src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 797
f8199438385b
child 1368
cdb8b7c37ac1
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRGenerator_x86.cpp.incl"
    28 #ifdef ASSERT
    29 #define __ gen()->lir(__FILE__, __LINE__)->
    30 #else
    31 #define __ gen()->lir()->
    32 #endif
    34 // Item will be loaded into a byte register; Intel only
    35 void LIRItem::load_byte_item() {
    36   load_item();
    37   LIR_Opr res = result();
    39   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
    40     // make sure that it is a byte register
    41     assert(!value()->type()->is_float() && !value()->type()->is_double(),
    42            "can't load floats in byte register");
    43     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
    44     __ move(res, reg);
    46     _result = reg;
    47   }
    48 }
    51 void LIRItem::load_nonconstant() {
    52   LIR_Opr r = value()->operand();
    53   if (r->is_constant()) {
    54     _result = r;
    55   } else {
    56     load_item();
    57   }
    58 }
    60 //--------------------------------------------------------------
    61 //               LIRGenerator
    62 //--------------------------------------------------------------
    65 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
    66 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
    67 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
    68 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
    69 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
    70 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
    71 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
    72 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
    75 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
    76   LIR_Opr opr;
    77   switch (type->tag()) {
    78     case intTag:     opr = FrameMap::rax_opr;          break;
    79     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
    80     case longTag:    opr = FrameMap::long0_opr;        break;
    81     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
    82     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
    84     case addressTag:
    85     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
    86   }
    88   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
    89   return opr;
    90 }
    93 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
    94   LIR_Opr reg = new_register(T_INT);
    95   set_vreg_flag(reg, LIRGenerator::byte_reg);
    96   return reg;
    97 }
   100 //--------- loading items into registers --------------------------------
   103 // i486 instructions can inline constants
   104 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
   105   if (type == T_SHORT || type == T_CHAR) {
   106     // there is no immediate move of word values in asembler_i486.?pp
   107     return false;
   108   }
   109   Constant* c = v->as_Constant();
   110   if (c && c->state() == NULL) {
   111     // constants of any type can be stored directly, except for
   112     // unloaded object constants.
   113     return true;
   114   }
   115   return false;
   116 }
   119 bool LIRGenerator::can_inline_as_constant(Value v) const {
   120   if (v->type()->tag() == longTag) return false;
   121   return v->type()->tag() != objectTag ||
   122     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
   123 }
   126 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
   127   if (c->type() == T_LONG) return false;
   128   return c->type() != T_OBJECT || c->as_jobject() == NULL;
   129 }
   132 LIR_Opr LIRGenerator::safepoint_poll_register() {
   133   return LIR_OprFact::illegalOpr;
   134 }
   137 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
   138                                             int shift, int disp, BasicType type) {
   139   assert(base->is_register(), "must be");
   140   if (index->is_constant()) {
   141     return new LIR_Address(base,
   142                            (index->as_constant_ptr()->as_jint() << shift) + disp,
   143                            type);
   144   } else {
   145     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
   146   }
   147 }
   150 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
   151                                               BasicType type, bool needs_card_mark) {
   152   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
   154   LIR_Address* addr;
   155   if (index_opr->is_constant()) {
   156     int elem_size = type2aelembytes(type);
   157     addr = new LIR_Address(array_opr,
   158                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
   159   } else {
   160 #ifdef _LP64
   161     if (index_opr->type() == T_INT) {
   162       LIR_Opr tmp = new_register(T_LONG);
   163       __ convert(Bytecodes::_i2l, index_opr, tmp);
   164       index_opr = tmp;
   165     }
   166 #endif // _LP64
   167     addr =  new LIR_Address(array_opr,
   168                             index_opr,
   169                             LIR_Address::scale(type),
   170                             offset_in_bytes, type);
   171   }
   172   if (needs_card_mark) {
   173     // This store will need a precise card mark, so go ahead and
   174     // compute the full adddres instead of computing once for the
   175     // store and again for the card mark.
