src/cpu/x86/vm/templateTable_x86_32.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 968
dc3ad84615cf
child 1057
56aae7be60d4
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_x86_32.cpp.incl"
    28 #ifndef CC_INTERP
    29 #define __ _masm->
    31 //----------------------------------------------------------------------------------------------------
    32 // Platform-dependent initialization
    34 void TemplateTable::pd_initialize() {
    35   // No i486 specific initialization
    36 }
    38 //----------------------------------------------------------------------------------------------------
    39 // Address computation
    41 // local variables
    42 static inline Address iaddress(int n)            {
    43   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    44 }
    46 static inline Address laddress(int n)            { return iaddress(n + 1); }
    47 static inline Address haddress(int n)            { return iaddress(n + 0); }
    48 static inline Address faddress(int n)            { return iaddress(n); }
    49 static inline Address daddress(int n)            { return laddress(n); }
    50 static inline Address aaddress(int n)            { return iaddress(n); }
    52 static inline Address iaddress(Register r)       {
    53   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::value_offset_in_bytes());
    54 }
    55 static inline Address laddress(Register r)       {
    56   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    57 }
    58 static inline Address haddress(Register r)       {
    59   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    60 }
    62 static inline Address faddress(Register r)       { return iaddress(r); };
    63 static inline Address daddress(Register r)       {
    64   assert(!TaggedStackInterpreter, "This doesn't work");
    65   return laddress(r);
    66 };
    67 static inline Address aaddress(Register r)       { return iaddress(r); };
    69 // expression stack
    70 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    71 // data beyond the rsp which is potentially unsafe in an MT environment;
    72 // an interrupt may overwrite that data.)
    73 static inline Address at_rsp   () {
    74   return Address(rsp, 0);
    75 }
    77 // At top of Java expression stack which may be different than rsp().  It
    78 // isn't for category 1 objects.
    79 static inline Address at_tos   () {
    80   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    81   return tos;
    82 }
    84 static inline Address at_tos_p1() {
    85   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    86 }
    88 static inline Address at_tos_p2() {
    89   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    90 }
    92 // Condition conversion
    93 static Assembler::Condition j_not(TemplateTable::Condition cc) {
    94   switch (cc) {
    95     case TemplateTable::equal        : return Assembler::notEqual;
    96     case TemplateTable::not_equal    : return Assembler::equal;
    97     case TemplateTable::less         : return Assembler::greaterEqual;
    98     case TemplateTable::less_equal   : return Assembler::greater;
    99     case TemplateTable::greater      : return Assembler::lessEqual;
   100     case TemplateTable::greater_equal: return Assembler::less;
   101   }
   102   ShouldNotReachHere();
   103   return Assembler::zero;
   104 }
   107 //----------------------------------------------------------------------------------------------------
   108 // Miscelaneous helper routines
   110 // Store an oop (or NULL) at the address described by obj.
   111 // If val == noreg this means store a NULL
   113 static void do_oop_store(InterpreterMacroAssembler* _masm,
   114                          Address obj,
   115                          Register val,
   116                          BarrierSet::Name barrier,
   117                          bool precise) {
   118   assert(val == noreg || val == rax, "parameter is just for looks");
   119   switch (barrier) {
   120 #ifndef SERIALGC
   121     case BarrierSet::G1SATBCT:
   122     case BarrierSet::G1SATBCTLogging:
   123       {
   124         // flatten object address if needed
   125         // We do it regardless of precise because we need the registers
   126         if (obj.index() == noreg && obj.disp() == 0) {
   127           if (obj.base() != rdx) {
   128             __ movl(rdx, obj.base());
   129           }
   130         } else {
   131           __ leal(rdx, obj);
   132         }
   133         __ get_thread(rcx);
   134         __ save_bcp();
   135         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
   137         // Do the actual store
   138         // noreg means NULL
   139         if (val == noreg) {
   140           __ movptr(Address(rdx, 0), NULL_WORD);
   141           // No post barrier for NULL
   142         } else {
   143           __ movl(Address(rdx, 0), val);
   144           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
   145         }
   146         __ restore_bcp();
   148       }
   149       break;
   150 #endif // SERIALGC
   151     case BarrierSet::CardTableModRef:
   152     case BarrierSet::CardTableExtension:
   153       {
   154         if (val == noreg) {
   155           __ movptr(obj, NULL_WORD);
   156         } else {
   157           __ movl(obj, val);
   158           // flatten object address if needed
   159           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   160             __ store_check(obj.base());
   161           } else {
   162             __ leal(rdx, obj);
   163             __ store_check(rdx);
   164           }
   165         }
   166       }
   167       break;
   168     case BarrierSet::ModRef:
   169     case BarrierSet::Other:
   170       if (val == noreg) {
   171         __ movptr(obj, NULL_WORD);
   172       } else {
   173         __ movl(obj, val);
   174       }
   175       break;
   176     default      :
   177       ShouldNotReachHere();
   179   }
   180 }
   182 Address TemplateTable::at_bcp(int offset) {
   183   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   184   return Address(rsi, offset);
   185 }
   188 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   189                                    Register scratch,
   190                                    bool load_bc_into_scratch/*=true*/) {
   192   if (!RewriteBytecodes) return;
   193   // the pair bytecodes have already done the load.
   194   if (load_bc_into_scratch) {
   195     __ movl(bc, bytecode);
   196   }
   197   Label patch_done;
   198   if (JvmtiExport::can_post_breakpoint()) {
   199     Label fast_patch;
   200     // if a breakpoint is present we can't rewrite the stream directly
   201     __ movzbl(scratch, at_bcp(0));
   202     __ cmpl(scratch, Bytecodes::_breakpoint);
   203     __ jcc(Assembler::notEqual, fast_patch);
   204     __ get_method(scratch);
   205     // Let breakpoint table handling rewrite to quicker bytecode
   206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   207 #ifndef ASSERT
   208     __ jmpb(patch_done);
   209     __ bind(fast_patch);
   210   }
   211 #else
   212     __ jmp(patch_done);
   213     __ bind(fast_patch);
   214   }
   215   Label okay;
   216   __ load_unsigned_byte(scratch, at_bcp(0));
   217   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   218   __ jccb(Assembler::equal, okay);
   219   __ cmpl(scratch, bc);
   220   __ jcc(Assembler::equal, okay);
   221   __ stop("patching the wrong bytecode");
   222   __ bind(okay);
   223 #endif
   224   // patch bytecode
   225   __ movb(at_bcp(0), bc);
   226   __ bind(patch_done);
   227 }
   229 //----------------------------------------------------------------------------------------------------
   230 // Individual instructions
   232 void TemplateTable::nop() {
   233   transition(vtos, vtos);
   234   // nothing to do
   235 }
   237 void TemplateTable::shouldnotreachhere() {
   238   transition(vtos, vtos);
   239   __ stop("shouldnotreachhere bytecode");
   240 }
   244 void TemplateTable::aconst_null() {
   245   transition(vtos, atos);
   246   __ xorptr(rax, rax);
   247 }
   250 void TemplateTable::iconst(int value) {
   251   transition(vtos, itos);
   252   if (value == 0) {
   253     __ xorptr(rax, rax);
   254   } else {
   255     __ movptr(rax, value);
   256   }
   257 }
   260 void TemplateTable::lconst(int value) {
   261   transition(vtos, ltos);
   262   if (value == 0) {
   263     __ xorptr(rax, rax);
   264   } else {
   265     __ movptr(rax, value);
   266   }
   267   assert(value >= 0, "check this code");
   268   __ xorptr(rdx, rdx);
   269 }
   272 void TemplateTable::fconst(int value) {
   273   transition(vtos, ftos);
   274          if (value == 0) { __ fldz();
   275   } else if (value == 1) { __ fld1();
   276   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   277   } else                 { ShouldNotReachHere();
   278   }
   279 }
   282 void TemplateTable::dconst(int value) {
   283   transition(vtos, dtos);
   284          if (value == 0) { __ fldz();
   285   } else if (value == 1) { __ fld1();
   286   } else                 { ShouldNotReachHere();
   287   }
   288 }
   291 void TemplateTable::bipush() {
   292   transition(vtos, itos);
   293   __ load_signed_byte(rax, at_bcp(1));
   294 }
   297 void TemplateTable::sipush() {
   298   transition(vtos, itos);
   299   __ load_unsigned_word(rax, at_bcp(1));
   300   __ bswapl(rax);
   301   __ sarl(rax, 16);
   302 }
   304 void TemplateTable::ldc(bool wide) {
   305   transition(vtos, vtos);
   306   Label call_ldc, notFloat, notClass, Done;
   308   if (wide) {
   309     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   310   } else {
   311     __ load_unsigned_byte(rbx, at_bcp(1));
   312   }
   313   __ get_cpool_and_tags(rcx, rax);
   314   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   315   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   317   // get type
   318   __ xorptr(rdx, rdx);
   319   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   321   // unresolved string - get the resolved string
   322   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   323   __ jccb(Assembler::equal, call_ldc);
   325   // unresolved class - get the resolved class
   326   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   327   __ jccb(Assembler::equal, call_ldc);
   329   // unresolved class in error (resolution failed) - call into runtime
   330   // so that the same error from first resolution attempt is thrown.
   331   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   332   __ jccb(Assembler::equal, call_ldc);
   334   // resolved class - need to call vm to get java mirror of the class
   335   __ cmpl(rdx, JVM_CONSTANT_Class);
   336   __ jcc(Assembler::notEqual, notClass);
   338   __ bind(call_ldc);
   339   __ movl(rcx, wide);
   340   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   341   __ push(atos);
   342   __ jmp(Done);
   344   __ bind(notClass);
   345   __ cmpl(rdx, JVM_CONSTANT_Float);
   346   __ jccb(Assembler::notEqual, notFloat);
   347   // ftos
   348   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   349   __ push(ftos);
   350   __ jmp(Done);
   352   __ bind(notFloat);
   353 #ifdef ASSERT
   354   { Label L;
   355     __ cmpl(rdx, JVM_CONSTANT_Integer);
   356     __ jcc(Assembler::equal, L);
   357     __ cmpl(rdx, JVM_CONSTANT_String);
   358     __ jcc(Assembler::equal, L);
   359     __ stop("unexpected tag type in ldc");
   360     __ bind(L);
   361   }
   362 #endif
   363   Label isOop;
   364   // atos and itos
   365   // String is only oop type we will see here
   366   __ cmpl(rdx, JVM_CONSTANT_String);
   367   __ jccb(Assembler::equal, isOop);
   368   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   369   __ push(itos);
   370   __ jmp(Done);
   371   __ bind(isOop);
   372   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   373   __ push(atos);
   375   if (VerifyOops) {
   376     __ verify_oop(rax);
   377   }
   378   __ bind(Done);
   379 }
   381 void TemplateTable::ldc2_w() {
   382   transition(vtos, vtos);
   383   Label Long, Done;
   384   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   386   __ get_cpool_and_tags(rcx, rax);
   387   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   388   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   390   // get type
   391   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   392   __ jccb(Assembler::notEqual, Long);
   393   // dtos
   394   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   395   __ push(dtos);
   396   __ jmpb(Done);
   398   __ bind(Long);
   399   // ltos
   400   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   401   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   403   __ push(ltos);
   405   __ bind(Done);
   406 }
   409 void TemplateTable::locals_index(Register reg, int offset) {
   410   __ load_unsigned_byte(reg, at_bcp(offset));
   411   __ negptr(reg);
   412 }
   415 void TemplateTable::iload() {
   416   transition(vtos, itos);
   417   if (RewriteFrequentPairs) {
   418     Label rewrite, done;
   420     // get next byte
   421     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   422     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   423     // last two iloads in a pair.  Comparing against fast_iload means that
   424     // the next bytecode is neither an iload or a caload, and therefore
   425     // an iload pair.
   426     __ cmpl(rbx, Bytecodes::_iload);
   427     __ jcc(Assembler::equal, done);
   429     __ cmpl(rbx, Bytecodes::_fast_iload);
   430     __ movl(rcx, Bytecodes::_fast_iload2);
   431     __ jccb(Assembler::equal, rewrite);
   433     // if _caload, rewrite to fast_icaload
   434     __ cmpl(rbx, Bytecodes::_caload);
   435     __ movl(rcx, Bytecodes::_fast_icaload);
   436     __ jccb(Assembler::equal, rewrite);
   438     // rewrite so iload doesn't check again.
