src/share/vm/adlc/formssel.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 1038
dbbe28fc66b5
child 1059
337400e7a5dd
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena) {
    34       _ftype = Form::INS;
    36       _matrule   = NULL;
    37       _insencode = NULL;
    38       _opcode    = NULL;
    39       _size      = NULL;
    40       _attribs   = NULL;
    41       _predicate = NULL;
    42       _exprule   = NULL;
    43       _rewrule   = NULL;
    44       _format    = NULL;
    45       _peephole  = NULL;
    46       _ins_pipe  = NULL;
    47       _uniq_idx  = NULL;
    48       _num_uniq  = 0;
    49       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    50       _cisc_spill_alternate = NULL;            // possible cisc replacement
    51       _cisc_reg_mask_name = NULL;
    52       _is_cisc_alternate = false;
    53       _is_short_branch = false;
    54       _short_branch_form = NULL;
    55       _alignment = 1;
    56 }
    58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    59   : _ident(id), _ideal_only(false),
    60     _localNames(instr->_localNames),
    61     _effects(instr->_effects) {
    62       _ftype = Form::INS;
    64       _matrule   = rule;
    65       _insencode = instr->_insencode;
    66       _opcode    = instr->_opcode;
    67       _size      = instr->_size;
    68       _attribs   = instr->_attribs;
    69       _predicate = instr->_predicate;
    70       _exprule   = instr->_exprule;
    71       _rewrule   = instr->_rewrule;
    72       _format    = instr->_format;
    73       _peephole  = instr->_peephole;
    74       _ins_pipe  = instr->_ins_pipe;
    75       _uniq_idx  = instr->_uniq_idx;
    76       _num_uniq  = instr->_num_uniq;
    77       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    78       _cisc_spill_alternate = NULL;            // possible cisc replacement
    79       _cisc_reg_mask_name = NULL;
    80       _is_cisc_alternate = false;
    81       _is_short_branch = false;
    82       _short_branch_form = NULL;
    83       _alignment = 1;
    84      // Copy parameters
    85      const char *name;
    86      instr->_parameters.reset();
    87      for (; (name = instr->_parameters.iter()) != NULL;)
    88        _parameters.addName(name);
    89 }
    91 InstructForm::~InstructForm() {
    92 }
    94 InstructForm *InstructForm::is_instruction() const {
    95   return (InstructForm*)this;
    96 }
    98 bool InstructForm::ideal_only() const {
    99   return _ideal_only;
   100 }
   102 bool InstructForm::sets_result() const {
   103   return (_matrule != NULL && _matrule->sets_result());
   104 }
   106 bool InstructForm::needs_projections() {
   107   _components.reset();
   108   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   109     if (comp->isa(Component::KILL)) {
   110       return true;
   111     }
   112   }
   113   return false;
   114 }
   117 bool InstructForm::has_temps() {
   118   if (_matrule) {
   119     // Examine each component to see if it is a TEMP
   120     _components.reset();
   121     // Skip the first component, if already handled as (SET dst (...))
   122     Component *comp = NULL;
   123     if (sets_result())  comp = _components.iter();
   124     while ((comp = _components.iter()) != NULL) {
   125       if (comp->isa(Component::TEMP)) {
   126         return true;
   127       }
   128     }
   129   }
   131   return false;
   132 }
   134 uint InstructForm::num_defs_or_kills() {
   135   uint   defs_or_kills = 0;
   137   _components.reset();
   138   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   139     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   140       ++defs_or_kills;
   141     }
   142   }
   144   return  defs_or_kills;
   145 }
   147 // This instruction has an expand rule?
   148 bool InstructForm::expands() const {
   149   return ( _exprule != NULL );
   150 }
   152 // This instruction has a peephole rule?
   153 Peephole *InstructForm::peepholes() const {
   154   return _peephole;
   155 }
   157 // This instruction has a peephole rule?
   158 void InstructForm::append_peephole(Peephole *peephole) {
   159   if( _peephole == NULL ) {
   160     _peephole = peephole;
   161   } else {
   162     _peephole->append_peephole(peephole);
   163   }
   164 }
   167 // ideal opcode enumeration
   168 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   169   if( !_matrule ) return "Node"; // Something weird
   170   // Chain rules do not really have ideal Opcodes; use their source
   171   // operand ideal Opcode instead.
   172   if( is_simple_chain_rule(globalNames) ) {
   173     const char *src = _matrule->_rChild->_opType;
   174     OperandForm *src_op = globalNames[src]->is_operand();
   175     assert( src_op, "Not operand class of chain rule" );
   176     if( !src_op->_matrule ) return "Node";
   177     return src_op->_matrule->_opType;
   178   }
   179   // Operand chain rules do not really have ideal Opcodes
   180   if( _matrule->is_chain_rule(globalNames) )
   181     return "Node";
   182   return strcmp(_matrule->_opType,"Set")
   183     ? _matrule->_opType
   184     : _matrule->_rChild->_opType;
   185 }
   187 // Recursive check on all operands' match rules in my match rule
   188 bool InstructForm::is_pinned(FormDict &globals) {
   189   if ( ! _matrule)  return false;
   191   int  index   = 0;
   192   if (_matrule->find_type("Goto",          index)) return true;
   193   if (_matrule->find_type("If",            index)) return true;
   194   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   195   if (_matrule->find_type("Return",        index)) return true;
   196   if (_matrule->find_type("Rethrow",       index)) return true;
   197   if (_matrule->find_type("TailCall",      index)) return true;
   198   if (_matrule->find_type("TailJump",      index)) return true;
   199   if (_matrule->find_type("Halt",          index)) return true;
   200   if (_matrule->find_type("Jump",          index)) return true;
   202   return is_parm(globals);
   203 }
   205 // Recursive check on all operands' match rules in my match rule
   206 bool InstructForm::is_projection(FormDict &globals) {
   207   if ( ! _matrule)  return false;
   209   int  index   = 0;
   210   if (_matrule->find_type("Goto",    index)) return true;
   211   if (_matrule->find_type("Return",  index)) return true;
   212   if (_matrule->find_type("Rethrow", index)) return true;
   213   if (_matrule->find_type("TailCall",index)) return true;
   214   if (_matrule->find_type("TailJump",index)) return true;
   215   if (_matrule->find_type("Halt",    index)) return true;
   217   return false;
   218 }
   220 // Recursive check on all operands' match rules in my match rule
   221 bool InstructForm::is_parm(FormDict &globals) {
   222   if ( ! _matrule)  return false;
   224   int  index   = 0;
   225   if (_matrule->find_type("Parm",index)) return true;
   227   return false;
   228 }
   231 // Return 'true' if this instruction matches an ideal 'Copy*' node
   232 int InstructForm::is_ideal_copy() const {
   233   return _matrule ? _matrule->is_ideal_copy() : 0;
   234 }
   236 // Return 'true' if this instruction is too complex to rematerialize.
   237 int InstructForm::is_expensive() const {
   238   // We can prove it is cheap if it has an empty encoding.
   239   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   240   if (is_empty_encoding())
   241     return 0;
   243   if (is_tls_instruction())
   244     return 1;
   246   if (_matrule == NULL)  return 0;
   248   return _matrule->is_expensive();
   249 }
   251 // Has an empty encoding if _size is a constant zero or there
   252 // are no ins_encode tokens.
   253 int InstructForm::is_empty_encoding() const {
   254   if (_insencode != NULL) {
   255     _insencode->reset();
   256     if (_insencode->encode_class_iter() == NULL) {
   257       return 1;
   258     }
   259   }
   260   if (_size != NULL && strcmp(_size, "0") == 0) {
   261     return 1;
   262   }
   263   return 0;
   264 }
   266 int InstructForm::is_tls_instruction() const {
   267   if (_ident != NULL &&
   268       ( ! strcmp( _ident,"tlsLoadP") ||
   269         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   270     return 1;
   271   }
   273   if (_matrule != NULL && _insencode != NULL) {
   274     const char* opType = _matrule->_opType;
   275     if (strcmp(opType, "Set")==0)
   276       opType = _matrule->_rChild->_opType;
   277     if (strcmp(opType,"ThreadLocal")==0) {
   278       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   279               (_ident == NULL ? "NULL" : _ident));
   280       return 1;
   281     }
   282   }
   284   return 0;
   285 }
   288 // Return 'true' if this instruction matches an ideal 'Copy*' node
   289 bool InstructForm::is_ideal_unlock() const {
   290   return _matrule ? _matrule->is_ideal_unlock() : false;
   291 }
   293 bool InstructForm::is_ideal_call_leaf() const {
   294   return _matrule ? _matrule->is_ideal_call_leaf() : false;
   295 }
   297 // Return 'true' if this instruction matches an ideal 'If' node
   298 bool InstructForm::is_ideal_if() const {
   299   if( _matrule == NULL ) return false;
   301   return _matrule->is_ideal_if();
   302 }
   304 // Return 'true' if this instruction matches an ideal 'FastLock' node
   305 bool InstructForm::is_ideal_fastlock() const {
   306   if( _matrule == NULL ) return false;
   308   return _matrule->is_ideal_fastlock();
   309 }
   311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   312 bool InstructForm::is_ideal_membar() const {
   313   if( _matrule == NULL ) return false;
   315   return _matrule->is_ideal_membar();
   316 }
   318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   319 bool InstructForm::is_ideal_loadPC() const {
   320   if( _matrule == NULL ) return false;
   322   return _matrule->is_ideal_loadPC();
   323 }
   325 // Return 'true' if this instruction matches an ideal 'Box' node
   326 bool InstructForm::is_ideal_box() const {
   327   if( _matrule == NULL ) return false;
   329   return _matrule->is_ideal_box();
   330 }
   332 // Return 'true' if this instruction matches an ideal 'Goto' node
   333 bool InstructForm::is_ideal_goto() const {
   334   if( _matrule == NULL ) return false;
   336   return _matrule->is_ideal_goto();
   337 }
   339 // Return 'true' if this instruction matches an ideal 'Jump' node
   340 bool InstructForm::is_ideal_jump() const {
   341   if( _matrule == NULL ) return false;
   343   return _matrule->is_ideal_jump();
   344 }
   346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
   347 //                    'CountedLoopEnd' | 'Jump'
   348 bool InstructForm::is_ideal_branch() const {
   349   if( _matrule == NULL ) return false;
   351   return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
   352 }
   355 // Return 'true' if this instruction matches an ideal 'Return' node
   356 bool InstructForm::is_ideal_return() const {
   357   if( _matrule == NULL ) return false;
   359   // Check MatchRule to see if the first entry is the ideal "Return" node
   360   int  index   = 0;
   361   if (_matrule->find_type("Return",index)) return true;
   362   if (_matrule->find_type("Rethrow",index)) return true;
   363   if (_matrule->find_type("TailCall",index)) return true;
   364   if (_matrule->find_type("TailJump",index)) return true;
   366   return false;
   367 }
   369 // Return 'true' if this instruction matches an ideal 'Halt' node
   370 bool InstructForm::is_ideal_halt() const {
   371   int  index   = 0;
   372   return _matrule && _matrule->find_type("Halt",index);
   373 }
   375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   376 bool InstructForm::is_ideal_safepoint() const {
   377   int  index   = 0;
   378   return _matrule && _matrule->find_type("SafePoint",index);
   379 }
   381 // Return 'true' if this instruction matches an ideal 'Nop' node
   382 bool InstructForm::is_ideal_nop() const {
   383   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   384 }
   386 bool InstructForm::is_ideal_control() const {
   387   if ( ! _matrule)  return false;
   389   return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
   390 }
   392 // Return 'true' if this instruction matches an ideal 'Call' node
   393 Form::CallType InstructForm::is_ideal_call() const {
   394   if( _matrule == NULL ) return Form::invalid_type;
   396   // Check MatchRule to see if the first entry is the ideal "Call" node
   397   int  idx   = 0;
   398   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   399   idx = 0;
   400   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   401   idx = 0;
   402   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   403   idx = 0;
   404   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   405   idx = 0;
   406   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   407   idx = 0;
   408   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   409   idx = 0;
   410   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   411   idx = 0;
   413   return Form::invalid_type;
   414 }
   416 // Return 'true' if this instruction matches an ideal 'Load?' node
   417 Form::DataType InstructForm::is_ideal_load() const {
   418   if( _matrule == NULL ) return Form::none;
   420   return  _matrule->is_ideal_load();
   421 }
   423 // Return 'true' if this instruction matches an ideal 'Load?' node
   424 Form::DataType InstructForm::is_ideal_store() const {
   425   if( _matrule == NULL ) return Form::none;
   427   return  _matrule->is_ideal_store();
   428 }
   430 // Return the input register that must match the output register
   431 // If this is not required, return 0
   432 uint InstructForm::two_address(FormDict &globals) {
   433   uint  matching_input = 0;
   434   if(_components.count() == 0) return 0;
   436   _components.reset();
   437   Component *comp = _components.iter();
   438   // Check if there is a DEF
   439   if( comp->isa(Component::DEF) ) {
   440     // Check that this is a register
   441     const char  *def_type = comp->_type;
   442     const Form  *form     = globals[def_type];
   443     OperandForm *op       = form->is_operand();
   444     if( op ) {
   445       if( op->constrained_reg_class() != NULL &&
   446           op->interface_type(globals) == Form::register_interface ) {
   447         // Remember the local name for equality test later
   448         const char *def_name = comp->_name;
   449         // Check if a component has the same name and is a USE
   450         do {
   451           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   452             return operand_position_format(def_name);
   453           }
   454         } while( (comp = _components.iter()) != NULL);
   455       }
   456     }
   457   }
   459   return 0;
   460 }
   463 // when chaining a constant to an instruction, returns 'true' and sets opType
   464 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   465   const char *dummy  = NULL;
   466   const char *dummy2 = NULL;
   467   return is_chain_of_constant(globals, dummy, dummy2);
   468 }
   469 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   470                 const char * &opTypeParam) {
   471   const char *result = NULL;
   473   return is_chain_of_constant(globals, opTypeParam, result);
   474 }
   476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   477                 const char * &opTypeParam, const char * &resultParam) {
   478   Form::DataType  data_type = Form::none;
   479   if ( ! _matrule)  return data_type;
   481   // !!!!!
   482   // The source of the chain rule is 'position = 1'
   483   uint         position = 1;
   484   const char  *result   = NULL;
   485   const char  *name     = NULL;
   486   const char  *opType   = NULL;
   487   // Here base_operand is looking for an ideal type to be returned (opType).
   488   if ( _matrule->is_chain_rule(globals)
   489        && _matrule->base_operand(position, globals, result, name, opType) ) {
   490     data_type = ideal_to_const_type(opType);
   492     // if it isn't an ideal constant type, just return
   493     if ( data_type == Form::none ) return data_type;
   495     // Ideal constant types also adjust the opType parameter.