   176     LIR_Opr tmp = new_pointer_register();
   177     __ leal(LIR_OprFact::address(addr), tmp);
   178     return new LIR_Address(tmp, 0, type);
   179   } else {
   180     return addr;
   181   }
   182 }
   185 void LIRGenerator::increment_counter(address counter, int step) {
   186   LIR_Opr pointer = new_pointer_register();
   187   __ move(LIR_OprFact::intptrConst(counter), pointer);
   188   LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
   189   increment_counter(addr, step);
   190 }
   193 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
   194   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
   195 }
   198 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
   199   __ cmp_mem_int(condition, base, disp, c, info);
   200 }
   203 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
   204   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   205 }
   208 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
   209   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
   210 }
   213 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
   214   if (tmp->is_valid()) {
   215     if (is_power_of_2(c + 1)) {
   216       __ move(left, tmp);
   217       __ shift_left(left, log2_intptr(c + 1), left);
   218       __ sub(left, tmp, result);
   219       return true;
   220     } else if (is_power_of_2(c - 1)) {
   221       __ move(left, tmp);
   222       __ shift_left(left, log2_intptr(c - 1), left);
   223       __ add(left, tmp, result);
   224       return true;
   225     }
   226   }
   227   return false;
   228 }
   231 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
   232   BasicType type = item->type();
   233   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
   234 }
   236 //----------------------------------------------------------------------
   237 //             visitor functions
   238 //----------------------------------------------------------------------
   241 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
   242   assert(x->is_root(),"");
   243   bool needs_range_check = true;
   244   bool use_length = x->length() != NULL;
   245   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
   246   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
   247                                          !get_jobject_constant(x->value())->is_null_object());
   249   LIRItem array(x->array(), this);
   250   LIRItem index(x->index(), this);
   251   LIRItem value(x->value(), this);
   252   LIRItem length(this);
   254   array.load_item();
   255   index.load_nonconstant();
   257   if (use_length) {
   258     needs_range_check = x->compute_needs_range_check();
   259     if (needs_range_check) {
   260       length.set_instruction(x->length());
   261       length.load_item();
   262     }
   263   }
   264   if (needs_store_check) {
   265     value.load_item();
   266   } else {
   267     value.load_for_store(x->elt_type());
   268   }
   270   set_no_result(x);
   272   // the CodeEmitInfo must be duplicated for each different
   273   // LIR-instruction because spilling can occur anywhere between two
   274   // instructions and so the debug information must be different
   275   CodeEmitInfo* range_check_info = state_for(x);
   276   CodeEmitInfo* null_check_info = NULL;
   277   if (x->needs_null_check()) {
   278     null_check_info = new CodeEmitInfo(range_check_info);
   279   }
   281   // emit array address setup early so it schedules better
   282   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
   284   if (GenerateRangeChecks && needs_range_check) {
   285     if (use_length) {
   286       __ cmp(lir_cond_belowEqual, length.result(), index.result());
   287       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
   288     } else {
   289       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
   290       // range_check also does the null check
   291       null_check_info = NULL;
   292     }
   293   }
   295   if (GenerateArrayStoreCheck && needs_store_check) {
   296     LIR_Opr tmp1 = new_register(objectType);
   297     LIR_Opr tmp2 = new_register(objectType);
   298     LIR_Opr tmp3 = new_register(objectType);
   300     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
   301     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
   302   }
   304   if (obj_store) {
   305     // Needs GC write barriers.
   306     pre_barrier(LIR_OprFact::address(array_addr), false, NULL);
   307     __ move(value.result(), array_addr, null_check_info);
   308     // Seems to be a precise
   309     post_barrier(LIR_OprFact::address(array_addr), value.result());
   310   } else {
   311     __ move(value.result(), array_addr, null_check_info);
   312   }
   313 }
   316 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
   317   assert(x->is_root(),"");
   318   LIRItem obj(x->obj(), this);
   319   obj.load_item();
   321   set_no_result(x);
   323   // "lock" stores the address of the monitor stack slot, so this is not an oop
   324   LIR_Opr lock = new_register(T_INT);
   325   // Need a scratch register for biased locking on x86
   326   LIR_Opr scratch = LIR_OprFact::illegalOpr;
   327   if (UseBiasedLocking) {
   328     scratch = new_register(T_INT);
   329   }
   331   CodeEmitInfo* info_for_exception = NULL;
   332   if (x->needs_null_check()) {
   333     info_for_exception = state_for(x, x->lock_stack_before());
   334   }
   335   // this CodeEmitInfo must not have the xhandlers because here the
   336   // object is already locked (xhandlers expect object to be unlocked)
   337   CodeEmitInfo* info = state_for(x, x->state(), true);
   338   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
   339                         x->monitor_no(), info_for_exception, info);
   340 }
   343 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
   344   assert(x->is_root(),"");
   346   LIRItem obj(x->obj(), this);
   347   obj.dont_load_item();
   349   LIR_Opr lock = new_register(T_INT);
   350   LIR_Opr obj_temp = new_register(T_INT);
   351   set_no_result(x);
   352   monitor_exit(obj_temp, lock, syncTempOpr(), x->monitor_no());
   353 }
   356 // _ineg, _lneg, _fneg, _dneg
   357 void LIRGenerator::do_NegateOp(NegateOp* x) {
   358   LIRItem value(x->x(), this);
   359   value.set_destroys_register();
   360   value.load_item();
   361   LIR_Opr reg = rlock(x);
   362   __ negate(value.result(), reg);
