src/os/windows/vm/perfMemory_windows.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 435
a61af66fc99e
child 1788
a2ea687fdc7c
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_perfMemory_windows.cpp.incl"
    28 #include <windows.h>
    29 #include <sys/types.h>
    30 #include <sys/stat.h>
    31 #include <errno.h>
    32 #include <lmcons.h>
    34 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
    35    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
    36    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
    37    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
    39 // Standard Memory Implementation Details
    41 // create the PerfData memory region in standard memory.
    42 //
    43 static char* create_standard_memory(size_t size) {
    45   // allocate an aligned chuck of memory
    46   char* mapAddress = os::reserve_memory(size);
    48   if (mapAddress == NULL) {
    49     return NULL;
    50   }
    52   // commit memory
    53   if (!os::commit_memory(mapAddress, size)) {
    54     if (PrintMiscellaneous && Verbose) {
    55       warning("Could not commit PerfData memory\n");
    56     }
    57     os::release_memory(mapAddress, size);
    58     return NULL;
    59   }
    61   return mapAddress;
    62 }
    64 // delete the PerfData memory region
    65 //
    66 static void delete_standard_memory(char* addr, size_t size) {
    68   // there are no persistent external resources to cleanup for standard
    69   // memory. since DestroyJavaVM does not support unloading of the JVM,
    70   // cleanup of the memory resource is not performed. The memory will be
    71   // reclaimed by the OS upon termination of the process.
    72   //
    73   return;
    75 }
    77 // save the specified memory region to the given file
    78 //
    79 static void save_memory_to_file(char* addr, size_t size) {
    81   const char* destfile = PerfMemory::get_perfdata_file_path();
    82   assert(destfile[0] != '\0', "invalid Perfdata file path");
    84   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
    85                    _S_IREAD|_S_IWRITE);
    87   if (fd == OS_ERR) {
    88     if (PrintMiscellaneous && Verbose) {
    89       warning("Could not create Perfdata save file: %s: %s\n",
    90               destfile, strerror(errno));
    91     }
    92   } else {
    93     for (size_t remaining = size; remaining > 0;) {
    95       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
    96       if (nbytes == OS_ERR) {
    97         if (PrintMiscellaneous && Verbose) {
    98           warning("Could not write Perfdata save file: %s: %s\n",
    99                   destfile, strerror(errno));
   100         }
   101         break;
   102       }
   104       remaining -= (size_t)nbytes;
   105       addr += nbytes;
   106     }
   108     int result = ::_close(fd);
   109     if (PrintMiscellaneous && Verbose) {
   110       if (result == OS_ERR) {
   111         warning("Could not close %s: %s\n", destfile, strerror(errno));
   112       }
   113     }
   114   }
   116   FREE_C_HEAP_ARRAY(char, destfile);
   117 }
   119 // Shared Memory Implementation Details
   121 // Note: the win32 shared memory implementation uses two objects to represent
   122 // the shared memory: a windows kernel based file mapping object and a backing
   123 // store file. On windows, the name space for shared memory is a kernel
   124 // based name space that is disjoint from other win32 name spaces. Since Java
   125 // is unaware of this name space, a parallel file system based name space is
   126 // maintained, which provides a common file system based shared memory name
   127 // space across the supported platforms and one that Java apps can deal with
   128 // through simple file apis.
   129 //
   130 // For performance and resource cleanup reasons, it is recommended that the
   131 // user specific directory and the backing store file be stored in either a
   132 // RAM based file system or a local disk based file system. Network based
   133 // file systems are not recommended for performance reasons. In addition,
   134 // use of SMB network based file systems may result in unsuccesful cleanup
   135 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
   136 // environement variables, as used by the GetTempPath() Win32 API (see
   137 // os::get_temp_directory() in os_win32.cpp), control the location of the
   138 // user specific directory and the shared memory backing store file.
   140 static HANDLE sharedmem_fileMapHandle = NULL;
   141 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
   142 static char*  sharedmem_fileName = NULL;
   144 // return the user specific temporary directory name.
   145 //
   146 // the caller is expected to free the allocated memory.
   147 //
   148 static char* get_user_tmp_dir(const char* user) {
   150   const char* tmpdir = os::get_temp_directory();
   151   const char* perfdir = PERFDATA_NAME;
   152   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 2;
   153   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes);
   155   // construct the path name to user specific tmp directory
   156   _snprintf(dirname, nbytes, "%s%s_%s", tmpdir, perfdir, user);
   158   return dirname;
   159 }
   161 // convert the given file name into a process id. if the file
   162 // does not meet the file naming constraints, return 0.
   163 //
   164 static int filename_to_pid(const char* filename) {
   166   // a filename that doesn't begin with a digit is not a
   167   // candidate for conversion.
   168   //
   169   if (!isdigit(*filename)) {
   170     return 0;
   171   }
   173   // check if file name can be converted to an integer without
   174   // any leftover characters.
   175   //
   176   char* remainder = NULL;
   177   errno = 0;
   178   int pid = (int)strtol(filename, &remainder, 10);
   180   if (errno != 0) {
   181     return 0;
   182   }
   184   // check for left over characters. If any, then the filename is
   185   // not a candidate for conversion.
   186   //
   187   if (remainder != NULL && *remainder != '\0') {
   188     return 0;
   189   }
   191   // successful conversion, return the pid
   192   return pid;
   193 }
   195 // check if the given path is considered a secure directory for
   196 // the backing store files. Returns true if the directory exists
   197 // and is considered a secure location. Returns false if the path
   198 // is a symbolic link or if an error occurred.
   199 //
   200 static bool is_directory_secure(const char* path) {
   202   DWORD fa;
   204   fa = GetFileAttributes(path);
   205   if (fa == 0xFFFFFFFF) {
   206     DWORD lasterror = GetLastError();
   207     if (lasterror == ERROR_FILE_NOT_FOUND) {
   208       return false;
   209     }
   210     else {
   211       // unexpected error, declare the path insecure
   212       if (PrintMiscellaneous && Verbose) {
   213         warning("could not get attributes for file %s: ",
   214                 " lasterror = %d\n", path, lasterror);
   215       }
   216       return false;
   217     }
   218   }
   220   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
   221     // we don't accept any redirection for the user specific directory
   222     // so declare the path insecure. This may be too conservative,
   223     // as some types of reparse points might be acceptable, but it
   224     // is probably more secure to avoid these conditions.
   225     //
   226     if (PrintMiscellaneous && Verbose) {
   227       warning("%s is a reparse point\n", path);
   228     }
   229     return false;
   230   }
   232   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
   233     // this is the expected case. Since windows supports symbolic
   234     // links to directories only, not to files, there is no need
   235     // to check for open write permissions on the directory. If the
   236     // directory has open write permissions, any files deposited that
   237     // are not expected will be removed by the cleanup code.
   238     //
   239     return true;
   240   }
   241   else {
   242     // this is either a regular file or some other type of file,
   243     // any of which are unexpected and therefore insecure.
