src/cpu/x86/vm/templateTable_x86_64.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 797
f8199438385b
child 1057
56aae7be60d4
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_64.cpp.incl"
    28 #ifndef CC_INTERP
    30 #define __ _masm->
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No amd64 specific initialization
    36 }
    38 // Address computation: local variables
    40 static inline Address iaddress(int n) {
    41   return Address(r14, Interpreter::local_offset_in_bytes(n));
    42 }
    44 static inline Address laddress(int n) {
    45   return iaddress(n + 1);
    46 }
    48 static inline Address faddress(int n) {
    49   return iaddress(n);
    50 }
    52 static inline Address daddress(int n) {
    53   return laddress(n);
    54 }
    56 static inline Address aaddress(int n) {
    57   return iaddress(n);
    58 }
    60 static inline Address iaddress(Register r) {
    61   return Address(r14, r, Address::times_8, Interpreter::value_offset_in_bytes());
    62 }
    64 static inline Address laddress(Register r) {
    65   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    66 }
    68 static inline Address faddress(Register r) {
    69   return iaddress(r);
    70 }
    72 static inline Address daddress(Register r) {
    73   return laddress(r);
    74 }
    76 static inline Address aaddress(Register r) {
    77   return iaddress(r);
    78 }
    80 static inline Address at_rsp() {
    81   return Address(rsp, 0);
    82 }
    84 // At top of Java expression stack which may be different than esp().  It
    85 // isn't for category 1 objects.
    86 static inline Address at_tos   () {
    87   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    88 }
    90 static inline Address at_tos_p1() {
    91   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    92 }
    94 static inline Address at_tos_p2() {
    95   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    96 }
    98 static inline Address at_tos_p3() {
    99   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   100 }
   102 // Condition conversion
   103 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   104   switch (cc) {
   105   case TemplateTable::equal        : return Assembler::notEqual;
   106   case TemplateTable::not_equal    : return Assembler::equal;
   107   case TemplateTable::less         : return Assembler::greaterEqual;
   108   case TemplateTable::less_equal   : return Assembler::greater;
   109   case TemplateTable::greater      : return Assembler::lessEqual;
   110   case TemplateTable::greater_equal: return Assembler::less;
   111   }
   112   ShouldNotReachHere();
   113   return Assembler::zero;
   114 }
   117 // Miscelaneous helper routines
   118 // Store an oop (or NULL) at the address described by obj.
   119 // If val == noreg this means store a NULL
   121 static void do_oop_store(InterpreterMacroAssembler* _masm,
   122                          Address obj,
   123                          Register val,
   124                          BarrierSet::Name barrier,
   125                          bool precise) {
   126   assert(val == noreg || val == rax, "parameter is just for looks");
   127   switch (barrier) {
   128 #ifndef SERIALGC
   129     case BarrierSet::G1SATBCT:
   130     case BarrierSet::G1SATBCTLogging:
   131       {
   132         // flatten object address if needed
   133         if (obj.index() == noreg && obj.disp() == 0) {
   134           if (obj.base() != rdx) {
   135             __ movq(rdx, obj.base());
   136           }
   137         } else {
   138           __ leaq(rdx, obj);
   139         }
   140         __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg);
   141         if (val == noreg) {
   142           __ store_heap_oop(Address(rdx, 0), NULL_WORD);
   143         } else {
   144           __ store_heap_oop(Address(rdx, 0), val);
   145           __ g1_write_barrier_post(rdx, val, r8, rbx);
   146         }
   148       }
   149       break;
   150 #endif // SERIALGC
   151     case BarrierSet::CardTableModRef:
   152     case BarrierSet::CardTableExtension:
   153       {
   154         if (val == noreg) {
   155           __ store_heap_oop(obj, NULL_WORD);
   156         } else {
   157           __ store_heap_oop(obj, val);
   158           // flatten object address if needed
   159           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   160             __ store_check(obj.base());
   161           } else {
   162             __ leaq(rdx, obj);
   163             __ store_check(rdx);
   164           }
   165         }
   166       }
   167       break;
   168     case BarrierSet::ModRef:
   169     case BarrierSet::Other:
   170       if (val == noreg) {
   171         __ store_heap_oop(obj, NULL_WORD);
   172       } else {
   173         __ store_heap_oop(obj, val);
   174       }
   175       break;
   176     default      :
   177       ShouldNotReachHere();
   179   }
   180 }
   182 Address TemplateTable::at_bcp(int offset) {
   183   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   184   return Address(r13, offset);
   185 }
   187 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   188                                    Register scratch,
   189                                    bool load_bc_into_scratch/*=true*/) {
   190   if (!RewriteBytecodes) {
   191     return;
   192   }
   193   // the pair bytecodes have already done the load.
   194   if (load_bc_into_scratch) {
   195     __ movl(bc, bytecode);
   196   }
   197   Label patch_done;
   198   if (JvmtiExport::can_post_breakpoint()) {
   199     Label fast_patch;
   200     // if a breakpoint is present we can't rewrite the stream directly
   201     __ movzbl(scratch, at_bcp(0));
   202     __ cmpl(scratch, Bytecodes::_breakpoint);
   203     __ jcc(Assembler::notEqual, fast_patch);
   204     __ get_method(scratch);
   205     // Let breakpoint table handling rewrite to quicker bytecode
   206     __ call_VM(noreg,
   207                CAST_FROM_FN_PTR(address,
   208                                 InterpreterRuntime::set_original_bytecode_at),
   209                scratch, r13, bc);
   210 #ifndef ASSERT
   211     __ jmpb(patch_done);
   212     __ bind(fast_patch);
   213   }
   214 #else
   215     __ jmp(patch_done);
   216     __ bind(fast_patch);
   217   }
   218   Label okay;
   219   __ load_unsigned_byte(scratch, at_bcp(0));
   220   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   221   __ jcc(Assembler::equal, okay);
   222   __ cmpl(scratch, bc);
   223   __ jcc(Assembler::equal, okay);
   224   __ stop("patching the wrong bytecode");
   225   __ bind(okay);
   226 #endif
   227   // patch bytecode
   228   __ movb(at_bcp(0), bc);
   229   __ bind(patch_done);
   230 }
   233 // Individual instructions
   235 void TemplateTable::nop() {
   236   transition(vtos, vtos);
   237   // nothing to do
   238 }
   240 void TemplateTable::shouldnotreachhere() {
   241   transition(vtos, vtos);
   242   __ stop("shouldnotreachhere bytecode");
   243 }
   245 void TemplateTable::aconst_null() {
   246   transition(vtos, atos);
   247   __ xorl(rax, rax);
   248 }
   250 void TemplateTable::iconst(int value) {
   251   transition(vtos, itos);
   252   if (value == 0) {
   253     __ xorl(rax, rax);
   254   } else {
   255     __ movl(rax, value);
   256   }
   257 }
   259 void TemplateTable::lconst(int value) {
   260   transition(vtos, ltos);
   261   if (value == 0) {
   262     __ xorl(rax, rax);
   263   } else {
   264     __ movl(rax, value);
   265   }
   266 }
   268 void TemplateTable::fconst(int value) {
   269   transition(vtos, ftos);
   270   static float one = 1.0f, two = 2.0f;
   271   switch (value) {
   272   case 0:
   273     __ xorps(xmm0, xmm0);
   274     break;
   275   case 1:
   276     __ movflt(xmm0, ExternalAddress((address) &one));
   277     break;
   278   case 2:
   279     __ movflt(xmm0, ExternalAddress((address) &two));
   280     break;
   281   default:
   282     ShouldNotReachHere();
   283     break;
   284   }
   285 }
   287 void TemplateTable::dconst(int value) {
   288   transition(vtos, dtos);
   289   static double one = 1.0;
   290   switch (value) {
   291   case 0:
   292     __ xorpd(xmm0, xmm0);
   293     break;
   294   case 1:
   295     __ movdbl(xmm0, ExternalAddress((address) &one));
   296     break;
   297   default:
   298     ShouldNotReachHere();
   299     break;
   300   }
   301 }
   303 void TemplateTable::bipush() {
   304   transition(vtos, itos);
   305   __ load_signed_byte(rax, at_bcp(1));
   306 }
   308 void TemplateTable::sipush() {
   309   transition(vtos, itos);
   310   __ load_unsigned_word(rax, at_bcp(1));
   311   __ bswapl(rax);
   312   __ sarl(rax, 16);
   313 }
   315 void TemplateTable::ldc(bool wide) {
   316   transition(vtos, vtos);
   317   Label call_ldc, notFloat, notClass, Done;
   319   if (wide) {
   320     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   321   } else {
   322     __ load_unsigned_byte(rbx, at_bcp(1));
   323   }
   325   __ get_cpool_and_tags(rcx, rax);
   326   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   327   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   329   // get type
   330   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   332   // unresolved string - get the resolved string
   333   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   334   __ jccb(Assembler::equal, call_ldc);
   336   // unresolved class - get the resolved class
   337   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   338   __ jccb(Assembler::equal, call_ldc);
   340   // unresolved class in error state - call into runtime to throw the error
   341   // from the first resolution attempt
   342   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   343   __ jccb(Assembler::equal, call_ldc);
   345   // resolved class - need to call vm to get java mirror of the class
   346   __ cmpl(rdx, JVM_CONSTANT_Class);
   347   __ jcc(Assembler::notEqual, notClass);
   349   __ bind(call_ldc);
   350   __ movl(c_rarg1, wide);
   351   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   352   __ push_ptr(rax);
   353   __ verify_oop(rax);
   354   __ jmp(Done);
   356   __ bind(notClass);
   357   __ cmpl(rdx, JVM_CONSTANT_Float);
   358   __ jccb(Assembler::notEqual, notFloat);
   359   // ftos
   360   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   361   __ push_f();
   362   __ jmp(Done);
   364   __ bind(notFloat);
   365 #ifdef ASSERT
   366   {
   367     Label L;
   368     __ cmpl(rdx, JVM_CONSTANT_Integer);
   369     __ jcc(Assembler::equal, L);
   370     __ cmpl(rdx, JVM_CONSTANT_String);
   371     __ jcc(Assembler::equal, L);
   372     __ stop("unexpected tag type in ldc");
   373     __ bind(L);
   374   }
   375 #endif
   376   // atos and itos
   377   Label isOop;
   378   __ cmpl(rdx, JVM_CONSTANT_Integer);
   379   __ jcc(Assembler::notEqual, isOop);
   380   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   381   __ push_i(rax);
   382   __ jmp(Done);
   384   __ bind(isOop);
   385   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   386   __ push_ptr(rax);
   388   if (VerifyOops) {
   389     __ verify_oop(rax);
   390   }
   392   __ bind(Done);
   393 }
   395 void TemplateTable::ldc2_w() {
   396   transition(vtos, vtos);
   397   Label Long, Done;
   398   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   400   __ get_cpool_and_tags(rcx, rax);
   401   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   402   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   404   // get type
   405   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   406           JVM_CONSTANT_Double);
   407   __ jccb(Assembler::notEqual, Long);
   408   // dtos
   409   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   410   __ push_d();
   411   __ jmpb(Done);
   413   __ bind(Long);
   414   // ltos
   415   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   416   __ push_l();
   418   __ bind(Done);
   419 }
   421 void TemplateTable::locals_index(Register reg, int offset) {
   422   __ load_unsigned_byte(reg, at_bcp(offset));
   423   __ negptr(reg);
   424   if (TaggedStackInterpreter) __ shlptr(reg, 1);  // index = index*2
   425 }
   427 void TemplateTable::iload() {
   428   transition(vtos, itos);
   429   if (RewriteFrequentPairs) {
   430     Label rewrite, done;
   431     const Register bc = c_rarg3;
   432     assert(rbx != bc, "register damaged");
   434     // get next byte
   435     __ load_unsigned_byte(rbx,
   436                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   437     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   438     // last two iloads in a pair.  Comparing against fast_iload means that
   439     // the next bytecode is neither an iload or a caload, and therefore
   440     // an iload pair.
   441     __ cmpl(rbx, Bytecodes::_iload);
   442     __ jcc(Assembler::equal, done);
   444     __ cmpl(rbx, Bytecodes::_fast_iload);
   445     __ movl(bc, Bytecodes::_fast_iload2);
   446     __ jccb(Assembler::equal, rewrite);
   448     // if _caload, rewrite to fast_icaload
   449     __ cmpl(rbx, Bytecodes::_caload);
   450     __ movl(bc, Bytecodes::_fast_icaload);
   451     __ jccb(Assembler::equal, rewrite);
   453     // rewrite so iload doesn't check again.
