src/os/linux/vm/os_linux.cpp

Thu, 18 Mar 2010 16:47:37 -0400

author
coleenp
date
Thu, 18 Mar 2010 16:47:37 -0400
changeset 1760
98ba8ca25feb
parent 1755
3b3d12e645e7
child 1788
a2ea687fdc7c
permissions
-rw-r--r--

6936168: Recent fix for unmapping stack guard pages doesn't close /proc/self/maps
Summary: Add close to returns (fix for 6929067 also contributed by aph)
Reviewed-by: aph, dcubed, andrew, acorn
Contributed-by: aph@redhat.com, andreas.kohn@fredhopper.com

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # define __STDC_FORMAT_MACROS
    27 // do not include  precompiled  header file
    28 # include "incls/_os_linux.cpp.incl"
    30 // put OS-includes here
    31 # include <sys/types.h>
    32 # include <sys/mman.h>
    33 # include <pthread.h>
    34 # include <signal.h>
    35 # include <errno.h>
    36 # include <dlfcn.h>
    37 # include <stdio.h>
    38 # include <unistd.h>
    39 # include <sys/resource.h>
    40 # include <pthread.h>
    41 # include <sys/stat.h>
    42 # include <sys/time.h>
    43 # include <sys/times.h>
    44 # include <sys/utsname.h>
    45 # include <sys/socket.h>
    46 # include <sys/wait.h>
    47 # include <pwd.h>
    48 # include <poll.h>
    49 # include <semaphore.h>
    50 # include <fcntl.h>
    51 # include <string.h>
    52 # include <syscall.h>
    53 # include <sys/sysinfo.h>
    54 # include <gnu/libc-version.h>
    55 # include <sys/ipc.h>
    56 # include <sys/shm.h>
    57 # include <link.h>
    58 # include <stdint.h>
    59 # include <inttypes.h>
    61 #define MAX_PATH    (2 * K)
    63 // for timer info max values which include all bits
    64 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
    65 #define SEC_IN_NANOSECS  1000000000LL
    67 ////////////////////////////////////////////////////////////////////////////////
    68 // global variables
    69 julong os::Linux::_physical_memory = 0;
    71 address   os::Linux::_initial_thread_stack_bottom = NULL;
    72 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
    74 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
    75 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
    76 Mutex* os::Linux::_createThread_lock = NULL;
    77 pthread_t os::Linux::_main_thread;
    78 int os::Linux::_page_size = -1;
    79 bool os::Linux::_is_floating_stack = false;
    80 bool os::Linux::_is_NPTL = false;
    81 bool os::Linux::_supports_fast_thread_cpu_time = false;
    82 const char * os::Linux::_glibc_version = NULL;
    83 const char * os::Linux::_libpthread_version = NULL;
    85 static jlong initial_time_count=0;
    87 static int clock_tics_per_sec = 100;
    89 // For diagnostics to print a message once. see run_periodic_checks
    90 static sigset_t check_signal_done;
    91 static bool check_signals = true;;
    93 static pid_t _initial_pid = 0;
    95 /* Signal number used to suspend/resume a thread */
    97 /* do not use any signal number less than SIGSEGV, see 4355769 */
    98 static int SR_signum = SIGUSR2;
    99 sigset_t SR_sigset;
   101 /* Used to protect dlsym() calls */
   102 static pthread_mutex_t dl_mutex;
   104 ////////////////////////////////////////////////////////////////////////////////
   105 // utility functions
   107 static int SR_initialize();
   108 static int SR_finalize();
   110 julong os::available_memory() {
   111   return Linux::available_memory();
   112 }
   114 julong os::Linux::available_memory() {
   115   // values in struct sysinfo are "unsigned long"
   116   struct sysinfo si;
   117   sysinfo(&si);
   119   return (julong)si.freeram * si.mem_unit;
   120 }
   122 julong os::physical_memory() {
   123   return Linux::physical_memory();
   124 }
   126 julong os::allocatable_physical_memory(julong size) {
   127 #ifdef _LP64
   128   return size;
   129 #else
   130   julong result = MIN2(size, (julong)3800*M);
   131    if (!is_allocatable(result)) {
   132      // See comments under solaris for alignment considerations
   133      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   134      result =  MIN2(size, reasonable_size);
   135    }
   136    return result;
   137 #endif // _LP64
   138 }
   140 ////////////////////////////////////////////////////////////////////////////////
   141 // environment support
   143 bool os::getenv(const char* name, char* buf, int len) {
   144   const char* val = ::getenv(name);
   145   if (val != NULL && strlen(val) < (size_t)len) {
   146     strcpy(buf, val);
   147     return true;
   148   }
   149   if (len > 0) buf[0] = 0;  // return a null string
   150   return false;
   151 }
   154 // Return true if user is running as root.
   156 bool os::have_special_privileges() {
   157   static bool init = false;
   158   static bool privileges = false;
   159   if (!init) {
   160     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   161     init = true;
   162   }
   163   return privileges;
   164 }
   167 #ifndef SYS_gettid
   168 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   169 #ifdef __ia64__
   170 #define SYS_gettid 1105
   171 #elif __i386__
   172 #define SYS_gettid 224
   173 #elif __amd64__
   174 #define SYS_gettid 186
   175 #elif __sparc__
   176 #define SYS_gettid 143
   177 #else
   178 #error define gettid for the arch
   179 #endif
   180 #endif
   182 // Cpu architecture string
   183 #if   defined(ZERO)
   184 static char cpu_arch[] = ZERO_LIBARCH;
   185 #elif defined(IA64)
   186 static char cpu_arch[] = "ia64";
   187 #elif defined(IA32)
   188 static char cpu_arch[] = "i386";
   189 #elif defined(AMD64)
   190 static char cpu_arch[] = "amd64";
   191 #elif defined(SPARC)
   192 #  ifdef _LP64
   193 static char cpu_arch[] = "sparcv9";
   194 #  else
   195 static char cpu_arch[] = "sparc";
   196 #  endif
   197 #else
   198 #error Add appropriate cpu_arch setting
   199 #endif
   202 // pid_t gettid()
   203 //
   204 // Returns the kernel thread id of the currently running thread. Kernel
   205 // thread id is used to access /proc.
   206 //
   207 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   208 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   209 //
   210 pid_t os::Linux::gettid() {
   211   int rslt = syscall(SYS_gettid);
   212   if (rslt == -1) {
   213      // old kernel, no NPTL support
   214      return getpid();
   215   } else {
   216      return (pid_t)rslt;
   217   }
   218 }
   220 // Most versions of linux have a bug where the number of processors are
   221 // determined by looking at the /proc file system.  In a chroot environment,
   222 // the system call returns 1.  This causes the VM to act as if it is
   223 // a single processor and elide locking (see is_MP() call).
   224 static bool unsafe_chroot_detected = false;
   225 static const char *unstable_chroot_error = "/proc file system not found.\n"
   226                      "Java may be unstable running multithreaded in a chroot "
   227                      "environment on Linux when /proc filesystem is not mounted.";
   229 void os::Linux::initialize_system_info() {
   230   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   231   if (processor_count() == 1) {
   232     pid_t pid = os::Linux::gettid();
   233     char fname[32];
   234     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   235     FILE *fp = fopen(fname, "r");
   236     if (fp == NULL) {
   237       unsafe_chroot_detected = true;
   238     } else {
   239       fclose(fp);
   240     }
   241   }
   242   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   243   assert(processor_count() > 0, "linux error");
   244 }
   246 void os::init_system_properties_values() {
   247 //  char arch[12];
   248 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   250   // The next steps are taken in the product version:
   251   //
   252   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   253   // This library should be located at:
   254   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   255   //
   256   // If "/jre/lib/" appears at the right place in the path, then we
   257   // assume libjvm[_g].so is installed in a JDK and we use this path.
   258   //
   259   // Otherwise exit with message: "Could not create the Java virtual machine."
   260   //
   261   // The following extra steps are taken in the debugging version:
   262   //
   263   // If "/jre/lib/" does NOT appear at the right place in the path
   264   // instead of exit check for $JAVA_HOME environment variable.
   265   //
   266   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   267   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   268   // it looks like libjvm[_g].so is installed there
   269   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   270   //
   271   // Otherwise exit.
   272   //
   273   // Important note: if the location of libjvm.so changes this
   274   // code needs to be changed accordingly.
   276   // The next few definitions allow the code to be verbatim:
   277 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   278 #define getenv(n) ::getenv(n)
   280 /*
   281  * See ld(1):
   282  *      The linker uses the following search paths to locate required
   283  *      shared libraries:
   284  *        1: ...
   285  *        ...
   286  *        7: The default directories, normally /lib and /usr/lib.
   287  */
   288 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   289 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   290 #else
   291 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   292 #endif
   294 #define EXTENSIONS_DIR  "/lib/ext"
   295 #define ENDORSED_DIR    "/lib/endorsed"
   296 #define REG_DIR         "/usr/java/packages"
   298   {
   299     /* sysclasspath, java_home, dll_dir */
   300     {
   301         char *home_path;
   302         char *dll_path;
   303         char *pslash;
   304         char buf[MAXPATHLEN];
   305         os::jvm_path(buf, sizeof(buf));
   307         // Found the full path to libjvm.so.
   308         // Now cut the path to <java_home>/jre if we can.
   309         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   310         pslash = strrchr(buf, '/');
   311         if (pslash != NULL)
   312             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   313         dll_path = malloc(strlen(buf) + 1);
   314         if (dll_path == NULL)
   315             return;
   316         strcpy(dll_path, buf);
   317         Arguments::set_dll_dir(dll_path);
   319         if (pslash != NULL) {
   320             pslash = strrchr(buf, '/');
   321             if (pslash != NULL) {
   322                 *pslash = '\0';       /* get rid of /<arch> */
   323                 pslash = strrchr(buf, '/');
   324                 if (pslash != NULL)
   325                     *pslash = '\0';   /* get rid of /lib */
   326             }
   327         }
   329         home_path = malloc(strlen(buf) + 1);
   330         if (home_path == NULL)
   331             return;
   332         strcpy(home_path, buf);
   333         Arguments::set_java_home(home_path);
   335         if (!set_boot_path('/', ':'))
   336             return;
   337     }
   339     /*
   340      * Where to look for native libraries
   341      *
   342      * Note: Due to a legacy implementation, most of the library path
   343      * is set in the launcher.  This was to accomodate linking restrictions
   344      * on legacy Linux implementations (which are no longer supported).
   345      * Eventually, all the library path setting will be done here.
   346      *
   347      * However, to prevent the proliferation of improperly built native
   348      * libraries, the new path component /usr/java/packages is added here.
   349      * Eventually, all the library path setting will be done here.
   350      */
   351     {
   352         char *ld_library_path;
   354         /*
   355          * Construct the invariant part of ld_library_path. Note that the
   356          * space for the colon and the trailing null are provided by the
   357          * nulls included by the sizeof operator (so actually we allocate
   358          * a byte more than necessary).
   359          */
   360         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   361             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   362         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   364         /*
   365          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   366          * should always exist (until the legacy problem cited above is
   367          * addressed).
   368          */
   369         char *v = getenv("LD_LIBRARY_PATH");
   370         if (v != NULL) {
   371             char *t = ld_library_path;
   372             /* That's +1 for the colon and +1 for the trailing '\0' */
   373             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   374             sprintf(ld_library_path, "%s:%s", v, t);
   375         }
   376         Arguments::set_library_path(ld_library_path);
   377     }
   379     /*
   380      * Extensions directories.
   381      *
   382      * Note that the space for the colon and the trailing null are provided
   383      * by the nulls included by the sizeof operator (so actually one byte more
   384      * than necessary is allocated).
   385      */
   386     {
   387         char *buf = malloc(strlen(Arguments::get_java_home()) +
   388             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   389         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   390             Arguments::get_java_home());
   391         Arguments::set_ext_dirs(buf);
   392     }
   394     /* Endorsed standards default directory. */
   395     {
   396         char * buf;
   397         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   398         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   399         Arguments::set_endorsed_dirs(buf);
   400     }
   401   }
   403 #undef malloc
   404 #undef getenv
   405 #undef EXTENSIONS_DIR
   406 #undef ENDORSED_DIR
   408   // Done
   409   return;
   410 }
   412 ////////////////////////////////////////////////////////////////////////////////
   413 // breakpoint support
   415 void os::breakpoint() {
   416   BREAKPOINT;
   417 }
   419 extern "C" void breakpoint() {
   420   // use debugger to set breakpoint here
   421 }
   423 ////////////////////////////////////////////////////////////////////////////////
   424 // signal support
   426 debug_only(static bool signal_sets_initialized = false);
   427 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   429 bool os::Linux::is_sig_ignored(int sig) {
   430       struct sigaction oact;
   431       sigaction(sig, (struct sigaction*)NULL, &oact);
   432       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   433                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   434       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   435            return true;
   436       else
   437            return false;
   438 }
   440 void os::Linux::signal_sets_init() {
   441   // Should also have an assertion stating we are still single-threaded.
   442   assert(!signal_sets_initialized, "Already initialized");
   443   // Fill in signals that are necessarily unblocked for all threads in
   444   // the VM. Currently, we unblock the following signals:
   445   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   446   //                         by -Xrs (=ReduceSignalUsage));
   447   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   448   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   449   // the dispositions or masks wrt these signals.
   450   // Programs embedding the VM that want to use the above signals for their
   451   // own purposes must, at this time, use the "-Xrs" option to prevent
   452   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   453   // (See bug 4345157, and other related bugs).
   454   // In reality, though, unblocking these signals is really a nop, since
   455   // these signals are not blocked by default.
   456   sigemptyset(&unblocked_sigs);
   457   sigemptyset(&allowdebug_blocked_sigs);
   458   sigaddset(&unblocked_sigs, SIGILL);
   459   sigaddset(&unblocked_sigs, SIGSEGV);
   460   sigaddset(&unblocked_sigs, SIGBUS);
   461   sigaddset(&unblocked_sigs, SIGFPE);
   462   sigaddset(&unblocked_sigs, SR_signum);
   464   if (!ReduceSignalUsage) {
   465    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   466       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   467       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   468    }
   469    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   470       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   471       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   472    }
   473    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   474       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   475       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   476    }
   477   }
   478   // Fill in signals that are blocked by all but the VM thread.
   479   sigemptyset(&vm_sigs);
   480   if (!ReduceSignalUsage)
   481     sigaddset(&vm_sigs, BREAK_SIGNAL);
   482   debug_only(signal_sets_initialized = true);
   484 }
   486 // These are signals that are unblocked while a thread is running Java.
   487 // (For some reason, they get blocked by default.)
   488 sigset_t* os::Linux::unblocked_signals() {
   489   assert(signal_sets_initialized, "Not initialized");
   490   return &unblocked_sigs;
   491 }
   493 // These are the signals that are blocked while a (non-VM) thread is
   494 // running Java. Only the VM thread handles these signals.
   495 sigset_t* os::Linux::vm_signals() {
   496   assert(signal_sets_initialized, "Not initialized");
   497   return &vm_sigs;
   498 }
   500 // These are signals that are blocked during cond_wait to allow debugger in
   501 sigset_t* os::Linux::allowdebug_blocked_signals() {
   502   assert(signal_sets_initialized, "Not initialized");
   503   return &allowdebug_blocked_sigs;
   504 }
   506 void os::Linux::hotspot_sigmask(Thread* thread) {
   508   //Save caller's signal mask before setting VM signal mask
   509   sigset_t caller_sigmask;
   510   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   512   OSThread* osthread = thread->osthread();
   513   osthread->set_caller_sigmask(caller_sigmask);
   515   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   517   if (!ReduceSignalUsage) {
   518     if (thread->is_VM_thread()) {
   519       // Only the VM thread handles BREAK_SIGNAL ...
   520       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   521     } else {
   522       // ... all other threads block BREAK_SIGNAL
   523       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   524     }
   525   }
   526 }
   528 //////////////////////////////////////////////////////////////////////////////
   529 // detecting pthread library
   531 void os::Linux::libpthread_init() {
   532   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   533   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   534   // generic name for earlier versions.
   535   // Define macros here so we can build HotSpot on old systems.
   536 # ifndef _CS_GNU_LIBC_VERSION
   537 # define _CS_GNU_LIBC_VERSION 2
   538 # endif
   539 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   540 # define _CS_GNU_LIBPTHREAD_VERSION 3
   541 # endif
   543   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   544   if (n > 0) {
   545      char *str = (char *)malloc(n);
   546      confstr(_CS_GNU_LIBC_VERSION, str, n);
   547      os::Linux::set_glibc_version(str);
   548   } else {
   549      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   550      static char _gnu_libc_version[32];
   551      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   552               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   553      os::Linux::set_glibc_version(_gnu_libc_version);
   554   }
   556   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   557   if (n > 0) {
   558      char *str = (char *)malloc(n);
   559      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   560      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   561      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   562      // is the case. LinuxThreads has a hard limit on max number of threads.
   563      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   564      // On the other hand, NPTL does not have such a limit, sysconf()
   565      // will return -1 and errno is not changed. Check if it is really NPTL.
   566      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   567          strstr(str, "NPTL") &&
   568          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   569        free(str);
   570        os::Linux::set_libpthread_version("linuxthreads");
   571      } else {
   572        os::Linux::set_libpthread_version(str);
   573      }
   574   } else {
   575     // glibc before 2.3.2 only has LinuxThreads.
   576     os::Linux::set_libpthread_version("linuxthreads");
   577   }
   579   if (strstr(libpthread_version(), "NPTL")) {
   580      os::Linux::set_is_NPTL();
   581   } else {
   582      os::Linux::set_is_LinuxThreads();
   583   }
   585   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   586   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   587   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   588      os::Linux::set_is_floating_stack();
   589   }
   590 }
   592 /////////////////////////////////////////////////////////////////////////////
   593 // thread stack
   595 // Force Linux kernel to expand current thread stack. If "bottom" is close
   596 // to the stack guard, caller should block all signals.
