CMSConcMarkingTask::work(int i) {
  3774   elapsedTimer _timer;
  3775   ResourceMark rm;
  3776   HandleMark hm;
  3778   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3780   // Before we begin work, our work queue should be empty
  3781   assert(work_queue(i)->size() == 0, "Expected to be empty");
  3782   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3783   _timer.start();
  3784   do_scan_and_mark(i, _cms_space);
  3785   _timer.stop();
  3786   if (PrintCMSStatistics != 0) {
  3787     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3788       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3791   // ... do the same for the _perm_space
  3792   _timer.reset();
  3793   _timer.start();
  3794   do_scan_and_mark(i, _perm_space);
  3795   _timer.stop();
  3796   if (PrintCMSStatistics != 0) {
  3797     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
  3798       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3801   // ... do work stealing
  3802   _timer.reset();
  3803   _timer.start();
  3804   do_work_steal(i);
  3805   _timer.stop();
  3806   if (PrintCMSStatistics != 0) {
  3807     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3808       i, _timer.seconds()); // XXX: need xxx/xxx type of notation, two timers
  3810   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3811   assert(work_queue(i)->size() == 0, "Should have been emptied");
  3812   // Note that under the current task protocol, the
  3813   // following assertion is true even of the spaces
  3814   // expanded since the completion of the concurrent
  3815   // marking. XXX This will likely change under a strict
  3816   // ABORT semantics.
  3817   assert(_global_finger >  _cms_space->end() &&
  3818          _global_finger >= _perm_space->end(),
  3819          "All tasks have been completed");
  3820   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3823 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3824   HeapWord* read = _global_finger;
  3825   HeapWord* cur  = read;
  3826   while (f > read) {
  3827     cur = read;
  3828     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3829     if (cur == read) {
  3830       // our cas succeeded
  3831       assert(_global_finger >= f, "protocol consistency");
  3832       break;
  3837 // This is really inefficient, and should be redone by
  3838 // using (not yet available) block-read and -write interfaces to the
  3839 // stack and the work_queue. XXX FIX ME !!!
  3840 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3841                                                       OopTaskQueue* work_q) {
  3842   // Fast lock-free check
  3843   if (ovflw_stk->length() == 0) {
  3844     return false;
  3846   assert(work_q->size() == 0, "Shouldn't steal");
  3847   MutexLockerEx ml(ovflw_stk->par_lock(),
  3848                    Mutex::_no_safepoint_check_flag);
  3849   // Grab up to 1/4 the size of the work queue
  3850   size_t num = MIN2((size_t)work_q->max_elems()/4,
  3851                     (size_t)ParGCDesiredObjsFromOverflowList);
  3852   num = MIN2(num, ovflw_stk->length());
  3853   for (int i = (int) num; i > 0; i--) {
  3854     oop cur = ovflw_stk->pop();
  3855     assert(cur != NULL, "Counted wrong?");
  3856     work_q->push(cur);
  3858   return num > 0;
  3861 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3862   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3863   int n_tasks = pst->n_tasks();
  3864   // We allow that there may be no tasks to do here because
  3865   // we are restarting after a stack overflow.
  3866   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
  3867   int nth_task = 0;
  3869   HeapWord* aligned_start = sp->bottom();
  3870   if (sp->used_region().contains(_restart_addr)) {
  3871     // Align down to a card boundary for the start of 0th task
  3872     // for this space.
  3873     aligned_start =
  3874       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
  3875                                  CardTableModRefBS::card_size);
  3878   size_t chunk_size = sp->marking_task_size();
  3879   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3880     // Having claimed the nth task in this space,
  3881     // compute the chunk that it corresponds to:
  3882     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
  3883                                aligned_start + (nth_task+1)*chunk_size);
  3884     // Try and bump the global finger via a CAS;
  3885     // note that we need to do the global finger bump
  3886     // _before_ taking the intersection below, because
  3887     // the task corresponding to that region will be
  3888     // deemed done even if the used_region() expands
  3889     // because of allocation -- as it almost certainly will
  3890     // during start-up while the threads yield in the
  3891     // closure below.
  3892     HeapWord* finger = span.end();
  3893     bump_global_finger(finger);   // atomically
  3894     // There are null tasks here corresponding to chunks
  3895     // beyond the "top" address of the space.
  3896     span = span.intersection(sp->used_region());
  3897     if (!span.is_empty()) {  // Non-null task
  3898       HeapWord* prev_obj;
  3899       assert(!span.contains(_restart_addr) || nth_task == 0,
  3900              "Inconsistency");
  3901       if (nth_task == 0) {
  3902         // For the 0th task, we'll not need to compute a block_start.
  3903         if (span.contains(_restart_addr)) {
  3904           // In the case of a restart because of stack overflow,
  3905           // we might additionally skip a chunk prefix.
  3906           prev_obj = _restart_addr;
  3907         } else {
  3908           prev_obj = span.start();
  3910       } else {
  3911         // We want to skip the first object because
  3912         // the protocol is to scan any object in its entirety
  3913         // that _starts_ in this span; a fortiori, any
  3914         // object starting in an earlier span is scanned
  3915         // as part of an earlier claimed task.
  3916         // Below we use the "careful" version of block_start
  3917         // so we do not try to navigate uninitialized objects.
  3918         prev_obj = sp->block_start_careful(span.start());
  3919         // Below we use a variant of block_size that uses the
  3920         // Printezis bits to avoid waiting for allocated
  3921         // objects to become initialized/parsable.
  3922         while (prev_obj < span.start()) {
  3923           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3924           if (sz > 0) {
  3925             prev_obj += sz;
  3926           } else {
  3927             // In this case we may end up doing a bit of redundant
  3928             // scanning, but that appears unavoidable, short of
  3929             // locking the free list locks; see bug 6324141.
  3930             break;
  3934       if (prev_obj < span.end()) {
  3935         MemRegion my_span = MemRegion(prev_obj, span.end());
  3936         // Do the marking work within a non-empty span --
  3937         // the last argument to the constructor indicates whether the
  3938         // iteration should be incremental with periodic yields.
  3939         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3940                                     &_collector->_markBitMap,
  3941                                     work_queue(i),
  3942                                     &_collector->_markStack,
  3943                                     &_collector->_revisitStack,
  3944                                     _asynch);
  3945         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3946       } // else nothing to do for this task
  3947     }   // else nothing to do for this task
  3949   // We'd be tempted to assert here that since there are no
  3950   // more tasks left to claim in this space, the global_finger
  3951   // must exceed space->top() and a fortiori space->end(). However,
  3952   // that would not quite be correct because the bumping of
  3953   // global_finger occurs strictly after the claiming of a task,
  3954   // so by the time we reach here the global finger may not yet
  3955   // have been bumped up by the thread that claimed the last
  3956   // task.
  3957   pst->all_tasks_completed();
  3960 class Par_ConcMarkingClosure: public OopClosure {
  3961  private:
  3962   CMSCollector* _collector;
  3963   MemRegion     _span;
  3964   CMSBitMap*    _bit_map;
  3965   CMSMarkStack* _overflow_stack;
  3966   CMSMarkStack* _revisit_stack;     // XXXXXX Check proper use
  3967   OopTaskQueue* _work_queue;
  3968  protected:
  3969   DO_OOP_WORK_DEFN
  3970  public:
  3971   Par_ConcMarkingClosure(CMSCollector* collector, OopTaskQueue* work_queue,
  3972                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  3973     _collector(collector),
  3974     _span(_collector->_span),
  3975     _work_queue(work_queue),
  3976     _bit_map(bit_map),
  3977     _overflow_stack(overflow_stack) { }   // need to initialize revisit stack etc.
  3978   virtual void do_oop(oop* p);
  3979   virtual void do_oop(narrowOop* p);
  3980   void trim_queue(size_t max);
  3981   void handle_stack_overflow(HeapWord* lost);
  3982 };
  3984 // Grey object scanning during work stealing phase --
  3985 // the salient assumption here is that any references
  3986 // that are in these stolen objects being scanned must
  3987 // already have been initialized (else they would not have
  3988 // been published), so we do not need to check for
  3989 // uninitialized objects before pushing here.
  3990 void Par_ConcMarkingClosure::do_oop(oop obj) {
  3991   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  3992   HeapWord* addr = (HeapWord*)obj;
  3993   // Check if oop points into the CMS generation
  3994   // and is not marked
  3995   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  3996     // a white object ...
  3997     // If we manage to "claim" the object, by being the
  3998     // first thread to mark it, then we push it on our
  3999     // marking stack
  4000     if (_bit_map->par_mark(addr)) {     // ... now grey
  4001       // push on work queue (grey set)
  4002       bool simulate_overflow = false;
  4003       NOT_PRODUCT(
  4004         if (CMSMarkStackOverflowALot &&
  4005             _collector->simulate_overflow()) {
  4006           // simulate a stack overflow
  4007           simulate_overflow = true;
  4010       if (simulate_overflow ||
  4011           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  4012         // stack overflow
  4013         if (PrintCMSStatistics != 0) {
  4014           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  4015                                  SIZE_FORMAT, _overflow_stack->capacity());
  4017         // We cannot assert that the overflow stack is full because
  4018         // it may have been emptied since.
  4019         assert(simulate_overflow ||
  4020                _work_queue->size() == _work_queue->max_elems(),
  4021               "Else push should have succeeded");
  4022         handle_stack_overflow(addr);
  4024     } // Else, some other thread got there first
  4028 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4029 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4031 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4032   while (_work_queue->size() > max) {
  4033     oop new_oop;
  4034     if (_work_queue->pop_local(new_oop)) {
  4035       assert(new_oop->is_oop(), "Should be an oop");
  4036       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4037       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4038       assert(new_oop->is_parsable(), "Should be parsable");
  4039       new_oop->oop_iterate(this);  // do_oop() above
  4044 // Upon stack overflow, we discard (part of) the stack,
  4045 // remembering the least address amongst those discarded
  4046 // in CMSCollector's _restart_address.
  4047 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4048   // We need to do this under a mutex to prevent other
  4049   // workers from interfering with the work done below.
  4050   MutexLockerEx ml(_overflow_stack->par_lock(),
  4051                    Mutex::_no_safepoint_check_flag);
  4052   // Remember the least grey address discarded
  4053   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4054   _collector->lower_restart_addr(ra);
  4055   _overflow_stack->reset();  // discard stack contents
  4056   _overflow_stack->expand(); // expand the stack if possible
  4060 void CMSConcMarkingTask::do_work_steal(int i) {
  4061   OopTaskQueue* work_q = work_queue(i);
  4062   oop obj_to_scan;
  4063   CMSBitMap* bm = &(_collector->_markBitMap);
  4064   CMSMarkStack* ovflw = &(_collector->_markStack);
  4065   int* seed = _collector->hash_seed(i);
  4066   Par_ConcMarkingClosure cl(_collector, work_q, bm, ovflw);
  4067   while (true) {
  4068     cl.trim_queue(0);
  4069     assert(work_q->size() == 0, "Should have been emptied above");
  4070     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4071       // Can't assert below because the work obtained from the
  4072       // overflow stack may already have been stolen from us.
  4073       // assert(work_q->size() > 0, "Work from overflow stack");
  4074       continue;
  4075     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4076       assert(obj_to_scan->is_oop(), "Should be an oop");
  4077       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4078       obj_to_scan->oop_iterate(&cl);
  4079     } else if (terminator()->offer_termination()) {
  4080       assert(work_q->size() == 0, "Impossible!");
  4081       break;
  4086 // This is run by the CMS (coordinator) thread.
  4087 void CMSConcMarkingTask::coordinator_yield() {
  4088   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4089          "CMS thread should hold CMS token");
  4091   // First give up the locks, then yield, then re-lock
  4092   // We should probably use a constructor/destructor idiom to
  4093   // do this unlock/lock or modify the MutexUnlocker class to
  4094   // serve our purpose. XXX
  4095   assert_lock_strong(_bit_map_lock);
  4096   _bit_map_lock->unlock();
  4097   ConcurrentMarkSweepThread::desynchronize(true);
  4098   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4099   _collector->stopTimer();
  4100   if (PrintCMSStatistics != 0) {
  4101     _collector->incrementYields();
  4103   _collector->icms_wait();
  4105   // It is possible for whichever thread initiated the yield request
  4106   // not to get a chance to wake up and take the bitmap lock between
  4107   // this thread releasing it and reacquiring it. So, while the
  4108   // should_yield() flag is on, let's sleep for a bit to give the
  4109   // other thread a chance to wake up. The limit imposed on the number
  4110   // of iterations is defensive, to avoid any unforseen circumstances
  4111   // putting us into an infinite loop. Since it's always been this
  4112   // (coordinator_yield()) method that was observed to cause the
  4113   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4114   // which is by default non-zero. For the other seven methods that
  4115   // also perform the yield operation, as are using a different
  4116   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4117   // can enable the sleeping for those methods too, if necessary.
  4118   // See 6442774.
  4119   //
  4120   // We really need to reconsider the synchronization between the GC
  4121   // thread and the yield-requesting threads in the future and we
  4122   // should really use wait/notify, which is the recommended
  4123   // way of doing this type of interaction. Additionally, we should
  4124   // consolidate the eight methods that do the yield operation and they
  4125   // are almost identical into one for better maintenability and
  4126   // readability. See 6445193.
  4127   //
  4128   // Tony 2006.06.29
  4129   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4130                    ConcurrentMarkSweepThread::should_yield() &&
  4131                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4132     os::sleep(Thread::current(), 1, false);
  4133     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4136   ConcurrentMarkSweepThread::synchronize(true);
  4137   _bit_map_lock->lock_without_safepoint_check();
  4138   _collector->startTimer();
  4141 bool CMSCollector::do_marking_mt(bool asynch) {
  4142   assert(ParallelCMSThreads > 0 && conc_workers() != NULL, "precondition");
  4143   // In the future this would be determined ergonomically, based
  4144   // on #cpu's, # active mutator threads (and load), and mutation rate.
  4145   int num_workers = ParallelCMSThreads;
  4147   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4148   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  4150   CMSConcMarkingTask tsk(this, cms_space, perm_space,
  4151                          asynch, num_workers /* number requested XXX */,
  4152                          conc_workers(), task_queues());
  4154   // Since the actual number of workers we get may be different
  4155   // from the number we requested above, do we need to do anything different
  4156   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4157   // class?? XXX
  4158   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4159   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
  4161   // Refs discovery is already non-atomic.
  4162   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4163   // Mutate the Refs discovery so it is MT during the
  4164   // multi-threaded marking phase.
  4165   ReferenceProcessorMTMutator mt(ref_processor(), num_workers > 1);
  4167   conc_workers()->start_task(&tsk);
  4168   while (tsk.yielded()) {
  4169     tsk.coordinator_yield();
  4170     conc_workers()->continue_task(&tsk);
  4172   // If the task was aborted, _restart_addr will be non-NULL
  4173   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4174   while (_restart_addr != NULL) {
  4175     // XXX For now we do not make use of ABORTED state and have not
  4176     // yet implemented the right abort semantics (even in the original
  4177     // single-threaded CMS case). That needs some more investigation
  4178     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4179     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4180     // If _restart_addr is non-NULL, a marking stack overflow
  4181     // occurred; we need to do a fresh marking iteration from the
  4182     // indicated restart address.
  4183     if (_foregroundGCIsActive && asynch) {
  4184       // We may be running into repeated stack overflows, having
  4185       // reached the limit of the stack size, while making very
  4186       // slow forward progress. It may be best to bail out and
  4187       // let the foreground collector do its job.
  4188       // Clear _restart_addr, so that foreground GC
  4189       // works from scratch. This avoids the headache of
  4190       // a "rescan" which would otherwise be needed because
  4191       // of the dirty mod union table & card table.
  4192       _restart_addr = NULL;
  4193       return false;
  4195     // Adjust the task to restart from _restart_addr
  4196     tsk.reset(_restart_addr);
  4197     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4198                   _restart_addr);
  4199     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
  4200                   _restart_addr);
  4201     _restart_addr = NULL;
  4202     // Get the workers going again
  4203     conc_workers()->start_task(&tsk);
  4204     while (tsk.yielded()) {
  4205       tsk.coordinator_yield();
  4206       conc_workers()->continue_task(&tsk);
  4209   assert(tsk.completed(), "Inconsistency");
  4210   assert(tsk.result() == true, "Inconsistency");
  4211   return true;
  4214 bool CMSCollector::do_marking_st(bool asynch) {
  4215   ResourceMark rm;
  4216   HandleMark   hm;
  4218   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4219     &_markStack, &_revisitStack, CMSYield && asynch);
  4220   // the last argument to iterate indicates whether the iteration
  4221   // should be incremental with periodic yields.
  4222   _markBitMap.iterate(&markFromRootsClosure);
  4223   // If _restart_addr is non-NULL, a marking stack overflow
  4224   // occurred; we need to do a fresh iteration from the
  4225   // indicated restart address.
  4226   while (_restart_addr != NULL) {
  4227     if (_foregroundGCIsActive && asynch) {
  4228       // We may be running into repeated stack overflows, having
  4229       // reached the limit of the stack size, while making very
  4230       // slow forward progress. It may be best to bail out and
  4231       // let the foreground collector do its job.
  4232       // Clear _restart_addr, so that foreground GC
  4233       // works from scratch. This avoids the headache of
  4234       // a "rescan" which would otherwise be needed because
  4235       // of the dirty mod union table & card table.
  4236       _restart_addr = NULL;
  4237       return false;  // indicating failure to complete marking
  4239     // Deal with stack overflow:
  4240     // we restart marking from _restart_addr
  4241     HeapWord* ra = _restart_addr;
  4242     markFromRootsClosure.reset(ra);
  4243     _restart_addr = NULL;
  4244     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4246   return true;
  4249 void CMSCollector::preclean() {
  4250   check_correct_thread_executing();
  4251   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4252   verify_work_stacks_empty();
  4253   verify_overflow_empty();
  4254   _abort_preclean = false;
  4255   if (CMSPrecleaningEnabled) {
  4256     _eden_chunk_index = 0;
  4257     size_t used = get_eden_used();
  4258     size_t capacity = get_eden_capacity();
  4259     // Don't start sampling unless we will get sufficiently
  4260     // many samples.
  4261     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4262                 * CMSScheduleRemarkEdenPenetration)) {
  4263       _start_sampling = true;
  4264     } else {
  4265       _start_sampling = false;
  4267     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4268     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4269     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4271   CMSTokenSync x(true); // is cms thread
  4272   if (CMSPrecleaningEnabled) {
  4273     sample_eden();
  4274     _collectorState = AbortablePreclean;
  4275   } else {
  4276     _collectorState = FinalMarking;
  4278   verify_work_stacks_empty();
  4279   verify_overflow_empty();
  4282 // Try and schedule the remark such that young gen
  4283 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4284 void CMSCollector::abortable_preclean() {
  4285   check_correct_thread_executing();
  4286   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4287   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4289   // If Eden's current occupancy is below this threshold,
  4290   // immediately schedule the remark; else preclean
  4291   // past the next scavenge in an effort to
  4292   // schedule the pause as described avove. By choosing
  4293   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4294   // we will never do an actual abortable preclean cycle.
  4295   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4296     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4297     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4298     // We need more smarts in the abortable preclean
  4299     // loop below to deal with cases where allocation
  4300     // in young gen is very very slow, and our precleaning
  4301     // is running a losing race against a horde of
  4302     // mutators intent on flooding us with CMS updates
  4303     // (dirty cards).
  4304     // One, admittedly dumb, strategy is to give up
  4305     // after a certain number of abortable precleaning loops
  4306     // or after a certain maximum time. We want to make
  4307     // this smarter in the next iteration.
  4308     // XXX FIX ME!!! YSR
  4309     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4310     while (!(should_abort_preclean() ||
  4311              ConcurrentMarkSweepThread::should_terminate())) {
  4312       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4313       cumworkdone += workdone;
  4314       loops++;
  4315       // Voluntarily terminate abortable preclean phase if we have
  4316       // been at it for too long.
  4317       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4318           loops >= CMSMaxAbortablePrecleanLoops) {
  4319         if (PrintGCDetails) {
  4320           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4322         break;
  4324       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4325         if (PrintGCDetails) {
  4326           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4328         break;
  4330       // If we are doing little work each iteration, we should
  4331       // take a short break.
  4332       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4333         // Sleep for some time, waiting for work to accumulate
  4334         stopTimer();
  4335         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4336         startTimer();
  4337         waited++;
  4340     if (PrintCMSStatistics > 0) {
  4341       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4342                           loops, waited, cumworkdone);
  4345   CMSTokenSync x(true); // is cms thread
  4346   if (_collectorState != Idling) {
  4347     assert(_collectorState == AbortablePreclean,
  4348            "Spontaneous state transition?");
  4349     _collectorState = FinalMarking;
  4350   } // Else, a foreground collection completed this CMS cycle.
  4351   return;
  4354 // Respond to an Eden sampling opportunity
  4355 void CMSCollector::sample_eden() {
  4356   // Make sure a young gc cannot sneak in between our
  4357   // reading and recording of a sample.
  4358   assert(Thread::current()->is_ConcurrentGC_thread(),
  4359          "Only the cms thread may collect Eden samples");
  4360   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4361          "Should collect samples while holding CMS token");
  4362   if (!_start_sampling) {
  4363     return;
  4365   if (_eden_chunk_array) {
  4366     if (_eden_chunk_index < _eden_chunk_capacity) {
  4367       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4368       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4369              "Unexpected state of Eden");
  4370       // We'd like to check that what we just sampled is an oop-start address;
  4371       // however, we cannot do that here since the object may not yet have been
  4372       // initialized. So we'll instead do the check when we _use_ this sample
  4373       // later.
  4374       if (_eden_chunk_index == 0 ||
  4375           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4376                          _eden_chunk_array[_eden_chunk_index-1])
  4377            >= CMSSamplingGrain)) {
  4378         _eden_chunk_index++;  // commit sample
  4382   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4383     size_t used = get_eden_used();
  4384     size_t capacity = get_eden_capacity();
  4385     assert(used <= capacity, "Unexpected state of Eden");
  4386     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4387       _abort_preclean = true;
  4393 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4394   assert(_collectorState == Precleaning ||
  4395          _collectorState == AbortablePreclean, "incorrect state");
  4396   ResourceMark rm;
  4397   HandleMark   hm;
  4398   // Do one pass of scrubbing the discovered reference lists
  4399   // to remove any reference objects with strongly-reachable
  4400   // referents.
  4401   if (clean_refs) {
  4402     ReferenceProcessor* rp = ref_processor();
  4403     CMSPrecleanRefsYieldClosure yield_cl(this);
  4404     assert(rp->span().equals(_span), "Spans should be equal");
  4405     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4406                                    &_markStack, true /* preclean */);
  4407     CMSDrainMarkingStackClosure complete_trace(this,
  4408                                    _span, &_markBitMap, &_markStack,
  4409                                    &keep_alive, true /* preclean */);
  4411     // We don't want this step to interfere with a young
  4412     // collection because we don't want to take CPU
  4413     // or memory bandwidth away from the young GC threads
  4414     // (which may be as many as there are CPUs).
  4415     // Note that we don't need to protect ourselves from
  4416     // interference with mutators because they can't
  4417     // manipulate the discovered reference lists nor affect
  4418     // the computed reachability of the referents, the
  4419     // only properties manipulated by the precleaning
  4420     // of these reference lists.