   244     //
   245     if (PrintMiscellaneous && Verbose) {
   246       warning("%s is not a directory, file attributes = "
   247               INTPTR_FORMAT "\n", path, fa);
   248     }
   249     return false;
   250   }
   251 }
   253 // return the user name for the owner of this process
   254 //
   255 // the caller is expected to free the allocated memory.
   256 //
   257 static char* get_user_name() {
   259   /* get the user name. This code is adapted from code found in
   260    * the jdk in src/windows/native/java/lang/java_props_md.c
   261    * java_props_md.c  1.29 02/02/06. According to the original
   262    * source, the call to GetUserName is avoided because of a resulting
   263    * increase in footprint of 100K.
   264    */
   265   char* user = getenv("USERNAME");
   266   char buf[UNLEN+1];
   267   DWORD buflen = sizeof(buf);
   268   if (user == NULL || strlen(user) == 0) {
   269     if (GetUserName(buf, &buflen)) {
   270       user = buf;
   271     }
   272     else {
   273       return NULL;
   274     }
   275   }
   277   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
   278   strcpy(user_name, user);
   280   return user_name;
   281 }
   283 // return the name of the user that owns the process identified by vmid.
   284 //
   285 // This method uses a slow directory search algorithm to find the backing
   286 // store file for the specified vmid and returns the user name, as determined
   287 // by the user name suffix of the hsperfdata_<username> directory name.
   288 //
   289 // the caller is expected to free the allocated memory.
   290 //
   291 static char* get_user_name_slow(int vmid) {
   293   // directory search
   294   char* oldest_user = NULL;
   295   time_t oldest_ctime = 0;
   297   const char* tmpdirname = os::get_temp_directory();
   299   DIR* tmpdirp = os::opendir(tmpdirname);
   301   if (tmpdirp == NULL) {
   302     return NULL;
   303   }
   305   // for each entry in the directory that matches the pattern hsperfdata_*,
   306   // open the directory and check if the file for the given vmid exists.
   307   // The file with the expected name and the latest creation date is used
   308   // to determine the user name for the process id.
   309   //
   310   struct dirent* dentry;
   311   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname));
   312   errno = 0;
   313   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
   315     // check if the directory entry is a hsperfdata file
   316     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
   317       continue;
   318     }
   320     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
   321                               strlen(tmpdirname) + strlen(dentry->d_name) + 1);
   322     strcpy(usrdir_name, tmpdirname);
   323     strcat(usrdir_name, dentry->d_name);
   325     DIR* subdirp = os::opendir(usrdir_name);
   327     if (subdirp == NULL) {
   328       FREE_C_HEAP_ARRAY(char, usrdir_name);
   329       continue;
   330     }
   332     // Since we don't create the backing store files in directories
   333     // pointed to by symbolic links, we also don't follow them when
   334     // looking for the files. We check for a symbolic link after the
   335     // call to opendir in order to eliminate a small window where the
   336     // symlink can be exploited.
   337     //
   338     if (!is_directory_secure(usrdir_name)) {
   339       FREE_C_HEAP_ARRAY(char, usrdir_name);
   340       os::closedir(subdirp);
   341       continue;
   342     }
   344     struct dirent* udentry;
   345     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name));
   346     errno = 0;
   347     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
   349       if (filename_to_pid(udentry->d_name) == vmid) {
   350         struct stat statbuf;
   352         char* filename = NEW_C_HEAP_ARRAY(char,
   353                             strlen(usrdir_name) + strlen(udentry->d_name) + 2);
   355         strcpy(filename, usrdir_name);
   356         strcat(filename, "\\");
   357         strcat(filename, udentry->d_name);
   359         if (::stat(filename, &statbuf) == OS_ERR) {
   360            FREE_C_HEAP_ARRAY(char, filename);
   361            continue;
   362         }
   364         // skip over files that are not regular files.
   365         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
   366           FREE_C_HEAP_ARRAY(char, filename);
   367           continue;
   368         }
   370         // compare and save filename with latest creation time
   371         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
   373           if (statbuf.st_ctime > oldest_ctime) {
   374             char* user = strchr(dentry->d_name, '_') + 1;
   376             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
   377             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1);
   379             strcpy(oldest_user, user);
   380             oldest_ctime = statbuf.st_ctime;
   381           }
   382         }
   384         FREE_C_HEAP_ARRAY(char, filename);
   385       }
   386     }
   387     os::closedir(subdirp);
   388     FREE_C_HEAP_ARRAY(char, udbuf);
   389     FREE_C_HEAP_ARRAY(char, usrdir_name);
   390   }
   391   os::closedir(tmpdirp);
   392   FREE_C_HEAP_ARRAY(char, tdbuf);
   394   return(oldest_user);
   395 }
   397 // return the name of the user that owns the process identified by vmid.
   398 //
   399 // note: this method should only be used via the Perf native methods.
   400 // There are various costs to this method and limiting its use to the
   401 // Perf native methods limits the impact to monitoring applications only.
   402 //
   403 static char* get_user_name(int vmid) {
   405   // A fast implementation is not provided at this time. It's possible
   406   // to provide a fast process id to user name mapping function using
   407   // the win32 apis, but the default ACL for the process object only
   408   // allows processes with the same owner SID to acquire the process
   409   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
   410   // to have the JVM change the ACL for the process object to allow arbitrary
   411   // users to access the process handle and the process security token.
   412   // The security ramifications need to be studied before providing this
   413   // mechanism.
   414   //
   415   return get_user_name_slow(vmid);
   416 }
   418 // return the name of the shared memory file mapping object for the
   419 // named shared memory region for the given user name and vmid.
   420 //
   421 // The file mapping object's name is not the file name. It is a name
   422 // in a separate name space.
   423 //
   424 // the caller is expected to free the allocated memory.
   425 //
   426 static char *get_sharedmem_objectname(const char* user, int vmid) {
   428   // construct file mapping object's name, add 3 for two '_' and a
   429   // null terminator.
   430   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
   432   // the id is converted to an unsigned value here because win32 allows
   433   // negative process ids. However, OpenFileMapping API complains
   434   // about a name containing a '-' characters.
   435   //
   436   nbytes += UINT_CHARS;
   437   char* name = NEW_C_HEAP_ARRAY(char, nbytes);
   438   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
   440   return name;
   441 }
   443 // return the file name of the backing store file for the named
   444 // shared memory region for the given user name and vmid.
   445 //
   446 // the caller is expected to free the allocated memory.
   447 //
   448 static char* get_sharedmem_filename(const char* dirname, int vmid) {
   450   // add 2 for the file separator and a null terminator.
   451   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
   453   char* name = NEW_C_HEAP_ARRAY(char, nbytes);
   454   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
   456   return name;
   457 }
   459 // remove file
   460 //
   461 // this method removes the file with the given file name.
   462 //
   463 // Note: if the indicated file is on an SMB network file system, this
   464 // method may be unsuccessful in removing the file.
