src/cpu/x86/vm/vm_version_x86.hpp

Fri, 14 Mar 2014 17:28:58 -0700

author
kvn
date
Fri, 14 Mar 2014 17:28:58 -0700
changeset 6388
98af1e198e73
parent 6378
8a8ff6b577ed
child 6429
606acabe7b5c
permissions
-rw-r--r--

8037226: compiler/7196199/Test7196199.java fails on 32-bit linux with MaxVectorSize > 16
Summary: verify YMM registers after signal processing and set limit on vector's size.
Reviewed-by: iveresov, twisti

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
    26 #define CPU_X86_VM_VM_VERSION_X86_HPP
    28 #include "runtime/globals_extension.hpp"
    29 #include "runtime/vm_version.hpp"
    31 class VM_Version : public Abstract_VM_Version {
    32 public:
    33   // cpuid result register layouts.  These are all unions of a uint32_t
    34   // (in case anyone wants access to the register as a whole) and a bitfield.
    36   union StdCpuid1Eax {
    37     uint32_t value;
    38     struct {
    39       uint32_t stepping   : 4,
    40                model      : 4,
    41                family     : 4,
    42                proc_type  : 2,
    43                           : 2,
    44                ext_model  : 4,
    45                ext_family : 8,
    46                           : 4;
    47     } bits;
    48   };
    50   union StdCpuid1Ebx { // example, unused
    51     uint32_t value;
    52     struct {
    53       uint32_t brand_id         : 8,
    54                clflush_size     : 8,
    55                threads_per_cpu  : 8,
    56                apic_id          : 8;
    57     } bits;
    58   };
    60   union StdCpuid1Ecx {
    61     uint32_t value;
    62     struct {
    63       uint32_t sse3     : 1,
    64                clmul    : 1,
    65                         : 1,
    66                monitor  : 1,
    67                         : 1,
    68                vmx      : 1,
    69                         : 1,
    70                est      : 1,
    71                         : 1,
    72                ssse3    : 1,
    73                cid      : 1,
    74                         : 2,
    75                cmpxchg16: 1,
    76                         : 4,
    77                dca      : 1,
    78                sse4_1   : 1,
    79                sse4_2   : 1,
    80                         : 2,
    81                popcnt   : 1,
    82                         : 1,
    83                aes      : 1,
    84                         : 1,
    85                osxsave  : 1,
    86                avx      : 1,
    87                         : 3;
    88     } bits;
    89   };
    91   union StdCpuid1Edx {
    92     uint32_t value;
    93     struct {
    94       uint32_t          : 4,
    95                tsc      : 1,
    96                         : 3,
    97                cmpxchg8 : 1,
    98                         : 6,
    99                cmov     : 1,
   100                         : 3,
   101                clflush  : 1,
   102                         : 3,
   103                mmx      : 1,
   104                fxsr     : 1,
   105                sse      : 1,
   106                sse2     : 1,
   107                         : 1,
   108                ht       : 1,
   109                         : 3;
   110     } bits;
   111   };
   113   union DcpCpuid4Eax {
   114     uint32_t value;
   115     struct {
   116       uint32_t cache_type    : 5,
   117                              : 21,
   118                cores_per_cpu : 6;
   119     } bits;
   120   };
   122   union DcpCpuid4Ebx {
   123     uint32_t value;
   124     struct {
   125       uint32_t L1_line_size  : 12,
   126                partitions    : 10,
   127                associativity : 10;
   128     } bits;
   129   };
   131   union TplCpuidBEbx {
   132     uint32_t value;
   133     struct {
   134       uint32_t logical_cpus : 16,
   135                             : 16;
   136     } bits;
   137   };
   139   union ExtCpuid1Ecx {
   140     uint32_t value;
   141     struct {
   142       uint32_t LahfSahf     : 1,
   143                CmpLegacy    : 1,
   144                             : 3,
   145                lzcnt_intel  : 1,
   146                lzcnt        : 1,