   597 //
   598 // MAP_GROWSDOWN:
   599 //   A special mmap() flag that is used to implement thread stacks. It tells
   600 //   kernel that the memory region should extend downwards when needed. This
   601 //   allows early versions of LinuxThreads to only mmap the first few pages
   602 //   when creating a new thread. Linux kernel will automatically expand thread
   603 //   stack as needed (on page faults).
   604 //
   605 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   606 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   607 //   region, it's hard to tell if the fault is due to a legitimate stack
   608 //   access or because of reading/writing non-exist memory (e.g. buffer
   609 //   overrun). As a rule, if the fault happens below current stack pointer,
   610 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   611 //   application (see Linux kernel fault.c).
   612 //
   613 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   614 //   stack overflow detection.
   615 //
   616 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   617 //   not use this flag. However, the stack of initial thread is not created
   618 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   619 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   620 //   and then attach the thread to JVM.
   621 //
   622 // To get around the problem and allow stack banging on Linux, we need to
   623 // manually expand thread stack after receiving the SIGSEGV.
   624 //
   625 // There are two ways to expand thread stack to address "bottom", we used
   626 // both of them in JVM before 1.5:
   627 //   1. adjust stack pointer first so that it is below "bottom", and then
   628 //      touch "bottom"
   629 //   2. mmap() the page in question
   630 //
   631 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   632 // if current sp is already near the lower end of page 101, and we need to
   633 // call mmap() to map page 100, it is possible that part of the mmap() frame
   634 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   635 // That will destroy the mmap() frame and cause VM to crash.
   636 //
   637 // The following code works by adjusting sp first, then accessing the "bottom"
   638 // page to force a page fault. Linux kernel will then automatically expand the
   639 // stack mapping.
   640 //
   641 // _expand_stack_to() assumes its frame size is less than page size, which
   642 // should always be true if the function is not inlined.
   644 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   645 #define NOINLINE
   646 #else
   647 #define NOINLINE __attribute__ ((noinline))
   648 #endif
   650 static void _expand_stack_to(address bottom) NOINLINE;
   652 static void _expand_stack_to(address bottom) {
   653   address sp;
   654   size_t size;
   655   volatile char *p;
   657   // Adjust bottom to point to the largest address within the same page, it
   658   // gives us a one-page buffer if alloca() allocates slightly more memory.
   659   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   660   bottom += os::Linux::page_size() - 1;
   662   // sp might be slightly above current stack pointer; if that's the case, we
   663   // will alloca() a little more space than necessary, which is OK. Don't use
   664   // os::current_stack_pointer(), as its result can be slightly below current
   665   // stack pointer, causing us to not alloca enough to reach "bottom".
   666   sp = (address)&sp;
   668   if (sp > bottom) {
   669     size = sp - bottom;
   670     p = (volatile char *)alloca(size);
   671     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   672     p[0] = '\0';
   673   }
   674 }
   676 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   677   assert(t!=NULL, "just checking");
   678   assert(t->osthread()->expanding_stack(), "expand should be set");
   679   assert(t->stack_base() != NULL, "stack_base was not initialized");
   681   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   682     sigset_t mask_all, old_sigset;
   683     sigfillset(&mask_all);
   684     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   685     _expand_stack_to(addr);
   686     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   687     return true;
   688   }
   689   return false;
   690 }
   692 //////////////////////////////////////////////////////////////////////////////
   693 // create new thread
   695 static address highest_vm_reserved_address();
   697 // check if it's safe to start a new thread
   698 static bool _thread_safety_check(Thread* thread) {
   699   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   700     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   701     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   702     //   allocated (MAP_FIXED) from high address space. Every thread stack
   703     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   704     //   it to other values if they rebuild LinuxThreads).
   705     //
   706     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   707     // the memory region has already been mmap'ed. That means if we have too
   708     // many threads and/or very large heap, eventually thread stack will
   709     // collide with heap.
   710     //
   711     // Here we try to prevent heap/stack collision by comparing current
   712     // stack bottom with the highest address that has been mmap'ed by JVM
   713     // plus a safety margin for memory maps created by native code.
   714     //
   715     // This feature can be disabled by setting ThreadSafetyMargin to 0
   716     //
   717     if (ThreadSafetyMargin > 0) {
   718       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   720       // not safe if our stack extends below the safety margin
   721       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   722     } else {
   723       return true;
   724     }
   725   } else {
   726     // Floating stack LinuxThreads or NPTL:
   727     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   728     //   there's not enough space left, pthread_create() will fail. If we come
   729     //   here, that means enough space has been reserved for stack.
   730     return true;
   731   }
   732 }
   734 // Thread start routine for all newly created threads
   735 static void *java_start(Thread *thread) {
   736   // Try to randomize the cache line index of hot stack frames.
   737   // This helps when threads of the same stack traces evict each other's
   738   // cache lines. The threads can be either from the same JVM instance, or
   739   // from different JVM instances. The benefit is especially true for
   740   // processors with hyperthreading technology.
   741   static int counter = 0;
   742   int pid = os::current_process_id();
   743   alloca(((pid ^ counter++) & 7) * 128);
   745   ThreadLocalStorage::set_thread(thread);
   747   OSThread* osthread = thread->osthread();
   748   Monitor* sync = osthread->startThread_lock();
   750   // non floating stack LinuxThreads needs extra check, see above
   751   if (!_thread_safety_check(thread)) {
   752     // notify parent thread
   753     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   754     osthread->set_state(ZOMBIE);
   755     sync->notify_all();
   756     return NULL;
   757   }
   759   // thread_id is kernel thread id (similar to Solaris LWP id)
   760   osthread->set_thread_id(os::Linux::gettid());
   762   if (UseNUMA) {
   763     int lgrp_id = os::numa_get_group_id();
   764     if (lgrp_id != -1) {
   765       thread->set_lgrp_id(lgrp_id);
   766     }
   767   }
   768   // initialize signal mask for this thread
   769   os::Linux::hotspot_sigmask(thread);
   771   // initialize floating point control register
   772   os::Linux::init_thread_fpu_state();
   774   // handshaking with parent thread
   775   {
   776     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   778     // notify parent thread
   779     osthread->set_state(INITIALIZED);
   780     sync->notify_all();
   782     // wait until os::start_thread()
   783     while (osthread->get_state() == INITIALIZED) {
   784       sync->wait(Mutex::_no_safepoint_check_flag);
   785     }
   786   }
   788   // call one more level start routine
   789   thread->run();
   791   return 0;
   792 }
   794 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   795   assert(thread->osthread() == NULL, "caller responsible");
   797   // Allocate the OSThread object
   798   OSThread* osthread = new OSThread(NULL, NULL);
   799   if (osthread == NULL) {
   800     return false;
   801   }
   803   // set the correct thread state
   804   osthread->set_thread_type(thr_type);
   806   // Initial state is ALLOCATED but not INITIALIZED
   807   osthread->set_state(ALLOCATED);
   809   thread->set_osthread(osthread);
   811   // init thread attributes
   812   pthread_attr_t attr;
   813   pthread_attr_init(&attr);
   814   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   816   // stack size
   817   if (os::Linux::supports_variable_stack_size()) {
   818     // calculate stack size if it's not specified by caller
   819     if (stack_size == 0) {
   820       stack_size = os::Linux::default_stack_size(thr_type);
   822       switch (thr_type) {
   823       case os::java_thread:
   824         // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   825         if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
   826         break;
   827       case os::compiler_thread:
   828         if (CompilerThreadStackSize > 0) {
   829           stack_size = (size_t)(CompilerThreadStackSize * K);
   830           break;
   831         } // else fall through:
   832           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   833       case os::vm_thread:
   834       case os::pgc_thread:
   835       case os::cgc_thread:
   836       case os::watcher_thread:
   837         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   838         break;
   839       }
   840     }
   842     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   843     pthread_attr_setstacksize(&attr, stack_size);
   844   } else {
   845     // let pthread_create() pick the default value.
   846   }
   848   // glibc guard page
   849   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   851   ThreadState state;
   853   {
   854     // Serialize thread creation if we are running with fixed stack LinuxThreads
   855     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   856     if (lock) {
   857       os::Linux::createThread_lock()->lock_without_safepoint_check();
   858     }
   860     pthread_t tid;
   861     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   863     pthread_attr_destroy(&attr);
   865     if (ret != 0) {
   866       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   867         perror("pthread_create()");
   868       }
   869       // Need to clean up stuff we've allocated so far
   870       thread->set_osthread(NULL);
   871       delete osthread;
   872       if (lock) os::Linux::createThread_lock()->unlock();
   873       return false;
   874     }
   876     // Store pthread info into the OSThread
   877     osthread->set_pthread_id(tid);
   879     // Wait until child thread is either initialized or aborted
   880     {
   881       Monitor* sync_with_child = osthread->startThread_lock();
   882       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   883       while ((state = osthread->get_state()) == ALLOCATED) {
   884         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   885       }
   886     }
   888     if (lock) {
   889       os::Linux::createThread_lock()->unlock();
   890     }
   891   }
   893   // Aborted due to thread limit being reached
   894   if (state == ZOMBIE) {
   895       thread->set_osthread(NULL);
   896       delete osthread;
   897       return false;
   898   }
   900   // The thread is returned suspended (in state INITIALIZED),
   901   // and is started higher up in the call chain
   902   assert(state == INITIALIZED, "race condition");
   903   return true;
   904 }
   906 /////////////////////////////////////////////////////////////////////////////
   907 // attach existing thread
   909 // bootstrap the main thread
   910 bool os::create_main_thread(JavaThread* thread) {
   911   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
   912   return create_attached_thread(thread);
   913 }
   915 bool os::create_attached_thread(JavaThread* thread) {
   916 #ifdef ASSERT
   917     thread->verify_not_published();
   918 #endif
   920   // Allocate the OSThread object
   921   OSThread* osthread = new OSThread(NULL, NULL);
   923   if (osthread == NULL) {
   924     return false;
   925   }
   927   // Store pthread info into the OSThread
   928   osthread->set_thread_id(os::Linux::gettid());
   929   osthread->set_pthread_id(::pthread_self());
   931   // initialize floating point control register
   932   os::Linux::init_thread_fpu_state();
   934   // Initial thread state is RUNNABLE
   935   osthread->set_state(RUNNABLE);
   937   thread->set_osthread(osthread);
   939   if (UseNUMA) {
   940     int lgrp_id = os::numa_get_group_id();
   941     if (lgrp_id != -1) {
   942       thread->set_lgrp_id(lgrp_id);
   943     }
   944   }
   946   if (os::Linux::is_initial_thread()) {
   947     // If current thread is initial thread, its stack is mapped on demand,
   948     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
   949     // the entire stack region to avoid SEGV in stack banging.
   950     // It is also useful to get around the heap-stack-gap problem on SuSE
   951     // kernel (see 4821821 for details). We first expand stack to the top
   952     // of yellow zone, then enable stack yellow zone (order is significant,
   953     // enabling yellow zone first will crash JVM on SuSE Linux), so there
   954     // is no gap between the last two virtual memory regions.
   956     JavaThread *jt = (JavaThread *)thread;
   957     address addr = jt->stack_yellow_zone_base();
   958     assert(addr != NULL, "initialization problem?");
   959     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
   961     osthread->set_expanding_stack();
   962     os::Linux::manually_expand_stack(jt, addr);
   963     osthread->clear_expanding_stack();
   964   }
   966   // initialize signal mask for this thread
   967   // and save the caller's signal mask
   968   os::Linux::hotspot_sigmask(thread);
   970   return true;
   971 }
   973 void os::pd_start_thread(Thread* thread) {
   974   OSThread * osthread = thread->osthread();
   975   assert(osthread->get_state() != INITIALIZED, "just checking");
   976   Monitor* sync_with_child = osthread->startThread_lock();
   977   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   978   sync_with_child->notify();
   979 }
   981 // Free Linux resources related to the OSThread
   982 void os::free_thread(OSThread* osthread) {
   983   assert(osthread != NULL, "osthread not set");
   985   if (Thread::current()->osthread() == osthread) {
   986     // Restore caller's signal mask
   987     sigset_t sigmask = osthread->caller_sigmask();
   988     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   989    }
   991   delete osthread;
   992 }
   994 //////////////////////////////////////////////////////////////////////////////
   995 // thread local storage
   997 int os::allocate_thread_local_storage() {
   998   pthread_key_t key;
   999   int rslt = pthread_key_create(&key, NULL);
  1000   assert(rslt == 0, "cannot allocate thread local storage");
  1001   return (int)key;
  1004 // Note: This is currently not used by VM, as we don't destroy TLS key
  1005 // on VM exit.
  1006 void os::free_thread_local_storage(int index) {
  1007   int rslt = pthread_key_delete((pthread_key_t)index);
  1008   assert(rslt == 0, "invalid index");
  1011 void os::thread_local_storage_at_put(int index, void* value) {
  1012   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1013   assert(rslt == 0, "pthread_setspecific failed");
  1016 extern "C" Thread* get_thread() {
  1017   return ThreadLocalStorage::thread();
  1020 //////////////////////////////////////////////////////////////////////////////
  1021 // initial thread
  1023 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1024 bool os::Linux::is_initial_thread(void) {
  1025   char dummy;
  1026   // If called before init complete, thread stack bottom will be null.
  1027   // Can be called if fatal error occurs before initialization.
  1028   if (initial_thread_stack_bottom() == NULL) return false;
  1029   assert(initial_thread_stack_bottom() != NULL &&
  1030          initial_thread_stack_size()   != 0,
  1031          "os::init did not locate initial thread's stack region");
  1032   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1033       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1034        return true;
  1035   else return false;
  1038 // Find the virtual memory area that contains addr
  1039 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1040   FILE *fp = fopen("/proc/self/maps", "r");
  1041   if (fp) {
  1042     address low, high;
  1043     while (!feof(fp)) {
  1044       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1045         if (low <= addr && addr < high) {
  1046            if (vma_low)  *vma_low  = low;
  1047            if (vma_high) *vma_high = high;
  1048            fclose (fp);
  1049            return true;
  1052       for (;;) {
  1053         int ch = fgetc(fp);
  1054         if (ch == EOF || ch == (int)'\n') break;
  1057     fclose(fp);
  1059   return false;
  1062 // Locate initial thread stack. This special handling of initial thread stack
  1063 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1064 // bogus value for initial thread.
  1065 void os::Linux::capture_initial_stack(size_t max_size) {
  1066   // stack size is the easy part, get it from RLIMIT_STACK
  1067   size_t stack_size;
  1068   struct rlimit rlim;
  1069   getrlimit(RLIMIT_STACK, &rlim);
  1070   stack_size = rlim.rlim_cur;
  1072   // 6308388: a bug in ld.so will relocate its own .data section to the
  1073   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1074   //   so we won't install guard page on ld.so's data section.
  1075   stack_size -= 2 * page_size();
  1077   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1078   //   7.1, in both cases we will get 2G in return value.
  1079   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1080   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1081   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1082   //   in case other parts in glibc still assumes 2M max stack size.
  1083   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1084 #ifndef IA64
  1085   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1086 #else
  1087   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1088   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1089 #endif
  1091   // Try to figure out where the stack base (top) is. This is harder.
  1092   //
  1093   // When an application is started, glibc saves the initial stack pointer in
  1094   // a global variable "__libc_stack_end", which is then used by system
  1095   // libraries. __libc_stack_end should be pretty close to stack top. The
  1096   // variable is available since the very early days. However, because it is
  1097   // a private interface, it could disappear in the future.
  1098   //
  1099   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1100   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1101   // stack top. Note that /proc may not exist if VM is running as a chroot
  1102   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1103   // /proc/<pid>/stat could change in the future (though unlikely).
  1104   //
  1105   // We try __libc_stack_end first. If that doesn't work, look for
  1106   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1107   // as a hint, which should work well in most cases.
  1109   uintptr_t stack_start;
  1111   // try __libc_stack_end first
  1112   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1113   if (p && *p) {
  1114     stack_start = *p;
  1115   } else {
  1116     // see if we can get the start_stack field from /proc/self/stat
  1117     FILE *fp;
  1118     int pid;
  1119     char state;
  1120     int ppid;
  1121     int pgrp;
  1122     int session;
  1123     int nr;
  1124     int tpgrp;
  1125     unsigned long flags;
  1126     unsigned long minflt;
  1127     unsigned long cminflt;
  1128     unsigned long majflt;
  1129     unsigned long cmajflt;
  1130     unsigned long utime;
  1131     unsigned long stime;
  1132     long cutime;
  1133     long cstime;
  1134     long prio;
  1135     long nice;
  1136     long junk;
  1137     long it_real;
  1138     uintptr_t start;
  1139     uintptr_t vsize;
  1140     uintptr_t rss;
  1141     unsigned long rsslim;
  1142     uintptr_t scodes;
  1143     uintptr_t ecode;
  1144     int i;
  1146     // Figure what the primordial thread stack base is. Code is inspired
  1147     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1148     // followed by command name surrounded by parentheses, state, etc.
  1149     char stat[2048];
  1150     int statlen;
  1152     fp = fopen("/proc/self/stat", "r");
  1153     if (fp) {
  1154       statlen = fread(stat, 1, 2047, fp);
  1155       stat[statlen] = '\0';
  1156       fclose(fp);
  1158       // Skip pid and the command string. Note that we could be dealing with
  1159       // weird command names, e.g. user could decide to rename java launcher
  1160       // to "java 1.4.2 :)", then the stat file would look like
  1161       //                1234 (java 1.4.2 :)) R ... ...