   454     __ movl(bc, Bytecodes::_fast_iload);
   456     // rewrite
   457     // bc: fast bytecode
   458     __ bind(rewrite);
   459     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   460     __ bind(done);
   461   }
   463   // Get the local value into tos
   464   locals_index(rbx);
   465   __ movl(rax, iaddress(rbx));
   466   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   467 }
   469 void TemplateTable::fast_iload2() {
   470   transition(vtos, itos);
   471   locals_index(rbx);
   472   __ movl(rax, iaddress(rbx));
   473   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   474   __ push(itos);
   475   locals_index(rbx, 3);
   476   __ movl(rax, iaddress(rbx));
   477   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   478 }
   480 void TemplateTable::fast_iload() {
   481   transition(vtos, itos);
   482   locals_index(rbx);
   483   __ movl(rax, iaddress(rbx));
   484   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   485 }
   487 void TemplateTable::lload() {
   488   transition(vtos, ltos);
   489   locals_index(rbx);
   490   __ movq(rax, laddress(rbx));
   491   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   492 }
   494 void TemplateTable::fload() {
   495   transition(vtos, ftos);
   496   locals_index(rbx);
   497   __ movflt(xmm0, faddress(rbx));
   498   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   499 }
   501 void TemplateTable::dload() {
   502   transition(vtos, dtos);
   503   locals_index(rbx);
   504   __ movdbl(xmm0, daddress(rbx));
   505   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   506 }
   508 void TemplateTable::aload() {
   509   transition(vtos, atos);
   510   locals_index(rbx);
   511   __ movptr(rax, aaddress(rbx));
   512   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   513 }
   515 void TemplateTable::locals_index_wide(Register reg) {
   516   __ movl(reg, at_bcp(2));
   517   __ bswapl(reg);
   518   __ shrl(reg, 16);
   519   __ negptr(reg);
   520   if (TaggedStackInterpreter) __ shlptr(reg, 1);  // index = index*2
   521 }
   523 void TemplateTable::wide_iload() {
   524   transition(vtos, itos);
   525   locals_index_wide(rbx);
   526   __ movl(rax, iaddress(rbx));
   527   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   528 }
   530 void TemplateTable::wide_lload() {
   531   transition(vtos, ltos);
   532   locals_index_wide(rbx);
   533   __ movq(rax, laddress(rbx));
   534   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   535 }
   537 void TemplateTable::wide_fload() {
   538   transition(vtos, ftos);
   539   locals_index_wide(rbx);
   540   __ movflt(xmm0, faddress(rbx));
   541   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   542 }
   544 void TemplateTable::wide_dload() {
   545   transition(vtos, dtos);
   546   locals_index_wide(rbx);
   547   __ movdbl(xmm0, daddress(rbx));
   548   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   549 }
   551 void TemplateTable::wide_aload() {
   552   transition(vtos, atos);
   553   locals_index_wide(rbx);
   554   __ movptr(rax, aaddress(rbx));
   555   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   556 }
   558 void TemplateTable::index_check(Register array, Register index) {
   559   // destroys rbx
   560   // check array
   561   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   562   // sign extend index for use by indexed load
   563   __ movl2ptr(index, index);
   564   // check index
   565   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   566   if (index != rbx) {
   567     // ??? convention: move aberrant index into ebx for exception message
   568     assert(rbx != array, "different registers");
   569     __ movl(rbx, index);
   570   }
   571   __ jump_cc(Assembler::aboveEqual,
   572              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   573 }
   575 void TemplateTable::iaload() {
   576   transition(itos, itos);
   577   __ pop_ptr(rdx);
   578   // eax: index
   579   // rdx: array
   580   index_check(rdx, rax); // kills rbx
   581   __ movl(rax, Address(rdx, rax,
   582                        Address::times_4,
   583                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   584 }
   586 void TemplateTable::laload() {
   587   transition(itos, ltos);
   588   __ pop_ptr(rdx);
   589   // eax: index
   590   // rdx: array
   591   index_check(rdx, rax); // kills rbx
   592   __ movq(rax, Address(rdx, rbx,
   593                        Address::times_8,
   594                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   595 }
   597 void TemplateTable::faload() {
   598   transition(itos, ftos);
   599   __ pop_ptr(rdx);
   600   // eax: index
   601   // rdx: array
   602   index_check(rdx, rax); // kills rbx
   603   __ movflt(xmm0, Address(rdx, rax,
   604                          Address::times_4,
   605                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   606 }
   608 void TemplateTable::daload() {
   609   transition(itos, dtos);
   610   __ pop_ptr(rdx);
   611   // eax: index
   612   // rdx: array
   613   index_check(rdx, rax); // kills rbx
   614   __ movdbl(xmm0, Address(rdx, rax,
   615                           Address::times_8,
   616                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   617 }
   619 void TemplateTable::aaload() {
   620   transition(itos, atos);
   621   __ pop_ptr(rdx);
   622   // eax: index
   623   // rdx: array
   624   index_check(rdx, rax); // kills rbx
   625   __ load_heap_oop(rax, Address(rdx, rax,
   626                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   627                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   628 }
   630 void TemplateTable::baload() {
   631   transition(itos, itos);
   632   __ pop_ptr(rdx);
   633   // eax: index
   634   // rdx: array
   635   index_check(rdx, rax); // kills rbx
   636   __ load_signed_byte(rax,
   637                       Address(rdx, rax,
   638                               Address::times_1,
   639                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   640 }
   642 void TemplateTable::caload() {
   643   transition(itos, itos);
   644   __ pop_ptr(rdx);
   645   // eax: index
   646   // rdx: array
   647   index_check(rdx, rax); // kills rbx
   648   __ load_unsigned_word(rax,
   649                         Address(rdx, rax,
   650                                 Address::times_2,
   651                                 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   652 }
   654 // iload followed by caload frequent pair
   655 void TemplateTable::fast_icaload() {
   656   transition(vtos, itos);
   657   // load index out of locals
   658   locals_index(rbx);
   659   __ movl(rax, iaddress(rbx));
   660   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   662   // eax: index
   663   // rdx: array
   664   __ pop_ptr(rdx);
   665   index_check(rdx, rax); // kills rbx
   666   __ load_unsigned_word(rax,
   667                         Address(rdx, rax,
   668                                 Address::times_2,
   669                                 arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   670 }
   672 void TemplateTable::saload() {
   673   transition(itos, itos);
   674   __ pop_ptr(rdx);
   675   // eax: index
   676   // rdx: array
   677   index_check(rdx, rax); // kills rbx
   678   __ load_signed_word(rax,
   679                       Address(rdx, rax,
   680                               Address::times_2,
   681                               arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   682 }
   684 void TemplateTable::iload(int n) {
   685   transition(vtos, itos);
   686   __ movl(rax, iaddress(n));
   687   debug_only(__ verify_local_tag(frame::TagValue, n));
   688 }
   690 void TemplateTable::lload(int n) {
   691   transition(vtos, ltos);
   692   __ movq(rax, laddress(n));
   693   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   694 }
   696 void TemplateTable::fload(int n) {
   697   transition(vtos, ftos);
   698   __ movflt(xmm0, faddress(n));
   699   debug_only(__ verify_local_tag(frame::TagValue, n));
   700 }
   702 void TemplateTable::dload(int n) {
   703   transition(vtos, dtos);
   704   __ movdbl(xmm0, daddress(n));
   705   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   706 }
   708 void TemplateTable::aload(int n) {
   709   transition(vtos, atos);
   710   __ movptr(rax, aaddress(n));
   711   debug_only(__ verify_local_tag(frame::TagReference, n));
   712 }
   714 void TemplateTable::aload_0() {
   715   transition(vtos, atos);
   716   // According to bytecode histograms, the pairs:
   717   //
   718   // _aload_0, _fast_igetfield
   719   // _aload_0, _fast_agetfield
   720   // _aload_0, _fast_fgetfield
   721   //
   722   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   723   // _aload_0 bytecode checks if the next bytecode is either
   724   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   725   // rewrites the current bytecode into a pair bytecode; otherwise it
   726   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   727   // the pair check anymore.
   728   //
   729   // Note: If the next bytecode is _getfield, the rewrite must be
   730   //       delayed, otherwise we may miss an opportunity for a pair.
   731   //
   732   // Also rewrite frequent pairs
   733   //   aload_0, aload_1
   734   //   aload_0, iload_1
   735   // These bytecodes with a small amount of code are most profitable
   736   // to rewrite
   737   if (RewriteFrequentPairs) {
   738     Label rewrite, done;
   739     const Register bc = c_rarg3;
   740     assert(rbx != bc, "register damaged");
   741     // get next byte
   742     __ load_unsigned_byte(rbx,
   743                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   745     // do actual aload_0
   746     aload(0);
   748     // if _getfield then wait with rewrite
   749     __ cmpl(rbx, Bytecodes::_getfield);
   750     __ jcc(Assembler::equal, done);
   752     // if _igetfield then reqrite to _fast_iaccess_0
   753     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   754            Bytecodes::_aload_0,
   755            "fix bytecode definition");
   756     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   757     __ movl(bc, Bytecodes::_fast_iaccess_0);
   758     __ jccb(Assembler::equal, rewrite);
   760     // if _agetfield then reqrite to _fast_aaccess_0
   761     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   762            Bytecodes::_aload_0,
   763            "fix bytecode definition");
   764     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   765     __ movl(bc, Bytecodes::_fast_aaccess_0);
   766     __ jccb(Assembler::equal, rewrite);
   768     // if _fgetfield then reqrite to _fast_faccess_0
   769     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   770            Bytecodes::_aload_0,
   771            "fix bytecode definition");
   772     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   773     __ movl(bc, Bytecodes::_fast_faccess_0);
   774     __ jccb(Assembler::equal, rewrite);
   776     // else rewrite to _fast_aload0
   777     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   778            Bytecodes::_aload_0,
   779            "fix bytecode definition");
   780     __ movl(bc, Bytecodes::_fast_aload_0);
   782     // rewrite
   783     // bc: fast bytecode
   784     __ bind(rewrite);
   785     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   787     __ bind(done);
   788   } else {
   789     aload(0);
   790   }
   791 }
   793 void TemplateTable::istore() {
   794   transition(itos, vtos);
   795   locals_index(rbx);
   796   __ movl(iaddress(rbx), rax);
   797   __ tag_local(frame::TagValue, rbx);
   798 }
   800 void TemplateTable::lstore() {
   801   transition(ltos, vtos);
   802   locals_index(rbx);
   803   __ movq(laddress(rbx), rax);
   804   __ tag_local(frame::TagCategory2, rbx);
   805 }
   807 void TemplateTable::fstore() {
   808   transition(ftos, vtos);
   809   locals_index(rbx);
   810   __ movflt(faddress(rbx), xmm0);
   811   __ tag_local(frame::TagValue, rbx);
   812 }
   814 void TemplateTable::dstore() {
   815   transition(dtos, vtos);
   816   locals_index(rbx);
   817   __ movdbl(daddress(rbx), xmm0);
   818   __ tag_local(frame::TagCategory2, rbx);
   819 }
   821 void TemplateTable::astore() {
   822   transition(vtos, vtos);
   823   __ pop_ptr(rax, rdx);    // will need to pop tag too
   824   locals_index(rbx);
   825   __ movptr(aaddress(rbx), rax);
   826   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   827 }
   829 void TemplateTable::wide_istore() {
   830   transition(vtos, vtos);
   831   __ pop_i();
   832   locals_index_wide(rbx);
   833   __ movl(iaddress(rbx), rax);
   834   __ tag_local(frame::TagValue, rbx);
   835 }
   837 void TemplateTable::wide_lstore() {
   838   transition(vtos, vtos);
   839   __ pop_l();
   840   locals_index_wide(rbx);
   841   __ movq(laddress(rbx), rax);
   842   __ tag_local(frame::TagCategory2, rbx);
   843 }
   845 void TemplateTable::wide_fstore() {
   846   transition(vtos, vtos);
   847   __ pop_f();
   848   locals_index_wide(rbx);
   849   __ movflt(faddress(rbx), xmm0);
   850   __ tag_local(frame::TagValue, rbx);
   851 }
   853 void TemplateTable::wide_dstore() {
   854   transition(vtos, vtos);
   855   __ pop_d();
   856   locals_index_wide(rbx);
   857   __ movdbl(daddress(rbx), xmm0);
   858   __ tag_local(frame::TagCategory2, rbx);
   859 }
   861 void TemplateTable::wide_astore() {
   862   transition(vtos, vtos);
   863   __ pop_ptr(rax, rdx);    // will need to pop tag too
   864   locals_index_wide(rbx);
   865   __ movptr(aaddress(rbx), rax);
   866   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
   867 }
   869 void TemplateTable::iastore() {
   870   transition(itos, vtos);
   871   __ pop_i(rbx);
   872   __ pop_ptr(rdx);
   873   // eax: value
   874   // ebx: index
   875   // rdx: array
   876   index_check(rdx, rbx); // prefer index in ebx
   877   __ movl(Address(rdx, rbx,
   878                   Address::times_4,
   879                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   880           rax);
   881 }
   883 void TemplateTable::lastore() {
   884   transition(ltos, vtos);
   885   __ pop_i(rbx);
   886   __ pop_ptr(rdx);
   887   // rax: value
   888   // ebx: index
   889   // rdx: array
   890   index_check(rdx, rbx); // prefer index in ebx
   891   __ movq(Address(rdx, rbx,
   892                   Address::times_8,
   893                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   894           rax);
   895 }
   897 void TemplateTable::fastore() {
   898   transition(ftos, vtos);
   899   __ pop_i(rbx);
   900   __ pop_ptr(rdx);
   901   // xmm0: value
   902   // ebx:  index
   903   // rdx:  array
   904   index_check(rdx, rbx); // prefer index in ebx
   905   __ movflt(Address(rdx, rbx,
   906                    Address::times_4,
   907                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   908            xmm0);
   909 }
   911 void TemplateTable::dastore() {
   912   transition(dtos, vtos);
   913   __ pop_i(rbx);
   914   __ pop_ptr(rdx);
   915   // xmm0: value
   916   // ebx:  index
   917   // rdx:  array
   918   index_check(rdx, rbx); // prefer index in ebx
   919   __ movdbl(Address(rdx, rbx,
   920                    Address::times_8,
   921                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   922            xmm0);
   923 }
   925 void TemplateTable::aastore() {
   926   Label is_null, ok_is_subtype, done;
   927   transition(vtos, vtos);
   928   // stack: ..., array, index, value
   929   __ movptr(rax, at_tos());    // value
   930   __ movl(rcx, at_tos_p1()); // index
   931   __ movptr(rdx, at_tos_p2()); // array
   933   Address element_address(rdx, rcx,
   934                           UseCompressedOops? Address::times_4 : Address::times_8,
   935                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   937   index_check(rdx, rcx);     // kills rbx
   938   // do array store check - check for NULL value first
   939   __ testptr(rax, rax);
   940   __ jcc(Assembler::zero, is_null);
   942   // Move subklass into rbx
   943   __ load_klass(rbx, rax);
   944   // Move superklass into rax
   945   __ load_klass(rax, rdx);
   946   __ movptr(rax, Address(rax,
   947                          sizeof(oopDesc) +
   948                          objArrayKlass::element_klass_offset_in_bytes()));
   949   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   950   __ lea(rdx, element_address);
   952   // Generate subtype check.  Blows rcx, rdi
   953   // Superklass in rax.  Subklass in rbx.