  4421     stopTimer();
  4422     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4423                             bitMapLock());
  4424     startTimer();
  4425     sample_eden();
  4426     // The following will yield to allow foreground
  4427     // collection to proceed promptly. XXX YSR:
  4428     // The code in this method may need further
  4429     // tweaking for better performance and some restructuring
  4430     // for cleaner interfaces.
  4431     rp->preclean_discovered_references(
  4432           rp->is_alive_non_header(), &keep_alive, &complete_trace,
  4433           &yield_cl);
  4436   if (clean_survivor) {  // preclean the active survivor space(s)
  4437     assert(_young_gen->kind() == Generation::DefNew ||
  4438            _young_gen->kind() == Generation::ParNew ||
  4439            _young_gen->kind() == Generation::ASParNew,
  4440          "incorrect type for cast");
  4441     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4442     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4443                              &_markBitMap, &_modUnionTable,
  4444                              &_markStack, &_revisitStack,
  4445                              true /* precleaning phase */);
  4446     stopTimer();
  4447     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4448                              bitMapLock());
  4449     startTimer();
  4450     unsigned int before_count =
  4451       GenCollectedHeap::heap()->total_collections();
  4452     SurvivorSpacePrecleanClosure
  4453       sss_cl(this, _span, &_markBitMap, &_markStack,
  4454              &pam_cl, before_count, CMSYield);
  4455     dng->from()->object_iterate_careful(&sss_cl);
  4456     dng->to()->object_iterate_careful(&sss_cl);
  4458   MarkRefsIntoAndScanClosure
  4459     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4460              &_markStack, &_revisitStack, this, CMSYield,
  4461              true /* precleaning phase */);
  4462   // CAUTION: The following closure has persistent state that may need to
  4463   // be reset upon a decrease in the sequence of addresses it
  4464   // processes.
  4465   ScanMarkedObjectsAgainCarefullyClosure
  4466     smoac_cl(this, _span,
  4467       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
  4469   // Preclean dirty cards in ModUnionTable and CardTable using
  4470   // appropriate convergence criterion;
  4471   // repeat CMSPrecleanIter times unless we find that
  4472   // we are losing.
  4473   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4474   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4475          "Bad convergence multiplier");
  4476   assert(CMSPrecleanThreshold >= 100,
  4477          "Unreasonably low CMSPrecleanThreshold");
  4479   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4480   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4481        numIter < CMSPrecleanIter;
  4482        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4483     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4484     if (CMSPermGenPrecleaningEnabled) {
  4485       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
  4487     if (Verbose && PrintGCDetails) {
  4488       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4490     // Either there are very few dirty cards, so re-mark
  4491     // pause will be small anyway, or our pre-cleaning isn't
  4492     // that much faster than the rate at which cards are being
  4493     // dirtied, so we might as well stop and re-mark since
  4494     // precleaning won't improve our re-mark time by much.
  4495     if (curNumCards <= CMSPrecleanThreshold ||
  4496         (numIter > 0 &&
  4497          (curNumCards * CMSPrecleanDenominator >
  4498          lastNumCards * CMSPrecleanNumerator))) {
  4499       numIter++;
  4500       cumNumCards += curNumCards;
  4501       break;
  4504   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4505   if (CMSPermGenPrecleaningEnabled) {
  4506     curNumCards += preclean_card_table(_permGen, &smoac_cl);
  4508   cumNumCards += curNumCards;
  4509   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4510     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4511                   curNumCards, cumNumCards, numIter);
  4513   return cumNumCards;   // as a measure of useful work done
  4516 // PRECLEANING NOTES:
  4517 // Precleaning involves:
  4518 // . reading the bits of the modUnionTable and clearing the set bits.
  4519 // . For the cards corresponding to the set bits, we scan the
  4520 //   objects on those cards. This means we need the free_list_lock
  4521 //   so that we can safely iterate over the CMS space when scanning
  4522 //   for oops.
  4523 // . When we scan the objects, we'll be both reading and setting
  4524 //   marks in the marking bit map, so we'll need the marking bit map.
  4525 // . For protecting _collector_state transitions, we take the CGC_lock.
  4526 //   Note that any races in the reading of of card table entries by the
  4527 //   CMS thread on the one hand and the clearing of those entries by the
  4528 //   VM thread or the setting of those entries by the mutator threads on the
  4529 //   other are quite benign. However, for efficiency it makes sense to keep
  4530 //   the VM thread from racing with the CMS thread while the latter is
  4531 //   dirty card info to the modUnionTable. We therefore also use the
  4532 //   CGC_lock to protect the reading of the card table and the mod union
  4533 //   table by the CM thread.
  4534 // . We run concurrently with mutator updates, so scanning
  4535 //   needs to be done carefully  -- we should not try to scan
  4536 //   potentially uninitialized objects.
  4537 //
  4538 // Locking strategy: While holding the CGC_lock, we scan over and
  4539 // reset a maximal dirty range of the mod union / card tables, then lock
  4540 // the free_list_lock and bitmap lock to do a full marking, then
  4541 // release these locks; and repeat the cycle. This allows for a
  4542 // certain amount of fairness in the sharing of these locks between
  4543 // the CMS collector on the one hand, and the VM thread and the
  4544 // mutators on the other.
  4546 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4547 // further below are largely identical; if you need to modify
  4548 // one of these methods, please check the other method too.
  4550 size_t CMSCollector::preclean_mod_union_table(
  4551   ConcurrentMarkSweepGeneration* gen,
  4552   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4553   verify_work_stacks_empty();
  4554   verify_overflow_empty();
  4556   // strategy: starting with the first card, accumulate contiguous
  4557   // ranges of dirty cards; clear these cards, then scan the region
  4558   // covered by these cards.
  4560   // Since all of the MUT is committed ahead, we can just use
  4561   // that, in case the generations expand while we are precleaning.
  4562   // It might also be fine to just use the committed part of the
  4563   // generation, but we might potentially miss cards when the
  4564   // generation is rapidly expanding while we are in the midst
  4565   // of precleaning.
  4566   HeapWord* startAddr = gen->reserved().start();
  4567   HeapWord* endAddr   = gen->reserved().end();
  4569   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4571   size_t numDirtyCards, cumNumDirtyCards;
  4572   HeapWord *nextAddr, *lastAddr;
  4573   for (cumNumDirtyCards = numDirtyCards = 0,
  4574        nextAddr = lastAddr = startAddr;
  4575        nextAddr < endAddr;
  4576        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4578     ResourceMark rm;
  4579     HandleMark   hm;
  4581     MemRegion dirtyRegion;
  4583       stopTimer();
  4584       CMSTokenSync ts(true);
  4585       startTimer();
  4586       sample_eden();
  4587       // Get dirty region starting at nextOffset (inclusive),
  4588       // simultaneously clearing it.
  4589       dirtyRegion =
  4590         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4591       assert(dirtyRegion.start() >= nextAddr,
  4592              "returned region inconsistent?");
  4594     // Remember where the next search should begin.
  4595     // The returned region (if non-empty) is a right open interval,
  4596     // so lastOffset is obtained from the right end of that
  4597     // interval.
  4598     lastAddr = dirtyRegion.end();
  4599     // Should do something more transparent and less hacky XXX
  4600     numDirtyCards =
  4601       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4603     // We'll scan the cards in the dirty region (with periodic
  4604     // yields for foreground GC as needed).
  4605     if (!dirtyRegion.is_empty()) {
  4606       assert(numDirtyCards > 0, "consistency check");
  4607       HeapWord* stop_point = NULL;
  4608       stopTimer();
  4609       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4610                                bitMapLock());
  4611       startTimer();
  4613         verify_work_stacks_empty();
  4614         verify_overflow_empty();
  4615         sample_eden();
  4616         stop_point =
  4617           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4619       if (stop_point != NULL) {
  4620         // The careful iteration stopped early either because it found an
  4621         // uninitialized object, or because we were in the midst of an
  4622         // "abortable preclean", which should now be aborted. Redirty
  4623         // the bits corresponding to the partially-scanned or unscanned
  4624         // cards. We'll either restart at the next block boundary or
  4625         // abort the preclean.
  4626         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
  4627                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4628                "Unparsable objects should only be in perm gen.");
  4629         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4630         if (should_abort_preclean()) {
  4631           break; // out of preclean loop
  4632         } else {
  4633           // Compute the next address at which preclean should pick up;
  4634           // might need bitMapLock in order to read P-bits.
  4635           lastAddr = next_card_start_after_block(stop_point);
  4638     } else {
  4639       assert(lastAddr == endAddr, "consistency check");
  4640       assert(numDirtyCards == 0, "consistency check");
  4641       break;
  4644   verify_work_stacks_empty();
  4645   verify_overflow_empty();
  4646   return cumNumDirtyCards;
  4649 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4650 // below are largely identical; if you need to modify
  4651 // one of these methods, please check the other method too.
  4653 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4654   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4655   // strategy: it's similar to precleamModUnionTable above, in that
  4656   // we accumulate contiguous ranges of dirty cards, mark these cards
  4657   // precleaned, then scan the region covered by these cards.
  4658   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4659   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4661   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4663   size_t numDirtyCards, cumNumDirtyCards;
  4664   HeapWord *lastAddr, *nextAddr;
  4666   for (cumNumDirtyCards = numDirtyCards = 0,
  4667        nextAddr = lastAddr = startAddr;
  4668        nextAddr < endAddr;
  4669        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4671     ResourceMark rm;
  4672     HandleMark   hm;
  4674     MemRegion dirtyRegion;
  4676       // See comments in "Precleaning notes" above on why we
  4677       // do this locking. XXX Could the locking overheads be
  4678       // too high when dirty cards are sparse? [I don't think so.]
  4679       stopTimer();
  4680       CMSTokenSync x(true); // is cms thread
  4681       startTimer();
  4682       sample_eden();
  4683       // Get and clear dirty region from card table
  4684       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4685                                     MemRegion(nextAddr, endAddr),
  4686                                     true,
  4687                                     CardTableModRefBS::precleaned_card_val());
  4689       assert(dirtyRegion.start() >= nextAddr,
  4690              "returned region inconsistent?");
  4692     lastAddr = dirtyRegion.end();
  4693     numDirtyCards =
  4694       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4696     if (!dirtyRegion.is_empty()) {
  4697       stopTimer();
  4698       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4699       startTimer();
  4700       sample_eden();
  4701       verify_work_stacks_empty();
  4702       verify_overflow_empty();
  4703       HeapWord* stop_point =
  4704         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4705       if (stop_point != NULL) {
  4706         // The careful iteration stopped early because it found an
  4707         // uninitialized object.  Redirty the bits corresponding to the
  4708         // partially-scanned or unscanned cards, and start again at the
  4709         // next block boundary.
  4710         assert(CMSPermGenPrecleaningEnabled ||
  4711                (_collectorState == AbortablePreclean && should_abort_preclean()),
  4712                "Unparsable objects should only be in perm gen.");
  4713         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4714         if (should_abort_preclean()) {
  4715           break; // out of preclean loop
  4716         } else {
  4717           // Compute the next address at which preclean should pick up.
  4718           lastAddr = next_card_start_after_block(stop_point);
  4721     } else {
  4722       break;
  4725   verify_work_stacks_empty();
  4726   verify_overflow_empty();
  4727   return cumNumDirtyCards;
  4730 void CMSCollector::checkpointRootsFinal(bool asynch,
  4731   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4732   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4733   check_correct_thread_executing();
  4734   // world is stopped at this checkpoint
  4735   assert(SafepointSynchronize::is_at_safepoint(),
  4736          "world should be stopped");
  4737   verify_work_stacks_empty();
  4738   verify_overflow_empty();
  4740   SpecializationStats::clear();
  4741   if (PrintGCDetails) {
  4742     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4743                         _young_gen->used() / K,
  4744                         _young_gen->capacity() / K);
  4746   if (asynch) {
  4747     if (CMSScavengeBeforeRemark) {
  4748       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4749       // Temporarily set flag to false, GCH->do_collection will
  4750       // expect it to be false and set to true
  4751       FlagSetting fl(gch->_is_gc_active, false);
  4752       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4753         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4754       int level = _cmsGen->level() - 1;
  4755       if (level >= 0) {
  4756         gch->do_collection(true,        // full (i.e. force, see below)
  4757                            false,       // !clear_all_soft_refs
  4758                            0,           // size
  4759                            false,       // is_tlab
  4760                            level        // max_level
  4761                           );
  4764     FreelistLocker x(this);
  4765     MutexLockerEx y(bitMapLock(),
  4766                     Mutex::_no_safepoint_check_flag);
  4767     assert(!init_mark_was_synchronous, "but that's impossible!");
  4768     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4769   } else {
  4770     // already have all the locks
  4771     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4772                              init_mark_was_synchronous);
  4774   verify_work_stacks_empty();
  4775   verify_overflow_empty();
  4776   SpecializationStats::print();
  4779 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4780   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4782   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4784   assert(haveFreelistLocks(), "must have free list locks");
  4785   assert_lock_strong(bitMapLock());
  4787   if (UseAdaptiveSizePolicy) {
  4788     size_policy()->checkpoint_roots_final_begin();
  4791   ResourceMark rm;
  4792   HandleMark   hm;
  4794   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4796   if (should_unload_classes()) {
  4797     CodeCache::gc_prologue();
  4799   assert(haveFreelistLocks(), "must have free list locks");
  4800   assert_lock_strong(bitMapLock());
  4802   if (!init_mark_was_synchronous) {
  4803     // We might assume that we need not fill TLAB's when
  4804     // CMSScavengeBeforeRemark is set, because we may have just done
  4805     // a scavenge which would have filled all TLAB's -- and besides
  4806     // Eden would be empty. This however may not always be the case --
  4807     // for instance although we asked for a scavenge, it may not have
  4808     // happened because of a JNI critical section. We probably need
  4809     // a policy for deciding whether we can in that case wait until
  4810     // the critical section releases and then do the remark following
  4811     // the scavenge, and skip it here. In the absence of that policy,
  4812     // or of an indication of whether the scavenge did indeed occur,
  4813     // we cannot rely on TLAB's having been filled and must do
  4814     // so here just in case a scavenge did not happen.
  4815     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4816     // Update the saved marks which may affect the root scans.
  4817     gch->save_marks();
  4820       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4822       // Note on the role of the mod union table:
  4823       // Since the marker in "markFromRoots" marks concurrently with
  4824       // mutators, it is possible for some reachable objects not to have been
  4825       // scanned. For instance, an only reference to an object A was
  4826       // placed in object B after the marker scanned B. Unless B is rescanned,
  4827       // A would be collected. Such updates to references in marked objects
  4828       // are detected via the mod union table which is the set of all cards
  4829       // dirtied since the first checkpoint in this GC cycle and prior to
  4830       // the most recent young generation GC, minus those cleaned up by the
  4831       // concurrent precleaning.
  4832       if (CMSParallelRemarkEnabled && ParallelGCThreads > 0) {
  4833         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4834         do_remark_parallel();
  4835       } else {
  4836         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4837                     gclog_or_tty);
  4838         do_remark_non_parallel();
  4841   } else {
  4842     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4843     // The initial mark was stop-world, so there's no rescanning to
  4844     // do; go straight on to the next step below.
  4846   verify_work_stacks_empty();
  4847   verify_overflow_empty();
  4850     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4851     refProcessingWork(asynch, clear_all_soft_refs);
  4853   verify_work_stacks_empty();
  4854   verify_overflow_empty();
  4856   if (should_unload_classes()) {
  4857     CodeCache::gc_epilogue();
  4860   // If we encountered any (marking stack / work queue) overflow
  4861   // events during the current CMS cycle, take appropriate
  4862   // remedial measures, where possible, so as to try and avoid
  4863   // recurrence of that condition.
  4864   assert(_markStack.isEmpty(), "No grey objects");
  4865   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4866                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
  4867   if (ser_ovflw > 0) {
  4868     if (PrintCMSStatistics != 0) {
  4869       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4870         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
  4871         ", kac_preclean="SIZE_FORMAT")",
  4872         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4873         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
  4875     _markStack.expand();
  4876     _ser_pmc_remark_ovflw = 0;
  4877     _ser_pmc_preclean_ovflw = 0;
  4878     _ser_kac_preclean_ovflw = 0;
  4879     _ser_kac_ovflw = 0;
  4881   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4882     if (PrintCMSStatistics != 0) {
  4883       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4884         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4885         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4887     _par_pmc_remark_ovflw = 0;
  4888     _par_kac_ovflw = 0;
  4890   if (PrintCMSStatistics != 0) {
  4891      if (_markStack._hit_limit > 0) {
  4892        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4893                               _markStack._hit_limit);
  4895      if (_markStack._failed_double > 0) {
  4896        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4897                               " current capacity "SIZE_FORMAT,
  4898                               _markStack._failed_double,
  4899                               _markStack.capacity());
  4902   _markStack._hit_limit = 0;
  4903   _markStack._failed_double = 0;
  4905   if ((VerifyAfterGC || VerifyDuringGC) &&
  4906       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4907     verify_after_remark();
  4910   // Change under the freelistLocks.
  4911   _collectorState = Sweeping;
  4912   // Call isAllClear() under bitMapLock
  4913   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
  4914     " final marking");
  4915   if (UseAdaptiveSizePolicy) {
  4916     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4920 // Parallel remark task
  4921 class CMSParRemarkTask: public AbstractGangTask {
  4922   CMSCollector* _collector;
  4923   WorkGang*     _workers;
  4924   int           _n_workers;
  4925   CompactibleFreeListSpace* _cms_space;
  4926   CompactibleFreeListSpace* _perm_space;
  4928   // The per-thread work queues, available here for stealing.
  4929   OopTaskQueueSet*       _task_queues;
  4930   ParallelTaskTerminator _term;
  4932  public:
  4933   CMSParRemarkTask(CMSCollector* collector,
  4934                    CompactibleFreeListSpace* cms_space,
  4935                    CompactibleFreeListSpace* perm_space,
  4936                    int n_workers, WorkGang* workers,
  4937                    OopTaskQueueSet* task_queues):
  4938     AbstractGangTask("Rescan roots and grey objects in parallel"),
  4939     _collector(collector),
  4940     _cms_space(cms_space), _perm_space(perm_space),
  4941     _n_workers(n_workers),
  4942     _workers(workers),
  4943     _task_queues(task_queues),
  4944     _term(workers->total_workers(), task_queues) { }
  4946   OopTaskQueueSet* task_queues() { return _task_queues; }
  4948   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  4950   ParallelTaskTerminator* terminator() { return &_term; }
  4952   void work(int i);
  4954  private:
  4955   // Work method in support of parallel rescan ... of young gen spaces
  4956   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  4957                              ContiguousSpace* space,
  4958                              HeapWord** chunk_array, size_t chunk_top);
  4960   // ... of  dirty cards in old space
  4961   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  4962                                   Par_MarkRefsIntoAndScanClosure* cl);
  4964   // ... work stealing for the above
  4965   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  4966 };
  4968 void CMSParRemarkTask::work(int i) {
  4969   elapsedTimer _timer;
  4970   ResourceMark rm;
  4971   HandleMark   hm;
  4973   // ---------- rescan from roots --------------
  4974   _timer.start();
  4975   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4976   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  4977     _collector->_span, _collector->ref_processor(),
  4978     &(_collector->_markBitMap),
  4979     work_queue(i), &(_collector->_revisitStack));
  4981   // Rescan young gen roots first since these are likely
  4982   // coarsely partitioned and may, on that account, constitute
  4983   // the critical path; thus, it's best to start off that
  4984   // work first.
  4985   // ---------- young gen roots --------------
  4987     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  4988     EdenSpace* eden_space = dng->eden();
  4989     ContiguousSpace* from_space = dng->from();
  4990     ContiguousSpace* to_space   = dng->to();
  4992     HeapWord** eca = _collector->_eden_chunk_array;
  4993     size_t     ect = _collector->_eden_chunk_index;
  4994     HeapWord** sca = _collector->_survivor_chunk_array;
  4995     size_t     sct = _collector->_survivor_chunk_index;
  4997     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  4998     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  5000     do_young_space_rescan(i, &par_mrias_cl, to_space, NULL, 0);
  5001     do_young_space_rescan(i, &par_mrias_cl, from_space, sca, sct);
  5002     do_young_space_rescan(i, &par_mrias_cl, eden_space, eca, ect);
  5004     _timer.stop();
  5005     if (PrintCMSStatistics != 0) {
  5006       gclog_or_tty->print_cr(
  5007         "Finished young gen rescan work in %dth thread: %3.3f sec",
  5008         i, _timer.seconds());
  5012   // ---------- remaining roots --------------
  5013   _timer.reset();
  5014   _timer.start();
  5015   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  5016                                 false,     // yg was scanned above
  5017                                 true,      // collecting perm gen
  5018                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5019                                 NULL, &par_mrias_cl);
  5020   _timer.stop();
  5021   if (PrintCMSStatistics != 0) {
  5022     gclog_or_tty->print_cr(
  5023       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  5024       i, _timer.seconds());
  5027   // ---------- rescan dirty cards ------------
  5028   _timer.reset();
  5029   _timer.start();
  5031   // Do the rescan tasks for each of the two spaces
  5032   // (cms_space and perm_space) in turn.
  5033   do_dirty_card_rescan_tasks(_cms_space, i, &par_mrias_cl);
  5034   do_dirty_card_rescan_tasks(_perm_space, i, &par_mrias_cl);
  5035   _timer.stop();
  5036   if (PrintCMSStatistics != 0) {
  5037     gclog_or_tty->print_cr(
  5038       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5039       i, _timer.seconds());
  5042   // ---------- steal work from other threads ...
  5043   // ---------- ... and drain overflow list.
  5044   _timer.reset();
  5045   _timer.start();
  5046   do_work_steal(i, &par_mrias_cl, _collector->hash_seed(i));
  5047   _timer.stop();
  5048   if (PrintCMSStatistics != 0) {
  5049     gclog_or_tty->print_cr(
  5050       "Finished work stealing in %dth thread: %3.3f sec",
  5051       i, _timer.seconds());
  5055 void
  5056 CMSParRemarkTask::do_young_space_rescan(int i,
  5057   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5058   HeapWord** chunk_array, size_t chunk_top) {
  5059   // Until all tasks completed:
  5060   // . claim an unclaimed task
  5061   // . compute region boundaries corresponding to task claimed
  5062   //   using chunk_array
  5063   // . par_oop_iterate(cl) over that region
  5065   ResourceMark rm;
  5066   HandleMark   hm;
  5068   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5069   assert(pst->valid(), "Uninitialized use?");
  5071   int nth_task = 0;
  5072   int n_tasks  = pst->n_tasks();
  5074   HeapWord *start, *end;
  5075   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5076     // We claimed task # nth_task; compute its boundaries.