   364   set_result(x, round_item(reg));
   365 }
   368 // for  _fadd, _fmul, _fsub, _fdiv, _frem
   369 //      _dadd, _dmul, _dsub, _ddiv, _drem
   370 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
   371   LIRItem left(x->x(),  this);
   372   LIRItem right(x->y(), this);
   373   LIRItem* left_arg  = &left;
   374   LIRItem* right_arg = &right;
   375   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
   376   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
   377   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
   378     left.load_item();
   379   } else {
   380     left.dont_load_item();
   381   }
   383   // do not load right operand if it is a constant.  only 0 and 1 are
   384   // loaded because there are special instructions for loading them
   385   // without memory access (not needed for SSE2 instructions)
   386   bool must_load_right = false;
   387   if (right.is_constant()) {
   388     LIR_Const* c = right.result()->as_constant_ptr();
   389     assert(c != NULL, "invalid constant");
   390     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
   392     if (c->type() == T_FLOAT) {
   393       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
   394     } else {
   395       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
   396     }
   397   }
   399   if (must_load_both) {
   400     // frem and drem destroy also right operand, so move it to a new register
   401     right.set_destroys_register();
   402     right.load_item();
   403   } else if (right.is_register() || must_load_right) {
   404     right.load_item();
   405   } else {
   406     right.dont_load_item();
   407   }
   408   LIR_Opr reg = rlock(x);
   409   LIR_Opr tmp = LIR_OprFact::illegalOpr;
   410   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
   411     tmp = new_register(T_DOUBLE);
   412   }
   414   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
   415     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
   416     LIR_Opr fpu0, fpu1;
   417     if (x->op() == Bytecodes::_frem) {
   418       fpu0 = LIR_OprFact::single_fpu(0);
   419       fpu1 = LIR_OprFact::single_fpu(1);
   420     } else {
   421       fpu0 = LIR_OprFact::double_fpu(0);
   422       fpu1 = LIR_OprFact::double_fpu(1);
   423     }
   424     __ move(right.result(), fpu1); // order of left and right operand is important!
   425     __ move(left.result(), fpu0);
   426     __ rem (fpu0, fpu1, fpu0);
   427     __ move(fpu0, reg);
   429   } else {
   430     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
   431   }
   433   set_result(x, round_item(reg));
   434 }
   437 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
   438 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
   439   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
   440     // long division is implemented as a direct call into the runtime
   441     LIRItem left(x->x(), this);
   442     LIRItem right(x->y(), this);
   444     // the check for division by zero destroys the right operand
   445     right.set_destroys_register();
   447     BasicTypeList signature(2);
   448     signature.append(T_LONG);
   449     signature.append(T_LONG);
   450     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
   452     // check for division by zero (destroys registers of right operand!)
   453     CodeEmitInfo* info = state_for(x);
   455     const LIR_Opr result_reg = result_register_for(x->type());
   456     left.load_item_force(cc->at(1));
   457     right.load_item();
   459     __ move(right.result(), cc->at(0));
   461     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
   462     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
   464     address entry;
   465     switch (x->op()) {
   466     case Bytecodes::_lrem:
   467       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
   468       break; // check if dividend is 0 is done elsewhere
   469     case Bytecodes::_ldiv:
   470       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
   471       break; // check if dividend is 0 is done elsewhere
   472     case Bytecodes::_lmul:
   473       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
   474       break;
   475     default:
   476       ShouldNotReachHere();
   477     }
   479     LIR_Opr result = rlock_result(x);
   480     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
   481     __ move(result_reg, result);
   482   } else if (x->op() == Bytecodes::_lmul) {
   483     // missing test if instr is commutative and if we should swap
   484     LIRItem left(x->x(), this);
   485     LIRItem right(x->y(), this);
   487     // right register is destroyed by the long mul, so it must be
   488     // copied to a new register.
   489     right.set_destroys_register();
   491     left.load_item();
   492     right.load_item();
   494     LIR_Opr reg = FrameMap::long0_opr;
   495     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
   496     LIR_Opr result = rlock_result(x);
   497     __ move(reg, result);
   498   } else {
   499     // missing test if instr is commutative and if we should swap
   500     LIRItem left(x->x(), this);
   501     LIRItem right(x->y(), this);
   503     left.load_item();
   504     // don't load constants to save register
   505     right.load_nonconstant();
   506     rlock_result(x);
   507     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
   508   }
   509 }
   513 // for: _iadd, _imul, _isub, _idiv, _irem
   514 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
   515   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
   516     // The requirements for division and modulo
   517     // input : rax,: dividend                         min_int
   518     //         reg: divisor   (may not be rax,/rdx)   -1
   519     //
   520     // output: rax,: quotient  (= rax, idiv reg)       min_int
   521     //         rdx: remainder (= rax, irem reg)       0
   523     // rax, and rdx will be destroyed
   525     // Note: does this invalidate the spec ???
   526     LIRItem right(x->y(), this);
   527     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
   529     // call state_for before load_item_force because state_for may
   530     // force the evaluation of other instructions that are needed for
   531     // correct debug info.  Otherwise the live range of the fix
   532     // register might be too long.