   465 //
   466 static void remove_file(const char* dirname, const char* filename) {
   468   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
   469   char* path = NEW_C_HEAP_ARRAY(char, nbytes);
   471   strcpy(path, dirname);
   472   strcat(path, "\\");
   473   strcat(path, filename);
   475   if (::unlink(path) == OS_ERR) {
   476     if (PrintMiscellaneous && Verbose) {
   477       if (errno != ENOENT) {
   478         warning("Could not unlink shared memory backing"
   479                 " store file %s : %s\n", path, strerror(errno));
   480       }
   481     }
   482   }
   484   FREE_C_HEAP_ARRAY(char, path);
   485 }
   487 // returns true if the process represented by pid is alive, otherwise
   488 // returns false. the validity of the result is only accurate if the
   489 // target process is owned by the same principal that owns this process.
   490 // this method should not be used if to test the status of an otherwise
   491 // arbitrary process unless it is know that this process has the appropriate
   492 // privileges to guarantee a result valid.
   493 //
   494 static bool is_alive(int pid) {
   496   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
   497   if (ph == NULL) {
   498     // the process does not exist.
   499     if (PrintMiscellaneous && Verbose) {
   500       DWORD lastError = GetLastError();
   501       if (lastError != ERROR_INVALID_PARAMETER) {
   502         warning("OpenProcess failed: %d\n", GetLastError());
   503       }
   504     }
   505     return false;
   506   }
   508   DWORD exit_status;
   509   if (!GetExitCodeProcess(ph, &exit_status)) {
   510     if (PrintMiscellaneous && Verbose) {
   511       warning("GetExitCodeProcess failed: %d\n", GetLastError());
   512     }
   513     CloseHandle(ph);
   514     return false;
   515   }
   517   CloseHandle(ph);
   518   return (exit_status == STILL_ACTIVE) ? true : false;
   519 }
   521 // check if the file system is considered secure for the backing store files
   522 //
   523 static bool is_filesystem_secure(const char* path) {
   525   char root_path[MAX_PATH];
   526   char fs_type[MAX_PATH];
   528   if (PerfBypassFileSystemCheck) {
   529     if (PrintMiscellaneous && Verbose) {
   530       warning("bypassing file system criteria checks for %s\n", path);
   531     }
   532     return true;
   533   }
   535   char* first_colon = strchr((char *)path, ':');
   536   if (first_colon == NULL) {
   537     if (PrintMiscellaneous && Verbose) {
   538       warning("expected device specifier in path: %s\n", path);
   539     }
   540     return false;
   541   }
   543   size_t len = (size_t)(first_colon - path);
   544   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
   545   strncpy(root_path, path, len + 1);
   546   root_path[len + 1] = '\\';
   547   root_path[len + 2] = '\0';
   549   // check that we have something like "C:\" or "AA:\"
   550   assert(strlen(root_path) >= 3, "device specifier too short");
   551   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
   552   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
   554   DWORD maxpath;
   555   DWORD flags;
   557   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
   558                             &flags, fs_type, MAX_PATH)) {
   559     // we can't get information about the volume, so assume unsafe.
   560     if (PrintMiscellaneous && Verbose) {
   561       warning("could not get device information for %s: "
   562               " path = %s: lasterror = %d\n",
   563               root_path, path, GetLastError());
   564     }
   565     return false;
   566   }
   568   if ((flags & FS_PERSISTENT_ACLS) == 0) {
   569     // file system doesn't support ACLs, declare file system unsafe
   570     if (PrintMiscellaneous && Verbose) {
   571       warning("file system type %s on device %s does not support"
   572               " ACLs\n", fs_type, root_path);
   573     }
   574     return false;
   575   }
   577   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
   578     // file system is compressed, declare file system unsafe
   579     if (PrintMiscellaneous && Verbose) {
   580       warning("file system type %s on device %s is compressed\n",
   581               fs_type, root_path);
   582     }
   583     return false;
   584   }
   586   return true;
   587 }
   589 // cleanup stale shared memory resources
   590 //
   591 // This method attempts to remove all stale shared memory files in
   592 // the named user temporary directory. It scans the named directory
   593 // for files matching the pattern ^$[0-9]*$. For each file found, the
   594 // process id is extracted from the file name and a test is run to
   595 // determine if the process is alive. If the process is not alive,
   596 // any stale file resources are removed.
   597 //
   598 static void cleanup_sharedmem_resources(const char* dirname) {
   600   // open the user temp directory
   601   DIR* dirp = os::opendir(dirname);
   603   if (dirp == NULL) {
   604     // directory doesn't exist, so there is nothing to cleanup
   605     return;
   606   }
   608   if (!is_directory_secure(dirname)) {
   609     // the directory is not secure, don't attempt any cleanup
   610     return;
   611   }
   613   // for each entry in the directory that matches the expected file
   614   // name pattern, determine if the file resources are stale and if
   615   // so, remove the file resources. Note, instrumented HotSpot processes
   616   // for this user may start and/or terminate during this search and
   617   // remove or create new files in this directory. The behavior of this
   618   // loop under these conditions is dependent upon the implementation of
   619   // opendir/readdir.
   620   //
   621   struct dirent* entry;
   622   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname));
   623   errno = 0;
   624   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
   626     int pid = filename_to_pid(entry->d_name);
   628     if (pid == 0) {
   630       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
   632         // attempt to remove all unexpected files, except "." and ".."
   633         remove_file(dirname, entry->d_name);
   634       }
   636       errno = 0;
   637       continue;
   638     }
   640     // we now have a file name that converts to a valid integer
   641     // that could represent a process id . if this process id
   642     // matches the current process id or the process is not running,
   643     // then remove the stale file resources.
   644     //
   645     // process liveness is detected by checking the exit status
   646     // of the process. if the process id is valid and the exit status
   647     // indicates that it is still running, the file file resources
   648     // are not removed. If the process id is invalid, or if we don't
   649     // have permissions to check the process status, or if the process
   650     // id is valid and the process has terminated, the the file resources
   651     // are assumed to be stale and are removed.
   652     //
   653     if (pid == os::current_process_id() || !is_alive(pid)) {
   655       // we can only remove the file resources. Any mapped views
   656       // of the file can only be unmapped by the processes that
   657       // opened those views and the file mapping object will not
   658       // get removed until all views are unmapped.
   659       //
   660       remove_file(dirname, entry->d_name);
   661     }
   662     errno = 0;
   663   }
   664   os::closedir(dirp);
   665   FREE_C_HEAP_ARRAY(char, dbuf);
   666 }
   668 // create a file mapping object with the requested name, and size
   669 // from the file represented by the given Handle object
   670 //
   671 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
   673   DWORD lowSize = (DWORD)size;
   674   DWORD highSize = 0;
   675   HANDLE fmh = NULL;
   677   // Create a file mapping object with the given name. This function
   678   // will grow the file to the specified size.