   496     resultParam = result;
   497     opTypeParam = opType;
   498     return data_type;
   499   }
   501   return data_type;
   502 }
   504 // Check if a simple chain rule
   505 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   506   if( _matrule && _matrule->sets_result()
   507       && _matrule->_rChild->_lChild == NULL
   508       && globals[_matrule->_rChild->_opType]
   509       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   510     return true;
   511   }
   512   return false;
   513 }
   515 // check for structural rematerialization
   516 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   517   bool   rematerialize = false;
   519   Form::DataType data_type = is_chain_of_constant(globals);
   520   if( data_type != Form::none )
   521     rematerialize = true;
   523   // Constants
   524   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   525     rematerialize = true;
   527   // Pseudo-constants (values easily available to the runtime)
   528   if (is_empty_encoding() && is_tls_instruction())
   529     rematerialize = true;
   531   // 1-input, 1-output, such as copies or increments.
   532   if( _components.count() == 2 &&
   533       _components[0]->is(Component::DEF) &&
   534       _components[1]->isa(Component::USE) )
   535     rematerialize = true;
   537   // Check for an ideal 'Load?' and eliminate rematerialize option
   538   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   539        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   540        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   541     rematerialize = false;
   542   }
   544   // Always rematerialize the flags.  They are more expensive to save &
   545   // restore than to recompute (and possibly spill the compare's inputs).
   546   if( _components.count() >= 1 ) {
   547     Component *c = _components[0];
   548     const Form *form = globals[c->_type];
   549     OperandForm *opform = form->is_operand();
   550     if( opform ) {
   551       // Avoid the special stack_slots register classes
   552       const char *rc_name = opform->constrained_reg_class();
   553       if( rc_name ) {
   554         if( strcmp(rc_name,"stack_slots") ) {
   555           // Check for ideal_type of RegFlags
   556           const char *type = opform->ideal_type( globals, registers );
   557           if( !strcmp(type,"RegFlags") )
   558             rematerialize = true;
   559         } else
   560           rematerialize = false; // Do not rematerialize things target stk
   561       }
   562     }
   563   }
   565   return rematerialize;
   566 }
   568 // loads from memory, so must check for anti-dependence
   569 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   570   // Machine independent loads must be checked for anti-dependences
   571   if( is_ideal_load() != Form::none )  return true;
   573   // !!!!! !!!!! !!!!!
   574   // TEMPORARY
   575   // if( is_simple_chain_rule(globals) )  return false;
   577   // String-compare uses many memorys edges, but writes none
   578   if( _matrule && _matrule->_rChild &&
   579       strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
   580     return true;
   582   // Check if instruction has a USE of a memory operand class, but no defs
   583   bool USE_of_memory  = false;
   584   bool DEF_of_memory  = false;
   585   Component     *comp = NULL;
   586   ComponentList &components = (ComponentList &)_components;
   588   components.reset();
   589   while( (comp = components.iter()) != NULL ) {
   590     const Form  *form = globals[comp->_type];
   591     if( !form ) continue;
   592     OpClassForm *op   = form->is_opclass();
   593     if( !op ) continue;
   594     if( form->interface_type(globals) == Form::memory_interface ) {
   595       if( comp->isa(Component::USE) ) USE_of_memory = true;
   596       if( comp->isa(Component::DEF) ) {
   597         OperandForm *oper = form->is_operand();
   598         if( oper && oper->is_user_name_for_sReg() ) {
   599           // Stack slots are unaliased memory handled by allocator
   600           oper = oper;  // debug stopping point !!!!!
   601         } else {
   602           DEF_of_memory = true;
   603         }
   604       }
   605     }
   606   }
   607   return (USE_of_memory && !DEF_of_memory);
   608 }
   611 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   612   if( _matrule == NULL ) return false;
   613   if( !_matrule->_opType ) return false;
   615   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   616   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   618   return false;
   619 }
   621 int InstructForm::memory_operand(FormDict &globals) const {
   622   // Machine independent loads must be checked for anti-dependences
   623   // Check if instruction has a USE of a memory operand class, or a def.
   624   int USE_of_memory  = 0;
   625   int DEF_of_memory  = 0;
   626   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   627   Component     *unique          = NULL;
   628   Component     *comp            = NULL;
   629   ComponentList &components      = (ComponentList &)_components;
   631   components.reset();
   632   while( (comp = components.iter()) != NULL ) {
   633     const Form  *form = globals[comp->_type];
   634     if( !form ) continue;
   635     OpClassForm *op   = form->is_opclass();
   636     if( !op ) continue;
   637     if( op->stack_slots_only(globals) )  continue;
   638     if( form->interface_type(globals) == Form::memory_interface ) {
   639       if( comp->isa(Component::DEF) ) {
   640         last_memory_DEF = comp->_name;
   641         DEF_of_memory++;
   642         unique = comp;
   643       } else if( comp->isa(Component::USE) ) {
   644         if( last_memory_DEF != NULL ) {
   645           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   646           last_memory_DEF = NULL;
   647         }
   648         USE_of_memory++;
   649         if (DEF_of_memory == 0)  // defs take precedence
   650           unique = comp;
   651       } else {
   652         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   653       }
   654     }
   655   }
   656   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   657   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   658   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   659   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   660     if( is_simple_chain_rule(globals) ) {
   661       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   662       //((InstructForm*)this)->dump();
   663       // Preceding code prints nothing on sparc and these insns on intel:
   664       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   665       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   666       return NO_MEMORY_OPERAND;
   667     }
   669     if( DEF_of_memory == 1 ) {
   670       assert(unique != NULL, "");
   671       if( USE_of_memory == 0 ) {
   672         // unique def, no uses
   673       } else {
   674         // // unique def, some uses
   675         // // must return bottom unless all uses match def
   676         // unique = NULL;
   677       }
   678     } else if( DEF_of_memory > 0 ) {
   679       // multiple defs, don't care about uses
   680       unique = NULL;
   681     } else if( USE_of_memory == 1) {
   682       // unique use, no defs
   683       assert(unique != NULL, "");
   684     } else if( USE_of_memory > 0 ) {
   685       // multiple uses, no defs
   686       unique = NULL;
   687     } else {
   688       assert(false, "bad case analysis");
   689     }
   690     // process the unique DEF or USE, if there is one
   691     if( unique == NULL ) {
   692       return MANY_MEMORY_OPERANDS;
   693     } else {
   694       int pos = components.operand_position(unique->_name);
   695       if( unique->isa(Component::DEF) ) {
   696         pos += 1;                // get corresponding USE from DEF
   697       }
   698       assert(pos >= 1, "I was just looking at it!");
   699       return pos;
   700     }
   701   }
   703   // missed the memory op??
   704   if( true ) {  // %%% should not be necessary
   705     if( is_ideal_store() != Form::none ) {
   706       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   707       ((InstructForm*)this)->dump();
   708       // pretend it has multiple defs and uses
   709       return MANY_MEMORY_OPERANDS;
   710     }
   711     if( is_ideal_load()  != Form::none ) {
   712       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   713       ((InstructForm*)this)->dump();
   714       // pretend it has multiple uses and no defs
   715       return MANY_MEMORY_OPERANDS;
   716     }
   717   }
   719   return NO_MEMORY_OPERAND;
   720 }
   723 // This instruction captures the machine-independent bottom_type
   724 // Expected use is for pointer vs oop determination for LoadP
   725 bool InstructForm::captures_bottom_type() const {
   726   if( _matrule && _matrule->_rChild &&
   727        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
   728         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
   729         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
   730         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
   731         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
   732         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
   733         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
   734         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
   735   else if ( is_ideal_load() == Form::idealP )                return true;
   736   else if ( is_ideal_store() != Form::none  )                return true;
   738   return  false;
   739 }
   742 // Access instr_cost attribute or return NULL.
   743 const char* InstructForm::cost() {
   744   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   745     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   746       return cur->_val;
   747     }
   748   }
   749   return NULL;
   750 }
   752 // Return count of top-level operands.
   753 uint InstructForm::num_opnds() {
   754   int  num_opnds = _components.num_operands();
   756   // Need special handling for matching some ideal nodes
   757   // i.e. Matching a return node
   758   /*
   759   if( _matrule ) {
   760     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   761         strcmp(_matrule->_opType,"Halt"     )==0 )
   762       return 3;
   763   }
   764     */
   765   return num_opnds;
   766 }
   768 // Return count of unmatched operands.
   769 uint InstructForm::num_post_match_opnds() {
   770   uint  num_post_match_opnds = _components.count();
   771   uint  num_match_opnds = _components.match_count();
   772   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   774   return num_post_match_opnds;
   775 }
   777 // Return the number of leaves below this complex operand
   778 uint InstructForm::num_consts(FormDict &globals) const {
   779   if ( ! _matrule) return 0;
   781   // This is a recursive invocation on all operands in the matchrule
   782   return _matrule->num_consts(globals);
   783 }
   785 // Constants in match rule with specified type
   786 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   787   if ( ! _matrule) return 0;
   789   // This is a recursive invocation on all operands in the matchrule
   790   return _matrule->num_consts(globals, type);
   791 }
   794 // Return the register class associated with 'leaf'.
   795 const char *InstructForm::out_reg_class(FormDict &globals) {
   796   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   798   return NULL;
   799 }
   803 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   804 uint InstructForm::oper_input_base(FormDict &globals) {
   805   if( !_matrule ) return 1;     // Skip control for most nodes
   807   // Need special handling for matching some ideal nodes
   808   // i.e. Matching a return node
   809   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   810       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   811       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   812       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   813       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   814       strcmp(_matrule->_opType,"Halt"      )==0 )
   815     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   817   if( _matrule->_rChild &&
   818           strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
   819         // String compare takes 1 control and 4 memory edges.
   820     return 5;
   821   }
   823   // Check for handling of 'Memory' input/edge in the ideal world.
   824   // The AD file writer is shielded from knowledge of these edges.
   825   int base = 1;                 // Skip control
   826   base += _matrule->needs_ideal_memory_edge(globals);
   828   // Also skip the base-oop value for uses of derived oops.
   829   // The AD file writer is shielded from knowledge of these edges.
   830   base += needs_base_oop_edge(globals);
   832   return base;
   833 }
   835 // Implementation does not modify state of internal structures
   836 void InstructForm::build_components() {
   837   // Add top-level operands to the components
   838   if (_matrule)  _matrule->append_components(_localNames, _components);
   840   // Add parameters that "do not appear in match rule".
   841   bool has_temp = false;
   842   const char *name;
   843   const char *kill_name = NULL;
   844   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   845     OperandForm *opForm = (OperandForm*)_localNames[name];
   847     Effect* e = NULL;
   848     {
   849       const Form* form = _effects[name];
   850       e = form ? form->is_effect() : NULL;
   851     }
   853     if (e != NULL) {
   854       has_temp |= e->is(Component::TEMP);
   856       // KILLs must be declared after any TEMPs because TEMPs are real
   857       // uses so their operand numbering must directly follow the real
   858       // inputs from the match rule.  Fixing the numbering seems
   859       // complex so simply enforce the restriction during parse.
   860       if (kill_name != NULL &&
   861           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   862         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   863         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   864                              _ident, kill->_ident, kill_name);
   865       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   866         kill_name = name;
   867       }
   868     }
   870     const Component *component  = _components.search(name);
   871     if ( component  == NULL ) {
   872       if (e) {
   873         _components.insert(name, opForm->_ident, e->_use_def, false);
   874         component = _components.search(name);
   875         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   876           const Form *form = globalAD->globalNames()[component->_type];
   877           assert( form, "component type must be a defined form");
   878           OperandForm *op   = form->is_operand();
   879           if (op->_interface && op->_interface->is_RegInterface()) {
   880             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   881                                  _ident, opForm->_ident, name);
   882           }
   883         }
   884       } else {
   885         // This would be a nice warning but it triggers in a few places in a benign way
   886         // if (_matrule != NULL && !expands()) {
   887         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   888         //                        _ident, opForm->_ident, name);
   889         // }
   890         _components.insert(name, opForm->_ident, Component::INVALID, false);
   891       }
   892     }
   893     else if (e) {
   894       // Component was found in the list
   895       // Check if there is a new effect that requires an extra component.
   896       // This happens when adding 'USE' to a component that is not yet one.
   897       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   898         if (component->isa(Component::USE) && _matrule) {
   899           const Form *form = globalAD->globalNames()[component->_type];
   900           assert( form, "component type must be a defined form");
   901           OperandForm *op   = form->is_operand();
   902           if (op->_interface && op->_interface->is_RegInterface()) {
   903             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   904                                  _ident, opForm->_ident, name);
   905           }
   906         }
   907         _components.insert(name, opForm->_ident, e->_use_def, false);
   908       } else {
   909         Component  *comp = (Component*)component;
   910         comp->promote_use_def_info(e->_use_def);
   911       }
   912       // Component positions are zero based.
   913       int  pos  = _components.operand_position(name);
   914       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   915               "Component::DEF can only occur in the first position");
   916     }
   917   }
   919   // Resolving the interactions between expand rules and TEMPs would
   920   // be complex so simply disallow it.
   921   if (_matrule == NULL && has_temp) {
   922     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   923   }
   925   return;
   926 }
   928 // Return zero-based position in component list;  -1 if not in list.
   929 int   InstructForm::operand_position(const char *name, int usedef) {
   930   return unique_opnds_idx(_components.operand_position(name, usedef));
   931 }
   933 int   InstructForm::operand_position_format(const char *name) {
   934   return unique_opnds_idx(_components.operand_position_format(name));
   935 }
   937 // Return zero-based position in component list; -1 if not in list.
   938 int   InstructForm::label_position() {
   939   return unique_opnds_idx(_components.label_position());
   940 }
   942 int   InstructForm::method_position() {
   943   return unique_opnds_idx(_components.method_position());
   944 }
   946 // Return number of relocation entries needed for this instruction.
   947 uint  InstructForm::reloc(FormDict &globals) {
   948   uint reloc_entries  = 0;
   949   // Check for "Call" nodes
   950   if ( is_ideal_call() )      ++reloc_entries;
   951   if ( is_ideal_return() )    ++reloc_entries;
   952   if ( is_ideal_safepoint() ) ++reloc_entries;
   955   // Check if operands MAYBE oop pointers, by checking for ConP elements
   956   // Proceed through the leaves of the match-tree and check for ConPs
   957   if ( _matrule != NULL ) {
   958     uint         position = 0;
   959     const char  *result   = NULL;
   960     const char  *name     = NULL;
   961     const char  *opType   = NULL;
   962     while (_matrule->base_operand(position, globals, result, name, opType)) {
   963       if ( strcmp(opType,"ConP") == 0 ) {
   964 #ifdef SPARC
   965         reloc_entries += 2; // 1 for sethi + 1 for setlo
   966 #else
   967         ++reloc_entries;
   968 #endif
   969       }
   970       ++position;
   971     }
   972   }
   974   // Above is only a conservative estimate
   975   // because it did not check contents of operand classes.