   533     CodeEmitInfo* info = state_for(x);
   535     left.load_item_force(divInOpr());
   537     right.load_item();
   539     LIR_Opr result = rlock_result(x);
   540     LIR_Opr result_reg;
   541     if (x->op() == Bytecodes::_idiv) {
   542       result_reg = divOutOpr();
   543     } else {
   544       result_reg = remOutOpr();
   545     }
   547     if (!ImplicitDiv0Checks) {
   548       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
   549       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
   550     }
   551     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
   552     if (x->op() == Bytecodes::_irem) {
   553       __ irem(left.result(), right.result(), result_reg, tmp, info);
   554     } else if (x->op() == Bytecodes::_idiv) {
   555       __ idiv(left.result(), right.result(), result_reg, tmp, info);
   556     } else {
   557       ShouldNotReachHere();
   558     }
   560     __ move(result_reg, result);
   561   } else {
   562     // missing test if instr is commutative and if we should swap
   563     LIRItem left(x->x(),  this);
   564     LIRItem right(x->y(), this);
   565     LIRItem* left_arg = &left;
   566     LIRItem* right_arg = &right;
   567     if (x->is_commutative() && left.is_stack() && right.is_register()) {
   568       // swap them if left is real stack (or cached) and right is real register(not cached)
   569       left_arg = &right;
   570       right_arg = &left;
   571     }
   573     left_arg->load_item();
   575     // do not need to load right, as we can handle stack and constants
   576     if (x->op() == Bytecodes::_imul ) {
   577       // check if we can use shift instead
   578       bool use_constant = false;
   579       bool use_tmp = false;
   580       if (right_arg->is_constant()) {
   581         int iconst = right_arg->get_jint_constant();
   582         if (iconst > 0) {
   583           if (is_power_of_2(iconst)) {
   584             use_constant = true;
   585           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
   586             use_constant = true;
   587             use_tmp = true;
   588           }
   589         }
   590       }
   591       if (use_constant) {
   592         right_arg->dont_load_item();
   593       } else {
   594         right_arg->load_item();
   595       }
   596       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   597       if (use_tmp) {
   598         tmp = new_register(T_INT);
   599       }
   600       rlock_result(x);
   602       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   603     } else {
   604       right_arg->dont_load_item();
   605       rlock_result(x);
   606       LIR_Opr tmp = LIR_OprFact::illegalOpr;
   607       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
   608     }
   609   }
   610 }
   613 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
   614   // when an operand with use count 1 is the left operand, then it is
   615   // likely that no move for 2-operand-LIR-form is necessary
   616   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   617     x->swap_operands();
   618   }
   620   ValueTag tag = x->type()->tag();
   621   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
   622   switch (tag) {
   623     case floatTag:
   624     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
   625     case longTag:    do_ArithmeticOp_Long(x); return;
   626     case intTag:     do_ArithmeticOp_Int(x);  return;
   627   }
   628   ShouldNotReachHere();
   629 }
   632 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
   633 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
   634   // count must always be in rcx
   635   LIRItem value(x->x(), this);
   636   LIRItem count(x->y(), this);
   638   ValueTag elemType = x->type()->tag();
   639   bool must_load_count = !count.is_constant() || elemType == longTag;
   640   if (must_load_count) {
   641     // count for long must be in register
   642     count.load_item_force(shiftCountOpr());
   643   } else {
   644     count.dont_load_item();
   645   }
   646   value.load_item();
   647   LIR_Opr reg = rlock_result(x);
   649   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
   650 }
   653 // _iand, _land, _ior, _lor, _ixor, _lxor
   654 void LIRGenerator::do_LogicOp(LogicOp* x) {
   655   // when an operand with use count 1 is the left operand, then it is
   656   // likely that no move for 2-operand-LIR-form is necessary
   657   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
   658     x->swap_operands();
   659   }
   661   LIRItem left(x->x(), this);
   662   LIRItem right(x->y(), this);
   664   left.load_item();
   665   right.load_nonconstant();
   666   LIR_Opr reg = rlock_result(x);
   668   logic_op(x->op(), reg, left.result(), right.result());
   669 }
   673 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
   674 void LIRGenerator::do_CompareOp(CompareOp* x) {
   675   LIRItem left(x->x(), this);
   676   LIRItem right(x->y(), this);
   677   ValueTag tag = x->x()->type()->tag();
   678   if (tag == longTag) {
   679     left.set_destroys_register();
   680   }
   681   left.load_item();
   682   right.load_item();
   683   LIR_Opr reg = rlock_result(x);
   685   if (x->x()->type()->is_float_kind()) {
   686     Bytecodes::Code code = x->op();
   687     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
   688   } else if (x->x()->type()->tag() == longTag) {
   689     __ lcmp2int(left.result(), right.result(), reg);
   690   } else {
   691     Unimplemented();
   692   }
   693 }
   696 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
   697   assert(x->number_of_arguments() == 3, "wrong type");
   698   LIRItem obj       (x->argument_at(0), this);  // AtomicLong object
   699   LIRItem cmp_value (x->argument_at(1), this);  // value to compare with field
   700   LIRItem new_value (x->argument_at(2), this);  // replace field with new_value if it matches cmp_value
   702   // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
   703   cmp_value.load_item_force(FrameMap::long0_opr);
