src/share/vm/adlc/output_h.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1038
dbbe28fc66b5
child 1262
bf3489cc0aa0
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // output_h.cpp - Class HPP file output routines for architecture definition
    26 #include "adlc.hpp"
    29 // Generate the #define that describes the number of registers.
    30 static void defineRegCount(FILE *fp, RegisterForm *registers) {
    31   if (registers) {
    32     int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
    33     fprintf(fp,"\n");
    34     fprintf(fp,"// the number of reserved registers + machine registers.\n");
    35     fprintf(fp,"#define REG_COUNT    %d\n", regCount);
    36   }
    37 }
    39 // Output enumeration of machine register numbers
    40 // (1)
    41 // // Enumerate machine registers starting after reserved regs.
    42 // // in the order of occurrence in the register block.
    43 // enum MachRegisterNumbers {
    44 //   EAX_num = 0,
    45 //   ...
    46 //   _last_Mach_Reg
    47 // }
    48 void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
    49   if (_register) {
    50     RegDef *reg_def = NULL;
    52     // Output a #define for the number of machine registers
    53     defineRegCount(fp_hpp, _register);
    55     // Count all the Save_On_Entry and Always_Save registers
    56     int    saved_on_entry = 0;
    57     int  c_saved_on_entry = 0;
    58     _register->reset_RegDefs();
    59     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
    60       if( strcmp(reg_def->_callconv,"SOE") == 0 ||
    61           strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
    62       if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
    63           strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
    64     }
    65     fprintf(fp_hpp, "\n");
    66     fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
    67     fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
    68     fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
    69     fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
    71     // (1)
    72     // Build definition for enumeration of register numbers
    73     fprintf(fp_hpp, "\n");
    74     fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
    75     fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
    76     fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
    78     // Output the register number for each register in the allocation classes
    79     _register->reset_RegDefs();
    80     int i = 0;
    81     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
    82       fprintf(fp_hpp,"  %s_num,\t\t// %d\n", reg_def->_regname, i++);
    83     }
    84     // Finish defining enumeration
    85     fprintf(fp_hpp, "  _last_Mach_Reg\t// %d\n", i);
    86     fprintf(fp_hpp, "};\n");
    87   }
    89   fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
    90   fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
    91   fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
    92   fprintf(fp_hpp, "#define FORALL_BODY ");
    93   int len = RegisterForm::RegMask_Size();
    94   for( int i = 0; i < len; i++ )
    95     fprintf(fp_hpp, "BODY(%d) ",i);
    96   fprintf(fp_hpp, "\n\n");
    98   fprintf(fp_hpp,"class RegMask;\n");
    99   // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
   100   // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
   101 }
   104 // Output enumeration of machine register encodings
   105 // (2)
   106 // // Enumerate machine registers starting after reserved regs.
   107 // // in the order of occurrence in the alloc_class(es).
   108 // enum MachRegisterEncodes {
   109 //   EAX_enc = 0x00,
   110 //   ...
   111 // }
   112 void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
   113   if (_register) {
   114     RegDef *reg_def = NULL;
   115     RegDef *reg_def_next = NULL;
   117     // (2)
   118     // Build definition for enumeration of encode values
   119     fprintf(fp_hpp, "\n");
   120     fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
   121     fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
   122     fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
   124     // Output the register encoding for each register in the allocation classes
   125     _register->reset_RegDefs();
   126     reg_def_next = _register->iter_RegDefs();
   127     while( (reg_def = reg_def_next) != NULL ) {
   128       reg_def_next = _register->iter_RegDefs();
   129       fprintf(fp_hpp,"  %s_enc = %s%s\n",
   130               reg_def->_regname, reg_def->register_encode(), reg_def_next == NULL? "" : "," );
   131     }
   132     // Finish defining enumeration
   133     fprintf(fp_hpp, "};\n");
   135   } // Done with register form
   136 }
   139 // Declare an array containing the machine register names, strings.
   140 static void declareRegNames(FILE *fp, RegisterForm *registers) {
   141   if (registers) {
   142 //    fprintf(fp,"\n");
   143 //    fprintf(fp,"// An array of character pointers to machine register names.\n");
   144 //    fprintf(fp,"extern const char *regName[];\n");
   145   }
   146 }
   148 // Declare an array containing the machine register sizes in 32-bit words.
   149 void ArchDesc::declareRegSizes(FILE *fp) {
   150 // regSize[] is not used
   151 }
   153 // Declare an array containing the machine register encoding values
   154 static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
   155   if (registers) {
   156     // // //
   157     // fprintf(fp,"\n");
   158     // fprintf(fp,"// An array containing the machine register encode values\n");
   159     // fprintf(fp,"extern const char  regEncode[];\n");
   160   }
   161 }
   164 // ---------------------------------------------------------------------------
   165 //------------------------------Utilities to build Instruction Classes--------
   166 // ---------------------------------------------------------------------------
   167 static void out_RegMask(FILE *fp) {
   168   fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
   169 }
   171 // ---------------------------------------------------------------------------
   172 //--------Utilities to build MachOper and MachNode derived Classes------------
   173 // ---------------------------------------------------------------------------
   175 //------------------------------Utilities to build Operand Classes------------
   176 static void in_RegMask(FILE *fp) {
   177   fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
   178 }
   180 static void declare_hash(FILE *fp) {
   181   fprintf(fp,"  virtual uint           hash() const;\n");
   182 }
   184 static void declare_cmp(FILE *fp) {
   185   fprintf(fp,"  virtual uint           cmp( const MachOper &oper ) const;\n");
   186 }
   188 static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
   189   int i = 0;
   190   Component *comp;
   192   if (oper->num_consts(globals) == 0) return;
   193   // Iterate over the component list looking for constants
   194   oper->_components.reset();
   195   if ((comp = oper->_components.iter()) == NULL) {
   196     assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
   197     const char *type = oper->ideal_type(globals);
   198     if (!strcmp(type, "ConI")) {
   199       if (i > 0) fprintf(fp,", ");
   200       fprintf(fp,"  int32          _c%d;\n", i);
   201     }
   202     else if (!strcmp(type, "ConP")) {
   203       if (i > 0) fprintf(fp,", ");
   204       fprintf(fp,"  const TypePtr *_c%d;\n", i);
   205     }
   206     else if (!strcmp(type, "ConN")) {
   207       if (i > 0) fprintf(fp,", ");
   208       fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
   209     }
   210     else if (!strcmp(type, "ConL")) {
   211       if (i > 0) fprintf(fp,", ");
   212       fprintf(fp,"  jlong          _c%d;\n", i);
   213     }
   214     else if (!strcmp(type, "ConF")) {
   215       if (i > 0) fprintf(fp,", ");
   216       fprintf(fp,"  jfloat         _c%d;\n", i);
   217     }
   218     else if (!strcmp(type, "ConD")) {
   219       if (i > 0) fprintf(fp,", ");
   220       fprintf(fp,"  jdouble        _c%d;\n", i);
   221     }
   222     else if (!strcmp(type, "Bool")) {
   223       fprintf(fp,"private:\n");
   224       fprintf(fp,"  BoolTest::mask _c%d;\n", i);
   225       fprintf(fp,"public:\n");
   226     }
   227     else {
   228       assert(0, "Non-constant operand lacks component list.");
   229     }
   230   } // end if NULL
   231   else {
   232     oper->_components.reset();
   233     while ((comp = oper->_components.iter()) != NULL) {
   234       if (!strcmp(comp->base_type(globals), "ConI")) {
   235         fprintf(fp,"  jint             _c%d;\n", i);
   236         i++;
   237       }
   238       else if (!strcmp(comp->base_type(globals), "ConP")) {
   239         fprintf(fp,"  const TypePtr *_c%d;\n", i);
   240         i++;
   241       }
   242       else if (!strcmp(comp->base_type(globals), "ConN")) {
   243         fprintf(fp,"  const TypePtr *_c%d;\n", i);
   244         i++;
   245       }
   246       else if (!strcmp(comp->base_type(globals), "ConL")) {
   247         fprintf(fp,"  jlong            _c%d;\n", i);
   248         i++;
   249       }
   250       else if (!strcmp(comp->base_type(globals), "ConF")) {
   251         fprintf(fp,"  jfloat           _c%d;\n", i);
   252         i++;
   253       }
   254       else if (!strcmp(comp->base_type(globals), "ConD")) {
   255         fprintf(fp,"  jdouble          _c%d;\n", i);
   256         i++;
   257       }
   258     }
   259   }
   260 }
   262 // Declare constructor.