   976   // !!!!! !!!!!
   977   // Add 1 to reloc info for each operand class in the component list.
   978   Component  *comp;
   979   _components.reset();
   980   while ( (comp = _components.iter()) != NULL ) {
   981     const Form        *form = globals[comp->_type];
   982     assert( form, "Did not find component's type in global names");
   983     const OpClassForm *opc  = form->is_opclass();
   984     const OperandForm *oper = form->is_operand();
   985     if ( opc && (oper == NULL) ) {
   986       ++reloc_entries;
   987     } else if ( oper ) {
   988       // floats and doubles loaded out of method's constant pool require reloc info
   989       Form::DataType type = oper->is_base_constant(globals);
   990       if ( (type == Form::idealF) || (type == Form::idealD) ) {
   991         ++reloc_entries;
   992       }
   993     }
   994   }
   996   // Float and Double constants may come from the CodeBuffer table
   997   // and require relocatable addresses for access
   998   // !!!!!
   999   // Check for any component being an immediate float or double.
  1000   Form::DataType data_type = is_chain_of_constant(globals);
  1001   if( data_type==idealD || data_type==idealF ) {
  1002 #ifdef SPARC
  1003     // sparc required more relocation entries for floating constants
  1004     // (expires 9/98)
  1005     reloc_entries += 6;
  1006 #else
  1007     reloc_entries++;
  1008 #endif
  1011   return reloc_entries;
  1014 // Utility function defined in archDesc.cpp
  1015 extern bool is_def(int usedef);
  1017 // Return the result of reducing an instruction
  1018 const char *InstructForm::reduce_result() {
  1019   const char* result = "Universe";  // default
  1020   _components.reset();
  1021   Component *comp = _components.iter();
  1022   if (comp != NULL && comp->isa(Component::DEF)) {
  1023     result = comp->_type;
  1024     // Override this if the rule is a store operation:
  1025     if (_matrule && _matrule->_rChild &&
  1026         is_store_to_memory(_matrule->_rChild->_opType))
  1027       result = "Universe";
  1029   return result;
  1032 // Return the name of the operand on the right hand side of the binary match
  1033 // Return NULL if there is no right hand side
  1034 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1035   if( _matrule == NULL ) return NULL;
  1036   return  _matrule->reduce_right(globals);
  1039 // Similar for left
  1040 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1041   if( _matrule == NULL ) return NULL;
  1042   return  _matrule->reduce_left(globals);
  1046 // Base class for this instruction, MachNode except for calls
  1047 const char *InstructForm::mach_base_class()  const {
  1048   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1049     return "MachCallStaticJavaNode";
  1051   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1052     return "MachCallDynamicJavaNode";
  1054   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1055     return "MachCallRuntimeNode";
  1057   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1058     return "MachCallLeafNode";
  1060   else if (is_ideal_return()) {
  1061     return "MachReturnNode";
  1063   else if (is_ideal_halt()) {
  1064     return "MachHaltNode";
  1066   else if (is_ideal_safepoint()) {
  1067     return "MachSafePointNode";
  1069   else if (is_ideal_if()) {
  1070     return "MachIfNode";
  1072   else if (is_ideal_fastlock()) {
  1073     return "MachFastLockNode";
  1075   else if (is_ideal_nop()) {
  1076     return "MachNopNode";
  1078   else if (captures_bottom_type()) {
  1079     return "MachTypeNode";
  1080   } else {
  1081     return "MachNode";
  1083   assert( false, "ShouldNotReachHere()");
  1084   return NULL;
  1087 // Compare the instruction predicates for textual equality
  1088 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1089   const Predicate *pred1  = instr1->_predicate;
  1090   const Predicate *pred2  = instr2->_predicate;
  1091   if( pred1 == NULL && pred2 == NULL ) {
  1092     // no predicates means they are identical
  1093     return true;
  1095   if( pred1 != NULL && pred2 != NULL ) {
  1096     // compare the predicates
  1097     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1098       return true;
  1102   return false;
  1105 // Check if this instruction can cisc-spill to 'alternate'
  1106 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1107   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1108   // Do not replace if a cisc-version has been found.
  1109   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1111   int         cisc_spill_operand = Maybe_cisc_spillable;
  1112   char       *result             = NULL;
  1113   char       *result2            = NULL;
  1114   const char *op_name            = NULL;
  1115   const char *reg_type           = NULL;
  1116   FormDict   &globals            = AD.globalNames();
  1117   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1118   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1119     cisc_spill_operand = operand_position(op_name, Component::USE);
  1120     int def_oper  = operand_position(op_name, Component::DEF);
  1121     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1122       // Do not support cisc-spilling for destination operands and
  1123       // make sure they have the same number of operands.
  1124       _cisc_spill_alternate = instr;
  1125       instr->set_cisc_alternate(true);
  1126       if( AD._cisc_spill_debug ) {
  1127         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1128         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1130       // Record that a stack-version of the reg_mask is needed
  1131       // !!!!!
  1132       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1133       assert( oper != NULL, "cisc-spilling non operand");
  1134       const char *reg_class_name = oper->constrained_reg_class();
  1135       AD.set_stack_or_reg(reg_class_name);
  1136       const char *reg_mask_name  = AD.reg_mask(*oper);
  1137       set_cisc_reg_mask_name(reg_mask_name);
  1138       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1139     } else {
  1140       cisc_spill_operand = Not_cisc_spillable;
  1142   } else {
  1143     cisc_spill_operand = Not_cisc_spillable;
  1146   set_cisc_spill_operand(cisc_spill_operand);
  1147   return (cisc_spill_operand != Not_cisc_spillable);
  1150 // Check to see if this instruction can be replaced with the short branch
  1151 // instruction `short-branch'
  1152 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1153   if (_matrule != NULL &&
  1154       this != short_branch &&   // Don't match myself
  1155       !is_short_branch() &&     // Don't match another short branch variant
  1156       reduce_result() != NULL &&
  1157       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1158       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1159     // The instructions are equivalent.
  1160     if (AD._short_branch_debug) {
  1161       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1163     _short_branch_form = short_branch;
  1164     return true;
  1166   return false;
  1170 // --------------------------- FILE *output_routines
  1171 //
  1172 // Generate the format call for the replacement variable
  1173 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1174   // Find replacement variable's type
  1175   const Form *form   = _localNames[rep_var];
  1176   if (form == NULL) {
  1177     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
  1178     assert(false, "ShouldNotReachHere()");
  1180   OpClassForm *opc   = form->is_opclass();
  1181   assert( opc, "replacement variable was not found in local names");
  1182   // Lookup the index position of the replacement variable
  1183   int idx  = operand_position_format(rep_var);
  1184   if ( idx == -1 ) {
  1185     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
  1186     assert( false, "ShouldNotReachHere()");
  1189   if (is_noninput_operand(idx)) {
  1190     // This component isn't in the input array.  Print out the static
  1191     // name of the register.
  1192     OperandForm* oper = form->is_operand();
  1193     if (oper != NULL && oper->is_bound_register()) {
  1194       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1195       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
  1196     } else {
  1197       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1199   } else {
  1200     // Output the format call for this operand
  1201     fprintf(fp,"opnd_array(%d)->",idx);
  1202     if (idx == 0)
  1203       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1204     else
  1205       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1209 // Seach through operands to determine parameters unique positions.
  1210 void InstructForm::set_unique_opnds() {
  1211   uint* uniq_idx = NULL;
  1212   int  nopnds = num_opnds();
  1213   uint  num_uniq = nopnds;
  1214   int i;
  1215   _uniq_idx_length = 0;
  1216   if ( nopnds > 0 ) {
  1217     // Allocate index array.  Worst case we're mapping from each
  1218     // component back to an index and any DEF always goes at 0 so the
  1219     // length of the array has to be the number of components + 1.
  1220     _uniq_idx_length = _components.count() + 1;
  1221     uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
  1222     for( i = 0; i < _uniq_idx_length; i++ ) {
  1223       uniq_idx[i] = i;
  1226   // Do it only if there is a match rule and no expand rule.  With an
  1227   // expand rule it is done by creating new mach node in Expand()
  1228   // method.
  1229   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
  1230     const char *name;
  1231     uint count;
  1232     bool has_dupl_use = false;
  1234     _parameters.reset();
  1235     while( (name = _parameters.iter()) != NULL ) {
  1236       count = 0;
  1237       int position = 0;
  1238       int uniq_position = 0;
  1239       _components.reset();
  1240       Component *comp = NULL;
  1241       if( sets_result() ) {
  1242         comp = _components.iter();
  1243         position++;
  1245       // The next code is copied from the method operand_position().
  1246       for (; (comp = _components.iter()) != NULL; ++position) {
  1247         // When the first component is not a DEF,
  1248         // leave space for the result operand!
  1249         if ( position==0 && (! comp->isa(Component::DEF)) ) {
  1250           ++position;
  1252         if( strcmp(name, comp->_name)==0 ) {
  1253           if( ++count > 1 ) {
  1254             assert(position < _uniq_idx_length, "out of bounds");
  1255             uniq_idx[position] = uniq_position;
  1256             has_dupl_use = true;
  1257           } else {
  1258             uniq_position = position;
  1261         if( comp->isa(Component::DEF)
  1262             && comp->isa(Component::USE) ) {
  1263           ++position;
  1264           if( position != 1 )
  1265             --position;   // only use two slots for the 1st USE_DEF
  1269     if( has_dupl_use ) {
  1270       for( i = 1; i < nopnds; i++ )
  1271         if( i != uniq_idx[i] )
  1272           break;
  1273       int  j = i;
  1274       for( ; i < nopnds; i++ )
  1275         if( i == uniq_idx[i] )
  1276           uniq_idx[i] = j++;
  1277       num_uniq = j;
  1280   _uniq_idx = uniq_idx;
  1281   _num_uniq = num_uniq;
  1284 // Generate index values needed for determining the operand position
  1285 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1286   uint  idx = 0;                  // position of operand in match rule
  1287   int   cur_num_opnds = num_opnds();
  1289   // Compute the index into vector of operand pointers:
  1290   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1291   // idx1 starts at oper_input_base()
  1292   if ( cur_num_opnds >= 1 ) {
  1293     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
  1294     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1295     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
  1297     // Generate starting points for other unique operands if they exist
  1298     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1299       if( *receiver == 0 ) {
  1300         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
  1301                 prefix, idx, prefix, idx-1, idx-1 );
  1302       } else {
  1303         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
  1304                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1308   if( *receiver != 0 ) {
  1309     // This value is used by generate_peepreplace when copying a node.
  1310     // Don't emit it in other cases since it can hide bugs with the
  1311     // use invalid idx's.
  1312     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1317 // ---------------------------
  1318 bool InstructForm::verify() {
  1319   // !!!!! !!!!!
  1320   // Check that a "label" operand occurs last in the operand list, if present
  1321   return true;
  1324 void InstructForm::dump() {
  1325   output(stderr);
  1328 void InstructForm::output(FILE *fp) {
  1329   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1330   if (_matrule)   _matrule->output(fp);
  1331   if (_insencode) _insencode->output(fp);
  1332   if (_opcode)    _opcode->output(fp);
  1333   if (_attribs)   _attribs->output(fp);
  1334   if (_predicate) _predicate->output(fp);
  1335   if (_effects.Size()) {
  1336     fprintf(fp,"Effects\n");
  1337     _effects.dump();
  1339   if (_exprule)   _exprule->output(fp);
  1340   if (_rewrule)   _rewrule->output(fp);
  1341   if (_format)    _format->output(fp);
  1342   if (_peephole)  _peephole->output(fp);
  1345 void MachNodeForm::dump() {
  1346   output(stderr);
  1349 void MachNodeForm::output(FILE *fp) {
  1350   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1353 //------------------------------build_predicate--------------------------------
  1354 // Build instruction predicates.  If the user uses the same operand name
  1355 // twice, we need to check that the operands are pointer-eequivalent in
  1356 // the DFA during the labeling process.
  1357 Predicate *InstructForm::build_predicate() {
  1358   char buf[1024], *s=buf;
  1359   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1361   MatchNode *mnode =
  1362     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1363   mnode->count_instr_names(names);
  1365   uint first = 1;
  1366   // Start with the predicate supplied in the .ad file.
  1367   if( _predicate ) {
  1368     if( first ) first=0;
  1369     strcpy(s,"("); s += strlen(s);
  1370     strcpy(s,_predicate->_pred);
  1371     s += strlen(s);
  1372     strcpy(s,")"); s += strlen(s);
  1374   for( DictI i(&names); i.test(); ++i ) {
  1375     uintptr_t cnt = (uintptr_t)i._value;
  1376     if( cnt > 1 ) {             // Need a predicate at all?
  1377       assert( cnt == 2, "Unimplemented" );
  1378       // Handle many pairs
  1379       if( first ) first=0;
  1380       else {                    // All tests must pass, so use '&&'
  1381         strcpy(s," && ");
  1382         s += strlen(s);
  1384       // Add predicate to working buffer
  1385       sprintf(s,"/*%s*/(",(char*)i._key);
  1386       s += strlen(s);
  1387       mnode->build_instr_pred(s,(char*)i._key,0);
  1388       s += strlen(s);
  1389       strcpy(s," == "); s += strlen(s);
  1390       mnode->build_instr_pred(s,(char*)i._key,1);
  1391       s += strlen(s);
  1392       strcpy(s,")"); s += strlen(s);
  1395   if( s == buf ) s = NULL;
  1396   else {
  1397     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1398     s = strdup(buf);
  1400   return new Predicate(s);
  1403 //------------------------------EncodeForm-------------------------------------
  1404 // Constructor
  1405 EncodeForm::EncodeForm()
  1406   : _encClass(cmpstr,hashstr, Form::arena) {
  1408 EncodeForm::~EncodeForm() {
  1411 // record a new register class
  1412 EncClass *EncodeForm::add_EncClass(const char *className) {
  1413   EncClass *encClass = new EncClass(className);
  1414   _eclasses.addName(className);
  1415   _encClass.Insert(className,encClass);
  1416   return encClass;
  1419 // Lookup the function body for an encoding class
  1420 EncClass  *EncodeForm::encClass(const char *className) {
  1421   assert( className != NULL, "Must provide a defined encoding name");
  1423   EncClass *encClass = (EncClass*)_encClass[className];
  1424   return encClass;
  1427 // Lookup the function body for an encoding class
  1428 const char *EncodeForm::encClassBody(const char *className) {
  1429   if( className == NULL ) return NULL;
  1431   EncClass *encClass = (EncClass*)_encClass[className];
  1432   assert( encClass != NULL, "Encode Class is missing.");
  1433   encClass->_code.reset();
  1434   const char *code = (const char*)encClass->_code.iter();
  1435   assert( code != NULL, "Found an empty encode class body.");
  1437   return code;
  1440 // Lookup the function body for an encoding class
  1441 const char *EncodeForm::encClassPrototype(const char *className) {
  1442   assert( className != NULL, "Encode class name must be non NULL.");
  1444   return className;
  1447 void EncodeForm::dump() {                  // Debug printer
  1448   output(stderr);
  1451 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1452   const char *name;
  1453   fprintf(fp,"\n");
  1454   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1455   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1456     ((EncClass*)_encClass[name])->output(fp);
  1458   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1460 //------------------------------EncClass---------------------------------------
  1461 EncClass::EncClass(const char *name)
  1462   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1464 EncClass::~EncClass() {
  1467 // Add a parameter <type,name> pair
  1468 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1469   _parameter_type.addName( parameter_type );
  1470   _parameter_name.addName( parameter_name );
  1473 // Verify operand types in parameter list
  1474 bool EncClass::check_parameter_types(FormDict &globals) {
  1475   // !!!!!