   439     __ movl(rcx, Bytecodes::_fast_iload);
   441     // rewrite
   442     // rcx: fast bytecode
   443     __ bind(rewrite);
   444     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   445     __ bind(done);
   446   }
   448   // Get the local value into tos
   449   locals_index(rbx);
   450   __ movl(rax, iaddress(rbx));
   451   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   452 }
   455 void TemplateTable::fast_iload2() {
   456   transition(vtos, itos);
   457   locals_index(rbx);
   458   __ movl(rax, iaddress(rbx));
   459   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   460   __ push(itos);
   461   locals_index(rbx, 3);
   462   __ movl(rax, iaddress(rbx));
   463   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   464 }
   466 void TemplateTable::fast_iload() {
   467   transition(vtos, itos);
   468   locals_index(rbx);
   469   __ movl(rax, iaddress(rbx));
   470   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   471 }
   474 void TemplateTable::lload() {
   475   transition(vtos, ltos);
   476   locals_index(rbx);
   477   __ movptr(rax, laddress(rbx));
   478   NOT_LP64(__ movl(rdx, haddress(rbx)));
   479   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   480 }
   483 void TemplateTable::fload() {
   484   transition(vtos, ftos);
   485   locals_index(rbx);
   486   __ fld_s(faddress(rbx));
   487   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   488 }
   491 void TemplateTable::dload() {
   492   transition(vtos, dtos);
   493   locals_index(rbx);
   494   if (TaggedStackInterpreter) {
   495     // Get double out of locals array, onto temp stack and load with
   496     // float instruction into ST0
   497     __ movl(rax, laddress(rbx));
   498     __ movl(rdx, haddress(rbx));
   499     __ push(rdx);  // push hi first
   500     __ push(rax);
   501     __ fld_d(Address(rsp, 0));
   502     __ addptr(rsp, 2*wordSize);
   503     debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   504   } else {
   505     __ fld_d(daddress(rbx));
   506   }
   507 }
   510 void TemplateTable::aload() {
   511   transition(vtos, atos);
   512   locals_index(rbx);
   513   __ movptr(rax, aaddress(rbx));
   514   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   515 }
   518 void TemplateTable::locals_index_wide(Register reg) {
   519   __ movl(reg, at_bcp(2));
   520   __ bswapl(reg);
   521   __ shrl(reg, 16);
   522   __ negptr(reg);
   523 }
   526 void TemplateTable::wide_iload() {
   527   transition(vtos, itos);
   528   locals_index_wide(rbx);
   529   __ movl(rax, iaddress(rbx));
   530   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   531 }
   534 void TemplateTable::wide_lload() {
   535   transition(vtos, ltos);
   536   locals_index_wide(rbx);
   537   __ movptr(rax, laddress(rbx));
   538   NOT_LP64(__ movl(rdx, haddress(rbx)));
   539   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   540 }
   543 void TemplateTable::wide_fload() {
   544   transition(vtos, ftos);
   545   locals_index_wide(rbx);
   546   __ fld_s(faddress(rbx));
   547   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   548 }
   551 void TemplateTable::wide_dload() {
   552   transition(vtos, dtos);
   553   locals_index_wide(rbx);
   554   if (TaggedStackInterpreter) {
   555     // Get double out of locals array, onto temp stack and load with
   556     // float instruction into ST0
   557     __ movl(rax, laddress(rbx));
   558     __ movl(rdx, haddress(rbx));
   559     __ push(rdx);  // push hi first
   560     __ push(rax);
   561     __ fld_d(Address(rsp, 0));
   562     __ addl(rsp, 2*wordSize);
   563     debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
   564   } else {
   565     __ fld_d(daddress(rbx));
   566   }
   567 }
   570 void TemplateTable::wide_aload() {
   571   transition(vtos, atos);
   572   locals_index_wide(rbx);
   573   __ movptr(rax, aaddress(rbx));
   574   debug_only(__ verify_local_tag(frame::TagReference, rbx));
   575 }
   577 void TemplateTable::index_check(Register array, Register index) {
   578   // Pop ptr into array
   579   __ pop_ptr(array);
   580   index_check_without_pop(array, index);
   581 }
   583 void TemplateTable::index_check_without_pop(Register array, Register index) {
   584   // destroys rbx,
   585   // check array
   586   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   587   LP64_ONLY(__ movslq(index, index));
   588   // check index
   589   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   590   if (index != rbx) {
   591     // ??? convention: move aberrant index into rbx, for exception message
   592     assert(rbx != array, "different registers");
   593     __ mov(rbx, index);
   594   }
   595   __ jump_cc(Assembler::aboveEqual,
   596              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   597 }
   600 void TemplateTable::iaload() {
   601   transition(itos, itos);
   602   // rdx: array
   603   index_check(rdx, rax);  // kills rbx,
   604   // rax,: index
   605   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   606 }
   609 void TemplateTable::laload() {
   610   transition(itos, ltos);
   611   // rax,: index
   612   // rdx: array
   613   index_check(rdx, rax);
   614   __ mov(rbx, rax);
   615   // rbx,: index
   616   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   617   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   618 }
   621 void TemplateTable::faload() {
   622   transition(itos, ftos);
   623   // rdx: array
   624   index_check(rdx, rax);  // kills rbx,
   625   // rax,: index
   626   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   627 }
   630 void TemplateTable::daload() {
   631   transition(itos, dtos);
   632   // rdx: array
   633   index_check(rdx, rax);  // kills rbx,
   634   // rax,: index
   635   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   636 }
   639 void TemplateTable::aaload() {
   640   transition(itos, atos);
   641   // rdx: array
   642   index_check(rdx, rax);  // kills rbx,
   643   // rax,: index
   644   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   645 }
   648 void TemplateTable::baload() {
   649   transition(itos, itos);
   650   // rdx: array
   651   index_check(rdx, rax);  // kills rbx,
   652   // rax,: index
   653   // can do better code for P5 - fix this at some point
   654   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   655   __ mov(rax, rbx);
   656 }
   659 void TemplateTable::caload() {
   660   transition(itos, itos);
   661   // rdx: array
   662   index_check(rdx, rax);  // kills rbx,
   663   // rax,: index
   664   // can do better code for P5 - may want to improve this at some point
   665   __ load_unsigned_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   666   __ mov(rax, rbx);
   667 }
   669 // iload followed by caload frequent pair
   670 void TemplateTable::fast_icaload() {
   671   transition(vtos, itos);
   672   // load index out of locals
   673   locals_index(rbx);
   674   __ movl(rax, iaddress(rbx));
   675   debug_only(__ verify_local_tag(frame::TagValue, rbx));
   677   // rdx: array
   678   index_check(rdx, rax);
   679   // rax,: index
   680   __ load_unsigned_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   681   __ mov(rax, rbx);
   682 }
   684 void TemplateTable::saload() {
   685   transition(itos, itos);
   686   // rdx: array
   687   index_check(rdx, rax);  // kills rbx,
   688   // rax,: index
   689   // can do better code for P5 - may want to improve this at some point
   690   __ load_signed_word(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   691   __ mov(rax, rbx);
   692 }
   695 void TemplateTable::iload(int n) {
   696   transition(vtos, itos);
   697   __ movl(rax, iaddress(n));
   698   debug_only(__ verify_local_tag(frame::TagValue, n));
   699 }
   702 void TemplateTable::lload(int n) {
   703   transition(vtos, ltos);
   704   __ movptr(rax, laddress(n));
   705   NOT_LP64(__ movptr(rdx, haddress(n)));
   706   debug_only(__ verify_local_tag(frame::TagCategory2, n));
   707 }
   710 void TemplateTable::fload(int n) {
   711   transition(vtos, ftos);
   712   __ fld_s(faddress(n));
   713   debug_only(__ verify_local_tag(frame::TagValue, n));
   714 }
   717 void TemplateTable::dload(int n) {
   718   transition(vtos, dtos);
   719   if (TaggedStackInterpreter) {
   720     // Get double out of locals array, onto temp stack and load with
   721     // float instruction into ST0
   722     __ movl(rax, laddress(n));
   723     __ movl(rdx, haddress(n));
   724     __ push(rdx);  // push hi first
   725     __ push(rax);
   726     __ fld_d(Address(rsp, 0));
   727     __ addptr(rsp, 2*wordSize);  // reset rsp
   728     debug_only(__ verify_local_tag(frame::TagCategory2, n));
   729   } else {
   730     __ fld_d(daddress(n));
   731   }
   732 }
   735 void TemplateTable::aload(int n) {
   736   transition(vtos, atos);
   737   __ movptr(rax, aaddress(n));
   738   debug_only(__ verify_local_tag(frame::TagReference, n));
   739 }
   742 void TemplateTable::aload_0() {
   743   transition(vtos, atos);
   744   // According to bytecode histograms, the pairs:
   745   //
   746   // _aload_0, _fast_igetfield
   747   // _aload_0, _fast_agetfield
   748   // _aload_0, _fast_fgetfield
   749   //
   750   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   751   // bytecode checks if the next bytecode is either _fast_igetfield,
   752   // _fast_agetfield or _fast_fgetfield and then rewrites the
   753   // current bytecode into a pair bytecode; otherwise it rewrites the current
   754   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   755   //
   756   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   757   //       otherwise we may miss an opportunity for a pair.
   758   //
   759   // Also rewrite frequent pairs
   760   //   aload_0, aload_1
   761   //   aload_0, iload_1
   762   // These bytecodes with a small amount of code are most profitable to rewrite
   763   if (RewriteFrequentPairs) {
   764     Label rewrite, done;
   765     // get next byte
   766     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   768     // do actual aload_0
   769     aload(0);
   771     // if _getfield then wait with rewrite
   772     __ cmpl(rbx, Bytecodes::_getfield);
   773     __ jcc(Assembler::equal, done);
   775     // if _igetfield then reqrite to _fast_iaccess_0
   776     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   777     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   778     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   779     __ jccb(Assembler::equal, rewrite);
   781     // if _agetfield then reqrite to _fast_aaccess_0
   782     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   783     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   784     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   785     __ jccb(Assembler::equal, rewrite);
   787     // if _fgetfield then reqrite to _fast_faccess_0
   788     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   789     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   790     __ movl(rcx, Bytecodes::_fast_faccess_0);
   791     __ jccb(Assembler::equal, rewrite);
   793     // else rewrite to _fast_aload0
   794     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   795     __ movl(rcx, Bytecodes::_fast_aload_0);
   797     // rewrite
   798     // rcx: fast bytecode
   799     __ bind(rewrite);
   800     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   802     __ bind(done);
   803   } else {
   804     aload(0);
   805   }
   806 }
   808 void TemplateTable::istore() {
   809   transition(itos, vtos);
   810   locals_index(rbx);
   811   __ movl(iaddress(rbx), rax);
   812   __ tag_local(frame::TagValue, rbx);
   813 }
   816 void TemplateTable::lstore() {
   817   transition(ltos, vtos);
   818   locals_index(rbx);
   819   __ movptr(laddress(rbx), rax);
   820   NOT_LP64(__ movptr(haddress(rbx), rdx));
   821   __ tag_local(frame::TagCategory2, rbx);
   822 }
   825 void TemplateTable::fstore() {
   826   transition(ftos, vtos);
   827   locals_index(rbx);
   828   __ fstp_s(faddress(rbx));
   829   __ tag_local(frame::TagValue, rbx);
   830 }
   833 void TemplateTable::dstore() {
   834   transition(dtos, vtos);
   835   locals_index(rbx);
   836   if (TaggedStackInterpreter) {
   837     // Store double on stack and reload into locals nonadjacently
   838     __ subptr(rsp, 2 * wordSize);
   839     __ fstp_d(Address(rsp, 0));
   840     __ pop(rax);
   841     __ pop(rdx);
   842     __ movptr(laddress(rbx), rax);
   843     __ movptr(haddress(rbx), rdx);
   844     __ tag_local(frame::TagCategory2, rbx);
   845   } else {
   846     __ fstp_d(daddress(rbx));
   847   }
   848 }
   851 void TemplateTable::astore() {
   852   transition(vtos, vtos);
   853   __ pop_ptr(rax, rdx);   // will need to pop tag too
   854   locals_index(rbx);
   855   __ movptr(aaddress(rbx), rax);
   856   __ tag_local(rdx, rbx);    // need to store same tag in local may be returnAddr
   857 }
   860 void TemplateTable::wide_istore() {
   861   transition(vtos, vtos);
   862   __ pop_i(rax);
   863   locals_index_wide(rbx);
   864   __ movl(iaddress(rbx), rax);
   865   __ tag_local(frame::TagValue, rbx);
   866 }
   869 void TemplateTable::wide_lstore() {
   870   transition(vtos, vtos);
   871   __ pop_l(rax, rdx);
   872   locals_index_wide(rbx);
   873   __ movptr(laddress(rbx), rax);
   874   NOT_LP64(__ movl(haddress(rbx), rdx));
   875   __ tag_local(frame::TagCategory2, rbx);
   876 }
   879 void TemplateTable::wide_fstore() {
   880   wide_istore();
   881 }
   884 void TemplateTable::wide_dstore() {
   885   wide_lstore();
   886 }
   889 void TemplateTable::wide_astore() {
   890   transition(vtos, vtos);
   891   __ pop_ptr(rax, rdx);
   892   locals_index_wide(rbx);
   893   __ movptr(aaddress(rbx), rax);
   894   __ tag_local(rdx, rbx);
   895 }
   898 void TemplateTable::iastore() {
   899   transition(itos, vtos);
   900   __ pop_i(rbx);
   901   // rax,: value
   902   // rdx: array
   903   index_check(rdx, rbx);  // prefer index in rbx,
   904   // rbx,: index
   905   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   906 }
   909 void TemplateTable::lastore() {
   910   transition(ltos, vtos);
   911   __ pop_i(rbx);
   912   // rax,: low(value)
   913   // rcx: array
   914   // rdx: high(value)
   915   index_check(rcx, rbx);  // prefer index in rbx,
   916   // rbx,: index
   917   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   918   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   919 }
   922 void TemplateTable::fastore() {
   923   transition(ftos, vtos);
   924   __ pop_i(rbx);
   925   // rdx: array
   926   // st0: value
   927   index_check(rdx, rbx);  // prefer index in rbx,
   928   // rbx,: index
   929   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   930 }
   933 void TemplateTable::dastore() {
   934   transition(dtos, vtos);
   935   __ pop_i(rbx);
   936   // rdx: array
   937   // st0: value
   938   index_check(rdx, rbx);  // prefer index in rbx,
   939   // rbx,: index
   940   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   941 }
   944 void TemplateTable::aastore() {
   945   Label is_null, ok_is_subtype, done;
   946   transition(vtos, vtos);
   947   // stack: ..., array, index, value
   948   __ movptr(rax, at_tos());     // Value
   949   __ movl(rcx, at_tos_p1());  // Index
   950   __ movptr(rdx, at_tos_p2());  // Array
   952   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   953   index_check_without_pop(rdx, rcx);      // kills rbx,
   954   // do array store check - check for NULL value first
   955   __ testptr(rax, rax);
   956   __ jcc(Assembler::zero, is_null);
   958   // Move subklass into EBX
   959   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   960   // Move superklass into EAX
   961   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   962   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   963   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   964   __ lea(rdx, element_address);
   966   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   967   // Superklass in EAX.  Subklass in EBX.