   263 // Parameters start with condition code, then all other constants
   264 //
   265 // (0) public:
   266 // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
   267 // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
   268 //
   269 static void defineConstructor(FILE *fp, const char *name, uint num_consts,
   270                               ComponentList &lst, bool is_ideal_bool,
   271                               Form::DataType constant_type, FormDict &globals) {
   272   fprintf(fp,"public:\n");
   273   // generate line (1)
   274   fprintf(fp,"  %sOper(", name);
   275   if( num_consts == 0 ) {
   276     fprintf(fp,") {}\n");
   277     return;
   278   }
   280   // generate parameters for constants
   281   uint i = 0;
   282   Component *comp;
   283   lst.reset();
   284   if ((comp = lst.iter()) == NULL) {
   285     assert(num_consts == 1, "Bad component list detected.\n");
   286     switch( constant_type ) {
   287     case Form::idealI : {
   288       fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
   289       break;
   290     }
   291     case Form::idealN : { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
   292     case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
   293     case Form::idealL : { fprintf(fp,"jlong c%d", i);   break;        }
   294     case Form::idealF : { fprintf(fp,"jfloat c%d", i);  break;        }
   295     case Form::idealD : { fprintf(fp,"jdouble c%d", i); break;        }
   296     default:
   297       assert(!is_ideal_bool, "Non-constant operand lacks component list.");
   298       break;
   299     }
   300   } // end if NULL
   301   else {
   302     lst.reset();
   303     while((comp = lst.iter()) != NULL) {
   304       if (!strcmp(comp->base_type(globals), "ConI")) {
   305         if (i > 0) fprintf(fp,", ");
   306         fprintf(fp,"int32 c%d", i);
   307         i++;
   308       }
   309       else if (!strcmp(comp->base_type(globals), "ConP")) {
   310         if (i > 0) fprintf(fp,", ");
   311         fprintf(fp,"const TypePtr *c%d", i);
   312         i++;
   313       }
   314       else if (!strcmp(comp->base_type(globals), "ConN")) {
   315         if (i > 0) fprintf(fp,", ");
   316         fprintf(fp,"const TypePtr *c%d", i);
   317         i++;
   318       }
   319       else if (!strcmp(comp->base_type(globals), "ConL")) {
   320         if (i > 0) fprintf(fp,", ");
   321         fprintf(fp,"jlong c%d", i);
   322         i++;
   323       }
   324       else if (!strcmp(comp->base_type(globals), "ConF")) {
   325         if (i > 0) fprintf(fp,", ");
   326         fprintf(fp,"jfloat c%d", i);
   327         i++;
   328       }
   329       else if (!strcmp(comp->base_type(globals), "ConD")) {
   330         if (i > 0) fprintf(fp,", ");
   331         fprintf(fp,"jdouble c%d", i);
   332         i++;
   333       }
   334       else if (!strcmp(comp->base_type(globals), "Bool")) {
   335         if (i > 0) fprintf(fp,", ");
   336         fprintf(fp,"BoolTest::mask c%d", i);
   337         i++;
   338       }
   339     }
   340   }
   341   // finish line (1) and start line (2)
   342   fprintf(fp,")  : ");
   343   // generate initializers for constants
   344   i = 0;
   345   fprintf(fp,"_c%d(c%d)", i, i);
   346   for( i = 1; i < num_consts; ++i) {
   347     fprintf(fp,", _c%d(c%d)", i, i);
   348   }
   349   // The body for the constructor is empty
   350   fprintf(fp," {}\n");
   351 }
   353 // ---------------------------------------------------------------------------
   354 // Utilities to generate format rules for machine operands and instructions
   355 // ---------------------------------------------------------------------------
   357 // Generate the format rule for condition codes
   358 static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
   359   assert(oper != NULL, "what");
   360   CondInterface* cond = oper->_interface->is_CondInterface();
   361   fprintf(fp, "         if( _c%d == BoolTest::eq ) st->print(\"%s\");\n",i,cond->_equal_format);
   362   fprintf(fp, "    else if( _c%d == BoolTest::ne ) st->print(\"%s\");\n",i,cond->_not_equal_format);
   363   fprintf(fp, "    else if( _c%d == BoolTest::le ) st->print(\"%s\");\n",i,cond->_less_equal_format);
   364   fprintf(fp, "    else if( _c%d == BoolTest::ge ) st->print(\"%s\");\n",i,cond->_greater_equal_format);
   365   fprintf(fp, "    else if( _c%d == BoolTest::lt ) st->print(\"%s\");\n",i,cond->_less_format);
   366   fprintf(fp, "    else if( _c%d == BoolTest::gt ) st->print(\"%s\");\n",i,cond->_greater_format);
   367 }
   369 // Output code that dumps constant values, increment "i" if type is constant
   370 static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
   371   if (!strcmp(ideal_type, "ConI")) {
   372     fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
   373     ++i;
   374   }
   375   else if (!strcmp(ideal_type, "ConP")) {
   376     fprintf(fp,"    _c%d->dump_on(st);\n", i);
   377     ++i;
   378   }
   379   else if (!strcmp(ideal_type, "ConN")) {
   380     fprintf(fp,"    _c%d->dump_on(st);\n", i);
   381     ++i;
   382   }
   383   else if (!strcmp(ideal_type, "ConL")) {
   384     fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
   385     ++i;
   386   }
   387   else if (!strcmp(ideal_type, "ConF")) {
   388     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
   389     ++i;
   390   }
   391   else if (!strcmp(ideal_type, "ConD")) {
   392     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
   393     ++i;
   394   }
   395   else if (!strcmp(ideal_type, "Bool")) {
   396     defineCCodeDump(oper, fp,i);
   397     ++i;
   398   }
   400   return i;
   401 }
   403 // Generate the format rule for an operand
   404 void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
   405   if (!for_c_file) {
   406     // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
   407     // compile the bodies separately, to cut down on recompilations
   408     fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
   409     fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
   410     return;
   411   }
   413   // Local pointer indicates remaining part of format rule
   414   uint  idx = 0;                   // position of operand in match rule
   416   // Generate internal format function, used when stored locally
   417   fprintf(fp, "\n#ifndef PRODUCT\n");
   418   fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
   419   // Generate the user-defined portion of the format
   420   if (oper._format) {
   421     if ( oper._format->_strings.count() != 0 ) {
   422       // No initialization code for int_format
   424       // Build the format from the entries in strings and rep_vars
   425       const char  *string  = NULL;
   426       oper._format->_rep_vars.reset();
   427       oper._format->_strings.reset();
   428       while ( (string = oper._format->_strings.iter()) != NULL ) {
   429         fprintf(fp,"  ");
   431         // Check if this is a standard string or a replacement variable
   432         if ( string != NameList::_signal ) {
   433           // Normal string
   434           // Pass through to st->print
   435           fprintf(fp,"st->print(\"%s\");\n", string);
   436         } else {
   437           // Replacement variable
   438           const char *rep_var = oper._format->_rep_vars.iter();
   439           // Check that it is a local name, and an operand
   440           const Form* form = oper._localNames[rep_var];
   441           if (form == NULL) {
   442             globalAD->syntax_err(oper._linenum,
   443                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
   444             assert(form, "replacement variable was not found in local names");
   445           }
   446           OperandForm *op      = form->is_operand();
   447           // Get index if register or constant
   448           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
   449             idx  = oper.register_position( globals, rep_var);
   450           }
   451           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
   452             idx  = oper.constant_position( globals, rep_var);
   453           } else {
   454             idx = 0;
   455           }
   457           // output invocation of "$..."s format function
   458           if ( op != NULL )   op->int_format(fp, globals, idx);
   460           if ( idx == -1 ) {
   461             fprintf(stderr,
   462                     "Using a name, %s, that isn't in match rule\n", rep_var);
   463             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
   464           }
   465         } // Done with a replacement variable
   466       } // Done with all format strings
   467     } else {
   468       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
   469       oper.int_format(fp, globals, 0);
   470     }
   472   } else { // oper._format == NULL
   473     // Provide a few special case formats where the AD writer cannot.
   474     if ( strcmp(oper._ident,"Universe")==0 ) {
   475       fprintf(fp, "  st->print(\"$$univ\");\n");
   476     }
   477     // labelOper::int_format is defined in ad_<...>.cpp
   478   }
   479   // ALWAYS! Provide a special case output for condition codes.
   480   if( oper.is_ideal_bool() ) {
   481     defineCCodeDump(&oper, fp,0);
   482   }
   483   fprintf(fp,"}\n");
   485   // Generate external format function, when data is stored externally
   486   fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
   487   // Generate the user-defined portion of the format
   488   if (oper._format) {
   489     if ( oper._format->_strings.count() != 0 ) {
   491       // Check for a replacement string "$..."
   492       if ( oper._format->_rep_vars.count() != 0 ) {
   493         // Initialization code for ext_format
   494       }
   496       // Build the format from the entries in strings and rep_vars
   497       const char  *string  = NULL;
   498       oper._format->_rep_vars.reset();
   499       oper._format->_strings.reset();
   500       while ( (string = oper._format->_strings.iter()) != NULL ) {
   501         fprintf(fp,"  ");
   503         // Check if this is a standard string or a replacement variable
   504         if ( string != NameList::_signal ) {
   505           // Normal string
   506           // Pass through to st->print
   507           fprintf(fp,"st->print(\"%s\");\n", string);
   508         } else {
   509           // Replacement variable
   510           const char *rep_var = oper._format->_rep_vars.iter();
   511          // Check that it is a local name, and an operand
   512           const Form* form = oper._localNames[rep_var];
   513           if (form == NULL) {
   514             globalAD->syntax_err(oper._linenum,
   515                                  "\'%s\' not found in format for %s\n", rep_var, oper._ident);
   516             assert(form, "replacement variable was not found in local names");
   517           }
   518           OperandForm *op      = form->is_operand();
   519           // Get index if register or constant
   520           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
   521             idx  = oper.register_position( globals, rep_var);
   522           }
   523           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
   524             idx  = oper.constant_position( globals, rep_var);
   525           } else {
   526             idx = 0;
   527           }
   528           // output invocation of "$..."s format function
   529           if ( op != NULL )   op->ext_format(fp, globals, idx);
   531           // Lookup the index position of the replacement variable
   532           idx      = oper._components.operand_position_format(rep_var);
   533           if ( idx == -1 ) {
   534             fprintf(stderr,
   535                     "Using a name, %s, that isn't in match rule\n", rep_var);
   536             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
   537           }
   538         } // Done with a replacement variable
   539       } // Done with all format strings
   541     } else {
   542       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
   543       oper.ext_format(fp, globals, 0);
   544     }
   545   } else { // oper._format == NULL
   546     // Provide a few special case formats where the AD writer cannot.
   547     if ( strcmp(oper._ident,"Universe")==0 ) {
   548       fprintf(fp, "  st->print(\"$$univ\");\n");
   549     }
   550     // labelOper::ext_format is defined in ad_<...>.cpp
   551   }
   552   // ALWAYS! Provide a special case output for condition codes.