  1476   return false;
  1479 // Add the decomposed "code" sections of an encoding's code-block
  1480 void EncClass::add_code(const char *code) {
  1481   _code.addName(code);
  1484 // Add the decomposed "replacement variables" of an encoding's code-block
  1485 void EncClass::add_rep_var(char *replacement_var) {
  1486   _code.addName(NameList::_signal);
  1487   _rep_vars.addName(replacement_var);
  1490 // Lookup the function body for an encoding class
  1491 int EncClass::rep_var_index(const char *rep_var) {
  1492   uint        position = 0;
  1493   const char *name     = NULL;
  1495   _parameter_name.reset();
  1496   while ( (name = _parameter_name.iter()) != NULL ) {
  1497     if ( strcmp(rep_var,name) == 0 ) return position;
  1498     ++position;
  1501   return -1;
  1504 // Check after parsing
  1505 bool EncClass::verify() {
  1506   // 1!!!!
  1507   // Check that each replacement variable, '$name' in architecture description
  1508   // is actually a local variable for this encode class, or a reserved name
  1509   // "primary, secondary, tertiary"
  1510   return true;
  1513 void EncClass::dump() {
  1514   output(stderr);
  1517 // Write info to output files
  1518 void EncClass::output(FILE *fp) {
  1519   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1521   // Output the parameter list
  1522   _parameter_type.reset();
  1523   _parameter_name.reset();
  1524   const char *type = _parameter_type.iter();
  1525   const char *name = _parameter_name.iter();
  1526   fprintf(fp, " ( ");
  1527   for ( ; (type != NULL) && (name != NULL);
  1528         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1529     fprintf(fp, " %s %s,", type, name);
  1531   fprintf(fp, " ) ");
  1533   // Output the code block
  1534   _code.reset();
  1535   _rep_vars.reset();
  1536   const char *code;
  1537   while ( (code = _code.iter()) != NULL ) {
  1538     if ( _code.is_signal(code) ) {
  1539       // A replacement variable
  1540       const char *rep_var = _rep_vars.iter();
  1541       fprintf(fp,"($%s)", rep_var);
  1542     } else {
  1543       // A section of code
  1544       fprintf(fp,"%s", code);
  1550 //------------------------------Opcode-----------------------------------------
  1551 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1552   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1555 Opcode::~Opcode() {
  1558 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1559   if( strcmp(param,"primary") == 0 ) {
  1560     return Opcode::PRIMARY;
  1562   else if( strcmp(param,"secondary") == 0 ) {
  1563     return Opcode::SECONDARY;
  1565   else if( strcmp(param,"tertiary") == 0 ) {
  1566     return Opcode::TERTIARY;
  1568   return Opcode::NOT_AN_OPCODE;
  1571 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1572   // Default values previously provided by MachNode::primary()...
  1573   const char *description = NULL;
  1574   const char *value       = NULL;
  1575   // Check if user provided any opcode definitions
  1576   if( this != NULL ) {
  1577     // Update 'value' if user provided a definition in the instruction
  1578     switch (desired_opcode) {
  1579     case PRIMARY:
  1580       description = "primary()";
  1581       if( _primary   != NULL)  { value = _primary;     }
  1582       break;
  1583     case SECONDARY:
  1584       description = "secondary()";
  1585       if( _secondary != NULL ) { value = _secondary;   }
  1586       break;
  1587     case TERTIARY:
  1588       description = "tertiary()";
  1589       if( _tertiary  != NULL ) { value = _tertiary;    }
  1590       break;
  1591     default:
  1592       assert( false, "ShouldNotReachHere();");
  1593       break;
  1596   if (value != NULL) {
  1597     fprintf(fp, "(%s /*%s*/)", value, description);
  1599   return value != NULL;
  1602 void Opcode::dump() {
  1603   output(stderr);
  1606 // Write info to output files
  1607 void Opcode::output(FILE *fp) {
  1608   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1609   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1610   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1613 //------------------------------InsEncode--------------------------------------
  1614 InsEncode::InsEncode() {
  1616 InsEncode::~InsEncode() {
  1619 // Add "encode class name" and its parameters
  1620 NameAndList *InsEncode::add_encode(char *encoding) {
  1621   assert( encoding != NULL, "Must provide name for encoding");
  1623   // add_parameter(NameList::_signal);
  1624   NameAndList *encode = new NameAndList(encoding);
  1625   _encoding.addName((char*)encode);
  1627   return encode;
  1630 // Access the list of encodings
  1631 void InsEncode::reset() {
  1632   _encoding.reset();
  1633   // _parameter.reset();
  1635 const char* InsEncode::encode_class_iter() {
  1636   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1637   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1639 // Obtain parameter name from zero based index
  1640 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1641   NameAndList *params = (NameAndList*)_encoding.current();
  1642   assert( params != NULL, "Internal Error");
  1643   const char *param = (*params)[param_no];
  1645   // Remove '$' if parser placed it there.
  1646   return ( param != NULL && *param == '$') ? (param+1) : param;
  1649 void InsEncode::dump() {
  1650   output(stderr);
  1653 // Write info to output files
  1654 void InsEncode::output(FILE *fp) {
  1655   NameAndList *encoding  = NULL;
  1656   const char  *parameter = NULL;
  1658   fprintf(fp,"InsEncode: ");
  1659   _encoding.reset();
  1661   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1662     // Output the encoding being used
  1663     fprintf(fp,"%s(", encoding->name() );
  1665     // Output its parameter list, if any
  1666     bool first_param = true;
  1667     encoding->reset();
  1668     while (  (parameter = encoding->iter()) != 0 ) {
  1669       // Output the ',' between parameters
  1670       if ( ! first_param )  fprintf(fp,", ");
  1671       first_param = false;
  1672       // Output the parameter
  1673       fprintf(fp,"%s", parameter);
  1674     } // done with parameters
  1675     fprintf(fp,")  ");
  1676   } // done with encodings
  1678   fprintf(fp,"\n");
  1681 //------------------------------Effect-----------------------------------------
  1682 static int effect_lookup(const char *name) {
  1683   if(!strcmp(name, "USE")) return Component::USE;
  1684   if(!strcmp(name, "DEF")) return Component::DEF;
  1685   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1686   if(!strcmp(name, "KILL")) return Component::KILL;
  1687   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1688   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1689   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1690   assert( false,"Invalid effect name specified\n");
  1691   return Component::INVALID;
  1694 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1695   _ftype = Form::EFF;
  1697 Effect::~Effect() {
  1700 // Dynamic type check
  1701 Effect *Effect::is_effect() const {
  1702   return (Effect*)this;
  1706 // True if this component is equal to the parameter.
  1707 bool Effect::is(int use_def_kill_enum) const {
  1708   return (_use_def == use_def_kill_enum ? true : false);
  1710 // True if this component is used/def'd/kill'd as the parameter suggests.
  1711 bool Effect::isa(int use_def_kill_enum) const {
  1712   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1715 void Effect::dump() {
  1716   output(stderr);
  1719 void Effect::output(FILE *fp) {          // Write info to output files
  1720   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1723 //------------------------------ExpandRule-------------------------------------
  1724 ExpandRule::ExpandRule() : _expand_instrs(),
  1725                            _newopconst(cmpstr, hashstr, Form::arena) {
  1726   _ftype = Form::EXP;
  1729 ExpandRule::~ExpandRule() {                  // Destructor
  1732 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1733   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1736 void ExpandRule::reset_instructions() {
  1737   _expand_instrs.reset();
  1740 NameAndList* ExpandRule::iter_instructions() {
  1741   return (NameAndList*)_expand_instrs.iter();
  1745 void ExpandRule::dump() {
  1746   output(stderr);
  1749 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1750   NameAndList *expand_instr = NULL;
  1751   const char *opid = NULL;
  1753   fprintf(fp,"\nExpand Rule:\n");
  1755   // Iterate over the instructions 'node' expands into
  1756   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1757     fprintf(fp,"%s(", expand_instr->name());
  1759     // iterate over the operand list
  1760     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1761       fprintf(fp,"%s ", opid);
  1763     fprintf(fp,");\n");
  1767 //------------------------------RewriteRule------------------------------------
  1768 RewriteRule::RewriteRule(char* params, char* block)
  1769   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1770 RewriteRule::~RewriteRule() {                 // Destructor
  1773 void RewriteRule::dump() {
  1774   output(stderr);
  1777 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1778   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1779           (_tempParams?_tempParams:""),
  1780           (_tempBlock?_tempBlock:""));
  1784 //==============================MachNodes======================================
  1785 //------------------------------MachNodeForm-----------------------------------
  1786 MachNodeForm::MachNodeForm(char *id)
  1787   : _ident(id) {
  1790 MachNodeForm::~MachNodeForm() {
  1793 MachNodeForm *MachNodeForm::is_machnode() const {
  1794   return (MachNodeForm*)this;
  1797 //==============================Operand Classes================================
  1798 //------------------------------OpClassForm------------------------------------
  1799 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1800   _ftype = Form::OPCLASS;
  1803 OpClassForm::~OpClassForm() {
  1806 bool OpClassForm::ideal_only() const { return 0; }
  1808 OpClassForm *OpClassForm::is_opclass() const {
  1809   return (OpClassForm*)this;
  1812 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1813   if( _oplst.count() == 0 ) return Form::no_interface;
  1815   // Check that my operands have the same interface type
  1816   Form::InterfaceType  interface;
  1817   bool  first = true;
  1818   NameList &op_list = (NameList &)_oplst;
  1819   op_list.reset();
  1820   const char *op_name;
  1821   while( (op_name = op_list.iter()) != NULL ) {
  1822     const Form  *form    = globals[op_name];
  1823     OperandForm *operand = form->is_operand();
  1824     assert( operand, "Entry in operand class that is not an operand");
  1825     if( first ) {
  1826       first     = false;
  1827       interface = operand->interface_type(globals);
  1828     } else {
  1829       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1832   return interface;
  1835 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1836   if( _oplst.count() == 0 ) return false;  // how?
  1838   NameList &op_list = (NameList &)_oplst;
  1839   op_list.reset();
  1840   const char *op_name;
  1841   while( (op_name = op_list.iter()) != NULL ) {
  1842     const Form  *form    = globals[op_name];
  1843     OperandForm *operand = form->is_operand();
  1844     assert( operand, "Entry in operand class that is not an operand");
  1845     if( !operand->stack_slots_only(globals) )  return false;
  1847   return true;
  1851 void OpClassForm::dump() {
  1852   output(stderr);
  1855 void OpClassForm::output(FILE *fp) {
  1856   const char *name;
  1857   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  1858   fprintf(fp,"\nCount = %d\n", _oplst.count());
  1859   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  1860     fprintf(fp,"%s, ",name);
  1862   fprintf(fp,"\n");
  1866 //==============================Operands=======================================
  1867 //------------------------------OperandForm------------------------------------
  1868 OperandForm::OperandForm(const char* id)
  1869   : OpClassForm(id), _ideal_only(false),
  1870     _localNames(cmpstr, hashstr, Form::arena) {
  1871       _ftype = Form::OPER;
  1873       _matrule   = NULL;
  1874       _interface = NULL;
  1875       _attribs   = NULL;
  1876       _predicate = NULL;
  1877       _constraint= NULL;
  1878       _construct = NULL;
  1879       _format    = NULL;
  1881 OperandForm::OperandForm(const char* id, bool ideal_only)
  1882   : OpClassForm(id), _ideal_only(ideal_only),
  1883     _localNames(cmpstr, hashstr, Form::arena) {
  1884       _ftype = Form::OPER;
  1886       _matrule   = NULL;
  1887       _interface = NULL;
  1888       _attribs   = NULL;
  1889       _predicate = NULL;
  1890       _constraint= NULL;
  1891       _construct = NULL;
  1892       _format    = NULL;
  1894 OperandForm::~OperandForm() {
  1898 OperandForm *OperandForm::is_operand() const {
  1899   return (OperandForm*)this;
  1902 bool OperandForm::ideal_only() const {
  1903   return _ideal_only;
  1906 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  1907   if( _interface == NULL )  return Form::no_interface;
  1909   return _interface->interface_type(globals);
  1913 bool OperandForm::stack_slots_only(FormDict &globals) const {
  1914   if( _constraint == NULL )  return false;
  1915   return _constraint->stack_slots_only();
  1919 // Access op_cost attribute or return NULL.
  1920 const char* OperandForm::cost() {
  1921   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  1922     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  1923       return cur->_val;
  1926   return NULL;
  1929 // Return the number of leaves below this complex operand
  1930 uint OperandForm::num_leaves() const {
  1931   if ( ! _matrule) return 0;
  1933   int num_leaves = _matrule->_numleaves;
  1934   return num_leaves;
  1937 // Return the number of constants contained within this complex operand
  1938 uint OperandForm::num_consts(FormDict &globals) const {
  1939   if ( ! _matrule) return 0;
  1941   // This is a recursive invocation on all operands in the matchrule
  1942   return _matrule->num_consts(globals);
  1945 // Return the number of constants in match rule with specified type
  1946 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  1947   if ( ! _matrule) return 0;
  1949   // This is a recursive invocation on all operands in the matchrule
  1950   return _matrule->num_consts(globals, type);
  1953 // Return the number of pointer constants contained within this complex operand
  1954 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  1955   if ( ! _matrule) return 0;
  1957   // This is a recursive invocation on all operands in the matchrule
  1958   return _matrule->num_const_ptrs(globals);
  1961 uint OperandForm::num_edges(FormDict &globals) const {
  1962   uint edges  = 0;
  1963   uint leaves = num_leaves();
  1964   uint consts = num_consts(globals);
  1966   // If we are matching a constant directly, there are no leaves.