   954   __ gen_subtype_check(rbx, ok_is_subtype);
   956   // Come here on failure
   957   // object is at TOS
   958   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   960   // Come here on success
   961   __ bind(ok_is_subtype);
   963   // Get the value we will store
   964   __ movptr(rax, at_tos());
   965   // Now store using the appropriate barrier
   966   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   967   __ jmp(done);
   969   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   970   __ bind(is_null);
   971   __ profile_null_seen(rbx);
   973   // Store a NULL
   974   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   976   // Pop stack arguments
   977   __ bind(done);
   978   __ addptr(rsp, 3 * Interpreter::stackElementSize());
   979 }
   981 void TemplateTable::bastore() {
   982   transition(itos, vtos);
   983   __ pop_i(rbx);
   984   __ pop_ptr(rdx);
   985   // eax: value
   986   // ebx: index
   987   // rdx: array
   988   index_check(rdx, rbx); // prefer index in ebx
   989   __ movb(Address(rdx, rbx,
   990                   Address::times_1,
   991                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
   992           rax);
   993 }
   995 void TemplateTable::castore() {
   996   transition(itos, vtos);
   997   __ pop_i(rbx);
   998   __ pop_ptr(rdx);
   999   // eax: value
  1000   // ebx: index
  1001   // rdx: array
  1002   index_check(rdx, rbx);  // prefer index in ebx
  1003   __ movw(Address(rdx, rbx,
  1004                   Address::times_2,
  1005                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1006           rax);
  1009 void TemplateTable::sastore() {
  1010   castore();
  1013 void TemplateTable::istore(int n) {
  1014   transition(itos, vtos);
  1015   __ movl(iaddress(n), rax);
  1016   __ tag_local(frame::TagValue, n);
  1019 void TemplateTable::lstore(int n) {
  1020   transition(ltos, vtos);
  1021   __ movq(laddress(n), rax);
  1022   __ tag_local(frame::TagCategory2, n);
  1025 void TemplateTable::fstore(int n) {
  1026   transition(ftos, vtos);
  1027   __ movflt(faddress(n), xmm0);
  1028   __ tag_local(frame::TagValue, n);
  1031 void TemplateTable::dstore(int n) {
  1032   transition(dtos, vtos);
  1033   __ movdbl(daddress(n), xmm0);
  1034   __ tag_local(frame::TagCategory2, n);
  1037 void TemplateTable::astore(int n) {
  1038   transition(vtos, vtos);
  1039   __ pop_ptr(rax, rdx);
  1040   __ movptr(aaddress(n), rax);
  1041   __ tag_local(rdx, n);
  1044 void TemplateTable::pop() {
  1045   transition(vtos, vtos);
  1046   __ addptr(rsp, Interpreter::stackElementSize());
  1049 void TemplateTable::pop2() {
  1050   transition(vtos, vtos);
  1051   __ addptr(rsp, 2 * Interpreter::stackElementSize());
  1054 void TemplateTable::dup() {
  1055   transition(vtos, vtos);
  1056   __ load_ptr_and_tag(0, rax, rdx);
  1057   __ push_ptr(rax, rdx);
  1058   // stack: ..., a, a
  1061 void TemplateTable::dup_x1() {
  1062   transition(vtos, vtos);
  1063   // stack: ..., a, b
  1064   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1065   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1066   __ store_ptr_and_tag(1, rax, rdx); // store b
  1067   __ store_ptr_and_tag(0, rcx, rbx); // store a
  1068   __ push_ptr(rax, rdx);             // push b
  1069   // stack: ..., b, a, b
  1072 void TemplateTable::dup_x2() {
  1073   transition(vtos, vtos);
  1074   // stack: ..., a, b, c
  1075   __ load_ptr_and_tag(0, rax, rdx);  // load c
  1076   __ load_ptr_and_tag(2, rcx, rbx);  // load a
  1077   __ store_ptr_and_tag(2, rax, rdx); // store c in a
  1078   __ push_ptr(rax, rdx);             // push c
  1079   // stack: ..., c, b, c, c
  1080   __ load_ptr_and_tag(2, rax, rdx);  // load b
  1081   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
  1082   // stack: ..., c, a, c, c
  1083   __ store_ptr_and_tag(1, rax, rdx); // store b in c
  1084   // stack: ..., c, a, b, c
  1087 void TemplateTable::dup2() {
  1088   transition(vtos, vtos);
  1089   // stack: ..., a, b
  1090   __ load_ptr_and_tag(1, rax, rdx);  // load a
  1091   __ push_ptr(rax, rdx);             // push a
  1092   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1093   __ push_ptr(rax, rdx);             // push b
  1094   // stack: ..., a, b, a, b
  1097 void TemplateTable::dup2_x1() {
  1098   transition(vtos, vtos);
  1099   // stack: ..., a, b, c
  1100   __ load_ptr_and_tag(0, rcx, rbx);  // load c
  1101   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1102   __ push_ptr(rax, rdx);             // push b
  1103   __ push_ptr(rcx, rbx);             // push c
  1104   // stack: ..., a, b, c, b, c
  1105   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
  1106   // stack: ..., a, c, c, b, c
  1107   __ load_ptr_and_tag(4, rcx, rbx);  // load a
  1108   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
  1109   // stack: ..., a, c, a, b, c
  1110   __ store_ptr_and_tag(4, rax, rdx); // store b in a
  1111   // stack: ..., b, c, a, b, c
  1114 void TemplateTable::dup2_x2() {
  1115   transition(vtos, vtos);
  1116   // stack: ..., a, b, c, d
  1117   __ load_ptr_and_tag(0, rcx, rbx);  // load d
  1118   __ load_ptr_and_tag(1, rax, rdx);  // load c
  1119   __ push_ptr(rax, rdx);             // push c
  1120   __ push_ptr(rcx, rbx);             // push d
  1121   // stack: ..., a, b, c, d, c, d
  1122   __ load_ptr_and_tag(4, rax, rdx);  // load b
  1123   __ store_ptr_and_tag(2, rax, rdx); // store b in d
  1124   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
  1125   // stack: ..., a, d, c, b, c, d
  1126   __ load_ptr_and_tag(5, rcx, rbx);  // load a
  1127   __ load_ptr_and_tag(3, rax, rdx);  // load c
  1128   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
  1129   __ store_ptr_and_tag(5, rax, rdx); // store c in a
  1130   // stack: ..., c, d, a, b, c, d
  1133 void TemplateTable::swap() {
  1134   transition(vtos, vtos);
  1135   // stack: ..., a, b
  1136   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1137   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1138   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
  1139   __ store_ptr_and_tag(1, rax, rdx); // store b in a
  1140   // stack: ..., b, a
  1143 void TemplateTable::iop2(Operation op) {
  1144   transition(itos, itos);
  1145   switch (op) {
  1146   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1147   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1148   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1149   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1150   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1151   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1152   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1153   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1154   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1155   default   : ShouldNotReachHere();
  1159 void TemplateTable::lop2(Operation op) {
  1160   transition(ltos, ltos);
  1161   switch (op) {
  1162   case add  :                    __ pop_l(rdx); __ addptr (rax, rdx); break;
  1163   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr (rax, rdx); break;
  1164   case _and :                    __ pop_l(rdx); __ andptr (rax, rdx); break;
  1165   case _or  :                    __ pop_l(rdx); __ orptr  (rax, rdx); break;
  1166   case _xor :                    __ pop_l(rdx); __ xorptr (rax, rdx); break;
  1167   default : ShouldNotReachHere();
  1171 void TemplateTable::idiv() {
  1172   transition(itos, itos);
  1173   __ movl(rcx, rax);
  1174   __ pop_i(rax);
  1175   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1176   //       they are not equal, one could do a normal division (no correction
  1177   //       needed), which may speed up this implementation for the common case.
  1178   //       (see also JVM spec., p.243 & p.271)
  1179   __ corrected_idivl(rcx);
  1182 void TemplateTable::irem() {
  1183   transition(itos, itos);
  1184   __ movl(rcx, rax);
  1185   __ pop_i(rax);
  1186   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1187   //       they are not equal, one could do a normal division (no correction
  1188   //       needed), which may speed up this implementation for the common case.
  1189   //       (see also JVM spec., p.243 & p.271)
  1190   __ corrected_idivl(rcx);
  1191   __ movl(rax, rdx);
  1194 void TemplateTable::lmul() {
  1195   transition(ltos, ltos);
  1196   __ pop_l(rdx);
  1197   __ imulq(rax, rdx);
  1200 void TemplateTable::ldiv() {
  1201   transition(ltos, ltos);
  1202   __ mov(rcx, rax);
  1203   __ pop_l(rax);
  1204   // generate explicit div0 check
  1205   __ testq(rcx, rcx);
  1206   __ jump_cc(Assembler::zero,
  1207              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1208   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1209   //       they are not equal, one could do a normal division (no correction
  1210   //       needed), which may speed up this implementation for the common case.
  1211   //       (see also JVM spec., p.243 & p.271)
  1212   __ corrected_idivq(rcx); // kills rbx
  1215 void TemplateTable::lrem() {
  1216   transition(ltos, ltos);
  1217   __ mov(rcx, rax);
  1218   __ pop_l(rax);
  1219   __ testq(rcx, rcx);
  1220   __ jump_cc(Assembler::zero,
  1221              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1222   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1223   //       they are not equal, one could do a normal division (no correction
  1224   //       needed), which may speed up this implementation for the common case.
  1225   //       (see also JVM spec., p.243 & p.271)
  1226   __ corrected_idivq(rcx); // kills rbx
  1227   __ mov(rax, rdx);
  1230 void TemplateTable::lshl() {
  1231   transition(itos, ltos);
  1232   __ movl(rcx, rax);                             // get shift count
  1233   __ pop_l(rax);                                 // get shift value
  1234   __ shlq(rax);
  1237 void TemplateTable::lshr() {
  1238   transition(itos, ltos);
  1239   __ movl(rcx, rax);                             // get shift count
  1240   __ pop_l(rax);                                 // get shift value
  1241   __ sarq(rax);
  1244 void TemplateTable::lushr() {
  1245   transition(itos, ltos);
  1246   __ movl(rcx, rax);                             // get shift count
  1247   __ pop_l(rax);                                 // get shift value
  1248   __ shrq(rax);
  1251 void TemplateTable::fop2(Operation op) {
  1252   transition(ftos, ftos);
  1253   switch (op) {
  1254   case add:
  1255     __ addss(xmm0, at_rsp());
  1256     __ addptr(rsp, Interpreter::stackElementSize());
  1257     break;
  1258   case sub:
  1259     __ movflt(xmm1, xmm0);
  1260     __ pop_f(xmm0);
  1261     __ subss(xmm0, xmm1);
  1262     break;
  1263   case mul:
  1264     __ mulss(xmm0, at_rsp());
  1265     __ addptr(rsp, Interpreter::stackElementSize());
  1266     break;
  1267   case div:
  1268     __ movflt(xmm1, xmm0);
  1269     __ pop_f(xmm0);
  1270     __ divss(xmm0, xmm1);
  1271     break;
  1272   case rem:
  1273     __ movflt(xmm1, xmm0);
  1274     __ pop_f(xmm0);
  1275     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1276     break;
  1277   default:
  1278     ShouldNotReachHere();
  1279     break;
  1283 void TemplateTable::dop2(Operation op) {
  1284   transition(dtos, dtos);
  1285   switch (op) {
  1286   case add:
  1287     __ addsd(xmm0, at_rsp());
  1288     __ addptr(rsp, 2 * Interpreter::stackElementSize());
  1289     break;
  1290   case sub:
  1291     __ movdbl(xmm1, xmm0);
  1292     __ pop_d(xmm0);
  1293     __ subsd(xmm0, xmm1);
  1294     break;
  1295   case mul:
  1296     __ mulsd(xmm0, at_rsp());
  1297     __ addptr(rsp, 2 * Interpreter::stackElementSize());
  1298     break;
  1299   case div:
  1300     __ movdbl(xmm1, xmm0);
  1301     __ pop_d(xmm0);
  1302     __ divsd(xmm0, xmm1);
  1303     break;
  1304   case rem:
  1305     __ movdbl(xmm1, xmm0);
  1306     __ pop_d(xmm0);
  1307     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1308     break;
  1309   default:
  1310     ShouldNotReachHere();
  1311     break;
  1315 void TemplateTable::ineg() {
  1316   transition(itos, itos);
  1317   __ negl(rax);
  1320 void TemplateTable::lneg() {
  1321   transition(ltos, ltos);
  1322   __ negq(rax);
  1325 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1326 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1327   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1328   // of 128-bits operands for SSE instructions.
  1329   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1330   // Store the value to a 128-bits operand.
  1331   operand[0] = lo;
  1332   operand[1] = hi;
  1333   return operand;
  1336 // Buffer for 128-bits masks used by SSE instructions.