  1162       // We don't really need to know the command string, just find the last
  1163       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1164       char * s = strrchr(stat, ')');
  1166       i = 0;
  1167       if (s) {
  1168         // Skip blank chars
  1169         do s++; while (isspace(*s));
  1171         /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
  1172         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
  1173         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld "
  1174                    UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT
  1175                    " %lu "
  1176                    UINTX_FORMAT UINTX_FORMAT UINTX_FORMAT,
  1177              &state,          /* 3  %c  */
  1178              &ppid,           /* 4  %d  */
  1179              &pgrp,           /* 5  %d  */
  1180              &session,        /* 6  %d  */
  1181              &nr,             /* 7  %d  */
  1182              &tpgrp,          /* 8  %d  */
  1183              &flags,          /* 9  %lu  */
  1184              &minflt,         /* 10 %lu  */
  1185              &cminflt,        /* 11 %lu  */
  1186              &majflt,         /* 12 %lu  */
  1187              &cmajflt,        /* 13 %lu  */
  1188              &utime,          /* 14 %lu  */
  1189              &stime,          /* 15 %lu  */
  1190              &cutime,         /* 16 %ld  */
  1191              &cstime,         /* 17 %ld  */
  1192              &prio,           /* 18 %ld  */
  1193              &nice,           /* 19 %ld  */
  1194              &junk,           /* 20 %ld  */
  1195              &it_real,        /* 21 %ld  */
  1196              &start,          /* 22 UINTX_FORMAT  */
  1197              &vsize,          /* 23 UINTX_FORMAT  */
  1198              &rss,            /* 24 UINTX_FORMAT  */
  1199              &rsslim,         /* 25 %lu  */
  1200              &scodes,         /* 26 UINTX_FORMAT  */
  1201              &ecode,          /* 27 UINTX_FORMAT  */
  1202              &stack_start);   /* 28 UINTX_FORMAT  */
  1205       if (i != 28 - 2) {
  1206          assert(false, "Bad conversion from /proc/self/stat");
  1207          // product mode - assume we are the initial thread, good luck in the
  1208          // embedded case.
  1209          warning("Can't detect initial thread stack location - bad conversion");
  1210          stack_start = (uintptr_t) &rlim;
  1212     } else {
  1213       // For some reason we can't open /proc/self/stat (for example, running on
  1214       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1215       // most cases, so don't abort:
  1216       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1217       stack_start = (uintptr_t) &rlim;
  1221   // Now we have a pointer (stack_start) very close to the stack top, the
  1222   // next thing to do is to figure out the exact location of stack top. We
  1223   // can find out the virtual memory area that contains stack_start by
  1224   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1225   // and its upper limit is the real stack top. (again, this would fail if
  1226   // running inside chroot, because /proc may not exist.)
  1228   uintptr_t stack_top;
  1229   address low, high;
  1230   if (find_vma((address)stack_start, &low, &high)) {
  1231     // success, "high" is the true stack top. (ignore "low", because initial
  1232     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1233     stack_top = (uintptr_t)high;
  1234   } else {
  1235     // failed, likely because /proc/self/maps does not exist
  1236     warning("Can't detect initial thread stack location - find_vma failed");
  1237     // best effort: stack_start is normally within a few pages below the real
  1238     // stack top, use it as stack top, and reduce stack size so we won't put
  1239     // guard page outside stack.
  1240     stack_top = stack_start;
  1241     stack_size -= 16 * page_size();
  1244   // stack_top could be partially down the page so align it
  1245   stack_top = align_size_up(stack_top, page_size());
  1247   if (max_size && stack_size > max_size) {
  1248      _initial_thread_stack_size = max_size;
  1249   } else {
  1250      _initial_thread_stack_size = stack_size;
  1253   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1254   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1257 ////////////////////////////////////////////////////////////////////////////////
  1258 // time support
  1260 // Time since start-up in seconds to a fine granularity.
  1261 // Used by VMSelfDestructTimer and the MemProfiler.
  1262 double os::elapsedTime() {
  1264   return (double)(os::elapsed_counter()) * 0.000001;
  1267 jlong os::elapsed_counter() {
  1268   timeval time;
  1269   int status = gettimeofday(&time, NULL);
  1270   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1273 jlong os::elapsed_frequency() {
  1274   return (1000 * 1000);
  1277 // For now, we say that linux does not support vtime.  I have no idea
  1278 // whether it can actually be made to (DLD, 9/13/05).
  1280 bool os::supports_vtime() { return false; }
  1281 bool os::enable_vtime()   { return false; }
  1282 bool os::vtime_enabled()  { return false; }
  1283 double os::elapsedVTime() {
  1284   // better than nothing, but not much
  1285   return elapsedTime();
  1288 jlong os::javaTimeMillis() {
  1289   timeval time;
  1290   int status = gettimeofday(&time, NULL);
  1291   assert(status != -1, "linux error");
  1292   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1295 #ifndef CLOCK_MONOTONIC
  1296 #define CLOCK_MONOTONIC (1)
  1297 #endif
  1299 void os::Linux::clock_init() {
  1300   // we do dlopen's in this particular order due to bug in linux
  1301   // dynamical loader (see 6348968) leading to crash on exit
  1302   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1303   if (handle == NULL) {
  1304     handle = dlopen("librt.so", RTLD_LAZY);
  1307   if (handle) {
  1308     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1309            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1310     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1311            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1312     if (clock_getres_func && clock_gettime_func) {
  1313       // See if monotonic clock is supported by the kernel. Note that some
  1314       // early implementations simply return kernel jiffies (updated every
  1315       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1316       // for nano time (though the monotonic property is still nice to have).
  1317       // It's fixed in newer kernels, however clock_getres() still returns
  1318       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1319       // resolution for now. Hopefully as people move to new kernels, this
  1320       // won't be a problem.
  1321       struct timespec res;
  1322       struct timespec tp;
  1323       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1324           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1325         // yes, monotonic clock is supported
  1326         _clock_gettime = clock_gettime_func;
  1327       } else {
  1328         // close librt if there is no monotonic clock
  1329         dlclose(handle);
  1335 #ifndef SYS_clock_getres
  1337 #if defined(IA32) || defined(AMD64)
  1338 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1339 #else
  1340 #error Value of SYS_clock_getres not known on this platform
  1341 #endif
  1343 #endif
  1345 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1347 void os::Linux::fast_thread_clock_init() {
  1348   if (!UseLinuxPosixThreadCPUClocks) {
  1349     return;
  1351   clockid_t clockid;
  1352   struct timespec tp;
  1353   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1354       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1356   // Switch to using fast clocks for thread cpu time if
  1357   // the sys_clock_getres() returns 0 error code.
  1358   // Note, that some kernels may support the current thread
  1359   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1360   // returned by the pthread_getcpuclockid().
  1361   // If the fast Posix clocks are supported then the sys_clock_getres()
  1362   // must return at least tp.tv_sec == 0 which means a resolution
  1363   // better than 1 sec. This is extra check for reliability.
  1365   if(pthread_getcpuclockid_func &&
  1366      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1367      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1369     _supports_fast_thread_cpu_time = true;
  1370     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1374 jlong os::javaTimeNanos() {
  1375   if (Linux::supports_monotonic_clock()) {
  1376     struct timespec tp;
  1377     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1378     assert(status == 0, "gettime error");
  1379     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1380     return result;
  1381   } else {
  1382     timeval time;
  1383     int status = gettimeofday(&time, NULL);
  1384     assert(status != -1, "linux error");
  1385     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1386     return 1000 * usecs;
  1390 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1391   if (Linux::supports_monotonic_clock()) {
  1392     info_ptr->max_value = ALL_64_BITS;
  1394     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1395     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1396     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1397   } else {
  1398     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1399     info_ptr->max_value = ALL_64_BITS;
  1401     // gettimeofday is a real time clock so it skips
  1402     info_ptr->may_skip_backward = true;
  1403     info_ptr->may_skip_forward = true;
  1406   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1409 // Return the real, user, and system times in seconds from an
  1410 // arbitrary fixed point in the past.
  1411 bool os::getTimesSecs(double* process_real_time,
  1412                       double* process_user_time,
  1413                       double* process_system_time) {
  1414   struct tms ticks;
  1415   clock_t real_ticks = times(&ticks);
  1417   if (real_ticks == (clock_t) (-1)) {
  1418     return false;
  1419   } else {
  1420     double ticks_per_second = (double) clock_tics_per_sec;
  1421     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1422     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1423     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1425     return true;
  1430 char * os::local_time_string(char *buf, size_t buflen) {
  1431   struct tm t;
  1432   time_t long_time;
  1433   time(&long_time);
  1434   localtime_r(&long_time, &t);
  1435   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1436                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1437                t.tm_hour, t.tm_min, t.tm_sec);
  1438   return buf;
  1441 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1442   return localtime_r(clock, res);
  1445 ////////////////////////////////////////////////////////////////////////////////
  1446 // runtime exit support
  1448 // Note: os::shutdown() might be called very early during initialization, or
  1449 // called from signal handler. Before adding something to os::shutdown(), make
  1450 // sure it is async-safe and can handle partially initialized VM.
  1451 void os::shutdown() {
  1453   // allow PerfMemory to attempt cleanup of any persistent resources
  1454   perfMemory_exit();
  1456   // needs to remove object in file system
  1457   AttachListener::abort();
  1459   // flush buffered output, finish log files
  1460   ostream_abort();
  1462   // Check for abort hook
  1463   abort_hook_t abort_hook = Arguments::abort_hook();
  1464   if (abort_hook != NULL) {
  1465     abort_hook();
  1470 // Note: os::abort() might be called very early during initialization, or
  1471 // called from signal handler. Before adding something to os::abort(), make
  1472 // sure it is async-safe and can handle partially initialized VM.
  1473 void os::abort(bool dump_core) {
  1474   os::shutdown();
  1475   if (dump_core) {
  1476 #ifndef PRODUCT
  1477     fdStream out(defaultStream::output_fd());
  1478     out.print_raw("Current thread is ");
  1479     char buf[16];
  1480     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1481     out.print_raw_cr(buf);
  1482     out.print_raw_cr("Dumping core ...");
  1483 #endif
  1484     ::abort(); // dump core
  1487   ::exit(1);
  1490 // Die immediately, no exit hook, no abort hook, no cleanup.
  1491 void os::die() {
  1492   // _exit() on LinuxThreads only kills current thread
  1493   ::abort();
  1496 // unused on linux for now.
  1497 void os::set_error_file(const char *logfile) {}
  1499 intx os::current_thread_id() { return (intx)pthread_self(); }
  1500 int os::current_process_id() {
  1502   // Under the old linux thread library, linux gives each thread
  1503   // its own process id. Because of this each thread will return
  1504   // a different pid if this method were to return the result
  1505   // of getpid(2). Linux provides no api that returns the pid
  1506   // of the launcher thread for the vm. This implementation
  1507   // returns a unique pid, the pid of the launcher thread
  1508   // that starts the vm 'process'.
  1510   // Under the NPTL, getpid() returns the same pid as the
  1511   // launcher thread rather than a unique pid per thread.
  1512   // Use gettid() if you want the old pre NPTL behaviour.
  1514   // if you are looking for the result of a call to getpid() that
  1515   // returns a unique pid for the calling thread, then look at the
  1516   // OSThread::thread_id() method in osThread_linux.hpp file
  1518   return (int)(_initial_pid ? _initial_pid : getpid());
  1521 // DLL functions
  1523 const char* os::dll_file_extension() { return ".so"; }
  1525 const char* os::get_temp_directory() { return "/tmp/"; }
  1527 static bool file_exists(const char* filename) {
  1528   struct stat statbuf;
  1529   if (filename == NULL || strlen(filename) == 0) {
  1530     return false;
  1532   return os::stat(filename, &statbuf) == 0;
  1535 void os::dll_build_name(char* buffer, size_t buflen,
  1536                         const char* pname, const char* fname) {
  1537   // Copied from libhpi
  1538   const size_t pnamelen = pname ? strlen(pname) : 0;
  1540   // Quietly truncate on buffer overflow.  Should be an error.
  1541   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1542       *buffer = '\0';
  1543       return;
  1546   if (pnamelen == 0) {
  1547     snprintf(buffer, buflen, "lib%s.so", fname);
  1548   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1549     int n;
  1550     char** pelements = split_path(pname, &n);
  1551     for (int i = 0 ; i < n ; i++) {
  1552       // Really shouldn't be NULL, but check can't hurt
  1553       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1554         continue; // skip the empty path values
  1556       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1557       if (file_exists(buffer)) {
  1558         break;
  1561     // release the storage
  1562     for (int i = 0 ; i < n ; i++) {
  1563       if (pelements[i] != NULL) {
  1564         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1567     if (pelements != NULL) {
  1568       FREE_C_HEAP_ARRAY(char*, pelements);
  1570   } else {
  1571     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1575 const char* os::get_current_directory(char *buf, int buflen) {
  1576   return getcwd(buf, buflen);
  1579 // check if addr is inside libjvm[_g].so
  1580 bool os::address_is_in_vm(address addr) {
  1581   static address libjvm_base_addr;
  1582   Dl_info dlinfo;
  1584   if (libjvm_base_addr == NULL) {
  1585     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1586     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1587     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1590   if (dladdr((void *)addr, &dlinfo)) {
  1591     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1594   return false;
  1597 bool os::dll_address_to_function_name(address addr, char *buf,
  1598                                       int buflen, int *offset) {
  1599   Dl_info dlinfo;
  1601   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1602     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1603     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
  1604     return true;
  1605   } else {
  1606     if (buf) buf[0] = '\0';
  1607     if (offset) *offset = -1;
  1608     return false;
  1612 struct _address_to_library_name {
  1613   address addr;          // input : memory address
  1614   size_t  buflen;        //         size of fname
  1615   char*   fname;         // output: library name
  1616   address base;          //         library base addr
  1617 };
  1619 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1620                                             size_t size, void *data) {
  1621   int i;
  1622   bool found = false;
  1623   address libbase = NULL;
  1624   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1626   // iterate through all loadable segments
  1627   for (i = 0; i < info->dlpi_phnum; i++) {
  1628     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1629     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1630       // base address of a library is the lowest address of its loaded
  1631       // segments.
  1632       if (libbase == NULL || libbase > segbase) {
  1633         libbase = segbase;
  1635       // see if 'addr' is within current segment
  1636       if (segbase <= d->addr &&
  1637           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1638         found = true;
  1643   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1644   // so dll_address_to_library_name() can fall through to use dladdr() which
  1645   // can figure out executable name from argv[0].
  1646   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1647     d->base = libbase;
  1648     if (d->fname) {
  1649       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1651     return 1;
  1653   return 0;
  1656 bool os::dll_address_to_library_name(address addr, char* buf,
  1657                                      int buflen, int* offset) {
  1658   Dl_info dlinfo;
  1659   struct _address_to_library_name data;
  1661   // There is a bug in old glibc dladdr() implementation that it could resolve
  1662   // to wrong library name if the .so file has a base address != NULL. Here
  1663   // we iterate through the program headers of all loaded libraries to find
  1664   // out which library 'addr' really belongs to. This workaround can be
  1665   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1666   data.addr = addr;
  1667   data.fname = buf;
  1668   data.buflen = buflen;
  1669   data.base = NULL;
  1670   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1672   if (rslt) {
  1673      // buf already contains library name
  1674      if (offset) *offset = addr - data.base;
  1675      return true;
  1676   } else if (dladdr((void*)addr, &dlinfo)){
  1677      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1678      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1679      return true;
  1680   } else {
  1681      if (buf) buf[0] = '\0';
  1682      if (offset) *offset = -1;
  1683      return false;
  1687   // Loads .dll/.so and
  1688   // in case of error it checks if .dll/.so was built for the
  1689   // same architecture as Hotspot is running on
  1691 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1693   void * result= ::dlopen(filename, RTLD_LAZY);
  1694   if (result != NULL) {
  1695     // Successful loading
  1696     return result;
  1699   Elf32_Ehdr elf_head;
  1701   // Read system error message into ebuf
  1702   // It may or may not be overwritten below
  1703   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1704   ebuf[ebuflen-1]='\0';
  1705   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1706   char* diag_msg_buf=ebuf+strlen(ebuf);
  1708   if (diag_msg_max_length==0) {
  1709     // No more space in ebuf for additional diagnostics message
  1710     return NULL;
  1714   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1716   if (file_descriptor < 0) {
  1717     // Can't open library, report dlerror() message
  1718     return NULL;
  1721   bool failed_to_read_elf_head=
  1722     (sizeof(elf_head)!=
  1723         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1725   ::close(file_descriptor);
  1726   if (failed_to_read_elf_head) {
  1727     // file i/o error - report dlerror() msg
  1728     return NULL;
  1731   typedef struct {
  1732     Elf32_Half  code;         // Actual value as defined in elf.h
  1733     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1734     char        elf_class;    // 32 or 64 bit
  1735     char        endianess;    // MSB or LSB
  1736     char*       name;         // String representation
  1737   } arch_t;
  1739   #ifndef EM_486
  1740   #define EM_486          6               /* Intel 80486 */
  1741   #endif
  1743   static const arch_t arch_array[]={
  1744     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1745     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1746     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1747     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1748     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1749     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1750     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1751     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1752     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1753     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1754     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1755     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1756     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1757     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1758     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1759     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1760   };
  1762   #if  (defined IA32)
  1763     static  Elf32_Half running_arch_code=EM_386;
  1764   #elif   (defined AMD64)
  1765     static  Elf32_Half running_arch_code=EM_X86_64;
  1766   #elif  (defined IA64)
  1767     static  Elf32_Half running_arch_code=EM_IA_64;
  1768   #elif  (defined __sparc) && (defined _LP64)
  1769     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1770   #elif  (defined __sparc) && (!defined _LP64)
  1771     static  Elf32_Half running_arch_code=EM_SPARC;
  1772   #elif  (defined __powerpc64__)
  1773     static  Elf32_Half running_arch_code=EM_PPC64;
  1774   #elif  (defined __powerpc__)
  1775     static  Elf32_Half running_arch_code=EM_PPC;
  1776   #elif  (defined ARM)
  1777     static  Elf32_Half running_arch_code=EM_ARM;
  1778   #elif  (defined S390)
  1779     static  Elf32_Half running_arch_code=EM_S390;
  1780   #elif  (defined ALPHA)
  1781     static  Elf32_Half running_arch_code=EM_ALPHA;
  1782   #elif  (defined MIPSEL)
  1783     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1784   #elif  (defined PARISC)
  1785     static  Elf32_Half running_arch_code=EM_PARISC;
  1786   #elif  (defined MIPS)
  1787     static  Elf32_Half running_arch_code=EM_MIPS;
  1788   #elif  (defined M68K)
  1789     static  Elf32_Half running_arch_code=EM_68K;
  1790   #else
  1791     #error Method os::dll_load requires that one of following is defined:\
  1792          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1793   #endif
  1795   // Identify compatability class for VM's architecture and library's architecture
  1796   // Obtain string descriptions for architectures
  1798   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1799   int running_arch_index=-1;
  1801   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1802     if (running_arch_code == arch_array[i].code) {
  1803       running_arch_index    = i;
  1805     if (lib_arch.code == arch_array[i].code) {
  1806       lib_arch.compat_class = arch_array[i].compat_class;
  1807       lib_arch.name         = arch_array[i].name;
  1811   assert(running_arch_index != -1,
  1812     "Didn't find running architecture code (running_arch_code) in arch_array");
  1813   if (running_arch_index == -1) {
  1814     // Even though running architecture detection failed
  1815     // we may still continue with reporting dlerror() message
  1816     return NULL;
  1819   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1820     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1821     return NULL;
  1824 #ifndef S390
  1825   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1826     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1827     return NULL;
  1829 #endif // !S390
  1831   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1832     if ( lib_arch.name!=NULL ) {
  1833       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1834         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1835         lib_arch.name, arch_array[running_arch_index].name);
  1836     } else {
  1837       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1838       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1839         lib_arch.code,
  1840         arch_array[running_arch_index].name);
  1844   return NULL;
  1847 /*
  1848  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1849  * chances are you might want to run the generated bits against glibc-2.0
  1850  * libdl.so, so always use locking for any version of glibc.