  1967   edges = ( leaves > consts ) ? leaves - consts : 0;
  1969   // !!!!!
  1970   // Special case operands that do not have a corresponding ideal node.
  1971   if( (edges == 0) && (consts == 0) ) {
  1972     if( constrained_reg_class() != NULL ) {
  1973       edges = 1;
  1974     } else {
  1975       if( _matrule
  1976           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  1977         const Form *form = globals[_matrule->_opType];
  1978         OperandForm *oper = form ? form->is_operand() : NULL;
  1979         if( oper ) {
  1980           return oper->num_edges(globals);
  1986   return edges;
  1990 // Check if this operand is usable for cisc-spilling
  1991 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  1992   const char *ideal = ideal_type(globals);
  1993   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  1994   return is_cisc_reg;
  1997 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  1998   Form::InterfaceType my_interface = interface_type(globals);
  1999   return (my_interface == memory_interface);
  2003 // node matches ideal 'Bool'
  2004 bool OperandForm::is_ideal_bool() const {
  2005   if( _matrule == NULL ) return false;
  2007   return _matrule->is_ideal_bool();
  2010 // Require user's name for an sRegX to be stackSlotX
  2011 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2012   DataType data_type = none;
  2013   if( _ident != NULL ) {
  2014     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2015     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2016     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2017     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2018     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2020   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2022   return data_type;
  2026 // Return ideal type, if there is a single ideal type for this operand
  2027 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2028   const char *type = NULL;
  2029   if (ideal_only()) type = _ident;
  2030   else if( _matrule == NULL ) {
  2031     // Check for condition code register
  2032     const char *rc_name = constrained_reg_class();
  2033     // !!!!!
  2034     if (rc_name == NULL) return NULL;
  2035     // !!!!! !!!!!
  2036     // Check constraints on result's register class
  2037     if( registers ) {
  2038       RegClass *reg_class  = registers->getRegClass(rc_name);
  2039       assert( reg_class != NULL, "Register class is not defined");
  2041       // Check for ideal type of entries in register class, all are the same type
  2042       reg_class->reset();
  2043       RegDef *reg_def = reg_class->RegDef_iter();
  2044       assert( reg_def != NULL, "No entries in register class");
  2045       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2046       // Return substring that names the register's ideal type
  2047       type = reg_def->_idealtype + 3;
  2048       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2049       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2050       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2053   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2054     // This operand matches a single type, at the top level.
  2055     // Check for ideal type
  2056     type = _matrule->_opType;
  2057     if( strcmp(type,"Bool") == 0 )
  2058       return "Bool";
  2059     // transitive lookup
  2060     const Form *frm = globals[type];
  2061     OperandForm *op = frm->is_operand();
  2062     type = op->ideal_type(globals, registers);
  2064   return type;
  2068 // If there is a single ideal type for this interface field, return it.
  2069 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2070                                               const char *field) const {
  2071   const char  *ideal_type = NULL;
  2072   const char  *value      = NULL;
  2074   // Check if "field" is valid for this operand's interface
  2075   if ( ! is_interface_field(field, value) )   return ideal_type;
  2077   // !!!!! !!!!! !!!!!
  2078   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2080   // Else, lookup type of field's replacement variable
  2082   return ideal_type;
  2086 RegClass* OperandForm::get_RegClass() const {
  2087   if (_interface && !_interface->is_RegInterface()) return NULL;
  2088   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2092 bool OperandForm::is_bound_register() const {
  2093   RegClass *reg_class  = get_RegClass();
  2094   if (reg_class == NULL) return false;
  2096   const char * name = ideal_type(globalAD->globalNames());
  2097   if (name == NULL) return false;
  2099   int size = 0;
  2100   if (strcmp(name,"RegFlags")==0) size =  1;
  2101   if (strcmp(name,"RegI")==0) size =  1;
  2102   if (strcmp(name,"RegF")==0) size =  1;
  2103   if (strcmp(name,"RegD")==0) size =  2;
  2104   if (strcmp(name,"RegL")==0) size =  2;
  2105   if (strcmp(name,"RegN")==0) size =  1;
  2106   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2107   if (size == 0) return false;
  2108   return size == reg_class->size();
  2112 // Check if this is a valid field for this operand,
  2113 // Return 'true' if valid, and set the value to the string the user provided.
  2114 bool  OperandForm::is_interface_field(const char *field,
  2115                                       const char * &value) const {
  2116   return false;
  2120 // Return register class name if a constraint specifies the register class.
  2121 const char *OperandForm::constrained_reg_class() const {
  2122   const char *reg_class  = NULL;
  2123   if ( _constraint ) {
  2124     // !!!!!
  2125     Constraint *constraint = _constraint;
  2126     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2127       reg_class = _constraint->_arg;
  2131   return reg_class;
  2135 // Return the register class associated with 'leaf'.
  2136 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2137   const char *reg_class = NULL; // "RegMask::Empty";
  2139   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2140     reg_class = constrained_reg_class();
  2141     return reg_class;
  2143   const char *result   = NULL;
  2144   const char *name     = NULL;
  2145   const char *type     = NULL;
  2146   // iterate through all base operands
  2147   // until we reach the register that corresponds to "leaf"
  2148   // This function is not looking for an ideal type.  It needs the first
  2149   // level user type associated with the leaf.
  2150   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2151     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2152     OperandForm *oper = form ? form->is_operand() : NULL;
  2153     if( oper ) {
  2154       reg_class = oper->constrained_reg_class();
  2155       if( reg_class ) {
  2156         reg_class = reg_class;
  2157       } else {
  2158         // ShouldNotReachHere();
  2160     } else {
  2161       // ShouldNotReachHere();
  2164     // Increment our target leaf position if current leaf is not a candidate.
  2165     if( reg_class == NULL)    ++leaf;
  2166     // Exit the loop with the value of reg_class when at the correct index
  2167     if( idx == leaf )         break;
  2168     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2170   return reg_class;
  2174 // Recursive call to construct list of top-level operands.
  2175 // Implementation does not modify state of internal structures
  2176 void OperandForm::build_components() {
  2177   if (_matrule)  _matrule->append_components(_localNames, _components);
  2179   // Add parameters that "do not appear in match rule".
  2180   const char *name;
  2181   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2182     OperandForm *opForm = (OperandForm*)_localNames[name];
  2184     if ( _components.operand_position(name) == -1 ) {
  2185       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2189   return;
  2192 int OperandForm::operand_position(const char *name, int usedef) {
  2193   return _components.operand_position(name, usedef);
  2197 // Return zero-based position in component list, only counting constants;
  2198 // Return -1 if not in list.
  2199 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2200   // Iterate through components and count constants preceding 'constant'
  2201   int position = 0;
  2202   Component *comp;
  2203   _components.reset();
  2204   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2205     // Special case for operands that take a single user-defined operand
  2206     // Skip the initial definition in the component list.
  2207     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2209     const char *type = comp->_type;
  2210     // Lookup operand form for replacement variable's type
  2211     const Form *form = globals[type];
  2212     assert( form != NULL, "Component's type not found");
  2213     OperandForm *oper = form ? form->is_operand() : NULL;
  2214     if( oper ) {
  2215       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2216         ++position;
  2221   // Check for being passed a component that was not in the list
  2222   if( comp != last )  position = -1;
  2224   return position;
  2226 // Provide position of constant by "name"
  2227 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2228   const Component *comp = _components.search(name);
  2229   int idx = constant_position( globals, comp );
  2231   return idx;
  2235 // Return zero-based position in component list, only counting constants;
  2236 // Return -1 if not in list.
  2237 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2238   // Iterate through components and count registers preceding 'last'
  2239   uint  position = 0;
  2240   Component *comp;
  2241   _components.reset();
  2242   while( (comp = _components.iter()) != NULL
  2243          && (strcmp(comp->_name,reg_name) != 0) ) {
  2244     // Special case for operands that take a single user-defined operand
  2245     // Skip the initial definition in the component list.
  2246     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2248     const char *type = comp->_type;
  2249     // Lookup operand form for component's type
  2250     const Form *form = globals[type];
  2251     assert( form != NULL, "Component's type not found");
  2252     OperandForm *oper = form ? form->is_operand() : NULL;
  2253     if( oper ) {
  2254       if( oper->_matrule->is_base_register(globals) ) {
  2255         ++position;
  2260   return position;
  2264 const char *OperandForm::reduce_result()  const {
  2265   return _ident;
  2267 // Return the name of the operand on the right hand side of the binary match
  2268 // Return NULL if there is no right hand side
  2269 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2270   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2273 // Similar for left
  2274 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2275   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2279 // --------------------------- FILE *output_routines
  2280 //
  2281 // Output code for disp_is_oop, if true.
  2282 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2283   //  Check it is a memory interface with a non-user-constant disp field
  2284   if ( this->_interface == NULL ) return;
  2285   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2286   if ( mem_interface == NULL )    return;
  2287   const char   *disp  = mem_interface->_disp;
  2288   if ( *disp != '$' )             return;
  2290   // Lookup replacement variable in operand's component list
  2291   const char   *rep_var = disp + 1;
  2292   const Component *comp = this->_components.search(rep_var);
  2293   assert( comp != NULL, "Replacement variable not found in components");
  2294   // Lookup operand form for replacement variable's type
  2295   const char      *type = comp->_type;
  2296   Form            *form = (Form*)globals[type];
  2297   assert( form != NULL, "Replacement variable's type not found");
  2298   OperandForm     *op   = form->is_operand();
  2299   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2300   // Check if this is a ConP, which may require relocation
  2301   if ( op->is_base_constant(globals) == Form::idealP ) {
  2302     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2303     uint idx  = op->constant_position( globals, rep_var);
  2304     fprintf(fp,"  virtual bool disp_is_oop() const {");
  2305     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
  2306     fprintf(fp, " }\n");
  2310 // Generate code for internal and external format methods
  2311 //
  2312 // internal access to reg# node->_idx
  2313 // access to subsumed constant _c0, _c1,
  2314 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2315   Form::DataType dtype;
  2316   if (_matrule && (_matrule->is_base_register(globals) ||
  2317                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2318     // !!!!! !!!!!
  2319     fprintf(fp,    "{ char reg_str[128];\n");
  2320     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2321     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2322     fprintf(fp,"    }\n");
  2323   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2324     format_constant( fp, index, dtype );
  2325   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2326     // Special format for Stack Slot Register
  2327     fprintf(fp,    "{ char reg_str[128];\n");
  2328     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2329     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2330     fprintf(fp,"    }\n");
  2331   } else {
  2332     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2333     fflush(fp);
  2334     fprintf(stderr,"No format defined for %s\n", _ident);
  2335     dump();
  2336     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2340 // Similar to "int_format" but for cases where data is external to operand
  2341 // external access to reg# node->in(idx)->_idx,
  2342 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2343   Form::DataType dtype;
  2344   if (_matrule && (_matrule->is_base_register(globals) ||
  2345                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2346     fprintf(fp,    "{ char reg_str[128];\n");
  2347     fprintf(fp,"      ra->dump_register(node->in(idx");
  2348     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2349     fprintf(fp,                                       "),reg_str);\n");
  2350     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2351     fprintf(fp,"    }\n");
  2352   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2353     format_constant( fp, index, dtype );
  2354   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2355     // Special format for Stack Slot Register
  2356     fprintf(fp,    "{ char reg_str[128];\n");
  2357     fprintf(fp,"      ra->dump_register(node->in(idx");
  2358     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2359     fprintf(fp,                                       "),reg_str);\n");
  2360     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2361     fprintf(fp,"    }\n");
  2362   } else {
  2363     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2364     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2368 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2369   switch(const_type) {
  2370   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
  2371   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2372   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2373   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2374   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2375   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2376   default:
  2377     assert( false, "ShouldNotReachHere()");
  2381 // Return the operand form corresponding to the given index, else NULL.
  2382 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2383                                            uint      index) {
  2384   // !!!!!
  2385   // Check behavior on complex operands
  2386   uint n_consts = num_consts(globals);
  2387   if( n_consts > 0 ) {
  2388     uint i = 0;
  2389     const char *type;
  2390     Component  *comp;
  2391     _components.reset();
  2392     if ((comp = _components.iter()) == NULL) {
  2393       assert(n_consts == 1, "Bad component list detected.\n");
  2394       // Current operand is THE operand
  2395       if ( index == 0 ) {
  2396         return this;
  2398     } // end if NULL
  2399     else {
  2400       // Skip the first component, it can not be a DEF of a constant
  2401       do {
  2402         type = comp->base_type(globals);
  2403         // Check that "type" is a 'ConI', 'ConP', ...
  2404         if ( ideal_to_const_type(type) != Form::none ) {
  2405           // When at correct component, get corresponding Operand
  2406           if ( index == 0 ) {
  2407             return globals[comp->_type]->is_operand();
  2409           // Decrement number of constants to go
  2410           --index;
  2412       } while((comp = _components.iter()) != NULL);
  2416   // Did not find a constant for this index.