   705   // new value must be in rcx,ebx (hi,lo)
   706   new_value.load_item_force(FrameMap::long1_opr);
   708   // object pointer register is overwritten with field address
   709   obj.load_item();
   711   // generate compare-and-swap; produces zero condition if swap occurs
   712   int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
   713   LIR_Opr addr = obj.result();
   714   __ add(addr, LIR_OprFact::intConst(value_offset), addr);
   715   LIR_Opr t1 = LIR_OprFact::illegalOpr;  // no temp needed
   716   LIR_Opr t2 = LIR_OprFact::illegalOpr;  // no temp needed
   717   __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
   719   // generate conditional move of boolean result
   720   LIR_Opr result = rlock_result(x);
   721   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
   722 }
   725 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
   726   assert(x->number_of_arguments() == 4, "wrong type");
   727   LIRItem obj   (x->argument_at(0), this);  // object
   728   LIRItem offset(x->argument_at(1), this);  // offset of field
   729   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
   730   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
   732   assert(obj.type()->tag() == objectTag, "invalid type");
   734   // In 64bit the type can be long, sparc doesn't have this assert
   735   // assert(offset.type()->tag() == intTag, "invalid type");
   737   assert(cmp.type()->tag() == type->tag(), "invalid type");
   738   assert(val.type()->tag() == type->tag(), "invalid type");
   740   // get address of field
   741   obj.load_item();
   742   offset.load_nonconstant();
   744   if (type == objectType) {
   745     cmp.load_item_force(FrameMap::rax_oop_opr);
   746     val.load_item();
   747   } else if (type == intType) {
   748     cmp.load_item_force(FrameMap::rax_opr);
   749     val.load_item();
   750   } else if (type == longType) {
   751     cmp.load_item_force(FrameMap::long0_opr);
   752     val.load_item_force(FrameMap::long1_opr);
   753   } else {
   754     ShouldNotReachHere();
   755   }
   757   LIR_Opr addr = new_pointer_register();
   758   __ move(obj.result(), addr);
   759   __ add(addr, offset.result(), addr);
   761   if (type == objectType) {  // Write-barrier needed for Object fields.
   762     // Do the pre-write barrier, if any.
   763     pre_barrier(addr, false, NULL);
   764   }
   766   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
   767   if (type == objectType)
   768     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
   769   else if (type == intType)
   770     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
   771   else if (type == longType)
   772     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
   773   else {
   774     ShouldNotReachHere();
   775   }
   777   // generate conditional move of boolean result
   778   LIR_Opr result = rlock_result(x);
   779   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
   780   if (type == objectType) {   // Write-barrier needed for Object fields.
   781     // Seems to be precise
   782     post_barrier(addr, val.result());
   783   }
   784 }
   787 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
   788   assert(x->number_of_arguments() == 1, "wrong type");
   789   LIRItem value(x->argument_at(0), this);
   791   bool use_fpu = false;
   792   if (UseSSE >= 2) {
   793     switch(x->id()) {
   794       case vmIntrinsics::_dsin:
   795       case vmIntrinsics::_dcos:
   796       case vmIntrinsics::_dtan:
   797       case vmIntrinsics::_dlog:
   798       case vmIntrinsics::_dlog10:
   799         use_fpu = true;
   800     }
   801   } else {
   802     value.set_destroys_register();
   803   }
   805   value.load_item();
   807   LIR_Opr calc_input = value.result();
   808   LIR_Opr calc_result = rlock_result(x);
   810   // sin and cos need two free fpu stack slots, so register two temporary operands
   811   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
   812   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
   814   if (use_fpu) {
   815     LIR_Opr tmp = FrameMap::fpu0_double_opr;
   816     __ move(calc_input, tmp);
   818     calc_input = tmp;
   819     calc_result = tmp;
   820     tmp1 = FrameMap::caller_save_fpu_reg_at(1);
   821     tmp2 = FrameMap::caller_save_fpu_reg_at(2);
   822   }
   824   switch(x->id()) {
   825     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   826     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   827     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
   828     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
   829     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
   830     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   831     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, LIR_OprFact::illegalOpr); break;
   832     default:                    ShouldNotReachHere();
   833   }
   835   if (use_fpu) {
   836     __ move(calc_result, x->operand());
   837   }
   838 }
   841 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
   842   assert(x->number_of_arguments() == 5, "wrong type");
   843   LIRItem src(x->argument_at(0), this);
   844   LIRItem src_pos(x->argument_at(1), this);
   845   LIRItem dst(x->argument_at(2), this);
   846   LIRItem dst_pos(x->argument_at(3), this);
   847   LIRItem length(x->argument_at(4), this);
   849   // operands for arraycopy must use fixed registers, otherwise
   850   // LinearScan will fail allocation (because arraycopy always needs a
   851   // call)
   853 #ifndef _LP64
   854   src.load_item_force     (FrameMap::rcx_oop_opr);
   855   src_pos.load_item_force (FrameMap::rdx_opr);
   856   dst.load_item_force     (FrameMap::rax_oop_opr);
   857   dst_pos.load_item_force (FrameMap::rbx_opr);
   858   length.load_item_force  (FrameMap::rdi_opr);
   859   LIR_Opr tmp =           (FrameMap::rsi_opr);
   860 #else
   862   // The java calling convention will give us enough registers
   863   // so that on the stub side the args will be perfect already.