  1851  */
  1852 void* os::dll_lookup(void* handle, const char* name) {
  1853   pthread_mutex_lock(&dl_mutex);
  1854   void* res = dlsym(handle, name);
  1855   pthread_mutex_unlock(&dl_mutex);
  1856   return res;
  1860 bool _print_ascii_file(const char* filename, outputStream* st) {
  1861   int fd = open(filename, O_RDONLY);
  1862   if (fd == -1) {
  1863      return false;
  1866   char buf[32];
  1867   int bytes;
  1868   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
  1869     st->print_raw(buf, bytes);
  1872   close(fd);
  1874   return true;
  1877 void os::print_dll_info(outputStream *st) {
  1878    st->print_cr("Dynamic libraries:");
  1880    char fname[32];
  1881    pid_t pid = os::Linux::gettid();
  1883    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  1885    if (!_print_ascii_file(fname, st)) {
  1886      st->print("Can not get library information for pid = %d\n", pid);
  1891 void os::print_os_info(outputStream* st) {
  1892   st->print("OS:");
  1894   // Try to identify popular distros.
  1895   // Most Linux distributions have /etc/XXX-release file, which contains
  1896   // the OS version string. Some have more than one /etc/XXX-release file
  1897   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  1898   // so the order is important.
  1899   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  1900       !_print_ascii_file("/etc/sun-release", st) &&
  1901       !_print_ascii_file("/etc/redhat-release", st) &&
  1902       !_print_ascii_file("/etc/SuSE-release", st) &&
  1903       !_print_ascii_file("/etc/turbolinux-release", st) &&
  1904       !_print_ascii_file("/etc/gentoo-release", st) &&
  1905       !_print_ascii_file("/etc/debian_version", st)) {
  1906       st->print("Linux");
  1908   st->cr();
  1910   // kernel
  1911   st->print("uname:");
  1912   struct utsname name;
  1913   uname(&name);
  1914   st->print(name.sysname); st->print(" ");
  1915   st->print(name.release); st->print(" ");
  1916   st->print(name.version); st->print(" ");
  1917   st->print(name.machine);
  1918   st->cr();
  1920   // Print warning if unsafe chroot environment detected
  1921   if (unsafe_chroot_detected) {
  1922     st->print("WARNING!! ");
  1923     st->print_cr(unstable_chroot_error);
  1926   // libc, pthread
  1927   st->print("libc:");
  1928   st->print(os::Linux::glibc_version()); st->print(" ");
  1929   st->print(os::Linux::libpthread_version()); st->print(" ");
  1930   if (os::Linux::is_LinuxThreads()) {
  1931      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  1933   st->cr();
  1935   // rlimit
  1936   st->print("rlimit:");
  1937   struct rlimit rlim;
  1939   st->print(" STACK ");
  1940   getrlimit(RLIMIT_STACK, &rlim);
  1941   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1942   else st->print("%uk", rlim.rlim_cur >> 10);
  1944   st->print(", CORE ");
  1945   getrlimit(RLIMIT_CORE, &rlim);
  1946   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1947   else st->print("%uk", rlim.rlim_cur >> 10);
  1949   st->print(", NPROC ");
  1950   getrlimit(RLIMIT_NPROC, &rlim);
  1951   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1952   else st->print("%d", rlim.rlim_cur);
  1954   st->print(", NOFILE ");
  1955   getrlimit(RLIMIT_NOFILE, &rlim);
  1956   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1957   else st->print("%d", rlim.rlim_cur);
  1959   st->print(", AS ");
  1960   getrlimit(RLIMIT_AS, &rlim);
  1961   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  1962   else st->print("%uk", rlim.rlim_cur >> 10);
  1963   st->cr();
  1965   // load average
  1966   st->print("load average:");
  1967   double loadavg[3];
  1968   os::loadavg(loadavg, 3);
  1969   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  1970   st->cr();
  1973 void os::print_memory_info(outputStream* st) {
  1975   st->print("Memory:");
  1976   st->print(" %dk page", os::vm_page_size()>>10);
  1978   // values in struct sysinfo are "unsigned long"
  1979   struct sysinfo si;
  1980   sysinfo(&si);
  1982   st->print(", physical " UINT64_FORMAT "k",
  1983             os::physical_memory() >> 10);
  1984   st->print("(" UINT64_FORMAT "k free)",
  1985             os::available_memory() >> 10);
  1986   st->print(", swap " UINT64_FORMAT "k",
  1987             ((jlong)si.totalswap * si.mem_unit) >> 10);
  1988   st->print("(" UINT64_FORMAT "k free)",
  1989             ((jlong)si.freeswap * si.mem_unit) >> 10);
  1990   st->cr();
  1993 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  1994 // but they're the same for all the linux arch that we support
  1995 // and they're the same for solaris but there's no common place to put this.
  1996 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  1997                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  1998                           "ILL_COPROC", "ILL_BADSTK" };
  2000 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2001                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2002                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2004 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2006 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2008 void os::print_siginfo(outputStream* st, void* siginfo) {
  2009   st->print("siginfo:");
  2011   const int buflen = 100;
  2012   char buf[buflen];
  2013   siginfo_t *si = (siginfo_t*)siginfo;
  2014   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2015   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2016     st->print("si_errno=%s", buf);
  2017   } else {
  2018     st->print("si_errno=%d", si->si_errno);
  2020   const int c = si->si_code;
  2021   assert(c > 0, "unexpected si_code");
  2022   switch (si->si_signo) {
  2023   case SIGILL:
  2024     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2025     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2026     break;
  2027   case SIGFPE:
  2028     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2029     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2030     break;
  2031   case SIGSEGV:
  2032     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2033     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2034     break;
  2035   case SIGBUS:
  2036     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2037     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2038     break;
  2039   default:
  2040     st->print(", si_code=%d", si->si_code);
  2041     // no si_addr
  2044   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2045       UseSharedSpaces) {
  2046     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2047     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2048       st->print("\n\nError accessing class data sharing archive."   \
  2049                 " Mapped file inaccessible during execution, "      \
  2050                 " possible disk/network problem.");
  2053   st->cr();
  2057 static void print_signal_handler(outputStream* st, int sig,
  2058                                  char* buf, size_t buflen);
  2060 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2061   st->print_cr("Signal Handlers:");
  2062   print_signal_handler(st, SIGSEGV, buf, buflen);
  2063   print_signal_handler(st, SIGBUS , buf, buflen);
  2064   print_signal_handler(st, SIGFPE , buf, buflen);
  2065   print_signal_handler(st, SIGPIPE, buf, buflen);
  2066   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2067   print_signal_handler(st, SIGILL , buf, buflen);
  2068   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2069   print_signal_handler(st, SR_signum, buf, buflen);
  2070   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2071   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2072   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2073   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2076 static char saved_jvm_path[MAXPATHLEN] = {0};
  2078 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2079 void os::jvm_path(char *buf, jint len) {
  2080   // Error checking.
  2081   if (len < MAXPATHLEN) {
  2082     assert(false, "must use a large-enough buffer");
  2083     buf[0] = '\0';
  2084     return;
  2086   // Lazy resolve the path to current module.
  2087   if (saved_jvm_path[0] != 0) {
  2088     strcpy(buf, saved_jvm_path);
  2089     return;
  2092   char dli_fname[MAXPATHLEN];
  2093   bool ret = dll_address_to_library_name(
  2094                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2095                 dli_fname, sizeof(dli_fname), NULL);
  2096   assert(ret != 0, "cannot locate libjvm");
  2097   if (realpath(dli_fname, buf) == NULL)
  2098     return;
  2100   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  2101     // Support for the gamma launcher.  Typical value for buf is
  2102     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2103     // the right place in the string, then assume we are installed in a JDK and
  2104     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2105     // up the path so it looks like libjvm.so is installed there (append a
  2106     // fake suffix hotspot/libjvm.so).
  2107     const char *p = buf + strlen(buf) - 1;
  2108     for (int count = 0; p > buf && count < 5; ++count) {
  2109       for (--p; p > buf && *p != '/'; --p)
  2110         /* empty */ ;
  2113     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2114       // Look for JAVA_HOME in the environment.
  2115       char* java_home_var = ::getenv("JAVA_HOME");
  2116       if (java_home_var != NULL && java_home_var[0] != 0) {
  2117         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2118         p = strrchr(buf, '/');
  2119         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2120         p = strstr(p, "_g") ? "_g" : "";
  2122         if (realpath(java_home_var, buf) == NULL)
  2123           return;
  2124         sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
  2125         if (0 == access(buf, F_OK)) {
  2126           // Use current module name "libjvm[_g].so" instead of
  2127           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2128           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2129           // It is used when we are choosing the HPI library's name
  2130           // "libhpi[_g].so" in hpi::initialize_get_interface().
  2131           sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
  2132         } else {
  2133           // Go back to path of .so
  2134           if (realpath(dli_fname, buf) == NULL)
  2135             return;
  2141   strcpy(saved_jvm_path, buf);
  2144 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2145   // no prefix required, not even "_"
  2148 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2149   // no suffix required
  2152 ////////////////////////////////////////////////////////////////////////////////
  2153 // sun.misc.Signal support
  2155 static volatile jint sigint_count = 0;
  2157 static void
  2158 UserHandler(int sig, void *siginfo, void *context) {
  2159   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2160   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2161   // don't want to flood the manager thread with sem_post requests.
  2162   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2163       return;
  2165   // Ctrl-C is pressed during error reporting, likely because the error
  2166   // handler fails to abort. Let VM die immediately.
  2167   if (sig == SIGINT && is_error_reported()) {
  2168      os::die();
  2171   os::signal_notify(sig);
  2174 void* os::user_handler() {
  2175   return CAST_FROM_FN_PTR(void*, UserHandler);
  2178 extern "C" {
  2179   typedef void (*sa_handler_t)(int);
  2180   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2183 void* os::signal(int signal_number, void* handler) {
  2184   struct sigaction sigAct, oldSigAct;
  2186   sigfillset(&(sigAct.sa_mask));
  2187   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2188   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2190   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2191     // -1 means registration failed
  2192     return (void *)-1;
  2195   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2198 void os::signal_raise(int signal_number) {
  2199   ::raise(signal_number);
  2202 /*
  2203  * The following code is moved from os.cpp for making this
  2204  * code platform specific, which it is by its very nature.
  2205  */
  2207 // Will be modified when max signal is changed to be dynamic
  2208 int os::sigexitnum_pd() {
  2209   return NSIG;
  2212 // a counter for each possible signal value
  2213 static volatile jint pending_signals[NSIG+1] = { 0 };
  2215 // Linux(POSIX) specific hand shaking semaphore.
  2216 static sem_t sig_sem;
  2218 void os::signal_init_pd() {
  2219   // Initialize signal structures
  2220   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2222   // Initialize signal semaphore
  2223   ::sem_init(&sig_sem, 0, 0);
  2226 void os::signal_notify(int sig) {
  2227   Atomic::inc(&pending_signals[sig]);
  2228   ::sem_post(&sig_sem);
  2231 static int check_pending_signals(bool wait) {
  2232   Atomic::store(0, &sigint_count);
  2233   for (;;) {
  2234     for (int i = 0; i < NSIG + 1; i++) {
  2235       jint n = pending_signals[i];
  2236       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2237         return i;
  2240     if (!wait) {
  2241       return -1;
  2243     JavaThread *thread = JavaThread::current();
  2244     ThreadBlockInVM tbivm(thread);
  2246     bool threadIsSuspended;
  2247     do {
  2248       thread->set_suspend_equivalent();
  2249       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2250       ::sem_wait(&sig_sem);
  2252       // were we externally suspended while we were waiting?
  2253       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2254       if (threadIsSuspended) {
  2255         //
  2256         // The semaphore has been incremented, but while we were waiting
  2257         // another thread suspended us. We don't want to continue running
  2258         // while suspended because that would surprise the thread that
  2259         // suspended us.
  2260         //
  2261         ::sem_post(&sig_sem);
  2263         thread->java_suspend_self();
  2265     } while (threadIsSuspended);
  2269 int os::signal_lookup() {
  2270   return check_pending_signals(false);
  2273 int os::signal_wait() {
  2274   return check_pending_signals(true);
  2277 ////////////////////////////////////////////////////////////////////////////////
  2278 // Virtual Memory
  2280 int os::vm_page_size() {
  2281   // Seems redundant as all get out
  2282   assert(os::Linux::page_size() != -1, "must call os::init");
  2283   return os::Linux::page_size();
  2286 // Solaris allocates memory by pages.
  2287 int os::vm_allocation_granularity() {
  2288   assert(os::Linux::page_size() != -1, "must call os::init");
  2289   return os::Linux::page_size();
  2292 // Rationale behind this function:
  2293 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2294 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2295 //  samples for JITted code. Here we create private executable mapping over the code cache
  2296 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2297 //  info for the reporting script by storing timestamp and location of symbol
  2298 void linux_wrap_code(char* base, size_t size) {
  2299   static volatile jint cnt = 0;
  2301   if (!UseOprofile) {
  2302     return;
  2305   char buf[40];
  2306   int num = Atomic::add(1, &cnt);
  2308   sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
  2309   unlink(buf);
  2311   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2313   if (fd != -1) {
  2314     off_t rv = lseek(fd, size-2, SEEK_SET);
  2315     if (rv != (off_t)-1) {
  2316       if (write(fd, "", 1) == 1) {
  2317         mmap(base, size,
  2318              PROT_READ|PROT_WRITE|PROT_EXEC,
  2319              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2322     close(fd);
  2323     unlink(buf);
  2327 // NOTE: Linux kernel does not really reserve the pages for us.
  2328 //       All it does is to check if there are enough free pages
  2329 //       left at the time of mmap(). This could be a potential
  2330 //       problem.
  2331 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2332   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2333   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2334                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2335   return res != (uintptr_t) MAP_FAILED;
  2338 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2339                        bool exec) {
  2340   return commit_memory(addr, size, exec);
  2343 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  2345 void os::free_memory(char *addr, size_t bytes) {
  2346   ::mmap(addr, bytes, PROT_READ | PROT_WRITE,
  2347          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2350 void os::numa_make_global(char *addr, size_t bytes) {
  2351   Linux::numa_interleave_memory(addr, bytes);
  2354 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2355   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2358 bool os::numa_topology_changed()   { return false; }
  2360 size_t os::numa_get_groups_num() {
  2361   int max_node = Linux::numa_max_node();
  2362   return max_node > 0 ? max_node + 1 : 1;
  2365 int os::numa_get_group_id() {
  2366   int cpu_id = Linux::sched_getcpu();
  2367   if (cpu_id != -1) {
  2368     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2369     if (lgrp_id != -1) {
  2370       return lgrp_id;
  2373   return 0;
  2376 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2377   for (size_t i = 0; i < size; i++) {
  2378     ids[i] = i;
  2380   return size;
  2383 bool os::get_page_info(char *start, page_info* info) {
  2384   return false;
  2387 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2388   return end;
  2391 extern "C" void numa_warn(int number, char *where, ...) { }
  2392 extern "C" void numa_error(char *where) { }
  2395 // If we are running with libnuma version > 2, then we should
  2396 // be trying to use symbols with versions 1.1
  2397 // If we are running with earlier version, which did not have symbol versions,
  2398 // we should use the base version.
  2399 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2400   void *f = dlvsym(handle, name, "libnuma_1.1");
  2401   if (f == NULL) {
  2402     f = dlsym(handle, name);
  2404   return f;
  2407 bool os::Linux::libnuma_init() {
  2408   // sched_getcpu() should be in libc.
  2409   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2410                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2412   if (sched_getcpu() != -1) { // Does it work?
  2413     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2414     if (handle != NULL) {
  2415       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2416                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2417       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2418                                        libnuma_dlsym(handle, "numa_max_node")));
  2419       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2420                                         libnuma_dlsym(handle, "numa_available")));
  2421       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2422                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2423       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2424                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2427       if (numa_available() != -1) {
  2428         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2429         // Create a cpu -> node mapping
  2430         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2431         rebuild_cpu_to_node_map();
  2432         return true;
  2436   return false;
  2439 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2440 // The table is later used in get_node_by_cpu().
  2441 void os::Linux::rebuild_cpu_to_node_map() {
  2442   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2443                               // in libnuma (possible values are starting from 16,
  2444                               // and continuing up with every other power of 2, but less
  2445                               // than the maximum number of CPUs supported by kernel), and
  2446                               // is a subject to change (in libnuma version 2 the requirements
  2447                               // are more reasonable) we'll just hardcode the number they use
  2448                               // in the library.