   553   if( oper.is_ideal_bool() ) {
   554     defineCCodeDump(&oper, fp,0);
   555   }
   556   fprintf(fp, "}\n");
   557   fprintf(fp, "#endif\n");
   558 }
   561 // Generate the format rule for an instruction
   562 void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
   563   if (!for_c_file) {
   564     // compile the bodies separately, to cut down on recompilations
   565     // #ifndef PRODUCT region generated by caller
   566     fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
   567     return;
   568   }
   570   // Define the format function
   571   fprintf(fp, "#ifndef PRODUCT\n");
   572   fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
   574   // Generate the user-defined portion of the format
   575   if( inst._format ) {
   576     // If there are replacement variables,
   577     // Generate index values needed for determining the operand position
   578     if( inst._format->_rep_vars.count() )
   579       inst.index_temps(fp, globals);
   581     // Build the format from the entries in strings and rep_vars
   582     const char  *string  = NULL;
   583     inst._format->_rep_vars.reset();
   584     inst._format->_strings.reset();
   585     while( (string = inst._format->_strings.iter()) != NULL ) {
   586       fprintf(fp,"    ");
   587       // Check if this is a standard string or a replacement variable
   588       if( string == NameList::_signal ) { // Replacement variable
   589         const char* rep_var =  inst._format->_rep_vars.iter();
   590         inst.rep_var_format( fp, rep_var);
   591       } else if( string == NameList::_signal3 ) { // Replacement variable in raw text
   592         const char* rep_var =  inst._format->_rep_vars.iter();
   593         const Form *form   = inst._localNames[rep_var];
   594         if (form == NULL) {
   595           fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
   596           assert(false, "ShouldNotReachHere()");
   597         }
   598         OpClassForm *opc   = form->is_opclass();
   599         assert( opc, "replacement variable was not found in local names");
   600         // Lookup the index position of the replacement variable
   601         int idx  = inst.operand_position_format(rep_var);
   602         if ( idx == -1 ) {
   603           assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
   604           assert( false, "ShouldNotReachHere()");
   605         }
   607         if (inst.is_noninput_operand(idx)) {
   608           assert( false, "ShouldNotReachHere()");
   609         } else {
   610           // Output the format call for this operand
   611           fprintf(fp,"opnd_array(%d)",idx);
   612         }
   613         rep_var =  inst._format->_rep_vars.iter();
   614         inst._format->_strings.iter();
   615         if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
   616           Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
   617           if ( constant_type == Form::idealD ) {
   618             fprintf(fp,"->constantD()");
   619           } else if ( constant_type == Form::idealF ) {
   620             fprintf(fp,"->constantF()");
   621           } else if ( constant_type == Form::idealL ) {
   622             fprintf(fp,"->constantL()");
   623           } else {
   624             fprintf(fp,"->constant()");
   625           }
   626         } else if ( strcmp(rep_var,"$cmpcode") == 0) {
   627             fprintf(fp,"->ccode()");
   628         } else {
   629           assert( false, "ShouldNotReachHere()");
   630         }
   631       } else if( string == NameList::_signal2 ) // Raw program text
   632         fputs(inst._format->_strings.iter(), fp);
   633       else
   634         fprintf(fp,"st->print(\"%s\");\n", string);
   635     } // Done with all format strings
   636   } // Done generating the user-defined portion of the format
   638   // Add call debug info automatically
   639   Form::CallType call_type = inst.is_ideal_call();
   640   if( call_type != Form::invalid_type ) {
   641     switch( call_type ) {
   642     case Form::JAVA_DYNAMIC:
   643       fprintf(fp,"    _method->print_short_name();\n");
   644       break;
   645     case Form::JAVA_STATIC:
   646       fprintf(fp,"    if( _method ) _method->print_short_name(st); else st->print(\" wrapper for: %%s\", _name);\n");
   647       fprintf(fp,"    if( !_method ) dump_trap_args(st);\n");
   648       break;
   649     case Form::JAVA_COMPILED:
   650     case Form::JAVA_INTERP:
   651       break;
   652     case Form::JAVA_RUNTIME:
   653     case Form::JAVA_LEAF:
   654     case Form::JAVA_NATIVE:
   655       fprintf(fp,"    st->print(\" %%s\", _name);");
   656       break;
   657     default:
   658       assert(0,"ShouldNotReacHere");
   659     }
   660     fprintf(fp,  "    st->print_cr(\"\");\n" );
   661     fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
   662     fprintf(fp,  "    st->print(\"        # \");\n" );
   663     fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
   664   }
   665   else if(inst.is_ideal_safepoint()) {
   666     fprintf(fp,  "    st->print(\"\");\n" );
   667     fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
   668     fprintf(fp,  "    st->print(\"        # \");\n" );
   669     fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
   670   }
   671   else if( inst.is_ideal_if() ) {
   672     fprintf(fp,  "    st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
   673   }
   674   else if( inst.is_ideal_mem() ) {
   675     // Print out the field name if available to improve readability
   676     fprintf(fp,  "    if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
   677     fprintf(fp,  "      st->print(\" ! Field \");\n");
   678     fprintf(fp,  "      if( ra->C->alias_type(adr_type())->is_volatile() )\n");
   679     fprintf(fp,  "        st->print(\" Volatile\");\n");
   680     fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->holder()->name()->print_symbol_on(st);\n");
   681     fprintf(fp,  "      st->print(\".\");\n");
   682     fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->name()->print_symbol_on(st);\n");
   683     fprintf(fp,  "    } else\n");
   684     // Make sure 'Volatile' gets printed out
   685     fprintf(fp,  "    if( ra->C->alias_type(adr_type())->is_volatile() )\n");
   686     fprintf(fp,  "      st->print(\" Volatile!\");\n");
   687   }
   689   // Complete the definition of the format function
   690   fprintf(fp, "  }\n#endif\n");
   691 }
   693 static bool is_non_constant(char* x) {
   694   // Tells whether the string (part of an operator interface) is non-constant.
   695   // Simply detect whether there is an occurrence of a formal parameter,
   696   // which will always begin with '$'.
   697   return strchr(x, '$') == 0;
   698 }
   700 void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
   701   if (!_pipeline)
   702     return;
   704   fprintf(fp_hpp, "\n");
   705   fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
   706   fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
   708   if (_pipeline->_maxcycleused <=
   709 #ifdef SPARC
   710     64
   711 #else
   712     32
   713 #endif
   714       ) {
   715     fprintf(fp_hpp, "protected:\n");
   716     fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
   717     fprintf(fp_hpp, "public:\n");
   718     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
   719     if (_pipeline->_maxcycleused <= 32)
   720       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
   721     else {
   722       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
   723       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
   724     }
   725     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
   726     fprintf(fp_hpp, "    _mask = in._mask;\n");
   727     fprintf(fp_hpp, "    return *this;\n");
   728     fprintf(fp_hpp, "  }\n\n");
   729     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
   730     fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
   731     fprintf(fp_hpp, "  }\n\n");
   732     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
   733     fprintf(fp_hpp, "    _mask <<= n;\n");
   734     fprintf(fp_hpp, "    return *this;\n");
   735     fprintf(fp_hpp, "  }\n\n");
   736     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
   737     fprintf(fp_hpp, "    _mask |= in2._mask;\n");
   738     fprintf(fp_hpp, "  }\n\n");
   739     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
   740     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
   741   }
   742   else {
   743     fprintf(fp_hpp, "protected:\n");
   744     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
   745     uint l;
   746     fprintf(fp_hpp, "  uint ");
   747     for (l = 1; l <= masklen; l++)
   748       fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
   749     fprintf(fp_hpp, "public:\n");
   750     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
   751     for (l = 1; l <= masklen; l++)
   752       fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
   753     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
   754     for (l = 1; l <= masklen; l++)
   755       fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
   756     for (l = 1; l <= masklen; l++)
   757       fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
   759     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
   760     for (l = 1; l <= masklen; l++)
   761       fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
   762     fprintf(fp_hpp, "    return *this;\n");
   763     fprintf(fp_hpp, "  }\n\n");
   764     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
   765     fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
   766     for (l = 1; l <= masklen; l++)
   767       fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
   768     fprintf(fp_hpp, "    return out;\n");
   769     fprintf(fp_hpp, "  }\n\n");
   770     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
   771     fprintf(fp_hpp, "    return (");
   772     for (l = 1; l <= masklen; l++)
   773       fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
   774     fprintf(fp_hpp, ") ? true : false;\n");
   775     fprintf(fp_hpp, "  }\n\n");
   776     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
   777     fprintf(fp_hpp, "    if (n >= 32)\n");
   778     fprintf(fp_hpp, "      do {\n       ");
   779     for (l = masklen; l > 1; l--)
   780       fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
   781     fprintf(fp_hpp, " _mask%d = 0;\n", 1);
   782     fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
   783     fprintf(fp_hpp, "    if (n > 0) {\n");
   784     fprintf(fp_hpp, "      uint m = 32 - n;\n");
   785     fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
   786     fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
   787     for (l = 2; l < masklen; l++) {
   788       fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
   789     }
   790     fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
   791     fprintf(fp_hpp, "    }\n");
   793     fprintf(fp_hpp, "    return *this;\n");
   794     fprintf(fp_hpp, "  }\n\n");
   795     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
   796     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
   797     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
   798   }
   800   fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
   801   fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
   802   fprintf(fp_hpp, "};\n\n");
   804   uint rescount = 0;
   805   const char *resource;
   807   for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
   808       int mask = _pipeline->_resdict[resource]->is_resource()->mask();
   809       if ((mask & (mask-1)) == 0)
   810         rescount++;
   811     }
   813   fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
   814   fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
   815   fprintf(fp_hpp, "protected:\n");
   816   fprintf(fp_hpp, "  // Mask of used functional units\n");
   817   fprintf(fp_hpp, "  uint _used;\n\n");
   818   fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
   819   fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
   820   fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
   821   fprintf(fp_hpp, "  bool _multiple;\n\n");
   822   fprintf(fp_hpp, "  // Mask of specific used cycles\n");
   823   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
   824   fprintf(fp_hpp, "public:\n");
   825   fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
   826   fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
   827   fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
   828   fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
   829   fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
   830   fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
   831   fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
   832   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
   833   fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
   834   fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
   835   fprintf(fp_hpp, "  }\n\n");
   836   fprintf(fp_hpp, "  void step(uint cycles) {\n");
   837   fprintf(fp_hpp, "    _used = 0;\n");
   838   fprintf(fp_hpp, "    _mask <<= cycles;\n");
   839   fprintf(fp_hpp, "  }\n\n");
   840   fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
   841   fprintf(fp_hpp, "};\n\n");
   843   fprintf(fp_hpp, "// Pipeline_Use Class\n");
   844   fprintf(fp_hpp, "class Pipeline_Use {\n");