   864   // On the other slow/special case side we call C and the arg
   865   // positions are not similar enough to pick one as the best.
   866   // Also because the java calling convention is a "shifted" version
   867   // of the C convention we can process the java args trivially into C
   868   // args without worry of overwriting during the xfer
   870   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
   871   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
   872   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
   873   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
   874   length.load_item_force  (FrameMap::as_opr(j_rarg4));
   876   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
   877 #endif // LP64
   879   set_no_result(x);
   881   int flags;
   882   ciArrayKlass* expected_type;
   883   arraycopy_helper(x, &flags, &expected_type);
   885   CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
   886   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
   887 }
   890 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
   891 // _i2b, _i2c, _i2s
   892 LIR_Opr fixed_register_for(BasicType type) {
   893   switch (type) {
   894     case T_FLOAT:  return FrameMap::fpu0_float_opr;
   895     case T_DOUBLE: return FrameMap::fpu0_double_opr;
   896     case T_INT:    return FrameMap::rax_opr;
   897     case T_LONG:   return FrameMap::long0_opr;
   898     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
   899   }
   900 }
   902 void LIRGenerator::do_Convert(Convert* x) {
   903   // flags that vary for the different operations and different SSE-settings
   904   bool fixed_input, fixed_result, round_result, needs_stub;
   906   switch (x->op()) {
   907     case Bytecodes::_i2l: // fall through
   908     case Bytecodes::_l2i: // fall through
   909     case Bytecodes::_i2b: // fall through
   910     case Bytecodes::_i2c: // fall through
   911     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   913     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
   914     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
   915     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
   916     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
   917     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   918     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
   919     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
   920     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
   921     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   922     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
   923     default: ShouldNotReachHere();
   924   }
   926   LIRItem value(x->value(), this);
   927   value.load_item();
   928   LIR_Opr input = value.result();
   929   LIR_Opr result = rlock(x);
   931   // arguments of lir_convert
   932   LIR_Opr conv_input = input;
   933   LIR_Opr conv_result = result;
   934   ConversionStub* stub = NULL;
   936   if (fixed_input) {
   937     conv_input = fixed_register_for(input->type());
   938     __ move(input, conv_input);
   939   }
   941   assert(fixed_result == false || round_result == false, "cannot set both");
   942   if (fixed_result) {
   943     conv_result = fixed_register_for(result->type());
   944   } else if (round_result) {
   945     result = new_register(result->type());
   946     set_vreg_flag(result, must_start_in_memory);
   947   }
   949   if (needs_stub) {
   950     stub = new ConversionStub(x->op(), conv_input, conv_result);
   951   }
   953   __ convert(x->op(), conv_input, conv_result, stub);
   955   if (result != conv_result) {
   956     __ move(conv_result, result);
   957   }
   959   assert(result->is_virtual(), "result must be virtual register");
   960   set_result(x, result);
   961 }
   964 void LIRGenerator::do_NewInstance(NewInstance* x) {
   965   if (PrintNotLoaded && !x->klass()->is_loaded()) {
   966     tty->print_cr("   ###class not loaded at new bci %d", x->bci());
   967   }
   968   CodeEmitInfo* info = state_for(x, x->state());
   969   LIR_Opr reg = result_register_for(x->type());
   970   LIR_Opr klass_reg = new_register(objectType);
   971   new_instance(reg, x->klass(),
   972                        FrameMap::rcx_oop_opr,
   973                        FrameMap::rdi_oop_opr,
   974                        FrameMap::rsi_oop_opr,
   975                        LIR_OprFact::illegalOpr,
   976                        FrameMap::rdx_oop_opr, info);
   977   LIR_Opr result = rlock_result(x);
   978   __ move(reg, result);
   979 }
   982 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
   983   CodeEmitInfo* info = state_for(x, x->state());
   985   LIRItem length(x->length(), this);
   986   length.load_item_force(FrameMap::rbx_opr);
   988   LIR_Opr reg = result_register_for(x->type());
   989   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
   990   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
   991   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
   992   LIR_Opr tmp4 = reg;
   993   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
   994   LIR_Opr len = length.result();
   995   BasicType elem_type = x->elt_type();
   997   __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);
   999   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
  1000   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
  1002   LIR_Opr result = rlock_result(x);
  1003   __ move(reg, result);
  1007 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
  1008   LIRItem length(x->length(), this);
  1009   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
  1010   // and therefore provide the state before the parameters have been consumed
  1011   CodeEmitInfo* patching_info = NULL;
  1012   if (!x->klass()->is_loaded() || PatchALot) {
  1013     patching_info =  state_for(x, x->state_before());
  1016   CodeEmitInfo* info = state_for(x, x->state());
  1018   const LIR_Opr reg = result_register_for(x->type());
  1019   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
  1020   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
  1021   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
  1022   LIR_Opr tmp4 = reg;
  1023   LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
  1025   length.load_item_force(FrameMap::rbx_opr);
  1026   LIR_Opr len = length.result();
  1028   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
  1029   ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
  1030   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
  1031     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
  1033   jobject2reg_with_patching(klass_reg, obj, patching_info);
  1034   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
  1036   LIR_Opr result = rlock_result(x);
  1037   __ move(reg, result);
  1041 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
  1042   Values* dims = x->dims();
  1043   int i = dims->length();
  1044   LIRItemList* items = new LIRItemList(dims->length(), NULL);
  1045   while (i-- > 0) {
  1046     LIRItem* size = new LIRItem(dims->at(i), this);
  1047     items->at_put(i, size);
  1050   // need to get the info before, as the items may become invalid through item_free
  1051   CodeEmitInfo* patching_info = NULL;
  1052   if (!x->klass()->is_loaded() || PatchALot) {
  1053     patching_info = state_for(x, x->state_before());
  1055     // cannot re-use same xhandlers for multiple CodeEmitInfos, so
  1056     // clone all handlers.