  1337 static jlong float_signflip_pool[2*2];
  1338 static jlong double_signflip_pool[2*2];
  1340 void TemplateTable::fneg() {
  1341   transition(ftos, ftos);
  1342   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1343   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1346 void TemplateTable::dneg() {
  1347   transition(dtos, dtos);
  1348   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1349   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1352 void TemplateTable::iinc() {
  1353   transition(vtos, vtos);
  1354   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1355   locals_index(rbx);
  1356   __ addl(iaddress(rbx), rdx);
  1359 void TemplateTable::wide_iinc() {
  1360   transition(vtos, vtos);
  1361   __ movl(rdx, at_bcp(4)); // get constant
  1362   locals_index_wide(rbx);
  1363   __ bswapl(rdx); // swap bytes & sign-extend constant
  1364   __ sarl(rdx, 16);
  1365   __ addl(iaddress(rbx), rdx);
  1366   // Note: should probably use only one movl to get both
  1367   //       the index and the constant -> fix this
  1370 void TemplateTable::convert() {
  1371   // Checking
  1372 #ifdef ASSERT
  1374     TosState tos_in  = ilgl;
  1375     TosState tos_out = ilgl;
  1376     switch (bytecode()) {
  1377     case Bytecodes::_i2l: // fall through
  1378     case Bytecodes::_i2f: // fall through
  1379     case Bytecodes::_i2d: // fall through
  1380     case Bytecodes::_i2b: // fall through
  1381     case Bytecodes::_i2c: // fall through
  1382     case Bytecodes::_i2s: tos_in = itos; break;
  1383     case Bytecodes::_l2i: // fall through
  1384     case Bytecodes::_l2f: // fall through
  1385     case Bytecodes::_l2d: tos_in = ltos; break;
  1386     case Bytecodes::_f2i: // fall through
  1387     case Bytecodes::_f2l: // fall through
  1388     case Bytecodes::_f2d: tos_in = ftos; break;
  1389     case Bytecodes::_d2i: // fall through
  1390     case Bytecodes::_d2l: // fall through
  1391     case Bytecodes::_d2f: tos_in = dtos; break;
  1392     default             : ShouldNotReachHere();
  1394     switch (bytecode()) {
  1395     case Bytecodes::_l2i: // fall through
  1396     case Bytecodes::_f2i: // fall through
  1397     case Bytecodes::_d2i: // fall through
  1398     case Bytecodes::_i2b: // fall through
  1399     case Bytecodes::_i2c: // fall through
  1400     case Bytecodes::_i2s: tos_out = itos; break;
  1401     case Bytecodes::_i2l: // fall through
  1402     case Bytecodes::_f2l: // fall through
  1403     case Bytecodes::_d2l: tos_out = ltos; break;
  1404     case Bytecodes::_i2f: // fall through
  1405     case Bytecodes::_l2f: // fall through
  1406     case Bytecodes::_d2f: tos_out = ftos; break;
  1407     case Bytecodes::_i2d: // fall through
  1408     case Bytecodes::_l2d: // fall through
  1409     case Bytecodes::_f2d: tos_out = dtos; break;
  1410     default             : ShouldNotReachHere();
  1412     transition(tos_in, tos_out);
  1414 #endif // ASSERT
  1416   static const int64_t is_nan = 0x8000000000000000L;
  1418   // Conversion
  1419   switch (bytecode()) {
  1420   case Bytecodes::_i2l:
  1421     __ movslq(rax, rax);
  1422     break;
  1423   case Bytecodes::_i2f:
  1424     __ cvtsi2ssl(xmm0, rax);
  1425     break;
  1426   case Bytecodes::_i2d:
  1427     __ cvtsi2sdl(xmm0, rax);
  1428     break;
  1429   case Bytecodes::_i2b:
  1430     __ movsbl(rax, rax);
  1431     break;
  1432   case Bytecodes::_i2c:
  1433     __ movzwl(rax, rax);
  1434     break;
  1435   case Bytecodes::_i2s:
  1436     __ movswl(rax, rax);
  1437     break;
  1438   case Bytecodes::_l2i:
  1439     __ movl(rax, rax);
  1440     break;
  1441   case Bytecodes::_l2f:
  1442     __ cvtsi2ssq(xmm0, rax);
  1443     break;
  1444   case Bytecodes::_l2d:
  1445     __ cvtsi2sdq(xmm0, rax);
  1446     break;
  1447   case Bytecodes::_f2i:
  1449     Label L;
  1450     __ cvttss2sil(rax, xmm0);
  1451     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1452     __ jcc(Assembler::notEqual, L);
  1453     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1454     __ bind(L);
  1456     break;
  1457   case Bytecodes::_f2l:
  1459     Label L;
  1460     __ cvttss2siq(rax, xmm0);
  1461     // NaN or overflow/underflow?
  1462     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1463     __ jcc(Assembler::notEqual, L);
  1464     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1465     __ bind(L);
  1467     break;
  1468   case Bytecodes::_f2d:
  1469     __ cvtss2sd(xmm0, xmm0);
  1470     break;
  1471   case Bytecodes::_d2i:
  1473     Label L;
  1474     __ cvttsd2sil(rax, xmm0);
  1475     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1476     __ jcc(Assembler::notEqual, L);
  1477     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1478     __ bind(L);
  1480     break;
  1481   case Bytecodes::_d2l:
  1483     Label L;
  1484     __ cvttsd2siq(rax, xmm0);
  1485     // NaN or overflow/underflow?
  1486     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1487     __ jcc(Assembler::notEqual, L);
  1488     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1489     __ bind(L);
  1491     break;
  1492   case Bytecodes::_d2f:
  1493     __ cvtsd2ss(xmm0, xmm0);
  1494     break;
  1495   default:
  1496     ShouldNotReachHere();
  1500 void TemplateTable::lcmp() {
  1501   transition(ltos, itos);
  1502   Label done;
  1503   __ pop_l(rdx);
  1504   __ cmpq(rdx, rax);
  1505   __ movl(rax, -1);
  1506   __ jccb(Assembler::less, done);
  1507   __ setb(Assembler::notEqual, rax);
  1508   __ movzbl(rax, rax);
  1509   __ bind(done);
  1512 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1513   Label done;
  1514   if (is_float) {
  1515     // XXX get rid of pop here, use ... reg, mem32
  1516     __ pop_f(xmm1);
  1517     __ ucomiss(xmm1, xmm0);
  1518   } else {
  1519     // XXX get rid of pop here, use ... reg, mem64
  1520     __ pop_d(xmm1);
  1521     __ ucomisd(xmm1, xmm0);
  1523   if (unordered_result < 0) {
  1524     __ movl(rax, -1);
  1525     __ jccb(Assembler::parity, done);
  1526     __ jccb(Assembler::below, done);
  1527     __ setb(Assembler::notEqual, rdx);
  1528     __ movzbl(rax, rdx);
  1529   } else {
  1530     __ movl(rax, 1);
  1531     __ jccb(Assembler::parity, done);
  1532     __ jccb(Assembler::above, done);
  1533     __ movl(rax, 0);
  1534     __ jccb(Assembler::equal, done);
  1535     __ decrementl(rax);
  1537   __ bind(done);
  1540 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1541   __ get_method(rcx); // rcx holds method
  1542   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1543                                      // holds bumped taken count
  1545   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1546                              InvocationCounter::counter_offset();
  1547   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1548                               InvocationCounter::counter_offset();
  1549   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1551   // Load up edx with the branch displacement
  1552   __ movl(rdx, at_bcp(1));
  1553   __ bswapl(rdx);
  1555   if (!is_wide) {
  1556     __ sarl(rdx, 16);
  1558   __ movl2ptr(rdx, rdx);
  1560   // Handle all the JSR stuff here, then exit.
  1561   // It's much shorter and cleaner than intermingling with the non-JSR
  1562   // normal-branch stuff occurring below.
  1563   if (is_jsr) {
  1564     // Pre-load the next target bytecode into rbx
  1565     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1567     // compute return address as bci in rax
  1568     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1569                         in_bytes(constMethodOopDesc::codes_offset())));
  1570     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1571     // Adjust the bcp in r13 by the displacement in rdx
  1572     __ addptr(r13, rdx);
  1573     // jsr returns atos that is not an oop
  1574     __ push_i(rax);
  1575     __ dispatch_only(vtos);
  1576     return;
  1579   // Normal (non-jsr) branch handling
  1581   // Adjust the bcp in r13 by the displacement in rdx
  1582   __ addptr(r13, rdx);
  1584   assert(UseLoopCounter || !UseOnStackReplacement,
  1585          "on-stack-replacement requires loop counters");
  1586   Label backedge_counter_overflow;
  1587   Label profile_method;
  1588   Label dispatch;
  1589   if (UseLoopCounter) {
  1590     // increment backedge counter for backward branches
  1591     // rax: MDO
  1592     // ebx: MDO bumped taken-count
  1593     // rcx: method
  1594     // rdx: target offset
  1595     // r13: target bcp
  1596     // r14: locals pointer
  1597     __ testl(rdx, rdx);             // check if forward or backward branch
  1598     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1600     // increment counter
  1601     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1602     __ incrementl(rax, InvocationCounter::count_increment); // increment
  1603                                                             // counter
  1604     __ movl(Address(rcx, be_offset), rax);        // store counter
  1606     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1607     __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1608     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1610     if (ProfileInterpreter) {
  1611       // Test to see if we should create a method data oop
  1612       __ cmp32(rax,
  1613                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1614       __ jcc(Assembler::less, dispatch);
  1616       // if no method data exists, go to profile method
  1617       __ test_method_data_pointer(rax, profile_method);
  1619       if (UseOnStackReplacement) {
  1620         // check for overflow against ebx which is the MDO taken count
  1621         __ cmp32(rbx,
  1622                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1623         __ jcc(Assembler::below, dispatch);
  1625         // When ProfileInterpreter is on, the backedge_count comes
  1626         // from the methodDataOop, which value does not get reset on
  1627         // the call to frequency_counter_overflow().  To avoid
  1628         // excessive calls to the overflow routine while the method is
  1629         // being compiled, add a second test to make sure the overflow
  1630         // function is called only once every overflow_frequency.
  1631         const int overflow_frequency = 1024;
  1632         __ andl(rbx, overflow_frequency - 1);
  1633         __ jcc(Assembler::zero, backedge_counter_overflow);
  1636     } else {
  1637       if (UseOnStackReplacement) {
  1638         // check for overflow against eax, which is the sum of the
  1639         // counters
  1640         __ cmp32(rax,
  1641                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1642         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1646     __ bind(dispatch);
  1649   // Pre-load the next target bytecode into rbx
  1650   __ load_unsigned_byte(rbx, Address(r13, 0));
  1652   // continue with the bytecode @ target
  1653   // eax: return bci for jsr's, unused otherwise
  1654   // ebx: target bytecode
  1655   // r13: target bcp
  1656   __ dispatch_only(vtos);
  1658   if (UseLoopCounter) {
  1659     if (ProfileInterpreter) {
  1660       // Out-of-line code to allocate method data oop.
  1661       __ bind(profile_method);
  1662       __ call_VM(noreg,
  1663                  CAST_FROM_FN_PTR(address,
  1664                                   InterpreterRuntime::profile_method), r13);
  1665       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1666       __ movptr(rcx, Address(rbp, method_offset));
  1667       __ movptr(rcx, Address(rcx,
  1668                              in_bytes(methodOopDesc::method_data_offset())));
  1669       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1670                 rcx);
  1671       __ test_method_data_pointer(rcx, dispatch);
  1672       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1673       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1674       __ addptr(rcx, rax);
  1675       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
  1676                 rcx);
  1677       __ jmp(dispatch);
  1680     if (UseOnStackReplacement) {
  1681       // invocation counter overflow
  1682       __ bind(backedge_counter_overflow);
  1683       __ negptr(rdx);
  1684       __ addptr(rdx, r13); // branch bcp
  1685       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1686       __ call_VM(noreg,
  1687                  CAST_FROM_FN_PTR(address,
  1688                                   InterpreterRuntime::frequency_counter_overflow),
  1689                  rdx);
  1690       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1692       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1693       // ebx: target bytecode
  1694       // rdx: scratch
  1695       // r14: locals pointer
  1696       // r13: bcp
  1697       __ testptr(rax, rax);                        // test result
  1698       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1699       // nmethod may have been invalidated (VM may block upon call_VM return)
  1700       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1701       __ cmpl(rcx, InvalidOSREntryBci);
  1702       __ jcc(Assembler::equal, dispatch);
  1704       // We have the address of an on stack replacement routine in eax
  1705       // We need to prepare to execute the OSR method. First we must
  1706       // migrate the locals and monitors off of the stack.
  1708       __ mov(r13, rax);                             // save the nmethod
  1710       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1712       // eax is OSR buffer, move it to expected parameter location
  1713       __ mov(j_rarg0, rax);
  1715       // We use j_rarg definitions here so that registers don't conflict as parameter
  1716       // registers change across platforms as we are in the midst of a calling
  1717       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1719       const Register retaddr = j_rarg2;
  1720       const Register sender_sp = j_rarg1;
  1722       // pop the interpreter frame
  1723       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1724       __ leave();                                // remove frame anchor
  1725       __ pop(retaddr);                           // get return address
  1726       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1727       // Ensure compiled code always sees stack at proper alignment
  1728       __ andptr(rsp, -(StackAlignmentInBytes));
  1730       // unlike x86 we need no specialized return from compiled code
  1731       // to the interpreter or the call stub.
  1733       // push the return address
  1734       __ push(retaddr);
  1736       // and begin the OSR nmethod
  1737       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1743 void TemplateTable::if_0cmp(Condition cc) {
  1744   transition(itos, vtos);
  1745   // assume branch is more often taken than not (loops use backward branches)
  1746   Label not_taken;
  1747   __ testl(rax, rax);
  1748   __ jcc(j_not(cc), not_taken);
  1749   branch(false, false);
  1750   __ bind(not_taken);
  1751   __ profile_not_taken_branch(rax);
  1754 void TemplateTable::if_icmp(Condition cc) {
  1755   transition(itos, vtos);
  1756   // assume branch is more often taken than not (loops use backward branches)
  1757   Label not_taken;
  1758   __ pop_i(rdx);
  1759   __ cmpl(rdx, rax);
  1760   __ jcc(j_not(cc), not_taken);
  1761   branch(false, false);
  1762   __ bind(not_taken);
  1763   __ profile_not_taken_branch(rax);
  1766 void TemplateTable::if_nullcmp(Condition cc) {
  1767   transition(atos, vtos);
  1768   // assume branch is more often taken than not (loops use backward branches)
  1769   Label not_taken;
  1770   __ testptr(rax, rax);
  1771   __ jcc(j_not(cc), not_taken);
  1772   branch(false, false);
  1773   __ bind(not_taken);
  1774   __ profile_not_taken_branch(rax);
  1777 void TemplateTable::if_acmp(Condition cc) {
  1778   transition(atos, vtos);
  1779   // assume branch is more often taken than not (loops use backward branches)
  1780   Label not_taken;
  1781   __ pop_ptr(rdx);
  1782   __ cmpptr(rdx, rax);
  1783   __ jcc(j_not(cc), not_taken);
  1784   branch(false, false);
  1785   __ bind(not_taken);
  1786   __ profile_not_taken_branch(rax);
  1789 void TemplateTable::ret() {
  1790   transition(vtos, vtos);
  1791   locals_index(rbx);
  1792   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1793   __ profile_ret(rbx, rcx);
  1794   __ get_method(rax);
  1795   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1796   __ lea(r13, Address(r13, rbx, Address::times_1,
  1797                       constMethodOopDesc::codes_offset()));
  1798   __ dispatch_next(vtos);
  1801 void TemplateTable::wide_ret() {
  1802   transition(vtos, vtos);
  1803   locals_index_wide(rbx);
  1804   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1805   __ profile_ret(rbx, rcx);
  1806   __ get_method(rax);
  1807   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1808   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1809   __ dispatch_next(vtos);
  1812 void TemplateTable::tableswitch() {
  1813   Label default_case, continue_execution;
  1814   transition(itos, vtos);
  1815   // align r13
  1816   __ lea(rbx, at_bcp(BytesPerInt));
  1817   __ andptr(rbx, -BytesPerInt);
  1818   // load lo & hi
  1819   __ movl(rcx, Address(rbx, BytesPerInt));
  1820   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1821   __ bswapl(rcx);
  1822   __ bswapl(rdx);
  1823   // check against lo & hi
  1824   __ cmpl(rax, rcx);
  1825   __ jcc(Assembler::less, default_case);
  1826   __ cmpl(rax, rdx);
  1827   __ jcc(Assembler::greater, default_case);
  1828   // lookup dispatch offset
  1829   __ subl(rax, rcx);
  1830   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1831   __ profile_switch_case(rax, rbx, rcx);
  1832   // continue execution
  1833   __ bind(continue_execution);
  1834   __ bswapl(rdx);
  1835   __ movl2ptr(rdx, rdx);
  1836   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1837   __ addptr(r13, rdx);
  1838   __ dispatch_only(vtos);
  1839   // handle default
  1840   __ bind(default_case);
  1841   __ profile_switch_default(rax);
  1842   __ movl(rdx, Address(rbx, 0));
  1843   __ jmp(continue_execution);
  1846 void TemplateTable::lookupswitch() {
  1847   transition(itos, itos);
  1848   __ stop("lookupswitch bytecode should have been rewritten");
  1851 void TemplateTable::fast_linearswitch() {
  1852   transition(itos, vtos);
  1853   Label loop_entry, loop, found, continue_execution;
  1854   // bswap rax so we can avoid bswapping the table entries
  1855   __ bswapl(rax);
  1856   // align r13
  1857   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1858                                     // this instruction (change offsets
  1859                                     // below)
  1860   __ andptr(rbx, -BytesPerInt);
  1861   // set counter
  1862   __ movl(rcx, Address(rbx, BytesPerInt));
  1863   __ bswapl(rcx);
  1864   __ jmpb(loop_entry);
  1865   // table search
  1866   __ bind(loop);
  1867   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1868   __ jcc(Assembler::equal, found);
  1869   __ bind(loop_entry);
  1870   __ decrementl(rcx);
  1871   __ jcc(Assembler::greaterEqual, loop);
  1872   // default case
  1873   __ profile_switch_default(rax);
  1874   __ movl(rdx, Address(rbx, 0));
  1875   __ jmp(continue_execution);
  1876   // entry found -> get offset
  1877   __ bind(found);
  1878   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1879   __ profile_switch_case(rcx, rax, rbx);
  1880   // continue execution
  1881   __ bind(continue_execution);
  1882   __ bswapl(rdx);
  1883   __ movl2ptr(rdx, rdx);
  1884   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1885   __ addptr(r13, rdx);
  1886   __ dispatch_only(vtos);
  1889 void TemplateTable::fast_binaryswitch() {
  1890   transition(itos, vtos);
  1891   // Implementation using the following core algorithm:
  1892   //
  1893   // int binary_search(int key, LookupswitchPair* array, int n) {
  1894   //   // Binary search according to "Methodik des Programmierens" by
  1895   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1896   //   int i = 0;
  1897   //   int j = n;
  1898   //   while (i+1 < j) {
  1899   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1900   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1901   //     // where a stands for the array and assuming that the (inexisting)
  1902   //     // element a[n] is infinitely big.