  2449   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2451   size_t cpu_num = os::active_processor_count();
  2452   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2453   size_t cpu_map_valid_size =
  2454     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2456   cpu_to_node()->clear();
  2457   cpu_to_node()->at_grow(cpu_num - 1);
  2458   size_t node_num = numa_get_groups_num();
  2460   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2461   for (size_t i = 0; i < node_num; i++) {
  2462     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2463       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2464         if (cpu_map[j] != 0) {
  2465           for (size_t k = 0; k < BitsPerCLong; k++) {
  2466             if (cpu_map[j] & (1UL << k)) {
  2467               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2474   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2477 int os::Linux::get_node_by_cpu(int cpu_id) {
  2478   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2479     return cpu_to_node()->at(cpu_id);
  2481   return -1;
  2484 GrowableArray<int>* os::Linux::_cpu_to_node;
  2485 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2486 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2487 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2488 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2489 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2490 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2491 unsigned long* os::Linux::_numa_all_nodes;
  2493 bool os::uncommit_memory(char* addr, size_t size) {
  2494   return ::mmap(addr, size, PROT_NONE,
  2495                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
  2496     != MAP_FAILED;
  2499 // Linux uses a growable mapping for the stack, and if the mapping for
  2500 // the stack guard pages is not removed when we detach a thread the
  2501 // stack cannot grow beyond the pages where the stack guard was
  2502 // mapped.  If at some point later in the process the stack expands to
  2503 // that point, the Linux kernel cannot expand the stack any further
  2504 // because the guard pages are in the way, and a segfault occurs.
  2505 //
  2506 // However, it's essential not to split the stack region by unmapping
  2507 // a region (leaving a hole) that's already part of the stack mapping,
  2508 // so if the stack mapping has already grown beyond the guard pages at
  2509 // the time we create them, we have to truncate the stack mapping.
  2510 // So, we need to know the extent of the stack mapping when
  2511 // create_stack_guard_pages() is called.
  2513 // Find the bounds of the stack mapping.  Return true for success.
  2514 //
  2515 // We only need this for stacks that are growable: at the time of
  2516 // writing thread stacks don't use growable mappings (i.e. those
  2517 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2518 // only applies to the main thread.
  2519 static bool
  2520 get_stack_bounds(uintptr_t *bottom, uintptr_t *top)
  2522   FILE *f = fopen("/proc/self/maps", "r");
  2523   if (f == NULL)
  2524     return false;
  2526   while (!feof(f)) {
  2527     size_t dummy;
  2528     char *str = NULL;
  2529     ssize_t len = getline(&str, &dummy, f);
  2530     if (len == -1) {
  2531       fclose(f);
  2532       return false;
  2535     if (len > 0 && str[len-1] == '\n') {
  2536       str[len-1] = 0;
  2537       len--;
  2540     static const char *stack_str = "[stack]";
  2541     if (len > (ssize_t)strlen(stack_str)
  2542        && (strcmp(str + len - strlen(stack_str), stack_str) == 0)) {
  2543       if (sscanf(str, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2544         uintptr_t sp = (uintptr_t)__builtin_frame_address(0);
  2545         if (sp >= *bottom && sp <= *top) {
  2546           free(str);
  2547           fclose(f);
  2548           return true;
  2552     free(str);
  2554   fclose(f);
  2555   return false;
  2558 // If the (growable) stack mapping already extends beyond the point
  2559 // where we're going to put our guard pages, truncate the mapping at
  2560 // that point by munmap()ping it.  This ensures that when we later
  2561 // munmap() the guard pages we don't leave a hole in the stack
  2562 // mapping.
  2563 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2564   uintptr_t stack_extent, stack_base;
  2565   if (get_stack_bounds(&stack_extent, &stack_base)) {
  2566     if (stack_extent < (uintptr_t)addr)
  2567       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2570   return os::commit_memory(addr, size);
  2573 // If this is a growable mapping, remove the guard pages entirely by
  2574 // munmap()ping them.  If not, just call uncommit_memory().
  2575 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2576   uintptr_t stack_extent, stack_base;
  2577   if (get_stack_bounds(&stack_extent, &stack_base)) {
  2578     return ::munmap(addr, size) == 0;
  2581   return os::uncommit_memory(addr, size);
  2584 static address _highest_vm_reserved_address = NULL;
  2586 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2587 // at 'requested_addr'. If there are existing memory mappings at the same
  2588 // location, however, they will be overwritten. If 'fixed' is false,
  2589 // 'requested_addr' is only treated as a hint, the return value may or
  2590 // may not start from the requested address. Unlike Linux mmap(), this
  2591 // function returns NULL to indicate failure.
  2592 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2593   char * addr;
  2594   int flags;
  2596   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2597   if (fixed) {
  2598     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2599     flags |= MAP_FIXED;
  2602   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2603   // to PROT_EXEC if executable when we commit the page.
  2604   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2605                        flags, -1, 0);
  2607   if (addr != MAP_FAILED) {
  2608     // anon_mmap() should only get called during VM initialization,
  2609     // don't need lock (actually we can skip locking even it can be called
  2610     // from multiple threads, because _highest_vm_reserved_address is just a
  2611     // hint about the upper limit of non-stack memory regions.)
  2612     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2613       _highest_vm_reserved_address = (address)addr + bytes;
  2617   return addr == MAP_FAILED ? NULL : addr;
  2620 // Don't update _highest_vm_reserved_address, because there might be memory
  2621 // regions above addr + size. If so, releasing a memory region only creates
  2622 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2623 //
  2624 static int anon_munmap(char * addr, size_t size) {
  2625   return ::munmap(addr, size) == 0;
  2628 char* os::reserve_memory(size_t bytes, char* requested_addr,
  2629                          size_t alignment_hint) {
  2630   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2633 bool os::release_memory(char* addr, size_t size) {
  2634   return anon_munmap(addr, size);
  2637 static address highest_vm_reserved_address() {
  2638   return _highest_vm_reserved_address;
  2641 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2642   // Linux wants the mprotect address argument to be page aligned.
  2643   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2645   // According to SUSv3, mprotect() should only be used with mappings
  2646   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2647   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2648   // protection of malloc'ed or statically allocated memory). Check the
  2649   // caller if you hit this assert.
  2650   assert(addr == bottom, "sanity check");
  2652   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2653   return ::mprotect(bottom, size, prot) == 0;
  2656 // Set protections specified
  2657 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2658                         bool is_committed) {
  2659   unsigned int p = 0;
  2660   switch (prot) {
  2661   case MEM_PROT_NONE: p = PROT_NONE; break;
  2662   case MEM_PROT_READ: p = PROT_READ; break;
  2663   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2664   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2665   default:
  2666     ShouldNotReachHere();
  2668   // is_committed is unused.
  2669   return linux_mprotect(addr, bytes, p);
  2672 bool os::guard_memory(char* addr, size_t size) {
  2673   return linux_mprotect(addr, size, PROT_NONE);
  2676 bool os::unguard_memory(char* addr, size_t size) {
  2677   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2680 // Large page support
  2682 static size_t _large_page_size = 0;
  2684 bool os::large_page_init() {
  2685   if (!UseLargePages) return false;
  2687   if (LargePageSizeInBytes) {
  2688     _large_page_size = LargePageSizeInBytes;
  2689   } else {
  2690     // large_page_size on Linux is used to round up heap size. x86 uses either
  2691     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  2692     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  2693     // page as large as 256M.
  2694     //
  2695     // Here we try to figure out page size by parsing /proc/meminfo and looking
  2696     // for a line with the following format:
  2697     //    Hugepagesize:     2048 kB
  2698     //
  2699     // If we can't determine the value (e.g. /proc is not mounted, or the text
  2700     // format has been changed), we'll use the largest page size supported by
  2701     // the processor.
  2703 #ifndef ZERO
  2704     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
  2705 #endif // ZERO
  2707     FILE *fp = fopen("/proc/meminfo", "r");
  2708     if (fp) {
  2709       while (!feof(fp)) {
  2710         int x = 0;
  2711         char buf[16];
  2712         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  2713           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  2714             _large_page_size = x * K;
  2715             break;
  2717         } else {
  2718           // skip to next line
  2719           for (;;) {
  2720             int ch = fgetc(fp);
  2721             if (ch == EOF || ch == (int)'\n') break;
  2725       fclose(fp);
  2729   const size_t default_page_size = (size_t)Linux::page_size();
  2730   if (_large_page_size > default_page_size) {
  2731     _page_sizes[0] = _large_page_size;
  2732     _page_sizes[1] = default_page_size;
  2733     _page_sizes[2] = 0;
  2736   // Large page support is available on 2.6 or newer kernel, some vendors
  2737   // (e.g. Redhat) have backported it to their 2.4 based distributions.
  2738   // We optimistically assume the support is available. If later it turns out
  2739   // not true, VM will automatically switch to use regular page size.
  2740   return true;
  2743 #ifndef SHM_HUGETLB
  2744 #define SHM_HUGETLB 04000
  2745 #endif
  2747 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  2748   // "exec" is passed in but not used.  Creating the shared image for
  2749   // the code cache doesn't have an SHM_X executable permission to check.
  2750   assert(UseLargePages, "only for large pages");
  2752   key_t key = IPC_PRIVATE;
  2753   char *addr;
  2755   bool warn_on_failure = UseLargePages &&
  2756                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  2757                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  2758                         );
  2759   char msg[128];
  2761   // Create a large shared memory region to attach to based on size.
  2762   // Currently, size is the total size of the heap
  2763   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  2764   if (shmid == -1) {
  2765      // Possible reasons for shmget failure:
  2766      // 1. shmmax is too small for Java heap.
  2767      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  2768      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  2769      // 2. not enough large page memory.
  2770      //    > check available large pages: cat /proc/meminfo
  2771      //    > increase amount of large pages:
  2772      //          echo new_value > /proc/sys/vm/nr_hugepages
  2773      //      Note 1: different Linux may use different name for this property,
  2774      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  2775      //      Note 2: it's possible there's enough physical memory available but
  2776      //            they are so fragmented after a long run that they can't
  2777      //            coalesce into large pages. Try to reserve large pages when
  2778      //            the system is still "fresh".
  2779      if (warn_on_failure) {
  2780        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  2781        warning(msg);
  2783      return NULL;
  2786   // attach to the region
  2787   addr = (char*)shmat(shmid, NULL, 0);
  2788   int err = errno;
  2790   // Remove shmid. If shmat() is successful, the actual shared memory segment
  2791   // will be deleted when it's detached by shmdt() or when the process
  2792   // terminates. If shmat() is not successful this will remove the shared
  2793   // segment immediately.
  2794   shmctl(shmid, IPC_RMID, NULL);
  2796   if ((intptr_t)addr == -1) {
  2797      if (warn_on_failure) {
  2798        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  2799        warning(msg);
  2801      return NULL;
  2804   return addr;
  2807 bool os::release_memory_special(char* base, size_t bytes) {
  2808   // detaching the SHM segment will also delete it, see reserve_memory_special()
  2809   int rslt = shmdt(base);
  2810   return rslt == 0;
  2813 size_t os::large_page_size() {
  2814   return _large_page_size;
  2817 // Linux does not support anonymous mmap with large page memory. The only way
  2818 // to reserve large page memory without file backing is through SysV shared
  2819 // memory API. The entire memory region is committed and pinned upfront.
  2820 // Hopefully this will change in the future...
  2821 bool os::can_commit_large_page_memory() {
  2822   return false;
  2825 bool os::can_execute_large_page_memory() {
  2826   return false;
  2829 // Reserve memory at an arbitrary address, only if that area is
  2830 // available (and not reserved for something else).
  2832 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2833   const int max_tries = 10;
  2834   char* base[max_tries];
  2835   size_t size[max_tries];
  2836   const size_t gap = 0x000000;
  2838   // Assert only that the size is a multiple of the page size, since
  2839   // that's all that mmap requires, and since that's all we really know
  2840   // about at this low abstraction level.  If we need higher alignment,
  2841   // we can either pass an alignment to this method or verify alignment
  2842   // in one of the methods further up the call chain.  See bug 5044738.
  2843   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  2845   // Repeatedly allocate blocks until the block is allocated at the
  2846   // right spot. Give up after max_tries. Note that reserve_memory() will
  2847   // automatically update _highest_vm_reserved_address if the call is
  2848   // successful. The variable tracks the highest memory address every reserved
  2849   // by JVM. It is used to detect heap-stack collision if running with
  2850   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  2851   // space than needed, it could confuse the collision detecting code. To
  2852   // solve the problem, save current _highest_vm_reserved_address and
  2853   // calculate the correct value before return.
  2854   address old_highest = _highest_vm_reserved_address;
  2856   // Linux mmap allows caller to pass an address as hint; give it a try first,
  2857   // if kernel honors the hint then we can return immediately.
  2858   char * addr = anon_mmap(requested_addr, bytes, false);
  2859   if (addr == requested_addr) {
  2860      return requested_addr;
  2863   if (addr != NULL) {
  2864      // mmap() is successful but it fails to reserve at the requested address
  2865      anon_munmap(addr, bytes);
  2868   int i;
  2869   for (i = 0; i < max_tries; ++i) {
  2870     base[i] = reserve_memory(bytes);
  2872     if (base[i] != NULL) {
  2873       // Is this the block we wanted?
  2874       if (base[i] == requested_addr) {
  2875         size[i] = bytes;
  2876         break;
  2879       // Does this overlap the block we wanted? Give back the overlapped
  2880       // parts and try again.
  2882       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  2883       if (top_overlap >= 0 && top_overlap < bytes) {
  2884         unmap_memory(base[i], top_overlap);
  2885         base[i] += top_overlap;
  2886         size[i] = bytes - top_overlap;
  2887       } else {
  2888         size_t bottom_overlap = base[i] + bytes - requested_addr;
  2889         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  2890           unmap_memory(requested_addr, bottom_overlap);
  2891           size[i] = bytes - bottom_overlap;
  2892         } else {
  2893           size[i] = bytes;
  2899   // Give back the unused reserved pieces.
  2901   for (int j = 0; j < i; ++j) {
  2902     if (base[j] != NULL) {
  2903       unmap_memory(base[j], size[j]);
  2907   if (i < max_tries) {
  2908     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  2909     return requested_addr;
  2910   } else {
  2911     _highest_vm_reserved_address = old_highest;
  2912     return NULL;
  2916 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2917   return ::read(fd, buf, nBytes);
  2920 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  2921 // Solaris uses poll(), linux uses park().
  2922 // Poll() is likely a better choice, assuming that Thread.interrupt()
  2923 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  2924 // SIGSEGV, see 4355769.
  2926 const int NANOSECS_PER_MILLISECS = 1000000;
  2928 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  2929   assert(thread == Thread::current(),  "thread consistency check");
  2931   ParkEvent * const slp = thread->_SleepEvent ;
  2932   slp->reset() ;
  2933   OrderAccess::fence() ;
  2935   if (interruptible) {
  2936     jlong prevtime = javaTimeNanos();
  2938     for (;;) {
  2939       if (os::is_interrupted(thread, true)) {
  2940         return OS_INTRPT;
  2943       jlong newtime = javaTimeNanos();
  2945       if (newtime - prevtime < 0) {
  2946         // time moving backwards, should only happen if no monotonic clock
  2947         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2948         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  2949       } else {
  2950         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  2953       if(millis <= 0) {
  2954         return OS_OK;
  2957       prevtime = newtime;
  2960         assert(thread->is_Java_thread(), "sanity check");
  2961         JavaThread *jt = (JavaThread *) thread;
  2962         ThreadBlockInVM tbivm(jt);
  2963         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  2965         jt->set_suspend_equivalent();
  2966         // cleared by handle_special_suspend_equivalent_condition() or
  2967         // java_suspend_self() via check_and_wait_while_suspended()
  2969         slp->park(millis);
  2971         // were we externally suspended while we were waiting?
  2972         jt->check_and_wait_while_suspended();
  2975   } else {
  2976     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  2977     jlong prevtime = javaTimeNanos();
  2979     for (;;) {
  2980       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  2981       // the 1st iteration ...
  2982       jlong newtime = javaTimeNanos();
  2984       if (newtime - prevtime < 0) {
  2985         // time moving backwards, should only happen if no monotonic clock
  2986         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2987         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  2988       } else {
  2989         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  2992       if(millis <= 0) break ;
  2994       prevtime = newtime;
  2995       slp->park(millis);
  2997     return OS_OK ;
  3001 int os::naked_sleep() {
  3002   // %% make the sleep time an integer flag. for now use 1 millisec.
  3003   return os::sleep(Thread::current(), 1, false);
  3006 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3007 void os::infinite_sleep() {
  3008   while (true) {    // sleep forever ...
  3009     ::sleep(100);   // ... 100 seconds at a time
  3013 // Used to convert frequent JVM_Yield() to nops
  3014 bool os::dont_yield() {
  3015   return DontYieldALot;
  3018 void os::yield() {
  3019   sched_yield();
  3022 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3024 void os::yield_all(int attempts) {
  3025   // Yields to all threads, including threads with lower priorities
  3026   // Threads on Linux are all with same priority. The Solaris style
  3027   // os::yield_all() with nanosleep(1ms) is not necessary.
  3028   sched_yield();
  3031 // Called from the tight loops to possibly influence time-sharing heuristics
  3032 void os::loop_breaker(int attempts) {
  3033   os::yield_all(attempts);
  3036 ////////////////////////////////////////////////////////////////////////////////
  3037 // thread priority support
  3039 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3040 // only supports dynamic priority, static priority must be zero. For real-time
  3041 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3042 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3043 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3044 // of 5 runs - Sep 2005).