   968   __ gen_subtype_check( rbx, ok_is_subtype );
   970   // Come here on failure
   971   // object is at TOS
   972   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   974   // Come here on success
   975   __ bind(ok_is_subtype);
   977   // Get the value to store
   978   __ movptr(rax, at_rsp());
   979   // and store it with appropriate barrier
   980   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   982   __ jmp(done);
   984   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   985   __ bind(is_null);
   986   __ profile_null_seen(rbx);
   988   // Store NULL, (noreg means NULL to do_oop_store)
   989   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   991   // Pop stack arguments
   992   __ bind(done);
   993   __ addptr(rsp, 3 * Interpreter::stackElementSize());
   994 }
   997 void TemplateTable::bastore() {
   998   transition(itos, vtos);
   999   __ pop_i(rbx);
  1000   // rax,: value
  1001   // rdx: array
  1002   index_check(rdx, rbx);  // prefer index in rbx,
  1003   // rbx,: index
  1004   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
  1008 void TemplateTable::castore() {
  1009   transition(itos, vtos);
  1010   __ pop_i(rbx);
  1011   // rax,: value
  1012   // rdx: array
  1013   index_check(rdx, rbx);  // prefer index in rbx,
  1014   // rbx,: index
  1015   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
  1019 void TemplateTable::sastore() {
  1020   castore();
  1024 void TemplateTable::istore(int n) {
  1025   transition(itos, vtos);
  1026   __ movl(iaddress(n), rax);
  1027   __ tag_local(frame::TagValue, n);
  1031 void TemplateTable::lstore(int n) {
  1032   transition(ltos, vtos);
  1033   __ movptr(laddress(n), rax);
  1034   NOT_LP64(__ movptr(haddress(n), rdx));
  1035   __ tag_local(frame::TagCategory2, n);
  1039 void TemplateTable::fstore(int n) {
  1040   transition(ftos, vtos);
  1041   __ fstp_s(faddress(n));
  1042   __ tag_local(frame::TagValue, n);
  1046 void TemplateTable::dstore(int n) {
  1047   transition(dtos, vtos);
  1048   if (TaggedStackInterpreter) {
  1049     __ subptr(rsp, 2 * wordSize);
  1050     __ fstp_d(Address(rsp, 0));
  1051     __ pop(rax);
  1052     __ pop(rdx);
  1053     __ movl(laddress(n), rax);
  1054     __ movl(haddress(n), rdx);
  1055     __ tag_local(frame::TagCategory2, n);
  1056   } else {
  1057     __ fstp_d(daddress(n));
  1062 void TemplateTable::astore(int n) {
  1063   transition(vtos, vtos);
  1064   __ pop_ptr(rax, rdx);
  1065   __ movptr(aaddress(n), rax);
  1066   __ tag_local(rdx, n);
  1070 void TemplateTable::pop() {
  1071   transition(vtos, vtos);
  1072   __ addptr(rsp, Interpreter::stackElementSize());
  1076 void TemplateTable::pop2() {
  1077   transition(vtos, vtos);
  1078   __ addptr(rsp, 2*Interpreter::stackElementSize());
  1082 void TemplateTable::dup() {
  1083   transition(vtos, vtos);
  1084   // stack: ..., a
  1085   __ load_ptr_and_tag(0, rax, rdx);
  1086   __ push_ptr(rax, rdx);
  1087   // stack: ..., a, a
  1091 void TemplateTable::dup_x1() {
  1092   transition(vtos, vtos);
  1093   // stack: ..., a, b
  1094   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1095   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1096   __ store_ptr_and_tag(1, rax, rdx); // store b
  1097   __ store_ptr_and_tag(0, rcx, rbx); // store a
  1098   __ push_ptr(rax, rdx);             // push b
  1099   // stack: ..., b, a, b
  1103 void TemplateTable::dup_x2() {
  1104   transition(vtos, vtos);
  1105   // stack: ..., a, b, c
  1106   __ load_ptr_and_tag(0, rax, rdx);  // load c
  1107   __ load_ptr_and_tag(2, rcx, rbx);  // load a
  1108   __ store_ptr_and_tag(2, rax, rdx); // store c in a
  1109   __ push_ptr(rax, rdx);             // push c
  1110   // stack: ..., c, b, c, c
  1111   __ load_ptr_and_tag(2, rax, rdx);  // load b
  1112   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
  1113   // stack: ..., c, a, c, c
  1114   __ store_ptr_and_tag(1, rax, rdx); // store b in c
  1115   // stack: ..., c, a, b, c
  1119 void TemplateTable::dup2() {
  1120   transition(vtos, vtos);
  1121   // stack: ..., a, b
  1122   __ load_ptr_and_tag(1, rax, rdx);  // load a
  1123   __ push_ptr(rax, rdx);             // push a
  1124   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1125   __ push_ptr(rax, rdx);             // push b
  1126   // stack: ..., a, b, a, b
  1130 void TemplateTable::dup2_x1() {
  1131   transition(vtos, vtos);
  1132   // stack: ..., a, b, c
  1133   __ load_ptr_and_tag(0, rcx, rbx);  // load c
  1134   __ load_ptr_and_tag(1, rax, rdx);  // load b
  1135   __ push_ptr(rax, rdx);             // push b
  1136   __ push_ptr(rcx, rbx);             // push c
  1137   // stack: ..., a, b, c, b, c
  1138   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
  1139   // stack: ..., a, c, c, b, c
  1140   __ load_ptr_and_tag(4, rcx, rbx);  // load a
  1141   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
  1142   // stack: ..., a, c, a, b, c
  1143   __ store_ptr_and_tag(4, rax, rdx); // store b in a
  1144   // stack: ..., b, c, a, b, c
  1145   // stack: ..., b, c, a, b, c
  1149 void TemplateTable::dup2_x2() {
  1150   transition(vtos, vtos);
  1151   // stack: ..., a, b, c, d
  1152   __ load_ptr_and_tag(0, rcx, rbx);  // load d
  1153   __ load_ptr_and_tag(1, rax, rdx);  // load c
  1154   __ push_ptr(rax, rdx);             // push c
  1155   __ push_ptr(rcx, rbx);             // push d
  1156   // stack: ..., a, b, c, d, c, d
  1157   __ load_ptr_and_tag(4, rax, rdx);  // load b
  1158   __ store_ptr_and_tag(2, rax, rdx); // store b in d
  1159   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
  1160   // stack: ..., a, d, c, b, c, d
  1161   __ load_ptr_and_tag(5, rcx, rbx);  // load a
  1162   __ load_ptr_and_tag(3, rax, rdx);  // load c
  1163   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
  1164   __ store_ptr_and_tag(5, rax, rdx); // store c in a
  1165   // stack: ..., c, d, a, b, c, d
  1166   // stack: ..., c, d, a, b, c, d
  1170 void TemplateTable::swap() {
  1171   transition(vtos, vtos);
  1172   // stack: ..., a, b
  1173   __ load_ptr_and_tag(1, rcx, rbx);  // load a
  1174   __ load_ptr_and_tag(0, rax, rdx);  // load b
  1175   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
  1176   __ store_ptr_and_tag(1, rax, rdx); // store b in a
  1177   // stack: ..., b, a
  1181 void TemplateTable::iop2(Operation op) {
  1182   transition(itos, itos);
  1183   switch (op) {
  1184     case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1185     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1186     case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1187     case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1188     case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1189     case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1190     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1191     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1192     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1193     default   : ShouldNotReachHere();
  1198 void TemplateTable::lop2(Operation op) {
  1199   transition(ltos, ltos);
  1200   __ pop_l(rbx, rcx);
  1201   switch (op) {
  1202     case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1203     case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1204                __ mov(rax, rbx); __ mov(rdx, rcx); break;
  1205     case _and: __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1206     case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1207     case _xor: __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1208     default : ShouldNotReachHere();
  1213 void TemplateTable::idiv() {
  1214   transition(itos, itos);
  1215   __ mov(rcx, rax);
  1216   __ pop_i(rax);
  1217   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1218   //       they are not equal, one could do a normal division (no correction
  1219   //       needed), which may speed up this implementation for the common case.
  1220   //       (see also JVM spec., p.243 & p.271)
  1221   __ corrected_idivl(rcx);
  1225 void TemplateTable::irem() {
  1226   transition(itos, itos);
  1227   __ mov(rcx, rax);
  1228   __ pop_i(rax);
  1229   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1230   //       they are not equal, one could do a normal division (no correction
  1231   //       needed), which may speed up this implementation for the common case.
  1232   //       (see also JVM spec., p.243 & p.271)
  1233   __ corrected_idivl(rcx);
  1234   __ mov(rax, rdx);
  1238 void TemplateTable::lmul() {
  1239   transition(ltos, ltos);
  1240   __ pop_l(rbx, rcx);
  1241   __ push(rcx); __ push(rbx);
  1242   __ push(rdx); __ push(rax);
  1243   __ lmul(2 * wordSize, 0);
  1244   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1248 void TemplateTable::ldiv() {
  1249   transition(ltos, ltos);
  1250   __ pop_l(rbx, rcx);
  1251   __ push(rcx); __ push(rbx);
  1252   __ push(rdx); __ push(rax);
  1253   // check if y = 0
  1254   __ orl(rax, rdx);
  1255   __ jump_cc(Assembler::zero,
  1256              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1257   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1258   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1262 void TemplateTable::lrem() {
  1263   transition(ltos, ltos);
  1264   __ pop_l(rbx, rcx);
  1265   __ push(rcx); __ push(rbx);
  1266   __ push(rdx); __ push(rax);
  1267   // check if y = 0
  1268   __ orl(rax, rdx);
  1269   __ jump_cc(Assembler::zero,
  1270              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1271   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1272   __ addptr(rsp, 4 * wordSize);
  1276 void TemplateTable::lshl() {
  1277   transition(itos, ltos);
  1278   __ movl(rcx, rax);                             // get shift count
  1279   __ pop_l(rax, rdx);                            // get shift value
  1280   __ lshl(rdx, rax);
  1284 void TemplateTable::lshr() {
  1285   transition(itos, ltos);
  1286   __ mov(rcx, rax);                              // get shift count
  1287   __ pop_l(rax, rdx);                            // get shift value
  1288   __ lshr(rdx, rax, true);
  1292 void TemplateTable::lushr() {
  1293   transition(itos, ltos);
  1294   __ mov(rcx, rax);                              // get shift count
  1295   __ pop_l(rax, rdx);                            // get shift value
  1296   __ lshr(rdx, rax);
  1300 void TemplateTable::fop2(Operation op) {
  1301   transition(ftos, ftos);
  1302   __ pop_ftos_to_rsp();  // pop ftos into rsp
  1303   switch (op) {
  1304     case add: __ fadd_s (at_rsp());                break;
  1305     case sub: __ fsubr_s(at_rsp());                break;
  1306     case mul: __ fmul_s (at_rsp());                break;
  1307     case div: __ fdivr_s(at_rsp());                break;
  1308     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1309     default : ShouldNotReachHere();
  1311   __ f2ieee();
  1312   __ pop(rax);  // pop float thing off
  1316 void TemplateTable::dop2(Operation op) {
  1317   transition(dtos, dtos);
  1318   __ pop_dtos_to_rsp();  // pop dtos into rsp
  1320   switch (op) {
  1321     case add: __ fadd_d (at_rsp());                break;
  1322     case sub: __ fsubr_d(at_rsp());                break;
  1323     case mul: {
  1324       Label L_strict;
  1325       Label L_join;
  1326       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1327       __ get_method(rcx);
  1328       __ movl(rcx, access_flags);
  1329       __ testl(rcx, JVM_ACC_STRICT);
  1330       __ jccb(Assembler::notZero, L_strict);
  1331       __ fmul_d (at_rsp());
  1332       __ jmpb(L_join);
  1333       __ bind(L_strict);
  1334       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1335       __ fmulp();
  1336       __ fmul_d (at_rsp());
  1337       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1338       __ fmulp();
  1339       __ bind(L_join);
  1340       break;
  1342     case div: {
  1343       Label L_strict;
  1344       Label L_join;
  1345       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1346       __ get_method(rcx);
  1347       __ movl(rcx, access_flags);
  1348       __ testl(rcx, JVM_ACC_STRICT);
  1349       __ jccb(Assembler::notZero, L_strict);
  1350       __ fdivr_d(at_rsp());
  1351       __ jmp(L_join);
  1352       __ bind(L_strict);
  1353       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1354       __ fmul_d (at_rsp());
  1355       __ fdivrp();
  1356       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1357       __ fmulp();
  1358       __ bind(L_join);
  1359       break;
  1361     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1362     default : ShouldNotReachHere();
  1364   __ d2ieee();
  1365   // Pop double precision number from rsp.