   679   //
   680   fmh = CreateFileMapping(
   681                fh,                 /* HANDLE file handle for backing store */
   682                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
   683                PAGE_READWRITE,     /* DWORD protections */
   684                highSize,           /* DWORD High word of max size */
   685                lowSize,            /* DWORD Low word of max size */
   686                name);              /* LPCTSTR name for object */
   688   if (fmh == NULL) {
   689     if (PrintMiscellaneous && Verbose) {
   690       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
   691     }
   692     return NULL;
   693   }
   695   if (GetLastError() == ERROR_ALREADY_EXISTS) {
   697     // a stale file mapping object was encountered. This object may be
   698     // owned by this or some other user and cannot be removed until
   699     // the other processes either exit or close their mapping objects
   700     // and/or mapped views of this mapping object.
   701     //
   702     if (PrintMiscellaneous && Verbose) {
   703       warning("file mapping already exists, lasterror = %d\n", GetLastError());
   704     }
   706     CloseHandle(fmh);
   707     return NULL;
   708   }
   710   return fmh;
   711 }
   714 // method to free the given security descriptor and the contained
   715 // access control list.
   716 //
   717 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
   719   BOOL success, exists, isdefault;
   720   PACL pACL;
   722   if (pSD != NULL) {
   724     // get the access control list from the security descriptor
   725     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
   727     // if an ACL existed and it was not a default acl, then it must
   728     // be an ACL we enlisted. free the resources.
   729     //
   730     if (success && exists && pACL != NULL && !isdefault) {
   731       FREE_C_HEAP_ARRAY(char, pACL);
   732     }
   734     // free the security descriptor
   735     FREE_C_HEAP_ARRAY(char, pSD);
   736   }
   737 }
   739 // method to free up a security attributes structure and any
   740 // contained security descriptors and ACL
   741 //
   742 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
   744   if (lpSA != NULL) {
   745     // free the contained security descriptor and the ACL
   746     free_security_desc(lpSA->lpSecurityDescriptor);
   747     lpSA->lpSecurityDescriptor = NULL;
   749     // free the security attributes structure
   750     FREE_C_HEAP_ARRAY(char, lpSA);
   751   }
   752 }
   754 // get the user SID for the process indicated by the process handle
   755 //
   756 static PSID get_user_sid(HANDLE hProcess) {
   758   HANDLE hAccessToken;
   759   PTOKEN_USER token_buf = NULL;
   760   DWORD rsize = 0;
   762   if (hProcess == NULL) {
   763     return NULL;
   764   }
   766   // get the process token
   767   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
   768     if (PrintMiscellaneous && Verbose) {
   769       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
   770     }
   771     return NULL;
   772   }
   774   // determine the size of the token structured needed to retrieve
   775   // the user token information from the access token.
   776   //
   777   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
   778     DWORD lasterror = GetLastError();
   779     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
   780       if (PrintMiscellaneous && Verbose) {
   781         warning("GetTokenInformation failure: lasterror = %d,"
   782                 " rsize = %d\n", lasterror, rsize);
   783       }
   784       CloseHandle(hAccessToken);
   785       return NULL;
   786     }
   787   }
   789   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize);
   791   // get the user token information
   792   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
   793     if (PrintMiscellaneous && Verbose) {
   794       warning("GetTokenInformation failure: lasterror = %d,"
   795               " rsize = %d\n", GetLastError(), rsize);
   796     }
   797     FREE_C_HEAP_ARRAY(char, token_buf);
   798     CloseHandle(hAccessToken);
   799     return NULL;
   800   }
   802   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
   803   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes);
   805   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
   806     if (PrintMiscellaneous && Verbose) {
   807       warning("GetTokenInformation failure: lasterror = %d,"
   808               " rsize = %d\n", GetLastError(), rsize);
   809     }
   810     FREE_C_HEAP_ARRAY(char, token_buf);
   811     FREE_C_HEAP_ARRAY(char, pSID);
   812     CloseHandle(hAccessToken);
   813     return NULL;
   814   }
   816   // close the access token.
   817   CloseHandle(hAccessToken);
   818   FREE_C_HEAP_ARRAY(char, token_buf);
   820   return pSID;
   821 }
   823 // structure used to consolidate access control entry information
   824 //
   825 typedef struct ace_data {
   826   PSID pSid;      // SID of the ACE
   827   DWORD mask;     // mask for the ACE
   828 } ace_data_t;
   831 // method to add an allow access control entry with the access rights
   832 // indicated in mask for the principal indicated in SID to the given
   833 // security descriptor. Much of the DACL handling was adapted from
   834 // the example provided here:
   835 //      http://support.microsoft.com/kb/102102/EN-US/
   836 //
   838 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
   839                            ace_data_t aces[], int ace_count) {
   840   PACL newACL = NULL;
   841   PACL oldACL = NULL;
   843   if (pSD == NULL) {
   844     return false;
   845   }
   847   BOOL exists, isdefault;
   849   // retrieve any existing access control list.
   850   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
   851     if (PrintMiscellaneous && Verbose) {
   852       warning("GetSecurityDescriptor failure: lasterror = %d \n",
   853               GetLastError());
   854     }
   855     return false;
   856   }
   858   // get the size of the DACL
   859   ACL_SIZE_INFORMATION aclinfo;
   861   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
   862   // while oldACL is NULL for some case.
   863   if (oldACL == NULL) {
   864     exists = FALSE;
   865   }
   867   if (exists) {
   868     if (!GetAclInformation(oldACL, &aclinfo,
   869                            sizeof(ACL_SIZE_INFORMATION),
   870                            AclSizeInformation)) {
   871       if (PrintMiscellaneous && Verbose) {
   872         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
   873         return false;
   874       }
   875     }
   876   } else {
   877     aclinfo.AceCount = 0; // assume NULL DACL
   878     aclinfo.AclBytesFree = 0;
   879     aclinfo.AclBytesInUse = sizeof(ACL);
   880   }
   882   // compute the size needed for the new ACL
   883   // initial size of ACL is sum of the following:
   884   //   * size of ACL structure.
   885   //   * size of each ACE structure that ACL is to contain minus the sid
   886   //     sidStart member (DWORD) of the ACE.
   887   //   * length of the SID that each ACE is to contain.
   888   DWORD newACLsize = aclinfo.AclBytesInUse +
   889                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
   890   for (int i = 0; i < ace_count; i++) {
   891      newACLsize += GetLengthSid(aces[i].pSid);
   892   }
   894   // create the new ACL
   895   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize);
   897   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
   898     if (PrintMiscellaneous && Verbose) {
   899       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   900     }
   901     FREE_C_HEAP_ARRAY(char, newACL);
   902     return false;
   903   }
   905   unsigned int ace_index = 0;
   906   // copy any existing ACEs from the old ACL (if any) to the new ACL.