  3045 //
  3046 // The following code actually changes the niceness of kernel-thread/LWP. It
  3047 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3048 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3049 // threads. It has always been the case, but could change in the future. For
  3050 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3051 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3053 int os::java_to_os_priority[MaxPriority + 1] = {
  3054   19,              // 0 Entry should never be used
  3056    4,              // 1 MinPriority
  3057    3,              // 2
  3058    2,              // 3
  3060    1,              // 4
  3061    0,              // 5 NormPriority
  3062   -1,              // 6
  3064   -2,              // 7
  3065   -3,              // 8
  3066   -4,              // 9 NearMaxPriority
  3068   -5               // 10 MaxPriority
  3069 };
  3071 static int prio_init() {
  3072   if (ThreadPriorityPolicy == 1) {
  3073     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3074     // if effective uid is not root. Perhaps, a more elegant way of doing
  3075     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3076     if (geteuid() != 0) {
  3077       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3078         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3080       ThreadPriorityPolicy = 0;
  3083   return 0;
  3086 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3087   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3089   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3090   return (ret == 0) ? OS_OK : OS_ERR;
  3093 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3094   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3095     *priority_ptr = java_to_os_priority[NormPriority];
  3096     return OS_OK;
  3099   errno = 0;
  3100   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3101   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3104 // Hint to the underlying OS that a task switch would not be good.
  3105 // Void return because it's a hint and can fail.
  3106 void os::hint_no_preempt() {}
  3108 ////////////////////////////////////////////////////////////////////////////////
  3109 // suspend/resume support
  3111 //  the low-level signal-based suspend/resume support is a remnant from the
  3112 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3113 //  within hotspot. Now there is a single use-case for this:
  3114 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3115 //      that runs in the watcher thread.
  3116 //  The remaining code is greatly simplified from the more general suspension
  3117 //  code that used to be used.
  3118 //
  3119 //  The protocol is quite simple:
  3120 //  - suspend:
  3121 //      - sends a signal to the target thread
  3122 //      - polls the suspend state of the osthread using a yield loop
  3123 //      - target thread signal handler (SR_handler) sets suspend state
  3124 //        and blocks in sigsuspend until continued
  3125 //  - resume:
  3126 //      - sets target osthread state to continue
  3127 //      - sends signal to end the sigsuspend loop in the SR_handler
  3128 //
  3129 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3130 //
  3132 static void resume_clear_context(OSThread *osthread) {
  3133   osthread->set_ucontext(NULL);
  3134   osthread->set_siginfo(NULL);
  3136   // notify the suspend action is completed, we have now resumed
  3137   osthread->sr.clear_suspended();
  3140 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3141   osthread->set_ucontext(context);
  3142   osthread->set_siginfo(siginfo);
  3145 //
  3146 // Handler function invoked when a thread's execution is suspended or
  3147 // resumed. We have to be careful that only async-safe functions are
  3148 // called here (Note: most pthread functions are not async safe and
  3149 // should be avoided.)
  3150 //
  3151 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3152 // interface point of view, but sigwait() prevents the signal hander
  3153 // from being run. libpthread would get very confused by not having
  3154 // its signal handlers run and prevents sigwait()'s use with the
  3155 // mutex granting granting signal.
  3156 //
  3157 // Currently only ever called on the VMThread
  3158 //
  3159 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3160   // Save and restore errno to avoid confusing native code with EINTR
  3161   // after sigsuspend.
  3162   int old_errno = errno;
  3164   Thread* thread = Thread::current();
  3165   OSThread* osthread = thread->osthread();
  3166   assert(thread->is_VM_thread(), "Must be VMThread");
  3167   // read current suspend action
  3168   int action = osthread->sr.suspend_action();
  3169   if (action == SR_SUSPEND) {
  3170     suspend_save_context(osthread, siginfo, context);
  3172     // Notify the suspend action is about to be completed. do_suspend()
  3173     // waits until SR_SUSPENDED is set and then returns. We will wait
  3174     // here for a resume signal and that completes the suspend-other
  3175     // action. do_suspend/do_resume is always called as a pair from
  3176     // the same thread - so there are no races
  3178     // notify the caller
  3179     osthread->sr.set_suspended();
  3181     sigset_t suspend_set;  // signals for sigsuspend()
  3183     // get current set of blocked signals and unblock resume signal
  3184     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3185     sigdelset(&suspend_set, SR_signum);
  3187     // wait here until we are resumed
  3188     do {
  3189       sigsuspend(&suspend_set);
  3190       // ignore all returns until we get a resume signal
  3191     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3193     resume_clear_context(osthread);
  3195   } else {
  3196     assert(action == SR_CONTINUE, "unexpected sr action");
  3197     // nothing special to do - just leave the handler
  3200   errno = old_errno;
  3204 static int SR_initialize() {
  3205   struct sigaction act;
  3206   char *s;
  3207   /* Get signal number to use for suspend/resume */
  3208   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3209     int sig = ::strtol(s, 0, 10);
  3210     if (sig > 0 || sig < _NSIG) {
  3211         SR_signum = sig;
  3215   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3216         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3218   sigemptyset(&SR_sigset);
  3219   sigaddset(&SR_sigset, SR_signum);
  3221   /* Set up signal handler for suspend/resume */
  3222   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3223   act.sa_handler = (void (*)(int)) SR_handler;
  3225   // SR_signum is blocked by default.
  3226   // 4528190 - We also need to block pthread restart signal (32 on all
  3227   // supported Linux platforms). Note that LinuxThreads need to block
  3228   // this signal for all threads to work properly. So we don't have
  3229   // to use hard-coded signal number when setting up the mask.
  3230   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3232   if (sigaction(SR_signum, &act, 0) == -1) {
  3233     return -1;
  3236   // Save signal flag
  3237   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3238   return 0;
  3241 static int SR_finalize() {
  3242   return 0;
  3246 // returns true on success and false on error - really an error is fatal
  3247 // but this seems the normal response to library errors
  3248 static bool do_suspend(OSThread* osthread) {
  3249   // mark as suspended and send signal
  3250   osthread->sr.set_suspend_action(SR_SUSPEND);
  3251   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3252   assert_status(status == 0, status, "pthread_kill");
  3254   // check status and wait until notified of suspension
  3255   if (status == 0) {
  3256     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3257       os::yield_all(i);
  3259     osthread->sr.set_suspend_action(SR_NONE);
  3260     return true;
  3262   else {
  3263     osthread->sr.set_suspend_action(SR_NONE);
  3264     return false;
  3268 static void do_resume(OSThread* osthread) {
  3269   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3270   osthread->sr.set_suspend_action(SR_CONTINUE);
  3272   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3273   assert_status(status == 0, status, "pthread_kill");
  3274   // check status and wait unit notified of resumption
  3275   if (status == 0) {
  3276     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3277       os::yield_all(i);
  3280   osthread->sr.set_suspend_action(SR_NONE);
  3283 ////////////////////////////////////////////////////////////////////////////////
  3284 // interrupt support
  3286 void os::interrupt(Thread* thread) {
  3287   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3288     "possibility of dangling Thread pointer");
  3290   OSThread* osthread = thread->osthread();
  3292   if (!osthread->interrupted()) {
  3293     osthread->set_interrupted(true);
  3294     // More than one thread can get here with the same value of osthread,
  3295     // resulting in multiple notifications.  We do, however, want the store
  3296     // to interrupted() to be visible to other threads before we execute unpark().
  3297     OrderAccess::fence();
  3298     ParkEvent * const slp = thread->_SleepEvent ;
  3299     if (slp != NULL) slp->unpark() ;
  3302   // For JSR166. Unpark even if interrupt status already was set
  3303   if (thread->is_Java_thread())
  3304     ((JavaThread*)thread)->parker()->unpark();
  3306   ParkEvent * ev = thread->_ParkEvent ;
  3307   if (ev != NULL) ev->unpark() ;
  3311 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3312   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3313     "possibility of dangling Thread pointer");
  3315   OSThread* osthread = thread->osthread();
  3317   bool interrupted = osthread->interrupted();
  3319   if (interrupted && clear_interrupted) {
  3320     osthread->set_interrupted(false);
  3321     // consider thread->_SleepEvent->reset() ... optional optimization
  3324   return interrupted;
  3327 ///////////////////////////////////////////////////////////////////////////////////
  3328 // signal handling (except suspend/resume)
  3330 // This routine may be used by user applications as a "hook" to catch signals.
  3331 // The user-defined signal handler must pass unrecognized signals to this
  3332 // routine, and if it returns true (non-zero), then the signal handler must
  3333 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3334 // routine will never retun false (zero), but instead will execute a VM panic
  3335 // routine kill the process.
  3336 //
  3337 // If this routine returns false, it is OK to call it again.  This allows
  3338 // the user-defined signal handler to perform checks either before or after
  3339 // the VM performs its own checks.  Naturally, the user code would be making
  3340 // a serious error if it tried to handle an exception (such as a null check
  3341 // or breakpoint) that the VM was generating for its own correct operation.
  3342 //
  3343 // This routine may recognize any of the following kinds of signals:
  3344 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3345 // It should be consulted by handlers for any of those signals.
  3346 //
  3347 // The caller of this routine must pass in the three arguments supplied
  3348 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3349 // field of the structure passed to sigaction().  This routine assumes that
  3350 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3351 //
  3352 // Note that the VM will print warnings if it detects conflicting signal
  3353 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3354 //
  3355 extern "C" int
  3356 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3357                         void* ucontext, int abort_if_unrecognized);
  3359 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3360   assert(info != NULL && uc != NULL, "it must be old kernel");
  3361   JVM_handle_linux_signal(sig, info, uc, true);
  3365 // This boolean allows users to forward their own non-matching signals
  3366 // to JVM_handle_linux_signal, harmlessly.
  3367 bool os::Linux::signal_handlers_are_installed = false;
  3369 // For signal-chaining
  3370 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3371 unsigned int os::Linux::sigs = 0;
  3372 bool os::Linux::libjsig_is_loaded = false;
  3373 typedef struct sigaction *(*get_signal_t)(int);
  3374 get_signal_t os::Linux::get_signal_action = NULL;
  3376 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3377   struct sigaction *actp = NULL;
  3379   if (libjsig_is_loaded) {
  3380     // Retrieve the old signal handler from libjsig
  3381     actp = (*get_signal_action)(sig);
  3383   if (actp == NULL) {
  3384     // Retrieve the preinstalled signal handler from jvm
  3385     actp = get_preinstalled_handler(sig);
  3388   return actp;
  3391 static bool call_chained_handler(struct sigaction *actp, int sig,
  3392                                  siginfo_t *siginfo, void *context) {
  3393   // Call the old signal handler
  3394   if (actp->sa_handler == SIG_DFL) {
  3395     // It's more reasonable to let jvm treat it as an unexpected exception
  3396     // instead of taking the default action.
  3397     return false;
  3398   } else if (actp->sa_handler != SIG_IGN) {
  3399     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3400       // automaticlly block the signal
  3401       sigaddset(&(actp->sa_mask), sig);
  3404     sa_handler_t hand;
  3405     sa_sigaction_t sa;
  3406     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3407     // retrieve the chained handler
  3408     if (siginfo_flag_set) {
  3409       sa = actp->sa_sigaction;
  3410     } else {
  3411       hand = actp->sa_handler;
  3414     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3415       actp->sa_handler = SIG_DFL;
  3418     // try to honor the signal mask
  3419     sigset_t oset;
  3420     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3422     // call into the chained handler
  3423     if (siginfo_flag_set) {
  3424       (*sa)(sig, siginfo, context);
  3425     } else {
  3426       (*hand)(sig);
  3429     // restore the signal mask
  3430     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3432   // Tell jvm's signal handler the signal is taken care of.
  3433   return true;
  3436 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3437   bool chained = false;
  3438   // signal-chaining
  3439   if (UseSignalChaining) {
  3440     struct sigaction *actp = get_chained_signal_action(sig);
  3441     if (actp != NULL) {
  3442       chained = call_chained_handler(actp, sig, siginfo, context);
  3445   return chained;
  3448 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3449   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3450     return &sigact[sig];
  3452   return NULL;
  3455 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3456   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3457   sigact[sig] = oldAct;
  3458   sigs |= (unsigned int)1 << sig;
  3461 // for diagnostic
  3462 int os::Linux::sigflags[MAXSIGNUM];
  3464 int os::Linux::get_our_sigflags(int sig) {
  3465   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3466   return sigflags[sig];
  3469 void os::Linux::set_our_sigflags(int sig, int flags) {
  3470   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3471   sigflags[sig] = flags;
  3474 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3475   // Check for overwrite.
  3476   struct sigaction oldAct;
  3477   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3479   void* oldhand = oldAct.sa_sigaction
  3480                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3481                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3482   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3483       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3484       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3485     if (AllowUserSignalHandlers || !set_installed) {
  3486       // Do not overwrite; user takes responsibility to forward to us.
  3487       return;
  3488     } else if (UseSignalChaining) {
  3489       // save the old handler in jvm
  3490       save_preinstalled_handler(sig, oldAct);
  3491       // libjsig also interposes the sigaction() call below and saves the
  3492       // old sigaction on it own.
  3493     } else {
  3494       fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
  3498   struct sigaction sigAct;
  3499   sigfillset(&(sigAct.sa_mask));
  3500   sigAct.sa_handler = SIG_DFL;
  3501   if (!set_installed) {
  3502     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3503   } else {
  3504     sigAct.sa_sigaction = signalHandler;
  3505     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3507   // Save flags, which are set by ours
  3508   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3509   sigflags[sig] = sigAct.sa_flags;
  3511   int ret = sigaction(sig, &sigAct, &oldAct);
  3512   assert(ret == 0, "check");
  3514   void* oldhand2  = oldAct.sa_sigaction
  3515                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3516                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3517   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3520 // install signal handlers for signals that HotSpot needs to
  3521 // handle in order to support Java-level exception handling.
  3523 void os::Linux::install_signal_handlers() {
  3524   if (!signal_handlers_are_installed) {
  3525     signal_handlers_are_installed = true;
  3527     // signal-chaining
  3528     typedef void (*signal_setting_t)();
  3529     signal_setting_t begin_signal_setting = NULL;
  3530     signal_setting_t end_signal_setting = NULL;
  3531     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3532                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3533     if (begin_signal_setting != NULL) {
  3534       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3535                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3536       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3537                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3538       libjsig_is_loaded = true;
  3539       assert(UseSignalChaining, "should enable signal-chaining");
  3541     if (libjsig_is_loaded) {
  3542       // Tell libjsig jvm is setting signal handlers
  3543       (*begin_signal_setting)();
  3546     set_signal_handler(SIGSEGV, true);
  3547     set_signal_handler(SIGPIPE, true);
  3548     set_signal_handler(SIGBUS, true);
  3549     set_signal_handler(SIGILL, true);
  3550     set_signal_handler(SIGFPE, true);
  3551     set_signal_handler(SIGXFSZ, true);
  3553     if (libjsig_is_loaded) {
  3554       // Tell libjsig jvm finishes setting signal handlers
  3555       (*end_signal_setting)();
  3558     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3559     // and if UserSignalHandler is installed all bets are off
  3560     if (CheckJNICalls) {
  3561       if (libjsig_is_loaded) {
  3562         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3563         check_signals = false;
  3565       if (AllowUserSignalHandlers) {
  3566         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3567         check_signals = false;
  3573 // This is the fastest way to get thread cpu time on Linux.
  3574 // Returns cpu time (user+sys) for any thread, not only for current.
  3575 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3576 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3577 // For reference, please, see IEEE Std 1003.1-2004:
  3578 //   http://www.unix.org/single_unix_specification
  3580 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3581   struct timespec tp;
  3582   int rc = os::Linux::clock_gettime(clockid, &tp);
  3583   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3585   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  3588 /////
  3589 // glibc on Linux platform uses non-documented flag
  3590 // to indicate, that some special sort of signal
  3591 // trampoline is used.
  3592 // We will never set this flag, and we should
  3593 // ignore this flag in our diagnostic
  3594 #ifdef SIGNIFICANT_SIGNAL_MASK
  3595 #undef SIGNIFICANT_SIGNAL_MASK
  3596 #endif
  3597 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3599 static const char* get_signal_handler_name(address handler,
  3600                                            char* buf, int buflen) {
  3601   int offset;
  3602   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3603   if (found) {
  3604     // skip directory names
  3605     const char *p1, *p2;
  3606     p1 = buf;
  3607     size_t len = strlen(os::file_separator());
  3608     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3609     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3610   } else {
  3611     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3613   return buf;
  3616 static void print_signal_handler(outputStream* st, int sig,
  3617                                  char* buf, size_t buflen) {
  3618   struct sigaction sa;
  3620   sigaction(sig, NULL, &sa);
  3622   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3623   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3625   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3627   address handler = (sa.sa_flags & SA_SIGINFO)
  3628     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3629     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3631   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3632     st->print("SIG_DFL");
  3633   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3634     st->print("SIG_IGN");
  3635   } else {
  3636     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3639   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3641   address rh = VMError::get_resetted_sighandler(sig);
  3642   // May be, handler was resetted by VMError?
  3643   if(rh != NULL) {
  3644     handler = rh;
  3645     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3648   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3650   // Check: is it our handler?
  3651   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3652      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3653     // It is our signal handler
  3654     // check for flags, reset system-used one!