  1366   __ pop(rax);
  1367   __ pop(rdx);
  1371 void TemplateTable::ineg() {
  1372   transition(itos, itos);
  1373   __ negl(rax);
  1377 void TemplateTable::lneg() {
  1378   transition(ltos, ltos);
  1379   __ lneg(rdx, rax);
  1383 void TemplateTable::fneg() {
  1384   transition(ftos, ftos);
  1385   __ fchs();
  1389 void TemplateTable::dneg() {
  1390   transition(dtos, dtos);
  1391   __ fchs();
  1395 void TemplateTable::iinc() {
  1396   transition(vtos, vtos);
  1397   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1398   locals_index(rbx);
  1399   __ addl(iaddress(rbx), rdx);
  1403 void TemplateTable::wide_iinc() {
  1404   transition(vtos, vtos);
  1405   __ movl(rdx, at_bcp(4));                       // get constant
  1406   locals_index_wide(rbx);
  1407   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1408   __ sarl(rdx, 16);
  1409   __ addl(iaddress(rbx), rdx);
  1410   // Note: should probably use only one movl to get both
  1411   //       the index and the constant -> fix this
  1415 void TemplateTable::convert() {
  1416   // Checking
  1417 #ifdef ASSERT
  1418   { TosState tos_in  = ilgl;
  1419     TosState tos_out = ilgl;
  1420     switch (bytecode()) {
  1421       case Bytecodes::_i2l: // fall through
  1422       case Bytecodes::_i2f: // fall through
  1423       case Bytecodes::_i2d: // fall through
  1424       case Bytecodes::_i2b: // fall through
  1425       case Bytecodes::_i2c: // fall through
  1426       case Bytecodes::_i2s: tos_in = itos; break;
  1427       case Bytecodes::_l2i: // fall through
  1428       case Bytecodes::_l2f: // fall through
  1429       case Bytecodes::_l2d: tos_in = ltos; break;
  1430       case Bytecodes::_f2i: // fall through
  1431       case Bytecodes::_f2l: // fall through
  1432       case Bytecodes::_f2d: tos_in = ftos; break;
  1433       case Bytecodes::_d2i: // fall through
  1434       case Bytecodes::_d2l: // fall through
  1435       case Bytecodes::_d2f: tos_in = dtos; break;
  1436       default             : ShouldNotReachHere();
  1438     switch (bytecode()) {
  1439       case Bytecodes::_l2i: // fall through
  1440       case Bytecodes::_f2i: // fall through
  1441       case Bytecodes::_d2i: // fall through
  1442       case Bytecodes::_i2b: // fall through
  1443       case Bytecodes::_i2c: // fall through
  1444       case Bytecodes::_i2s: tos_out = itos; break;
  1445       case Bytecodes::_i2l: // fall through
  1446       case Bytecodes::_f2l: // fall through
  1447       case Bytecodes::_d2l: tos_out = ltos; break;
  1448       case Bytecodes::_i2f: // fall through
  1449       case Bytecodes::_l2f: // fall through
  1450       case Bytecodes::_d2f: tos_out = ftos; break;
  1451       case Bytecodes::_i2d: // fall through
  1452       case Bytecodes::_l2d: // fall through
  1453       case Bytecodes::_f2d: tos_out = dtos; break;
  1454       default             : ShouldNotReachHere();
  1456     transition(tos_in, tos_out);
  1458 #endif // ASSERT
  1460   // Conversion
  1461   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1462   switch (bytecode()) {
  1463     case Bytecodes::_i2l:
  1464       __ extend_sign(rdx, rax);
  1465       break;
  1466     case Bytecodes::_i2f:
  1467       __ push(rax);          // store int on tos
  1468       __ fild_s(at_rsp());   // load int to ST0
  1469       __ f2ieee();           // truncate to float size
  1470       __ pop(rcx);           // adjust rsp
  1471       break;
  1472     case Bytecodes::_i2d:
  1473       __ push(rax);          // add one slot for d2ieee()
  1474       __ push(rax);          // store int on tos
  1475       __ fild_s(at_rsp());   // load int to ST0
  1476       __ d2ieee();           // truncate to double size
  1477       __ pop(rcx);           // adjust rsp
  1478       __ pop(rcx);
  1479       break;
  1480     case Bytecodes::_i2b:
  1481       __ shll(rax, 24);      // truncate upper 24 bits
  1482       __ sarl(rax, 24);      // and sign-extend byte
  1483       LP64_ONLY(__ movsbl(rax, rax));
  1484       break;
  1485     case Bytecodes::_i2c:
  1486       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1487       LP64_ONLY(__ movzwl(rax, rax));
  1488       break;
  1489     case Bytecodes::_i2s:
  1490       __ shll(rax, 16);      // truncate upper 16 bits
  1491       __ sarl(rax, 16);      // and sign-extend short
  1492       LP64_ONLY(__ movswl(rax, rax));
  1493       break;
  1494     case Bytecodes::_l2i:
  1495       /* nothing to do */
  1496       break;
  1497     case Bytecodes::_l2f:
  1498       __ push(rdx);          // store long on tos
  1499       __ push(rax);
  1500       __ fild_d(at_rsp());   // load long to ST0
  1501       __ f2ieee();           // truncate to float size
  1502       __ pop(rcx);           // adjust rsp
  1503       __ pop(rcx);
  1504       break;
  1505     case Bytecodes::_l2d:
  1506       __ push(rdx);          // store long on tos
  1507       __ push(rax);
  1508       __ fild_d(at_rsp());   // load long to ST0
  1509       __ d2ieee();           // truncate to double size
  1510       __ pop(rcx);           // adjust rsp
  1511       __ pop(rcx);
  1512       break;
  1513     case Bytecodes::_f2i:
  1514       __ push(rcx);          // reserve space for argument
  1515       __ fstp_s(at_rsp());   // pass float argument on stack
  1516       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1517       break;
  1518     case Bytecodes::_f2l:
  1519       __ push(rcx);          // reserve space for argument
  1520       __ fstp_s(at_rsp());   // pass float argument on stack
  1521       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1522       break;
  1523     case Bytecodes::_f2d:
  1524       /* nothing to do */
  1525       break;
  1526     case Bytecodes::_d2i:
  1527       __ push(rcx);          // reserve space for argument
  1528       __ push(rcx);
  1529       __ fstp_d(at_rsp());   // pass double argument on stack
  1530       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1531       break;
  1532     case Bytecodes::_d2l:
  1533       __ push(rcx);          // reserve space for argument
  1534       __ push(rcx);
  1535       __ fstp_d(at_rsp());   // pass double argument on stack
  1536       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1537       break;
  1538     case Bytecodes::_d2f:
  1539       __ push(rcx);          // reserve space for f2ieee()
  1540       __ f2ieee();           // truncate to float size
  1541       __ pop(rcx);           // adjust rsp
  1542       break;
  1543     default             :
  1544       ShouldNotReachHere();
  1549 void TemplateTable::lcmp() {
  1550   transition(ltos, itos);
  1551   // y = rdx:rax
  1552   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1553   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1554   __ mov(rax, rcx);
  1558 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1559   if (is_float) {
  1560     __ pop_ftos_to_rsp();
  1561     __ fld_s(at_rsp());
  1562   } else {
  1563     __ pop_dtos_to_rsp();
  1564     __ fld_d(at_rsp());
  1565     __ pop(rdx);
  1567   __ pop(rcx);
  1568   __ fcmp2int(rax, unordered_result < 0);
  1572 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1573   __ get_method(rcx);           // ECX holds method
  1574   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1576   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1577   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1578   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1580   // Load up EDX with the branch displacement
  1581   __ movl(rdx, at_bcp(1));
  1582   __ bswapl(rdx);
  1583   if (!is_wide) __ sarl(rdx, 16);
  1584   LP64_ONLY(__ movslq(rdx, rdx));
  1587   // Handle all the JSR stuff here, then exit.
  1588   // It's much shorter and cleaner than intermingling with the
  1589   // non-JSR normal-branch stuff occurring below.
  1590   if (is_jsr) {
  1591     // Pre-load the next target bytecode into EBX
  1592     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1594     // compute return address as bci in rax,
  1595     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1596     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1597     // Adjust the bcp in RSI by the displacement in EDX
  1598     __ addptr(rsi, rdx);
  1599     // Push return address
  1600     __ push_i(rax);
  1601     // jsr returns vtos
  1602     __ dispatch_only_noverify(vtos);
  1603     return;
  1606   // Normal (non-jsr) branch handling
  1608   // Adjust the bcp in RSI by the displacement in EDX
  1609   __ addptr(rsi, rdx);
  1611   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1612   Label backedge_counter_overflow;
  1613   Label profile_method;
  1614   Label dispatch;
  1615   if (UseLoopCounter) {
  1616     // increment backedge counter for backward branches
  1617     // rax,: MDO
  1618     // rbx,: MDO bumped taken-count
  1619     // rcx: method
  1620     // rdx: target offset
  1621     // rsi: target bcp
  1622     // rdi: locals pointer
  1623     __ testl(rdx, rdx);             // check if forward or backward branch
  1624     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1626     // increment counter
  1627     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1628     __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1629     __ movl(Address(rcx, be_offset), rax);        // store counter
  1631     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1632     __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1633     __ addl(rax, Address(rcx, be_offset));        // add both counters
  1635     if (ProfileInterpreter) {
  1636       // Test to see if we should create a method data oop
  1637       __ cmp32(rax,
  1638                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1639       __ jcc(Assembler::less, dispatch);
  1641       // if no method data exists, go to profile method
  1642       __ test_method_data_pointer(rax, profile_method);
  1644       if (UseOnStackReplacement) {
  1645         // check for overflow against rbx, which is the MDO taken count
  1646         __ cmp32(rbx,
  1647                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1648         __ jcc(Assembler::below, dispatch);
  1650         // When ProfileInterpreter is on, the backedge_count comes from the
  1651         // methodDataOop, which value does not get reset on the call to
  1652         // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1653         // routine while the method is being compiled, add a second test to make
  1654         // sure the overflow function is called only once every overflow_frequency.
  1655         const int overflow_frequency = 1024;
  1656         __ andptr(rbx, overflow_frequency-1);
  1657         __ jcc(Assembler::zero, backedge_counter_overflow);
  1660     } else {
  1661       if (UseOnStackReplacement) {
  1662         // check for overflow against rax, which is the sum of the counters
  1663         __ cmp32(rax,
  1664                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1665         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1669     __ bind(dispatch);
  1672   // Pre-load the next target bytecode into EBX
  1673   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1675   // continue with the bytecode @ target
  1676   // rax,: return bci for jsr's, unused otherwise
  1677   // rbx,: target bytecode
  1678   // rsi: target bcp
  1679   __ dispatch_only(vtos);
  1681   if (UseLoopCounter) {
  1682     if (ProfileInterpreter) {
  1683       // Out-of-line code to allocate method data oop.
  1684       __ bind(profile_method);
  1685       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), rsi);
  1686       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1687       __ movptr(rcx, Address(rbp, method_offset));
  1688       __ movptr(rcx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1689       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1690       __ test_method_data_pointer(rcx, dispatch);
  1691       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
  1692       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
  1693       __ addptr(rcx, rax);
  1694       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rcx);
  1695       __ jmp(dispatch);
  1698     if (UseOnStackReplacement) {
  1700       // invocation counter overflow
  1701       __ bind(backedge_counter_overflow);
  1702       __ negptr(rdx);
  1703       __ addptr(rdx, rsi);        // branch bcp
  1704       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1705       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1707       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1708       // rbx,: target bytecode
  1709       // rdx: scratch
  1710       // rdi: locals pointer
  1711       // rsi: bcp
  1712       __ testptr(rax, rax);                      // test result
  1713       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1714       // nmethod may have been invalidated (VM may block upon call_VM return)
  1715       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1716       __ cmpl(rcx, InvalidOSREntryBci);
  1717       __ jcc(Assembler::equal, dispatch);
  1719       // We have the address of an on stack replacement routine in rax,
  1720       // We need to prepare to execute the OSR method. First we must
  1721       // migrate the locals and monitors off of the stack.
  1723       __ mov(rbx, rax);                             // save the nmethod
  1725       const Register thread = rcx;
  1726       __ get_thread(thread);
  1727       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1728       // rax, is OSR buffer, move it to expected parameter location
  1729       __ mov(rcx, rax);
  1731       // pop the interpreter frame
  1732       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1733       __ leave();                                // remove frame anchor
  1734       __ pop(rdi);                               // get return address
  1735       __ mov(rsp, rdx);                          // set sp to sender sp
  1738       Label skip;
  1739       Label chkint;
  1741       // The interpreter frame we have removed may be returning to
  1742       // either the callstub or the interpreter. Since we will
  1743       // now be returning from a compiled (OSR) nmethod we must
  1744       // adjust the return to the return were it can handler compiled
  1745       // results and clean the fpu stack. This is very similar to
  1746       // what a i2c adapter must do.
  1748       // Are we returning to the call stub?
  1750       __ cmp32(rdi, ExternalAddress(StubRoutines::_call_stub_return_address));
  1751       __ jcc(Assembler::notEqual, chkint);
  1753       // yes adjust to the specialized call stub  return.