  1903   //     int h = (i + j) >> 1;
  1904   //     // i < h < j
  1905   //     if (key < array[h].fast_match()) {
  1906   //       j = h;
  1907   //     } else {
  1908   //       i = h;
  1909   //     }
  1910   //   }
  1911   //   // R: a[i] <= key < a[i+1] or Q
  1912   //   // (i.e., if key is within array, i is the correct index)
  1913   //   return i;
  1914   // }
  1916   // Register allocation
  1917   const Register key   = rax; // already set (tosca)
  1918   const Register array = rbx;
  1919   const Register i     = rcx;
  1920   const Register j     = rdx;
  1921   const Register h     = rdi;
  1922   const Register temp  = rsi;
  1924   // Find array start
  1925   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1926                                           // get rid of this
  1927                                           // instruction (change
  1928                                           // offsets below)
  1929   __ andptr(array, -BytesPerInt);
  1931   // Initialize i & j
  1932   __ xorl(i, i);                            // i = 0;
  1933   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1935   // Convert j into native byteordering
  1936   __ bswapl(j);
  1938   // And start
  1939   Label entry;
  1940   __ jmp(entry);
  1942   // binary search loop
  1944     Label loop;
  1945     __ bind(loop);
  1946     // int h = (i + j) >> 1;
  1947     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1948     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1949     // if (key < array[h].fast_match()) {
  1950     //   j = h;
  1951     // } else {
  1952     //   i = h;
  1953     // }
  1954     // Convert array[h].match to native byte-ordering before compare
  1955     __ movl(temp, Address(array, h, Address::times_8));
  1956     __ bswapl(temp);
  1957     __ cmpl(key, temp);
  1958     // j = h if (key <  array[h].fast_match())
  1959     __ cmovl(Assembler::less, j, h);
  1960     // i = h if (key >= array[h].fast_match())
  1961     __ cmovl(Assembler::greaterEqual, i, h);
  1962     // while (i+1 < j)
  1963     __ bind(entry);
  1964     __ leal(h, Address(i, 1)); // i+1
  1965     __ cmpl(h, j);             // i+1 < j
  1966     __ jcc(Assembler::less, loop);
  1969   // end of binary search, result index is i (must check again!)
  1970   Label default_case;
  1971   // Convert array[i].match to native byte-ordering before compare
  1972   __ movl(temp, Address(array, i, Address::times_8));
  1973   __ bswapl(temp);
  1974   __ cmpl(key, temp);
  1975   __ jcc(Assembler::notEqual, default_case);
  1977   // entry found -> j = offset
  1978   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  1979   __ profile_switch_case(i, key, array);
  1980   __ bswapl(j);
  1981   __ movl2ptr(j, j);
  1982   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1983   __ addptr(r13, j);
  1984   __ dispatch_only(vtos);
  1986   // default case -> j = default offset
  1987   __ bind(default_case);
  1988   __ profile_switch_default(i);
  1989   __ movl(j, Address(array, -2 * BytesPerInt));
  1990   __ bswapl(j);
  1991   __ movl2ptr(j, j);
  1992   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  1993   __ addptr(r13, j);
  1994   __ dispatch_only(vtos);
  1998 void TemplateTable::_return(TosState state) {
  1999   transition(state, state);
  2000   assert(_desc->calls_vm(),
  2001          "inconsistent calls_vm information"); // call in remove_activation
  2003   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2004     assert(state == vtos, "only valid state");
  2005     __ movptr(c_rarg1, aaddress(0));
  2006     __ load_klass(rdi, c_rarg1);
  2007     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2008     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2009     Label skip_register_finalizer;
  2010     __ jcc(Assembler::zero, skip_register_finalizer);
  2012     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2014     __ bind(skip_register_finalizer);
  2017   __ remove_activation(state, r13);
  2018   __ jmp(r13);
  2021 // ----------------------------------------------------------------------------
  2022 // Volatile variables demand their effects be made known to all CPU's
  2023 // in order.  Store buffers on most chips allow reads & writes to
  2024 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2025 // without some kind of memory barrier (i.e., it's not sufficient that
  2026 // the interpreter does not reorder volatile references, the hardware
  2027 // also must not reorder them).
  2028 //
  2029 // According to the new Java Memory Model (JMM):
  2030 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2031 //     writes act as aquire & release, so:
  2032 // (2) A read cannot let unrelated NON-volatile memory refs that
  2033 //     happen after the read float up to before the read.  It's OK for
  2034 //     non-volatile memory refs that happen before the volatile read to
  2035 //     float down below it.
  2036 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2037 //     memory refs that happen BEFORE the write float down to after the
  2038 //     write.  It's OK for non-volatile memory refs that happen after the
  2039 //     volatile write to float up before it.
  2040 //
  2041 // We only put in barriers around volatile refs (they are expensive),
  2042 // not _between_ memory refs (that would require us to track the
  2043 // flavor of the previous memory refs).  Requirements (2) and (3)
  2044 // require some barriers before volatile stores and after volatile
  2045 // loads.  These nearly cover requirement (1) but miss the
  2046 // volatile-store-volatile-load case.  This final case is placed after
  2047 // volatile-stores although it could just as well go before
  2048 // volatile-loads.
  2049 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2050                                      order_constraint) {
  2051   // Helper function to insert a is-volatile test and memory barrier
  2052   if (os::is_MP()) { // Not needed on single CPU
  2053     __ membar(order_constraint);
  2057 void TemplateTable::resolve_cache_and_index(int byte_no,
  2058                                             Register Rcache,
  2059                                             Register index) {
  2060   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  2062   const Register temp = rbx;
  2063   assert_different_registers(Rcache, index, temp);
  2065   const int shift_count = (1 + byte_no) * BitsPerByte;
  2066   Label resolved;
  2067   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2068   __ movl(temp, Address(Rcache,
  2069                         index, Address::times_8,
  2070                         constantPoolCacheOopDesc::base_offset() +
  2071                         ConstantPoolCacheEntry::indices_offset()));
  2072   __ shrl(temp, shift_count);
  2073   // have we resolved this bytecode?
  2074   __ andl(temp, 0xFF);
  2075   __ cmpl(temp, (int) bytecode());
  2076   __ jcc(Assembler::equal, resolved);
  2078   // resolve first time through
  2079   address entry;
  2080   switch (bytecode()) {
  2081   case Bytecodes::_getstatic:
  2082   case Bytecodes::_putstatic:
  2083   case Bytecodes::_getfield:
  2084   case Bytecodes::_putfield:
  2085     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2086     break;
  2087   case Bytecodes::_invokevirtual:
  2088   case Bytecodes::_invokespecial:
  2089   case Bytecodes::_invokestatic:
  2090   case Bytecodes::_invokeinterface:
  2091     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2092     break;
  2093   default:
  2094     ShouldNotReachHere();
  2095     break;
  2097   __ movl(temp, (int) bytecode());
  2098   __ call_VM(noreg, entry, temp);
  2100   // Update registers with resolved info
  2101   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2102   __ bind(resolved);
  2105 // The Rcache and index registers must be set before call
  2106 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2107                                               Register cache,
  2108                                               Register index,
  2109                                               Register off,
  2110                                               Register flags,
  2111                                               bool is_static = false) {
  2112   assert_different_registers(cache, index, flags, off);
  2114   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2115   // Field offset
  2116   __ movptr(off, Address(cache, index, Address::times_8,
  2117                          in_bytes(cp_base_offset +
  2118                                   ConstantPoolCacheEntry::f2_offset())));
  2119   // Flags
  2120   __ movl(flags, Address(cache, index, Address::times_8,
  2121                          in_bytes(cp_base_offset +
  2122                                   ConstantPoolCacheEntry::flags_offset())));
  2124   // klass overwrite register
  2125   if (is_static) {
  2126     __ movptr(obj, Address(cache, index, Address::times_8,
  2127                            in_bytes(cp_base_offset +
  2128                                     ConstantPoolCacheEntry::f1_offset())));
  2132 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2133                                                Register method,
  2134                                                Register itable_index,
  2135                                                Register flags,
  2136                                                bool is_invokevirtual,
  2137                                                bool is_invokevfinal /*unused*/) {
  2138   // setup registers
  2139   const Register cache = rcx;
  2140   const Register index = rdx;
  2141   assert_different_registers(method, flags);
  2142   assert_different_registers(method, cache, index);
  2143   assert_different_registers(itable_index, flags);
  2144   assert_different_registers(itable_index, cache, index);
  2145   // determine constant pool cache field offsets
  2146   const int method_offset = in_bytes(
  2147     constantPoolCacheOopDesc::base_offset() +
  2148       (is_invokevirtual
  2149        ? ConstantPoolCacheEntry::f2_offset()
  2150        : ConstantPoolCacheEntry::f1_offset()));
  2151   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2152                                     ConstantPoolCacheEntry::flags_offset());
  2153   // access constant pool cache fields
  2154   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2155                                     ConstantPoolCacheEntry::f2_offset());
  2157   resolve_cache_and_index(byte_no, cache, index);
  2159   assert(wordSize == 8, "adjust code below");
  2160   __ movptr(method, Address(cache, index, Address::times_8, method_offset));
  2161   if (itable_index != noreg) {
  2162     __ movptr(itable_index,
  2163             Address(cache, index, Address::times_8, index_offset));
  2165   __ movl(flags , Address(cache, index, Address::times_8, flags_offset));
  2169 // The registers cache and index expected to be set before call.
  2170 // Correct values of the cache and index registers are preserved.
  2171 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2172                                             bool is_static, bool has_tos) {
  2173   // do the JVMTI work here to avoid disturbing the register state below
  2174   // We use c_rarg registers here because we want to use the register used in
  2175   // the call to the VM
  2176   if (JvmtiExport::can_post_field_access()) {
  2177     // Check to see if a field access watch has been set before we
  2178     // take the time to call into the VM.
  2179     Label L1;
  2180     assert_different_registers(cache, index, rax);
  2181     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2182     __ testl(rax, rax);
  2183     __ jcc(Assembler::zero, L1);
  2185     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2187     // cache entry pointer
  2188     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2189     __ shll(c_rarg3, LogBytesPerWord);
  2190     __ addptr(c_rarg2, c_rarg3);
  2191     if (is_static) {
  2192       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2193     } else {
  2194       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2195       __ verify_oop(c_rarg1);
  2197     // c_rarg1: object pointer or NULL
  2198     // c_rarg2: cache entry pointer
  2199     // c_rarg3: jvalue object on the stack
  2200     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2201                                        InterpreterRuntime::post_field_access),
  2202                c_rarg1, c_rarg2, c_rarg3);
  2203     __ get_cache_and_index_at_bcp(cache, index, 1);
  2204     __ bind(L1);
  2208 void TemplateTable::pop_and_check_object(Register r) {
  2209   __ pop_ptr(r);
  2210   __ null_check(r);  // for field access must check obj.