  5077     if (chunk_top == 0) {  // no samples were taken
  5078       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5079       start = space->bottom();
  5080       end   = space->top();
  5081     } else if (nth_task == 0) {
  5082       start = space->bottom();
  5083       end   = chunk_array[nth_task];
  5084     } else if (nth_task < (jint)chunk_top) {
  5085       assert(nth_task >= 1, "Control point invariant");
  5086       start = chunk_array[nth_task - 1];
  5087       end   = chunk_array[nth_task];
  5088     } else {
  5089       assert(nth_task == (jint)chunk_top, "Control point invariant");
  5090       start = chunk_array[chunk_top - 1];
  5091       end   = space->top();
  5093     MemRegion mr(start, end);
  5094     // Verify that mr is in space
  5095     assert(mr.is_empty() || space->used_region().contains(mr),
  5096            "Should be in space");
  5097     // Verify that "start" is an object boundary
  5098     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5099            "Should be an oop");
  5100     space->par_oop_iterate(mr, cl);
  5102   pst->all_tasks_completed();
  5105 void
  5106 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5107   CompactibleFreeListSpace* sp, int i,
  5108   Par_MarkRefsIntoAndScanClosure* cl) {
  5109   // Until all tasks completed:
  5110   // . claim an unclaimed task
  5111   // . compute region boundaries corresponding to task claimed
  5112   // . transfer dirty bits ct->mut for that region
  5113   // . apply rescanclosure to dirty mut bits for that region
  5115   ResourceMark rm;
  5116   HandleMark   hm;
  5118   OopTaskQueue* work_q = work_queue(i);
  5119   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5120   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5121   // CAUTION: This closure has state that persists across calls to
  5122   // the work method dirty_range_iterate_clear() in that it has
  5123   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5124   // use of that state in the imbedded UpwardsObjectClosure instance
  5125   // assumes that the cards are always iterated (even if in parallel
  5126   // by several threads) in monotonically increasing order per each
  5127   // thread. This is true of the implementation below which picks
  5128   // card ranges (chunks) in monotonically increasing order globally
  5129   // and, a-fortiori, in monotonically increasing order per thread
  5130   // (the latter order being a subsequence of the former).
  5131   // If the work code below is ever reorganized into a more chaotic
  5132   // work-partitioning form than the current "sequential tasks"
  5133   // paradigm, the use of that persistent state will have to be
  5134   // revisited and modified appropriately. See also related
  5135   // bug 4756801 work on which should examine this code to make
  5136   // sure that the changes there do not run counter to the
  5137   // assumptions made here and necessary for correctness and
  5138   // efficiency. Note also that this code might yield inefficient
  5139   // behaviour in the case of very large objects that span one or
  5140   // more work chunks. Such objects would potentially be scanned
  5141   // several times redundantly. Work on 4756801 should try and
  5142   // address that performance anomaly if at all possible. XXX
  5143   MemRegion  full_span  = _collector->_span;
  5144   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5145   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
  5146   MarkFromDirtyCardsClosure
  5147     greyRescanClosure(_collector, full_span, // entire span of interest
  5148                       sp, bm, work_q, rs, cl);
  5150   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5151   assert(pst->valid(), "Uninitialized use?");
  5152   int nth_task = 0;
  5153   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5154   MemRegion span = sp->used_region();
  5155   HeapWord* start_addr = span.start();
  5156   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5157                                            alignment);
  5158   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5159   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5160          start_addr, "Check alignment");
  5161   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5162          chunk_size, "Check alignment");
  5164   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5165     // Having claimed the nth_task, compute corresponding mem-region,
  5166     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5167     // The alignment restriction ensures that we do not need any
  5168     // synchronization with other gang-workers while setting or
  5169     // clearing bits in thus chunk of the MUT.
  5170     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5171                                     start_addr + (nth_task+1)*chunk_size);
  5172     // The last chunk's end might be way beyond end of the
  5173     // used region. In that case pull back appropriately.
  5174     if (this_span.end() > end_addr) {
  5175       this_span.set_end(end_addr);
  5176       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5178     // Iterate over the dirty cards covering this chunk, marking them
  5179     // precleaned, and setting the corresponding bits in the mod union
  5180     // table. Since we have been careful to partition at Card and MUT-word
  5181     // boundaries no synchronization is needed between parallel threads.
  5182     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5183                                                  &modUnionClosure);
  5185     // Having transferred these marks into the modUnionTable,
  5186     // rescan the marked objects on the dirty cards in the modUnionTable.
  5187     // Even if this is at a synchronous collection, the initial marking
  5188     // may have been done during an asynchronous collection so there
  5189     // may be dirty bits in the mod-union table.
  5190     _collector->_modUnionTable.dirty_range_iterate_clear(
  5191                   this_span, &greyRescanClosure);
  5192     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5193                                  this_span.start(),
  5194                                  this_span.end());
  5196   pst->all_tasks_completed();  // declare that i am done
  5199 // . see if we can share work_queues with ParNew? XXX
  5200 void
  5201 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5202                                 int* seed) {
  5203   OopTaskQueue* work_q = work_queue(i);
  5204   NOT_PRODUCT(int num_steals = 0;)
  5205   oop obj_to_scan;
  5206   CMSBitMap* bm = &(_collector->_markBitMap);
  5207   size_t num_from_overflow_list =
  5208            MIN2((size_t)work_q->max_elems()/4,
  5209                 (size_t)ParGCDesiredObjsFromOverflowList);
  5211   while (true) {
  5212     // Completely finish any left over work from (an) earlier round(s)
  5213     cl->trim_queue(0);
  5214     // Now check if there's any work in the overflow list
  5215     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5216                                                 work_q)) {
  5217       // found something in global overflow list;
  5218       // not yet ready to go stealing work from others.
  5219       // We'd like to assert(work_q->size() != 0, ...)
  5220       // because we just took work from the overflow list,
  5221       // but of course we can't since all of that could have
  5222       // been already stolen from us.
  5223       // "He giveth and He taketh away."
  5224       continue;
  5226     // Verify that we have no work before we resort to stealing
  5227     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5228     // Try to steal from other queues that have work
  5229     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5230       NOT_PRODUCT(num_steals++;)
  5231       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5232       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5233       // Do scanning work
  5234       obj_to_scan->oop_iterate(cl);
  5235       // Loop around, finish this work, and try to steal some more
  5236     } else if (terminator()->offer_termination()) {
  5237         break;  // nirvana from the infinite cycle
  5240   NOT_PRODUCT(
  5241     if (PrintCMSStatistics != 0) {
  5242       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5245   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5246          "Else our work is not yet done");
  5249 // Return a thread-local PLAB recording array, as appropriate.
  5250 void* CMSCollector::get_data_recorder(int thr_num) {
  5251   if (_survivor_plab_array != NULL &&
  5252       (CMSPLABRecordAlways ||
  5253        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5254     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5255     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5256     ca->reset();   // clear it so that fresh data is recorded
  5257     return (void*) ca;
  5258   } else {
  5259     return NULL;
  5263 // Reset all the thread-local PLAB recording arrays
  5264 void CMSCollector::reset_survivor_plab_arrays() {
  5265   for (uint i = 0; i < ParallelGCThreads; i++) {
  5266     _survivor_plab_array[i].reset();
  5270 // Merge the per-thread plab arrays into the global survivor chunk
  5271 // array which will provide the partitioning of the survivor space
  5272 // for CMS rescan.
  5273 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv) {
  5274   assert(_survivor_plab_array  != NULL, "Error");
  5275   assert(_survivor_chunk_array != NULL, "Error");
  5276   assert(_collectorState == FinalMarking, "Error");
  5277   for (uint j = 0; j < ParallelGCThreads; j++) {
  5278     _cursor[j] = 0;
  5280   HeapWord* top = surv->top();
  5281   size_t i;
  5282   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5283     HeapWord* min_val = top;          // Higher than any PLAB address
  5284     uint      min_tid = 0;            // position of min_val this round
  5285     for (uint j = 0; j < ParallelGCThreads; j++) {
  5286       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5287       if (_cursor[j] == cur_sca->end()) {
  5288         continue;
  5290       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5291       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5292       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5293       if (cur_val < min_val) {
  5294         min_tid = j;
  5295         min_val = cur_val;
  5296       } else {
  5297         assert(cur_val < top, "All recorded addresses should be less");
  5300     // At this point min_val and min_tid are respectively
  5301     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5302     // and the thread (j) that witnesses that address.
  5303     // We record this address in the _survivor_chunk_array[i]
  5304     // and increment _cursor[min_tid] prior to the next round i.
  5305     if (min_val == top) {
  5306       break;
  5308     _survivor_chunk_array[i] = min_val;
  5309     _cursor[min_tid]++;
  5311   // We are all done; record the size of the _survivor_chunk_array
  5312   _survivor_chunk_index = i; // exclusive: [0, i)
  5313   if (PrintCMSStatistics > 0) {
  5314     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5316   // Verify that we used up all the recorded entries
  5317   #ifdef ASSERT
  5318     size_t total = 0;
  5319     for (uint j = 0; j < ParallelGCThreads; j++) {
  5320       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5321       total += _cursor[j];
  5323     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5324     // Check that the merged array is in sorted order
  5325     if (total > 0) {
  5326       for (size_t i = 0; i < total - 1; i++) {
  5327         if (PrintCMSStatistics > 0) {
  5328           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5329                               i, _survivor_chunk_array[i]);
  5331         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5332                "Not sorted");
  5335   #endif // ASSERT
  5338 // Set up the space's par_seq_tasks structure for work claiming
  5339 // for parallel rescan of young gen.
  5340 // See ParRescanTask where this is currently used.
  5341 void
  5342 CMSCollector::
  5343 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5344   assert(n_threads > 0, "Unexpected n_threads argument");
  5345   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5347   // Eden space
  5349     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5350     assert(!pst->valid(), "Clobbering existing data?");
  5351     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5352     size_t n_tasks = _eden_chunk_index + 1;
  5353     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5354     pst->set_par_threads(n_threads);
  5355     pst->set_n_tasks((int)n_tasks);
  5358   // Merge the survivor plab arrays into _survivor_chunk_array
  5359   if (_survivor_plab_array != NULL) {
  5360     merge_survivor_plab_arrays(dng->from());
  5361   } else {
  5362     assert(_survivor_chunk_index == 0, "Error");
  5365   // To space
  5367     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5368     assert(!pst->valid(), "Clobbering existing data?");
  5369     pst->set_par_threads(n_threads);
  5370     pst->set_n_tasks(1);
  5371     assert(pst->valid(), "Error");
  5374   // From space
  5376     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5377     assert(!pst->valid(), "Clobbering existing data?");
  5378     size_t n_tasks = _survivor_chunk_index + 1;
  5379     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5380     pst->set_par_threads(n_threads);
  5381     pst->set_n_tasks((int)n_tasks);
  5382     assert(pst->valid(), "Error");
  5386 // Parallel version of remark
  5387 void CMSCollector::do_remark_parallel() {
  5388   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5389   WorkGang* workers = gch->workers();
  5390   assert(workers != NULL, "Need parallel worker threads.");
  5391   int n_workers = workers->total_workers();
  5392   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5393   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
  5395   CMSParRemarkTask tsk(this,
  5396     cms_space, perm_space,
  5397     n_workers, workers, task_queues());
  5399   // Set up for parallel process_strong_roots work.
  5400   gch->set_par_threads(n_workers);
  5401   gch->change_strong_roots_parity();
  5402   // We won't be iterating over the cards in the card table updating
  5403   // the younger_gen cards, so we shouldn't call the following else
  5404   // the verification code as well as subsequent younger_refs_iterate
  5405   // code would get confused. XXX
  5406   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5408   // The young gen rescan work will not be done as part of
  5409   // process_strong_roots (which currently doesn't knw how to
  5410   // parallelize such a scan), but rather will be broken up into
  5411   // a set of parallel tasks (via the sampling that the [abortable]
  5412   // preclean phase did of EdenSpace, plus the [two] tasks of
  5413   // scanning the [two] survivor spaces. Further fine-grain
  5414   // parallelization of the scanning of the survivor spaces
  5415   // themselves, and of precleaning of the younger gen itself
  5416   // is deferred to the future.
  5417   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5419   // The dirty card rescan work is broken up into a "sequence"
  5420   // of parallel tasks (per constituent space) that are dynamically
  5421   // claimed by the parallel threads.
  5422   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5423   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5425   // It turns out that even when we're using 1 thread, doing the work in a
  5426   // separate thread causes wide variance in run times.  We can't help this
  5427   // in the multi-threaded case, but we special-case n=1 here to get
  5428   // repeatable measurements of the 1-thread overhead of the parallel code.
  5429   if (n_workers > 1) {
  5430     // Make refs discovery MT-safe
  5431     ReferenceProcessorMTMutator mt(ref_processor(), true);
  5432     workers->run_task(&tsk);
  5433   } else {
  5434     tsk.work(0);
  5436   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5437   // restore, single-threaded for now, any preserved marks
  5438   // as a result of work_q overflow
  5439   restore_preserved_marks_if_any();
  5442 // Non-parallel version of remark
  5443 void CMSCollector::do_remark_non_parallel() {
  5444   ResourceMark rm;
  5445   HandleMark   hm;
  5446   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5447   MarkRefsIntoAndScanClosure
  5448     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  5449              &_markStack, &_revisitStack, this,
  5450              false /* should_yield */, false /* not precleaning */);
  5451   MarkFromDirtyCardsClosure
  5452     markFromDirtyCardsClosure(this, _span,
  5453                               NULL,  // space is set further below
  5454                               &_markBitMap, &_markStack, &_revisitStack,
  5455                               &mrias_cl);
  5457     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5458     // Iterate over the dirty cards, setting the corresponding bits in the
  5459     // mod union table.
  5461       ModUnionClosure modUnionClosure(&_modUnionTable);
  5462       _ct->ct_bs()->dirty_card_iterate(
  5463                       _cmsGen->used_region(),
  5464                       &modUnionClosure);
  5465       _ct->ct_bs()->dirty_card_iterate(
  5466                       _permGen->used_region(),
  5467                       &modUnionClosure);
  5469     // Having transferred these marks into the modUnionTable, we just need
  5470     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5471     // The initial marking may have been done during an asynchronous
  5472     // collection so there may be dirty bits in the mod-union table.
  5473     const int alignment =
  5474       CardTableModRefBS::card_size * BitsPerWord;
  5476       // ... First handle dirty cards in CMS gen
  5477       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5478       MemRegion ur = _cmsGen->used_region();
  5479       HeapWord* lb = ur.start();
  5480       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5481       MemRegion cms_span(lb, ub);
  5482       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5483                                                &markFromDirtyCardsClosure);
  5484       verify_work_stacks_empty();
  5485       if (PrintCMSStatistics != 0) {
  5486         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5487           markFromDirtyCardsClosure.num_dirty_cards());
  5491       // .. and then repeat for dirty cards in perm gen
  5492       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
  5493       MemRegion ur = _permGen->used_region();
  5494       HeapWord* lb = ur.start();
  5495       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5496       MemRegion perm_span(lb, ub);
  5497       _modUnionTable.dirty_range_iterate_clear(perm_span,
  5498                                                &markFromDirtyCardsClosure);
  5499       verify_work_stacks_empty();
  5500       if (PrintCMSStatistics != 0) {
  5501         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
  5502           markFromDirtyCardsClosure.num_dirty_cards());
  5506   if (VerifyDuringGC &&
  5507       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5508     HandleMark hm;  // Discard invalid handles created during verification
  5509     Universe::verify(true);
  5512     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5514     verify_work_stacks_empty();
  5516     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5517     gch->gen_process_strong_roots(_cmsGen->level(),
  5518                                   true,  // younger gens as roots
  5519                                   true,  // collecting perm gen
  5520                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5521                                   NULL, &mrias_cl);
  5523   verify_work_stacks_empty();
  5524   // Restore evacuated mark words, if any, used for overflow list links
  5525   if (!CMSOverflowEarlyRestoration) {
  5526     restore_preserved_marks_if_any();
  5528   verify_overflow_empty();
  5531 ////////////////////////////////////////////////////////
  5532 // Parallel Reference Processing Task Proxy Class
  5533 ////////////////////////////////////////////////////////
  5534 class CMSRefProcTaskProxy: public AbstractGangTask {
  5535   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5536   CMSCollector*          _collector;
  5537   CMSBitMap*             _mark_bit_map;
  5538   const MemRegion        _span;
  5539   OopTaskQueueSet*       _task_queues;
  5540   ParallelTaskTerminator _term;
  5541   ProcessTask&           _task;
  5543 public:
  5544   CMSRefProcTaskProxy(ProcessTask&     task,
  5545                       CMSCollector*    collector,
  5546                       const MemRegion& span,
  5547                       CMSBitMap*       mark_bit_map,
  5548                       int              total_workers,
  5549                       OopTaskQueueSet* task_queues):
  5550     AbstractGangTask("Process referents by policy in parallel"),
  5551     _task(task),
  5552     _collector(collector), _span(span), _mark_bit_map(mark_bit_map),
  5553     _task_queues(task_queues),
  5554     _term(total_workers, task_queues)
  5556       assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5557              "Inconsistency in _span");
  5560   OopTaskQueueSet* task_queues() { return _task_queues; }
  5562   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5564   ParallelTaskTerminator* terminator() { return &_term; }
  5566   void do_work_steal(int i,
  5567                      CMSParDrainMarkingStackClosure* drain,
  5568                      CMSParKeepAliveClosure* keep_alive,
  5569                      int* seed);
  5571   virtual void work(int i);
  5572 };
  5574 void CMSRefProcTaskProxy::work(int i) {
  5575   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5576   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5577                                         _mark_bit_map, work_queue(i));
  5578   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5579                                                  _mark_bit_map, work_queue(i));
  5580   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5581   _task.work(i, is_alive_closure, par_keep_alive, par_drain_stack);
  5582   if (_task.marks_oops_alive()) {
  5583     do_work_steal(i, &par_drain_stack, &par_keep_alive,
  5584                   _collector->hash_seed(i));
  5586   assert(work_queue(i)->size() == 0, "work_queue should be empty");
  5587   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5590 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5591   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5592   EnqueueTask& _task;
  5594 public:
  5595   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5596     : AbstractGangTask("Enqueue reference objects in parallel"),
  5597       _task(task)
  5598   { }
  5600   virtual void work(int i)
  5602     _task.work(i);
  5604 };
  5606 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5607   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  5608    _collector(collector),
  5609    _span(span),
  5610    _bit_map(bit_map),
  5611    _work_queue(work_queue),
  5612    _mark_and_push(collector, span, bit_map, work_queue),
  5613    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5614                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5615 { }
  5617 // . see if we can share work_queues with ParNew? XXX
  5618 void CMSRefProcTaskProxy::do_work_steal(int i,
  5619   CMSParDrainMarkingStackClosure* drain,
  5620   CMSParKeepAliveClosure* keep_alive,
  5621   int* seed) {
  5622   OopTaskQueue* work_q = work_queue(i);
  5623   NOT_PRODUCT(int num_steals = 0;)
  5624   oop obj_to_scan;
  5625   size_t num_from_overflow_list =
  5626            MIN2((size_t)work_q->max_elems()/4,
  5627                 (size_t)ParGCDesiredObjsFromOverflowList);
  5629   while (true) {
  5630     // Completely finish any left over work from (an) earlier round(s)
  5631     drain->trim_queue(0);
  5632     // Now check if there's any work in the overflow list
  5633     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5634                                                 work_q)) {
  5635       // Found something in global overflow list;
  5636       // not yet ready to go stealing work from others.
  5637       // We'd like to assert(work_q->size() != 0, ...)
  5638       // because we just took work from the overflow list,
  5639       // but of course we can't, since all of that might have
  5640       // been already stolen from us.
  5641       continue;
  5643     // Verify that we have no work before we resort to stealing
  5644     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5645     // Try to steal from other queues that have work
  5646     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5647       NOT_PRODUCT(num_steals++;)
  5648       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5649       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5650       // Do scanning work
  5651       obj_to_scan->oop_iterate(keep_alive);
  5652       // Loop around, finish this work, and try to steal some more
  5653     } else if (terminator()->offer_termination()) {
  5654       break;  // nirvana from the infinite cycle
  5657   NOT_PRODUCT(
  5658     if (PrintCMSStatistics != 0) {
  5659       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5664 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5666   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5667   WorkGang* workers = gch->workers();
  5668   assert(workers != NULL, "Need parallel worker threads.");
  5669   int n_workers = workers->total_workers();
  5670   CMSRefProcTaskProxy rp_task(task, &_collector,
  5671                               _collector.ref_processor()->span(),
  5672                               _collector.markBitMap(),
  5673                               n_workers, _collector.task_queues());
  5674   workers->run_task(&rp_task);
  5677 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5680   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5681   WorkGang* workers = gch->workers();
  5682   assert(workers != NULL, "Need parallel worker threads.");
  5683   CMSRefEnqueueTaskProxy enq_task(task);
  5684   workers->run_task(&enq_task);
  5687 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5689   ResourceMark rm;
  5690   HandleMark   hm;
  5692   ReferenceProcessor* rp = ref_processor();
  5693   assert(rp->span().equals(_span), "Spans should be equal");
  5694   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
  5695   // Process weak references.
  5696   rp->setup_policy(clear_all_soft_refs);
  5697   verify_work_stacks_empty();
  5699   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5700                                           &_markStack, false /* !preclean */);
  5701   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5702                                 _span, &_markBitMap, &_markStack,
  5703                                 &cmsKeepAliveClosure, false /* !preclean */);
  5705     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5706     if (rp->processing_is_mt()) {
  5707       CMSRefProcTaskExecutor task_executor(*this);
  5708       rp->process_discovered_references(&_is_alive_closure,
  5709                                         &cmsKeepAliveClosure,
  5710                                         &cmsDrainMarkingStackClosure,
  5711                                         &task_executor);
  5712     } else {
  5713       rp->process_discovered_references(&_is_alive_closure,
  5714                                         &cmsKeepAliveClosure,
  5715                                         &cmsDrainMarkingStackClosure,
  5716                                         NULL);
  5718     verify_work_stacks_empty();
  5721   if (should_unload_classes()) {
  5723       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5725       // Follow SystemDictionary roots and unload classes
  5726       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5728       // Follow CodeCache roots and unload any methods marked for unloading
  5729       CodeCache::do_unloading(&_is_alive_closure,
  5730                               &cmsKeepAliveClosure,
  5731                               purged_class);
  5733       cmsDrainMarkingStackClosure.do_void();
  5734       verify_work_stacks_empty();
  5736       // Update subklass/sibling/implementor links in KlassKlass descendants
  5737       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
  5738       oop k;
  5739       while ((k = _revisitStack.pop()) != NULL) {
  5740         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
  5741                        &_is_alive_closure,
  5742                        &cmsKeepAliveClosure);
  5744       assert(!ClassUnloading ||
  5745              (_markStack.isEmpty() && overflow_list_is_empty()),
  5746              "Should not have found new reachable objects");
  5747       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
  5748       cmsDrainMarkingStackClosure.do_void();
  5749       verify_work_stacks_empty();
  5753       TraceTime t("scrub symbol & string tables", PrintGCDetails, false, gclog_or_tty);
  5754       // Now clean up stale oops in SymbolTable and StringTable
  5755       SymbolTable::unlink(&_is_alive_closure);
  5756       StringTable::unlink(&_is_alive_closure);
  5760   verify_work_stacks_empty();
  5761   // Restore any preserved marks as a result of mark stack or
  5762   // work queue overflow
  5763   restore_preserved_marks_if_any();  // done single-threaded for now
  5765   rp->set_enqueuing_is_done(true);
  5766   if (rp->processing_is_mt()) {
  5767     CMSRefProcTaskExecutor task_executor(*this);
  5768     rp->enqueue_discovered_references(&task_executor);
  5769   } else {
  5770     rp->enqueue_discovered_references(NULL);
  5772   rp->verify_no_references_recorded();
  5773   assert(!rp->discovery_enabled(), "should have been disabled");
  5775   // JVMTI object tagging is based on JNI weak refs. If any of these
  5776   // refs were cleared then JVMTI needs to update its maps and
  5777   // maybe post ObjectFrees to agents.
  5778   JvmtiExport::cms_ref_processing_epilogue();
  5781 #ifndef PRODUCT
  5782 void CMSCollector::check_correct_thread_executing() {
  5783   Thread* t = Thread::current();
  5784   // Only the VM thread or the CMS thread should be here.