   907   if (aclinfo.AceCount != 0) {
   908     while (ace_index < aclinfo.AceCount) {
   909       LPVOID ace;
   910       if (!GetAce(oldACL, ace_index, &ace)) {
   911         if (PrintMiscellaneous && Verbose) {
   912           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   913         }
   914         FREE_C_HEAP_ARRAY(char, newACL);
   915         return false;
   916       }
   917       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
   918         // this is an inherited, allowed ACE; break from loop so we can
   919         // add the new access allowed, non-inherited ACE in the correct
   920         // position, immediately following all non-inherited ACEs.
   921         break;
   922       }
   924       // determine if the SID of this ACE matches any of the SIDs
   925       // for which we plan to set ACEs.
   926       int matches = 0;
   927       for (int i = 0; i < ace_count; i++) {
   928         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
   929           matches++;
   930           break;
   931         }
   932       }
   934       // if there are no SID matches, then add this existing ACE to the new ACL
   935       if (matches == 0) {
   936         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
   937                     ((PACE_HEADER)ace)->AceSize)) {
   938           if (PrintMiscellaneous && Verbose) {
   939             warning("AddAce failure: lasterror = %d \n", GetLastError());
   940           }
   941           FREE_C_HEAP_ARRAY(char, newACL);
   942           return false;
   943         }
   944       }
   945       ace_index++;
   946     }
   947   }
   949   // add the passed-in access control entries to the new ACL
   950   for (int i = 0; i < ace_count; i++) {
   951     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
   952                              aces[i].mask, aces[i].pSid)) {
   953       if (PrintMiscellaneous && Verbose) {
   954         warning("AddAccessAllowedAce failure: lasterror = %d \n",
   955                 GetLastError());
   956       }
   957       FREE_C_HEAP_ARRAY(char, newACL);
   958       return false;
   959     }
   960   }
   962   // now copy the rest of the inherited ACEs from the old ACL
   963   if (aclinfo.AceCount != 0) {
   964     // picking up at ace_index, where we left off in the
   965     // previous ace_index loop
   966     while (ace_index < aclinfo.AceCount) {
   967       LPVOID ace;
   968       if (!GetAce(oldACL, ace_index, &ace)) {
   969         if (PrintMiscellaneous && Verbose) {
   970           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
   971         }
   972         FREE_C_HEAP_ARRAY(char, newACL);
   973         return false;
   974       }
   975       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
   976                   ((PACE_HEADER)ace)->AceSize)) {
   977         if (PrintMiscellaneous && Verbose) {
   978           warning("AddAce failure: lasterror = %d \n", GetLastError());
   979         }
   980         FREE_C_HEAP_ARRAY(char, newACL);
   981         return false;
   982       }
   983       ace_index++;
   984     }
   985   }
   987   // add the new ACL to the security descriptor.
   988   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
   989     if (PrintMiscellaneous && Verbose) {
   990       warning("SetSecurityDescriptorDacl failure:"
   991               " lasterror = %d \n", GetLastError());
   992     }
   993     FREE_C_HEAP_ARRAY(char, newACL);
   994     return false;
   995   }
   997   // if running on windows 2000 or later, set the automatic inheritance
   998   // control flags.
   999   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
  1000   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
  1001        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
  1002                       "SetSecurityDescriptorControl");
  1004   if (_SetSecurityDescriptorControl != NULL) {
  1005     // We do not want to further propagate inherited DACLs, so making them
  1006     // protected prevents that.
  1007     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
  1008                                             SE_DACL_PROTECTED)) {
  1009       if (PrintMiscellaneous && Verbose) {
  1010         warning("SetSecurityDescriptorControl failure:"
  1011                 " lasterror = %d \n", GetLastError());
  1013       FREE_C_HEAP_ARRAY(char, newACL);
  1014       return false;
  1017    // Note, the security descriptor maintains a reference to the newACL, not
  1018    // a copy of it. Therefore, the newACL is not freed here. It is freed when
  1019    // the security descriptor containing its reference is freed.
  1020    //
  1021    return true;
  1024 // method to create a security attributes structure, which contains a
  1025 // security descriptor and an access control list comprised of 0 or more
  1026 // access control entries. The method take an array of ace_data structures
  1027 // that indicate the ACE to be added to the security descriptor.
  1028 //
  1029 // the caller must free the resources associated with the security
  1030 // attributes structure created by this method by calling the
  1031 // free_security_attr() method.
  1032 //
  1033 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
  1035   // allocate space for a security descriptor
  1036   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
  1037                          NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH);
  1039   // initialize the security descriptor
  1040   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
  1041     if (PrintMiscellaneous && Verbose) {
  1042       warning("InitializeSecurityDescriptor failure: "
  1043               "lasterror = %d \n", GetLastError());
  1045     free_security_desc(pSD);
  1046     return NULL;
  1049   // add the access control entries
  1050   if (!add_allow_aces(pSD, aces, count)) {
  1051     free_security_desc(pSD);
  1052     return NULL;
  1055   // allocate and initialize the security attributes structure and
  1056   // return it to the caller.
  1057   //
  1058   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
  1059                             NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES));
  1060   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
  1061   lpSA->lpSecurityDescriptor = pSD;
  1062   lpSA->bInheritHandle = FALSE;
  1064   return(lpSA);
  1067 // method to create a security attributes structure with a restrictive
  1068 // access control list that creates a set access rights for the user/owner
  1069 // of the securable object and a separate set access rights for everyone else.
  1070 // also provides for full access rights for the administrator group.
  1071 //
  1072 // the caller must free the resources associated with the security
  1073 // attributes structure created by this method by calling the
  1074 // free_security_attr() method.
  1075 //
  1077 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
  1078                                 DWORD umask, DWORD emask, DWORD amask) {
  1080   ace_data_t aces[3];
  1082   // initialize the user ace data
  1083   aces[0].pSid = get_user_sid(GetCurrentProcess());
  1084   aces[0].mask = umask;
  1086   // get the well known SID for BUILTIN\Administrators
  1087   PSID administratorsSid = NULL;
  1088   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
  1090   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
  1091            SECURITY_BUILTIN_DOMAIN_RID,
  1092            DOMAIN_ALIAS_RID_ADMINS,
  1093            0, 0, 0, 0, 0, 0, &administratorsSid)) {
  1095     if (PrintMiscellaneous && Verbose) {
  1096       warning("AllocateAndInitializeSid failure: "
  1097               "lasterror = %d \n", GetLastError());
  1099     return NULL;
  1102   // initialize the ace data for administrator group
  1103   aces[1].pSid = administratorsSid;
  1104   aces[1].mask = amask;
  1106   // get the well known SID for the universal Everybody
  1107   PSID everybodySid = NULL;
  1108   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
  1110   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
  1111            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
  1113     if (PrintMiscellaneous && Verbose) {
  1114       warning("AllocateAndInitializeSid failure: "
  1115               "lasterror = %d \n", GetLastError());
  1117     return NULL;
  1120   // initialize the ace data for everybody else.