  1754       assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
  1755       __ lea(rdi, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
  1756       __ jmp(skip);
  1758       __ bind(chkint);
  1760       // Are we returning to the interpreter? Look for sentinel
  1762       __ cmpl(Address(rdi, -2*wordSize), Interpreter::return_sentinel);
  1763       __ jcc(Assembler::notEqual, skip);
  1765       // Adjust to compiled return back to interpreter
  1767       __ movptr(rdi, Address(rdi, -wordSize));
  1768       __ bind(skip);
  1770       // Align stack pointer for compiled code (note that caller is
  1771       // responsible for undoing this fixup by remembering the old SP
  1772       // in an rbp,-relative location)
  1773       __ andptr(rsp, -(StackAlignmentInBytes));
  1775       // push the (possibly adjusted) return address
  1776       __ push(rdi);
  1778       // and begin the OSR nmethod
  1779       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1785 void TemplateTable::if_0cmp(Condition cc) {
  1786   transition(itos, vtos);
  1787   // assume branch is more often taken than not (loops use backward branches)
  1788   Label not_taken;
  1789   __ testl(rax, rax);
  1790   __ jcc(j_not(cc), not_taken);
  1791   branch(false, false);
  1792   __ bind(not_taken);
  1793   __ profile_not_taken_branch(rax);
  1797 void TemplateTable::if_icmp(Condition cc) {
  1798   transition(itos, vtos);
  1799   // assume branch is more often taken than not (loops use backward branches)
  1800   Label not_taken;
  1801   __ pop_i(rdx);
  1802   __ cmpl(rdx, rax);
  1803   __ jcc(j_not(cc), not_taken);
  1804   branch(false, false);
  1805   __ bind(not_taken);
  1806   __ profile_not_taken_branch(rax);
  1810 void TemplateTable::if_nullcmp(Condition cc) {
  1811   transition(atos, vtos);
  1812   // assume branch is more often taken than not (loops use backward branches)
  1813   Label not_taken;
  1814   __ testptr(rax, rax);
  1815   __ jcc(j_not(cc), not_taken);
  1816   branch(false, false);
  1817   __ bind(not_taken);
  1818   __ profile_not_taken_branch(rax);
  1822 void TemplateTable::if_acmp(Condition cc) {
  1823   transition(atos, vtos);
  1824   // assume branch is more often taken than not (loops use backward branches)
  1825   Label not_taken;
  1826   __ pop_ptr(rdx);
  1827   __ cmpptr(rdx, rax);
  1828   __ jcc(j_not(cc), not_taken);
  1829   branch(false, false);
  1830   __ bind(not_taken);
  1831   __ profile_not_taken_branch(rax);
  1835 void TemplateTable::ret() {
  1836   transition(vtos, vtos);
  1837   locals_index(rbx);
  1838   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1839   __ profile_ret(rbx, rcx);
  1840   __ get_method(rax);
  1841   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1842   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1843                       constMethodOopDesc::codes_offset()));
  1844   __ dispatch_next(vtos);
  1848 void TemplateTable::wide_ret() {
  1849   transition(vtos, vtos);
  1850   locals_index_wide(rbx);
  1851   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1852   __ profile_ret(rbx, rcx);
  1853   __ get_method(rax);
  1854   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1855   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1856   __ dispatch_next(vtos);
  1860 void TemplateTable::tableswitch() {
  1861   Label default_case, continue_execution;
  1862   transition(itos, vtos);
  1863   // align rsi
  1864   __ lea(rbx, at_bcp(wordSize));
  1865   __ andptr(rbx, -wordSize);
  1866   // load lo & hi
  1867   __ movl(rcx, Address(rbx, 1 * wordSize));
  1868   __ movl(rdx, Address(rbx, 2 * wordSize));
  1869   __ bswapl(rcx);
  1870   __ bswapl(rdx);
  1871   // check against lo & hi
  1872   __ cmpl(rax, rcx);
  1873   __ jccb(Assembler::less, default_case);
  1874   __ cmpl(rax, rdx);
  1875   __ jccb(Assembler::greater, default_case);
  1876   // lookup dispatch offset
  1877   __ subl(rax, rcx);
  1878   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1879   __ profile_switch_case(rax, rbx, rcx);
  1880   // continue execution
  1881   __ bind(continue_execution);
  1882   __ bswapl(rdx);
  1883   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1884   __ addptr(rsi, rdx);
  1885   __ dispatch_only(vtos);
  1886   // handle default
  1887   __ bind(default_case);
  1888   __ profile_switch_default(rax);
  1889   __ movl(rdx, Address(rbx, 0));
  1890   __ jmp(continue_execution);
  1894 void TemplateTable::lookupswitch() {
  1895   transition(itos, itos);
  1896   __ stop("lookupswitch bytecode should have been rewritten");
  1900 void TemplateTable::fast_linearswitch() {
  1901   transition(itos, vtos);
  1902   Label loop_entry, loop, found, continue_execution;
  1903   // bswapl rax, so we can avoid bswapping the table entries
  1904   __ bswapl(rax);
  1905   // align rsi
  1906   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1907   __ andptr(rbx, -wordSize);
  1908   // set counter
  1909   __ movl(rcx, Address(rbx, wordSize));
  1910   __ bswapl(rcx);
  1911   __ jmpb(loop_entry);
  1912   // table search
  1913   __ bind(loop);
  1914   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1915   __ jccb(Assembler::equal, found);
  1916   __ bind(loop_entry);
  1917   __ decrementl(rcx);
  1918   __ jcc(Assembler::greaterEqual, loop);
  1919   // default case
  1920   __ profile_switch_default(rax);
  1921   __ movl(rdx, Address(rbx, 0));
  1922   __ jmpb(continue_execution);
  1923   // entry found -> get offset
  1924   __ bind(found);
  1925   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1926   __ profile_switch_case(rcx, rax, rbx);
  1927   // continue execution
  1928   __ bind(continue_execution);
  1929   __ bswapl(rdx);
  1930   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1931   __ addptr(rsi, rdx);
  1932   __ dispatch_only(vtos);
  1936 void TemplateTable::fast_binaryswitch() {
  1937   transition(itos, vtos);
  1938   // Implementation using the following core algorithm:
  1939   //
  1940   // int binary_search(int key, LookupswitchPair* array, int n) {
  1941   //   // Binary search according to "Methodik des Programmierens" by
  1942   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1943   //   int i = 0;
  1944   //   int j = n;
  1945   //   while (i+1 < j) {
  1946   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1947   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1948   //     // where a stands for the array and assuming that the (inexisting)
  1949   //     // element a[n] is infinitely big.
  1950   //     int h = (i + j) >> 1;
  1951   //     // i < h < j
  1952   //     if (key < array[h].fast_match()) {
  1953   //       j = h;
  1954   //     } else {
  1955   //       i = h;
  1956   //     }
  1957   //   }
  1958   //   // R: a[i] <= key < a[i+1] or Q
  1959   //   // (i.e., if key is within array, i is the correct index)
  1960   //   return i;
  1961   // }
  1963   // register allocation
  1964   const Register key   = rax;                    // already set (tosca)
  1965   const Register array = rbx;
  1966   const Register i     = rcx;
  1967   const Register j     = rdx;
  1968   const Register h     = rdi;                    // needs to be restored
  1969   const Register temp  = rsi;
  1970   // setup array
  1971   __ save_bcp();
  1973   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1974   __ andptr(array, -wordSize);
  1975   // initialize i & j
  1976   __ xorl(i, i);                                 // i = 0;
  1977   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1978   // Convert j into native byteordering
  1979   __ bswapl(j);
  1980   // and start
  1981   Label entry;
  1982   __ jmp(entry);
  1984   // binary search loop
  1985   { Label loop;
  1986     __ bind(loop);
  1987     // int h = (i + j) >> 1;
  1988     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1989     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1990     // if (key < array[h].fast_match()) {
  1991     //   j = h;
  1992     // } else {
  1993     //   i = h;
  1994     // }
  1995     // Convert array[h].match to native byte-ordering before compare
  1996     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1997     __ bswapl(temp);
  1998     __ cmpl(key, temp);
  1999     if (VM_Version::supports_cmov()) {
  2000       __ cmovl(Assembler::less        , j, h);   // j = h if (key <  array[h].fast_match())
  2001       __ cmovl(Assembler::greaterEqual, i, h);   // i = h if (key >= array[h].fast_match())
  2002     } else {
  2003       Label set_i, end_of_if;
  2004       __ jccb(Assembler::greaterEqual, set_i);     // {
  2005       __ mov(j, h);                                //   j = h;
  2006       __ jmp(end_of_if);                           // }
  2007       __ bind(set_i);                              // else {
  2008       __ mov(i, h);                                //   i = h;
  2009       __ bind(end_of_if);                          // }
  2011     // while (i+1 < j)
  2012     __ bind(entry);
  2013     __ leal(h, Address(i, 1));                   // i+1
  2014     __ cmpl(h, j);                               // i+1 < j
  2015     __ jcc(Assembler::less, loop);
  2018   // end of binary search, result index is i (must check again!)
  2019   Label default_case;
  2020   // Convert array[i].match to native byte-ordering before compare
  2021   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  2022   __ bswapl(temp);
  2023   __ cmpl(key, temp);
  2024   __ jcc(Assembler::notEqual, default_case);
  2026   // entry found -> j = offset
  2027   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  2028   __ profile_switch_case(i, key, array);
  2029   __ bswapl(j);
  2030   LP64_ONLY(__ movslq(j, j));
  2031   __ restore_bcp();
  2032   __ restore_locals();                           // restore rdi
  2033   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2035   __ addptr(rsi, j);
  2036   __ dispatch_only(vtos);
  2038   // default case -> j = default offset
  2039   __ bind(default_case);
  2040   __ profile_switch_default(i);
  2041   __ movl(j, Address(array, -2*wordSize));
  2042   __ bswapl(j);
  2043   LP64_ONLY(__ movslq(j, j));
  2044   __ restore_bcp();
  2045   __ restore_locals();                           // restore rdi
  2046   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  2047   __ addptr(rsi, j);
  2048   __ dispatch_only(vtos);
  2052 void TemplateTable::_return(TosState state) {
  2053   transition(state, state);
  2054   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  2056   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2057     assert(state == vtos, "only valid state");
  2058     __ movptr(rax, aaddress(0));
  2059     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
  2060     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2061     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2062     Label skip_register_finalizer;
  2063     __ jcc(Assembler::zero, skip_register_finalizer);
  2065     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2067     __ bind(skip_register_finalizer);
  2070   __ remove_activation(state, rsi);
  2071   __ jmp(rsi);
  2075 // ----------------------------------------------------------------------------
  2076 // Volatile variables demand their effects be made known to all CPU's in
  2077 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2078 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2079 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2080 // reorder volatile references, the hardware also must not reorder them).
  2081 //
  2082 // According to the new Java Memory Model (JMM):
  2083 // (1) All volatiles are serialized wrt to each other.
  2084 // ALSO reads & writes act as aquire & release, so:
  2085 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2086 // the read float up to before the read.  It's OK for non-volatile memory refs
  2087 // that happen before the volatile read to float down below it.
  2088 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2089 // that happen BEFORE the write float down to after the write.  It's OK for
  2090 // non-volatile memory refs that happen after the volatile write to float up
  2091 // before it.
  2092 //
  2093 // We only put in barriers around volatile refs (they are expensive), not
  2094 // _between_ memory refs (that would require us to track the flavor of the
  2095 // previous memory refs).  Requirements (2) and (3) require some barriers
  2096 // before volatile stores and after volatile loads.  These nearly cover
  2097 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2098 // case is placed after volatile-stores although it could just as well go
  2099 // before volatile-loads.
  2100 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2101   // Helper function to insert a is-volatile test and memory barrier
  2102   if( !os::is_MP() ) return;    // Not needed on single CPU
  2103   __ membar(order_constraint);
  2106 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
  2107   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  2109   Register temp = rbx;
  2111   assert_different_registers(Rcache, index, temp);
  2113   const int shift_count = (1 + byte_no)*BitsPerByte;
  2114   Label resolved;
  2115   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2116   __ movl(temp, Address(Rcache,
  2117                           index,
  2118                           Address::times_ptr,
  2119                           constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2120   __ shrl(temp, shift_count);
  2121   // have we resolved this bytecode?
  2122   __ andptr(temp, 0xFF);
  2123   __ cmpl(temp, (int)bytecode());
  2124   __ jcc(Assembler::equal, resolved);
  2126   // resolve first time through
  2127   address entry;
  2128   switch (bytecode()) {
  2129     case Bytecodes::_getstatic      : // fall through
  2130     case Bytecodes::_putstatic      : // fall through
  2131     case Bytecodes::_getfield       : // fall through
  2132     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2133     case Bytecodes::_invokevirtual  : // fall through
  2134     case Bytecodes::_invokespecial  : // fall through
  2135     case Bytecodes::_invokestatic   : // fall through
  2136     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2137     default                         : ShouldNotReachHere();                                 break;
  2139   __ movl(temp, (int)bytecode());
  2140   __ call_VM(noreg, entry, temp);
  2141   // Update registers with resolved info
  2142   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2143   __ bind(resolved);
  2147 // The cache and index registers must be set before call
  2148 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2149                                               Register cache,
  2150                                               Register index,
  2151                                               Register off,
  2152                                               Register flags,
  2153                                               bool is_static = false) {
  2154   assert_different_registers(cache, index, flags, off);
  2156   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2157   // Field offset
  2158   __ movptr(off, Address(cache, index, Address::times_ptr,
  2159                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2160   // Flags
  2161   __ movl(flags, Address(cache, index, Address::times_ptr,
  2162            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2164   // klass     overwrite register
  2165   if (is_static) {
  2166     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2167                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2171 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2172                                                Register method,
  2173                                                Register itable_index,
  2174                                                Register flags,
  2175                                                bool is_invokevirtual,
  2176                                                bool is_invokevfinal /*unused*/) {
  2177   // setup registers
  2178   const Register cache = rcx;
  2179   const Register index = rdx;
  2180   assert_different_registers(method, flags);
  2181   assert_different_registers(method, cache, index);
  2182   assert_different_registers(itable_index, flags);
  2183   assert_different_registers(itable_index, cache, index);
  2184   // determine constant pool cache field offsets
  2185   const int method_offset = in_bytes(
  2186     constantPoolCacheOopDesc::base_offset() +
  2187       (is_invokevirtual
  2188        ? ConstantPoolCacheEntry::f2_offset()
  2189        : ConstantPoolCacheEntry::f1_offset()
  2191     );
  2192   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2193                                     ConstantPoolCacheEntry::flags_offset());
  2194   // access constant pool cache fields
  2195   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2196                                     ConstantPoolCacheEntry::f2_offset());
  2198   resolve_cache_and_index(byte_no, cache, index);
  2200   __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2201   if (itable_index != noreg) {
  2202     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2204   __ movl(flags , Address(cache, index, Address::times_ptr, flags_offset ));
  2208 // The registers cache and index expected to be set before call.