   845   fprintf(fp_hpp, "protected:\n");
   846   fprintf(fp_hpp, "  // These resources can be used\n");
   847   fprintf(fp_hpp, "  uint _resources_used;\n\n");
   848   fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
   849   fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
   850   fprintf(fp_hpp, "  // Number of elements\n");
   851   fprintf(fp_hpp, "  uint _count;\n\n");
   852   fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
   853   fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
   854   fprintf(fp_hpp, "public:\n");
   855   fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
   856   fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
   857   fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
   858   fprintf(fp_hpp, "  , _count(count)\n");
   859   fprintf(fp_hpp, "  , _elements(elements)\n");
   860   fprintf(fp_hpp, "  {}\n\n");
   861   fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
   862   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
   863   fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
   864   fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
   865   fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
   866   fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
   867   fprintf(fp_hpp, "  void reset() {\n");
   868   fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
   869   fprintf(fp_hpp, "  };\n\n");
   870   fprintf(fp_hpp, "  void step(uint cycles) {\n");
   871   fprintf(fp_hpp, "    reset();\n");
   872   fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
   873     rescount);
   874   fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
   875   fprintf(fp_hpp, "  };\n\n");
   876   fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
   877   fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
   878     rescount);
   879   fprintf(fp_hpp, "  friend class Pipeline;\n");
   880   fprintf(fp_hpp, "};\n\n");
   882   fprintf(fp_hpp, "// Pipeline Class\n");
   883   fprintf(fp_hpp, "class Pipeline {\n");
   884   fprintf(fp_hpp, "public:\n");
   886   fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
   887     _pipeline ? "true" : "false" );
   889   assert( _pipeline->_maxInstrsPerBundle &&
   890         ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
   891           _pipeline->_instrFetchUnitSize &&
   892           _pipeline->_instrFetchUnits,
   893     "unspecified pipeline architecture units");
   895   uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
   897   fprintf(fp_hpp, "  enum {\n");
   898   fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
   899     _pipeline->_variableSizeInstrs ? 1 : 0);
   900   fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
   901     _pipeline->_variableSizeInstrs ? 0 : 1);
   902   fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
   903     _pipeline->_branchHasDelaySlot ? 1 : 0);
   904   fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
   905     _pipeline->_maxInstrsPerBundle);
   906   fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
   907     _pipeline->_maxBundlesPerCycle);
   908   fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
   909     _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
   910   fprintf(fp_hpp, "  };\n\n");
   912   fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
   913     _pipeline->_instrUnitSize != 0 ? "true" : "false" );
   914   if( _pipeline->_bundleUnitSize != 0 )
   915     if( _pipeline->_instrUnitSize != 0 )
   916       fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
   917     else
   918       fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
   919   else
   920     fprintf(fp_hpp, "// Bundling is not supported\n\n");
   921   if( _pipeline->_instrUnitSize != 0 )
   922     fprintf(fp_hpp, "  // Size of an instruction\n");
   923   else
   924     fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
   925   fprintf(fp_hpp, "  static uint instr_unit_size() {");
   926   if( _pipeline->_instrUnitSize == 0 )
   927     fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
   928   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
   930   if( _pipeline->_bundleUnitSize != 0 )
   931     fprintf(fp_hpp, "  // Size of a bundle\n");
   932   else
   933     fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
   934   fprintf(fp_hpp, "  static uint bundle_unit_size() {");
   935   if( _pipeline->_bundleUnitSize == 0 )
   936     fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
   937   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
   939   fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
   940     _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
   942   fprintf(fp_hpp, "private:\n");
   943   fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
   944   fprintf(fp_hpp, "\n");
   945   fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
   946   fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
   947   fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
   948   fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
   949   fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
   950   fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
   951   fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
   952   fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
   953   fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
   954   fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
   955   fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
   956   fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
   957   fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
   958   fprintf(fp_hpp, "\n");
   959   fprintf(fp_hpp, "public:\n");
   960   fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
   961   fprintf(fp_hpp, "           uint                            count,\n");
   962   fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
   963   fprintf(fp_hpp, "           uint                            fixed_latency,\n");
   964   fprintf(fp_hpp, "           uint                            instruction_count,\n");
   965   fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
   966   fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
   967   fprintf(fp_hpp, "           bool                            force_serialization,\n");
   968   fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
   969   fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
   970   fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
   971   fprintf(fp_hpp, "           uint                    * const cycles,\n");
   972   fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
   973   fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
   974   fprintf(fp_hpp, "  , _read_stage_count(count)\n");
   975   fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
   976   fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
   977   fprintf(fp_hpp, "  , _read_stages(dst)\n");
   978   fprintf(fp_hpp, "  , _resource_stage(stage)\n");
   979   fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
   980   fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
   981   fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
   982   fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
   983   fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
   984   fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
   985   fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
   986   fprintf(fp_hpp, "  {};\n");
   987   fprintf(fp_hpp, "\n");
   988   fprintf(fp_hpp, "  uint writeStage() const {\n");
   989   fprintf(fp_hpp, "    return (_write_stage);\n");
   990   fprintf(fp_hpp, "  }\n");
   991   fprintf(fp_hpp, "\n");
   992   fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
   993   fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
   994   fprintf(fp_hpp, "  }\n\n");
   995   fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
   996   fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
   997   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
   998   fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
   999   fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
  1000   fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
  1001   fprintf(fp_hpp, "  uint fixedLatency() const {\n");
  1002   fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
  1003   fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
  1004   fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
  1005   fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
  1006   fprintf(fp_hpp, "    return (_resource_use); }\n\n");
  1007   fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
  1008   fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
  1009   fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
  1010   fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
  1011   fprintf(fp_hpp, "  uint instructionCount() const {\n");
  1012   fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
  1013   fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
  1014   fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
  1015   fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
  1016   fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
  1017   fprintf(fp_hpp, "  bool forceSerialization() const {\n");
  1018   fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
  1019   fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
  1020   fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
  1021   fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
  1022   fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
  1023   fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
  1024   fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
  1025   fprintf(fp_hpp, "#endif\n");
  1026   fprintf(fp_hpp, "};\n\n");
  1028   fprintf(fp_hpp, "// Bundle class\n");
  1029   fprintf(fp_hpp, "class Bundle {\n");
  1031   uint mshift = 0;
  1032   for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
  1033     mshift++;
  1035   uint rshift = rescount;
  1037   fprintf(fp_hpp, "protected:\n");
  1038   fprintf(fp_hpp, "  enum {\n");
  1039   fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
  1040   fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
  1041   fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
  1042   fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
  1043   fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
  1044   fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
  1045   fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
  1046   fprintf(fp_hpp, "\n");
  1047   fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
  1048   fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
  1049   fprintf(fp_hpp, "  };\n\n");
  1050   fprintf(fp_hpp, "  uint _flags          : 3,\n");
  1051   fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
  1052   fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
  1053   fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
  1054   fprintf(fp_hpp, "public:\n");
  1055   fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
  1056   fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
  1057   fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
  1058   fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
  1059   fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
  1061   fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
  1062   fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
  1063   fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
  1064   fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
  1066   fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
  1067   fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
  1068   fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
  1069   fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
  1070   fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
  1071   fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
  1073   fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
  1074   fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
  1075   fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
  1076   fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
  1077   fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
  1078   fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
  1079   fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
  1080   fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
  1082   fprintf(fp_hpp, "  enum {\n");
  1083   fprintf(fp_hpp, "    _nop_count = %d\n",
  1084     _pipeline->_nopcnt);
  1085   fprintf(fp_hpp, "  };\n\n");
  1086   fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
  1087     _pipeline->_nopcnt);
  1088   fprintf(fp_hpp, "#ifndef PRODUCT\n");
  1089   fprintf(fp_hpp, "  void dump() const;\n");
  1090   fprintf(fp_hpp, "#endif\n");
  1091   fprintf(fp_hpp, "};\n\n");
  1093 //  const char *classname;
  1094 //  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
  1095 //    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
  1096 //    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
  1097 //  }
  1100 //------------------------------declareClasses---------------------------------
  1101 // Construct the class hierarchy of MachNode classes from the instruction &
  1102 // operand lists
  1103 void ArchDesc::declareClasses(FILE *fp) {
  1105   // Declare an array containing the machine register names, strings.