  1121   aces[2].pSid = everybodySid;
  1122   aces[2].mask = emask;
  1124   // create a security attributes structure with access control
  1125   // entries as initialized above.
  1126   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
  1127   FREE_C_HEAP_ARRAY(char, aces[0].pSid);
  1128   FreeSid(everybodySid);
  1129   FreeSid(administratorsSid);
  1130   return(lpSA);
  1134 // method to create the security attributes structure for restricting
  1135 // access to the user temporary directory.
  1136 //
  1137 // the caller must free the resources associated with the security
  1138 // attributes structure created by this method by calling the
  1139 // free_security_attr() method.
  1140 //
  1141 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
  1143   // create full access rights for the user/owner of the directory
  1144   // and read-only access rights for everybody else. This is
  1145   // effectively equivalent to UNIX 755 permissions on a directory.
  1146   //
  1147   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
  1148   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  1149   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1151   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1154 // method to create the security attributes structure for restricting
  1155 // access to the shared memory backing store file.
  1156 //
  1157 // the caller must free the resources associated with the security
  1158 // attributes structure created by this method by calling the
  1159 // free_security_attr() method.
  1160 //
  1161 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
  1163   // create extensive access rights for the user/owner of the file
  1164   // and attribute read-only access rights for everybody else. This
  1165   // is effectively equivalent to UNIX 600 permissions on a file.
  1166   //
  1167   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1168   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
  1169                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
  1170   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
  1172   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1175 // method to create the security attributes structure for restricting
  1176 // access to the name shared memory file mapping object.
  1177 //
  1178 // the caller must free the resources associated with the security
  1179 // attributes structure created by this method by calling the
  1180 // free_security_attr() method.
  1181 //
  1182 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
  1184   // create extensive access rights for the user/owner of the shared
  1185   // memory object and attribute read-only access rights for everybody
  1186   // else. This is effectively equivalent to UNIX 600 permissions on
  1187   // on the shared memory object.
  1188   //
  1189   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
  1190   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
  1191   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
  1193   return make_user_everybody_admin_security_attr(umask, emask, amask);
  1196 // make the user specific temporary directory
  1197 //
  1198 static bool make_user_tmp_dir(const char* dirname) {
  1201   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
  1202   if (pDirSA == NULL) {
  1203     return false;
  1207   // create the directory with the given security attributes
  1208   if (!CreateDirectory(dirname, pDirSA)) {
  1209     DWORD lasterror = GetLastError();
  1210     if (lasterror == ERROR_ALREADY_EXISTS) {
  1211       // The directory already exists and was probably created by another
  1212       // JVM instance. However, this could also be the result of a
  1213       // deliberate symlink. Verify that the existing directory is safe.
  1214       //
  1215       if (!is_directory_secure(dirname)) {
  1216         // directory is not secure
  1217         if (PrintMiscellaneous && Verbose) {
  1218           warning("%s directory is insecure\n", dirname);
  1220         return false;
  1222       // The administrator should be able to delete this directory.
  1223       // But the directory created by previous version of JVM may not
  1224       // have permission for administrators to delete this directory.
  1225       // So add full permission to the administrator. Also setting new
  1226       // DACLs might fix the corrupted the DACLs.
  1227       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
  1228       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
  1229         if (PrintMiscellaneous && Verbose) {
  1230           lasterror = GetLastError();
  1231           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
  1232                                                         dirname, lasterror);
  1236     else {
  1237       if (PrintMiscellaneous && Verbose) {
  1238         warning("CreateDirectory failed: %d\n", GetLastError());
  1240       return false;
  1244   // free the security attributes structure
  1245   free_security_attr(pDirSA);
  1247   return true;
  1250 // create the shared memory resources
  1251 //
  1252 // This function creates the shared memory resources. This includes
  1253 // the backing store file and the file mapping shared memory object.
  1254 //
  1255 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
  1257   HANDLE fh = INVALID_HANDLE_VALUE;
  1258   HANDLE fmh = NULL;
  1261   // create the security attributes for the backing store file
  1262   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
  1263   if (lpFileSA == NULL) {
  1264     return NULL;
  1267   // create the security attributes for the shared memory object
  1268   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
  1269   if (lpSmoSA == NULL) {
  1270     free_security_attr(lpFileSA);
  1271     return NULL;
  1274   // create the user temporary directory
  1275   if (!make_user_tmp_dir(dirname)) {
  1276     // could not make/find the directory or the found directory
  1277     // was not secure
  1278     return NULL;
  1281   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
  1282   // file to be deleted by the last process that closes its handle to
  1283   // the file. This is important as the apis do not allow a terminating
  1284   // JVM being monitored by another process to remove the file name.
  1285   //
  1286   // the FILE_SHARE_DELETE share mode is valid only in winnt
  1287   //
  1288   fh = CreateFile(
  1289              filename,                   /* LPCTSTR file name */
  1291              GENERIC_READ|GENERIC_WRITE, /* DWORD desired access */
  1293              (os::win32::is_nt() ? FILE_SHARE_DELETE : 0)|
  1294              FILE_SHARE_READ,            /* DWORD share mode, future READONLY
  1295                                           * open operations allowed
  1296                                           */
  1297              lpFileSA,                   /* LPSECURITY security attributes */
  1298              CREATE_ALWAYS,              /* DWORD creation disposition
  1299                                           * create file, if it already
  1300                                           * exists, overwrite it.
  1301                                           */
  1302              FILE_FLAG_DELETE_ON_CLOSE,  /* DWORD flags and attributes */
  1304              NULL);                      /* HANDLE template file access */
  1306   free_security_attr(lpFileSA);
  1308   if (fh == INVALID_HANDLE_VALUE) {
  1309     DWORD lasterror = GetLastError();
  1310     if (PrintMiscellaneous && Verbose) {
  1311       warning("could not create file %s: %d\n", filename, lasterror);
  1313     return NULL;
  1316   // try to create the file mapping
  1317   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
  1319   free_security_attr(lpSmoSA);
  1321   if (fmh == NULL) {
  1322     // closing the file handle here will decrement the reference count
  1323     // on the file. When all processes accessing the file close their
  1324     // handle to it, the reference count will decrement to 0 and the
  1325     // OS will delete the file. These semantics are requested by the
  1326     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
  1327     CloseHandle(fh);
  1328     fh = NULL;
  1329     return NULL;
  1332   // the file has been successfully created and the file mapping
  1333   // object has been created.
  1334   sharedmem_fileHandle = fh;
  1335   sharedmem_fileName = strdup(filename);
  1337   return fmh;
  1340 // open the shared memory object for the given vmid.