  2209 // Correct values of the cache and index registers are preserved.
  2210 void TemplateTable::jvmti_post_field_access(Register cache,
  2211                                             Register index,
  2212                                             bool is_static,
  2213                                             bool has_tos) {
  2214   if (JvmtiExport::can_post_field_access()) {
  2215     // Check to see if a field access watch has been set before we take
  2216     // the time to call into the VM.
  2217     Label L1;
  2218     assert_different_registers(cache, index, rax);
  2219     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2220     __ testl(rax,rax);
  2221     __ jcc(Assembler::zero, L1);
  2223     // cache entry pointer
  2224     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2225     __ shll(index, LogBytesPerWord);
  2226     __ addptr(cache, index);
  2227     if (is_static) {
  2228       __ xorptr(rax, rax);      // NULL object reference
  2229     } else {
  2230       __ pop(atos);         // Get the object
  2231       __ verify_oop(rax);
  2232       __ push(atos);        // Restore stack state
  2234     // rax,:   object pointer or NULL
  2235     // cache: cache entry pointer
  2236     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2237                rax, cache);
  2238     __ get_cache_and_index_at_bcp(cache, index, 1);
  2239     __ bind(L1);
  2243 void TemplateTable::pop_and_check_object(Register r) {
  2244   __ pop_ptr(r);
  2245   __ null_check(r);  // for field access must check obj.
  2246   __ verify_oop(r);
  2249 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2250   transition(vtos, vtos);
  2252   const Register cache = rcx;
  2253   const Register index = rdx;
  2254   const Register obj   = rcx;
  2255   const Register off   = rbx;
  2256   const Register flags = rax;
  2258   resolve_cache_and_index(byte_no, cache, index);
  2259   jvmti_post_field_access(cache, index, is_static, false);
  2260   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2262   if (!is_static) pop_and_check_object(obj);
  2264   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2265   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2267   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2269   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2270   assert(btos == 0, "change code, btos != 0");
  2271   // btos
  2272   __ andptr(flags, 0x0f);
  2273   __ jcc(Assembler::notZero, notByte);
  2275   __ load_signed_byte(rax, lo );
  2276   __ push(btos);
  2277   // Rewrite bytecode to be faster
  2278   if (!is_static) {
  2279     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2281   __ jmp(Done);
  2283   __ bind(notByte);
  2284   // itos
  2285   __ cmpl(flags, itos );
  2286   __ jcc(Assembler::notEqual, notInt);
  2288   __ movl(rax, lo );
  2289   __ push(itos);
  2290   // Rewrite bytecode to be faster
  2291   if (!is_static) {
  2292     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2294   __ jmp(Done);
  2296   __ bind(notInt);
  2297   // atos
  2298   __ cmpl(flags, atos );
  2299   __ jcc(Assembler::notEqual, notObj);
  2301   __ movl(rax, lo );
  2302   __ push(atos);
  2303   if (!is_static) {
  2304     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2306   __ jmp(Done);
  2308   __ bind(notObj);
  2309   // ctos
  2310   __ cmpl(flags, ctos );
  2311   __ jcc(Assembler::notEqual, notChar);
  2313   __ load_unsigned_word(rax, lo );
  2314   __ push(ctos);
  2315   if (!is_static) {
  2316     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2318   __ jmp(Done);
  2320   __ bind(notChar);
  2321   // stos
  2322   __ cmpl(flags, stos );
  2323   __ jcc(Assembler::notEqual, notShort);
  2325   __ load_signed_word(rax, lo );
  2326   __ push(stos);
  2327   if (!is_static) {
  2328     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2330   __ jmp(Done);
  2332   __ bind(notShort);
  2333   // ltos
  2334   __ cmpl(flags, ltos );
  2335   __ jcc(Assembler::notEqual, notLong);
  2337   // Generate code as if volatile.  There just aren't enough registers to
  2338   // save that information and this code is faster than the test.
  2339   __ fild_d(lo);                // Must load atomically
  2340   __ subptr(rsp,2*wordSize);    // Make space for store
  2341   __ fistp_d(Address(rsp,0));
  2342   __ pop(rax);
  2343   __ pop(rdx);
  2345   __ push(ltos);
  2346   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2347   __ jmp(Done);
  2349   __ bind(notLong);
  2350   // ftos
  2351   __ cmpl(flags, ftos );
  2352   __ jcc(Assembler::notEqual, notFloat);
  2354   __ fld_s(lo);
  2355   __ push(ftos);
  2356   if (!is_static) {
  2357     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2359   __ jmp(Done);
  2361   __ bind(notFloat);
  2362   // dtos
  2363   __ cmpl(flags, dtos );
  2364   __ jcc(Assembler::notEqual, notDouble);
  2366   __ fld_d(lo);
  2367   __ push(dtos);
  2368   if (!is_static) {
  2369     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2371   __ jmpb(Done);
  2373   __ bind(notDouble);
  2375   __ stop("Bad state");
  2377   __ bind(Done);
  2378   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2379   // volatile_barrier( );
  2383 void TemplateTable::getfield(int byte_no) {
  2384   getfield_or_static(byte_no, false);
  2388 void TemplateTable::getstatic(int byte_no) {
  2389   getfield_or_static(byte_no, true);
  2392 // The registers cache and index expected to be set before call.
  2393 // The function may destroy various registers, just not the cache and index registers.
  2394 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2396   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2398   if (JvmtiExport::can_post_field_modification()) {
  2399     // Check to see if a field modification watch has been set before we take
  2400     // the time to call into the VM.
  2401     Label L1;
  2402     assert_different_registers(cache, index, rax);
  2403     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2404     __ testl(rax, rax);
  2405     __ jcc(Assembler::zero, L1);
  2407     // The cache and index registers have been already set.
  2408     // This allows to eliminate this call but the cache and index
  2409     // registers have to be correspondingly used after this line.
  2410     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2412     if (is_static) {
  2413       // Life is simple.  Null out the object pointer.
  2414       __ xorptr(rbx, rbx);
  2415     } else {
  2416       // Life is harder. The stack holds the value on top, followed by the object.
  2417       // We don't know the size of the value, though; it could be one or two words
  2418       // depending on its type. As a result, we must find the type to determine where
  2419       // the object is.
  2420       Label two_word, valsize_known;
  2421       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2422                                    ConstantPoolCacheEntry::flags_offset())));
  2423       __ mov(rbx, rsp);
  2424       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2425       // Make sure we don't need to mask rcx for tosBits after the above shift
  2426       ConstantPoolCacheEntry::verify_tosBits();
  2427       __ cmpl(rcx, ltos);
  2428       __ jccb(Assembler::equal, two_word);
  2429       __ cmpl(rcx, dtos);
  2430       __ jccb(Assembler::equal, two_word);
  2431       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2432       __ jmpb(valsize_known);
  2434       __ bind(two_word);
  2435       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2437       __ bind(valsize_known);
  2438       // setup object pointer
  2439       __ movptr(rbx, Address(rbx, 0));
  2441     // cache entry pointer
  2442     __ addptr(rax, in_bytes(cp_base_offset));
  2443     __ shll(rdx, LogBytesPerWord);
  2444     __ addptr(rax, rdx);
  2445     // object (tos)
  2446     __ mov(rcx, rsp);
  2447     // rbx,: object pointer set up above (NULL if static)
  2448     // rax,: cache entry pointer
  2449     // rcx: jvalue object on the stack
  2450     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2451                rbx, rax, rcx);
  2452     __ get_cache_and_index_at_bcp(cache, index, 1);
  2453     __ bind(L1);
  2458 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2459   transition(vtos, vtos);
  2461   const Register cache = rcx;
  2462   const Register index = rdx;
  2463   const Register obj   = rcx;
  2464   const Register off   = rbx;
  2465   const Register flags = rax;
  2467   resolve_cache_and_index(byte_no, cache, index);
  2468   jvmti_post_field_mod(cache, index, is_static);
  2469   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2471   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2472   // volatile_barrier( );
  2474   Label notVolatile, Done;
  2475   __ movl(rdx, flags);
  2476   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2477   __ andl(rdx, 0x1);
  2479   // field addresses
  2480   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2481   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2483   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2485   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2486   assert(btos == 0, "change code, btos != 0");
  2487   // btos
  2488   __ andl(flags, 0x0f);
  2489   __ jcc(Assembler::notZero, notByte);
  2491   __ pop(btos);
  2492   if (!is_static) pop_and_check_object(obj);
  2493   __ movb(lo, rax );
  2494   if (!is_static) {
  2495     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2497   __ jmp(Done);
  2499   __ bind(notByte);
  2500   // itos
  2501   __ cmpl(flags, itos );
  2502   __ jcc(Assembler::notEqual, notInt);
  2504   __ pop(itos);
  2505   if (!is_static) pop_and_check_object(obj);
  2507   __ movl(lo, rax );
  2508   if (!is_static) {
  2509     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2511   __ jmp(Done);
  2513   __ bind(notInt);
  2514   // atos
  2515   __ cmpl(flags, atos );
  2516   __ jcc(Assembler::notEqual, notObj);
  2518   __ pop(atos);
  2519   if (!is_static) pop_and_check_object(obj);
  2521   do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2523   if (!is_static) {
  2524     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2527   __ jmp(Done);
  2529   __ bind(notObj);
  2530   // ctos
  2531   __ cmpl(flags, ctos );
  2532   __ jcc(Assembler::notEqual, notChar);
  2534   __ pop(ctos);
  2535   if (!is_static) pop_and_check_object(obj);
  2536   __ movw(lo, rax );
  2537   if (!is_static) {
  2538     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2540   __ jmp(Done);
  2542   __ bind(notChar);
  2543   // stos
  2544   __ cmpl(flags, stos );
  2545   __ jcc(Assembler::notEqual, notShort);
  2547   __ pop(stos);
  2548   if (!is_static) pop_and_check_object(obj);
  2549   __ movw(lo, rax );
  2550   if (!is_static) {
  2551     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2553   __ jmp(Done);
  2555   __ bind(notShort);
  2556   // ltos
  2557   __ cmpl(flags, ltos );
  2558   __ jcc(Assembler::notEqual, notLong);
  2560   Label notVolatileLong;
  2561   __ testl(rdx, rdx);
  2562   __ jcc(Assembler::zero, notVolatileLong);
  2564   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2565   if (!is_static) pop_and_check_object(obj);
  2567   // Replace with real volatile test
  2568   __ push(rdx);
  2569   __ push(rax);                 // Must update atomically with FIST
  2570   __ fild_d(Address(rsp,0));    // So load into FPU register
  2571   __ fistp_d(lo);               // and put into memory atomically
  2572   __ addptr(rsp, 2*wordSize);
  2573   // volatile_barrier();
  2574   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2575                                                Assembler::StoreStore));
  2576   // Don't rewrite volatile version
  2577   __ jmp(notVolatile);
  2579   __ bind(notVolatileLong);
  2581   __ pop(ltos);  // overwrites rdx
  2582   if (!is_static) pop_and_check_object(obj);
  2583   NOT_LP64(__ movptr(hi, rdx));
  2584   __ movptr(lo, rax);
  2585   if (!is_static) {
  2586     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2588   __ jmp(notVolatile);
  2590   __ bind(notLong);
  2591   // ftos
  2592   __ cmpl(flags, ftos );
  2593   __ jcc(Assembler::notEqual, notFloat);
  2595   __ pop(ftos);
  2596   if (!is_static) pop_and_check_object(obj);
  2597   __ fstp_s(lo);
  2598   if (!is_static) {
  2599     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2601   __ jmp(Done);
  2603   __ bind(notFloat);
  2604   // dtos
  2605   __ cmpl(flags, dtos );
  2606   __ jcc(Assembler::notEqual, notDouble);
  2608   __ pop(dtos);
  2609   if (!is_static) pop_and_check_object(obj);
  2610   __ fstp_d(lo);
  2611   if (!is_static) {
  2612     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2614   __ jmp(Done);
  2616   __ bind(notDouble);
  2618   __ stop("Bad state");
  2620   __ bind(Done);
  2622   // Check for volatile store
  2623   __ testl(rdx, rdx);
  2624   __ jcc(Assembler::zero, notVolatile);
  2625   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2626                                                Assembler::StoreStore));
  2627   __ bind(notVolatile);
  2631 void TemplateTable::putfield(int byte_no) {
  2632   putfield_or_static(byte_no, false);
  2636 void TemplateTable::putstatic(int byte_no) {
  2637   putfield_or_static(byte_no, true);
  2640 void TemplateTable::jvmti_post_fast_field_mod() {
  2641   if (JvmtiExport::can_post_field_modification()) {
  2642     // Check to see if a field modification watch has been set before we take
  2643     // the time to call into the VM.