  1106   declareRegNames(fp, _register);
  1108   // Declare an array containing the machine register encoding values
  1109   declareRegEncodes(fp, _register);
  1111   // Generate declarations for the total number of operands
  1112   fprintf(fp,"\n");
  1113   fprintf(fp,"// Total number of operands defined in architecture definition\n");
  1114   int num_operands = 0;
  1115   OperandForm *op;
  1116   for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
  1117     // Ensure this is a machine-world instruction
  1118     if (op->ideal_only()) continue;
  1120     ++num_operands;
  1122   int first_operand_class = num_operands;
  1123   OpClassForm *opc;
  1124   for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
  1125     // Ensure this is a machine-world instruction
  1126     if (opc->ideal_only()) continue;
  1128     ++num_operands;
  1130   fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
  1131   fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
  1132   fprintf(fp,"\n");
  1133   // Generate declarations for the total number of instructions
  1134   fprintf(fp,"// Total number of instructions defined in architecture definition\n");
  1135   fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
  1138   // Generate Machine Classes for each operand defined in AD file
  1139   fprintf(fp,"\n");
  1140   fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
  1141   // Iterate through all operands
  1142   _operands.reset();
  1143   OperandForm *oper;
  1144   for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
  1145     // Ensure this is a machine-world instruction
  1146     if (oper->ideal_only() ) continue;
  1147     // The declaration of labelOper is in machine-independent file: machnode
  1148     if ( strcmp(oper->_ident,"label")  == 0 ) continue;
  1149     // The declaration of methodOper is in machine-independent file: machnode
  1150     if ( strcmp(oper->_ident,"method") == 0 ) continue;
  1152     // Build class definition for this operand
  1153     fprintf(fp,"\n");
  1154     fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
  1155     fprintf(fp,"private:\n");
  1156     // Operand definitions that depend upon number of input edges
  1158       uint num_edges = oper->num_edges(_globalNames);
  1159       if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
  1160         fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
  1161               num_edges );
  1163       if( num_edges > 0 ) {
  1164         in_RegMask(fp);
  1168     // Support storing constants inside the MachOper
  1169     declareConstStorage(fp,_globalNames,oper);
  1171     // Support storage of the condition codes
  1172     if( oper->is_ideal_bool() ) {
  1173       fprintf(fp,"  virtual int ccode() const { \n");
  1174       fprintf(fp,"    switch (_c0) {\n");
  1175       fprintf(fp,"    case  BoolTest::eq : return equal();\n");
  1176       fprintf(fp,"    case  BoolTest::gt : return greater();\n");
  1177       fprintf(fp,"    case  BoolTest::lt : return less();\n");
  1178       fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
  1179       fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
  1180       fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
  1181       fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
  1182       fprintf(fp,"    }\n");
  1183       fprintf(fp,"  };\n");
  1186     // Support storage of the condition codes
  1187     if( oper->is_ideal_bool() ) {
  1188       fprintf(fp,"  virtual void negate() { \n");
  1189       fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
  1190       fprintf(fp,"  };\n");
  1193     // Declare constructor.
  1194     // Parameters start with condition code, then all other constants
  1195     //
  1196     // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
  1197     // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
  1198     //
  1199     Form::DataType constant_type = oper->simple_type(_globalNames);
  1200     defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
  1201                       oper->_components, oper->is_ideal_bool(),
  1202                       constant_type, _globalNames);
  1204     // Clone function
  1205     fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
  1207     // Support setting a spill offset into a constant operand.
  1208     // We only support setting an 'int' offset, while in the
  1209     // LP64 build spill offsets are added with an AddP which
  1210     // requires a long constant.  Thus we don't support spilling
  1211     // in frames larger than 4Gig.
  1212     if( oper->has_conI(_globalNames) ||
  1213         oper->has_conL(_globalNames) )
  1214       fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
  1216     // virtual functions for encoding and format
  1217     //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
  1218     //            (oper->_encrule)?(oper->_encrule->_encrule):"");
  1219     // Check the interface type, and generate the correct query functions
  1220     // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
  1222     fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
  1223             machOperEnum(oper->_ident));
  1225     // virtual function to look up ideal return type of machine instruction
  1226     //
  1227     // (1)  virtual const Type    *type() const { return .....; }
  1228     //
  1229     if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
  1230         (oper->_matrule->_rChild == NULL)) {
  1231       unsigned int position = 0;
  1232       const char  *opret, *opname, *optype;
  1233       oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
  1234       fprintf(fp,"  virtual const Type *type() const {");
  1235       const char *type = getIdealType(optype);
  1236       if( type != NULL ) {
  1237         Form::DataType data_type = oper->is_base_constant(_globalNames);
  1238         // Check if we are an ideal pointer type
  1239         if( data_type == Form::idealP || data_type == Form::idealN ) {
  1240           // Return the ideal type we already have: <TypePtr *>
  1241           fprintf(fp," return _c0;");
  1242         } else {
  1243           // Return the appropriate bottom type
  1244           fprintf(fp," return %s;", getIdealType(optype));
  1246       } else {
  1247         fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
  1249       fprintf(fp," }\n");
  1250     } else {
  1251       // Check for user-defined stack slots, based upon sRegX
  1252       Form::DataType data_type = oper->is_user_name_for_sReg();
  1253       if( data_type != Form::none ){
  1254         const char *type = NULL;
  1255         switch( data_type ) {
  1256         case Form::idealI: type = "TypeInt::INT";   break;
  1257         case Form::idealP: type = "TypePtr::BOTTOM";break;
  1258         case Form::idealF: type = "Type::FLOAT";    break;
  1259         case Form::idealD: type = "Type::DOUBLE";   break;
  1260         case Form::idealL: type = "TypeLong::LONG"; break;
  1261         case Form::none: // fall through
  1262         default:
  1263           assert( false, "No support for this type of stackSlot");
  1265         fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
  1270     //
  1271     // virtual functions for defining the encoding interface.
  1272     //
  1273     // Access the linearized ideal register mask,
  1274     // map to physical register encoding
  1275     if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
  1276       // Just use the default virtual 'reg' call
  1277     } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
  1278       // Special handling for operand 'sReg', a Stack Slot Register.
  1279       // Map linearized ideal register mask to stack slot number
  1280       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
  1281       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
  1282       fprintf(fp,"  }\n");
  1283       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
  1284       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
  1285       fprintf(fp,"  }\n");
  1288     // Output the operand specific access functions used by an enc_class
  1289     // These are only defined when we want to override the default virtual func
  1290     if (oper->_interface != NULL) {
  1291       fprintf(fp,"\n");
  1292       // Check if it is a Memory Interface
  1293       if ( oper->_interface->is_MemInterface() != NULL ) {
  1294         MemInterface *mem_interface = oper->_interface->is_MemInterface();
  1295         const char *base = mem_interface->_base;
  1296         if( base != NULL ) {
  1297           define_oper_interface(fp, *oper, _globalNames, "base", base);
  1299         char *index = mem_interface->_index;
  1300         if( index != NULL ) {
  1301           define_oper_interface(fp, *oper, _globalNames, "index", index);
  1303         const char *scale = mem_interface->_scale;
  1304         if( scale != NULL ) {
  1305           define_oper_interface(fp, *oper, _globalNames, "scale", scale);
  1307         const char *disp = mem_interface->_disp;
  1308         if( disp != NULL ) {
  1309           define_oper_interface(fp, *oper, _globalNames, "disp", disp);
  1310           oper->disp_is_oop(fp, _globalNames);
  1312         if( oper->stack_slots_only(_globalNames) ) {
  1313           // should not call this:
  1314           fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
  1315         } else if ( disp != NULL ) {
  1316           define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
  1318       } // end Memory Interface
  1319       // Check if it is a Conditional Interface
  1320       else if (oper->_interface->is_CondInterface() != NULL) {
  1321         CondInterface *cInterface = oper->_interface->is_CondInterface();
  1322         const char *equal = cInterface->_equal;
  1323         if( equal != NULL ) {
  1324           define_oper_interface(fp, *oper, _globalNames, "equal", equal);
  1326         const char *not_equal = cInterface->_not_equal;
  1327         if( not_equal != NULL ) {
  1328           define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
  1330         const char *less = cInterface->_less;
  1331         if( less != NULL ) {
  1332           define_oper_interface(fp, *oper, _globalNames, "less", less);
  1334         const char *greater_equal = cInterface->_greater_equal;
  1335         if( greater_equal != NULL ) {
  1336           define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
  1338         const char *less_equal = cInterface->_less_equal;
  1339         if( less_equal != NULL ) {
  1340           define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
  1342         const char *greater = cInterface->_greater;
  1343         if( greater != NULL ) {
  1344           define_oper_interface(fp, *oper, _globalNames, "greater", greater);
  1346       } // end Conditional Interface
  1347       // Check if it is a Constant Interface
  1348       else if (oper->_interface->is_ConstInterface() != NULL ) {
  1349         assert( oper->num_consts(_globalNames) == 1,
  1350                 "Must have one constant when using CONST_INTER encoding");
  1351         if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
  1352           // Access the locally stored constant
  1353           fprintf(fp,"  virtual intptr_t       constant() const {");
  1354           fprintf(fp,   " return (intptr_t)_c0;");
  1355           fprintf(fp,"  }\n");
  1357         else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
  1358           // Access the locally stored constant
  1359           fprintf(fp,"  virtual intptr_t       constant() const {");
  1360           fprintf(fp,   " return _c0->get_con();");
  1361           fprintf(fp, " }\n");
  1362           // Generate query to determine if this pointer is an oop
  1363           fprintf(fp,"  virtual bool           constant_is_oop() const {");
  1364           fprintf(fp,   " return _c0->isa_oop_ptr();");
  1365           fprintf(fp, " }\n");
  1367         else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
  1368           // Access the locally stored constant
  1369           fprintf(fp,"  virtual intptr_t       constant() const {");
  1370           fprintf(fp,   " return _c0->make_oopptr()->get_con();");
  1371           fprintf(fp, " }\n");
  1372           // Generate query to determine if this pointer is an oop
  1373           fprintf(fp,"  virtual bool           constant_is_oop() const {");
  1374           fprintf(fp,   " return _c0->make_oopptr()->isa_oop_ptr();");
  1375           fprintf(fp, " }\n");
  1377         else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
  1378           fprintf(fp,"  virtual intptr_t       constant() const {");
  1379           // We don't support addressing modes with > 4Gig offsets.