  2417   return NULL;
  2420 // If this operand has a single ideal type, return its type
  2421 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2422   const char *type_name = ideal_type(globals);
  2423   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2424                                     : Form::none;
  2425   return type;
  2428 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2429   if ( _matrule == NULL )    return Form::none;
  2431   return _matrule->is_base_constant(globals);
  2434 // "true" if this operand is a simple type that is swallowed
  2435 bool  OperandForm::swallowed(FormDict &globals) const {
  2436   Form::DataType type   = simple_type(globals);
  2437   if( type != Form::none ) {
  2438     return true;
  2441   return false;
  2444 // Output code to access the value of the index'th constant
  2445 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2446                                   uint const_index) {
  2447   OperandForm *oper = constant_operand(globals, const_index);
  2448   assert( oper, "Index exceeds number of constants in operand");
  2449   Form::DataType dtype = oper->is_base_constant(globals);
  2451   switch(dtype) {
  2452   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2453   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2454   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2455   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2456   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2457   default:
  2458     assert( false, "ShouldNotReachHere()");
  2463 void OperandForm::dump() {
  2464   output(stderr);
  2467 void OperandForm::output(FILE *fp) {
  2468   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2469   if (_matrule)    _matrule->dump();
  2470   if (_interface)  _interface->dump();
  2471   if (_attribs)    _attribs->dump();
  2472   if (_predicate)  _predicate->dump();
  2473   if (_constraint) _constraint->dump();
  2474   if (_construct)  _construct->dump();
  2475   if (_format)     _format->dump();
  2478 //------------------------------Constraint-------------------------------------
  2479 Constraint::Constraint(const char *func, const char *arg)
  2480   : _func(func), _arg(arg) {
  2482 Constraint::~Constraint() { /* not owner of char* */
  2485 bool Constraint::stack_slots_only() const {
  2486   return strcmp(_func, "ALLOC_IN_RC") == 0
  2487       && strcmp(_arg,  "stack_slots") == 0;
  2490 void Constraint::dump() {
  2491   output(stderr);
  2494 void Constraint::output(FILE *fp) {           // Write info to output files
  2495   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2496   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2499 //------------------------------Predicate--------------------------------------
  2500 Predicate::Predicate(char *pr)
  2501   : _pred(pr) {
  2503 Predicate::~Predicate() {
  2506 void Predicate::dump() {
  2507   output(stderr);
  2510 void Predicate::output(FILE *fp) {
  2511   fprintf(fp,"Predicate");  // Write to output files
  2513 //------------------------------Interface--------------------------------------
  2514 Interface::Interface(const char *name) : _name(name) {
  2516 Interface::~Interface() {
  2519 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2520   Interface *thsi = (Interface*)this;
  2521   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2522   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2523   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2524   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2526   return Form::no_interface;
  2529 RegInterface   *Interface::is_RegInterface() {
  2530   if ( strcmp(_name,"REG_INTER") != 0 )
  2531     return NULL;
  2532   return (RegInterface*)this;
  2534 MemInterface   *Interface::is_MemInterface() {
  2535   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2536   return (MemInterface*)this;
  2538 ConstInterface *Interface::is_ConstInterface() {
  2539   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2540   return (ConstInterface*)this;
  2542 CondInterface  *Interface::is_CondInterface() {
  2543   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2544   return (CondInterface*)this;
  2548 void Interface::dump() {
  2549   output(stderr);
  2552 // Write info to output files
  2553 void Interface::output(FILE *fp) {
  2554   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2557 //------------------------------RegInterface-----------------------------------
  2558 RegInterface::RegInterface() : Interface("REG_INTER") {
  2560 RegInterface::~RegInterface() {
  2563 void RegInterface::dump() {
  2564   output(stderr);
  2567 // Write info to output files
  2568 void RegInterface::output(FILE *fp) {
  2569   Interface::output(fp);
  2572 //------------------------------ConstInterface---------------------------------
  2573 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2575 ConstInterface::~ConstInterface() {
  2578 void ConstInterface::dump() {
  2579   output(stderr);
  2582 // Write info to output files
  2583 void ConstInterface::output(FILE *fp) {
  2584   Interface::output(fp);
  2587 //------------------------------MemInterface-----------------------------------
  2588 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2589   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2591 MemInterface::~MemInterface() {
  2592   // not owner of any character arrays
  2595 void MemInterface::dump() {
  2596   output(stderr);
  2599 // Write info to output files
  2600 void MemInterface::output(FILE *fp) {
  2601   Interface::output(fp);
  2602   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2603   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2604   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2605   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2606   // fprintf(fp,"\n");
  2609 //------------------------------CondInterface----------------------------------
  2610 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2611                              const char* not_equal,     const char* not_equal_format,
  2612                              const char* less,          const char* less_format,
  2613                              const char* greater_equal, const char* greater_equal_format,
  2614                              const char* less_equal,    const char* less_equal_format,
  2615                              const char* greater,       const char* greater_format)
  2616   : Interface("COND_INTER"),
  2617     _equal(equal),                 _equal_format(equal_format),
  2618     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2619     _less(less),                   _less_format(less_format),
  2620     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2621     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2622     _greater(greater),             _greater_format(greater_format) {
  2624 CondInterface::~CondInterface() {
  2625   // not owner of any character arrays
  2628 void CondInterface::dump() {
  2629   output(stderr);
  2632 // Write info to output files
  2633 void CondInterface::output(FILE *fp) {
  2634   Interface::output(fp);
  2635   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
  2636   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
  2637   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
  2638   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
  2639   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
  2640   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
  2641   // fprintf(fp,"\n");
  2644 //------------------------------ConstructRule----------------------------------
  2645 ConstructRule::ConstructRule(char *cnstr)
  2646   : _construct(cnstr) {
  2648 ConstructRule::~ConstructRule() {
  2651 void ConstructRule::dump() {
  2652   output(stderr);
  2655 void ConstructRule::output(FILE *fp) {
  2656   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2660 //==============================Shared Forms===================================
  2661 //------------------------------AttributeForm----------------------------------
  2662 int         AttributeForm::_insId   = 0;           // start counter at 0
  2663 int         AttributeForm::_opId    = 0;           // start counter at 0
  2664 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2665 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
  2666 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2668 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2669   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2670     if (type==OP_ATTR) {
  2671       id = ++_opId;
  2673     else if (type==INS_ATTR) {
  2674       id = ++_insId;
  2676     else assert( false,"");
  2678 AttributeForm::~AttributeForm() {
  2681 // Dynamic type check
  2682 AttributeForm *AttributeForm::is_attribute() const {
  2683   return (AttributeForm*)this;
  2687 // inlined  // int  AttributeForm::type() { return id;}
  2689 void AttributeForm::dump() {
  2690   output(stderr);
  2693 void AttributeForm::output(FILE *fp) {
  2694   if( _attrname && _attrdef ) {
  2695     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2696             _attrname, _attrdef);
  2698   else {
  2699     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2700             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2704 //------------------------------Component--------------------------------------
  2705 Component::Component(const char *name, const char *type, int usedef)
  2706   : _name(name), _type(type), _usedef(usedef) {
  2707     _ftype = Form::COMP;
  2709 Component::~Component() {
  2712 // True if this component is equal to the parameter.
  2713 bool Component::is(int use_def_kill_enum) const {
  2714   return (_usedef == use_def_kill_enum ? true : false);
  2716 // True if this component is used/def'd/kill'd as the parameter suggests.
  2717 bool Component::isa(int use_def_kill_enum) const {
  2718   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2721 // Extend this component with additional use/def/kill behavior
  2722 int Component::promote_use_def_info(int new_use_def) {
  2723   _usedef |= new_use_def;
  2725   return _usedef;
  2728 // Check the base type of this component, if it has one
  2729 const char *Component::base_type(FormDict &globals) {
  2730   const Form *frm = globals[_type];
  2731   if (frm == NULL) return NULL;
  2732   OperandForm *op = frm->is_operand();
  2733   if (op == NULL) return NULL;
  2734   if (op->ideal_only()) return op->_ident;
  2735   return (char *)op->ideal_type(globals);
  2738 void Component::dump() {
  2739   output(stderr);
  2742 void Component::output(FILE *fp) {
  2743   fprintf(fp,"Component:");  // Write to output files
  2744   fprintf(fp, "  name = %s", _name);
  2745   fprintf(fp, ", type = %s", _type);
  2746   const char * usedef = "Undefined Use/Def info";
  2747   switch (_usedef) {
  2748     case USE:      usedef = "USE";      break;
  2749     case USE_DEF:  usedef = "USE_DEF";  break;
  2750     case USE_KILL: usedef = "USE_KILL"; break;
  2751     case KILL:     usedef = "KILL";     break;
  2752     case TEMP:     usedef = "TEMP";     break;
  2753     case DEF:      usedef = "DEF";      break;
  2754     default: assert(false, "unknown effect");
  2756   fprintf(fp, ", use/def = %s\n", usedef);
  2760 //------------------------------ComponentList---------------------------------
  2761 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2763 ComponentList::~ComponentList() {
  2764   // // This list may not own its elements if copied via assignment
  2765   // Component *component;
  2766   // for (reset(); (component = iter()) != NULL;) {
  2767   //   delete component;
  2768   // }
  2771 void   ComponentList::insert(Component *component, bool mflag) {
  2772   NameList::addName((char *)component);
  2773   if(mflag) _matchcnt++;
  2775 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2776                              bool mflag) {
  2777   Component * component = new Component(name, opType, usedef);
  2778   insert(component, mflag);
  2780 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2781 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2782 Component *ComponentList::match_iter() {
  2783   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2784   return NULL;
  2786 Component *ComponentList::post_match_iter() {
  2787   Component *comp = iter();
  2788   // At end of list?
  2789   if ( comp == NULL ) {
  2790     return comp;
  2792   // In post-match components?
  2793   if (_iter > match_count()-1) {
  2794     return comp;
  2797   return post_match_iter();
  2800 void       ComponentList::reset()   { NameList::reset(); }
  2801 int        ComponentList::count()   { return NameList::count(); }
  2803 Component *ComponentList::operator[](int position) {
  2804   // Shortcut complete iteration if there are not enough entries
  2805   if (position >= count()) return NULL;
  2807   int        index     = 0;
  2808   Component *component = NULL;
  2809   for (reset(); (component = iter()) != NULL;) {
  2810     if (index == position) {
  2811       return component;
  2813     ++index;
  2816   return NULL;
  2819 const Component *ComponentList::search(const char *name) {
  2820   PreserveIter pi(this);
  2821   reset();
  2822   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2823     if( strcmp(comp->_name,name) == 0 ) return comp;
  2826   return NULL;
  2829 // Return number of USEs + number of DEFs
  2830 // When there are no components, or the first component is a USE,
  2831 // then we add '1' to hold a space for the 'result' operand.
  2832 int ComponentList::num_operands() {
  2833   PreserveIter pi(this);
  2834   uint       count = 1;           // result operand
  2835   uint       position = 0;
  2837   Component *component  = NULL;
  2838   for( reset(); (component = iter()) != NULL; ++position ) {
  2839     if( component->isa(Component::USE) ||
  2840         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2841       ++count;
  2845   return count;
  2848 // Return zero-based position in list;  -1 if not in list.
  2849 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2850 int ComponentList::operand_position(const char *name, int usedef) {
  2851   PreserveIter pi(this);
  2852   int position = 0;
  2853   int num_opnds = num_operands();
  2854   Component *component;
  2855   Component* preceding_non_use = NULL;
  2856   Component* first_def = NULL;
  2857   for (reset(); (component = iter()) != NULL; ++position) {
  2858     // When the first component is not a DEF,
  2859     // leave space for the result operand!
  2860     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2861       ++position;
  2862       ++num_opnds;
  2864     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  2865       // When the first entry in the component list is a DEF and a USE
  2866       // Treat them as being separate, a DEF first, then a USE
  2867       if( position==0
  2868           && usedef==Component::USE && component->isa(Component::DEF) ) {
  2869         assert(position+1 < num_opnds, "advertised index in bounds");
  2870         return position+1;
  2871       } else {
  2872         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  2873           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
  2875         if( position >= num_opnds ) {
  2876           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
  2878         assert(position < num_opnds, "advertised index in bounds");
  2879         return position;
  2882     if( component->isa(Component::DEF)
  2883         && component->isa(Component::USE) ) {
  2884       ++position;
  2885       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2887     if( component->isa(Component::DEF) && !first_def ) {
  2888       first_def = component;
  2890     if( !component->isa(Component::USE) && component != first_def ) {
  2891       preceding_non_use = component;
  2892     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  2893       preceding_non_use = NULL;
  2896   return Not_in_list;
  2899 // Find position for this name, regardless of use/def information
  2900 int ComponentList::operand_position(const char *name) {
  2901   PreserveIter pi(this);
  2902   int position = 0;
  2903   Component *component;
  2904   for (reset(); (component = iter()) != NULL; ++position) {
  2905     // When the first component is not a DEF,
  2906     // leave space for the result operand!
  2907     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2908       ++position;
  2910     if (strcmp(name, component->_name)==0) {
  2911       return position;
  2913     if( component->isa(Component::DEF)
  2914         && component->isa(Component::USE) ) {
  2915       ++position;
  2916       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2919   return Not_in_list;
  2922 int ComponentList::operand_position_format(const char *name) {
  2923   PreserveIter pi(this);
  2924   int  first_position = operand_position(name);
  2925   int  use_position   = operand_position(name, Component::USE);
  2927   return ((first_position < use_position) ? use_position : first_position);
  2930 int ComponentList::label_position() {
  2931   PreserveIter pi(this);
  2932   int position = 0;
  2933   reset();
  2934   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2935     // When the first component is not a DEF,
  2936     // leave space for the result operand!
  2937     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2938       ++position;
  2940     if (strcmp(comp->_type, "label")==0) {
  2941       return position;
  2943     if( comp->isa(Component::DEF)
  2944         && comp->isa(Component::USE) ) {
  2945       ++position;
  2946       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2950   return -1;
  2953 int ComponentList::method_position() {
  2954   PreserveIter pi(this);
  2955   int position = 0;
  2956   reset();
  2957   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2958     // When the first component is not a DEF,
  2959     // leave space for the result operand!
  2960     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2961       ++position;
  2963     if (strcmp(comp->_type, "method")==0) {
  2964       return position;
  2966     if( comp->isa(Component::DEF)
  2967         && comp->isa(Component::USE) ) {
  2968       ++position;
  2969       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2973   return -1;
  2976 void ComponentList::dump() { output(stderr); }
  2978 void ComponentList::output(FILE *fp) {
  2979   PreserveIter pi(this);
  2980   fprintf(fp, "\n");
  2981   Component *component;
  2982   for (reset(); (component = iter()) != NULL;) {
  2983     component->output(fp);
  2985   fprintf(fp, "\n");
  2988 //------------------------------MatchNode--------------------------------------
  2989 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  2990                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  2991   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  2992     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  2993     _commutative_id(0) {
  2994   _numleaves = (lChild ? lChild->_numleaves : 0)
  2995                + (rChild ? rChild->_numleaves : 0);
  2998 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  2999   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3000     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3001     _internalop(0), _numleaves(mnode._numleaves),
  3002     _commutative_id(mnode._commutative_id) {
  3005 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3006   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3007     _opType(mnode._opType),
  3008     _internalop(0), _numleaves(mnode._numleaves),
  3009     _commutative_id(mnode._commutative_id) {
  3010   if (mnode._lChild) {
  3011     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3012   } else {
  3013     _lChild = NULL;
  3015   if (mnode._rChild) {
  3016     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3017   } else {
  3018     _rChild = NULL;
  3022 MatchNode::~MatchNode() {
  3023   // // This node may not own its children if copied via assignment
  3024   // if( _lChild ) delete _lChild;
  3025   // if( _rChild ) delete _rChild;
  3028 bool  MatchNode::find_type(const char *type, int &position) const {
  3029   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3030   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3032   if (strcmp(type,_opType)==0)  {
  3033     return true;
  3034   } else {
  3035     ++position;
  3037   return false;
  3040 // Recursive call collecting info on top-level operands, not transitive.
  3041 // Implementation does not modify state of internal structures.