  1057     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
  1060   CodeEmitInfo* info = state_for(x, x->state());
  1062   i = dims->length();
  1063   while (i-- > 0) {
  1064     LIRItem* size = items->at(i);
  1065     size->load_nonconstant();
  1067     store_stack_parameter(size->result(), in_ByteSize(i*4));
  1070   LIR_Opr reg = result_register_for(x->type());
  1071   jobject2reg_with_patching(reg, x->klass(), patching_info);
  1073   LIR_Opr rank = FrameMap::rbx_opr;
  1074   __ move(LIR_OprFact::intConst(x->rank()), rank);
  1075   LIR_Opr varargs = FrameMap::rcx_opr;
  1076   __ move(FrameMap::rsp_opr, varargs);
  1077   LIR_OprList* args = new LIR_OprList(3);
  1078   args->append(reg);
  1079   args->append(rank);
  1080   args->append(varargs);
  1081   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
  1082                   LIR_OprFact::illegalOpr,
  1083                   reg, args, info);
  1085   LIR_Opr result = rlock_result(x);
  1086   __ move(reg, result);
  1090 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
  1091   // nothing to do for now
  1095 void LIRGenerator::do_CheckCast(CheckCast* x) {
  1096   LIRItem obj(x->obj(), this);
  1098   CodeEmitInfo* patching_info = NULL;
  1099   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
  1100     // must do this before locking the destination register as an oop register,
  1101     // and before the obj is loaded (the latter is for deoptimization)
  1102     patching_info = state_for(x, x->state_before());
  1104   obj.load_item();
  1106   // info for exceptions
  1107   CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
  1109   CodeStub* stub;
  1110   if (x->is_incompatible_class_change_check()) {
  1111     assert(patching_info == NULL, "can't patch this");
  1112     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
  1113   } else {
  1114     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
  1116   LIR_Opr reg = rlock_result(x);
  1117   __ checkcast(reg, obj.result(), x->klass(),
  1118                new_register(objectType), new_register(objectType),
  1119                !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
  1120                x->direct_compare(), info_for_exception, patching_info, stub,
  1121                x->profiled_method(), x->profiled_bci());
  1125 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
  1126   LIRItem obj(x->obj(), this);
  1128   // result and test object may not be in same register
  1129   LIR_Opr reg = rlock_result(x);
  1130   CodeEmitInfo* patching_info = NULL;
  1131   if ((!x->klass()->is_loaded() || PatchALot)) {
  1132     // must do this before locking the destination register as an oop register
  1133     patching_info = state_for(x, x->state_before());
  1135   obj.load_item();
  1136   LIR_Opr tmp = new_register(objectType);
  1137   __ instanceof(reg, obj.result(), x->klass(),
  1138                 tmp, new_register(objectType), LIR_OprFact::illegalOpr,
  1139                 x->direct_compare(), patching_info);
  1143 void LIRGenerator::do_If(If* x) {
  1144   assert(x->number_of_sux() == 2, "inconsistency");
  1145   ValueTag tag = x->x()->type()->tag();
  1146   bool is_safepoint = x->is_safepoint();
  1148   If::Condition cond = x->cond();
  1150   LIRItem xitem(x->x(), this);
  1151   LIRItem yitem(x->y(), this);
  1152   LIRItem* xin = &xitem;
  1153   LIRItem* yin = &yitem;
  1155   if (tag == longTag) {
  1156     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
  1157     // mirror for other conditions
  1158     if (cond == If::gtr || cond == If::leq) {
  1159       cond = Instruction::mirror(cond);
  1160       xin = &yitem;
  1161       yin = &xitem;
  1163     xin->set_destroys_register();
  1165   xin->load_item();
  1166   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
  1167     // inline long zero
  1168     yin->dont_load_item();
  1169   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
  1170     // longs cannot handle constants at right side
  1171     yin->load_item();
  1172   } else {
  1173     yin->dont_load_item();
  1176   // add safepoint before generating condition code so it can be recomputed
  1177   if (x->is_safepoint()) {
  1178     // increment backedge counter if needed
  1179     increment_backedge_counter(state_for(x, x->state_before()));
  1181     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
  1183   set_no_result(x);
  1185   LIR_Opr left = xin->result();
  1186   LIR_Opr right = yin->result();
  1187   __ cmp(lir_cond(cond), left, right);
  1188   profile_branch(x, cond);