  1380           // Truncate to int.
  1381           fprintf(fp,   "  return (intptr_t)_c0;");
  1382           fprintf(fp, " }\n");
  1383           fprintf(fp,"  virtual jlong          constantL() const {");
  1384           fprintf(fp,   " return _c0;");
  1385           fprintf(fp, " }\n");
  1387         else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
  1388           fprintf(fp,"  virtual intptr_t       constant() const {");
  1389           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
  1390           fprintf(fp, " }\n");
  1391           fprintf(fp,"  virtual jfloat         constantF() const {");
  1392           fprintf(fp,   " return (jfloat)_c0;");
  1393           fprintf(fp, " }\n");
  1395         else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
  1396           fprintf(fp,"  virtual intptr_t       constant() const {");
  1397           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
  1398           fprintf(fp, " }\n");
  1399           fprintf(fp,"  virtual jdouble        constantD() const {");
  1400           fprintf(fp,   " return _c0;");
  1401           fprintf(fp, " }\n");
  1404       else if (oper->_interface->is_RegInterface() != NULL) {
  1405         // make sure that a fixed format string isn't used for an
  1406         // operand which might be assiged to multiple registers.
  1407         // Otherwise the opto assembly output could be misleading.
  1408         if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
  1409           syntax_err(oper->_linenum,
  1410                      "Only bound registers can have fixed formats: %s\n",
  1411                      oper->_ident);
  1414       else {
  1415         assert( false, "ShouldNotReachHere();");
  1419     fprintf(fp,"\n");
  1420     // // Currently all XXXOper::hash() methods are identical (990820)
  1421     // declare_hash(fp);
  1422     // // Currently all XXXOper::Cmp() methods are identical (990820)
  1423     // declare_cmp(fp);
  1425     // Do not place dump_spec() and Name() into PRODUCT code
  1426     // int_format and ext_format are not needed in PRODUCT code either
  1427     fprintf(fp, "#ifndef PRODUCT\n");
  1429     // Declare int_format() and ext_format()
  1430     gen_oper_format(fp, _globalNames, *oper);
  1432     // Machine independent print functionality for debugging
  1433     // IF we have constants, create a dump_spec function for the derived class
  1434     //
  1435     // (1)  virtual void           dump_spec() const {
  1436     // (2)    st->print("#%d", _c#);        // Constant != ConP
  1437     //  OR    _c#->dump_on(st);             // Type ConP
  1438     //  ...
  1439     // (3)  }
  1440     uint num_consts = oper->num_consts(_globalNames);
  1441     if( num_consts > 0 ) {
  1442       // line (1)
  1443       fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
  1444       // generate format string for st->print
  1445       // Iterate over the component list & spit out the right thing
  1446       uint i = 0;
  1447       const char *type = oper->ideal_type(_globalNames);
  1448       Component  *comp;
  1449       oper->_components.reset();
  1450       if ((comp = oper->_components.iter()) == NULL) {
  1451         assert(num_consts == 1, "Bad component list detected.\n");
  1452         i = dump_spec_constant( fp, type, i, oper );
  1453         // Check that type actually matched
  1454         assert( i != 0, "Non-constant operand lacks component list.");
  1455       } // end if NULL
  1456       else {
  1457         // line (2)
  1458         // dump all components
  1459         oper->_components.reset();
  1460         while((comp = oper->_components.iter()) != NULL) {
  1461           type = comp->base_type(_globalNames);
  1462           i = dump_spec_constant( fp, type, i, NULL );
  1465       // finish line (3)
  1466       fprintf(fp,"  }\n");
  1469     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
  1470             oper->_ident);
  1472     fprintf(fp,"#endif\n");
  1474     // Close definition of this XxxMachOper
  1475     fprintf(fp,"};\n");
  1479   // Generate Machine Classes for each instruction defined in AD file
  1480   fprintf(fp,"\n");
  1481   fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
  1482   declare_pipe_classes(fp);
  1484   // Generate Machine Classes for each instruction defined in AD file
  1485   fprintf(fp,"\n");
  1486   fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
  1487   _instructions.reset();
  1488   InstructForm *instr;
  1489   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
  1490     // Ensure this is a machine-world instruction
  1491     if ( instr->ideal_only() ) continue;
  1493     // Build class definition for this instruction
  1494     fprintf(fp,"\n");
  1495     fprintf(fp,"class %sNode : public %s { \n",
  1496             instr->_ident, instr->mach_base_class() );
  1497     fprintf(fp,"private:\n");
  1498     fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
  1499     if ( instr->is_ideal_jump() ) {
  1500       fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
  1502     fprintf(fp,"public:\n");
  1503     fprintf(fp,"  MachOper *opnd_array(uint operand_index) const { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); return _opnd_array[operand_index]; }\n");
  1504     fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); _opnd_array[operand_index] = operand; }\n");
  1505     fprintf(fp,"private:\n");
  1506     if ( instr->is_ideal_jump() ) {
  1507       fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
  1508       fprintf(fp,"                                          _index2label.at_put_grow(index_num, blockLabel);}\n");
  1510     if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
  1511       fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
  1514     out_RegMask(fp);                      // output register mask
  1515     fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
  1516             instr->_ident);
  1518     // If this instruction contains a labelOper
  1519     // Declare Node::methods that set operand Label's contents
  1520     int label_position = instr->label_position();
  1521     if( label_position != -1 ) {
  1522       // Set the label, stored in labelOper::_branch_label
  1523       fprintf(fp,"  virtual void           label_set( Label& label, uint block_num );\n");
  1526     // If this instruction contains a methodOper
  1527     // Declare Node::methods that set operand method's contents
  1528     int method_position = instr->method_position();
  1529     if( method_position != -1 ) {
  1530       // Set the address method, stored in methodOper::_method
  1531       fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
  1534     // virtual functions for attributes
  1535     //
  1536     // Each instruction attribute results in a virtual call of same name.
  1537     // The ins_cost is not handled here.
  1538     Attribute *attr = instr->_attribs;
  1539     bool is_pc_relative = false;
  1540     while (attr != NULL) {
  1541       if (strcmp(attr->_ident,"ins_cost") &&
  1542           strcmp(attr->_ident,"ins_pc_relative")) {
  1543         fprintf(fp,"  int             %s() const { return %s; }\n",
  1544                 attr->_ident, attr->_val);
  1546       // Check value for ins_pc_relative, and if it is true (1), set the flag
  1547       if (!strcmp(attr->_ident,"ins_pc_relative") && attr->int_val(*this) != 0)
  1548         is_pc_relative = true;
  1549       attr = (Attribute *)attr->_next;
  1552     // virtual functions for encode and format
  1553     //
  1554     // Output the opcode function and the encode function here using the
  1555     // encoding class information in the _insencode slot.
  1556     if ( instr->_insencode ) {
  1557       fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
  1560     // virtual function for getting the size of an instruction
  1561     if ( instr->_size ) {
  1562        fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
  1565     // Return the top-level ideal opcode.
  1566     // Use MachNode::ideal_Opcode() for nodes based on MachNode class
  1567     // if the ideal_Opcode == Op_Node.
  1568     if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
  1569          strcmp("MachNode", instr->mach_base_class()) != 0 ) {
  1570       fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
  1571             instr->ideal_Opcode(_globalNames) );
  1574     // Allow machine-independent optimization, invert the sense of the IF test
  1575     if( instr->is_ideal_if() ) {
  1576       fprintf(fp,"  virtual void           negate() { \n");
  1577       // Identify which operand contains the negate(able) ideal condition code
  1578       int   idx = 0;
  1579       instr->_components.reset();
  1580       for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
  1581         // Check that component is an operand
  1582         Form *form = (Form*)_globalNames[comp->_type];
  1583         OperandForm *opForm = form ? form->is_operand() : NULL;
  1584         if( opForm == NULL ) continue;
  1586         // Lookup the position of the operand in the instruction.
  1587         if( opForm->is_ideal_bool() ) {
  1588           idx = instr->operand_position(comp->_name, comp->_usedef);
  1589           assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
  1590           break;
  1593       fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
  1594       fprintf(fp,"    _prob = 1.0f - _prob;\n");
  1595       fprintf(fp,"  };\n");
  1599     // Identify which input register matches the input register.
  1600     uint  matching_input = instr->two_address(_globalNames);
  1602     // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
  1603     if( matching_input != 0 ) {
  1604       fprintf(fp,"  virtual uint           two_adr() const  ");
  1605       fprintf(fp,"{ return oper_input_base()");
  1606       for( uint i = 2; i <= matching_input; i++ )
  1607         fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
  1608       fprintf(fp,"; }\n");
  1611     // Declare cisc_version, if applicable
  1612     //   MachNode *cisc_version( int offset /* ,... */ );
  1613     instr->declare_cisc_version(*this, fp);
  1615     // If there is an explicit peephole rule, build it
  1616     if ( instr->peepholes() != NULL ) {
  1617       fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
  1620     // Output the declaration for number of relocation entries
  1621     if ( instr->reloc(_globalNames) != 0 ) {
  1622       fprintf(fp,"  virtual int            reloc()   const;\n");
  1625     if (instr->alignment() != 1) {
  1626       fprintf(fp,"  virtual int            alignment_required()   const { return %d; }\n", instr->alignment());
  1627       fprintf(fp,"  virtual int            compute_padding(int current_offset)   const;\n");
  1630     // Starting point for inputs matcher wants.