  5785   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  5786          "Unexpected thread type");
  5787   // If this is the vm thread, the foreground process
  5788   // should not be waiting.  Note that _foregroundGCIsActive is
  5789   // true while the foreground collector is waiting.
  5790   if (_foregroundGCShouldWait) {
  5791     // We cannot be the VM thread
  5792     assert(t->is_ConcurrentGC_thread(),
  5793            "Should be CMS thread");
  5794   } else {
  5795     // We can be the CMS thread only if we are in a stop-world
  5796     // phase of CMS collection.
  5797     if (t->is_ConcurrentGC_thread()) {
  5798       assert(_collectorState == InitialMarking ||
  5799              _collectorState == FinalMarking,
  5800              "Should be a stop-world phase");
  5801       // The CMS thread should be holding the CMS_token.
  5802       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  5803              "Potential interference with concurrently "
  5804              "executing VM thread");
  5808 #endif
  5810 void CMSCollector::sweep(bool asynch) {
  5811   assert(_collectorState == Sweeping, "just checking");
  5812   check_correct_thread_executing();
  5813   verify_work_stacks_empty();
  5814   verify_overflow_empty();
  5815   incrementSweepCount();
  5816   _sweep_timer.stop();
  5817   _sweep_estimate.sample(_sweep_timer.seconds());
  5818   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  5820   // PermGen verification support: If perm gen sweeping is disabled in
  5821   // this cycle, we preserve the perm gen object "deadness" information
  5822   // in the perm_gen_verify_bit_map. In order to do that we traverse
  5823   // all blocks in perm gen and mark all dead objects.
  5824   if (verifying() && !should_unload_classes()) {
  5825     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
  5826            "Should have already been allocated");
  5827     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
  5828                                markBitMap(), perm_gen_verify_bit_map());
  5829     if (asynch) {
  5830       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5831                                bitMapLock());
  5832       _permGen->cmsSpace()->blk_iterate(&mdo);
  5833     } else {
  5834       // In the case of synchronous sweep, we already have
  5835       // the requisite locks/tokens.
  5836       _permGen->cmsSpace()->blk_iterate(&mdo);
  5840   if (asynch) {
  5841     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  5842     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  5843     // First sweep the old gen then the perm gen
  5845       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5846                                bitMapLock());
  5847       sweepWork(_cmsGen, asynch);
  5850     // Now repeat for perm gen
  5851     if (should_unload_classes()) {
  5852       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
  5853                              bitMapLock());
  5854       sweepWork(_permGen, asynch);
  5857     // Update Universe::_heap_*_at_gc figures.
  5858     // We need all the free list locks to make the abstract state
  5859     // transition from Sweeping to Resetting. See detailed note
  5860     // further below.
  5862       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  5863                                _permGen->freelistLock());
  5864       // Update heap occupancy information which is used as
  5865       // input to soft ref clearing policy at the next gc.
  5866       Universe::update_heap_info_at_gc();
  5867       _collectorState = Resizing;
  5869   } else {
  5870     // already have needed locks
  5871     sweepWork(_cmsGen,  asynch);
  5873     if (should_unload_classes()) {
  5874       sweepWork(_permGen, asynch);
  5876     // Update heap occupancy information which is used as
  5877     // input to soft ref clearing policy at the next gc.
  5878     Universe::update_heap_info_at_gc();
  5879     _collectorState = Resizing;
  5881   verify_work_stacks_empty();
  5882   verify_overflow_empty();
  5884   _sweep_timer.reset();
  5885   _sweep_timer.start();
  5887   update_time_of_last_gc(os::javaTimeMillis());
  5889   // NOTE on abstract state transitions:
  5890   // Mutators allocate-live and/or mark the mod-union table dirty
  5891   // based on the state of the collection.  The former is done in
  5892   // the interval [Marking, Sweeping] and the latter in the interval
  5893   // [Marking, Sweeping).  Thus the transitions into the Marking state
  5894   // and out of the Sweeping state must be synchronously visible
  5895   // globally to the mutators.
  5896   // The transition into the Marking state happens with the world
  5897   // stopped so the mutators will globally see it.  Sweeping is
  5898   // done asynchronously by the background collector so the transition
  5899   // from the Sweeping state to the Resizing state must be done
  5900   // under the freelistLock (as is the check for whether to
  5901   // allocate-live and whether to dirty the mod-union table).
  5902   assert(_collectorState == Resizing, "Change of collector state to"
  5903     " Resizing must be done under the freelistLocks (plural)");
  5905   // Now that sweeping has been completed, if the GCH's
  5906   // incremental_collection_will_fail flag is set, clear it,
  5907   // thus inviting a younger gen collection to promote into
  5908   // this generation. If such a promotion may still fail,
  5909   // the flag will be set again when a young collection is
  5910   // attempted.
  5911   // I think the incremental_collection_will_fail flag's use
  5912   // is specific to a 2 generation collection policy, so i'll
  5913   // assert that that's the configuration we are operating within.
  5914   // The use of the flag can and should be generalized appropriately
  5915   // in the future to deal with a general n-generation system.
  5917   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5918   assert(gch->collector_policy()->is_two_generation_policy(),
  5919          "Resetting of incremental_collection_will_fail flag"
  5920          " may be incorrect otherwise");
  5921   gch->clear_incremental_collection_will_fail();
  5922   gch->update_full_collections_completed(_collection_count_start);
  5925 // FIX ME!!! Looks like this belongs in CFLSpace, with
  5926 // CMSGen merely delegating to it.
  5927 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  5928   double nearLargestPercent = 0.999;
  5929   HeapWord*  minAddr        = _cmsSpace->bottom();
  5930   HeapWord*  largestAddr    =
  5931     (HeapWord*) _cmsSpace->dictionary()->findLargestDict();
  5932   if (largestAddr == 0) {
  5933     // The dictionary appears to be empty.  In this case
  5934     // try to coalesce at the end of the heap.
  5935     largestAddr = _cmsSpace->end();
  5937   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  5938   size_t nearLargestOffset =
  5939     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  5940   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  5943 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  5944   return addr >= _cmsSpace->nearLargestChunk();
  5947 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  5948   return _cmsSpace->find_chunk_at_end();
  5951 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  5952                                                     bool full) {
  5953   // The next lower level has been collected.  Gather any statistics
  5954   // that are of interest at this point.
  5955   if (!full && (current_level + 1) == level()) {
  5956     // Gather statistics on the young generation collection.
  5957     collector()->stats().record_gc0_end(used());
  5961 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  5962   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5963   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  5964     "Wrong type of heap");
  5965   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  5966     gch->gen_policy()->size_policy();
  5967   assert(sp->is_gc_cms_adaptive_size_policy(),
  5968     "Wrong type of size policy");
  5969   return sp;
  5972 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  5973   if (PrintGCDetails && Verbose) {
  5974     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  5976   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  5977   _debug_collection_type =
  5978     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  5979   if (PrintGCDetails && Verbose) {
  5980     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  5984 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  5985   bool asynch) {
  5986   // We iterate over the space(s) underlying this generation,
  5987   // checking the mark bit map to see if the bits corresponding
  5988   // to specific blocks are marked or not. Blocks that are
  5989   // marked are live and are not swept up. All remaining blocks
  5990   // are swept up, with coalescing on-the-fly as we sweep up
  5991   // contiguous free and/or garbage blocks:
  5992   // We need to ensure that the sweeper synchronizes with allocators
  5993   // and stop-the-world collectors. In particular, the following
  5994   // locks are used:
  5995   // . CMS token: if this is held, a stop the world collection cannot occur
  5996   // . freelistLock: if this is held no allocation can occur from this
  5997   //                 generation by another thread
  5998   // . bitMapLock: if this is held, no other thread can access or update
  5999   //
  6001   // Note that we need to hold the freelistLock if we use
  6002   // block iterate below; else the iterator might go awry if
  6003   // a mutator (or promotion) causes block contents to change
  6004   // (for instance if the allocator divvies up a block).
  6005   // If we hold the free list lock, for all practical purposes
  6006   // young generation GC's can't occur (they'll usually need to
  6007   // promote), so we might as well prevent all young generation
  6008   // GC's while we do a sweeping step. For the same reason, we might
  6009   // as well take the bit map lock for the entire duration
  6011   // check that we hold the requisite locks
  6012   assert(have_cms_token(), "Should hold cms token");
  6013   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  6014          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  6015         "Should possess CMS token to sweep");
  6016   assert_lock_strong(gen->freelistLock());
  6017   assert_lock_strong(bitMapLock());
  6019   assert(!_sweep_timer.is_active(), "Was switched off in an outer context");
  6020   gen->cmsSpace()->beginSweepFLCensus((float)(_sweep_timer.seconds()),
  6021                                       _sweep_estimate.padded_average());
  6022   gen->setNearLargestChunk();
  6025     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6026                             CMSYield && asynch);
  6027     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6028     // We need to free-up/coalesce garbage/blocks from a
  6029     // co-terminal free run. This is done in the SweepClosure
  6030     // destructor; so, do not remove this scope, else the
  6031     // end-of-sweep-census below will be off by a little bit.
  6033   gen->cmsSpace()->sweep_completed();
  6034   gen->cmsSpace()->endSweepFLCensus(sweepCount());
  6035   if (should_unload_classes()) {                // unloaded classes this cycle,
  6036     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6037   } else {                                      // did not unload classes,
  6038     _concurrent_cycles_since_last_unload++;     // ... increment count
  6042 // Reset CMS data structures (for now just the marking bit map)
  6043 // preparatory for the next cycle.
  6044 void CMSCollector::reset(bool asynch) {
  6045   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6046   CMSAdaptiveSizePolicy* sp = size_policy();
  6047   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6048   if (asynch) {
  6049     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6051     // If the state is not "Resetting", the foreground  thread
  6052     // has done a collection and the resetting.
  6053     if (_collectorState != Resetting) {
  6054       assert(_collectorState == Idling, "The state should only change"
  6055         " because the foreground collector has finished the collection");
  6056       return;
  6059     // Clear the mark bitmap (no grey objects to start with)
  6060     // for the next cycle.
  6061     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6062     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6064     HeapWord* curAddr = _markBitMap.startWord();
  6065     while (curAddr < _markBitMap.endWord()) {
  6066       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6067       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6068       _markBitMap.clear_large_range(chunk);
  6069       if (ConcurrentMarkSweepThread::should_yield() &&
  6070           !foregroundGCIsActive() &&
  6071           CMSYield) {
  6072         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6073                "CMS thread should hold CMS token");
  6074         assert_lock_strong(bitMapLock());
  6075         bitMapLock()->unlock();
  6076         ConcurrentMarkSweepThread::desynchronize(true);
  6077         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6078         stopTimer();
  6079         if (PrintCMSStatistics != 0) {
  6080           incrementYields();
  6082         icms_wait();
  6084         // See the comment in coordinator_yield()
  6085         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6086                          ConcurrentMarkSweepThread::should_yield() &&
  6087                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6088           os::sleep(Thread::current(), 1, false);
  6089           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6092         ConcurrentMarkSweepThread::synchronize(true);
  6093         bitMapLock()->lock_without_safepoint_check();
  6094         startTimer();
  6096       curAddr = chunk.end();
  6098     _collectorState = Idling;
  6099   } else {
  6100     // already have the lock
  6101     assert(_collectorState == Resetting, "just checking");
  6102     assert_lock_strong(bitMapLock());
  6103     _markBitMap.clear_all();
  6104     _collectorState = Idling;
  6107   // Stop incremental mode after a cycle completes, so that any future cycles
  6108   // are triggered by allocation.
  6109   stop_icms();
  6111   NOT_PRODUCT(
  6112     if (RotateCMSCollectionTypes) {
  6113       _cmsGen->rotate_debug_collection_type();
  6118 void CMSCollector::do_CMS_operation(CMS_op_type op) {
  6119   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6120   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6121   TraceTime t("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
  6122   TraceCollectorStats tcs(counters());
  6124   switch (op) {
  6125     case CMS_op_checkpointRootsInitial: {
  6126       checkpointRootsInitial(true);       // asynch
  6127       if (PrintGC) {
  6128         _cmsGen->printOccupancy("initial-mark");
  6130       break;
  6132     case CMS_op_checkpointRootsFinal: {
  6133       checkpointRootsFinal(true,    // asynch
  6134                            false,   // !clear_all_soft_refs
  6135                            false);  // !init_mark_was_synchronous
  6136       if (PrintGC) {
  6137         _cmsGen->printOccupancy("remark");
  6139       break;
  6141     default:
  6142       fatal("No such CMS_op");
  6146 #ifndef PRODUCT
  6147 size_t const CMSCollector::skip_header_HeapWords() {
  6148   return FreeChunk::header_size();
  6151 // Try and collect here conditions that should hold when
  6152 // CMS thread is exiting. The idea is that the foreground GC
  6153 // thread should not be blocked if it wants to terminate
  6154 // the CMS thread and yet continue to run the VM for a while
  6155 // after that.
  6156 void CMSCollector::verify_ok_to_terminate() const {
  6157   assert(Thread::current()->is_ConcurrentGC_thread(),
  6158          "should be called by CMS thread");
  6159   assert(!_foregroundGCShouldWait, "should be false");
  6160   // We could check here that all the various low-level locks
  6161   // are not held by the CMS thread, but that is overkill; see
  6162   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6163   // is checked.
  6165 #endif
  6167 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6168    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6169           "missing Printezis mark?");
  6170   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6171   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6172   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6173          "alignment problem");
  6174   assert(size >= 3, "Necessary for Printezis marks to work");
  6175   return size;
  6178 // A variant of the above (block_size_using_printezis_bits()) except
  6179 // that we return 0 if the P-bits are not yet set.
  6180 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6181   if (_markBitMap.isMarked(addr)) {
  6182     assert(_markBitMap.isMarked(addr + 1), "Missing Printezis bit?");
  6183     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6184     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6185     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6186            "alignment problem");
  6187     assert(size >= 3, "Necessary for Printezis marks to work");
  6188     return size;
  6189   } else {
  6190     assert(!_markBitMap.isMarked(addr + 1), "Bit map inconsistency?");
  6191     return 0;
  6195 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6196   size_t sz = 0;
  6197   oop p = (oop)addr;
  6198   if (p->klass_or_null() != NULL && p->is_parsable()) {
  6199     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6200   } else {
  6201     sz = block_size_using_printezis_bits(addr);
  6203   assert(sz > 0, "size must be nonzero");
  6204   HeapWord* next_block = addr + sz;
  6205   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6206                                              CardTableModRefBS::card_size);
  6207   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6208          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6209          "must be different cards");
  6210   return next_card;
  6214 // CMS Bit Map Wrapper /////////////////////////////////////////
  6216 // Construct a CMS bit map infrastructure, but don't create the
  6217 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6218 // further below.
  6219 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6220   _bm(),
  6221   _shifter(shifter),
  6222   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6224   _bmStartWord = 0;
  6225   _bmWordSize  = 0;
  6228 bool CMSBitMap::allocate(MemRegion mr) {
  6229   _bmStartWord = mr.start();
  6230   _bmWordSize  = mr.word_size();
  6231   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6232                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6233   if (!brs.is_reserved()) {
  6234     warning("CMS bit map allocation failure");
  6235     return false;
  6237   // For now we'll just commit all of the bit map up fromt.
  6238   // Later on we'll try to be more parsimonious with swap.
  6239   if (!_virtual_space.initialize(brs, brs.size())) {
  6240     warning("CMS bit map backing store failure");
  6241     return false;
  6243   assert(_virtual_space.committed_size() == brs.size(),
  6244          "didn't reserve backing store for all of CMS bit map?");
  6245   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6246   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6247          _bmWordSize, "inconsistency in bit map sizing");
  6248   _bm.set_size(_bmWordSize >> _shifter);
  6250   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6251   assert(isAllClear(),
  6252          "Expected zero'd memory from ReservedSpace constructor");
  6253   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6254          "consistency check");
  6255   return true;
  6258 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6259   HeapWord *next_addr, *end_addr, *last_addr;
  6260   assert_locked();
  6261   assert(covers(mr), "out-of-range error");
  6262   // XXX assert that start and end are appropriately aligned
  6263   for (next_addr = mr.start(), end_addr = mr.end();
  6264        next_addr < end_addr; next_addr = last_addr) {
  6265     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6266     last_addr = dirty_region.end();
  6267     if (!dirty_region.is_empty()) {
  6268       cl->do_MemRegion(dirty_region);
  6269     } else {
  6270       assert(last_addr == end_addr, "program logic");
  6271       return;
  6276 #ifndef PRODUCT
  6277 void CMSBitMap::assert_locked() const {
  6278   CMSLockVerifier::assert_locked(lock());
  6281 bool CMSBitMap::covers(MemRegion mr) const {
  6282   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6283   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6284          "size inconsistency");
  6285   return (mr.start() >= _bmStartWord) &&
  6286          (mr.end()   <= endWord());
  6289 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6290     return (start >= _bmStartWord && (start + size) <= endWord());
  6293 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6294   // verify that there are no 1 bits in the interval [left, right)
  6295   FalseBitMapClosure falseBitMapClosure;
  6296   iterate(&falseBitMapClosure, left, right);
  6299 void CMSBitMap::region_invariant(MemRegion mr)
  6301   assert_locked();
  6302   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6303   assert(!mr.is_empty(), "unexpected empty region");
  6304   assert(covers(mr), "mr should be covered by bit map");
  6305   // convert address range into offset range
  6306   size_t start_ofs = heapWordToOffset(mr.start());
  6307   // Make sure that end() is appropriately aligned
  6308   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6309                         (1 << (_shifter+LogHeapWordSize))),
  6310          "Misaligned mr.end()");
  6311   size_t end_ofs   = heapWordToOffset(mr.end());
  6312   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6315 #endif
  6317 bool CMSMarkStack::allocate(size_t size) {
  6318   // allocate a stack of the requisite depth
  6319   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6320                    size * sizeof(oop)));
  6321   if (!rs.is_reserved()) {
  6322     warning("CMSMarkStack allocation failure");
  6323     return false;
  6325   if (!_virtual_space.initialize(rs, rs.size())) {
  6326     warning("CMSMarkStack backing store failure");
  6327     return false;
  6329   assert(_virtual_space.committed_size() == rs.size(),
  6330          "didn't reserve backing store for all of CMS stack?");
  6331   _base = (oop*)(_virtual_space.low());
  6332   _index = 0;
  6333   _capacity = size;
  6334   NOT_PRODUCT(_max_depth = 0);
  6335   return true;
  6338 // XXX FIX ME !!! In the MT case we come in here holding a
  6339 // leaf lock. For printing we need to take a further lock
  6340 // which has lower rank. We need to recallibrate the two
  6341 // lock-ranks involved in order to be able to rpint the
  6342 // messages below. (Or defer the printing to the caller.
  6343 // For now we take the expedient path of just disabling the
  6344 // messages for the problematic case.)
  6345 void CMSMarkStack::expand() {
  6346   assert(_capacity <= CMSMarkStackSizeMax, "stack bigger than permitted");
  6347   if (_capacity == CMSMarkStackSizeMax) {
  6348     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6349       // We print a warning message only once per CMS cycle.
  6350       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6352     return;
  6354   // Double capacity if possible
  6355   size_t new_capacity = MIN2(_capacity*2, CMSMarkStackSizeMax);
  6356   // Do not give up existing stack until we have managed to
  6357   // get the double capacity that we desired.
  6358   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6359                    new_capacity * sizeof(oop)));
  6360   if (rs.is_reserved()) {
  6361     // Release the backing store associated with old stack
  6362     _virtual_space.release();
  6363     // Reinitialize virtual space for new stack
  6364     if (!_virtual_space.initialize(rs, rs.size())) {
  6365       fatal("Not enough swap for expanded marking stack");
  6367     _base = (oop*)(_virtual_space.low());
  6368     _index = 0;
  6369     _capacity = new_capacity;
  6370   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6371     // Failed to double capacity, continue;
  6372     // we print a detail message only once per CMS cycle.
  6373     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6374             SIZE_FORMAT"K",
  6375             _capacity / K, new_capacity / K);
  6380 // Closures
  6381 // XXX: there seems to be a lot of code  duplication here;
  6382 // should refactor and consolidate common code.
  6384 // This closure is used to mark refs into the CMS generation in
  6385 // the CMS bit map. Called at the first checkpoint. This closure
  6386 // assumes that we do not need to re-mark dirty cards; if the CMS
  6387 // generation on which this is used is not an oldest (modulo perm gen)
  6388 // generation then this will lose younger_gen cards!
  6390 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6391   MemRegion span, CMSBitMap* bitMap, bool should_do_nmethods):
  6392     _span(span),
  6393     _bitMap(bitMap),
  6394     _should_do_nmethods(should_do_nmethods)
  6396     assert(_ref_processor == NULL, "deliberately left NULL");
  6397     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6400 void MarkRefsIntoClosure::do_oop(oop obj) {
  6401   // if p points into _span, then mark corresponding bit in _markBitMap
  6402   assert(obj->is_oop(), "expected an oop");
  6403   HeapWord* addr = (HeapWord*)obj;
  6404   if (_span.contains(addr)) {
  6405     // this should be made more efficient
  6406     _bitMap->mark(addr);
  6410 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6411 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6413 // A variant of the above, used for CMS marking verification.
  6414 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6415   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  6416   bool should_do_nmethods):
  6417     _span(span),
  6418     _verification_bm(verification_bm),
  6419     _cms_bm(cms_bm),
  6420     _should_do_nmethods(should_do_nmethods) {
  6421     assert(_ref_processor == NULL, "deliberately left NULL");
  6422     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6425 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6426   // if p points into _span, then mark corresponding bit in _markBitMap
  6427   assert(obj->is_oop(), "expected an oop");
  6428   HeapWord* addr = (HeapWord*)obj;
  6429   if (_span.contains(addr)) {
  6430     _verification_bm->mark(addr);
  6431     if (!_cms_bm->isMarked(addr)) {
  6432       oop(addr)->print();
  6433       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6434       fatal("... aborting");
  6439 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6440 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6442 //////////////////////////////////////////////////
  6443 // MarkRefsIntoAndScanClosure
  6444 //////////////////////////////////////////////////
  6446 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6447                                                        ReferenceProcessor* rp,
  6448                                                        CMSBitMap* bit_map,
  6449                                                        CMSBitMap* mod_union_table,
  6450                                                        CMSMarkStack*  mark_stack,
  6451                                                        CMSMarkStack*  revisit_stack,
  6452                                                        CMSCollector* collector,
  6453                                                        bool should_yield,
  6454                                                        bool concurrent_precleaning):
  6455   _collector(collector),
  6456   _span(span),
  6457   _bit_map(bit_map),
  6458   _mark_stack(mark_stack),
  6459   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6460                       mark_stack, revisit_stack, concurrent_precleaning),
  6461   _yield(should_yield),
  6462   _concurrent_precleaning(concurrent_precleaning),
  6463   _freelistLock(NULL)
  6465   _ref_processor = rp;
  6466   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6469 // This closure is used to mark refs into the CMS generation at the
  6470 // second (final) checkpoint, and to scan and transitively follow
  6471 // the unmarked oops. It is also used during the concurrent precleaning
  6472 // phase while scanning objects on dirty cards in the CMS generation.
  6473 // The marks are made in the marking bit map and the marking stack is
  6474 // used for keeping the (newly) grey objects during the scan.