  2644     Label L2;
  2645     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2646     __ testl(rcx,rcx);
  2647     __ jcc(Assembler::zero, L2);
  2648     __ pop_ptr(rbx);               // copy the object pointer from tos
  2649     __ verify_oop(rbx);
  2650     __ push_ptr(rbx);              // put the object pointer back on tos
  2651     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2652     __ mov(rcx, rsp);
  2653     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2654     __ xorptr(rbx, rbx);
  2655     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2656     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2657     switch (bytecode()) {          // load values into the jvalue object
  2658     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2659     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2660     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2661     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2662     case Bytecodes::_fast_lputfield:
  2663       NOT_LP64(__ movptr(hi_value, rdx));
  2664       __ movptr(lo_value, rax);
  2665       break;
  2667     // need to call fld_s() after fstp_s() to restore the value for below
  2668     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2670     // need to call fld_d() after fstp_d() to restore the value for below
  2671     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2673     // since rcx is not an object we don't call store_check() here
  2674     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
  2676     default:  ShouldNotReachHere();
  2678     __ pop_ptr(rbx);  // restore copy of object pointer
  2680     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2681     // then use them for JVM/DI purposes
  2682     __ push(rax);
  2683     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2684     // access constant pool cache entry
  2685     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2686     __ verify_oop(rbx);
  2687     // rbx,: object pointer copied above
  2688     // rax,: cache entry pointer
  2689     // rcx: jvalue object on the stack
  2690     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2691     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
  2692     __ pop(rax);     // restore lower value
  2693     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2694     __ bind(L2);
  2698 void TemplateTable::fast_storefield(TosState state) {
  2699   transition(state, vtos);
  2701   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2703   jvmti_post_fast_field_mod();
  2705   // access constant pool cache
  2706   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2708   // test for volatile with rdx but rdx is tos register for lputfield.
  2709   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2710   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2711                        ConstantPoolCacheEntry::flags_offset())));
  2713   // replace index with field offset from cache entry
  2714   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2716   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2717   // volatile_barrier( );
  2719   Label notVolatile, Done;
  2720   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2721   __ andl(rdx, 0x1);
  2722   // Check for volatile store
  2723   __ testl(rdx, rdx);
  2724   __ jcc(Assembler::zero, notVolatile);
  2726   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2728   // Get object from stack
  2729   pop_and_check_object(rcx);
  2731   // field addresses
  2732   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2733   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2735   // access field
  2736   switch (bytecode()) {
  2737     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2738     case Bytecodes::_fast_sputfield: // fall through
  2739     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2740     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2741     case Bytecodes::_fast_lputfield:
  2742       NOT_LP64(__ movptr(hi, rdx));
  2743       __ movptr(lo, rax);
  2744       break;
  2745     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2746     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2747     case Bytecodes::_fast_aputfield: {
  2748       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2749       break;
  2751     default:
  2752       ShouldNotReachHere();
  2755   Label done;
  2756   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2757                                                Assembler::StoreStore));
  2758   // Barriers are so large that short branch doesn't reach!
  2759   __ jmp(done);
  2761   // Same code as above, but don't need rdx to test for volatile.
  2762   __ bind(notVolatile);
  2764   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2766   // Get object from stack
  2767   pop_and_check_object(rcx);
  2769   // access field
  2770   switch (bytecode()) {
  2771     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2772     case Bytecodes::_fast_sputfield: // fall through
  2773     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2774     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2775     case Bytecodes::_fast_lputfield:
  2776       NOT_LP64(__ movptr(hi, rdx));
  2777       __ movptr(lo, rax);
  2778       break;
  2779     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2780     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2781     case Bytecodes::_fast_aputfield: {
  2782       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2783       break;
  2785     default:
  2786       ShouldNotReachHere();
  2788   __ bind(done);
  2792 void TemplateTable::fast_accessfield(TosState state) {
  2793   transition(atos, state);
  2795   // do the JVMTI work here to avoid disturbing the register state below
  2796   if (JvmtiExport::can_post_field_access()) {
  2797     // Check to see if a field access watch has been set before we take
  2798     // the time to call into the VM.
  2799     Label L1;
  2800     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2801     __ testl(rcx,rcx);
  2802     __ jcc(Assembler::zero, L1);
  2803     // access constant pool cache entry
  2804     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2805     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2806     __ verify_oop(rax);
  2807     // rax,: object pointer copied above
  2808     // rcx: cache entry pointer
  2809     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2810     __ pop_ptr(rax);   // restore object pointer
  2811     __ bind(L1);
  2814   // access constant pool cache
  2815   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2816   // replace index with field offset from cache entry
  2817   __ movptr(rbx, Address(rcx,
  2818                          rbx,
  2819                          Address::times_ptr,
  2820                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2823   // rax,: object
  2824   __ verify_oop(rax);
  2825   __ null_check(rax);
  2826   // field addresses
  2827   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2828   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2830   // access field
  2831   switch (bytecode()) {
  2832     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2833     case Bytecodes::_fast_sgetfield: __ load_signed_word(rax, lo );       break;
  2834     case Bytecodes::_fast_cgetfield: __ load_unsigned_word(rax, lo );     break;
  2835     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2836     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2837     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2838     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2839     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2840     default:
  2841       ShouldNotReachHere();
  2844   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2845   // volatile_barrier( );
  2848 void TemplateTable::fast_xaccess(TosState state) {
  2849   transition(vtos, state);
  2850   // get receiver
  2851   __ movptr(rax, aaddress(0));
  2852   debug_only(__ verify_local_tag(frame::TagReference, 0));
  2853   // access constant pool cache
  2854   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2855   __ movptr(rbx, Address(rcx,
  2856                          rdx,
  2857                          Address::times_ptr,
  2858                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2859   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2860   __ increment(rsi);
  2861   __ null_check(rax);
  2862   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2863   if (state == itos) {
  2864     __ movl(rax, lo);
  2865   } else if (state == atos) {
  2866     __ movptr(rax, lo);
  2867     __ verify_oop(rax);
  2868   } else if (state == ftos) {
  2869     __ fld_s(lo);
  2870   } else {
  2871     ShouldNotReachHere();
  2873   __ decrement(rsi);
  2878 //----------------------------------------------------------------------------------------------------
  2879 // Calls
  2881 void TemplateTable::count_calls(Register method, Register temp) {
  2882   // implemented elsewhere
  2883   ShouldNotReachHere();
  2887 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no, Bytecodes::Code code) {
  2888   // determine flags
  2889   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2890   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2891   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2892   const bool load_receiver       = code != Bytecodes::_invokestatic;
  2893   const bool receiver_null_check = is_invokespecial;
  2894   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2895   // setup registers & access constant pool cache
  2896   const Register recv   = rcx;
  2897   const Register flags  = rdx;
  2898   assert_different_registers(method, index, recv, flags);
  2900   // save 'interpreter return address'
  2901   __ save_bcp();
  2903   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
  2905   // load receiver if needed (note: no return address pushed yet)
  2906   if (load_receiver) {
  2907     __ movl(recv, flags);
  2908     __ andl(recv, 0xFF);
  2909     // recv count is 0 based?
  2910     __ movptr(recv, Address(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1)));
  2911     __ verify_oop(recv);
  2914   // do null check if needed
  2915   if (receiver_null_check) {
  2916     __ null_check(recv);
  2919   if (save_flags) {
  2920     __ mov(rsi, flags);
  2923   // compute return type
  2924   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2925   // Make sure we don't need to mask flags for tosBits after the above shift
  2926   ConstantPoolCacheEntry::verify_tosBits();
  2927   // load return address
  2929     ExternalAddress table(is_invokeinterface ? (address)Interpreter::return_5_addrs_by_index_table() :
  2930                                                (address)Interpreter::return_3_addrs_by_index_table());
  2931     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2934   // push return address
  2935   __ push(flags);
  2937   // Restore flag value from the constant pool cache, and restore rsi
  2938   // for later null checks.  rsi is the bytecode pointer
  2939   if (save_flags) {
  2940     __ mov(flags, rsi);
  2941     __ restore_bcp();
  2946 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2947                         Register flags) {
  2949   // Uses temporary registers rax, rdx
  2950   assert_different_registers(index, recv, rax, rdx);
  2952   // Test for an invoke of a final method
  2953   Label notFinal;
  2954   __ movl(rax, flags);
  2955   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2956   __ jcc(Assembler::zero, notFinal);
  2958   Register method = index;  // method must be rbx,
  2959   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2961   // do the call - the index is actually the method to call
  2962   __ verify_oop(method);
  2964   // It's final, need a null check here!
  2965   __ null_check(recv);
  2967   // profile this call
  2968   __ profile_final_call(rax);
  2970   __ jump_from_interpreted(method, rax);
  2972   __ bind(notFinal);
  2974   // get receiver klass
  2975   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2976   // Keep recv in rcx for callee expects it there
  2977   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2978   __ verify_oop(rax);
  2980   // profile this call
  2981   __ profile_virtual_call(rax, rdi, rdx);
  2983   // get target methodOop & entry point
  2984   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2985   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2986   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
  2987   __ jump_from_interpreted(method, rdx);
  2991 void TemplateTable::invokevirtual(int byte_no) {
  2992   transition(vtos, vtos);
  2993   prepare_invoke(rbx, noreg, byte_no, bytecode());
  2995   // rbx,: index
  2996   // rcx: receiver
  2997   // rdx: flags
  2999   invokevirtual_helper(rbx, rcx, rdx);
  3003 void TemplateTable::invokespecial(int byte_no) {
  3004   transition(vtos, vtos);
  3005   prepare_invoke(rbx, noreg, byte_no, bytecode());
  3006   // do the call
  3007   __ verify_oop(rbx);
  3008   __ profile_call(rax);
  3009   __ jump_from_interpreted(rbx, rax);
  3013 void TemplateTable::invokestatic(int byte_no) {
  3014   transition(vtos, vtos);
  3015   prepare_invoke(rbx, noreg, byte_no, bytecode());
  3016   // do the call
  3017   __ verify_oop(rbx);
  3018   __ profile_call(rax);
  3019   __ jump_from_interpreted(rbx, rax);
  3023 void TemplateTable::fast_invokevfinal(int byte_no) {
  3024   transition(vtos, vtos);
  3025   __ stop("fast_invokevfinal not used on x86");
  3029 void TemplateTable::invokeinterface(int byte_no) {
  3030   transition(vtos, vtos);
  3031   prepare_invoke(rax, rbx, byte_no, bytecode());
  3033   // rax,: Interface
  3034   // rbx,: index
  3035   // rcx: receiver
  3036   // rdx: flags
  3038   // Special case of invokeinterface called for virtual method of
  3039   // java.lang.Object.  See cpCacheOop.cpp for details.
  3040   // This code isn't produced by javac, but could be produced by
  3041   // another compliant java compiler.
  3042   Label notMethod;
  3043   __ movl(rdi, rdx);
  3044   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  3045   __ jcc(Assembler::zero, notMethod);
  3047   invokevirtual_helper(rbx, rcx, rdx);
  3048   __ bind(notMethod);
  3050   // Get receiver klass into rdx - also a null check
  3051   __ restore_locals();  // restore rdi
  3052   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  3053   __ verify_oop(rdx);
  3055   // profile this call
  3056   __ profile_virtual_call(rdx, rsi, rdi);
  3058   __ mov(rdi, rdx); // Save klassOop in rdi
  3060   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3061   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3062   assert(vtableEntry::size() * wordSize == (1 << (int)Address::times_ptr), "adjust the scaling in the code below");
  3063   __ movl(rsi, Address(rdx, instanceKlass::vtable_length_offset() * wordSize)); // Get length of vtable
  3064   __ lea(rdx, Address(rdx, rsi, Address::times_4, base));
  3065   if (HeapWordsPerLong > 1) {
  3066     // Round up to align_object_offset boundary
  3067     __ round_to(rdx, BytesPerLong);
  3070   Label entry, search, interface_ok;
  3072   __ jmpb(entry);
  3073   __ bind(search);
  3074   __ addptr(rdx, itableOffsetEntry::size() * wordSize);
  3076   __ bind(entry);
  3078   // Check that the entry is non-null.  A null entry means that the receiver
  3079   // class doesn't implement the interface, and wasn't the same as the
  3080   // receiver class checked when the interface was resolved.
  3081   __ push(rdx);
  3082   __ movptr(rdx, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  3083   __ testptr(rdx, rdx);
  3084   __ jcc(Assembler::notZero, interface_ok);
  3085   // throw exception
  3086   __ pop(rdx);           // pop saved register first.
  3087   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3088   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3089   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3090   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3091                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3092   // the call_VM checks for exception, so we should never return here.
  3093   __ should_not_reach_here();
  3094   __ bind(interface_ok);
  3096     __ pop(rdx);
  3098     __ cmpptr(rax, Address(rdx, itableOffsetEntry::interface_offset_in_bytes()));
  3099     __ jcc(Assembler::notEqual, search);
  3101     __ movl(rdx, Address(rdx, itableOffsetEntry::offset_offset_in_bytes()));
  3102     __ addptr(rdx, rdi); // Add offset to klassOop
  3103     assert(itableMethodEntry::size() * wordSize == (1 << (int)Address::times_ptr), "adjust the scaling in the code below");
  3104     __ movptr(rbx, Address(rdx, rbx, Address::times_ptr));
  3105     // rbx,: methodOop to call
  3106     // rcx: receiver
  3107     // Check for abstract method error
  3108     // Note: This should be done more efficiently via a throw_abstract_method_error
  3109     //       interpreter entry point and a conditional jump to it in case of a null
  3110     //       method.
  3111     { Label L;
  3112       __ testptr(rbx, rbx);
  3113       __ jcc(Assembler::notZero, L);
  3114       // throw exception
  3115           // note: must restore interpreter registers to canonical
  3116           //       state for exception handling to work correctly!