  1631     // Use MachNode::oper_input_base() for nodes based on MachNode class
  1632     // if the base == 1.
  1633     if ( instr->oper_input_base(_globalNames) != 1 ||
  1634          strcmp("MachNode", instr->mach_base_class()) != 0 ) {
  1635       fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
  1636             instr->oper_input_base(_globalNames));
  1639     // Make the constructor and following methods 'public:'
  1640     fprintf(fp,"public:\n");
  1642     // Constructor
  1643     if ( instr->is_ideal_jump() ) {
  1644       fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
  1645     } else {
  1646       fprintf(fp,"  %sNode() { ", instr->_ident);
  1647       if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
  1648         fprintf(fp,"_cisc_RegMask = NULL; ");
  1652     fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
  1654     bool node_flags_set = false;
  1655     // flag: if this instruction matches an ideal 'Goto' node
  1656     if ( instr->is_ideal_goto() ) {
  1657       fprintf(fp,"init_flags(Flag_is_Goto");
  1658       node_flags_set = true;
  1661     // flag: if this instruction matches an ideal 'Copy*' node
  1662     if ( instr->is_ideal_copy() != 0 ) {
  1663       if ( node_flags_set ) {
  1664         fprintf(fp," | Flag_is_Copy");
  1665       } else {
  1666         fprintf(fp,"init_flags(Flag_is_Copy");
  1667         node_flags_set = true;
  1671     // Is an instruction is a constant?  If so, get its type
  1672     Form::DataType  data_type;
  1673     const char     *opType = NULL;
  1674     const char     *result = NULL;
  1675     data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
  1676     // Check if this instruction is a constant
  1677     if ( data_type != Form::none ) {
  1678       if ( node_flags_set ) {
  1679         fprintf(fp," | Flag_is_Con");
  1680       } else {
  1681         fprintf(fp,"init_flags(Flag_is_Con");
  1682         node_flags_set = true;
  1686     // flag: if instruction matches 'If' | 'Goto' | 'CountedLoopEnd | 'Jump'
  1687     if ( instr->is_ideal_branch() ) {
  1688       if ( node_flags_set ) {
  1689         fprintf(fp," | Flag_is_Branch");
  1690       } else {
  1691         fprintf(fp,"init_flags(Flag_is_Branch");
  1692         node_flags_set = true;
  1696     // flag: if this instruction is cisc alternate
  1697     if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
  1698       if ( node_flags_set ) {
  1699         fprintf(fp," | Flag_is_cisc_alternate");
  1700       } else {
  1701         fprintf(fp,"init_flags(Flag_is_cisc_alternate");
  1702         node_flags_set = true;
  1706     // flag: if this instruction is pc relative
  1707     if ( is_pc_relative ) {
  1708       if ( node_flags_set ) {
  1709         fprintf(fp," | Flag_is_pc_relative");
  1710       } else {
  1711         fprintf(fp,"init_flags(Flag_is_pc_relative");
  1712         node_flags_set = true;
  1716     // flag: if this instruction has short branch form
  1717     if ( instr->has_short_branch_form() ) {
  1718       if ( node_flags_set ) {
  1719         fprintf(fp," | Flag_may_be_short_branch");
  1720       } else {
  1721         fprintf(fp,"init_flags(Flag_may_be_short_branch");
  1722         node_flags_set = true;
  1726     // Check if machine instructions that USE memory, but do not DEF memory,
  1727     // depend upon a node that defines memory in machine-independent graph.
  1728     if ( instr->needs_anti_dependence_check(_globalNames) ) {
  1729       if ( node_flags_set ) {
  1730         fprintf(fp," | Flag_needs_anti_dependence_check");
  1731       } else {
  1732         fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
  1733         node_flags_set = true;
  1737     if ( node_flags_set ) {
  1738       fprintf(fp,"); ");
  1741     if (instr->is_ideal_unlock() || instr->is_ideal_call_leaf()) {
  1742       fprintf(fp,"clear_flag(Flag_is_safepoint_node); ");
  1745     fprintf(fp,"}\n");
  1747     // size_of, used by base class's clone to obtain the correct size.
  1748     fprintf(fp,"  virtual uint           size_of() const {");
  1749     fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
  1750     fprintf(fp, " }\n");
  1752     // Virtual methods which are only generated to override base class
  1753     if( instr->expands() || instr->needs_projections() ||
  1754         instr->has_temps() ||
  1755         instr->_matrule != NULL &&
  1756         instr->num_opnds() != instr->num_unique_opnds() ) {
  1757       fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list);\n");
  1760     if (instr->is_pinned(_globalNames)) {
  1761       fprintf(fp,"  virtual bool           pinned() const { return ");
  1762       if (instr->is_parm(_globalNames)) {
  1763         fprintf(fp,"_in[0]->pinned();");
  1764       } else {
  1765         fprintf(fp,"true;");
  1767       fprintf(fp," }\n");
  1769     if (instr->is_projection(_globalNames)) {
  1770       fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
  1772     if ( instr->num_post_match_opnds() != 0
  1773          || instr->is_chain_of_constant(_globalNames) ) {
  1774       fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
  1776     if ( instr->rematerialize(_globalNames, get_registers()) ) {
  1777       fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
  1780     // Declare short branch methods, if applicable
  1781     instr->declare_short_branch_methods(fp);
  1783     // Instructions containing a constant that will be entered into the
  1784     // float/double table redefine the base virtual function
  1785 #ifdef SPARC
  1786     // Sparc doubles entries in the constant table require more space for
  1787     // alignment. (expires 9/98)
  1788     int table_entries = (3 * instr->num_consts( _globalNames, Form::idealD ))
  1789       + instr->num_consts( _globalNames, Form::idealF );
  1790 #else
  1791     int table_entries = instr->num_consts( _globalNames, Form::idealD )
  1792       + instr->num_consts( _globalNames, Form::idealF );
  1793 #endif
  1794     if( table_entries != 0 ) {
  1795       fprintf(fp,"  virtual int            const_size() const {");
  1796       fprintf(fp,   " return %d;", table_entries);
  1797       fprintf(fp, " }\n");
  1801     // See if there is an "ins_pipe" declaration for this instruction
  1802     if (instr->_ins_pipe) {
  1803       fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
  1804       fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
  1807     // Generate virtual function for MachNodeX::bottom_type when necessary
  1808     //
  1809     // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
  1810     // or else alias analysis on the matched graph may produce bad code.
  1811     // Moreover, the aliasing decisions made on machine-node graph must be
  1812     // no less accurate than those made on the ideal graph, or else the graph
  1813     // may fail to schedule.  (Reason:  Memory ops which are reordered in
  1814     // the ideal graph might look interdependent in the machine graph,
  1815     // thereby removing degrees of scheduling freedom that the optimizer
  1816     // assumed would be available.)
  1817     //
  1818     // %%% We should handle many of these cases with an explicit ADL clause:
  1819     // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
  1820     if( data_type != Form::none ) {
  1821       // A constant's bottom_type returns a Type containing its constant value
  1823       // !!!!!
  1824       // Convert all ints, floats, ... to machine-independent TypeXs
  1825       // as is done for pointers
  1826       //
  1827       // Construct appropriate constant type containing the constant value.
  1828       fprintf(fp,"  virtual const class Type *bottom_type() const{\n");
  1829       switch( data_type ) {
  1830       case Form::idealI:
  1831         fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
  1832         break;
  1833       case Form::idealP:
  1834       case Form::idealN:
  1835         fprintf(fp,"    return  opnd_array(1)->type();\n");
  1836         break;
  1837       case Form::idealD:
  1838         fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
  1839         break;
  1840       case Form::idealF:
  1841         fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
  1842         break;
  1843       case Form::idealL:
  1844         fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
  1845         break;
  1846       default:
  1847         assert( false, "Unimplemented()" );
  1848         break;
  1850       fprintf(fp,"  };\n");
  1852 /*    else if ( instr->_matrule && instr->_matrule->_rChild &&
  1853         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
  1854         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
  1855       // !!!!! !!!!!
  1856       // Provide explicit bottom type for conversions to int
  1857       // On Intel the result operand is a stackSlot, untyped.
  1858       fprintf(fp,"  virtual const class Type *bottom_type() const{");
  1859       fprintf(fp,   " return  TypeInt::INT;");
  1860       fprintf(fp, " };\n");
  1861     }*/
  1862     else if( instr->is_ideal_copy() &&
  1863               !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
  1864       // !!!!!
  1865       // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
  1866       fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
  1868     else if( instr->is_ideal_loadPC() ) {
  1869       // LoadPCNode provides the return address of a call to native code.
  1870       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
  1871       // since it is a pointer to an internal VM location and must have a zero offset.
  1872       // Allocation detects derived pointers, in part, by their non-zero offsets.
  1873       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
  1875     else if( instr->is_ideal_box() ) {
  1876       // BoxNode provides the address of a stack slot.
  1877       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
  1878       // This prevent s insert_anti_dependencies from complaining. It will
  1879       // complain if it see that the pointer base is TypePtr::BOTTOM since
  1880       // it doesn't understand what that might alias.