  3655     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3656       st->print(
  3657                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3658                 os::Linux::get_our_sigflags(sig));
  3661   st->cr();
  3665 #define DO_SIGNAL_CHECK(sig) \
  3666   if (!sigismember(&check_signal_done, sig)) \
  3667     os::Linux::check_signal_handler(sig)
  3669 // This method is a periodic task to check for misbehaving JNI applications
  3670 // under CheckJNI, we can add any periodic checks here
  3672 void os::run_periodic_checks() {
  3674   if (check_signals == false) return;
  3676   // SEGV and BUS if overridden could potentially prevent
  3677   // generation of hs*.log in the event of a crash, debugging
  3678   // such a case can be very challenging, so we absolutely
  3679   // check the following for a good measure:
  3680   DO_SIGNAL_CHECK(SIGSEGV);
  3681   DO_SIGNAL_CHECK(SIGILL);
  3682   DO_SIGNAL_CHECK(SIGFPE);
  3683   DO_SIGNAL_CHECK(SIGBUS);
  3684   DO_SIGNAL_CHECK(SIGPIPE);
  3685   DO_SIGNAL_CHECK(SIGXFSZ);
  3688   // ReduceSignalUsage allows the user to override these handlers
  3689   // see comments at the very top and jvm_solaris.h
  3690   if (!ReduceSignalUsage) {
  3691     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3692     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3693     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3694     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3697   DO_SIGNAL_CHECK(SR_signum);
  3698   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3701 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3703 static os_sigaction_t os_sigaction = NULL;
  3705 void os::Linux::check_signal_handler(int sig) {
  3706   char buf[O_BUFLEN];
  3707   address jvmHandler = NULL;
  3710   struct sigaction act;
  3711   if (os_sigaction == NULL) {
  3712     // only trust the default sigaction, in case it has been interposed
  3713     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3714     if (os_sigaction == NULL) return;
  3717   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3720   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3722   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3723     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3724     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3727   switch(sig) {
  3728   case SIGSEGV:
  3729   case SIGBUS:
  3730   case SIGFPE:
  3731   case SIGPIPE:
  3732   case SIGILL:
  3733   case SIGXFSZ:
  3734     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3735     break;
  3737   case SHUTDOWN1_SIGNAL:
  3738   case SHUTDOWN2_SIGNAL:
  3739   case SHUTDOWN3_SIGNAL:
  3740   case BREAK_SIGNAL:
  3741     jvmHandler = (address)user_handler();
  3742     break;
  3744   case INTERRUPT_SIGNAL:
  3745     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  3746     break;
  3748   default:
  3749     if (sig == SR_signum) {
  3750       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  3751     } else {
  3752       return;
  3754     break;
  3757   if (thisHandler != jvmHandler) {
  3758     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  3759     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  3760     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  3761     // No need to check this sig any longer
  3762     sigaddset(&check_signal_done, sig);
  3763   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3764     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  3765     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  3766     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  3767     // No need to check this sig any longer
  3768     sigaddset(&check_signal_done, sig);
  3771   // Dump all the signal
  3772   if (sigismember(&check_signal_done, sig)) {
  3773     print_signal_handlers(tty, buf, O_BUFLEN);
  3777 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  3779 extern bool signal_name(int signo, char* buf, size_t len);
  3781 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  3782   if (0 < exception_code && exception_code <= SIGRTMAX) {
  3783     // signal
  3784     if (!signal_name(exception_code, buf, size)) {
  3785       jio_snprintf(buf, size, "SIG%d", exception_code);
  3787     return buf;
  3788   } else {
  3789     return NULL;
  3793 // this is called _before_ the most of global arguments have been parsed
  3794 void os::init(void) {
  3795   char dummy;   /* used to get a guess on initial stack address */
  3796 //  first_hrtime = gethrtime();
  3798   // With LinuxThreads the JavaMain thread pid (primordial thread)
  3799   // is different than the pid of the java launcher thread.
  3800   // So, on Linux, the launcher thread pid is passed to the VM
  3801   // via the sun.java.launcher.pid property.
  3802   // Use this property instead of getpid() if it was correctly passed.
  3803   // See bug 6351349.
  3804   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  3806   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  3808   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  3810   init_random(1234567);
  3812   ThreadCritical::initialize();
  3814   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  3815   if (Linux::page_size() == -1) {
  3816     fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
  3818   init_page_sizes((size_t) Linux::page_size());
  3820   Linux::initialize_system_info();
  3822   // main_thread points to the aboriginal thread
  3823   Linux::_main_thread = pthread_self();
  3825   Linux::clock_init();
  3826   initial_time_count = os::elapsed_counter();
  3827   pthread_mutex_init(&dl_mutex, NULL);
  3830 // To install functions for atexit system call
  3831 extern "C" {
  3832   static void perfMemory_exit_helper() {
  3833     perfMemory_exit();
  3837 // this is called _after_ the global arguments have been parsed
  3838 jint os::init_2(void)
  3840   Linux::fast_thread_clock_init();
  3842   // Allocate a single page and mark it as readable for safepoint polling
  3843   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3844   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  3846   os::set_polling_page( polling_page );
  3848 #ifndef PRODUCT
  3849   if(Verbose && PrintMiscellaneous)
  3850     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3851 #endif
  3853   if (!UseMembar) {
  3854     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3855     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  3856     os::set_memory_serialize_page( mem_serialize_page );
  3858 #ifndef PRODUCT
  3859     if(Verbose && PrintMiscellaneous)
  3860       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3861 #endif
  3864   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  3866   // initialize suspend/resume support - must do this before signal_sets_init()
  3867   if (SR_initialize() != 0) {
  3868     perror("SR_initialize failed");
  3869     return JNI_ERR;
  3872   Linux::signal_sets_init();
  3873   Linux::install_signal_handlers();
  3875   size_t threadStackSizeInBytes = ThreadStackSize * K;
  3876   if (threadStackSizeInBytes != 0 &&
  3877       threadStackSizeInBytes < Linux::min_stack_allowed) {
  3878         tty->print_cr("\nThe stack size specified is too small, "
  3879                       "Specify at least %dk",
  3880                       Linux::min_stack_allowed / K);
  3881         return JNI_ERR;
  3884   // Make the stack size a multiple of the page size so that
  3885   // the yellow/red zones can be guarded.
  3886   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  3887         vm_page_size()));
  3889   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  3891   Linux::libpthread_init();
  3892   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  3893      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  3894           Linux::glibc_version(), Linux::libpthread_version(),
  3895           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  3898   if (UseNUMA) {
  3899     if (!Linux::libnuma_init()) {
  3900       UseNUMA = false;
  3901     } else {
  3902       if ((Linux::numa_max_node() < 1)) {
  3903         // There's only one node(they start from 0), disable NUMA.
  3904         UseNUMA = false;
  3907     if (!UseNUMA && ForceNUMA) {
  3908       UseNUMA = true;
  3912   if (MaxFDLimit) {
  3913     // set the number of file descriptors to max. print out error
  3914     // if getrlimit/setrlimit fails but continue regardless.
  3915     struct rlimit nbr_files;
  3916     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  3917     if (status != 0) {
  3918       if (PrintMiscellaneous && (Verbose || WizardMode))
  3919         perror("os::init_2 getrlimit failed");
  3920     } else {
  3921       nbr_files.rlim_cur = nbr_files.rlim_max;
  3922       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  3923       if (status != 0) {
  3924         if (PrintMiscellaneous && (Verbose || WizardMode))
  3925           perror("os::init_2 setrlimit failed");
  3930   // Initialize lock used to serialize thread creation (see os::create_thread)
  3931   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  3933   // Initialize HPI.
  3934   jint hpi_result = hpi::initialize();
  3935   if (hpi_result != JNI_OK) {
  3936     tty->print_cr("There was an error trying to initialize the HPI library.");
  3937     return hpi_result;
  3940   // at-exit methods are called in the reverse order of their registration.
  3941   // atexit functions are called on return from main or as a result of a
  3942   // call to exit(3C). There can be only 32 of these functions registered
  3943   // and atexit() does not set errno.
  3945   if (PerfAllowAtExitRegistration) {
  3946     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3947     // atexit functions can be delayed until process exit time, which
  3948     // can be problematic for embedded VM situations. Embedded VMs should
  3949     // call DestroyJavaVM() to assure that VM resources are released.
  3951     // note: perfMemory_exit_helper atexit function may be removed in
  3952     // the future if the appropriate cleanup code can be added to the
  3953     // VM_Exit VMOperation's doit method.
  3954     if (atexit(perfMemory_exit_helper) != 0) {
  3955       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  3959   // initialize thread priority policy
  3960   prio_init();
  3962   return JNI_OK;
  3965 // Mark the polling page as unreadable
  3966 void os::make_polling_page_unreadable(void) {
  3967   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  3968     fatal("Could not disable polling page");
  3969 };
  3971 // Mark the polling page as readable
  3972 void os::make_polling_page_readable(void) {
  3973   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  3974     fatal("Could not enable polling page");
  3976 };
  3978 int os::active_processor_count() {
  3979   // Linux doesn't yet have a (official) notion of processor sets,
  3980   // so just return the number of online processors.
  3981   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  3982   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  3983   return online_cpus;
  3986 bool os::distribute_processes(uint length, uint* distribution) {
  3987   // Not yet implemented.
  3988   return false;
  3991 bool os::bind_to_processor(uint processor_id) {
  3992   // Not yet implemented.
  3993   return false;
  3996 ///
  3998 // Suspends the target using the signal mechanism and then grabs the PC before
  3999 // resuming the target. Used by the flat-profiler only
  4000 ExtendedPC os::get_thread_pc(Thread* thread) {
  4001   // Make sure that it is called by the watcher for the VMThread
  4002   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4003   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4005   ExtendedPC epc;
  4007   OSThread* osthread = thread->osthread();
  4008   if (do_suspend(osthread)) {
  4009     if (osthread->ucontext() != NULL) {
  4010       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4011     } else {
  4012       // NULL context is unexpected, double-check this is the VMThread
  4013       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4015     do_resume(osthread);
  4017   // failure means pthread_kill failed for some reason - arguably this is
  4018   // a fatal problem, but such problems are ignored elsewhere
  4020   return epc;
  4023 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4025    if (is_NPTL()) {
  4026       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4027    } else {
  4028 #ifndef IA64
  4029       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4030       // word back to default 64bit precision if condvar is signaled. Java
  4031       // wants 53bit precision.  Save and restore current value.
  4032       int fpu = get_fpu_control_word();
  4033 #endif // IA64
  4034       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4035 #ifndef IA64
  4036       set_fpu_control_word(fpu);
  4037 #endif // IA64
  4038       return status;
  4042 ////////////////////////////////////////////////////////////////////////////////
  4043 // debug support
  4045 #ifndef PRODUCT
  4046 static address same_page(address x, address y) {
  4047   int page_bits = -os::vm_page_size();
  4048   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4049     return x;
  4050   else if (x > y)
  4051     return (address)(intptr_t(y) | ~page_bits) + 1;
  4052   else
  4053     return (address)(intptr_t(y) & page_bits);
  4056 bool os::find(address addr) {
  4057   Dl_info dlinfo;
  4058   memset(&dlinfo, 0, sizeof(dlinfo));
  4059   if (dladdr(addr, &dlinfo)) {
  4060     tty->print(PTR_FORMAT ": ", addr);
  4061     if (dlinfo.dli_sname != NULL) {
  4062       tty->print("%s+%#x", dlinfo.dli_sname,
  4063                  addr - (intptr_t)dlinfo.dli_saddr);
  4064     } else if (dlinfo.dli_fname) {
  4065       tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4066     } else {
  4067       tty->print("<absolute address>");
  4069     if (dlinfo.dli_fname) {
  4070       tty->print(" in %s", dlinfo.dli_fname);
  4072     if (dlinfo.dli_fbase) {
  4073       tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4075     tty->cr();
  4077     if (Verbose) {
  4078       // decode some bytes around the PC
  4079       address begin = same_page(addr-40, addr);
  4080       address end   = same_page(addr+40, addr);
  4081       address       lowest = (address) dlinfo.dli_sname;
  4082       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4083       if (begin < lowest)  begin = lowest;
  4084       Dl_info dlinfo2;
  4085       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4086           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4087         end = (address) dlinfo2.dli_saddr;
  4088       Disassembler::decode(begin, end);
  4090     return true;
  4092   return false;
  4095 #endif
  4097 ////////////////////////////////////////////////////////////////////////////////
  4098 // misc
  4100 // This does not do anything on Linux. This is basically a hook for being
  4101 // able to use structured exception handling (thread-local exception filters)
  4102 // on, e.g., Win32.
  4103 void
  4104 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4105                          JavaCallArguments* args, Thread* thread) {
  4106   f(value, method, args, thread);
  4109 void os::print_statistics() {
  4112 int os::message_box(const char* title, const char* message) {
  4113   int i;
  4114   fdStream err(defaultStream::error_fd());
  4115   for (i = 0; i < 78; i++) err.print_raw("=");
  4116   err.cr();
  4117   err.print_raw_cr(title);
  4118   for (i = 0; i < 78; i++) err.print_raw("-");
  4119   err.cr();
  4120   err.print_raw_cr(message);
  4121   for (i = 0; i < 78; i++) err.print_raw("=");
  4122   err.cr();
  4124   char buf[16];
  4125   // Prevent process from exiting upon "read error" without consuming all CPU
  4126   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4128   return buf[0] == 'y' || buf[0] == 'Y';
  4131 int os::stat(const char *path, struct stat *sbuf) {
  4132   char pathbuf[MAX_PATH];
  4133   if (strlen(path) > MAX_PATH - 1) {
  4134     errno = ENAMETOOLONG;
  4135     return -1;
  4137   hpi::native_path(strcpy(pathbuf, path));
  4138   return ::stat(pathbuf, sbuf);
  4141 bool os::check_heap(bool force) {
  4142   return true;
  4145 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4146   return ::vsnprintf(buf, count, format, args);
  4149 // Is a (classpath) directory empty?
  4150 bool os::dir_is_empty(const char* path) {
  4151   DIR *dir = NULL;
  4152   struct dirent *ptr;
  4154   dir = opendir(path);
  4155   if (dir == NULL) return true;
  4157   /* Scan the directory */
  4158   bool result = true;
  4159   char buf[sizeof(struct dirent) + MAX_PATH];
  4160   while (result && (ptr = ::readdir(dir)) != NULL) {
  4161     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4162       result = false;
  4165   closedir(dir);
  4166   return result;
  4169 // create binary file, rewriting existing file if required
  4170 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4171   int oflags = O_WRONLY | O_CREAT;
  4172   if (!rewrite_existing) {
  4173     oflags |= O_EXCL;
  4175   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4178 // return current position of file pointer
  4179 jlong os::current_file_offset(int fd) {
  4180   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4183 // move file pointer to the specified offset
  4184 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4185   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4188 // Map a block of memory.
  4189 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4190                      char *addr, size_t bytes, bool read_only,
  4191                      bool allow_exec) {
  4192   int prot;
  4193   int flags;
  4195   if (read_only) {
  4196     prot = PROT_READ;
  4197     flags = MAP_SHARED;
  4198   } else {
  4199     prot = PROT_READ | PROT_WRITE;
  4200     flags = MAP_PRIVATE;
  4203   if (allow_exec) {
  4204     prot |= PROT_EXEC;
  4207   if (addr != NULL) {
  4208     flags |= MAP_FIXED;
  4211   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4212                                      fd, file_offset);
  4213   if (mapped_address == MAP_FAILED) {
  4214     return NULL;
  4216   return mapped_address;
  4220 // Remap a block of memory.
  4221 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4222                        char *addr, size_t bytes, bool read_only,
  4223                        bool allow_exec) {
  4224   // same as map_memory() on this OS
  4225   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4226                         allow_exec);
  4230 // Unmap a block of memory.
  4231 bool os::unmap_memory(char* addr, size_t bytes) {
  4232   return munmap(addr, bytes) == 0;
  4235 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4237 static clockid_t thread_cpu_clockid(Thread* thread) {
  4238   pthread_t tid = thread->osthread()->pthread_id();
  4239   clockid_t clockid;
  4241   // Get thread clockid
  4242   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4243   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4244   return clockid;
  4247 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4248 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4249 // of a thread.
  4250 //
  4251 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4252 // the fast estimate available on the platform.
  4254 jlong os::current_thread_cpu_time() {
  4255   if (os::Linux::supports_fast_thread_cpu_time()) {
  4256     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4257   } else {
  4258     // return user + sys since the cost is the same
  4259     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4263 jlong os::thread_cpu_time(Thread* thread) {
  4264   // consistent with what current_thread_cpu_time() returns
  4265   if (os::Linux::supports_fast_thread_cpu_time()) {
  4266     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4267   } else {
  4268     return slow_thread_cpu_time(thread, true /* user + sys */);
  4272 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4273   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4274     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4275   } else {
  4276     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4280 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4281   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4282     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4283   } else {
  4284     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4288 //
  4289 //  -1 on error.
  4290 //
  4292 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4293   static bool proc_pid_cpu_avail = true;
  4294   static bool proc_task_unchecked = true;
  4295   static const char *proc_stat_path = "/proc/%d/stat";
  4296   pid_t  tid = thread->osthread()->thread_id();
  4297   int i;
  4298   char *s;
  4299   char stat[2048];
  4300   int statlen;
  4301   char proc_name[64];
  4302   int count;
  4303   long sys_time, user_time;
  4304   char string[64];
  4305   int idummy;
  4306   long ldummy;
  4307   FILE *fp;
  4309   // We first try accessing /proc/<pid>/cpu since this is faster to
  4310   // process.  If this file is not present (linux kernels 2.5 and above)
  4311   // then we open /proc/<pid>/stat.
  4312   if ( proc_pid_cpu_avail ) {
  4313     sprintf(proc_name, "/proc/%d/cpu", tid);
  4314     fp =  fopen(proc_name, "r");
  4315     if ( fp != NULL ) {
  4316       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4317       fclose(fp);
  4318       if ( count != 3 ) return -1;
  4320       if (user_sys_cpu_time) {
  4321         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4322       } else {
  4323         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4326     else proc_pid_cpu_avail = false;
  4329   // The /proc/<tid>/stat aggregates per-process usage on
  4330   // new Linux kernels 2.6+ where NPTL is supported.
  4331   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4332   // See bug 6328462.
  4333   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4334   // and possibly in some other cases, so we check its availability.
  4335   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4336     // This is executed only once
  4337     proc_task_unchecked = false;
  4338     fp = fopen("/proc/self/task", "r");
  4339     if (fp != NULL) {
  4340       proc_stat_path = "/proc/self/task/%d/stat";
  4341       fclose(fp);
  4345   sprintf(proc_name, proc_stat_path, tid);
  4346   fp = fopen(proc_name, "r");
  4347   if ( fp == NULL ) return -1;
  4348   statlen = fread(stat, 1, 2047, fp);
  4349   stat[statlen] = '\0';
  4350   fclose(fp);
  4352   // Skip pid and the command string. Note that we could be dealing with
  4353   // weird command names, e.g. user could decide to rename java launcher
  4354   // to "java 1.4.2 :)", then the stat file would look like
  4355   //                1234 (java 1.4.2 :)) R ... ...