  1341 //
  1342 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
  1344   HANDLE fmh;
  1346   // open the file mapping with the requested mode
  1347   fmh = OpenFileMapping(
  1348                ofm_access,       /* DWORD access mode */
  1349                FALSE,            /* BOOL inherit flag - Do not allow inherit */
  1350                objectname);      /* name for object */
  1352   if (fmh == NULL) {
  1353     if (PrintMiscellaneous && Verbose) {
  1354       warning("OpenFileMapping failed for shared memory object %s:"
  1355               " lasterror = %d\n", objectname, GetLastError());
  1357     THROW_MSG_(vmSymbols::java_lang_Exception(),
  1358                "Could not open PerfMemory", INVALID_HANDLE_VALUE);
  1361   return fmh;;
  1364 // create a named shared memory region
  1365 //
  1366 // On Win32, a named shared memory object has a name space that
  1367 // is independent of the file system name space. Shared memory object,
  1368 // or more precisely, file mapping objects, provide no mechanism to
  1369 // inquire the size of the memory region. There is also no api to
  1370 // enumerate the memory regions for various processes.
  1371 //
  1372 // This implementation utilizes the shared memory name space in parallel
  1373 // with the file system name space. This allows us to determine the
  1374 // size of the shared memory region from the size of the file and it
  1375 // allows us to provide a common, file system based name space for
  1376 // shared memory across platforms.
  1377 //
  1378 static char* mapping_create_shared(size_t size) {
  1380   void *mapAddress;
  1381   int vmid = os::current_process_id();
  1383   // get the name of the user associated with this process
  1384   char* user = get_user_name();
  1386   if (user == NULL) {
  1387     return NULL;
  1390   // construct the name of the user specific temporary directory
  1391   char* dirname = get_user_tmp_dir(user);
  1393   // check that the file system is secure - i.e. it supports ACLs.
  1394   if (!is_filesystem_secure(dirname)) {
  1395     return NULL;
  1398   // create the names of the backing store files and for the
  1399   // share memory object.
  1400   //
  1401   char* filename = get_sharedmem_filename(dirname, vmid);
  1402   char* objectname = get_sharedmem_objectname(user, vmid);
  1404   // cleanup any stale shared memory resources
  1405   cleanup_sharedmem_resources(dirname);
  1407   assert(((size != 0) && (size % os::vm_page_size() == 0)),
  1408          "unexpected PerfMemry region size");
  1410   FREE_C_HEAP_ARRAY(char, user);
  1412   // create the shared memory resources
  1413   sharedmem_fileMapHandle =
  1414                create_sharedmem_resources(dirname, filename, objectname, size);
  1416   FREE_C_HEAP_ARRAY(char, filename);
  1417   FREE_C_HEAP_ARRAY(char, objectname);
  1418   FREE_C_HEAP_ARRAY(char, dirname);
  1420   if (sharedmem_fileMapHandle == NULL) {
  1421     return NULL;
  1424   // map the file into the address space
  1425   mapAddress = MapViewOfFile(
  1426                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
  1427                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
  1428                    0,                       /* DWORD High word of offset */
  1429                    0,                       /* DWORD Low word of offset */
  1430                    (DWORD)size);            /* DWORD Number of bytes to map */
  1432   if (mapAddress == NULL) {
  1433     if (PrintMiscellaneous && Verbose) {
  1434       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
  1436     CloseHandle(sharedmem_fileMapHandle);
  1437     sharedmem_fileMapHandle = NULL;
  1438     return NULL;
  1441   // clear the shared memory region
  1442   (void)memset(mapAddress, '\0', size);
  1444   return (char*) mapAddress;
  1447 // this method deletes the file mapping object.
  1448 //
  1449 static void delete_file_mapping(char* addr, size_t size) {
  1451   // cleanup the persistent shared memory resources. since DestroyJavaVM does
  1452   // not support unloading of the JVM, unmapping of the memory resource is not
  1453   // performed. The memory will be reclaimed by the OS upon termination of all
  1454   // processes mapping the resource. The file mapping handle and the file
  1455   // handle are closed here to expedite the remove of the file by the OS. The
  1456   // file is not removed directly because it was created with
  1457   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
  1458   // be unsuccessful.
  1460   // close the fileMapHandle. the file mapping will still be retained
  1461   // by the OS as long as any other JVM processes has an open file mapping
  1462   // handle or a mapped view of the file.
  1463   //
  1464   if (sharedmem_fileMapHandle != NULL) {
  1465     CloseHandle(sharedmem_fileMapHandle);
  1466     sharedmem_fileMapHandle = NULL;
  1469   // close the file handle. This will decrement the reference count on the
  1470   // backing store file. When the reference count decrements to 0, the OS
  1471   // will delete the file. These semantics apply because the file was
  1472   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
  1473   //
  1474   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
  1475     CloseHandle(sharedmem_fileHandle);
  1476     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
  1480 // this method determines the size of the shared memory file
  1481 //
  1482 static size_t sharedmem_filesize(const char* filename, TRAPS) {
  1484   struct stat statbuf;
  1486   // get the file size
  1487   //
  1488   // on win95/98/me, _stat returns a file size of 0 bytes, but on
  1489   // winnt/2k the appropriate file size is returned. support for
  1490   // the sharable aspects of performance counters was abandonded
  1491   // on the non-nt win32 platforms due to this and other api
  1492   // inconsistencies
  1493   //
  1494   if (::stat(filename, &statbuf) == OS_ERR) {
  1495     if (PrintMiscellaneous && Verbose) {
  1496       warning("stat %s failed: %s\n", filename, strerror(errno));
  1498     THROW_MSG_0(vmSymbols::java_io_IOException(),
  1499                 "Could not determine PerfMemory size");
  1502   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
  1503     if (PrintMiscellaneous && Verbose) {
  1504       warning("unexpected file size: size = " SIZE_FORMAT "\n",
  1505               statbuf.st_size);
  1507     THROW_MSG_0(vmSymbols::java_lang_Exception(),
  1508                 "Invalid PerfMemory size");
  1511   return statbuf.st_size;
  1514 // this method opens a file mapping object and maps the object
  1515 // into the address space of the process
  1516 //
  1517 static void open_file_mapping(const char* user, int vmid,
  1518                               PerfMemory::PerfMemoryMode mode,
  1519                               char** addrp, size_t* sizep, TRAPS) {
  1521   ResourceMark rm;
  1523   void *mapAddress = 0;
  1524   size_t size;
  1525   HANDLE fmh;
  1526   DWORD ofm_access;
  1527   DWORD mv_access;
  1528   const char* luser = NULL;
  1530   if (mode == PerfMemory::PERF_MODE_RO) {
  1531     ofm_access = FILE_MAP_READ;
  1532     mv_access = FILE_MAP_READ;
  1534   else if (mode == PerfMemory::PERF_MODE_RW) {
  1535 #ifdef LATER
  1536     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
  1537     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
  1538 #else
  1539     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1540               "Unsupported access mode");
  1541 #endif
  1543   else {
  1544     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1545               "Illegal access mode");
  1548   // if a user name wasn't specified, then find the user name for
  1549   // the owner of the target vm.