  6475 // The parallel version (Par_...) appears further below.
  6476 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6477   if (obj != NULL) {
  6478     assert(obj->is_oop(), "expected an oop");
  6479     HeapWord* addr = (HeapWord*)obj;
  6480     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6481     assert(_collector->overflow_list_is_empty(),
  6482            "overflow list should be empty");
  6483     if (_span.contains(addr) &&
  6484         !_bit_map->isMarked(addr)) {
  6485       // mark bit map (object is now grey)
  6486       _bit_map->mark(addr);
  6487       // push on marking stack (stack should be empty), and drain the
  6488       // stack by applying this closure to the oops in the oops popped
  6489       // from the stack (i.e. blacken the grey objects)
  6490       bool res = _mark_stack->push(obj);
  6491       assert(res, "Should have space to push on empty stack");
  6492       do {
  6493         oop new_oop = _mark_stack->pop();
  6494         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6495         assert(new_oop->is_parsable(), "Found unparsable oop");
  6496         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6497                "only grey objects on this stack");
  6498         // iterate over the oops in this oop, marking and pushing
  6499         // the ones in CMS heap (i.e. in _span).
  6500         new_oop->oop_iterate(&_pushAndMarkClosure);
  6501         // check if it's time to yield
  6502         do_yield_check();
  6503       } while (!_mark_stack->isEmpty() ||
  6504                (!_concurrent_precleaning && take_from_overflow_list()));
  6505         // if marking stack is empty, and we are not doing this
  6506         // during precleaning, then check the overflow list
  6508     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6509     assert(_collector->overflow_list_is_empty(),
  6510            "overflow list was drained above");
  6511     // We could restore evacuated mark words, if any, used for
  6512     // overflow list links here because the overflow list is
  6513     // provably empty here. That would reduce the maximum
  6514     // size requirements for preserved_{oop,mark}_stack.
  6515     // But we'll just postpone it until we are all done
  6516     // so we can just stream through.
  6517     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6518       _collector->restore_preserved_marks_if_any();
  6519       assert(_collector->no_preserved_marks(), "No preserved marks");
  6521     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6522            "All preserved marks should have been restored above");
  6526 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6527 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6529 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6530   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6531          "CMS thread should hold CMS token");
  6532   assert_lock_strong(_freelistLock);
  6533   assert_lock_strong(_bit_map->lock());
  6534   // relinquish the free_list_lock and bitMaplock()
  6535   _bit_map->lock()->unlock();
  6536   _freelistLock->unlock();
  6537   ConcurrentMarkSweepThread::desynchronize(true);
  6538   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6539   _collector->stopTimer();
  6540   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6541   if (PrintCMSStatistics != 0) {
  6542     _collector->incrementYields();
  6544   _collector->icms_wait();
  6546   // See the comment in coordinator_yield()
  6547   for (unsigned i = 0;
  6548        i < CMSYieldSleepCount &&
  6549        ConcurrentMarkSweepThread::should_yield() &&
  6550        !CMSCollector::foregroundGCIsActive();
  6551        ++i) {
  6552     os::sleep(Thread::current(), 1, false);
  6553     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6556   ConcurrentMarkSweepThread::synchronize(true);
  6557   _freelistLock->lock_without_safepoint_check();
  6558   _bit_map->lock()->lock_without_safepoint_check();
  6559   _collector->startTimer();
  6562 ///////////////////////////////////////////////////////////
  6563 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6564 //                                 MarkRefsIntoAndScanClosure
  6565 ///////////////////////////////////////////////////////////
  6566 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6567   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6568   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
  6569   _span(span),
  6570   _bit_map(bit_map),
  6571   _work_queue(work_queue),
  6572   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6573                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6574   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
  6575                           revisit_stack)
  6577   _ref_processor = rp;
  6578   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6581 // This closure is used to mark refs into the CMS generation at the
  6582 // second (final) checkpoint, and to scan and transitively follow
  6583 // the unmarked oops. The marks are made in the marking bit map and
  6584 // the work_queue is used for keeping the (newly) grey objects during
  6585 // the scan phase whence they are also available for stealing by parallel
  6586 // threads. Since the marking bit map is shared, updates are
  6587 // synchronized (via CAS).
  6588 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6589   if (obj != NULL) {
  6590     // Ignore mark word because this could be an already marked oop
  6591     // that may be chained at the end of the overflow list.
  6592     assert(obj->is_oop(true), "expected an oop");
  6593     HeapWord* addr = (HeapWord*)obj;
  6594     if (_span.contains(addr) &&
  6595         !_bit_map->isMarked(addr)) {
  6596       // mark bit map (object will become grey):
  6597       // It is possible for several threads to be
  6598       // trying to "claim" this object concurrently;
  6599       // the unique thread that succeeds in marking the
  6600       // object first will do the subsequent push on
  6601       // to the work queue (or overflow list).
  6602       if (_bit_map->par_mark(addr)) {
  6603         // push on work_queue (which may not be empty), and trim the
  6604         // queue to an appropriate length by applying this closure to
  6605         // the oops in the oops popped from the stack (i.e. blacken the
  6606         // grey objects)
  6607         bool res = _work_queue->push(obj);
  6608         assert(res, "Low water mark should be less than capacity?");
  6609         trim_queue(_low_water_mark);
  6610       } // Else, another thread claimed the object
  6615 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6616 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6618 // This closure is used to rescan the marked objects on the dirty cards
  6619 // in the mod union table and the card table proper.
  6620 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6621   oop p, MemRegion mr) {
  6623   size_t size = 0;
  6624   HeapWord* addr = (HeapWord*)p;
  6625   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6626   assert(_span.contains(addr), "we are scanning the CMS generation");
  6627   // check if it's time to yield
  6628   if (do_yield_check()) {
  6629     // We yielded for some foreground stop-world work,
  6630     // and we have been asked to abort this ongoing preclean cycle.
  6631     return 0;
  6633   if (_bitMap->isMarked(addr)) {
  6634     // it's marked; is it potentially uninitialized?
  6635     if (p->klass_or_null() != NULL) {
  6636       // If is_conc_safe is false, the object may be undergoing
  6637       // change by the VM outside a safepoint.  Don't try to
  6638       // scan it, but rather leave it for the remark phase.
  6639       if (CMSPermGenPrecleaningEnabled &&
  6640           (!p->is_conc_safe() || !p->is_parsable())) {
  6641         // Signal precleaning to redirty the card since
  6642         // the klass pointer is already installed.
  6643         assert(size == 0, "Initial value");
  6644       } else {
  6645         assert(p->is_parsable(), "must be parsable.");
  6646         // an initialized object; ignore mark word in verification below
  6647         // since we are running concurrent with mutators
  6648         assert(p->is_oop(true), "should be an oop");
  6649         if (p->is_objArray()) {
  6650           // objArrays are precisely marked; restrict scanning
  6651           // to dirty cards only.
  6652           size = CompactibleFreeListSpace::adjustObjectSize(
  6653                    p->oop_iterate(_scanningClosure, mr));
  6654         } else {
  6655           // A non-array may have been imprecisely marked; we need
  6656           // to scan object in its entirety.
  6657           size = CompactibleFreeListSpace::adjustObjectSize(
  6658                    p->oop_iterate(_scanningClosure));
  6660         #ifdef DEBUG
  6661           size_t direct_size =
  6662             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6663           assert(size == direct_size, "Inconsistency in size");
  6664           assert(size >= 3, "Necessary for Printezis marks to work");
  6665           if (!_bitMap->isMarked(addr+1)) {
  6666             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6667           } else {
  6668             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6669             assert(_bitMap->isMarked(addr+size-1),
  6670                    "inconsistent Printezis mark");
  6672         #endif // DEBUG
  6674     } else {
  6675       // an unitialized object
  6676       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6677       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6678       size = pointer_delta(nextOneAddr + 1, addr);
  6679       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6680              "alignment problem");
  6681       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6682       // will dirty the card when the klass pointer is installed in the
  6683       // object (signalling the completion of initialization).
  6685   } else {
  6686     // Either a not yet marked object or an uninitialized object
  6687     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6688       // An uninitialized object, skip to the next card, since
  6689       // we may not be able to read its P-bits yet.
  6690       assert(size == 0, "Initial value");
  6691     } else {
  6692       // An object not (yet) reached by marking: we merely need to
  6693       // compute its size so as to go look at the next block.
  6694       assert(p->is_oop(true), "should be an oop");
  6695       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6698   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6699   return size;
  6702 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6703   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6704          "CMS thread should hold CMS token");
  6705   assert_lock_strong(_freelistLock);
  6706   assert_lock_strong(_bitMap->lock());
  6707   // relinquish the free_list_lock and bitMaplock()
  6708   _bitMap->lock()->unlock();
  6709   _freelistLock->unlock();
  6710   ConcurrentMarkSweepThread::desynchronize(true);
  6711   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6712   _collector->stopTimer();
  6713   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6714   if (PrintCMSStatistics != 0) {
  6715     _collector->incrementYields();
  6717   _collector->icms_wait();
  6719   // See the comment in coordinator_yield()
  6720   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6721                    ConcurrentMarkSweepThread::should_yield() &&
  6722                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6723     os::sleep(Thread::current(), 1, false);
  6724     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6727   ConcurrentMarkSweepThread::synchronize(true);
  6728   _freelistLock->lock_without_safepoint_check();
  6729   _bitMap->lock()->lock_without_safepoint_check();
  6730   _collector->startTimer();
  6734 //////////////////////////////////////////////////////////////////
  6735 // SurvivorSpacePrecleanClosure
  6736 //////////////////////////////////////////////////////////////////
  6737 // This (single-threaded) closure is used to preclean the oops in
  6738 // the survivor spaces.
  6739 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6741   HeapWord* addr = (HeapWord*)p;
  6742   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6743   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6744   assert(p->klass_or_null() != NULL, "object should be initializd");
  6745   assert(p->is_parsable(), "must be parsable.");
  6746   // an initialized object; ignore mark word in verification below
  6747   // since we are running concurrent with mutators
  6748   assert(p->is_oop(true), "should be an oop");
  6749   // Note that we do not yield while we iterate over
  6750   // the interior oops of p, pushing the relevant ones
  6751   // on our marking stack.
  6752   size_t size = p->oop_iterate(_scanning_closure);
  6753   do_yield_check();
  6754   // Observe that below, we do not abandon the preclean
  6755   // phase as soon as we should; rather we empty the
  6756   // marking stack before returning. This is to satisfy
  6757   // some existing assertions. In general, it may be a
  6758   // good idea to abort immediately and complete the marking
  6759   // from the grey objects at a later time.
  6760   while (!_mark_stack->isEmpty()) {
  6761     oop new_oop = _mark_stack->pop();
  6762     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6763     assert(new_oop->is_parsable(), "Found unparsable oop");
  6764     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6765            "only grey objects on this stack");
  6766     // iterate over the oops in this oop, marking and pushing
  6767     // the ones in CMS heap (i.e. in _span).
  6768     new_oop->oop_iterate(_scanning_closure);
  6769     // check if it's time to yield
  6770     do_yield_check();
  6772   unsigned int after_count =
  6773     GenCollectedHeap::heap()->total_collections();
  6774   bool abort = (_before_count != after_count) ||
  6775                _collector->should_abort_preclean();
  6776   return abort ? 0 : size;
  6779 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6780   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6781          "CMS thread should hold CMS token");
  6782   assert_lock_strong(_bit_map->lock());
  6783   // Relinquish the bit map lock
  6784   _bit_map->lock()->unlock();
  6785   ConcurrentMarkSweepThread::desynchronize(true);
  6786   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6787   _collector->stopTimer();
  6788   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6789   if (PrintCMSStatistics != 0) {
  6790     _collector->incrementYields();
  6792   _collector->icms_wait();
  6794   // See the comment in coordinator_yield()
  6795   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6796                        ConcurrentMarkSweepThread::should_yield() &&
  6797                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6798     os::sleep(Thread::current(), 1, false);
  6799     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6802   ConcurrentMarkSweepThread::synchronize(true);
  6803   _bit_map->lock()->lock_without_safepoint_check();
  6804   _collector->startTimer();
  6807 // This closure is used to rescan the marked objects on the dirty cards
  6808 // in the mod union table and the card table proper. In the parallel
  6809 // case, although the bitMap is shared, we do a single read so the
  6810 // isMarked() query is "safe".
  6811 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6812   // Ignore mark word because we are running concurrent with mutators
  6813   assert(p->is_oop_or_null(true), "expected an oop or null");
  6814   HeapWord* addr = (HeapWord*)p;
  6815   assert(_span.contains(addr), "we are scanning the CMS generation");
  6816   bool is_obj_array = false;
  6817   #ifdef DEBUG
  6818     if (!_parallel) {
  6819       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6820       assert(_collector->overflow_list_is_empty(),
  6821              "overflow list should be empty");
  6824   #endif // DEBUG
  6825   if (_bit_map->isMarked(addr)) {
  6826     // Obj arrays are precisely marked, non-arrays are not;
  6827     // so we scan objArrays precisely and non-arrays in their
  6828     // entirety.
  6829     if (p->is_objArray()) {
  6830       is_obj_array = true;
  6831       if (_parallel) {
  6832         p->oop_iterate(_par_scan_closure, mr);
  6833       } else {
  6834         p->oop_iterate(_scan_closure, mr);
  6836     } else {
  6837       if (_parallel) {
  6838         p->oop_iterate(_par_scan_closure);
  6839       } else {
  6840         p->oop_iterate(_scan_closure);
  6844   #ifdef DEBUG
  6845     if (!_parallel) {
  6846       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6847       assert(_collector->overflow_list_is_empty(),
  6848              "overflow list should be empty");
  6851   #endif // DEBUG
  6852   return is_obj_array;
  6855 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  6856                         MemRegion span,
  6857                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  6858                         CMSMarkStack*  revisitStack,
  6859                         bool should_yield, bool verifying):
  6860   _collector(collector),
  6861   _span(span),
  6862   _bitMap(bitMap),
  6863   _mut(&collector->_modUnionTable),
  6864   _markStack(markStack),
  6865   _revisitStack(revisitStack),
  6866   _yield(should_yield),
  6867   _skipBits(0)
  6869   assert(_markStack->isEmpty(), "stack should be empty");
  6870   _finger = _bitMap->startWord();
  6871   _threshold = _finger;
  6872   assert(_collector->_restart_addr == NULL, "Sanity check");
  6873   assert(_span.contains(_finger), "Out of bounds _finger?");
  6874   DEBUG_ONLY(_verifying = verifying;)
  6877 void MarkFromRootsClosure::reset(HeapWord* addr) {
  6878   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  6879   assert(_span.contains(addr), "Out of bounds _finger?");
  6880   _finger = addr;
  6881   _threshold = (HeapWord*)round_to(
  6882                  (intptr_t)_finger, CardTableModRefBS::card_size);
  6885 // Should revisit to see if this should be restructured for
  6886 // greater efficiency.
  6887 bool MarkFromRootsClosure::do_bit(size_t offset) {
  6888   if (_skipBits > 0) {
  6889     _skipBits--;
  6890     return true;
  6892   // convert offset into a HeapWord*
  6893   HeapWord* addr = _bitMap->startWord() + offset;
  6894   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  6895          "address out of range");
  6896   assert(_bitMap->isMarked(addr), "tautology");
  6897   if (_bitMap->isMarked(addr+1)) {
  6898     // this is an allocated but not yet initialized object
  6899     assert(_skipBits == 0, "tautology");
  6900     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  6901     oop p = oop(addr);
  6902     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  6903       DEBUG_ONLY(if (!_verifying) {)
  6904         // We re-dirty the cards on which this object lies and increase
  6905         // the _threshold so that we'll come back to scan this object
  6906         // during the preclean or remark phase. (CMSCleanOnEnter)
  6907         if (CMSCleanOnEnter) {
  6908           size_t sz = _collector->block_size_using_printezis_bits(addr);
  6909           HeapWord* end_card_addr   = (HeapWord*)round_to(
  6910                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  6911           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  6912           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  6913           // Bump _threshold to end_card_addr; note that
  6914           // _threshold cannot possibly exceed end_card_addr, anyhow.
  6915           // This prevents future clearing of the card as the scan proceeds
  6916           // to the right.
  6917           assert(_threshold <= end_card_addr,
  6918                  "Because we are just scanning into this object");
  6919           if (_threshold < end_card_addr) {
  6920             _threshold = end_card_addr;
  6922           if (p->klass_or_null() != NULL) {
  6923             // Redirty the range of cards...
  6924             _mut->mark_range(redirty_range);
  6925           } // ...else the setting of klass will dirty the card anyway.
  6927       DEBUG_ONLY(})
  6928       return true;
  6931   scanOopsInOop(addr);
  6932   return true;
  6935 // We take a break if we've been at this for a while,
  6936 // so as to avoid monopolizing the locks involved.
  6937 void MarkFromRootsClosure::do_yield_work() {
  6938   // First give up the locks, then yield, then re-lock
  6939   // We should probably use a constructor/destructor idiom to
  6940   // do this unlock/lock or modify the MutexUnlocker class to
  6941   // serve our purpose. XXX
  6942   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6943          "CMS thread should hold CMS token");
  6944   assert_lock_strong(_bitMap->lock());
  6945   _bitMap->lock()->unlock();
  6946   ConcurrentMarkSweepThread::desynchronize(true);
  6947   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6948   _collector->stopTimer();
  6949   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6950   if (PrintCMSStatistics != 0) {
  6951     _collector->incrementYields();
  6953   _collector->icms_wait();
  6955   // See the comment in coordinator_yield()
  6956   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6957                        ConcurrentMarkSweepThread::should_yield() &&
  6958                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6959     os::sleep(Thread::current(), 1, false);
  6960     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6963   ConcurrentMarkSweepThread::synchronize(true);
  6964   _bitMap->lock()->lock_without_safepoint_check();
  6965   _collector->startTimer();
  6968 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  6969   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  6970   assert(_markStack->isEmpty(),
  6971          "should drain stack to limit stack usage");
  6972   // convert ptr to an oop preparatory to scanning
  6973   oop obj = oop(ptr);
  6974   // Ignore mark word in verification below, since we
  6975   // may be running concurrent with mutators.
  6976   assert(obj->is_oop(true), "should be an oop");
  6977   assert(_finger <= ptr, "_finger runneth ahead");
  6978   // advance the finger to right end of this object
  6979   _finger = ptr + obj->size();
  6980   assert(_finger > ptr, "we just incremented it above");
  6981   // On large heaps, it may take us some time to get through
  6982   // the marking phase (especially if running iCMS). During
  6983   // this time it's possible that a lot of mutations have
  6984   // accumulated in the card table and the mod union table --
  6985   // these mutation records are redundant until we have
  6986   // actually traced into the corresponding card.
  6987   // Here, we check whether advancing the finger would make
  6988   // us cross into a new card, and if so clear corresponding
  6989   // cards in the MUT (preclean them in the card-table in the
  6990   // future).
  6992   DEBUG_ONLY(if (!_verifying) {)
  6993     // The clean-on-enter optimization is disabled by default,
  6994     // until we fix 6178663.
  6995     if (CMSCleanOnEnter && (_finger > _threshold)) {
  6996       // [_threshold, _finger) represents the interval
  6997       // of cards to be cleared  in MUT (or precleaned in card table).
  6998       // The set of cards to be cleared is all those that overlap
  6999       // with the interval [_threshold, _finger); note that
  7000       // _threshold is always kept card-aligned but _finger isn't
  7001       // always card-aligned.
  7002       HeapWord* old_threshold = _threshold;
  7003       assert(old_threshold == (HeapWord*)round_to(
  7004               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7005              "_threshold should always be card-aligned");
  7006       _threshold = (HeapWord*)round_to(
  7007                      (intptr_t)_finger, CardTableModRefBS::card_size);
  7008       MemRegion mr(old_threshold, _threshold);
  7009       assert(!mr.is_empty(), "Control point invariant");
  7010       assert(_span.contains(mr), "Should clear within span");
  7011       // XXX When _finger crosses from old gen into perm gen
  7012       // we may be doing unnecessary cleaning; do better in the
  7013       // future by detecting that condition and clearing fewer
  7014       // MUT/CT entries.
  7015       _mut->clear_range(mr);
  7017   DEBUG_ONLY(})
  7018   // Note: the finger doesn't advance while we drain
  7019   // the stack below.
  7020   PushOrMarkClosure pushOrMarkClosure(_collector,
  7021                                       _span, _bitMap, _markStack,
  7022                                       _revisitStack,
  7023                                       _finger, this);
  7024   bool res = _markStack->push(obj);
  7025   assert(res, "Empty non-zero size stack should have space for single push");
  7026   while (!_markStack->isEmpty()) {
  7027     oop new_oop = _markStack->pop();
  7028     // Skip verifying header mark word below because we are
  7029     // running concurrent with mutators.
  7030     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7031     // now scan this oop's oops
  7032     new_oop->oop_iterate(&pushOrMarkClosure);
  7033     do_yield_check();
  7035   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7038 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7039                        CMSCollector* collector, MemRegion span,
  7040                        CMSBitMap* bit_map,
  7041                        OopTaskQueue* work_queue,
  7042                        CMSMarkStack*  overflow_stack,
  7043                        CMSMarkStack*  revisit_stack,
  7044                        bool should_yield):
  7045   _collector(collector),
  7046   _whole_span(collector->_span),
  7047   _span(span),
  7048   _bit_map(bit_map),
  7049   _mut(&collector->_modUnionTable),
  7050   _work_queue(work_queue),
  7051   _overflow_stack(overflow_stack),
  7052   _revisit_stack(revisit_stack),
  7053   _yield(should_yield),
  7054   _skip_bits(0),
  7055   _task(task)
  7057   assert(_work_queue->size() == 0, "work_queue should be empty");
  7058   _finger = span.start();
  7059   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7060   assert(_span.contains(_finger), "Out of bounds _finger?");
  7063 // Should revisit to see if this should be restructured for
  7064 // greater efficiency.
  7065 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7066   if (_skip_bits > 0) {
  7067     _skip_bits--;
  7068     return true;
  7070   // convert offset into a HeapWord*
  7071   HeapWord* addr = _bit_map->startWord() + offset;
  7072   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7073          "address out of range");
  7074   assert(_bit_map->isMarked(addr), "tautology");
  7075   if (_bit_map->isMarked(addr+1)) {
  7076     // this is an allocated object that might not yet be initialized
  7077     assert(_skip_bits == 0, "tautology");
  7078     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7079     oop p = oop(addr);
  7080     if (p->klass_or_null() == NULL || !p->is_parsable()) {
  7081       // in the case of Clean-on-Enter optimization, redirty card
  7082       // and avoid clearing card by increasing  the threshold.
  7083       return true;
  7086   scan_oops_in_oop(addr);
  7087   return true;
  7090 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7091   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7092   // Should we assert that our work queue is empty or
  7093   // below some drain limit?
  7094   assert(_work_queue->size() == 0,
  7095          "should drain stack to limit stack usage");
  7096   // convert ptr to an oop preparatory to scanning
  7097   oop obj = oop(ptr);
  7098   // Ignore mark word in verification below, since we
  7099   // may be running concurrent with mutators.
  7100   assert(obj->is_oop(true), "should be an oop");
  7101   assert(_finger <= ptr, "_finger runneth ahead");
  7102   // advance the finger to right end of this object
  7103   _finger = ptr + obj->size();
  7104   assert(_finger > ptr, "we just incremented it above");
  7105   // On large heaps, it may take us some time to get through
  7106   // the marking phase (especially if running iCMS). During
  7107   // this time it's possible that a lot of mutations have
  7108   // accumulated in the card table and the mod union table --
  7109   // these mutation records are redundant until we have
  7110   // actually traced into the corresponding card.