  1189   move_to_phi(x->state());
  1190   if (x->x()->type()->is_float_kind()) {
  1191     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
  1192   } else {
  1193     __ branch(lir_cond(cond), right->type(), x->tsux());
  1195   assert(x->default_sux() == x->fsux(), "wrong destination above");
  1196   __ jump(x->default_sux());
  1200 LIR_Opr LIRGenerator::getThreadPointer() {
  1201 #ifdef _LP64
  1202   return FrameMap::as_pointer_opr(r15_thread);
  1203 #else
  1204   LIR_Opr result = new_register(T_INT);
  1205   __ get_thread(result);
  1206   return result;
  1207 #endif //
  1210 void LIRGenerator::trace_block_entry(BlockBegin* block) {
  1211   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
  1212   LIR_OprList* args = new LIR_OprList();
  1213   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
  1214   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
  1218 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
  1219                                         CodeEmitInfo* info) {
  1220   if (address->type() == T_LONG) {
  1221     address = new LIR_Address(address->base(),
  1222                               address->index(), address->scale(),
  1223                               address->disp(), T_DOUBLE);
  1224     // Transfer the value atomically by using FP moves.  This means
  1225     // the value has to be moved between CPU and FPU registers.  It
  1226     // always has to be moved through spill slot since there's no
  1227     // quick way to pack the value into an SSE register.
  1228     LIR_Opr temp_double = new_register(T_DOUBLE);
  1229     LIR_Opr spill = new_register(T_LONG);
  1230     set_vreg_flag(spill, must_start_in_memory);
  1231     __ move(value, spill);
  1232     __ volatile_move(spill, temp_double, T_LONG);
  1233     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
  1234   } else {
  1235     __ store(value, address, info);
  1241 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
  1242                                        CodeEmitInfo* info) {
  1243   if (address->type() == T_LONG) {
  1244     address = new LIR_Address(address->base(),
  1245                               address->index(), address->scale(),
  1246                               address->disp(), T_DOUBLE);
  1247     // Transfer the value atomically by using FP moves.  This means
  1248     // the value has to be moved between CPU and FPU registers.  In
  1249     // SSE0 and SSE1 mode it has to be moved through spill slot but in
  1250     // SSE2+ mode it can be moved directly.
  1251     LIR_Opr temp_double = new_register(T_DOUBLE);
  1252     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
  1253     __ volatile_move(temp_double, result, T_LONG);
  1254     if (UseSSE < 2) {
  1255       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
  1256       set_vreg_flag(result, must_start_in_memory);
  1258   } else {
  1259     __ load(address, result, info);
  1263 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
  1264                                      BasicType type, bool is_volatile) {
  1265   if (is_volatile && type == T_LONG) {
  1266     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1267     LIR_Opr tmp = new_register(T_DOUBLE);
  1268     __ load(addr, tmp);
  1269     LIR_Opr spill = new_register(T_LONG);
  1270     set_vreg_flag(spill, must_start_in_memory);
  1271     __ move(tmp, spill);
  1272     __ move(spill, dst);
  1273   } else {
  1274     LIR_Address* addr = new LIR_Address(src, offset, type);
  1275     __ load(addr, dst);
  1280 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
  1281                                      BasicType type, bool is_volatile) {
  1282   if (is_volatile && type == T_LONG) {
  1283     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
  1284     LIR_Opr tmp = new_register(T_DOUBLE);
  1285     LIR_Opr spill = new_register(T_DOUBLE);
  1286     set_vreg_flag(spill, must_start_in_memory);
  1287     __ move(data, spill);
  1288     __ move(spill, tmp);
  1289     __ move(tmp, addr);
  1290   } else {
  1291     LIR_Address* addr = new LIR_Address(src, offset, type);
  1292     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
  1293     if (is_obj) {
  1294       // Do the pre-write barrier, if any.
  1295       pre_barrier(LIR_OprFact::address(addr), false, NULL);
  1296       __ move(data, addr);
  1297       assert(src->is_register(), "must be register");
  1298       // Seems to be a precise address
  1299       post_barrier(LIR_OprFact::address(addr), data);
  1300     } else {
  1301       __ move(data, addr);

mercurial