  2211   __ verify_oop(r);
  2214 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2215   transition(vtos, vtos);
  2217   const Register cache = rcx;
  2218   const Register index = rdx;
  2219   const Register obj   = c_rarg3;
  2220   const Register off   = rbx;
  2221   const Register flags = rax;
  2222   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2224   resolve_cache_and_index(byte_no, cache, index);
  2225   jvmti_post_field_access(cache, index, is_static, false);
  2226   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2228   if (!is_static) {
  2229     // obj is on the stack
  2230     pop_and_check_object(obj);
  2233   const Address field(obj, off, Address::times_1);
  2235   Label Done, notByte, notInt, notShort, notChar,
  2236               notLong, notFloat, notObj, notDouble;
  2238   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2239   assert(btos == 0, "change code, btos != 0");
  2241   __ andl(flags, 0x0F);
  2242   __ jcc(Assembler::notZero, notByte);
  2243   // btos
  2244   __ load_signed_byte(rax, field);
  2245   __ push(btos);
  2246   // Rewrite bytecode to be faster
  2247   if (!is_static) {
  2248     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2250   __ jmp(Done);
  2252   __ bind(notByte);
  2253   __ cmpl(flags, atos);
  2254   __ jcc(Assembler::notEqual, notObj);
  2255   // atos
  2256   __ load_heap_oop(rax, field);
  2257   __ push(atos);
  2258   if (!is_static) {
  2259     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2261   __ jmp(Done);
  2263   __ bind(notObj);
  2264   __ cmpl(flags, itos);
  2265   __ jcc(Assembler::notEqual, notInt);
  2266   // itos
  2267   __ movl(rax, field);
  2268   __ push(itos);
  2269   // Rewrite bytecode to be faster
  2270   if (!is_static) {
  2271     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2273   __ jmp(Done);
  2275   __ bind(notInt);
  2276   __ cmpl(flags, ctos);
  2277   __ jcc(Assembler::notEqual, notChar);
  2278   // ctos
  2279   __ load_unsigned_word(rax, field);
  2280   __ push(ctos);
  2281   // Rewrite bytecode to be faster
  2282   if (!is_static) {
  2283     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2285   __ jmp(Done);
  2287   __ bind(notChar);
  2288   __ cmpl(flags, stos);
  2289   __ jcc(Assembler::notEqual, notShort);
  2290   // stos
  2291   __ load_signed_word(rax, field);
  2292   __ push(stos);
  2293   // Rewrite bytecode to be faster
  2294   if (!is_static) {
  2295     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2297   __ jmp(Done);
  2299   __ bind(notShort);
  2300   __ cmpl(flags, ltos);
  2301   __ jcc(Assembler::notEqual, notLong);
  2302   // ltos
  2303   __ movq(rax, field);
  2304   __ push(ltos);
  2305   // Rewrite bytecode to be faster
  2306   if (!is_static) {
  2307     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2309   __ jmp(Done);
  2311   __ bind(notLong);
  2312   __ cmpl(flags, ftos);
  2313   __ jcc(Assembler::notEqual, notFloat);
  2314   // ftos
  2315   __ movflt(xmm0, field);
  2316   __ push(ftos);
  2317   // Rewrite bytecode to be faster
  2318   if (!is_static) {
  2319     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2321   __ jmp(Done);
  2323   __ bind(notFloat);
  2324 #ifdef ASSERT
  2325   __ cmpl(flags, dtos);
  2326   __ jcc(Assembler::notEqual, notDouble);
  2327 #endif
  2328   // dtos
  2329   __ movdbl(xmm0, field);
  2330   __ push(dtos);
  2331   // Rewrite bytecode to be faster
  2332   if (!is_static) {
  2333     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2335 #ifdef ASSERT
  2336   __ jmp(Done);
  2338   __ bind(notDouble);
  2339   __ stop("Bad state");
  2340 #endif
  2342   __ bind(Done);
  2343   // [jk] not needed currently
  2344   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2345   //                                              Assembler::LoadStore));
  2349 void TemplateTable::getfield(int byte_no) {
  2350   getfield_or_static(byte_no, false);
  2353 void TemplateTable::getstatic(int byte_no) {
  2354   getfield_or_static(byte_no, true);
  2357 // The registers cache and index expected to be set before call.
  2358 // The function may destroy various registers, just not the cache and index registers.
  2359 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2360   transition(vtos, vtos);
  2362   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2364   if (JvmtiExport::can_post_field_modification()) {
  2365     // Check to see if a field modification watch has been set before
  2366     // we take the time to call into the VM.
  2367     Label L1;
  2368     assert_different_registers(cache, index, rax);
  2369     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2370     __ testl(rax, rax);
  2371     __ jcc(Assembler::zero, L1);
  2373     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2375     if (is_static) {
  2376       // Life is simple.  Null out the object pointer.
  2377       __ xorl(c_rarg1, c_rarg1);
  2378     } else {
  2379       // Life is harder. The stack holds the value on top, followed by
  2380       // the object.  We don't know the size of the value, though; it
  2381       // could be one or two words depending on its type. As a result,
  2382       // we must find the type to determine where the object is.
  2383       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2384                            Address::times_8,
  2385                            in_bytes(cp_base_offset +
  2386                                      ConstantPoolCacheEntry::flags_offset())));
  2387       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2388       // Make sure we don't need to mask rcx for tosBits after the
  2389       // above shift
  2390       ConstantPoolCacheEntry::verify_tosBits();
  2391       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2392       __ cmpl(c_rarg3, ltos);
  2393       __ cmovptr(Assembler::equal,
  2394                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2395       __ cmpl(c_rarg3, dtos);
  2396       __ cmovptr(Assembler::equal,
  2397                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2399     // cache entry pointer
  2400     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2401     __ shll(rscratch1, LogBytesPerWord);
  2402     __ addptr(c_rarg2, rscratch1);
  2403     // object (tos)
  2404     __ mov(c_rarg3, rsp);
  2405     // c_rarg1: object pointer set up above (NULL if static)
  2406     // c_rarg2: cache entry pointer
  2407     // c_rarg3: jvalue object on the stack
  2408     __ call_VM(noreg,
  2409                CAST_FROM_FN_PTR(address,
  2410                                 InterpreterRuntime::post_field_modification),
  2411                c_rarg1, c_rarg2, c_rarg3);
  2412     __ get_cache_and_index_at_bcp(cache, index, 1);
  2413     __ bind(L1);
  2417 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2418   transition(vtos, vtos);
  2420   const Register cache = rcx;
  2421   const Register index = rdx;
  2422   const Register obj   = rcx;
  2423   const Register off   = rbx;
  2424   const Register flags = rax;
  2425   const Register bc    = c_rarg3;
  2427   resolve_cache_and_index(byte_no, cache, index);
  2428   jvmti_post_field_mod(cache, index, is_static);
  2429   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2431   // [jk] not needed currently
  2432   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2433   //                                              Assembler::StoreStore));
  2435   Label notVolatile, Done;
  2436   __ movl(rdx, flags);
  2437   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2438   __ andl(rdx, 0x1);
  2440   // field address
  2441   const Address field(obj, off, Address::times_1);
  2443   Label notByte, notInt, notShort, notChar,
  2444         notLong, notFloat, notObj, notDouble;
  2446   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2448   assert(btos == 0, "change code, btos != 0");
  2449   __ andl(flags, 0x0f);
  2450   __ jcc(Assembler::notZero, notByte);
  2451   // btos
  2452   __ pop(btos);
  2453   if (!is_static) pop_and_check_object(obj);
  2454   __ movb(field, rax);
  2455   if (!is_static) {
  2456     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2458   __ jmp(Done);
  2460   __ bind(notByte);
  2461   __ cmpl(flags, atos);
  2462   __ jcc(Assembler::notEqual, notObj);
  2463   // atos
  2464   __ pop(atos);
  2465   if (!is_static) pop_and_check_object(obj);
  2467   // Store into the field
  2468   do_oop_store(_masm, field, rax, _bs->kind(), false);
  2470   if (!is_static) {
  2471     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2473   __ jmp(Done);
  2475   __ bind(notObj);
  2476   __ cmpl(flags, itos);
  2477   __ jcc(Assembler::notEqual, notInt);
  2478   // itos
  2479   __ pop(itos);
  2480   if (!is_static) pop_and_check_object(obj);
  2481   __ movl(field, rax);
  2482   if (!is_static) {
  2483     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2485   __ jmp(Done);
  2487   __ bind(notInt);
  2488   __ cmpl(flags, ctos);
  2489   __ jcc(Assembler::notEqual, notChar);
  2490   // ctos
  2491   __ pop(ctos);
  2492   if (!is_static) pop_and_check_object(obj);
  2493   __ movw(field, rax);
  2494   if (!is_static) {
  2495     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2497   __ jmp(Done);
  2499   __ bind(notChar);
  2500   __ cmpl(flags, stos);
  2501   __ jcc(Assembler::notEqual, notShort);
  2502   // stos
  2503   __ pop(stos);
  2504   if (!is_static) pop_and_check_object(obj);
  2505   __ movw(field, rax);
  2506   if (!is_static) {
  2507     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2509   __ jmp(Done);
  2511   __ bind(notShort);
  2512   __ cmpl(flags, ltos);
  2513   __ jcc(Assembler::notEqual, notLong);
  2514   // ltos
  2515   __ pop(ltos);
  2516   if (!is_static) pop_and_check_object(obj);
  2517   __ movq(field, rax);
  2518   if (!is_static) {
  2519     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2521   __ jmp(Done);
  2523   __ bind(notLong);
  2524   __ cmpl(flags, ftos);
  2525   __ jcc(Assembler::notEqual, notFloat);
  2526   // ftos
  2527   __ pop(ftos);
  2528   if (!is_static) pop_and_check_object(obj);
  2529   __ movflt(field, xmm0);
  2530   if (!is_static) {
  2531     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2533   __ jmp(Done);
  2535   __ bind(notFloat);
  2536 #ifdef ASSERT
  2537   __ cmpl(flags, dtos);
  2538   __ jcc(Assembler::notEqual, notDouble);
  2539 #endif
  2540   // dtos
  2541   __ pop(dtos);
  2542   if (!is_static) pop_and_check_object(obj);
  2543   __ movdbl(field, xmm0);
  2544   if (!is_static) {
  2545     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2548 #ifdef ASSERT
  2549   __ jmp(Done);
  2551   __ bind(notDouble);
  2552   __ stop("Bad state");
  2553 #endif
  2555   __ bind(Done);
  2556   // Check for volatile store
  2557   __ testl(rdx, rdx);
  2558   __ jcc(Assembler::zero, notVolatile);
  2559   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2560                                                Assembler::StoreStore));
  2562   __ bind(notVolatile);
  2565 void TemplateTable::putfield(int byte_no) {
  2566   putfield_or_static(byte_no, false);
  2569 void TemplateTable::putstatic(int byte_no) {
  2570   putfield_or_static(byte_no, true);
  2573 void TemplateTable::jvmti_post_fast_field_mod() {
  2574   if (JvmtiExport::can_post_field_modification()) {
  2575     // Check to see if a field modification watch has been set before
  2576     // we take the time to call into the VM.
  2577     Label L2;
  2578     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2579     __ testl(c_rarg3, c_rarg3);
  2580     __ jcc(Assembler::zero, L2);
  2581     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2582     __ verify_oop(rbx);
  2583     __ push_ptr(rbx);                 // put the object pointer back on tos
  2584     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2585     __ mov(c_rarg3, rsp);
  2586     const Address field(c_rarg3, 0);
  2588     switch (bytecode()) {          // load values into the jvalue object
  2589     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2590     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2591     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2592     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2593     case Bytecodes::_fast_sputfield: // fall through
  2594     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2595     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2596     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2597     default:
  2598       ShouldNotReachHere();
  2601     // Save rax because call_VM() will clobber it, then use it for
  2602     // JVMTI purposes
  2603     __ push(rax);
  2604     // access constant pool cache entry
  2605     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2606     __ verify_oop(rbx);
  2607     // rbx: object pointer copied above
  2608     // c_rarg2: cache entry pointer
  2609     // c_rarg3: jvalue object on the stack
  2610     __ call_VM(noreg,
  2611                CAST_FROM_FN_PTR(address,
  2612                                 InterpreterRuntime::post_field_modification),
  2613                rbx, c_rarg2, c_rarg3);
  2614     __ pop(rax);     // restore lower value
  2615     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2616     __ bind(L2);
  2620 void TemplateTable::fast_storefield(TosState state) {
  2621   transition(state, vtos);
  2623   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2625   jvmti_post_fast_field_mod();
  2627   // access constant pool cache
  2628   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2630   // test for volatile with rdx
  2631   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2632                        in_bytes(base +
  2633                                 ConstantPoolCacheEntry::flags_offset())));
  2635   // replace index with field offset from cache entry
  2636   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2637                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2639   // [jk] not needed currently
  2640   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2641   //                                              Assembler::StoreStore));
  2643   Label notVolatile;
  2644   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2645   __ andl(rdx, 0x1);
  2647   // Get object from stack
  2648   pop_and_check_object(rcx);
  2650   // field address
  2651   const Address field(rcx, rbx, Address::times_1);
  2653   // access field
  2654   switch (bytecode()) {
  2655   case Bytecodes::_fast_aputfield:
  2656     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2657     break;
  2658   case Bytecodes::_fast_lputfield:
  2659     __ movq(field, rax);
  2660     break;
  2661   case Bytecodes::_fast_iputfield:
  2662     __ movl(field, rax);
  2663     break;
  2664   case Bytecodes::_fast_bputfield:
  2665     __ movb(field, rax);
  2666     break;
  2667   case Bytecodes::_fast_sputfield:
  2668     // fall through
  2669   case Bytecodes::_fast_cputfield:
  2670     __ movw(field, rax);
  2671     break;
  2672   case Bytecodes::_fast_fputfield:
  2673     __ movflt(field, xmm0);
  2674     break;
  2675   case Bytecodes::_fast_dputfield:
  2676     __ movdbl(field, xmm0);
  2677     break;
  2678   default:
  2679     ShouldNotReachHere();
  2682   // Check for volatile store
  2683   __ testl(rdx, rdx);
  2684   __ jcc(Assembler::zero, notVolatile);
  2685   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2686                                                Assembler::StoreStore));
  2687   __ bind(notVolatile);
  2691 void TemplateTable::fast_accessfield(TosState state) {
  2692   transition(atos, state);
  2694   // Do the JVMTI work here to avoid disturbing the register state below
  2695   if (JvmtiExport::can_post_field_access()) {
  2696     // Check to see if a field access watch has been set before we
  2697     // take the time to call into the VM.