  7111   // Here, we check whether advancing the finger would make
  7112   // us cross into a new card, and if so clear corresponding
  7113   // cards in the MUT (preclean them in the card-table in the
  7114   // future).
  7116   // The clean-on-enter optimization is disabled by default,
  7117   // until we fix 6178663.
  7118   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7119     // [_threshold, _finger) represents the interval
  7120     // of cards to be cleared  in MUT (or precleaned in card table).
  7121     // The set of cards to be cleared is all those that overlap
  7122     // with the interval [_threshold, _finger); note that
  7123     // _threshold is always kept card-aligned but _finger isn't
  7124     // always card-aligned.
  7125     HeapWord* old_threshold = _threshold;
  7126     assert(old_threshold == (HeapWord*)round_to(
  7127             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7128            "_threshold should always be card-aligned");
  7129     _threshold = (HeapWord*)round_to(
  7130                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7131     MemRegion mr(old_threshold, _threshold);
  7132     assert(!mr.is_empty(), "Control point invariant");
  7133     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7134     // XXX When _finger crosses from old gen into perm gen
  7135     // we may be doing unnecessary cleaning; do better in the
  7136     // future by detecting that condition and clearing fewer
  7137     // MUT/CT entries.
  7138     _mut->clear_range(mr);
  7141   // Note: the local finger doesn't advance while we drain
  7142   // the stack below, but the global finger sure can and will.
  7143   HeapWord** gfa = _task->global_finger_addr();
  7144   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7145                                       _span, _bit_map,
  7146                                       _work_queue,
  7147                                       _overflow_stack,
  7148                                       _revisit_stack,
  7149                                       _finger,
  7150                                       gfa, this);
  7151   bool res = _work_queue->push(obj);   // overflow could occur here
  7152   assert(res, "Will hold once we use workqueues");
  7153   while (true) {
  7154     oop new_oop;
  7155     if (!_work_queue->pop_local(new_oop)) {
  7156       // We emptied our work_queue; check if there's stuff that can
  7157       // be gotten from the overflow stack.
  7158       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7159             _overflow_stack, _work_queue)) {
  7160         do_yield_check();
  7161         continue;
  7162       } else {  // done
  7163         break;
  7166     // Skip verifying header mark word below because we are
  7167     // running concurrent with mutators.
  7168     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7169     // now scan this oop's oops
  7170     new_oop->oop_iterate(&pushOrMarkClosure);
  7171     do_yield_check();
  7173   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7176 // Yield in response to a request from VM Thread or
  7177 // from mutators.
  7178 void Par_MarkFromRootsClosure::do_yield_work() {
  7179   assert(_task != NULL, "sanity");
  7180   _task->yield();
  7183 // A variant of the above used for verifying CMS marking work.
  7184 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7185                         MemRegion span,
  7186                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7187                         CMSMarkStack*  mark_stack):
  7188   _collector(collector),
  7189   _span(span),
  7190   _verification_bm(verification_bm),
  7191   _cms_bm(cms_bm),
  7192   _mark_stack(mark_stack),
  7193   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7194                       mark_stack)
  7196   assert(_mark_stack->isEmpty(), "stack should be empty");
  7197   _finger = _verification_bm->startWord();
  7198   assert(_collector->_restart_addr == NULL, "Sanity check");
  7199   assert(_span.contains(_finger), "Out of bounds _finger?");
  7202 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7203   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7204   assert(_span.contains(addr), "Out of bounds _finger?");
  7205   _finger = addr;
  7208 // Should revisit to see if this should be restructured for
  7209 // greater efficiency.
  7210 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7211   // convert offset into a HeapWord*
  7212   HeapWord* addr = _verification_bm->startWord() + offset;
  7213   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7214          "address out of range");
  7215   assert(_verification_bm->isMarked(addr), "tautology");
  7216   assert(_cms_bm->isMarked(addr), "tautology");
  7218   assert(_mark_stack->isEmpty(),
  7219          "should drain stack to limit stack usage");
  7220   // convert addr to an oop preparatory to scanning
  7221   oop obj = oop(addr);
  7222   assert(obj->is_oop(), "should be an oop");
  7223   assert(_finger <= addr, "_finger runneth ahead");
  7224   // advance the finger to right end of this object
  7225   _finger = addr + obj->size();
  7226   assert(_finger > addr, "we just incremented it above");
  7227   // Note: the finger doesn't advance while we drain
  7228   // the stack below.
  7229   bool res = _mark_stack->push(obj);
  7230   assert(res, "Empty non-zero size stack should have space for single push");
  7231   while (!_mark_stack->isEmpty()) {
  7232     oop new_oop = _mark_stack->pop();
  7233     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7234     // now scan this oop's oops
  7235     new_oop->oop_iterate(&_pam_verify_closure);
  7237   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7238   return true;
  7241 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7242   CMSCollector* collector, MemRegion span,
  7243   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7244   CMSMarkStack*  mark_stack):
  7245   OopClosure(collector->ref_processor()),
  7246   _collector(collector),
  7247   _span(span),
  7248   _verification_bm(verification_bm),
  7249   _cms_bm(cms_bm),
  7250   _mark_stack(mark_stack)
  7251 { }
  7253 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7254 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7256 // Upon stack overflow, we discard (part of) the stack,
  7257 // remembering the least address amongst those discarded
  7258 // in CMSCollector's _restart_address.
  7259 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7260   // Remember the least grey address discarded
  7261   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7262   _collector->lower_restart_addr(ra);
  7263   _mark_stack->reset();  // discard stack contents
  7264   _mark_stack->expand(); // expand the stack if possible
  7267 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7268   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7269   HeapWord* addr = (HeapWord*)obj;
  7270   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7271     // Oop lies in _span and isn't yet grey or black
  7272     _verification_bm->mark(addr);            // now grey
  7273     if (!_cms_bm->isMarked(addr)) {
  7274       oop(addr)->print();
  7275       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7276                              addr);
  7277       fatal("... aborting");
  7280     if (!_mark_stack->push(obj)) { // stack overflow
  7281       if (PrintCMSStatistics != 0) {
  7282         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7283                                SIZE_FORMAT, _mark_stack->capacity());
  7285       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7286       handle_stack_overflow(addr);
  7288     // anything including and to the right of _finger
  7289     // will be scanned as we iterate over the remainder of the
  7290     // bit map
  7294 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7295                      MemRegion span,
  7296                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7297                      CMSMarkStack*  revisitStack,
  7298                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7299   OopClosure(collector->ref_processor()),
  7300   _collector(collector),
  7301   _span(span),
  7302   _bitMap(bitMap),
  7303   _markStack(markStack),
  7304   _revisitStack(revisitStack),
  7305   _finger(finger),
  7306   _parent(parent),
  7307   _should_remember_klasses(collector->should_unload_classes())
  7308 { }
  7310 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7311                      MemRegion span,
  7312                      CMSBitMap* bit_map,
  7313                      OopTaskQueue* work_queue,
  7314                      CMSMarkStack*  overflow_stack,
  7315                      CMSMarkStack*  revisit_stack,
  7316                      HeapWord* finger,
  7317                      HeapWord** global_finger_addr,
  7318                      Par_MarkFromRootsClosure* parent) :
  7319   OopClosure(collector->ref_processor()),
  7320   _collector(collector),
  7321   _whole_span(collector->_span),
  7322   _span(span),
  7323   _bit_map(bit_map),
  7324   _work_queue(work_queue),
  7325   _overflow_stack(overflow_stack),
  7326   _revisit_stack(revisit_stack),
  7327   _finger(finger),
  7328   _global_finger_addr(global_finger_addr),
  7329   _parent(parent),
  7330   _should_remember_klasses(collector->should_unload_classes())
  7331 { }
  7333 // Assumes thread-safe access by callers, who are
  7334 // responsible for mutual exclusion.
  7335 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7336   assert(_span.contains(low), "Out of bounds addr");
  7337   if (_restart_addr == NULL) {
  7338     _restart_addr = low;
  7339   } else {
  7340     _restart_addr = MIN2(_restart_addr, low);
  7344 // Upon stack overflow, we discard (part of) the stack,
  7345 // remembering the least address amongst those discarded
  7346 // in CMSCollector's _restart_address.
  7347 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7348   // Remember the least grey address discarded
  7349   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7350   _collector->lower_restart_addr(ra);
  7351   _markStack->reset();  // discard stack contents
  7352   _markStack->expand(); // expand the stack if possible
  7355 // Upon stack overflow, we discard (part of) the stack,
  7356 // remembering the least address amongst those discarded
  7357 // in CMSCollector's _restart_address.
  7358 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7359   // We need to do this under a mutex to prevent other
  7360   // workers from interfering with the work done below.
  7361   MutexLockerEx ml(_overflow_stack->par_lock(),
  7362                    Mutex::_no_safepoint_check_flag);
  7363   // Remember the least grey address discarded
  7364   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7365   _collector->lower_restart_addr(ra);
  7366   _overflow_stack->reset();  // discard stack contents
  7367   _overflow_stack->expand(); // expand the stack if possible
  7370 void PushOrMarkClosure::do_oop(oop obj) {
  7371   // Ignore mark word because we are running concurrent with mutators.
  7372   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7373   HeapWord* addr = (HeapWord*)obj;
  7374   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7375     // Oop lies in _span and isn't yet grey or black
  7376     _bitMap->mark(addr);            // now grey
  7377     if (addr < _finger) {
  7378       // the bit map iteration has already either passed, or
  7379       // sampled, this bit in the bit map; we'll need to
  7380       // use the marking stack to scan this oop's oops.
  7381       bool simulate_overflow = false;
  7382       NOT_PRODUCT(
  7383         if (CMSMarkStackOverflowALot &&
  7384             _collector->simulate_overflow()) {
  7385           // simulate a stack overflow
  7386           simulate_overflow = true;
  7389       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7390         if (PrintCMSStatistics != 0) {
  7391           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7392                                  SIZE_FORMAT, _markStack->capacity());
  7394         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7395         handle_stack_overflow(addr);
  7398     // anything including and to the right of _finger
  7399     // will be scanned as we iterate over the remainder of the
  7400     // bit map
  7401     do_yield_check();
  7405 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7406 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7408 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7409   // Ignore mark word because we are running concurrent with mutators.
  7410   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7411   HeapWord* addr = (HeapWord*)obj;
  7412   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7413     // Oop lies in _span and isn't yet grey or black
  7414     // We read the global_finger (volatile read) strictly after marking oop
  7415     bool res = _bit_map->par_mark(addr);    // now grey
  7416     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7417     // Should we push this marked oop on our stack?
  7418     // -- if someone else marked it, nothing to do
  7419     // -- if target oop is above global finger nothing to do
  7420     // -- if target oop is in chunk and above local finger
  7421     //      then nothing to do
  7422     // -- else push on work queue
  7423     if (   !res       // someone else marked it, they will deal with it
  7424         || (addr >= *gfa)  // will be scanned in a later task
  7425         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7426       return;
  7428     // the bit map iteration has already either passed, or
  7429     // sampled, this bit in the bit map; we'll need to
  7430     // use the marking stack to scan this oop's oops.
  7431     bool simulate_overflow = false;
  7432     NOT_PRODUCT(
  7433       if (CMSMarkStackOverflowALot &&
  7434           _collector->simulate_overflow()) {
  7435         // simulate a stack overflow
  7436         simulate_overflow = true;
  7439     if (simulate_overflow ||
  7440         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7441       // stack overflow
  7442       if (PrintCMSStatistics != 0) {
  7443         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7444                                SIZE_FORMAT, _overflow_stack->capacity());
  7446       // We cannot assert that the overflow stack is full because
  7447       // it may have been emptied since.
  7448       assert(simulate_overflow ||
  7449              _work_queue->size() == _work_queue->max_elems(),
  7450             "Else push should have succeeded");
  7451       handle_stack_overflow(addr);
  7453     do_yield_check();
  7457 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7458 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7460 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7461                                        MemRegion span,
  7462                                        ReferenceProcessor* rp,
  7463                                        CMSBitMap* bit_map,
  7464                                        CMSBitMap* mod_union_table,
  7465                                        CMSMarkStack*  mark_stack,
  7466                                        CMSMarkStack*  revisit_stack,
  7467                                        bool           concurrent_precleaning):
  7468   OopClosure(rp),
  7469   _collector(collector),
  7470   _span(span),
  7471   _bit_map(bit_map),
  7472   _mod_union_table(mod_union_table),
  7473   _mark_stack(mark_stack),
  7474   _revisit_stack(revisit_stack),
  7475   _concurrent_precleaning(concurrent_precleaning),
  7476   _should_remember_klasses(collector->should_unload_classes())
  7478   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7481 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7482 // the non-parallel version (the parallel version appears further below.)
  7483 void PushAndMarkClosure::do_oop(oop obj) {
  7484   // Ignore mark word verification. If during concurrent precleaning,
  7485   // the object monitor may be locked. If during the checkpoint
  7486   // phases, the object may already have been reached by a  different
  7487   // path and may be at the end of the global overflow list (so
  7488   // the mark word may be NULL).
  7489   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7490          "expected an oop or NULL");
  7491   HeapWord* addr = (HeapWord*)obj;
  7492   // Check if oop points into the CMS generation
  7493   // and is not marked
  7494   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7495     // a white object ...
  7496     _bit_map->mark(addr);         // ... now grey
  7497     // push on the marking stack (grey set)
  7498     bool simulate_overflow = false;
  7499     NOT_PRODUCT(
  7500       if (CMSMarkStackOverflowALot &&
  7501           _collector->simulate_overflow()) {
  7502         // simulate a stack overflow
  7503         simulate_overflow = true;
  7506     if (simulate_overflow || !_mark_stack->push(obj)) {
  7507       if (_concurrent_precleaning) {
  7508          // During precleaning we can just dirty the appropriate card(s)
  7509          // in the mod union table, thus ensuring that the object remains
  7510          // in the grey set  and continue. In the case of object arrays
  7511          // we need to dirty all of the cards that the object spans,
  7512          // since the rescan of object arrays will be limited to the
  7513          // dirty cards.
  7514          // Note that no one can be intefering with us in this action
  7515          // of dirtying the mod union table, so no locking or atomics
  7516          // are required.
  7517          if (obj->is_objArray()) {
  7518            size_t sz = obj->size();
  7519            HeapWord* end_card_addr = (HeapWord*)round_to(
  7520                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7521            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7522            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7523            _mod_union_table->mark_range(redirty_range);
  7524          } else {
  7525            _mod_union_table->mark(addr);
  7527          _collector->_ser_pmc_preclean_ovflw++;
  7528       } else {
  7529          // During the remark phase, we need to remember this oop
  7530          // in the overflow list.
  7531          _collector->push_on_overflow_list(obj);
  7532          _collector->_ser_pmc_remark_ovflw++;
  7538 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7539                                                MemRegion span,
  7540                                                ReferenceProcessor* rp,
  7541                                                CMSBitMap* bit_map,
  7542                                                OopTaskQueue* work_queue,
  7543                                                CMSMarkStack* revisit_stack):
  7544   OopClosure(rp),
  7545   _collector(collector),
  7546   _span(span),
  7547   _bit_map(bit_map),
  7548   _work_queue(work_queue),
  7549   _revisit_stack(revisit_stack),
  7550   _should_remember_klasses(collector->should_unload_classes())
  7552   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7555 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7556 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7558 // Grey object rescan during second checkpoint phase --
  7559 // the parallel version.
  7560 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7561   // In the assert below, we ignore the mark word because
  7562   // this oop may point to an already visited object that is
  7563   // on the overflow stack (in which case the mark word has
  7564   // been hijacked for chaining into the overflow stack --
  7565   // if this is the last object in the overflow stack then
  7566   // its mark word will be NULL). Because this object may
  7567   // have been subsequently popped off the global overflow
  7568   // stack, and the mark word possibly restored to the prototypical
  7569   // value, by the time we get to examined this failing assert in
  7570   // the debugger, is_oop_or_null(false) may subsequently start
  7571   // to hold.
  7572   assert(obj->is_oop_or_null(true),
  7573          "expected an oop or NULL");
  7574   HeapWord* addr = (HeapWord*)obj;
  7575   // Check if oop points into the CMS generation
  7576   // and is not marked
  7577   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7578     // a white object ...
  7579     // If we manage to "claim" the object, by being the
  7580     // first thread to mark it, then we push it on our
  7581     // marking stack
  7582     if (_bit_map->par_mark(addr)) {     // ... now grey
  7583       // push on work queue (grey set)
  7584       bool simulate_overflow = false;
  7585       NOT_PRODUCT(
  7586         if (CMSMarkStackOverflowALot &&
  7587             _collector->par_simulate_overflow()) {
  7588           // simulate a stack overflow
  7589           simulate_overflow = true;
  7592       if (simulate_overflow || !_work_queue->push(obj)) {
  7593         _collector->par_push_on_overflow_list(obj);
  7594         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7596     } // Else, some other thread got there first
  7600 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7601 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7603 void PushAndMarkClosure::remember_klass(Klass* k) {
  7604   if (!_revisit_stack->push(oop(k))) {
  7605     fatal("Revisit stack overflowed in PushAndMarkClosure");
  7609 void Par_PushAndMarkClosure::remember_klass(Klass* k) {
  7610   if (!_revisit_stack->par_push(oop(k))) {
  7611     fatal("Revist stack overflowed in Par_PushAndMarkClosure");
  7615 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7616   Mutex* bml = _collector->bitMapLock();
  7617   assert_lock_strong(bml);
  7618   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7619          "CMS thread should hold CMS token");
  7621   bml->unlock();
  7622   ConcurrentMarkSweepThread::desynchronize(true);
  7624   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7626   _collector->stopTimer();
  7627   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7628   if (PrintCMSStatistics != 0) {
  7629     _collector->incrementYields();
  7631   _collector->icms_wait();
  7633   // See the comment in coordinator_yield()
  7634   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7635                        ConcurrentMarkSweepThread::should_yield() &&
  7636                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7637     os::sleep(Thread::current(), 1, false);
  7638     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7641   ConcurrentMarkSweepThread::synchronize(true);
  7642   bml->lock();
  7644   _collector->startTimer();
  7647 bool CMSPrecleanRefsYieldClosure::should_return() {
  7648   if (ConcurrentMarkSweepThread::should_yield()) {
  7649     do_yield_work();
  7651   return _collector->foregroundGCIsActive();
  7654 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7655   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7656          "mr should be aligned to start at a card boundary");
  7657   // We'd like to assert:
  7658   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7659   //        "mr should be a range of cards");
  7660   // However, that would be too strong in one case -- the last
  7661   // partition ends at _unallocated_block which, in general, can be
  7662   // an arbitrary boundary, not necessarily card aligned.
  7663   if (PrintCMSStatistics != 0) {
  7664     _num_dirty_cards +=
  7665          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7667   _space->object_iterate_mem(mr, &_scan_cl);
  7670 SweepClosure::SweepClosure(CMSCollector* collector,
  7671                            ConcurrentMarkSweepGeneration* g,
  7672                            CMSBitMap* bitMap, bool should_yield) :
  7673   _collector(collector),
  7674   _g(g),
  7675   _sp(g->cmsSpace()),
  7676   _limit(_sp->sweep_limit()),
  7677   _freelistLock(_sp->freelistLock()),
  7678   _bitMap(bitMap),
  7679   _yield(should_yield),
  7680   _inFreeRange(false),           // No free range at beginning of sweep
  7681   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7682   _lastFreeRangeCoalesced(false),
  7683   _freeFinger(g->used_region().start())
  7685   NOT_PRODUCT(
  7686     _numObjectsFreed = 0;
  7687     _numWordsFreed   = 0;
  7688     _numObjectsLive = 0;
  7689     _numWordsLive = 0;
  7690     _numObjectsAlreadyFree = 0;
  7691     _numWordsAlreadyFree = 0;
  7692     _last_fc = NULL;
  7694     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7695     _sp->dictionary()->initializeDictReturnedBytes();
  7697   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7698          "sweep _limit out of bounds");
  7699   if (CMSTraceSweeper) {
  7700     gclog_or_tty->print("\n====================\nStarting new sweep\n");
  7704 // We need this destructor to reclaim any space at the end
  7705 // of the space, which do_blk below may not have added back to
  7706 // the free lists. [basically dealing with the "fringe effect"]
  7707 SweepClosure::~SweepClosure() {
  7708   assert_lock_strong(_freelistLock);
  7709   // this should be treated as the end of a free run if any
  7710   // The current free range should be returned to the free lists
  7711   // as one coalesced chunk.
  7712   if (inFreeRange()) {
  7713     flushCurFreeChunk(freeFinger(),
  7714       pointer_delta(_limit, freeFinger()));
  7715     assert(freeFinger() < _limit, "the finger pointeth off base");
  7716     if (CMSTraceSweeper) {
  7717       gclog_or_tty->print("destructor:");
  7718       gclog_or_tty->print("Sweep:put_free_blk 0x%x ("SIZE_FORMAT") "
  7719                  "[coalesced:"SIZE_FORMAT"]\n",
  7720                  freeFinger(), pointer_delta(_limit, freeFinger()),
  7721                  lastFreeRangeCoalesced());
  7724   NOT_PRODUCT(
  7725     if (Verbose && PrintGC) {
  7726       gclog_or_tty->print("Collected "SIZE_FORMAT" objects, "
  7727                           SIZE_FORMAT " bytes",
  7728                  _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7729       gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7730                              SIZE_FORMAT" bytes  "
  7731         "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7732         _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7733         _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7734       size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) *
  7735         sizeof(HeapWord);
  7736       gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7738       if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7739         size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7740         size_t dictReturnedBytes = _sp->dictionary()->sumDictReturnedBytes();
  7741         size_t returnedBytes = indexListReturnedBytes + dictReturnedBytes;
  7742         gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returnedBytes);
  7743         gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7744           indexListReturnedBytes);
  7745         gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7746           dictReturnedBytes);
  7750   // Now, in debug mode, just null out the sweep_limit
  7751   NOT_PRODUCT(_sp->clear_sweep_limit();)
  7752   if (CMSTraceSweeper) {
  7753     gclog_or_tty->print("end of sweep\n================\n");
  7757 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7758     bool freeRangeInFreeLists) {
  7759   if (CMSTraceSweeper) {
  7760     gclog_or_tty->print("---- Start free range 0x%x with free block [%d] (%d)\n",
  7761                freeFinger, _sp->block_size(freeFinger),
  7762                freeRangeInFreeLists);
  7764   assert(!inFreeRange(), "Trampling existing free range");
  7765   set_inFreeRange(true);
  7766   set_lastFreeRangeCoalesced(false);
  7768   set_freeFinger(freeFinger);
  7769   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7770   if (CMSTestInFreeList) {
  7771     if (freeRangeInFreeLists) {
  7772       FreeChunk* fc = (FreeChunk*) freeFinger;
  7773       assert(fc->isFree(), "A chunk on the free list should be free.");
  7774       assert(fc->size() > 0, "Free range should have a size");
  7775       assert(_sp->verifyChunkInFreeLists(fc), "Chunk is not in free lists");
  7780 // Note that the sweeper runs concurrently with mutators. Thus,
  7781 // it is possible for direct allocation in this generation to happen
  7782 // in the middle of the sweep. Note that the sweeper also coalesces
  7783 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7784 // synchronize appropriately freshly allocated blocks may get swept up.