  4356   // We don't really need to know the command string, just find the last
  4357   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4358   s = strrchr(stat, ')');
  4359   i = 0;
  4360   if (s == NULL ) return -1;
  4362   // Skip blank chars
  4363   do s++; while (isspace(*s));
  4365   count = sscanf(s,"%*c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4366                  &idummy, &idummy, &idummy, &idummy, &idummy,
  4367                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4368                  &user_time, &sys_time);
  4369   if ( count != 12 ) return -1;
  4370   if (user_sys_cpu_time) {
  4371     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4372   } else {
  4373     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4377 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4378   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4379   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4380   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4381   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4384 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4385   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4386   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4387   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4388   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4391 bool os::is_thread_cpu_time_supported() {
  4392   return true;
  4395 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4396 // Linux doesn't yet have a (official) notion of processor sets,
  4397 // so just return the system wide load average.
  4398 int os::loadavg(double loadavg[], int nelem) {
  4399   return ::getloadavg(loadavg, nelem);
  4402 void os::pause() {
  4403   char filename[MAX_PATH];
  4404   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4405     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4406   } else {
  4407     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4410   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4411   if (fd != -1) {
  4412     struct stat buf;
  4413     close(fd);
  4414     while (::stat(filename, &buf) == 0) {
  4415       (void)::poll(NULL, 0, 100);
  4417   } else {
  4418     jio_fprintf(stderr,
  4419       "Could not open pause file '%s', continuing immediately.\n", filename);
  4423 extern "C" {
  4425 /**
  4426  * NOTE: the following code is to keep the green threads code
  4427  * in the libjava.so happy. Once the green threads is removed,
  4428  * these code will no longer be needed.
  4429  */
  4430 int
  4431 jdk_waitpid(pid_t pid, int* status, int options) {
  4432     return waitpid(pid, status, options);
  4435 int
  4436 fork1() {
  4437     return fork();
  4440 int
  4441 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
  4442     return sem_init(sem, pshared, value);
  4445 int
  4446 jdk_sem_post(sem_t *sem) {
  4447     return sem_post(sem);
  4450 int
  4451 jdk_sem_wait(sem_t *sem) {
  4452     return sem_wait(sem);
  4455 int
  4456 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
  4457     return pthread_sigmask(how , newmask, oldmask);
  4462 // Refer to the comments in os_solaris.cpp park-unpark.
  4463 //
  4464 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4465 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4466 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4467 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4468 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4469 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4470 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4471 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4472 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4473 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4474 // of libpthread avoids the problem, but isn't practical.
  4475 //
  4476 // Possible remedies:
  4477 //
  4478 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4479 //      This is palliative and probabilistic, however.  If the thread is preempted
  4480 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4481 //      than the minimum period may have passed, and the abstime may be stale (in the
  4482 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4483 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4484 //
  4485 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4486 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4487 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4488 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4489 //      thread.
  4490 //
  4491 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4492 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4493 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4494 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4495 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4496 //      timers in a graceful fashion.
  4497 //
  4498 // 4.   When the abstime value is in the past it appears that control returns
  4499 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4500 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4501 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4502 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4503 //      It may be possible to avoid reinitialization by checking the return
  4504 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4505 //      condvar we must establish the invariant that cond_signal() is only called
  4506 //      within critical sections protected by the adjunct mutex.  This prevents
  4507 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4508 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4509 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4510 //
  4511 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4512 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4513 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4514 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4515 //
  4516 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4517 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4518 // and only enabling the work-around for vulnerable environments.
  4520 // utility to compute the abstime argument to timedwait:
  4521 // millis is the relative timeout time
  4522 // abstime will be the absolute timeout time
  4523 // TODO: replace compute_abstime() with unpackTime()
  4525 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4526   if (millis < 0)  millis = 0;
  4527   struct timeval now;
  4528   int status = gettimeofday(&now, NULL);
  4529   assert(status == 0, "gettimeofday");
  4530   jlong seconds = millis / 1000;
  4531   millis %= 1000;
  4532   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4533     seconds = 50000000;
  4535   abstime->tv_sec = now.tv_sec  + seconds;
  4536   long       usec = now.tv_usec + millis * 1000;
  4537   if (usec >= 1000000) {
  4538     abstime->tv_sec += 1;
  4539     usec -= 1000000;
  4541   abstime->tv_nsec = usec * 1000;
  4542   return abstime;
  4546 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4547 // Conceptually TryPark() should be equivalent to park(0).
  4549 int os::PlatformEvent::TryPark() {
  4550   for (;;) {
  4551     const int v = _Event ;
  4552     guarantee ((v == 0) || (v == 1), "invariant") ;
  4553     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4557 void os::PlatformEvent::park() {       // AKA "down()"
  4558   // Invariant: Only the thread associated with the Event/PlatformEvent
  4559   // may call park().
  4560   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4561   int v ;
  4562   for (;;) {
  4563       v = _Event ;
  4564       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4566   guarantee (v >= 0, "invariant") ;
  4567   if (v == 0) {
  4568      // Do this the hard way by blocking ...
  4569      int status = pthread_mutex_lock(_mutex);
  4570      assert_status(status == 0, status, "mutex_lock");
  4571      guarantee (_nParked == 0, "invariant") ;
  4572      ++ _nParked ;
  4573      while (_Event < 0) {
  4574         status = pthread_cond_wait(_cond, _mutex);
  4575         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4576         // Treat this the same as if the wait was interrupted
  4577         if (status == ETIME) { status = EINTR; }
  4578         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4580      -- _nParked ;
  4582     // In theory we could move the ST of 0 into _Event past the unlock(),
  4583     // but then we'd need a MEMBAR after the ST.
  4584     _Event = 0 ;
  4585      status = pthread_mutex_unlock(_mutex);
  4586      assert_status(status == 0, status, "mutex_unlock");
  4588   guarantee (_Event >= 0, "invariant") ;
  4591 int os::PlatformEvent::park(jlong millis) {
  4592   guarantee (_nParked == 0, "invariant") ;
  4594   int v ;
  4595   for (;;) {
  4596       v = _Event ;
  4597       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4599   guarantee (v >= 0, "invariant") ;
  4600   if (v != 0) return OS_OK ;
  4602   // We do this the hard way, by blocking the thread.
  4603   // Consider enforcing a minimum timeout value.
  4604   struct timespec abst;
  4605   compute_abstime(&abst, millis);
  4607   int ret = OS_TIMEOUT;
  4608   int status = pthread_mutex_lock(_mutex);
  4609   assert_status(status == 0, status, "mutex_lock");
  4610   guarantee (_nParked == 0, "invariant") ;
  4611   ++_nParked ;
  4613   // Object.wait(timo) will return because of
  4614   // (a) notification
  4615   // (b) timeout
  4616   // (c) thread.interrupt
  4617   //
  4618   // Thread.interrupt and object.notify{All} both call Event::set.
  4619   // That is, we treat thread.interrupt as a special case of notification.
  4620   // The underlying Solaris implementation, cond_timedwait, admits
  4621   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4622   // JVM from making those visible to Java code.  As such, we must
  4623   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4624   //
  4625   // TODO: properly differentiate simultaneous notify+interrupt.
  4626   // In that case, we should propagate the notify to another waiter.
  4628   while (_Event < 0) {
  4629     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  4630     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4631       pthread_cond_destroy (_cond);
  4632       pthread_cond_init (_cond, NULL) ;
  4634     assert_status(status == 0 || status == EINTR ||
  4635                   status == ETIME || status == ETIMEDOUT,
  4636                   status, "cond_timedwait");
  4637     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4638     if (status == ETIME || status == ETIMEDOUT) break ;
  4639     // We consume and ignore EINTR and spurious wakeups.
  4641   --_nParked ;
  4642   if (_Event >= 0) {
  4643      ret = OS_OK;
  4645   _Event = 0 ;
  4646   status = pthread_mutex_unlock(_mutex);
  4647   assert_status(status == 0, status, "mutex_unlock");
  4648   assert (_nParked == 0, "invariant") ;
  4649   return ret;
  4652 void os::PlatformEvent::unpark() {
  4653   int v, AnyWaiters ;
  4654   for (;;) {
  4655       v = _Event ;
  4656       if (v > 0) {
  4657          // The LD of _Event could have reordered or be satisfied
  4658          // by a read-aside from this processor's write buffer.
  4659          // To avoid problems execute a barrier and then
  4660          // ratify the value.
  4661          OrderAccess::fence() ;
  4662          if (_Event == v) return ;
  4663          continue ;
  4665       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4667   if (v < 0) {
  4668      // Wait for the thread associated with the event to vacate
  4669      int status = pthread_mutex_lock(_mutex);
  4670      assert_status(status == 0, status, "mutex_lock");
  4671      AnyWaiters = _nParked ;
  4672      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  4673      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  4674         AnyWaiters = 0 ;
  4675         pthread_cond_signal (_cond);
  4677      status = pthread_mutex_unlock(_mutex);
  4678      assert_status(status == 0, status, "mutex_unlock");
  4679      if (AnyWaiters != 0) {
  4680         status = pthread_cond_signal(_cond);
  4681         assert_status(status == 0, status, "cond_signal");
  4685   // Note that we signal() _after dropping the lock for "immortal" Events.
  4686   // This is safe and avoids a common class of  futile wakeups.  In rare
  4687   // circumstances this can cause a thread to return prematurely from
  4688   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  4689   // simply re-test the condition and re-park itself.
  4693 // JSR166
  4694 // -------------------------------------------------------
  4696 /*
  4697  * The solaris and linux implementations of park/unpark are fairly
  4698  * conservative for now, but can be improved. They currently use a
  4699  * mutex/condvar pair, plus a a count.
  4700  * Park decrements count if > 0, else does a condvar wait.  Unpark
  4701  * sets count to 1 and signals condvar.  Only one thread ever waits
  4702  * on the condvar. Contention seen when trying to park implies that someone
  4703  * is unparking you, so don't wait. And spurious returns are fine, so there
  4704  * is no need to track notifications.
  4705  */
  4708 #define NANOSECS_PER_SEC 1000000000
  4709 #define NANOSECS_PER_MILLISEC 1000000
  4710 #define MAX_SECS 100000000
  4711 /*
  4712  * This code is common to linux and solaris and will be moved to a
  4713  * common place in dolphin.
  4715  * The passed in time value is either a relative time in nanoseconds
  4716  * or an absolute time in milliseconds. Either way it has to be unpacked
  4717  * into suitable seconds and nanoseconds components and stored in the
  4718  * given timespec structure.
  4719  * Given time is a 64-bit value and the time_t used in the timespec is only
  4720  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  4721  * overflow if times way in the future are given. Further on Solaris versions
  4722  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  4723  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  4724  * As it will be 28 years before "now + 100000000" will overflow we can
  4725  * ignore overflow and just impose a hard-limit on seconds using the value
  4726  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  4727  * years from "now".
  4728  */
  4730 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  4731   assert (time > 0, "convertTime");
  4733   struct timeval now;
  4734   int status = gettimeofday(&now, NULL);
  4735   assert(status == 0, "gettimeofday");
  4737   time_t max_secs = now.tv_sec + MAX_SECS;
  4739   if (isAbsolute) {
  4740     jlong secs = time / 1000;
  4741     if (secs > max_secs) {
  4742       absTime->tv_sec = max_secs;
  4744     else {
  4745       absTime->tv_sec = secs;
  4747     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  4749   else {
  4750     jlong secs = time / NANOSECS_PER_SEC;
  4751     if (secs >= MAX_SECS) {
  4752       absTime->tv_sec = max_secs;
  4753       absTime->tv_nsec = 0;
  4755     else {
  4756       absTime->tv_sec = now.tv_sec + secs;
  4757       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  4758       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  4759         absTime->tv_nsec -= NANOSECS_PER_SEC;
  4760         ++absTime->tv_sec; // note: this must be <= max_secs
  4764   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  4765   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  4766   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  4767   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  4770 void Parker::park(bool isAbsolute, jlong time) {
  4771   // Optional fast-path check:
  4772   // Return immediately if a permit is available.
  4773   if (_counter > 0) {
  4774       _counter = 0 ;
  4775       OrderAccess::fence();
  4776       return ;
  4779   Thread* thread = Thread::current();
  4780   assert(thread->is_Java_thread(), "Must be JavaThread");
  4781   JavaThread *jt = (JavaThread *)thread;
  4783   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  4784   // Check interrupt before trying to wait
  4785   if (Thread::is_interrupted(thread, false)) {
  4786     return;
  4789   // Next, demultiplex/decode time arguments
  4790   timespec absTime;
  4791   if (time < 0) { // don't wait at all
  4792     return;
  4794   if (time > 0) {
  4795     unpackTime(&absTime, isAbsolute, time);
  4799   // Enter safepoint region
  4800   // Beware of deadlocks such as 6317397.
  4801   // The per-thread Parker:: mutex is a classic leaf-lock.
  4802   // In particular a thread must never block on the Threads_lock while
  4803   // holding the Parker:: mutex.  If safepoints are pending both the
  4804   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  4805   ThreadBlockInVM tbivm(jt);
  4807   // Don't wait if cannot get lock since interference arises from
  4808   // unblocking.  Also. check interrupt before trying wait
  4809   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  4810     return;
  4813   int status ;
  4814   if (_counter > 0)  { // no wait needed
  4815     _counter = 0;
  4816     status = pthread_mutex_unlock(_mutex);
  4817     assert (status == 0, "invariant") ;
  4818     OrderAccess::fence();
  4819     return;
  4822 #ifdef ASSERT
  4823   // Don't catch signals while blocked; let the running threads have the signals.
  4824   // (This allows a debugger to break into the running thread.)
  4825   sigset_t oldsigs;
  4826   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  4827   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  4828 #endif
  4830   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4831   jt->set_suspend_equivalent();
  4832   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  4834   if (time == 0) {
  4835     status = pthread_cond_wait (_cond, _mutex) ;
  4836   } else {
  4837     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  4838     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4839       pthread_cond_destroy (_cond) ;
  4840       pthread_cond_init    (_cond, NULL);
  4843   assert_status(status == 0 || status == EINTR ||
  4844                 status == ETIME || status == ETIMEDOUT,
  4845                 status, "cond_timedwait");
  4847 #ifdef ASSERT
  4848   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  4849 #endif
  4851   _counter = 0 ;
  4852   status = pthread_mutex_unlock(_mutex) ;
  4853   assert_status(status == 0, status, "invariant") ;
  4854   // If externally suspended while waiting, re-suspend
  4855   if (jt->handle_special_suspend_equivalent_condition()) {
  4856     jt->java_suspend_self();
  4859   OrderAccess::fence();
  4862 void Parker::unpark() {
  4863   int s, status ;
  4864   status = pthread_mutex_lock(_mutex);
  4865   assert (status == 0, "invariant") ;
  4866   s = _counter;
  4867   _counter = 1;
  4868   if (s < 1) {
  4869      if (WorkAroundNPTLTimedWaitHang) {
  4870         status = pthread_cond_signal (_cond) ;
  4871         assert (status == 0, "invariant") ;
  4872         status = pthread_mutex_unlock(_mutex);
  4873         assert (status == 0, "invariant") ;
  4874      } else {
  4875         status = pthread_mutex_unlock(_mutex);
  4876         assert (status == 0, "invariant") ;
  4877         status = pthread_cond_signal (_cond) ;
  4878         assert (status == 0, "invariant") ;
  4880   } else {
  4881     pthread_mutex_unlock(_mutex);
  4882     assert (status == 0, "invariant") ;
  4887 extern char** environ;
  4889 #ifndef __NR_fork
  4890 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  4891 #endif
  4893 #ifndef __NR_execve
  4894 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  4895 #endif
  4897 // Run the specified command in a separate process. Return its exit value,
  4898 // or -1 on failure (e.g. can't fork a new process).
  4899 // Unlike system(), this function can be called from signal handler. It
  4900 // doesn't block SIGINT et al.
  4901 int os::fork_and_exec(char* cmd) {
  4902   const char * argv[4] = {"sh", "-c", cmd, NULL};
  4904   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  4905   // pthread_atfork handlers and reset pthread library. All we need is a
  4906   // separate process to execve. Make a direct syscall to fork process.
  4907   // On IA64 there's no fork syscall, we have to use fork() and hope for
  4908   // the best...
  4909   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  4910               IA64_ONLY(fork();)
  4912   if (pid < 0) {
  4913     // fork failed
  4914     return -1;
  4916   } else if (pid == 0) {
  4917     // child process
  4919     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  4920     // first to kill every thread on the thread list. Because this list is
  4921     // not reset by fork() (see notes above), execve() will instead kill
  4922     // every thread in the parent process. We know this is the only thread
  4923     // in the new process, so make a system call directly.
  4924     // IA64 should use normal execve() from glibc to match the glibc fork()
  4925     // above.
  4926     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  4927     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  4929     // execve failed
  4930     _exit(-1);
  4932   } else  {
  4933     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  4934     // care about the actual exit code, for now.
  4936     int status;
  4938     // Wait for the child process to exit.  This returns immediately if
  4939     // the child has already exited. */
  4940     while (waitpid(pid, &status, 0) < 0) {
  4941         switch (errno) {
  4942         case ECHILD: return 0;
  4943         case EINTR: break;
  4944         default: return -1;
  4948     if (WIFEXITED(status)) {
  4949        // The child exited normally; get its exit code.
  4950        return WEXITSTATUS(status);
  4951     } else if (WIFSIGNALED(status)) {
  4952        // The child exited because of a signal
  4953        // The best value to return is 0x80 + signal number,
  4954        // because that is what all Unix shells do, and because
  4955        // it allows callers to distinguish between process exit and
  4956        // process death by signal.
  4957        return 0x80 + WTERMSIG(status);
  4958     } else {
  4959        // Unknown exit code; pass it through
  4960        return status;

mercurial