  2698     Label L1;
  2699     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2700     __ testl(rcx, rcx);
  2701     __ jcc(Assembler::zero, L1);
  2702     // access constant pool cache entry
  2703     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2704     __ verify_oop(rax);
  2705     __ mov(r12, rax);  // save object pointer before call_VM() clobbers it
  2706     __ mov(c_rarg1, rax);
  2707     // c_rarg1: object pointer copied above
  2708     // c_rarg2: cache entry pointer
  2709     __ call_VM(noreg,
  2710                CAST_FROM_FN_PTR(address,
  2711                                 InterpreterRuntime::post_field_access),
  2712                c_rarg1, c_rarg2);
  2713     __ mov(rax, r12); // restore object pointer
  2714     __ reinit_heapbase();
  2715     __ bind(L1);
  2718   // access constant pool cache
  2719   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2720   // replace index with field offset from cache entry
  2721   // [jk] not needed currently
  2722   // if (os::is_MP()) {
  2723   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2724   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2725   //                                 ConstantPoolCacheEntry::flags_offset())));
  2726   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2727   //   __ andl(rdx, 0x1);
  2728   // }
  2729   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2730                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2731                                   ConstantPoolCacheEntry::f2_offset())));
  2733   // rax: object
  2734   __ verify_oop(rax);
  2735   __ null_check(rax);
  2736   Address field(rax, rbx, Address::times_1);
  2738   // access field
  2739   switch (bytecode()) {
  2740   case Bytecodes::_fast_agetfield:
  2741     __ load_heap_oop(rax, field);
  2742     __ verify_oop(rax);
  2743     break;
  2744   case Bytecodes::_fast_lgetfield:
  2745     __ movq(rax, field);
  2746     break;
  2747   case Bytecodes::_fast_igetfield:
  2748     __ movl(rax, field);
  2749     break;
  2750   case Bytecodes::_fast_bgetfield:
  2751     __ movsbl(rax, field);
  2752     break;
  2753   case Bytecodes::_fast_sgetfield:
  2754     __ load_signed_word(rax, field);
  2755     break;
  2756   case Bytecodes::_fast_cgetfield:
  2757     __ load_unsigned_word(rax, field);
  2758     break;
  2759   case Bytecodes::_fast_fgetfield:
  2760     __ movflt(xmm0, field);
  2761     break;
  2762   case Bytecodes::_fast_dgetfield:
  2763     __ movdbl(xmm0, field);
  2764     break;
  2765   default:
  2766     ShouldNotReachHere();
  2768   // [jk] not needed currently
  2769   // if (os::is_MP()) {
  2770   //   Label notVolatile;
  2771   //   __ testl(rdx, rdx);
  2772   //   __ jcc(Assembler::zero, notVolatile);
  2773   //   __ membar(Assembler::LoadLoad);
  2774   //   __ bind(notVolatile);
  2775   //};
  2778 void TemplateTable::fast_xaccess(TosState state) {
  2779   transition(vtos, state);
  2781   // get receiver
  2782   __ movptr(rax, aaddress(0));
  2783   debug_only(__ verify_local_tag(frame::TagReference, 0));
  2784   // access constant pool cache
  2785   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2786   __ movptr(rbx,
  2787             Address(rcx, rdx, Address::times_8,
  2788                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2789                              ConstantPoolCacheEntry::f2_offset())));
  2790   // make sure exception is reported in correct bcp range (getfield is
  2791   // next instruction)
  2792   __ increment(r13);
  2793   __ null_check(rax);
  2794   switch (state) {
  2795   case itos:
  2796     __ movl(rax, Address(rax, rbx, Address::times_1));
  2797     break;
  2798   case atos:
  2799     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2800     __ verify_oop(rax);
  2801     break;
  2802   case ftos:
  2803     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2804     break;
  2805   default:
  2806     ShouldNotReachHere();
  2809   // [jk] not needed currently
  2810   // if (os::is_MP()) {
  2811   //   Label notVolatile;
  2812   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2813   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2814   //                                 ConstantPoolCacheEntry::flags_offset())));
  2815   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2816   //   __ testl(rdx, 0x1);
  2817   //   __ jcc(Assembler::zero, notVolatile);
  2818   //   __ membar(Assembler::LoadLoad);
  2819   //   __ bind(notVolatile);
  2820   // }
  2822   __ decrement(r13);
  2827 //-----------------------------------------------------------------------------
  2828 // Calls
  2830 void TemplateTable::count_calls(Register method, Register temp) {
  2831   // implemented elsewhere
  2832   ShouldNotReachHere();
  2835 void TemplateTable::prepare_invoke(Register method,
  2836                                    Register index,
  2837                                    int byte_no,
  2838                                    Bytecodes::Code code) {
  2839   // determine flags
  2840   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2841   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2842   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2843   const bool load_receiver       = code != Bytecodes::_invokestatic;
  2844   const bool receiver_null_check = is_invokespecial;
  2845   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2846   // setup registers & access constant pool cache
  2847   const Register recv   = rcx;
  2848   const Register flags  = rdx;
  2849   assert_different_registers(method, index, recv, flags);
  2851   // save 'interpreter return address'
  2852   __ save_bcp();
  2854   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
  2856   // load receiver if needed (note: no return address pushed yet)
  2857   if (load_receiver) {
  2858     __ movl(recv, flags);
  2859     __ andl(recv, 0xFF);
  2860     if (TaggedStackInterpreter) __ shll(recv, 1);  // index*2
  2861     __ movptr(recv, Address(rsp, recv, Address::times_8,
  2862                                  -Interpreter::expr_offset_in_bytes(1)));
  2863     __ verify_oop(recv);
  2866   // do null check if needed
  2867   if (receiver_null_check) {
  2868     __ null_check(recv);
  2871   if (save_flags) {
  2872     __ movl(r13, flags);
  2875   // compute return type
  2876   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2877   // Make sure we don't need to mask flags for tosBits after the above shift
  2878   ConstantPoolCacheEntry::verify_tosBits();
  2879   // load return address
  2881     ExternalAddress return_5((address)Interpreter::return_5_addrs_by_index_table());
  2882     ExternalAddress return_3((address)Interpreter::return_3_addrs_by_index_table());
  2883     __ lea(rscratch1, (is_invokeinterface ? return_5 : return_3));
  2884     __ movptr(flags, Address(rscratch1, flags, Address::times_8));
  2887   // push return address
  2888   __ push(flags);
  2890   // Restore flag field from the constant pool cache, and restore esi
  2891   // for later null checks.  r13 is the bytecode pointer
  2892   if (save_flags) {
  2893     __ movl(flags, r13);
  2894     __ restore_bcp();
  2899 void TemplateTable::invokevirtual_helper(Register index,
  2900                                          Register recv,
  2901                                          Register flags) {
  2902   // Uses temporary registers rax, rdx  assert_different_registers(index, recv, rax, rdx);
  2904   // Test for an invoke of a final method
  2905   Label notFinal;
  2906   __ movl(rax, flags);
  2907   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2908   __ jcc(Assembler::zero, notFinal);
  2910   const Register method = index;  // method must be rbx
  2911   assert(method == rbx,
  2912          "methodOop must be rbx for interpreter calling convention");
  2914   // do the call - the index is actually the method to call
  2915   __ verify_oop(method);
  2917   // It's final, need a null check here!
  2918   __ null_check(recv);
  2920   // profile this call
  2921   __ profile_final_call(rax);
  2923   __ jump_from_interpreted(method, rax);
  2925   __ bind(notFinal);
  2927   // get receiver klass
  2928   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2929   __ load_klass(rax, recv);
  2931   __ verify_oop(rax);
  2933   // profile this call
  2934   __ profile_virtual_call(rax, r14, rdx);
  2936   // get target methodOop & entry point
  2937   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2938   assert(vtableEntry::size() * wordSize == 8,
  2939          "adjust the scaling in the code below");
  2940   __ movptr(method, Address(rax, index,
  2941                                  Address::times_8,
  2942                                  base + vtableEntry::method_offset_in_bytes()));
  2943   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  2944   __ jump_from_interpreted(method, rdx);
  2948 void TemplateTable::invokevirtual(int byte_no) {
  2949   transition(vtos, vtos);
  2950   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2952   // rbx: index
  2953   // rcx: receiver
  2954   // rdx: flags
  2956   invokevirtual_helper(rbx, rcx, rdx);
  2960 void TemplateTable::invokespecial(int byte_no) {
  2961   transition(vtos, vtos);
  2962   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2963   // do the call
  2964   __ verify_oop(rbx);
  2965   __ profile_call(rax);
  2966   __ jump_from_interpreted(rbx, rax);
  2970 void TemplateTable::invokestatic(int byte_no) {
  2971   transition(vtos, vtos);
  2972   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2973   // do the call
  2974   __ verify_oop(rbx);
  2975   __ profile_call(rax);
  2976   __ jump_from_interpreted(rbx, rax);
  2979 void TemplateTable::fast_invokevfinal(int byte_no) {
  2980   transition(vtos, vtos);
  2981   __ stop("fast_invokevfinal not used on amd64");
  2984 void TemplateTable::invokeinterface(int byte_no) {
  2985   transition(vtos, vtos);
  2986   prepare_invoke(rax, rbx, byte_no, bytecode());
  2988   // rax: Interface
  2989   // rbx: index
  2990   // rcx: receiver
  2991   // rdx: flags
  2993   // Special case of invokeinterface called for virtual method of
  2994   // java.lang.Object.  See cpCacheOop.cpp for details.
  2995   // This code isn't produced by javac, but could be produced by
  2996   // another compliant java compiler.
  2997   Label notMethod;
  2998   __ movl(r14, rdx);
  2999   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  3000   __ jcc(Assembler::zero, notMethod);
  3002   invokevirtual_helper(rbx, rcx, rdx);
  3003   __ bind(notMethod);
  3005   // Get receiver klass into rdx - also a null check
  3006   __ restore_locals(); // restore r14
  3007   __ load_klass(rdx, rcx);
  3008   __ verify_oop(rdx);
  3010   // profile this call
  3011   __ profile_virtual_call(rdx, r13, r14);
  3013   __ mov(r14, rdx); // Save klassOop in r14
  3015   // Compute start of first itableOffsetEntry (which is at the end of
  3016   // the vtable)
  3017   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3018   // Get length of vtable
  3019   assert(vtableEntry::size() * wordSize == 8,
  3020          "adjust the scaling in the code below");
  3021   __ movl(r13, Address(rdx,
  3022                        instanceKlass::vtable_length_offset() * wordSize));
  3023   __ lea(rdx, Address(rdx, r13, Address::times_8, base));
  3025   if (HeapWordsPerLong > 1) {
  3026     // Round up to align_object_offset boundary
  3027     __ round_to(rdx, BytesPerLong);
  3030   Label entry, search, interface_ok;
  3032   __ jmpb(entry);
  3033   __ bind(search);
  3034   __ addptr(rdx, itableOffsetEntry::size() * wordSize);
  3036   __ bind(entry);
  3038   // Check that the entry is non-null.  A null entry means that the
  3039   // receiver class doesn't implement the interface, and wasn't the
  3040   // same as the receiver class checked when the interface was
  3041   // resolved.
  3042   __ push(rdx);
  3043   __ movptr(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  3044   __ testptr(rdx, rdx);
  3045   __ jcc(Assembler::notZero, interface_ok);
  3046   // throw exception
  3047   __ pop(rdx); // pop saved register first.
  3048   __ pop(rbx); // pop return address (pushed by prepare_invoke)
  3049   __ restore_bcp(); // r13 must be correct for exception handler (was
  3050                     // destroyed)
  3051   __ restore_locals(); // make sure locals pointer is correct as well
  3052                        // (was destroyed)
  3053   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3054                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3055   // the call_VM checks for exception, so we should never return here.
  3056   __ should_not_reach_here();
  3057   __ bind(interface_ok);
  3059   __ pop(rdx);
  3061   __ cmpptr(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  3062   __ jcc(Assembler::notEqual, search);
  3064   __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
  3066   __ addptr(rdx, r14); // Add offset to klassOop
  3067   assert(itableMethodEntry::size() * wordSize == 8,
  3068          "adjust the scaling in the code below");
  3069   __ movptr(rbx, Address(rdx, rbx, Address::times_8));
  3070   // rbx: methodOop to call
  3071   // rcx: receiver
  3072   // Check for abstract method error
  3073   // Note: This should be done more efficiently via a
  3074   // throw_abstract_method_error interpreter entry point and a
  3075   // conditional jump to it in case of a null method.
  3077     Label L;
  3078     __ testptr(rbx, rbx);
  3079     __ jcc(Assembler::notZero, L);
  3080     // throw exception
  3081     // note: must restore interpreter registers to canonical
  3082     //       state for exception handling to work correctly!
  3083     __ pop(rbx);  // pop return address (pushed by prepare_invoke)
  3084     __ restore_bcp(); // r13 must be correct for exception handler
  3085                       // (was destroyed)
  3086     __ restore_locals(); // make sure locals pointer is correct as
  3087                          // well (was destroyed)
  3088     __ call_VM(noreg,
  3089                CAST_FROM_FN_PTR(address,
  3090                              InterpreterRuntime::throw_AbstractMethodError));
  3091     // the call_VM checks for exception, so we should never return here.
  3092     __ should_not_reach_here();
  3093     __ bind(L);
  3096   __ movptr(rcx, Address(rbx, methodOopDesc::interpreter_entry_offset()));
  3098   // do the call
  3099   // rcx: receiver
  3100   // rbx: methodOop
  3101   __ jump_from_interpreted(rbx, rdx);
  3104 //-----------------------------------------------------------------------------
  3105 // Allocation
  3107 void TemplateTable::_new() {
  3108   transition(vtos, atos);
  3109   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3110   Label slow_case;
  3111   Label done;
  3112   Label initialize_header;
  3113   Label initialize_object; // including clearing the fields
  3114   Label allocate_shared;
  3116   __ get_cpool_and_tags(rsi, rax);
  3117   // get instanceKlass
  3118   __ movptr(rsi, Address(rsi, rdx,
  3119                          Address::times_8, sizeof(constantPoolOopDesc)));
  3121   // make sure the class we're about to instantiate has been
  3122   // resolved. Note: slow_case does a pop of stack, which is why we
  3123   // loaded class/pushed above
  3124   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3125   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3126           JVM_CONSTANT_Class);
  3127   __ jcc(Assembler::notEqual, slow_case);
  3129   // make sure klass is initialized & doesn't have finalizer
  3130   // make sure klass is fully initialized
  3131   __ cmpl(Address(rsi,
  3132                   instanceKlass::init_state_offset_in_bytes() +
  3133                   sizeof(oopDesc)),
  3134           instanceKlass::fully_initialized);
  3135   __ jcc(Assembler::notEqual, slow_case);
  3137   // get instance_size in instanceKlass (scaled to a count of bytes)
  3138   __ movl(rdx,
  3139           Address(rsi,
  3140                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3141   // test to see if it has a finalizer or is malformed in some way
  3142   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3143   __ jcc(Assembler::notZero, slow_case);
  3145   // Allocate the instance
  3146   // 1) Try to allocate in the TLAB
  3147   // 2) if fail and the object is large allocate in the shared Eden
  3148   // 3) if the above fails (or is not applicable), go to a slow case
  3149   // (creates a new TLAB, etc.)