  7785 // This is accomplished by the sweeper locking the free lists while
  7786 // it is sweeping. Thus blocks that are determined to be free are
  7787 // indeed free. There is however one additional complication:
  7788 // blocks that have been allocated since the final checkpoint and
  7789 // mark, will not have been marked and so would be treated as
  7790 // unreachable and swept up. To prevent this, the allocator marks
  7791 // the bit map when allocating during the sweep phase. This leads,
  7792 // however, to a further complication -- objects may have been allocated
  7793 // but not yet initialized -- in the sense that the header isn't yet
  7794 // installed. The sweeper can not then determine the size of the block
  7795 // in order to skip over it. To deal with this case, we use a technique
  7796 // (due to Printezis) to encode such uninitialized block sizes in the
  7797 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7798 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7799 // that "normal marks" won't be adjacent in the bit map (there will
  7800 // always be at least two 0 bits between successive 1 bits). We make use
  7801 // of these "unused" bits to represent uninitialized blocks -- the bit
  7802 // corresponding to the start of the uninitialized object and the next
  7803 // bit are both set. Finally, a 1 bit marks the end of the object that
  7804 // started with the two consecutive 1 bits to indicate its potentially
  7805 // uninitialized state.
  7807 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7808   FreeChunk* fc = (FreeChunk*)addr;
  7809   size_t res;
  7811   // check if we are done sweepinrg
  7812   if (addr == _limit) { // we have swept up to the limit, do nothing more
  7813     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7814            "sweep _limit out of bounds");
  7815     // help the closure application finish
  7816     return pointer_delta(_sp->end(), _limit);
  7818   assert(addr <= _limit, "sweep invariant");
  7820   // check if we should yield
  7821   do_yield_check(addr);
  7822   if (fc->isFree()) {
  7823     // Chunk that is already free
  7824     res = fc->size();
  7825     doAlreadyFreeChunk(fc);
  7826     debug_only(_sp->verifyFreeLists());
  7827     assert(res == fc->size(), "Don't expect the size to change");
  7828     NOT_PRODUCT(
  7829       _numObjectsAlreadyFree++;
  7830       _numWordsAlreadyFree += res;
  7832     NOT_PRODUCT(_last_fc = fc;)
  7833   } else if (!_bitMap->isMarked(addr)) {
  7834     // Chunk is fresh garbage
  7835     res = doGarbageChunk(fc);
  7836     debug_only(_sp->verifyFreeLists());
  7837     NOT_PRODUCT(
  7838       _numObjectsFreed++;
  7839       _numWordsFreed += res;
  7841   } else {
  7842     // Chunk that is alive.
  7843     res = doLiveChunk(fc);
  7844     debug_only(_sp->verifyFreeLists());
  7845     NOT_PRODUCT(
  7846         _numObjectsLive++;
  7847         _numWordsLive += res;
  7850   return res;
  7853 // For the smart allocation, record following
  7854 //  split deaths - a free chunk is removed from its free list because
  7855 //      it is being split into two or more chunks.
  7856 //  split birth - a free chunk is being added to its free list because
  7857 //      a larger free chunk has been split and resulted in this free chunk.
  7858 //  coal death - a free chunk is being removed from its free list because
  7859 //      it is being coalesced into a large free chunk.
  7860 //  coal birth - a free chunk is being added to its free list because
  7861 //      it was created when two or more free chunks where coalesced into
  7862 //      this free chunk.
  7863 //
  7864 // These statistics are used to determine the desired number of free
  7865 // chunks of a given size.  The desired number is chosen to be relative
  7866 // to the end of a CMS sweep.  The desired number at the end of a sweep
  7867 // is the
  7868 //      count-at-end-of-previous-sweep (an amount that was enough)
  7869 //              - count-at-beginning-of-current-sweep  (the excess)
  7870 //              + split-births  (gains in this size during interval)
  7871 //              - split-deaths  (demands on this size during interval)
  7872 // where the interval is from the end of one sweep to the end of the
  7873 // next.
  7874 //
  7875 // When sweeping the sweeper maintains an accumulated chunk which is
  7876 // the chunk that is made up of chunks that have been coalesced.  That
  7877 // will be termed the left-hand chunk.  A new chunk of garbage that
  7878 // is being considered for coalescing will be referred to as the
  7879 // right-hand chunk.
  7880 //
  7881 // When making a decision on whether to coalesce a right-hand chunk with
  7882 // the current left-hand chunk, the current count vs. the desired count
  7883 // of the left-hand chunk is considered.  Also if the right-hand chunk
  7884 // is near the large chunk at the end of the heap (see
  7885 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  7886 // left-hand chunk is coalesced.
  7887 //
  7888 // When making a decision about whether to split a chunk, the desired count
  7889 // vs. the current count of the candidate to be split is also considered.
  7890 // If the candidate is underpopulated (currently fewer chunks than desired)
  7891 // a chunk of an overpopulated (currently more chunks than desired) size may
  7892 // be chosen.  The "hint" associated with a free list, if non-null, points
  7893 // to a free list which may be overpopulated.
  7894 //
  7896 void SweepClosure::doAlreadyFreeChunk(FreeChunk* fc) {
  7897   size_t size = fc->size();
  7898   // Chunks that cannot be coalesced are not in the
  7899   // free lists.
  7900   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  7901     assert(_sp->verifyChunkInFreeLists(fc),
  7902       "free chunk should be in free lists");
  7904   // a chunk that is already free, should not have been
  7905   // marked in the bit map
  7906   HeapWord* addr = (HeapWord*) fc;
  7907   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  7908   // Verify that the bit map has no bits marked between
  7909   // addr and purported end of this block.
  7910   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7912   // Some chunks cannot be coalesced in under any circumstances.
  7913   // See the definition of cantCoalesce().
  7914   if (!fc->cantCoalesce()) {
  7915     // This chunk can potentially be coalesced.
  7916     if (_sp->adaptive_freelists()) {
  7917       // All the work is done in
  7918       doPostIsFreeOrGarbageChunk(fc, size);
  7919     } else {  // Not adaptive free lists
  7920       // this is a free chunk that can potentially be coalesced by the sweeper;
  7921       if (!inFreeRange()) {
  7922         // if the next chunk is a free block that can't be coalesced
  7923         // it doesn't make sense to remove this chunk from the free lists
  7924         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  7925         assert((HeapWord*)nextChunk <= _limit, "sweep invariant");
  7926         if ((HeapWord*)nextChunk < _limit  &&    // there's a next chunk...
  7927             nextChunk->isFree()    &&            // which is free...
  7928             nextChunk->cantCoalesce()) {         // ... but cant be coalesced
  7929           // nothing to do
  7930         } else {
  7931           // Potentially the start of a new free range:
  7932           // Don't eagerly remove it from the free lists.
  7933           // No need to remove it if it will just be put
  7934           // back again.  (Also from a pragmatic point of view
  7935           // if it is a free block in a region that is beyond
  7936           // any allocated blocks, an assertion will fail)
  7937           // Remember the start of a free run.
  7938           initialize_free_range(addr, true);
  7939           // end - can coalesce with next chunk
  7941       } else {
  7942         // the midst of a free range, we are coalescing
  7943         debug_only(record_free_block_coalesced(fc);)
  7944         if (CMSTraceSweeper) {
  7945           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  7947         // remove it from the free lists
  7948         _sp->removeFreeChunkFromFreeLists(fc);
  7949         set_lastFreeRangeCoalesced(true);
  7950         // If the chunk is being coalesced and the current free range is
  7951         // in the free lists, remove the current free range so that it
  7952         // will be returned to the free lists in its entirety - all
  7953         // the coalesced pieces included.
  7954         if (freeRangeInFreeLists()) {
  7955           FreeChunk* ffc = (FreeChunk*) freeFinger();
  7956           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  7957             "Size of free range is inconsistent with chunk size.");
  7958           if (CMSTestInFreeList) {
  7959             assert(_sp->verifyChunkInFreeLists(ffc),
  7960               "free range is not in free lists");
  7962           _sp->removeFreeChunkFromFreeLists(ffc);
  7963           set_freeRangeInFreeLists(false);
  7967   } else {
  7968     // Code path common to both original and adaptive free lists.
  7970     // cant coalesce with previous block; this should be treated
  7971     // as the end of a free run if any
  7972     if (inFreeRange()) {
  7973       // we kicked some butt; time to pick up the garbage
  7974       assert(freeFinger() < addr, "the finger pointeth off base");
  7975       flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  7977     // else, nothing to do, just continue
  7981 size_t SweepClosure::doGarbageChunk(FreeChunk* fc) {
  7982   // This is a chunk of garbage.  It is not in any free list.
  7983   // Add it to a free list or let it possibly be coalesced into
  7984   // a larger chunk.
  7985   HeapWord* addr = (HeapWord*) fc;
  7986   size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  7988   if (_sp->adaptive_freelists()) {
  7989     // Verify that the bit map has no bits marked between
  7990     // addr and purported end of just dead object.
  7991     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  7993     doPostIsFreeOrGarbageChunk(fc, size);
  7994   } else {
  7995     if (!inFreeRange()) {
  7996       // start of a new free range
  7997       assert(size > 0, "A free range should have a size");
  7998       initialize_free_range(addr, false);
  8000     } else {
  8001       // this will be swept up when we hit the end of the
  8002       // free range
  8003       if (CMSTraceSweeper) {
  8004         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  8006       // If the chunk is being coalesced and the current free range is
  8007       // in the free lists, remove the current free range so that it
  8008       // will be returned to the free lists in its entirety - all
  8009       // the coalesced pieces included.
  8010       if (freeRangeInFreeLists()) {
  8011         FreeChunk* ffc = (FreeChunk*)freeFinger();
  8012         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8013           "Size of free range is inconsistent with chunk size.");
  8014         if (CMSTestInFreeList) {
  8015           assert(_sp->verifyChunkInFreeLists(ffc),
  8016             "free range is not in free lists");
  8018         _sp->removeFreeChunkFromFreeLists(ffc);
  8019         set_freeRangeInFreeLists(false);
  8021       set_lastFreeRangeCoalesced(true);
  8023     // this will be swept up when we hit the end of the free range
  8025     // Verify that the bit map has no bits marked between
  8026     // addr and purported end of just dead object.
  8027     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8029   return size;
  8032 size_t SweepClosure::doLiveChunk(FreeChunk* fc) {
  8033   HeapWord* addr = (HeapWord*) fc;
  8034   // The sweeper has just found a live object. Return any accumulated
  8035   // left hand chunk to the free lists.
  8036   if (inFreeRange()) {
  8037     if (_sp->adaptive_freelists()) {
  8038       flushCurFreeChunk(freeFinger(),
  8039                         pointer_delta(addr, freeFinger()));
  8040     } else { // not adaptive freelists
  8041       set_inFreeRange(false);
  8042       // Add the free range back to the free list if it is not already
  8043       // there.
  8044       if (!freeRangeInFreeLists()) {
  8045         assert(freeFinger() < addr, "the finger pointeth off base");
  8046         if (CMSTraceSweeper) {
  8047           gclog_or_tty->print("Sweep:put_free_blk 0x%x (%d) "
  8048             "[coalesced:%d]\n",
  8049             freeFinger(), pointer_delta(addr, freeFinger()),
  8050             lastFreeRangeCoalesced());
  8052         _sp->addChunkAndRepairOffsetTable(freeFinger(),
  8053           pointer_delta(addr, freeFinger()), lastFreeRangeCoalesced());
  8058   // Common code path for original and adaptive free lists.
  8060   // this object is live: we'd normally expect this to be
  8061   // an oop, and like to assert the following:
  8062   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8063   // However, as we commented above, this may be an object whose
  8064   // header hasn't yet been initialized.
  8065   size_t size;
  8066   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8067   if (_bitMap->isMarked(addr + 1)) {
  8068     // Determine the size from the bit map, rather than trying to
  8069     // compute it from the object header.
  8070     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8071     size = pointer_delta(nextOneAddr + 1, addr);
  8072     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8073            "alignment problem");
  8075     #ifdef DEBUG
  8076       if (oop(addr)->klass_or_null() != NULL &&
  8077           (   !_collector->should_unload_classes()
  8078            || (oop(addr)->is_parsable()) &&
  8079                oop(addr)->is_conc_safe())) {
  8080         // Ignore mark word because we are running concurrent with mutators
  8081         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8082         // is_conc_safe is checked before performing this assertion
  8083         // because an object that is not is_conc_safe may yet have
  8084         // the return from size() correct.
  8085         assert(size ==
  8086                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8087                "P-mark and computed size do not agree");
  8089     #endif
  8091   } else {
  8092     // This should be an initialized object that's alive.
  8093     assert(oop(addr)->klass_or_null() != NULL &&
  8094            (!_collector->should_unload_classes()
  8095             || oop(addr)->is_parsable()),
  8096            "Should be an initialized object");
  8097     // Note that there are objects used during class redefinition
  8098     // (e.g., merge_cp in VM_RedefineClasses::merge_cp_and_rewrite()
  8099     // which are discarded with their is_conc_safe state still
  8100     // false.  These object may be floating garbage so may be
  8101     // seen here.  If they are floating garbage their size
  8102     // should be attainable from their klass.  Do not that
  8103     // is_conc_safe() is true for oop(addr).
  8104     // Ignore mark word because we are running concurrent with mutators
  8105     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8106     // Verify that the bit map has no bits marked between
  8107     // addr and purported end of this block.
  8108     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8109     assert(size >= 3, "Necessary for Printezis marks to work");
  8110     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8111     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8113   return size;
  8116 void SweepClosure::doPostIsFreeOrGarbageChunk(FreeChunk* fc,
  8117                                             size_t chunkSize) {
  8118   // doPostIsFreeOrGarbageChunk() should only be called in the smart allocation
  8119   // scheme.
  8120   bool fcInFreeLists = fc->isFree();
  8121   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8122   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8123   if (CMSTestInFreeList && fcInFreeLists) {
  8124     assert(_sp->verifyChunkInFreeLists(fc),
  8125       "free chunk is not in free lists");
  8129   if (CMSTraceSweeper) {
  8130     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8133   HeapWord* addr = (HeapWord*) fc;
  8135   bool coalesce;
  8136   size_t left  = pointer_delta(addr, freeFinger());
  8137   size_t right = chunkSize;
  8138   switch (FLSCoalescePolicy) {
  8139     // numeric value forms a coalition aggressiveness metric
  8140     case 0:  { // never coalesce
  8141       coalesce = false;
  8142       break;
  8144     case 1: { // coalesce if left & right chunks on overpopulated lists
  8145       coalesce = _sp->coalOverPopulated(left) &&
  8146                  _sp->coalOverPopulated(right);
  8147       break;
  8149     case 2: { // coalesce if left chunk on overpopulated list (default)
  8150       coalesce = _sp->coalOverPopulated(left);
  8151       break;
  8153     case 3: { // coalesce if left OR right chunk on overpopulated list
  8154       coalesce = _sp->coalOverPopulated(left) ||
  8155                  _sp->coalOverPopulated(right);
  8156       break;
  8158     case 4: { // always coalesce
  8159       coalesce = true;
  8160       break;
  8162     default:
  8163      ShouldNotReachHere();
  8166   // Should the current free range be coalesced?
  8167   // If the chunk is in a free range and either we decided to coalesce above
  8168   // or the chunk is near the large block at the end of the heap
  8169   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8170   bool doCoalesce = inFreeRange() &&
  8171     (coalesce || _g->isNearLargestChunk((HeapWord*)fc));
  8172   if (doCoalesce) {
  8173     // Coalesce the current free range on the left with the new
  8174     // chunk on the right.  If either is on a free list,
  8175     // it must be removed from the list and stashed in the closure.
  8176     if (freeRangeInFreeLists()) {
  8177       FreeChunk* ffc = (FreeChunk*)freeFinger();
  8178       assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8179         "Size of free range is inconsistent with chunk size.");
  8180       if (CMSTestInFreeList) {
  8181         assert(_sp->verifyChunkInFreeLists(ffc),
  8182           "Chunk is not in free lists");
  8184       _sp->coalDeath(ffc->size());
  8185       _sp->removeFreeChunkFromFreeLists(ffc);
  8186       set_freeRangeInFreeLists(false);
  8188     if (fcInFreeLists) {
  8189       _sp->coalDeath(chunkSize);
  8190       assert(fc->size() == chunkSize,
  8191         "The chunk has the wrong size or is not in the free lists");
  8192       _sp->removeFreeChunkFromFreeLists(fc);
  8194     set_lastFreeRangeCoalesced(true);
  8195   } else {  // not in a free range and/or should not coalesce
  8196     // Return the current free range and start a new one.
  8197     if (inFreeRange()) {
  8198       // In a free range but cannot coalesce with the right hand chunk.
  8199       // Put the current free range into the free lists.
  8200       flushCurFreeChunk(freeFinger(),
  8201         pointer_delta(addr, freeFinger()));
  8203     // Set up for new free range.  Pass along whether the right hand
  8204     // chunk is in the free lists.
  8205     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8208 void SweepClosure::flushCurFreeChunk(HeapWord* chunk, size_t size) {
  8209   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8210   assert(size > 0,
  8211     "A zero sized chunk cannot be added to the free lists.");
  8212   if (!freeRangeInFreeLists()) {
  8213     if(CMSTestInFreeList) {
  8214       FreeChunk* fc = (FreeChunk*) chunk;
  8215       fc->setSize(size);
  8216       assert(!_sp->verifyChunkInFreeLists(fc),
  8217         "chunk should not be in free lists yet");
  8219     if (CMSTraceSweeper) {
  8220       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8221                     chunk, size);
  8223     // A new free range is going to be starting.  The current
  8224     // free range has not been added to the free lists yet or
  8225     // was removed so add it back.
  8226     // If the current free range was coalesced, then the death
  8227     // of the free range was recorded.  Record a birth now.
  8228     if (lastFreeRangeCoalesced()) {
  8229       _sp->coalBirth(size);
  8231     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8232             lastFreeRangeCoalesced());
  8234   set_inFreeRange(false);
  8235   set_freeRangeInFreeLists(false);
  8238 // We take a break if we've been at this for a while,
  8239 // so as to avoid monopolizing the locks involved.
  8240 void SweepClosure::do_yield_work(HeapWord* addr) {
  8241   // Return current free chunk being used for coalescing (if any)
  8242   // to the appropriate freelist.  After yielding, the next
  8243   // free block encountered will start a coalescing range of
  8244   // free blocks.  If the next free block is adjacent to the
  8245   // chunk just flushed, they will need to wait for the next
  8246   // sweep to be coalesced.
  8247   if (inFreeRange()) {
  8248     flushCurFreeChunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8251   // First give up the locks, then yield, then re-lock.
  8252   // We should probably use a constructor/destructor idiom to
  8253   // do this unlock/lock or modify the MutexUnlocker class to
  8254   // serve our purpose. XXX
  8255   assert_lock_strong(_bitMap->lock());
  8256   assert_lock_strong(_freelistLock);
  8257   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8258          "CMS thread should hold CMS token");
  8259   _bitMap->lock()->unlock();
  8260   _freelistLock->unlock();
  8261   ConcurrentMarkSweepThread::desynchronize(true);
  8262   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8263   _collector->stopTimer();
  8264   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8265   if (PrintCMSStatistics != 0) {
  8266     _collector->incrementYields();
  8268   _collector->icms_wait();
  8270   // See the comment in coordinator_yield()
  8271   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8272                        ConcurrentMarkSweepThread::should_yield() &&
  8273                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8274     os::sleep(Thread::current(), 1, false);
  8275     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8278   ConcurrentMarkSweepThread::synchronize(true);
  8279   _freelistLock->lock();
  8280   _bitMap->lock()->lock_without_safepoint_check();
  8281   _collector->startTimer();
  8284 #ifndef PRODUCT
  8285 // This is actually very useful in a product build if it can
  8286 // be called from the debugger.  Compile it into the product
  8287 // as needed.
  8288 bool debug_verifyChunkInFreeLists(FreeChunk* fc) {
  8289   return debug_cms_space->verifyChunkInFreeLists(fc);
  8292 void SweepClosure::record_free_block_coalesced(FreeChunk* fc) const {
  8293   if (CMSTraceSweeper) {
  8294     gclog_or_tty->print("Sweep:coal_free_blk 0x%x (%d)\n", fc, fc->size());
  8297 #endif
  8299 // CMSIsAliveClosure
  8300 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8301   HeapWord* addr = (HeapWord*)obj;
  8302   return addr != NULL &&
  8303          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8306 // CMSKeepAliveClosure: the serial version
  8307 void CMSKeepAliveClosure::do_oop(oop obj) {
  8308   HeapWord* addr = (HeapWord*)obj;
  8309   if (_span.contains(addr) &&
  8310       !_bit_map->isMarked(addr)) {
  8311     _bit_map->mark(addr);
  8312     bool simulate_overflow = false;
  8313     NOT_PRODUCT(
  8314       if (CMSMarkStackOverflowALot &&
  8315           _collector->simulate_overflow()) {
  8316         // simulate a stack overflow
  8317         simulate_overflow = true;
  8320     if (simulate_overflow || !_mark_stack->push(obj)) {
  8321       if (_concurrent_precleaning) {
  8322         // We dirty the overflown object and let the remark
  8323         // phase deal with it.
  8324         assert(_collector->overflow_list_is_empty(), "Error");
  8325         // In the case of object arrays, we need to dirty all of
  8326         // the cards that the object spans. No locking or atomics
  8327         // are needed since no one else can be mutating the mod union
  8328         // table.
  8329         if (obj->is_objArray()) {
  8330           size_t sz = obj->size();
  8331           HeapWord* end_card_addr =
  8332             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8333           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8334           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8335           _collector->_modUnionTable.mark_range(redirty_range);
  8336         } else {
  8337           _collector->_modUnionTable.mark(addr);
  8339         _collector->_ser_kac_preclean_ovflw++;
  8340       } else {
  8341         _collector->push_on_overflow_list(obj);
  8342         _collector->_ser_kac_ovflw++;
  8348 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8349 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8351 // CMSParKeepAliveClosure: a parallel version of the above.
  8352 // The work queues are private to each closure (thread),
  8353 // but (may be) available for stealing by other threads.
  8354 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8355   HeapWord* addr = (HeapWord*)obj;
  8356   if (_span.contains(addr) &&
  8357       !_bit_map->isMarked(addr)) {
  8358     // In general, during recursive tracing, several threads
  8359     // may be concurrently getting here; the first one to
  8360     // "tag" it, claims it.
  8361     if (_bit_map->par_mark(addr)) {
  8362       bool res = _work_queue->push(obj);
  8363       assert(res, "Low water mark should be much less than capacity");
  8364       // Do a recursive trim in the hope that this will keep
  8365       // stack usage lower, but leave some oops for potential stealers
  8366       trim_queue(_low_water_mark);
  8367     } // Else, another thread got there first
  8371 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8372 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8374 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8375   while (_work_queue->size() > max) {
  8376     oop new_oop;
  8377     if (_work_queue->pop_local(new_oop)) {
  8378       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8379       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8380              "no white objects on this stack!");
  8381       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8382       // iterate over the oops in this oop, marking and pushing
  8383       // the ones in CMS heap (i.e. in _span).