  1881       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
  1883     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
  1884       int offset = 1;
  1885       // Special special hack to see if the Cmp? has been incorporated in the conditional move
  1886       MatchNode *rl = instr->_matrule->_rChild->_lChild;
  1887       if( rl && !strcmp(rl->_opType, "Binary") ) {
  1888           MatchNode *rlr = rl->_rChild;
  1889           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
  1890             offset = 2;
  1892       // Special hack for ideal CMoveP; ideal type depends on inputs
  1893       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
  1894         offset, offset+1, offset+1);
  1896     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
  1897       int offset = 1;
  1898       // Special special hack to see if the Cmp? has been incorporated in the conditional move
  1899       MatchNode *rl = instr->_matrule->_rChild->_lChild;
  1900       if( rl && !strcmp(rl->_opType, "Binary") ) {
  1901           MatchNode *rlr = rl->_rChild;
  1902           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
  1903             offset = 2;
  1905       // Special hack for ideal CMoveN; ideal type depends on inputs
  1906       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
  1907         offset, offset+1, offset+1);
  1909     else if( instr->needs_base_oop_edge(_globalNames) ) {
  1910       // Special hack for ideal AddP.  Bottom type is an oop IFF it has a
  1911       // legal base-pointer input.  Otherwise it is NOT an oop.
  1912       fprintf(fp,"  const Type *bottom_type() const { return AddPNode::mach_bottom_type(this); } // AddP\n");
  1914     else if (instr->is_tls_instruction()) {
  1915       // Special hack for tlsLoadP
  1916       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
  1918     else if ( instr->is_ideal_if() ) {
  1919       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
  1921     else if ( instr->is_ideal_membar() ) {
  1922       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
  1925     // Check where 'ideal_type' must be customized
  1926     /*
  1927     if ( instr->_matrule && instr->_matrule->_rChild &&
  1928         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
  1929         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
  1930       fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
  1931     }*/
  1933     // Analyze machine instructions that either USE or DEF memory.
  1934     int memory_operand = instr->memory_operand(_globalNames);
  1935     // Some guys kill all of memory
  1936     if ( instr->is_wide_memory_kill(_globalNames) ) {
  1937       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
  1939     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
  1940       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
  1941         fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
  1943       fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
  1946     fprintf(fp, "#ifndef PRODUCT\n");
  1948     // virtual function for generating the user's assembler output
  1949     gen_inst_format(fp, _globalNames,*instr);
  1951     // Machine independent print functionality for debugging
  1952     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
  1953             instr->_ident);
  1955     fprintf(fp, "#endif\n");
  1957     // Close definition of this XxxMachNode
  1958     fprintf(fp,"};\n");
  1959   };
  1963 void ArchDesc::defineStateClass(FILE *fp) {
  1964   static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
  1965   static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
  1967   fprintf(fp,"\n");
  1968   fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
  1969   fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
  1970   fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
  1971   fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
  1972   fprintf(fp,"#define STATE__VALID(index) ");
  1973   fprintf(fp,"    (%s)\n", state__valid);
  1974   fprintf(fp,"\n");
  1975   fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
  1976   fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
  1977   fprintf(fp,"\n");
  1978   fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
  1979   fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
  1980   fprintf(fp,"\n");
  1981   fprintf(fp,"#define STATE__SET_VALID(index) ");
  1982   fprintf(fp,"  (%s)\n", state__set_valid);
  1983   fprintf(fp,"\n");
  1984   fprintf(fp,
  1985           "//---------------------------State-------------------------------------------\n");
  1986   fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
  1987   fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
  1988   fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
  1989   fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
  1990   fprintf(fp,"// two for convenience, but this could change).\n");
  1991   fprintf(fp,"class State : public ResourceObj {\n");
  1992   fprintf(fp,"public:\n");
  1993   fprintf(fp,"  int    _id;         // State identifier\n");
  1994   fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
  1995   fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
  1996   fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
  1997   fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
  1998   fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
  1999   fprintf(fp,"\n");
  2000   fprintf(fp,"  State(void);                      // Constructor\n");
  2001   fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
  2002   fprintf(fp,"\n");
  2003   fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
  2004   fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
  2005   fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
  2006   fprintf(fp,"\n");
  2007   fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
  2008   fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
  2009   fprintf(fp,"\n");
  2010   fprintf(fp,"  // Access function for _valid bit vector\n");
  2011   fprintf(fp,"  bool valid(uint index) {\n");
  2012   fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
  2013   fprintf(fp,"  }\n");
  2014   fprintf(fp,"\n");
  2015   fprintf(fp,"  // Set function for _valid bit vector\n");
  2016   fprintf(fp,"  void set_valid(uint index) {\n");
  2017   fprintf(fp,"    STATE__SET_VALID(index);\n");
  2018   fprintf(fp,"  }\n");
  2019   fprintf(fp,"\n");
  2020   fprintf(fp,"#ifndef PRODUCT\n");
  2021   fprintf(fp,"  void dump();                // Debugging prints\n");
  2022   fprintf(fp,"  void dump(int depth);\n");
  2023   fprintf(fp,"#endif\n");
  2024   if (_dfa_small) {
  2025     // Generate the routine name we'll need
  2026     for (int i = 1; i < _last_opcode; i++) {
  2027       if (_mlistab[i] == NULL) continue;
  2028       fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
  2031   fprintf(fp,"};\n");
  2032   fprintf(fp,"\n");
  2033   fprintf(fp,"\n");
  2038 //---------------------------buildMachOperEnum---------------------------------
  2039 // Build enumeration for densely packed operands.
  2040 // This enumeration is used to index into the arrays in the State objects
  2041 // that indicate cost and a successfull rule match.
  2043 // Information needed to generate the ReduceOp mapping for the DFA
  2044 class OutputMachOperands : public OutputMap {
  2045 public:
  2046   OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  2047     : OutputMap(hpp, cpp, globals, AD) {};
  2049   void declaration() { }
  2050   void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
  2051   void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
  2052                        OutputMap::closing();
  2054   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s", _AD.machOperEnum(opc._ident) ); }
  2055   void map(OperandForm &oper) { fprintf(_cpp, "  %s", _AD.machOperEnum(oper._ident) ); }
  2056   void map(char        *name) { fprintf(_cpp, "  %s", _AD.machOperEnum(name)); }
  2058   bool do_instructions()      { return false; }
  2059   void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
  2060 };
  2063 void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
  2064   // Construct the table for MachOpcodes
  2065   OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
  2066   build_map(output_mach_operands);
  2070 //---------------------------buildMachEnum----------------------------------
  2071 // Build enumeration for all MachOpers and all MachNodes
  2073 // Information needed to generate the ReduceOp mapping for the DFA
  2074 class OutputMachOpcodes : public OutputMap {
  2075   int begin_inst_chain_rule;
  2076   int end_inst_chain_rule;
  2077   int begin_rematerialize;
  2078   int end_rematerialize;
  2079   int end_instructions;
  2080 public:
  2081   OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
  2082     : OutputMap(hpp, cpp, globals, AD),
  2083       begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
  2084   {};
  2086   void declaration() { }
  2087   void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
  2088   void closing()     {
  2089     if( begin_inst_chain_rule != -1 )
  2090       fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
  2091     if( end_inst_chain_rule   != -1 )
  2092       fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
  2093     if( begin_rematerialize   != -1 )
  2094       fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
  2095     if( end_rematerialize     != -1 )
  2096       fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
  2097     // always execute since do_instructions() is true, and avoids trailing comma
  2098     fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
  2099     OutputMap::closing();
  2101   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
  2102   void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
  2103   void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
  2104                                 else      fprintf(_cpp, "  0"); }
  2105   void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
  2107   void record_position(OutputMap::position place, int idx ) {
  2108     switch(place) {
  2109     case OutputMap::BEGIN_INST_CHAIN_RULES :
  2110       begin_inst_chain_rule = idx;
  2111       break;
  2112     case OutputMap::END_INST_CHAIN_RULES :
  2113       end_inst_chain_rule   = idx;
  2114       break;
  2115     case OutputMap::BEGIN_REMATERIALIZE :
  2116       begin_rematerialize   = idx;
  2117       break;
  2118     case OutputMap::END_REMATERIALIZE :
  2119       end_rematerialize     = idx;
  2120       break;
  2121     case OutputMap::END_INSTRUCTIONS :
  2122       end_instructions      = idx;
  2123       break;
  2124     default:
  2125       break;
  2128 };
  2131 void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
  2132   // Construct the table for MachOpcodes
  2133   OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
  2134   build_map(output_mach_opcodes);
  2138 // Generate an enumeration of the pipeline states, and both
  2139 // the functional units (resources) and the masks for
  2140 // specifying resources
  2141 void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
  2142   int stagelen = (int)strlen("undefined");
  2143   int stagenum = 0;
  2145   if (_pipeline) {              // Find max enum string length
  2146     const char *stage;
  2147     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
  2148       int len = (int)strlen(stage);
  2149       if (stagelen < len) stagelen = len;
  2153   // Generate a list of stages
  2154   fprintf(fp_hpp, "\n");
  2155   fprintf(fp_hpp, "// Pipeline Stages\n");
  2156   fprintf(fp_hpp, "enum machPipelineStages {\n");
  2157   fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
  2159   if( _pipeline ) {
  2160     const char *stage;
  2161     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
  2162       fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
  2165   fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
  2166   fprintf(fp_hpp, "};\n");
  2168   fprintf(fp_hpp, "\n");
  2169   fprintf(fp_hpp, "// Pipeline Resources\n");
  2170   fprintf(fp_hpp, "enum machPipelineResources {\n");
  2171   int rescount = 0;
  2173   if( _pipeline ) {
  2174     const char *resource;
  2175     int reslen = 0;
  2177     // Generate a list of resources, and masks
  2178     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2179       int len = (int)strlen(resource);
  2180       if (reslen < len)
  2181         reslen = len;
  2184     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2185       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
  2186       int mask = resform->mask();
  2187       if ((mask & (mask-1)) == 0)
  2188         fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
  2190     fprintf(fp_hpp, "\n");
  2191     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
  2192       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
  2193       fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
  2195     fprintf(fp_hpp, "\n");
  2197   fprintf(fp_hpp, "   resource_count = %d\n", rescount);
  2198   fprintf(fp_hpp, "};\n");

mercurial