  3042 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3043                                   bool def_flag) const {
  3044   int usedef = def_flag ? Component::DEF : Component::USE;
  3045   FormDict &globals = _AD.globalNames();
  3047   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3048   // Base case
  3049   if (_lChild==NULL && _rChild==NULL) {
  3050     // If _opType is not an operation, do not build a component for it #####
  3051     const Form *f = globals[_opType];
  3052     if( f != NULL ) {
  3053       // Add non-ideals that are operands, operand-classes,
  3054       if( ! f->ideal_only()
  3055           && (f->is_opclass() || f->is_operand()) ) {
  3056         components.insert(_name, _opType, usedef, true);
  3059     return;
  3061   // Promote results of "Set" to DEF
  3062   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3063   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3064   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3065   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3068 // Find the n'th base-operand in the match node,
  3069 // recursively investigates match rules of user-defined operands.
  3070 //
  3071 // Implementation does not modify state of internal structures since they
  3072 // can be shared.
  3073 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3074                              const char * &result, const char * &name,
  3075                              const char * &opType) const {
  3076   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3077   // Base case
  3078   if (_lChild==NULL && _rChild==NULL) {
  3079     // Check for special case: "Universe", "label"
  3080     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3081       if (position == 0) {
  3082         result = _result;
  3083         name   = _name;
  3084         opType = _opType;
  3085         return 1;
  3086       } else {
  3087         -- position;
  3088         return 0;
  3092     const Form *form = globals[_opType];
  3093     MatchNode *matchNode = NULL;
  3094     // Check for user-defined type
  3095     if (form) {
  3096       // User operand or instruction?
  3097       OperandForm  *opForm = form->is_operand();
  3098       InstructForm *inForm = form->is_instruction();
  3099       if ( opForm ) {
  3100         matchNode = (MatchNode*)opForm->_matrule;
  3101       } else if ( inForm ) {
  3102         matchNode = (MatchNode*)inForm->_matrule;
  3105     // if this is user-defined, recurse on match rule
  3106     // User-defined operand and instruction forms have a match-rule.
  3107     if (matchNode) {
  3108       return (matchNode->base_operand(position,globals,result,name,opType));
  3109     } else {
  3110       // Either not a form, or a system-defined form (no match rule).
  3111       if (position==0) {
  3112         result = _result;
  3113         name   = _name;
  3114         opType = _opType;
  3115         return 1;
  3116       } else {
  3117         --position;
  3118         return 0;
  3122   } else {
  3123     // Examine the left child and right child as well
  3124     if (_lChild) {
  3125       if (_lChild->base_operand(position, globals, result, name, opType))
  3126         return 1;
  3129     if (_rChild) {
  3130       if (_rChild->base_operand(position, globals, result, name, opType))
  3131         return 1;
  3135   return 0;
  3138 // Recursive call on all operands' match rules in my match rule.
  3139 uint  MatchNode::num_consts(FormDict &globals) const {
  3140   uint        index      = 0;
  3141   uint        num_consts = 0;
  3142   const char *result;
  3143   const char *name;
  3144   const char *opType;
  3146   for (uint position = index;
  3147        base_operand(position,globals,result,name,opType); position = index) {
  3148     ++index;
  3149     if( ideal_to_const_type(opType) )        num_consts++;
  3152   return num_consts;
  3155 // Recursive call on all operands' match rules in my match rule.
  3156 // Constants in match rule subtree with specified type
  3157 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3158   uint        index      = 0;
  3159   uint        num_consts = 0;
  3160   const char *result;
  3161   const char *name;
  3162   const char *opType;
  3164   for (uint position = index;
  3165        base_operand(position,globals,result,name,opType); position = index) {
  3166     ++index;
  3167     if( ideal_to_const_type(opType) == type ) num_consts++;
  3170   return num_consts;
  3173 // Recursive call on all operands' match rules in my match rule.
  3174 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3175   return  num_consts( globals, Form::idealP );
  3178 bool  MatchNode::sets_result() const {
  3179   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3182 const char *MatchNode::reduce_right(FormDict &globals) const {
  3183   // If there is no right reduction, return NULL.
  3184   const char      *rightStr    = NULL;
  3186   // If we are a "Set", start from the right child.
  3187   const MatchNode *const mnode = sets_result() ?
  3188     (const MatchNode *const)this->_rChild :
  3189     (const MatchNode *const)this;
  3191   // If our right child exists, it is the right reduction
  3192   if ( mnode->_rChild ) {
  3193     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3194       : mnode->_rChild->_opType;
  3196   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3197   return rightStr;
  3200 const char *MatchNode::reduce_left(FormDict &globals) const {
  3201   // If there is no left reduction, return NULL.
  3202   const char  *leftStr  = NULL;
  3204   // If we are a "Set", start from the right child.
  3205   const MatchNode *const mnode = sets_result() ?
  3206     (const MatchNode *const)this->_rChild :
  3207     (const MatchNode *const)this;
  3209   // If our left child exists, it is the left reduction
  3210   if ( mnode->_lChild ) {
  3211     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3212       : mnode->_lChild->_opType;
  3213   } else {
  3214     // May be simple chain rule: (Set dst operand_form_source)
  3215     if ( sets_result() ) {
  3216       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3217       if( oper ) {
  3218         leftStr = mnode->_opType;
  3222   return leftStr;
  3225 //------------------------------count_instr_names------------------------------
  3226 // Count occurrences of operands names in the leaves of the instruction
  3227 // match rule.
  3228 void MatchNode::count_instr_names( Dict &names ) {
  3229   if( !this ) return;
  3230   if( _lChild ) _lChild->count_instr_names(names);
  3231   if( _rChild ) _rChild->count_instr_names(names);
  3232   if( !_lChild && !_rChild ) {
  3233     uintptr_t cnt = (uintptr_t)names[_name];
  3234     cnt++;                      // One more name found
  3235     names.Insert(_name,(void*)cnt);
  3239 //------------------------------build_instr_pred-------------------------------
  3240 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3241 // can skip some leading instances of 'name'.
  3242 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3243   if( _lChild ) {
  3244     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3245     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3246     if( cnt < 0 ) return cnt;   // Found it, all done
  3248   if( _rChild ) {
  3249     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3250     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3251     if( cnt < 0 ) return cnt;   // Found it, all done
  3253   if( !_lChild && !_rChild ) {  // Found a leaf
  3254     // Wrong name?  Give up...
  3255     if( strcmp(name,_name) ) return cnt;
  3256     if( !cnt ) strcpy(buf,"_leaf");
  3257     return cnt-1;
  3259   return cnt;
  3263 //------------------------------build_internalop-------------------------------
  3264 // Build string representation of subtree
  3265 void MatchNode::build_internalop( ) {
  3266   char *iop, *subtree;
  3267   const char *lstr, *rstr;
  3268   // Build string representation of subtree
  3269   // Operation lchildType rchildType
  3270   int len = (int)strlen(_opType) + 4;
  3271   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3272                        _lChild->_internalop : _lChild->_opType) : "";
  3273   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3274                        _rChild->_internalop : _rChild->_opType) : "";
  3275   len += (int)strlen(lstr) + (int)strlen(rstr);
  3276   subtree = (char *)malloc(len);
  3277   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3278   // Hash the subtree string in _internalOps; if a name exists, use it
  3279   iop = (char *)_AD._internalOps[subtree];
  3280   // Else create a unique name, and add it to the hash table
  3281   if (iop == NULL) {
  3282     iop = subtree;
  3283     _AD._internalOps.Insert(subtree, iop);
  3284     _AD._internalOpNames.addName(iop);
  3285     _AD._internalMatch.Insert(iop, this);
  3287   // Add the internal operand name to the MatchNode
  3288   _internalop = iop;
  3289   _result = iop;
  3293 void MatchNode::dump() {
  3294   output(stderr);
  3297 void MatchNode::output(FILE *fp) {
  3298   if (_lChild==0 && _rChild==0) {
  3299     fprintf(fp," %s",_name);    // operand
  3301   else {
  3302     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3303     if(_lChild) _lChild->output(fp); //               left operand
  3304     if(_rChild) _rChild->output(fp); //                    right operand
  3305     fprintf(fp,")");                 //                                 ")"
  3309 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3310   static const char *needs_ideal_memory_list[] = {
  3311     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
  3312     "StoreB","StoreC","Store" ,"StoreFP",
  3313     "LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3314     "LoadB" ,"LoadUS" ,"LoadS" ,"Load"   ,
  3315     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
  3316     "Store8B","Store4B","Store8C","Store4C","Store2C",
  3317     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
  3318     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
  3319     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3320     "LoadPLocked", "LoadLLocked",
  3321     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3322     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3323     "StoreCM",
  3324     "ClearArray"
  3325   };
  3326   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3327   if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
  3328     return 1;
  3329   if( _lChild ) {
  3330     const char *opType = _lChild->_opType;
  3331     for( int i=0; i<cnt; i++ )
  3332       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3333         return 1;
  3334     if( _lChild->needs_ideal_memory_edge(globals) )
  3335       return 1;
  3337   if( _rChild ) {
  3338     const char *opType = _rChild->_opType;
  3339     for( int i=0; i<cnt; i++ )
  3340       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3341         return 1;
  3342     if( _rChild->needs_ideal_memory_edge(globals) )
  3343       return 1;
  3346   return 0;
  3349 // TRUE if defines a derived oop, and so needs a base oop edge present
  3350 // post-matching.
  3351 int MatchNode::needs_base_oop_edge() const {
  3352   if( !strcmp(_opType,"AddP") ) return 1;
  3353   if( strcmp(_opType,"Set") ) return 0;
  3354   return !strcmp(_rChild->_opType,"AddP");
  3357 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3358   if( is_simple_chain_rule(globals) ) {
  3359     const char *src = _matrule->_rChild->_opType;
  3360     OperandForm *src_op = globals[src]->is_operand();
  3361     assert( src_op, "Not operand class of chain rule" );
  3362     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3363   }                             // Else check instruction
  3365   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3369 //-------------------------cisc spilling methods-------------------------------
  3370 // helper routines and methods for detecting cisc-spilling instructions
  3371 //-------------------------cisc_spill_merge------------------------------------
  3372 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3373   int cisc_spillable  = Maybe_cisc_spillable;
  3375   // Combine results of left and right checks
  3376   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3377     // neither side is spillable, nor prevents cisc spilling
  3378     cisc_spillable = Maybe_cisc_spillable;
  3380   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3381     // right side is spillable
  3382     cisc_spillable = right_spillable;
  3384   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3385     // left side is spillable
  3386     cisc_spillable = left_spillable;
  3388   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3389     // left or right prevents cisc spilling this instruction
  3390     cisc_spillable = Not_cisc_spillable;
  3392   else {
  3393     // Only allow one to spill
  3394     cisc_spillable = Not_cisc_spillable;
  3397   return cisc_spillable;
  3400 //-------------------------root_ops_match--------------------------------------
  3401 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3402   // Base Case: check that the current operands/operations match
  3403   assert( op1, "Must have op's name");
  3404   assert( op2, "Must have op's name");
  3405   const Form *form1 = globals[op1];
  3406   const Form *form2 = globals[op2];
  3408   return (form1 == form2);
  3411 //-------------------------cisc_spill_match_node-------------------------------
  3412 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3413 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3414   int cisc_spillable  = Maybe_cisc_spillable;
  3415   int left_spillable  = Maybe_cisc_spillable;
  3416   int right_spillable = Maybe_cisc_spillable;
  3418   // Check that each has same number of operands at this level
  3419   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3420     return Not_cisc_spillable;
  3422   // Base Case: check that the current operands/operations match
  3423   // or are CISC spillable
  3424   assert( _opType, "Must have _opType");
  3425   assert( mRule2->_opType, "Must have _opType");
  3426   const Form *form  = globals[_opType];
  3427   const Form *form2 = globals[mRule2->_opType];
  3428   if( form == form2 ) {
  3429     cisc_spillable = Maybe_cisc_spillable;
  3430   } else {
  3431     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3432     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3433     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3434     // Detect reg vs (loadX memory)
  3435     if( form->is_cisc_reg(globals)
  3436         && form2_inst
  3437         && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
  3438         && (name_left != NULL)       // NOT (load)
  3439         && (name_right == NULL) ) {  // NOT (load memory foo)
  3440       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3441       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3442         cisc_spillable = Is_cisc_spillable;
  3443         operand        = _name;
  3444         reg_type       = _result;
  3445         return Is_cisc_spillable;
  3446       } else {
  3447         cisc_spillable = Not_cisc_spillable;
  3450     // Detect reg vs memory
  3451     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3452       cisc_spillable = Is_cisc_spillable;
  3453       operand        = _name;
  3454       reg_type       = _result;
  3455       return Is_cisc_spillable;
  3456     } else {
  3457       cisc_spillable = Not_cisc_spillable;
  3461   // If cisc is still possible, check rest of tree
  3462   if( cisc_spillable == Maybe_cisc_spillable ) {
  3463     // Check that each has same number of operands at this level
  3464     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3466     // Check left operands
  3467     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3468       left_spillable = Maybe_cisc_spillable;
  3469     } else {
  3470       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3473     // Check right operands
  3474     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3475       right_spillable =  Maybe_cisc_spillable;
  3476     } else {
  3477       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3480     // Combine results of left and right checks
  3481     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3484   return cisc_spillable;
  3487 //---------------------------cisc_spill_match_rule------------------------------
  3488 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3489 // This method handles the root of Match tree,
  3490 // general recursive checks done in MatchNode
  3491 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3492                                            MatchRule* mRule2, const char* &operand,
  3493                                            const char* &reg_type) {
  3494   int cisc_spillable  = Maybe_cisc_spillable;
  3495   int left_spillable  = Maybe_cisc_spillable;
  3496   int right_spillable = Maybe_cisc_spillable;
  3498   // Check that each sets a result
  3499   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3500   // Check that each has same number of operands at this level
  3501   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3503   // Check left operands: at root, must be target of 'Set'
  3504   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3505     left_spillable = Not_cisc_spillable;
  3506   } else {
  3507     // Do not support cisc-spilling instruction's target location
  3508     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3509       left_spillable = Maybe_cisc_spillable;
  3510     } else {
  3511       left_spillable = Not_cisc_spillable;
  3515   // Check right operands: recursive walk to identify reg->mem operand
  3516   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3517     right_spillable =  Maybe_cisc_spillable;
  3518   } else {
  3519     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3522   // Combine results of left and right checks
  3523   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3525   return cisc_spillable;
  3528 //----------------------------- equivalent ------------------------------------
  3529 // Recursively check to see if two match rules are equivalent.
  3530 // This rule handles the root.
  3531 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3532   // Check that each sets a result
  3533   if (sets_result() != mRule2->sets_result()) {
  3534     return false;
  3537   // Check that the current operands/operations match
  3538   assert( _opType, "Must have _opType");
  3539   assert( mRule2->_opType, "Must have _opType");
  3540   const Form *form  = globals[_opType];
  3541   const Form *form2 = globals[mRule2->_opType];
  3542   if( form != form2 ) {
  3543     return false;
  3546   if (_lChild ) {
  3547     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3548       return false;
  3549   } else if (mRule2->_lChild) {
  3550     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3553   if (_rChild ) {
  3554     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3555       return false;
  3556   } else if (mRule2->_rChild) {
  3557     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3560   // We've made it through the gauntlet.