  8384       new_oop->oop_iterate(&_mark_and_push);
  8389 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8390   HeapWord* addr = (HeapWord*)obj;
  8391   if (_span.contains(addr) &&
  8392       !_bit_map->isMarked(addr)) {
  8393     if (_bit_map->par_mark(addr)) {
  8394       bool simulate_overflow = false;
  8395       NOT_PRODUCT(
  8396         if (CMSMarkStackOverflowALot &&
  8397             _collector->par_simulate_overflow()) {
  8398           // simulate a stack overflow
  8399           simulate_overflow = true;
  8402       if (simulate_overflow || !_work_queue->push(obj)) {
  8403         _collector->par_push_on_overflow_list(obj);
  8404         _collector->_par_kac_ovflw++;
  8406     } // Else another thread got there already
  8410 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8411 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8413 //////////////////////////////////////////////////////////////////
  8414 //  CMSExpansionCause                /////////////////////////////
  8415 //////////////////////////////////////////////////////////////////
  8416 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8417   switch (cause) {
  8418     case _no_expansion:
  8419       return "No expansion";
  8420     case _satisfy_free_ratio:
  8421       return "Free ratio";
  8422     case _satisfy_promotion:
  8423       return "Satisfy promotion";
  8424     case _satisfy_allocation:
  8425       return "allocation";
  8426     case _allocate_par_lab:
  8427       return "Par LAB";
  8428     case _allocate_par_spooling_space:
  8429       return "Par Spooling Space";
  8430     case _adaptive_size_policy:
  8431       return "Ergonomics";
  8432     default:
  8433       return "unknown";
  8437 void CMSDrainMarkingStackClosure::do_void() {
  8438   // the max number to take from overflow list at a time
  8439   const size_t num = _mark_stack->capacity()/4;
  8440   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
  8441          "Overflow list should be NULL during concurrent phases");
  8442   while (!_mark_stack->isEmpty() ||
  8443          // if stack is empty, check the overflow list
  8444          _collector->take_from_overflow_list(num, _mark_stack)) {
  8445     oop obj = _mark_stack->pop();
  8446     HeapWord* addr = (HeapWord*)obj;
  8447     assert(_span.contains(addr), "Should be within span");
  8448     assert(_bit_map->isMarked(addr), "Should be marked");
  8449     assert(obj->is_oop(), "Should be an oop");
  8450     obj->oop_iterate(_keep_alive);
  8454 void CMSParDrainMarkingStackClosure::do_void() {
  8455   // drain queue
  8456   trim_queue(0);
  8459 // Trim our work_queue so its length is below max at return
  8460 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8461   while (_work_queue->size() > max) {
  8462     oop new_oop;
  8463     if (_work_queue->pop_local(new_oop)) {
  8464       assert(new_oop->is_oop(), "Expected an oop");
  8465       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8466              "no white objects on this stack!");
  8467       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8468       // iterate over the oops in this oop, marking and pushing
  8469       // the ones in CMS heap (i.e. in _span).
  8470       new_oop->oop_iterate(&_mark_and_push);
  8475 ////////////////////////////////////////////////////////////////////
  8476 // Support for Marking Stack Overflow list handling and related code
  8477 ////////////////////////////////////////////////////////////////////
  8478 // Much of the following code is similar in shape and spirit to the
  8479 // code used in ParNewGC. We should try and share that code
  8480 // as much as possible in the future.
  8482 #ifndef PRODUCT
  8483 // Debugging support for CMSStackOverflowALot
  8485 // It's OK to call this multi-threaded;  the worst thing
  8486 // that can happen is that we'll get a bunch of closely
  8487 // spaced simulated oveflows, but that's OK, in fact
  8488 // probably good as it would exercise the overflow code
  8489 // under contention.
  8490 bool CMSCollector::simulate_overflow() {
  8491   if (_overflow_counter-- <= 0) { // just being defensive
  8492     _overflow_counter = CMSMarkStackOverflowInterval;
  8493     return true;
  8494   } else {
  8495     return false;
  8499 bool CMSCollector::par_simulate_overflow() {
  8500   return simulate_overflow();
  8502 #endif
  8504 // Single-threaded
  8505 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8506   assert(stack->isEmpty(), "Expected precondition");
  8507   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8508   size_t i = num;
  8509   oop  cur = _overflow_list;
  8510   const markOop proto = markOopDesc::prototype();
  8511   NOT_PRODUCT(ssize_t n = 0;)
  8512   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8513     next = oop(cur->mark());
  8514     cur->set_mark(proto);   // until proven otherwise
  8515     assert(cur->is_oop(), "Should be an oop");
  8516     bool res = stack->push(cur);
  8517     assert(res, "Bit off more than can chew?");
  8518     NOT_PRODUCT(n++;)
  8520   _overflow_list = cur;
  8521 #ifndef PRODUCT
  8522   assert(_num_par_pushes >= n, "Too many pops?");
  8523   _num_par_pushes -=n;
  8524 #endif
  8525   return !stack->isEmpty();
  8528 #define BUSY  (oop(0x1aff1aff))
  8529 // (MT-safe) Get a prefix of at most "num" from the list.
  8530 // The overflow list is chained through the mark word of
  8531 // each object in the list. We fetch the entire list,
  8532 // break off a prefix of the right size and return the
  8533 // remainder. If other threads try to take objects from
  8534 // the overflow list at that time, they will wait for
  8535 // some time to see if data becomes available. If (and
  8536 // only if) another thread places one or more object(s)
  8537 // on the global list before we have returned the suffix
  8538 // to the global list, we will walk down our local list
  8539 // to find its end and append the global list to
  8540 // our suffix before returning it. This suffix walk can
  8541 // prove to be expensive (quadratic in the amount of traffic)
  8542 // when there are many objects in the overflow list and
  8543 // there is much producer-consumer contention on the list.
  8544 // *NOTE*: The overflow list manipulation code here and
  8545 // in ParNewGeneration:: are very similar in shape,
  8546 // except that in the ParNew case we use the old (from/eden)
  8547 // copy of the object to thread the list via its klass word.
  8548 // Because of the common code, if you make any changes in
  8549 // the code below, please check the ParNew version to see if
  8550 // similar changes might be needed.
  8551 // CR 6797058 has been filed to consolidate the common code.
  8552 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8553                                                OopTaskQueue* work_q) {
  8554   assert(work_q->size() == 0, "First empty local work queue");
  8555   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8556   if (_overflow_list == NULL) {
  8557     return false;
  8559   // Grab the entire list; we'll put back a suffix
  8560   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8561   Thread* tid = Thread::current();
  8562   size_t CMSOverflowSpinCount = (size_t)ParallelGCThreads;
  8563   size_t sleep_time_millis = MAX2((size_t)1, num/100);
  8564   // If the list is busy, we spin for a short while,
  8565   // sleeping between attempts to get the list.
  8566   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
  8567     os::sleep(tid, sleep_time_millis, false);
  8568     if (_overflow_list == NULL) {
  8569       // Nothing left to take
  8570       return false;
  8571     } else if (_overflow_list != BUSY) {
  8572       // Try and grab the prefix
  8573       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8576   // If the list was found to be empty, or we spun long
  8577   // enough, we give up and return empty-handed. If we leave
  8578   // the list in the BUSY state below, it must be the case that
  8579   // some other thread holds the overflow list and will set it
  8580   // to a non-BUSY state in the future.
  8581   if (prefix == NULL || prefix == BUSY) {
  8582      // Nothing to take or waited long enough
  8583      if (prefix == NULL) {
  8584        // Write back the NULL in case we overwrote it with BUSY above
  8585        // and it is still the same value.
  8586        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8588      return false;
  8590   assert(prefix != NULL && prefix != BUSY, "Error");
  8591   size_t i = num;
  8592   oop cur = prefix;
  8593   // Walk down the first "num" objects, unless we reach the end.
  8594   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8595   if (cur->mark() == NULL) {
  8596     // We have "num" or fewer elements in the list, so there
  8597     // is nothing to return to the global list.
  8598     // Write back the NULL in lieu of the BUSY we wrote
  8599     // above, if it is still the same value.
  8600     if (_overflow_list == BUSY) {
  8601       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8603   } else {
  8604     // Chop off the suffix and rerturn it to the global list.
  8605     assert(cur->mark() != BUSY, "Error");
  8606     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8607     cur->set_mark(NULL);           // break off suffix
  8608     // It's possible that the list is still in the empty(busy) state
  8609     // we left it in a short while ago; in that case we may be
  8610     // able to place back the suffix without incurring the cost
  8611     // of a walk down the list.
  8612     oop observed_overflow_list = _overflow_list;
  8613     oop cur_overflow_list = observed_overflow_list;
  8614     bool attached = false;
  8615     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  8616       observed_overflow_list =
  8617         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8618       if (cur_overflow_list == observed_overflow_list) {
  8619         attached = true;
  8620         break;
  8621       } else cur_overflow_list = observed_overflow_list;
  8623     if (!attached) {
  8624       // Too bad, someone else sneaked in (at least) an element; we'll need
  8625       // to do a splice. Find tail of suffix so we can prepend suffix to global
  8626       // list.
  8627       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8628       oop suffix_tail = cur;
  8629       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8630              "Tautology");
  8631       observed_overflow_list = _overflow_list;
  8632       do {
  8633         cur_overflow_list = observed_overflow_list;
  8634         if (cur_overflow_list != BUSY) {
  8635           // Do the splice ...
  8636           suffix_tail->set_mark(markOop(cur_overflow_list));
  8637         } else { // cur_overflow_list == BUSY
  8638           suffix_tail->set_mark(NULL);
  8640         // ... and try to place spliced list back on overflow_list ...
  8641         observed_overflow_list =
  8642           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8643       } while (cur_overflow_list != observed_overflow_list);
  8644       // ... until we have succeeded in doing so.
  8648   // Push the prefix elements on work_q
  8649   assert(prefix != NULL, "control point invariant");
  8650   const markOop proto = markOopDesc::prototype();
  8651   oop next;
  8652   NOT_PRODUCT(ssize_t n = 0;)
  8653   for (cur = prefix; cur != NULL; cur = next) {
  8654     next = oop(cur->mark());
  8655     cur->set_mark(proto);   // until proven otherwise
  8656     assert(cur->is_oop(), "Should be an oop");
  8657     bool res = work_q->push(cur);
  8658     assert(res, "Bit off more than we can chew?");
  8659     NOT_PRODUCT(n++;)
  8661 #ifndef PRODUCT
  8662   assert(_num_par_pushes >= n, "Too many pops?");
  8663   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8664 #endif
  8665   return true;
  8668 // Single-threaded
  8669 void CMSCollector::push_on_overflow_list(oop p) {
  8670   NOT_PRODUCT(_num_par_pushes++;)
  8671   assert(p->is_oop(), "Not an oop");
  8672   preserve_mark_if_necessary(p);
  8673   p->set_mark((markOop)_overflow_list);
  8674   _overflow_list = p;
  8677 // Multi-threaded; use CAS to prepend to overflow list
  8678 void CMSCollector::par_push_on_overflow_list(oop p) {
  8679   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8680   assert(p->is_oop(), "Not an oop");
  8681   par_preserve_mark_if_necessary(p);
  8682   oop observed_overflow_list = _overflow_list;
  8683   oop cur_overflow_list;
  8684   do {
  8685     cur_overflow_list = observed_overflow_list;
  8686     if (cur_overflow_list != BUSY) {
  8687       p->set_mark(markOop(cur_overflow_list));
  8688     } else {
  8689       p->set_mark(NULL);
  8691     observed_overflow_list =
  8692       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8693   } while (cur_overflow_list != observed_overflow_list);
  8695 #undef BUSY
  8697 // Single threaded
  8698 // General Note on GrowableArray: pushes may silently fail
  8699 // because we are (temporarily) out of C-heap for expanding
  8700 // the stack. The problem is quite ubiquitous and affects
  8701 // a lot of code in the JVM. The prudent thing for GrowableArray
  8702 // to do (for now) is to exit with an error. However, that may
  8703 // be too draconian in some cases because the caller may be
  8704 // able to recover without much harm. For such cases, we
  8705 // should probably introduce a "soft_push" method which returns
  8706 // an indication of success or failure with the assumption that
  8707 // the caller may be able to recover from a failure; code in
  8708 // the VM can then be changed, incrementally, to deal with such
  8709 // failures where possible, thus, incrementally hardening the VM
  8710 // in such low resource situations.
  8711 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8712   if (_preserved_oop_stack == NULL) {
  8713     assert(_preserved_mark_stack == NULL,
  8714            "bijection with preserved_oop_stack");
  8715     // Allocate the stacks
  8716     _preserved_oop_stack  = new (ResourceObj::C_HEAP)
  8717       GrowableArray<oop>(PreserveMarkStackSize, true);
  8718     _preserved_mark_stack = new (ResourceObj::C_HEAP)
  8719       GrowableArray<markOop>(PreserveMarkStackSize, true);
  8720     if (_preserved_oop_stack == NULL || _preserved_mark_stack == NULL) {
  8721       vm_exit_out_of_memory(2* PreserveMarkStackSize * sizeof(oop) /* punt */,
  8722                             "Preserved Mark/Oop Stack for CMS (C-heap)");
  8725   _preserved_oop_stack->push(p);
  8726   _preserved_mark_stack->push(m);
  8727   assert(m == p->mark(), "Mark word changed");
  8728   assert(_preserved_oop_stack->length() == _preserved_mark_stack->length(),
  8729          "bijection");
  8732 // Single threaded
  8733 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8734   markOop m = p->mark();
  8735   if (m->must_be_preserved(p)) {
  8736     preserve_mark_work(p, m);
  8740 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8741   markOop m = p->mark();
  8742   if (m->must_be_preserved(p)) {
  8743     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8744     // Even though we read the mark word without holding
  8745     // the lock, we are assured that it will not change
  8746     // because we "own" this oop, so no other thread can
  8747     // be trying to push it on the overflow list; see
  8748     // the assertion in preserve_mark_work() that checks
  8749     // that m == p->mark().
  8750     preserve_mark_work(p, m);
  8754 // We should be able to do this multi-threaded,
  8755 // a chunk of stack being a task (this is
  8756 // correct because each oop only ever appears
  8757 // once in the overflow list. However, it's
  8758 // not very easy to completely overlap this with
  8759 // other operations, so will generally not be done
  8760 // until all work's been completed. Because we
  8761 // expect the preserved oop stack (set) to be small,
  8762 // it's probably fine to do this single-threaded.
  8763 // We can explore cleverer concurrent/overlapped/parallel
  8764 // processing of preserved marks if we feel the
  8765 // need for this in the future. Stack overflow should
  8766 // be so rare in practice and, when it happens, its
  8767 // effect on performance so great that this will
  8768 // likely just be in the noise anyway.
  8769 void CMSCollector::restore_preserved_marks_if_any() {
  8770   if (_preserved_oop_stack == NULL) {
  8771     assert(_preserved_mark_stack == NULL,
  8772            "bijection with preserved_oop_stack");
  8773     return;
  8776   assert(SafepointSynchronize::is_at_safepoint(),
  8777          "world should be stopped");
  8778   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8779          Thread::current()->is_VM_thread(),
  8780          "should be single-threaded");
  8782   int length = _preserved_oop_stack->length();
  8783   assert(_preserved_mark_stack->length() == length, "bijection");
  8784   for (int i = 0; i < length; i++) {
  8785     oop p = _preserved_oop_stack->at(i);
  8786     assert(p->is_oop(), "Should be an oop");
  8787     assert(_span.contains(p), "oop should be in _span");
  8788     assert(p->mark() == markOopDesc::prototype(),
  8789            "Set when taken from overflow list");
  8790     markOop m = _preserved_mark_stack->at(i);
  8791     p->set_mark(m);
  8793   _preserved_mark_stack->clear();
  8794   _preserved_oop_stack->clear();
  8795   assert(_preserved_mark_stack->is_empty() &&
  8796          _preserved_oop_stack->is_empty(),
  8797          "stacks were cleared above");
  8800 #ifndef PRODUCT
  8801 bool CMSCollector::no_preserved_marks() const {
  8802   return (   (   _preserved_mark_stack == NULL
  8803               && _preserved_oop_stack == NULL)
  8804           || (   _preserved_mark_stack->is_empty()
  8805               && _preserved_oop_stack->is_empty()));
  8807 #endif
  8809 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  8811   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8812   CMSAdaptiveSizePolicy* size_policy =
  8813     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  8814   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  8815     "Wrong type for size policy");
  8816   return size_policy;
  8819 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  8820                                            size_t desired_promo_size) {
  8821   if (cur_promo_size < desired_promo_size) {
  8822     size_t expand_bytes = desired_promo_size - cur_promo_size;
  8823     if (PrintAdaptiveSizePolicy && Verbose) {
  8824       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8825         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  8826         expand_bytes);
  8828     expand(expand_bytes,
  8829            MinHeapDeltaBytes,
  8830            CMSExpansionCause::_adaptive_size_policy);
  8831   } else if (desired_promo_size < cur_promo_size) {
  8832     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  8833     if (PrintAdaptiveSizePolicy && Verbose) {
  8834       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  8835         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  8836         shrink_bytes);
  8838     shrink(shrink_bytes);
  8842 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  8843   GenCollectedHeap* gch = GenCollectedHeap::heap();
  8844   CMSGCAdaptivePolicyCounters* counters =
  8845     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  8846   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  8847     "Wrong kind of counters");
  8848   return counters;
  8852 void ASConcurrentMarkSweepGeneration::update_counters() {
  8853   if (UsePerfData) {
  8854     _space_counters->update_all();
  8855     _gen_counters->update_all();
  8856     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8857     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8858     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8859     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8860       "Wrong gc statistics type");
  8861     counters->update_counters(gc_stats_l);
  8865 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  8866   if (UsePerfData) {
  8867     _space_counters->update_used(used);
  8868     _space_counters->update_capacity();
  8869     _gen_counters->update_all();
  8871     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8872     GenCollectedHeap* gch = GenCollectedHeap::heap();
  8873     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  8874     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  8875       "Wrong gc statistics type");
  8876     counters->update_counters(gc_stats_l);
  8880 // The desired expansion delta is computed so that:
  8881 // . desired free percentage or greater is used
  8882 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  8883   assert_locked_or_safepoint(Heap_lock);
  8885   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  8887   // If incremental collection failed, we just want to expand
  8888   // to the limit.
  8889   if (incremental_collection_failed()) {
  8890     clear_incremental_collection_failed();
  8891     grow_to_reserved();
  8892     return;
  8895   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  8897   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  8898     "Wrong type of heap");
  8899   int prev_level = level() - 1;
  8900   assert(prev_level >= 0, "The cms generation is the lowest generation");
  8901   Generation* prev_gen = gch->get_gen(prev_level);
  8902   assert(prev_gen->kind() == Generation::ASParNew,
  8903     "Wrong type of young generation");
  8904   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  8905   size_t cur_eden = younger_gen->eden()->capacity();
  8906   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  8907   size_t cur_promo = free();
  8908   size_policy->compute_tenured_generation_free_space(cur_promo,
  8909                                                        max_available(),
  8910                                                        cur_eden);
  8911   resize(cur_promo, size_policy->promo_size());
  8913   // Record the new size of the space in the cms generation
  8914   // that is available for promotions.  This is temporary.
  8915   // It should be the desired promo size.
  8916   size_policy->avg_cms_promo()->sample(free());
  8917   size_policy->avg_old_live()->sample(used());
  8919   if (UsePerfData) {
  8920     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  8921     counters->update_cms_capacity_counter(capacity());
  8925 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  8926   assert_locked_or_safepoint(Heap_lock);
  8927   assert_lock_strong(freelistLock());
  8928   HeapWord* old_end = _cmsSpace->end();
  8929   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  8930   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  8931   FreeChunk* chunk_at_end = find_chunk_at_end();
  8932   if (chunk_at_end == NULL) {
  8933     // No room to shrink
  8934     if (PrintGCDetails && Verbose) {
  8935       gclog_or_tty->print_cr("No room to shrink: old_end  "
  8936         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  8937         " chunk_at_end  " PTR_FORMAT,
  8938         old_end, unallocated_start, chunk_at_end);
  8940     return;
  8941   } else {
  8943     // Find the chunk at the end of the space and determine
  8944     // how much it can be shrunk.
  8945     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  8946     size_t aligned_shrinkable_size_in_bytes =
  8947       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  8948     assert(unallocated_start <= chunk_at_end->end(),
  8949       "Inconsistent chunk at end of space");
  8950     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  8951     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  8953     // Shrink the underlying space
  8954     _virtual_space.shrink_by(bytes);
  8955     if (PrintGCDetails && Verbose) {
  8956       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  8957         " desired_bytes " SIZE_FORMAT
  8958         " shrinkable_size_in_bytes " SIZE_FORMAT
  8959         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  8960         "  bytes  " SIZE_FORMAT,
  8961         desired_bytes, shrinkable_size_in_bytes,
  8962         aligned_shrinkable_size_in_bytes, bytes);
  8963       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  8964         "  unallocated_start  " SIZE_FORMAT,
  8965         old_end, unallocated_start);
  8968     // If the space did shrink (shrinking is not guaranteed),
  8969     // shrink the chunk at the end by the appropriate amount.
  8970     if (((HeapWord*)_virtual_space.high()) < old_end) {
  8971       size_t new_word_size =
  8972         heap_word_size(_virtual_space.committed_size());
  8974       // Have to remove the chunk from the dictionary because it is changing
  8975       // size and might be someplace elsewhere in the dictionary.
  8977       // Get the chunk at end, shrink it, and put it
  8978       // back.
  8979       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  8980       size_t word_size_change = word_size_before - new_word_size;
  8981       size_t chunk_at_end_old_size = chunk_at_end->size();
  8982       assert(chunk_at_end_old_size >= word_size_change,
  8983         "Shrink is too large");
  8984       chunk_at_end->setSize(chunk_at_end_old_size -
  8985                           word_size_change);
  8986       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  8987         word_size_change);
  8989       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  8991       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  8992       _bts->resize(new_word_size);  // resize the block offset shared array
  8993       Universe::heap()->barrier_set()->resize_covered_region(mr);
  8994       _cmsSpace->assert_locked();
  8995       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  8997       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  8999       // update the space and generation capacity counters
  9000       if (UsePerfData) {
  9001         _space_counters->update_capacity();
  9002         _gen_counters->update_all();
  9005       if (Verbose && PrintGCDetails) {
  9006         size_t new_mem_size = _virtual_space.committed_size();
  9007         size_t old_mem_size = new_mem_size + bytes;
  9008         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  9009                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  9013     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  9014       "Inconsistency at end of space");
  9015     assert(chunk_at_end->end() == _cmsSpace->end(),
  9016       "Shrinking is inconsistent");
  9017     return;
  9021 // Transfer some number of overflown objects to usual marking
  9022 // stack. Return true if some objects were transferred.
  9023 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  9024   size_t num = MIN2((size_t)_mark_stack->capacity()/4,
  9025                     (size_t)ParGCDesiredObjsFromOverflowList);
  9027   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  9028   assert(_collector->overflow_list_is_empty() || res,
  9029          "If list is not empty, we should have taken something");
  9030   assert(!res || !_mark_stack->isEmpty(),
  9031          "If we took something, it should now be on our stack");
  9032   return res;
  9035 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  9036   size_t res = _sp->block_size_no_stall(addr, _collector);
  9037   assert(res != 0, "Should always be able to compute a size");
  9038   if (_sp->block_is_obj(addr)) {
  9039     if (_live_bit_map->isMarked(addr)) {
  9040       // It can't have been dead in a previous cycle
  9041       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  9042     } else {
  9043       _dead_bit_map->mark(addr);      // mark the dead object
  9046   return res;

mercurial