  3151   const bool allow_shared_alloc =
  3152     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3154   if (UseTLAB) {
  3155     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3156     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3157     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3158     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3159     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3160     if (ZeroTLAB) {
  3161       // the fields have been already cleared
  3162       __ jmp(initialize_header);
  3163     } else {
  3164       // initialize both the header and fields
  3165       __ jmp(initialize_object);
  3169   // Allocation in the shared Eden, if allowed.
  3170   //
  3171   // rdx: instance size in bytes
  3172   if (allow_shared_alloc) {
  3173     __ bind(allocate_shared);
  3175     ExternalAddress top((address)Universe::heap()->top_addr());
  3176     ExternalAddress end((address)Universe::heap()->end_addr());
  3178     const Register RtopAddr = rscratch1;
  3179     const Register RendAddr = rscratch2;
  3181     __ lea(RtopAddr, top);
  3182     __ lea(RendAddr, end);
  3183     __ movptr(rax, Address(RtopAddr, 0));
  3185     // For retries rax gets set by cmpxchgq
  3186     Label retry;
  3187     __ bind(retry);
  3188     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3189     __ cmpptr(rbx, Address(RendAddr, 0));
  3190     __ jcc(Assembler::above, slow_case);
  3192     // Compare rax with the top addr, and if still equal, store the new
  3193     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3194     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3195     //
  3196     // rax: object begin
  3197     // rbx: object end
  3198     // rdx: instance size in bytes
  3199     if (os::is_MP()) {
  3200       __ lock();
  3202     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3204     // if someone beat us on the allocation, try again, otherwise continue
  3205     __ jcc(Assembler::notEqual, retry);
  3208   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3209     // The object is initialized before the header.  If the object size is
  3210     // zero, go directly to the header initialization.
  3211     __ bind(initialize_object);
  3212     __ decrementl(rdx, sizeof(oopDesc));
  3213     __ jcc(Assembler::zero, initialize_header);
  3215     // Initialize object fields
  3216     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3217     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3219       Label loop;
  3220       __ bind(loop);
  3221       __ movq(Address(rax, rdx, Address::times_8,
  3222                       sizeof(oopDesc) - oopSize),
  3223               rcx);
  3224       __ decrementl(rdx);
  3225       __ jcc(Assembler::notZero, loop);
  3228     // initialize object header only.
  3229     __ bind(initialize_header);
  3230     if (UseBiasedLocking) {
  3231       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3232       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3233     } else {
  3234       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3235                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3237     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3238     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3239     __ store_klass(rax, rsi);      // store klass last
  3240     __ jmp(done);
  3244     SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3245     // Trigger dtrace event for fastpath
  3246     __ push(atos); // save the return value
  3247     __ call_VM_leaf(
  3248          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3249     __ pop(atos); // restore the return value
  3252   // slow case
  3253   __ bind(slow_case);
  3254   __ get_constant_pool(c_rarg1);
  3255   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3256   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3257   __ verify_oop(rax);
  3259   // continue
  3260   __ bind(done);
  3263 void TemplateTable::newarray() {
  3264   transition(itos, atos);
  3265   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3266   __ movl(c_rarg2, rax);
  3267   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3268           c_rarg1, c_rarg2);
  3271 void TemplateTable::anewarray() {
  3272   transition(itos, atos);
  3273   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3274   __ get_constant_pool(c_rarg1);
  3275   __ movl(c_rarg3, rax);
  3276   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3277           c_rarg1, c_rarg2, c_rarg3);
  3280 void TemplateTable::arraylength() {
  3281   transition(atos, itos);
  3282   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3283   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3286 void TemplateTable::checkcast() {
  3287   transition(atos, atos);
  3288   Label done, is_null, ok_is_subtype, quicked, resolved;
  3289   __ testptr(rax, rax); // object is in rax
  3290   __ jcc(Assembler::zero, is_null);
  3292   // Get cpool & tags index
  3293   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3294   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3295   // See if bytecode has already been quicked
  3296   __ cmpb(Address(rdx, rbx,
  3297                   Address::times_1,
  3298                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3299           JVM_CONSTANT_Class);
  3300   __ jcc(Assembler::equal, quicked);
  3301   __ push(atos); // save receiver for result, and for GC
  3302   __ mov(r12, rcx); // save rcx XXX
  3303   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3304   __ movq(rcx, r12); // restore rcx XXX
  3305   __ reinit_heapbase();
  3306   __ pop_ptr(rdx); // restore receiver
  3307   __ jmpb(resolved);
  3309   // Get superklass in rax and subklass in rbx
  3310   __ bind(quicked);
  3311   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3312   __ movptr(rax, Address(rcx, rbx,
  3313                        Address::times_8, sizeof(constantPoolOopDesc)));
  3315   __ bind(resolved);
  3316   __ load_klass(rbx, rdx);
  3318   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3319   // Superklass in rax.  Subklass in rbx.
  3320   __ gen_subtype_check(rbx, ok_is_subtype);
  3322   // Come here on failure
  3323   __ push_ptr(rdx);
  3324   // object is at TOS
  3325   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3327   // Come here on success
  3328   __ bind(ok_is_subtype);
  3329   __ mov(rax, rdx); // Restore object in rdx
  3331   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3332   if (ProfileInterpreter) {
  3333     __ jmp(done);
  3334     __ bind(is_null);
  3335     __ profile_null_seen(rcx);
  3336   } else {
  3337     __ bind(is_null);   // same as 'done'
  3339   __ bind(done);
  3342 void TemplateTable::instanceof() {
  3343   transition(atos, itos);
  3344   Label done, is_null, ok_is_subtype, quicked, resolved;
  3345   __ testptr(rax, rax);
  3346   __ jcc(Assembler::zero, is_null);
  3348   // Get cpool & tags index
  3349   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3350   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3351   // See if bytecode has already been quicked
  3352   __ cmpb(Address(rdx, rbx,
  3353                   Address::times_1,
  3354                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3355           JVM_CONSTANT_Class);
  3356   __ jcc(Assembler::equal, quicked);
  3358   __ push(atos); // save receiver for result, and for GC
  3359   __ mov(r12, rcx); // save rcx
  3360   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3361   __ movq(rcx, r12); // restore rcx
  3362   __ reinit_heapbase();
  3363   __ pop_ptr(rdx); // restore receiver
  3364   __ load_klass(rdx, rdx);
  3365   __ jmpb(resolved);
  3367   // Get superklass in rax and subklass in rdx
  3368   __ bind(quicked);
  3369   __ load_klass(rdx, rax);
  3370   __ movptr(rax, Address(rcx, rbx,
  3371                          Address::times_8, sizeof(constantPoolOopDesc)));
  3373   __ bind(resolved);
  3375   // Generate subtype check.  Blows rcx, rdi
  3376   // Superklass in rax.  Subklass in rdx.
  3377   __ gen_subtype_check(rdx, ok_is_subtype);
  3379   // Come here on failure
  3380   __ xorl(rax, rax);
  3381   __ jmpb(done);
  3382   // Come here on success
  3383   __ bind(ok_is_subtype);
  3384   __ movl(rax, 1);
  3386   // Collect counts on whether this test sees NULLs a lot or not.
  3387   if (ProfileInterpreter) {
  3388     __ jmp(done);
  3389     __ bind(is_null);
  3390     __ profile_null_seen(rcx);
  3391   } else {
  3392     __ bind(is_null);   // same as 'done'
  3394   __ bind(done);
  3395   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3396   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3399 //-----------------------------------------------------------------------------
  3400 // Breakpoints
  3401 void TemplateTable::_breakpoint() {
  3402   // Note: We get here even if we are single stepping..
  3403   // jbug inists on setting breakpoints at every bytecode
  3404   // even if we are in single step mode.
  3406   transition(vtos, vtos);
  3408   // get the unpatched byte code
  3409   __ get_method(c_rarg1);
  3410   __ call_VM(noreg,
  3411              CAST_FROM_FN_PTR(address,
  3412                               InterpreterRuntime::get_original_bytecode_at),
  3413              c_rarg1, r13);
  3414   __ mov(rbx, rax);
  3416   // post the breakpoint event
  3417   __ get_method(c_rarg1);
  3418   __ call_VM(noreg,
  3419              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3420              c_rarg1, r13);
  3422   // complete the execution of original bytecode
  3423   __ dispatch_only_normal(vtos);
  3426 //-----------------------------------------------------------------------------
  3427 // Exceptions
  3429 void TemplateTable::athrow() {
  3430   transition(atos, vtos);
  3431   __ null_check(rax);
  3432   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3435 //-----------------------------------------------------------------------------
  3436 // Synchronization
  3437 //
  3438 // Note: monitorenter & exit are symmetric routines; which is reflected
  3439 //       in the assembly code structure as well
  3440 //
  3441 // Stack layout:
  3442 //
  3443 // [expressions  ] <--- rsp               = expression stack top
  3444 // ..
  3445 // [expressions  ]
  3446 // [monitor entry] <--- monitor block top = expression stack bot
  3447 // ..
  3448 // [monitor entry]
  3449 // [frame data   ] <--- monitor block bot
  3450 // ...
  3451 // [saved rbp    ] <--- rbp
  3452 void TemplateTable::monitorenter() {
  3453   transition(atos, vtos);
  3455   // check for NULL object
  3456   __ null_check(rax);
  3458   const Address monitor_block_top(
  3459         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3460   const Address monitor_block_bot(
  3461         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3462   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3464   Label allocated;
  3466   // initialize entry pointer
  3467   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3469   // find a free slot in the monitor block (result in c_rarg1)
  3471     Label entry, loop, exit;
  3472     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3473                                      // starting with top-most entry
  3474     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3475                                      // of monitor block
  3476     __ jmpb(entry);
  3478     __ bind(loop);
  3479     // check if current entry is used
  3480     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3481     // if not used then remember entry in c_rarg1
  3482     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3483     // check if current entry is for same object
  3484     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3485     // if same object then stop searching
  3486     __ jccb(Assembler::equal, exit);
  3487     // otherwise advance to next entry
  3488     __ addptr(c_rarg3, entry_size);
  3489     __ bind(entry);
  3490     // check if bottom reached
  3491     __ cmpptr(c_rarg3, c_rarg2);
  3492     // if not at bottom then check this entry
  3493     __ jcc(Assembler::notEqual, loop);
  3494     __ bind(exit);
  3497   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3498   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3500   // allocate one if there's no free slot
  3502     Label entry, loop;
  3503     // 1. compute new pointers             // rsp: old expression stack top
  3504     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3505     __ subptr(rsp, entry_size);            // move expression stack top
  3506     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3507     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3508     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3509     __ jmp(entry);
  3510     // 2. move expression stack contents
  3511     __ bind(loop);
  3512     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3513                                                       // word from old location
  3514     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3515     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3516     __ bind(entry);
  3517     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3518     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3519                                             // copy next word
  3522   // call run-time routine
  3523   // c_rarg1: points to monitor entry
  3524   __ bind(allocated);
  3526   // Increment bcp to point to the next bytecode, so exception
  3527   // handling for async. exceptions work correctly.
  3528   // The object has already been poped from the stack, so the
  3529   // expression stack looks correct.
  3530   __ increment(r13);
  3532   // store object
  3533   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3534   __ lock_object(c_rarg1);
  3536   // check to make sure this monitor doesn't cause stack overflow after locking
  3537   __ save_bcp();  // in case of exception
  3538   __ generate_stack_overflow_check(0);
  3540   // The bcp has already been incremented. Just need to dispatch to
  3541   // next instruction.
  3542   __ dispatch_next(vtos);
  3546 void TemplateTable::monitorexit() {
  3547   transition(atos, vtos);
  3549   // check for NULL object
  3550   __ null_check(rax);
  3552   const Address monitor_block_top(
  3553         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3554   const Address monitor_block_bot(
  3555         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3556   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3558   Label found;
  3560   // find matching slot
  3562     Label entry, loop;
  3563     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3564                                      // starting with top-most entry
  3565     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3566                                      // of monitor block
  3567     __ jmpb(entry);
  3569     __ bind(loop);
  3570     // check if current entry is for same object
  3571     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3572     // if same object then stop searching
  3573     __ jcc(Assembler::equal, found);
  3574     // otherwise advance to next entry
  3575     __ addptr(c_rarg1, entry_size);
  3576     __ bind(entry);
  3577     // check if bottom reached
  3578     __ cmpptr(c_rarg1, c_rarg2);
  3579     // if not at bottom then check this entry
  3580     __ jcc(Assembler::notEqual, loop);
  3583   // error handling. Unlocking was not block-structured
  3584   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3585                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3586   __ should_not_reach_here();
  3588   // call run-time routine
  3589   // rsi: points to monitor entry
  3590   __ bind(found);
  3591   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3592   __ unlock_object(c_rarg1);
  3593   __ pop_ptr(rax); // discard object
  3597 // Wide instructions
  3598 void TemplateTable::wide() {
  3599   transition(vtos, vtos);
  3600   __ load_unsigned_byte(rbx, at_bcp(1));
  3601   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3602   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3603   // Note: the r13 increment step is part of the individual wide
  3604   // bytecode implementations
  3608 // Multi arrays
  3609 void TemplateTable::multianewarray() {
  3610   transition(vtos, atos);
  3611   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3612   // last dim is on top of stack; we want address of first one:
  3613   // first_addr = last_addr + (ndims - 1) * wordSize
  3614   if (TaggedStackInterpreter) __ shll(rax, 1);  // index*2
  3615   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3616   call_VM(rax,
  3617           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3618           c_rarg1);
  3619   __ load_unsigned_byte(rbx, at_bcp(3));
  3620   if (TaggedStackInterpreter) __ shll(rbx, 1);  // index*2
  3621   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3623 #endif // !CC_INTERP

mercurial