  1550   if (user == NULL || strlen(user) == 0) {
  1551     luser = get_user_name(vmid);
  1553   else {
  1554     luser = user;
  1557   if (luser == NULL) {
  1558     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1559               "Could not map vmid to user name");
  1562   // get the names for the resources for the target vm
  1563   char* dirname = get_user_tmp_dir(luser);
  1565   // since we don't follow symbolic links when creating the backing
  1566   // store file, we also don't following them when attaching
  1567   //
  1568   if (!is_directory_secure(dirname)) {
  1569     FREE_C_HEAP_ARRAY(char, dirname);
  1570     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
  1571               "Process not found");
  1574   char* filename = get_sharedmem_filename(dirname, vmid);
  1575   char* objectname = get_sharedmem_objectname(luser, vmid);
  1577   // copy heap memory to resource memory. the objectname and
  1578   // filename are passed to methods that may throw exceptions.
  1579   // using resource arrays for these names prevents the leaks
  1580   // that would otherwise occur.
  1581   //
  1582   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
  1583   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
  1584   strcpy(rfilename, filename);
  1585   strcpy(robjectname, objectname);
  1587   // free the c heap resources that are no longer needed
  1588   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
  1589   FREE_C_HEAP_ARRAY(char, dirname);
  1590   FREE_C_HEAP_ARRAY(char, filename);
  1591   FREE_C_HEAP_ARRAY(char, objectname);
  1593   if (*sizep == 0) {
  1594     size = sharedmem_filesize(rfilename, CHECK);
  1595     assert(size != 0, "unexpected size");
  1598   // Open the file mapping object with the given name
  1599   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
  1601   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
  1603   // map the entire file into the address space
  1604   mapAddress = MapViewOfFile(
  1605                  fmh,             /* HANDLE Handle of file mapping object */
  1606                  mv_access,       /* DWORD access flags */
  1607                  0,               /* DWORD High word of offset */
  1608                  0,               /* DWORD Low word of offset */
  1609                  size);           /* DWORD Number of bytes to map */
  1611   if (mapAddress == NULL) {
  1612     if (PrintMiscellaneous && Verbose) {
  1613       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
  1615     CloseHandle(fmh);
  1616     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
  1617               "Could not map PerfMemory");
  1620   *addrp = (char*)mapAddress;
  1621   *sizep = size;
  1623   // File mapping object can be closed at this time without
  1624   // invalidating the mapped view of the file
  1625   CloseHandle(fmh);
  1627   if (PerfTraceMemOps) {
  1628     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
  1629                INTPTR_FORMAT "\n", size, vmid, mapAddress);
  1633 // this method unmaps the the mapped view of the the
  1634 // file mapping object.
  1635 //
  1636 static void remove_file_mapping(char* addr) {
  1638   // the file mapping object was closed in open_file_mapping()
  1639   // after the file map view was created. We only need to
  1640   // unmap the file view here.
  1641   UnmapViewOfFile(addr);
  1644 // create the PerfData memory region in shared memory.
  1645 static char* create_shared_memory(size_t size) {
  1647   return mapping_create_shared(size);
  1650 // release a named, shared memory region
  1651 //
  1652 void delete_shared_memory(char* addr, size_t size) {
  1654   delete_file_mapping(addr, size);
  1660 // create the PerfData memory region
  1661 //
  1662 // This method creates the memory region used to store performance
  1663 // data for the JVM. The memory may be created in standard or
  1664 // shared memory.
  1665 //
  1666 void PerfMemory::create_memory_region(size_t size) {
  1668   if (PerfDisableSharedMem || !os::win32::is_nt()) {
  1669     // do not share the memory for the performance data.
  1670     PerfDisableSharedMem = true;
  1671     _start = create_standard_memory(size);
  1673   else {
  1674     _start = create_shared_memory(size);
  1675     if (_start == NULL) {
  1677       // creation of the shared memory region failed, attempt
  1678       // to create a contiguous, non-shared memory region instead.
  1679       //
  1680       if (PrintMiscellaneous && Verbose) {
  1681         warning("Reverting to non-shared PerfMemory region.\n");
  1683       PerfDisableSharedMem = true;
  1684       _start = create_standard_memory(size);
  1688   if (_start != NULL) _capacity = size;
  1692 // delete the PerfData memory region
  1693 //
  1694 // This method deletes the memory region used to store performance
  1695 // data for the JVM. The memory region indicated by the <address, size>
  1696 // tuple will be inaccessible after a call to this method.
  1697 //
  1698 void PerfMemory::delete_memory_region() {
  1700   assert((start() != NULL && capacity() > 0), "verify proper state");
  1702   // If user specifies PerfDataSaveFile, it will save the performance data
  1703   // to the specified file name no matter whether PerfDataSaveToFile is specified
  1704   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
  1705   // -XX:+PerfDataSaveToFile.
  1706   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
  1707     save_memory_to_file(start(), capacity());
  1710   if (PerfDisableSharedMem) {
  1711     delete_standard_memory(start(), capacity());
  1713   else {
  1714     delete_shared_memory(start(), capacity());
  1718 // attach to the PerfData memory region for another JVM
  1719 //
  1720 // This method returns an <address, size> tuple that points to
  1721 // a memory buffer that is kept reasonably synchronized with
  1722 // the PerfData memory region for the indicated JVM. This
  1723 // buffer may be kept in synchronization via shared memory
  1724 // or some other mechanism that keeps the buffer updated.
  1725 //
  1726 // If the JVM chooses not to support the attachability feature,
  1727 // this method should throw an UnsupportedOperation exception.
  1728 //
  1729 // This implementation utilizes named shared memory to map
  1730 // the indicated process's PerfData memory region into this JVMs
  1731 // address space.
  1732 //
  1733 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
  1734                         char** addrp, size_t* sizep, TRAPS) {
  1736   if (vmid == 0 || vmid == os::current_process_id()) {
  1737      *addrp = start();
  1738      *sizep = capacity();
  1739      return;
  1742   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
  1745 // detach from the PerfData memory region of another JVM
  1746 //
  1747 // This method detaches the PerfData memory region of another
  1748 // JVM, specified as an <address, size> tuple of a buffer
  1749 // in this process's address space. This method may perform
  1750 // arbitrary actions to accomplish the detachment. The memory
  1751 // region specified by <address, size> will be inaccessible after
  1752 // a call to this method.
  1753 //
  1754 // If the JVM chooses not to support the attachability feature,
  1755 // this method should throw an UnsupportedOperation exception.
  1756 //
  1757 // This implementation utilizes named shared memory to detach
  1758 // the indicated process's PerfData memory region from this
  1759 // process's address space.
  1760 //
  1761 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
  1763   assert(addr != 0, "address sanity check");
  1764   assert(bytes > 0, "capacity sanity check");
  1766   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
  1767     // prevent accidental detachment of this process's PerfMemory region
  1768     return;
  1771   remove_file_mapping(addr);
  1774 char* PerfMemory::backing_store_filename() {
  1775   return sharedmem_fileName;

mercurial