  3117           __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3118           __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3119           __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3120       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3121       // the call_VM checks for exception, so we should never return here.
  3122       __ should_not_reach_here();
  3123       __ bind(L);
  3126   // do the call
  3127   // rcx: receiver
  3128   // rbx,: methodOop
  3129   __ jump_from_interpreted(rbx, rdx);
  3132 //----------------------------------------------------------------------------------------------------
  3133 // Allocation
  3135 void TemplateTable::_new() {
  3136   transition(vtos, atos);
  3137   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3138   Label slow_case;
  3139   Label done;
  3140   Label initialize_header;
  3141   Label initialize_object;  // including clearing the fields
  3142   Label allocate_shared;
  3144   __ get_cpool_and_tags(rcx, rax);
  3145   // get instanceKlass
  3146   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3147   __ push(rcx);  // save the contexts of klass for initializing the header
  3149   // make sure the class we're about to instantiate has been resolved.
  3150   // Note: slow_case does a pop of stack, which is why we loaded class/pushed above
  3151   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3152   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3153   __ jcc(Assembler::notEqual, slow_case);
  3155   // make sure klass is initialized & doesn't have finalizer
  3156   // make sure klass is fully initialized
  3157   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3158   __ jcc(Assembler::notEqual, slow_case);
  3160   // get instance_size in instanceKlass (scaled to a count of bytes)
  3161   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3162   // test to see if it has a finalizer or is malformed in some way
  3163   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3164   __ jcc(Assembler::notZero, slow_case);
  3166   //
  3167   // Allocate the instance
  3168   // 1) Try to allocate in the TLAB
  3169   // 2) if fail and the object is large allocate in the shared Eden
  3170   // 3) if the above fails (or is not applicable), go to a slow case
  3171   // (creates a new TLAB, etc.)
  3173   const bool allow_shared_alloc =
  3174     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3176   if (UseTLAB) {
  3177     const Register thread = rcx;
  3179     __ get_thread(thread);
  3180     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3181     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3182     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3183     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3184     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3185     if (ZeroTLAB) {
  3186       // the fields have been already cleared
  3187       __ jmp(initialize_header);
  3188     } else {
  3189       // initialize both the header and fields
  3190       __ jmp(initialize_object);
  3194   // Allocation in the shared Eden, if allowed.
  3195   //
  3196   // rdx: instance size in bytes
  3197   if (allow_shared_alloc) {
  3198     __ bind(allocate_shared);
  3200     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3202     Label retry;
  3203     __ bind(retry);
  3204     __ movptr(rax, heap_top);
  3205     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3206     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3207     __ jcc(Assembler::above, slow_case);
  3209     // Compare rax, with the top addr, and if still equal, store the new
  3210     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3211     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3212     //
  3213     // rax,: object begin
  3214     // rbx,: object end
  3215     // rdx: instance size in bytes
  3216     __ locked_cmpxchgptr(rbx, heap_top);
  3218     // if someone beat us on the allocation, try again, otherwise continue
  3219     __ jcc(Assembler::notEqual, retry);
  3222   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3223     // The object is initialized before the header.  If the object size is
  3224     // zero, go directly to the header initialization.
  3225     __ bind(initialize_object);
  3226     __ decrement(rdx, sizeof(oopDesc));
  3227     __ jcc(Assembler::zero, initialize_header);
  3229   // Initialize topmost object field, divide rdx by 8, check if odd and
  3230   // test if zero.
  3231     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3232     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3234   // rdx must have been multiple of 8
  3235 #ifdef ASSERT
  3236     // make sure rdx was multiple of 8
  3237     Label L;
  3238     // Ignore partial flag stall after shrl() since it is debug VM
  3239     __ jccb(Assembler::carryClear, L);
  3240     __ stop("object size is not multiple of 2 - adjust this code");
  3241     __ bind(L);
  3242     // rdx must be > 0, no extra check needed here
  3243 #endif
  3245     // initialize remaining object fields: rdx was a multiple of 8
  3246     { Label loop;
  3247     __ bind(loop);
  3248     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3249     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3250     __ decrement(rdx);
  3251     __ jcc(Assembler::notZero, loop);
  3254     // initialize object header only.
  3255     __ bind(initialize_header);
  3256     if (UseBiasedLocking) {
  3257       __ pop(rcx);   // get saved klass back in the register.
  3258       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3259       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3260     } else {
  3261       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3262                 (int32_t)markOopDesc::prototype()); // header
  3263       __ pop(rcx);   // get saved klass back in the register.
  3265     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
  3268       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3269       // Trigger dtrace event for fastpath
  3270       __ push(atos);
  3271       __ call_VM_leaf(
  3272            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3273       __ pop(atos);
  3276     __ jmp(done);
  3279   // slow case
  3280   __ bind(slow_case);
  3281   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3282   __ get_constant_pool(rax);
  3283   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3284   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3286   // continue
  3287   __ bind(done);
  3291 void TemplateTable::newarray() {
  3292   transition(itos, atos);
  3293   __ push_i(rax);                                 // make sure everything is on the stack
  3294   __ load_unsigned_byte(rdx, at_bcp(1));
  3295   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3296   __ pop_i(rdx);                                  // discard size
  3300 void TemplateTable::anewarray() {
  3301   transition(itos, atos);
  3302   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3303   __ get_constant_pool(rcx);
  3304   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3308 void TemplateTable::arraylength() {
  3309   transition(atos, itos);
  3310   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3311   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3315 void TemplateTable::checkcast() {
  3316   transition(atos, atos);
  3317   Label done, is_null, ok_is_subtype, quicked, resolved;
  3318   __ testptr(rax, rax);   // Object is in EAX
  3319   __ jcc(Assembler::zero, is_null);
  3321   // Get cpool & tags index
  3322   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3323   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3324   // See if bytecode has already been quicked
  3325   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3326   __ jcc(Assembler::equal, quicked);
  3328   __ push(atos);
  3329   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3330   __ pop_ptr(rdx);
  3331   __ jmpb(resolved);
  3333   // Get superklass in EAX and subklass in EBX
  3334   __ bind(quicked);
  3335   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3336   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3338   __ bind(resolved);
  3339   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3341   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3342   // Superklass in EAX.  Subklass in EBX.
  3343   __ gen_subtype_check( rbx, ok_is_subtype );
  3345   // Come here on failure
  3346   __ push(rdx);
  3347   // object is at TOS
  3348   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3350   // Come here on success
  3351   __ bind(ok_is_subtype);
  3352   __ mov(rax,rdx);           // Restore object in EDX
  3354   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3355   if (ProfileInterpreter) {
  3356     __ jmp(done);
  3357     __ bind(is_null);
  3358     __ profile_null_seen(rcx);
  3359   } else {
  3360     __ bind(is_null);   // same as 'done'
  3362   __ bind(done);
  3366 void TemplateTable::instanceof() {
  3367   transition(atos, itos);
  3368   Label done, is_null, ok_is_subtype, quicked, resolved;
  3369   __ testptr(rax, rax);
  3370   __ jcc(Assembler::zero, is_null);
  3372   // Get cpool & tags index
  3373   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3374   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3375   // See if bytecode has already been quicked
  3376   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3377   __ jcc(Assembler::equal, quicked);
  3379   __ push(atos);
  3380   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3381   __ pop_ptr(rdx);
  3382   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3383   __ jmp(resolved);
  3385   // Get superklass in EAX and subklass in EDX
  3386   __ bind(quicked);
  3387   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3388   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3390   __ bind(resolved);
  3392   // Generate subtype check.  Blows ECX.  Resets EDI.
  3393   // Superklass in EAX.  Subklass in EDX.
  3394   __ gen_subtype_check( rdx, ok_is_subtype );
  3396   // Come here on failure
  3397   __ xorl(rax,rax);
  3398   __ jmpb(done);
  3399   // Come here on success
  3400   __ bind(ok_is_subtype);
  3401   __ movl(rax, 1);
  3403   // Collect counts on whether this test sees NULLs a lot or not.
  3404   if (ProfileInterpreter) {
  3405     __ jmp(done);
  3406     __ bind(is_null);
  3407     __ profile_null_seen(rcx);
  3408   } else {
  3409     __ bind(is_null);   // same as 'done'
  3411   __ bind(done);
  3412   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3413   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3417 //----------------------------------------------------------------------------------------------------
  3418 // Breakpoints
  3419 void TemplateTable::_breakpoint() {
  3421   // Note: We get here even if we are single stepping..
  3422   // jbug inists on setting breakpoints at every bytecode
  3423   // even if we are in single step mode.
  3425   transition(vtos, vtos);
  3427   // get the unpatched byte code
  3428   __ get_method(rcx);
  3429   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3430   __ mov(rbx, rax);
  3432   // post the breakpoint event
  3433   __ get_method(rcx);
  3434   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3436   // complete the execution of original bytecode
  3437   __ dispatch_only_normal(vtos);
  3441 //----------------------------------------------------------------------------------------------------
  3442 // Exceptions
  3444 void TemplateTable::athrow() {
  3445   transition(atos, vtos);
  3446   __ null_check(rax);
  3447   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3451 //----------------------------------------------------------------------------------------------------
  3452 // Synchronization
  3453 //
  3454 // Note: monitorenter & exit are symmetric routines; which is reflected
  3455 //       in the assembly code structure as well
  3456 //
  3457 // Stack layout:
  3458 //
  3459 // [expressions  ] <--- rsp               = expression stack top
  3460 // ..
  3461 // [expressions  ]
  3462 // [monitor entry] <--- monitor block top = expression stack bot
  3463 // ..
  3464 // [monitor entry]
  3465 // [frame data   ] <--- monitor block bot
  3466 // ...
  3467 // [saved rbp,    ] <--- rbp,
  3470 void TemplateTable::monitorenter() {
  3471   transition(atos, vtos);
  3473   // check for NULL object
  3474   __ null_check(rax);
  3476   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3477   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3478   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3479   Label allocated;
  3481   // initialize entry pointer
  3482   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3484   // find a free slot in the monitor block (result in rdx)
  3485   { Label entry, loop, exit;
  3486     __ movptr(rcx, monitor_block_top);            // points to current entry, starting with top-most entry
  3487     __ lea(rbx, monitor_block_bot);               // points to word before bottom of monitor block
  3488     __ jmpb(entry);
  3490     __ bind(loop);
  3491     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3493 // TODO - need new func here - kbt
  3494     if (VM_Version::supports_cmov()) {
  3495       __ cmov(Assembler::equal, rdx, rcx);       // if not used then remember entry in rdx
  3496     } else {
  3497       Label L;
  3498       __ jccb(Assembler::notEqual, L);
  3499       __ mov(rdx, rcx);                          // if not used then remember entry in rdx
  3500       __ bind(L);
  3502     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3503     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3504     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3505     __ bind(entry);
  3506     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3507     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3508     __ bind(exit);
  3511   __ testptr(rdx, rdx);                          // check if a slot has been found
  3512   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3514   // allocate one if there's no free slot
  3515   { Label entry, loop;
  3516     // 1. compute new pointers                   // rsp: old expression stack top
  3517     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3518     __ subptr(rsp, entry_size);                  // move expression stack top
  3519     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3520     __ mov(rcx, rsp);                            // set start value for copy loop
  3521     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3522     __ jmp(entry);
  3523     // 2. move expression stack contents
  3524     __ bind(loop);
  3525     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3526     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3527     __ addptr(rcx, wordSize);                    // advance to next word
  3528     __ bind(entry);
  3529     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3530     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3533   // call run-time routine
  3534   // rdx: points to monitor entry
  3535   __ bind(allocated);
  3537   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3538   // The object has already been poped from the stack, so the expression stack looks correct.
  3539   __ increment(rsi);
  3541   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3542   __ lock_object(rdx);
  3544   // check to make sure this monitor doesn't cause stack overflow after locking
  3545   __ save_bcp();  // in case of exception
  3546   __ generate_stack_overflow_check(0);
  3548   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3549   __ dispatch_next(vtos);
  3553 void TemplateTable::monitorexit() {
  3554   transition(atos, vtos);
  3556   // check for NULL object
  3557   __ null_check(rax);
  3559   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3560   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3561   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3562   Label found;
  3564   // find matching slot
  3565   { Label entry, loop;
  3566     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3567     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3568     __ jmpb(entry);
  3570     __ bind(loop);
  3571     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3572     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3573     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3574     __ bind(entry);
  3575     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3576     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3579   // error handling. Unlocking was not block-structured
  3580   Label end;
  3581   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3582   __ should_not_reach_here();
  3584   // call run-time routine
  3585   // rcx: points to monitor entry
  3586   __ bind(found);
  3587   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3588   __ unlock_object(rdx);
  3589   __ pop_ptr(rax);                                  // discard object
  3590   __ bind(end);
  3594 //----------------------------------------------------------------------------------------------------
  3595 // Wide instructions
  3597 void TemplateTable::wide() {
  3598   transition(vtos, vtos);
  3599   __ load_unsigned_byte(rbx, at_bcp(1));
  3600   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3601   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3602   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3606 //----------------------------------------------------------------------------------------------------
  3607 // Multi arrays
  3609 void TemplateTable::multianewarray() {
  3610   transition(vtos, atos);
  3611   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3612   // last dim is on top of stack; we want address of first one:
  3613   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3614   // the latter wordSize to point to the beginning of the array.
  3615   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3616   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3617   __ load_unsigned_byte(rbx, at_bcp(3));
  3618   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3621 #endif /* !CC_INTERP */

mercurial