  3561   return true;
  3564 //----------------------------- equivalent ------------------------------------
  3565 // Recursively check to see if two match rules are equivalent.
  3566 // This rule handles the operands.
  3567 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3568   if( !mNode2 )
  3569     return false;
  3571   // Check that the current operands/operations match
  3572   assert( _opType, "Must have _opType");
  3573   assert( mNode2->_opType, "Must have _opType");
  3574   const Form *form  = globals[_opType];
  3575   const Form *form2 = globals[mNode2->_opType];
  3576   return (form == form2);
  3579 //-------------------------- has_commutative_op -------------------------------
  3580 // Recursively check for commutative operations with subtree operands
  3581 // which could be swapped.
  3582 void MatchNode::count_commutative_op(int& count) {
  3583   static const char *commut_op_list[] = {
  3584     "AddI","AddL","AddF","AddD",
  3585     "AndI","AndL",
  3586     "MaxI","MinI",
  3587     "MulI","MulL","MulF","MulD",
  3588     "OrI" ,"OrL" ,
  3589     "XorI","XorL"
  3590   };
  3591   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3593   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3594     // Don't swap if right operand is an immediate constant.
  3595     bool is_const = false;
  3596     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3597       FormDict &globals = _AD.globalNames();
  3598       const Form *form = globals[_rChild->_opType];
  3599       if ( form ) {
  3600         OperandForm  *oper = form->is_operand();
  3601         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3602           is_const = true;
  3605     if( !is_const ) {
  3606       for( int i=0; i<cnt; i++ ) {
  3607         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3608           count++;
  3609           _commutative_id = count; // id should be > 0
  3610           break;
  3615   if( _lChild )
  3616     _lChild->count_commutative_op(count);
  3617   if( _rChild )
  3618     _rChild->count_commutative_op(count);
  3621 //-------------------------- swap_commutative_op ------------------------------
  3622 // Recursively swap specified commutative operation with subtree operands.
  3623 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3624   if( _commutative_id == id ) { // id should be > 0
  3625     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3626             "not swappable operation");
  3627     MatchNode* tmp = _lChild;
  3628     _lChild = _rChild;
  3629     _rChild = tmp;
  3630     // Don't exit here since we need to build internalop.
  3633   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3634   if( _lChild )
  3635     _lChild->swap_commutative_op(is_set, id);
  3636   if( _rChild )
  3637     _rChild->swap_commutative_op(is_set, id);
  3639   // If not the root, reduce this subtree to an internal operand
  3640   if( !atroot && (_lChild || _rChild) ) {
  3641     build_internalop();
  3645 //-------------------------- swap_commutative_op ------------------------------
  3646 // Recursively swap specified commutative operation with subtree operands.
  3647 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3648   assert(match_rules_cnt < 100," too many match rule clones");
  3649   // Clone
  3650   MatchRule* clone = new MatchRule(_AD, this);
  3651   // Swap operands of commutative operation
  3652   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3653   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3654   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3655   clone->_result = buf;
  3657   clone->_next = this->_next;
  3658   this-> _next = clone;
  3659   if( (--count) > 0 ) {
  3660     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3661     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3665 //------------------------------MatchRule--------------------------------------
  3666 MatchRule::MatchRule(ArchDesc &ad)
  3667   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3668     _next = NULL;
  3671 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3672   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3673     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3674     _next = NULL;
  3677 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3678                      int numleaves)
  3679   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3680     _numchilds(0) {
  3681       _next = NULL;
  3682       mroot->_lChild = NULL;
  3683       mroot->_rChild = NULL;
  3684       delete mroot;
  3685       _numleaves = numleaves;
  3686       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3688 MatchRule::~MatchRule() {
  3691 // Recursive call collecting info on top-level operands, not transitive.
  3692 // Implementation does not modify state of internal structures.
  3693 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3694   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3696   MatchNode::append_components(locals, components,
  3697                                false /* not necessarily a def */);
  3700 // Recursive call on all operands' match rules in my match rule.
  3701 // Implementation does not modify state of internal structures  since they
  3702 // can be shared.
  3703 // The MatchNode that is called first treats its
  3704 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3705                              const char *&result, const char * &name,
  3706                              const char * &opType)const{
  3707   uint position = position0;
  3709   return (MatchNode::base_operand( position, globals, result, name, opType));
  3713 bool MatchRule::is_base_register(FormDict &globals) const {
  3714   uint   position = 1;
  3715   const char  *result   = NULL;
  3716   const char  *name     = NULL;
  3717   const char  *opType   = NULL;
  3718   if (!base_operand(position, globals, result, name, opType)) {
  3719     position = 0;
  3720     if( base_operand(position, globals, result, name, opType) &&
  3721         (strcmp(opType,"RegI")==0 ||
  3722          strcmp(opType,"RegP")==0 ||
  3723          strcmp(opType,"RegN")==0 ||
  3724          strcmp(opType,"RegL")==0 ||
  3725          strcmp(opType,"RegF")==0 ||
  3726          strcmp(opType,"RegD")==0 ||
  3727          strcmp(opType,"Reg" )==0) ) {
  3728       return 1;
  3731   return 0;
  3734 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3735   uint         position = 1;
  3736   const char  *result   = NULL;
  3737   const char  *name     = NULL;
  3738   const char  *opType   = NULL;
  3739   if (!base_operand(position, globals, result, name, opType)) {
  3740     position = 0;
  3741     if (base_operand(position, globals, result, name, opType)) {
  3742       return ideal_to_const_type(opType);
  3745   return Form::none;
  3748 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3750   // Check for chain rule, and do not generate a match list for it
  3751   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3752     const Form *form = globals[_opType];
  3753     // If this is ideal, then it is a base match, not a chain rule.
  3754     if ( form && form->is_operand() && (!form->ideal_only())) {
  3755       return true;
  3758   // Check for "Set" form of chain rule, and do not generate a match list
  3759   if (_rChild) {
  3760     const char *rch = _rChild->_opType;
  3761     const Form *form = globals[rch];
  3762     if ((!strcmp(_opType,"Set") &&
  3763          ((form) && form->is_operand()))) {
  3764       return true;
  3767   return false;
  3770 int MatchRule::is_ideal_copy() const {
  3771   if( _rChild ) {
  3772     const char  *opType = _rChild->_opType;
  3773 #if 1
  3774     if( strcmp(opType,"CastIP")==0 )
  3775       return 1;
  3776 #else
  3777     if( strcmp(opType,"CastII")==0 )
  3778       return 1;
  3779     // Do not treat *CastPP this way, because it
  3780     // may transfer a raw pointer to an oop.
  3781     // If the register allocator were to coalesce this
  3782     // into a single LRG, the GC maps would be incorrect.
  3783     //if( strcmp(opType,"CastPP")==0 )
  3784     //  return 1;
  3785     //if( strcmp(opType,"CheckCastPP")==0 )
  3786     //  return 1;
  3787     //
  3788     // Do not treat CastX2P or CastP2X this way, because
  3789     // raw pointers and int types are treated differently
  3790     // when saving local & stack info for safepoints in
  3791     // Output().
  3792     //if( strcmp(opType,"CastX2P")==0 )
  3793     //  return 1;
  3794     //if( strcmp(opType,"CastP2X")==0 )
  3795     //  return 1;
  3796 #endif
  3798   if( is_chain_rule(_AD.globalNames()) &&
  3799       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3800     return 1;
  3801   return 0;
  3805 int MatchRule::is_expensive() const {
  3806   if( _rChild ) {
  3807     const char  *opType = _rChild->_opType;
  3808     if( strcmp(opType,"AtanD")==0 ||
  3809         strcmp(opType,"CosD")==0 ||
  3810         strcmp(opType,"DivD")==0 ||
  3811         strcmp(opType,"DivF")==0 ||
  3812         strcmp(opType,"DivI")==0 ||
  3813         strcmp(opType,"ExpD")==0 ||
  3814         strcmp(opType,"LogD")==0 ||
  3815         strcmp(opType,"Log10D")==0 ||
  3816         strcmp(opType,"ModD")==0 ||
  3817         strcmp(opType,"ModF")==0 ||
  3818         strcmp(opType,"ModI")==0 ||
  3819         strcmp(opType,"PowD")==0 ||
  3820         strcmp(opType,"SinD")==0 ||
  3821         strcmp(opType,"SqrtD")==0 ||
  3822         strcmp(opType,"TanD")==0 ||
  3823         strcmp(opType,"ConvD2F")==0 ||
  3824         strcmp(opType,"ConvD2I")==0 ||
  3825         strcmp(opType,"ConvD2L")==0 ||
  3826         strcmp(opType,"ConvF2D")==0 ||
  3827         strcmp(opType,"ConvF2I")==0 ||
  3828         strcmp(opType,"ConvF2L")==0 ||
  3829         strcmp(opType,"ConvI2D")==0 ||
  3830         strcmp(opType,"ConvI2F")==0 ||
  3831         strcmp(opType,"ConvI2L")==0 ||
  3832         strcmp(opType,"ConvL2D")==0 ||
  3833         strcmp(opType,"ConvL2F")==0 ||
  3834         strcmp(opType,"ConvL2I")==0 ||
  3835         strcmp(opType,"DecodeN")==0 ||
  3836         strcmp(opType,"EncodeP")==0 ||
  3837         strcmp(opType,"RoundDouble")==0 ||
  3838         strcmp(opType,"RoundFloat")==0 ||
  3839         strcmp(opType,"ReverseBytesI")==0 ||
  3840         strcmp(opType,"ReverseBytesL")==0 ||
  3841         strcmp(opType,"Replicate16B")==0 ||
  3842         strcmp(opType,"Replicate8B")==0 ||
  3843         strcmp(opType,"Replicate4B")==0 ||
  3844         strcmp(opType,"Replicate8C")==0 ||
  3845         strcmp(opType,"Replicate4C")==0 ||
  3846         strcmp(opType,"Replicate8S")==0 ||
  3847         strcmp(opType,"Replicate4S")==0 ||
  3848         strcmp(opType,"Replicate4I")==0 ||
  3849         strcmp(opType,"Replicate2I")==0 ||
  3850         strcmp(opType,"Replicate2L")==0 ||
  3851         strcmp(opType,"Replicate4F")==0 ||
  3852         strcmp(opType,"Replicate2F")==0 ||
  3853         strcmp(opType,"Replicate2D")==0 ||
  3854         0 /* 0 to line up columns nicely */ )
  3855       return 1;
  3857   return 0;
  3860 bool MatchRule::is_ideal_unlock() const {
  3861   if( !_opType ) return false;
  3862   return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
  3866 bool MatchRule::is_ideal_call_leaf() const {
  3867   if( !_opType ) return false;
  3868   return !strcmp(_opType,"CallLeaf")     ||
  3869          !strcmp(_opType,"CallLeafNoFP");
  3873 bool MatchRule::is_ideal_if() const {
  3874   if( !_opType ) return false;
  3875   return
  3876     !strcmp(_opType,"If"            ) ||
  3877     !strcmp(_opType,"CountedLoopEnd");
  3880 bool MatchRule::is_ideal_fastlock() const {
  3881   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3882     return (strcmp(_rChild->_opType,"FastLock") == 0);
  3884   return false;
  3887 bool MatchRule::is_ideal_membar() const {
  3888   if( !_opType ) return false;
  3889   return
  3890     !strcmp(_opType,"MemBarAcquire"  ) ||
  3891     !strcmp(_opType,"MemBarRelease"  ) ||
  3892     !strcmp(_opType,"MemBarVolatile" ) ||
  3893     !strcmp(_opType,"MemBarCPUOrder" ) ;
  3896 bool MatchRule::is_ideal_loadPC() const {
  3897   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3898     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  3900   return false;
  3903 bool MatchRule::is_ideal_box() const {
  3904   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3905     return (strcmp(_rChild->_opType,"Box") == 0);
  3907   return false;
  3910 bool MatchRule::is_ideal_goto() const {
  3911   bool   ideal_goto = false;
  3913   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  3914     ideal_goto = true;
  3916   return ideal_goto;
  3919 bool MatchRule::is_ideal_jump() const {
  3920   if( _opType ) {
  3921     if( !strcmp(_opType,"Jump") )
  3922       return true;
  3924   return false;
  3927 bool MatchRule::is_ideal_bool() const {
  3928   if( _opType ) {
  3929     if( !strcmp(_opType,"Bool") )
  3930       return true;
  3932   return false;
  3936 Form::DataType MatchRule::is_ideal_load() const {
  3937   Form::DataType ideal_load = Form::none;
  3939   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3940     const char *opType = _rChild->_opType;
  3941     ideal_load = is_load_from_memory(opType);
  3944   return ideal_load;
  3948 Form::DataType MatchRule::is_ideal_store() const {
  3949   Form::DataType ideal_store = Form::none;
  3951   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3952     const char *opType = _rChild->_opType;
  3953     ideal_store = is_store_to_memory(opType);
  3956   return ideal_store;
  3960 void MatchRule::dump() {
  3961   output(stderr);
  3964 void MatchRule::output(FILE *fp) {
  3965   fprintf(fp,"MatchRule: ( %s",_name);
  3966   if (_lChild) _lChild->output(fp);
  3967   if (_rChild) _rChild->output(fp);
  3968   fprintf(fp," )\n");
  3969   fprintf(fp,"   nesting depth = %d\n", _depth);
  3970   if (_result) fprintf(fp,"   Result Type = %s", _result);
  3971   fprintf(fp,"\n");
  3974 //------------------------------Attribute--------------------------------------
  3975 Attribute::Attribute(char *id, char* val, int type)
  3976   : _ident(id), _val(val), _atype(type) {
  3978 Attribute::~Attribute() {
  3981 int Attribute::int_val(ArchDesc &ad) {
  3982   // Make sure it is an integer constant:
  3983   int result = 0;
  3984   if (!_val || !ADLParser::is_int_token(_val, result)) {
  3985     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  3986                   _ident, _val ? _val : "");
  3988   return result;
  3991 void Attribute::dump() {
  3992   output(stderr);
  3993 } // Debug printer
  3995 // Write to output files
  3996 void Attribute::output(FILE *fp) {
  3997   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4000 //------------------------------FormatRule----------------------------------
  4001 FormatRule::FormatRule(char *temp)
  4002   : _temp(temp) {
  4004 FormatRule::~FormatRule() {
  4007 void FormatRule::dump() {
  4008   output(stderr);
  4011 // Write to output files
  4012 void FormatRule::output(FILE *fp) {
  4013   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4014   fprintf(fp,"\n");

mercurial