   147                sse4a        : 1,
   148                misalignsse  : 1,
   149                prefetchw    : 1,
   150                             : 22;
   151     } bits;
   152   };
   154   union ExtCpuid1Edx {
   155     uint32_t value;
   156     struct {
   157       uint32_t           : 22,
   158                mmx_amd   : 1,
   159                mmx       : 1,
   160                fxsr      : 1,
   161                          : 4,
   162                long_mode : 1,
   163                tdnow2    : 1,
   164                tdnow     : 1;
   165     } bits;
   166   };
   168   union ExtCpuid5Ex {
   169     uint32_t value;
   170     struct {
   171       uint32_t L1_line_size : 8,
   172                L1_tag_lines : 8,
   173                L1_assoc     : 8,
   174                L1_size      : 8;
   175     } bits;
   176   };
   178   union ExtCpuid7Edx {
   179     uint32_t value;
   180     struct {
   181       uint32_t               : 8,
   182               tsc_invariance : 1,
   183                              : 23;
   184     } bits;
   185   };
   187   union ExtCpuid8Ecx {
   188     uint32_t value;
   189     struct {
   190       uint32_t cores_per_cpu : 8,
   191                              : 24;
   192     } bits;
   193   };
   195   union SefCpuid7Eax {
   196     uint32_t value;
   197   };
   199   union SefCpuid7Ebx {
   200     uint32_t value;
   201     struct {
   202       uint32_t fsgsbase : 1,
   203                         : 2,
   204                    bmi1 : 1,
   205                         : 1,
   206                    avx2 : 1,
   207                         : 2,
   208                    bmi2 : 1,
   209                    erms : 1,
   210                         : 22;
   211     } bits;
   212   };
   214   union XemXcr0Eax {
   215     uint32_t value;
   216     struct {
   217       uint32_t x87 : 1,
   218                sse : 1,
   219                ymm : 1,
   220                    : 29;
   221     } bits;
   222   };
   224 protected:
   225   static int _cpu;
   226   static int _model;
   227   static int _stepping;
   228   static int _cpuFeatures;     // features returned by the "cpuid" instruction
   229                                // 0 if this instruction is not available
   230   static const char* _features_str;
   232   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
   233   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
   235   enum {
   236     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
   237     CPU_CMOV   = (1 << 1),
   238     CPU_FXSR   = (1 << 2),
   239     CPU_HT     = (1 << 3),
   240     CPU_MMX    = (1 << 4),
   241     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
   242                                     // may not necessarily support other 3dnow instructions
   243     CPU_SSE    = (1 << 6),
   244     CPU_SSE2   = (1 << 7),
   245     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
   246     CPU_SSSE3  = (1 << 9),
   247     CPU_SSE4A  = (1 << 10),
   248     CPU_SSE4_1 = (1 << 11),
   249     CPU_SSE4_2 = (1 << 12),
   250     CPU_POPCNT = (1 << 13),
   251     CPU_LZCNT  = (1 << 14),
   252     CPU_TSC    = (1 << 15),
   253     CPU_TSCINV = (1 << 16),
   254     CPU_AVX    = (1 << 17),
   255     CPU_AVX2   = (1 << 18),
   256     CPU_AES    = (1 << 19),
   257     CPU_ERMS   = (1 << 20), // enhanced 'rep movsb/stosb' instructions
   258     CPU_CLMUL  = (1 << 21), // carryless multiply for CRC
   259     CPU_BMI1   = (1 << 22),
   260     CPU_BMI2   = (1 << 23)
   261   } cpuFeatureFlags;
   263   enum {
   264     // AMD
   265     CPU_FAMILY_AMD_11H       = 0x11,
   266     // Intel
   267     CPU_FAMILY_INTEL_CORE    = 6,
   268     CPU_MODEL_NEHALEM        = 0x1e,
   269     CPU_MODEL_NEHALEM_EP     = 0x1a,
   270     CPU_MODEL_NEHALEM_EX     = 0x2e,
   271     CPU_MODEL_WESTMERE       = 0x25,
   272     CPU_MODEL_WESTMERE_EP    = 0x2c,
   273     CPU_MODEL_WESTMERE_EX    = 0x2f,
   274     CPU_MODEL_SANDYBRIDGE    = 0x2a,
   275     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
   276     CPU_MODEL_IVYBRIDGE_EP   = 0x3a
   277   } cpuExtendedFamily;
   279   // cpuid information block.  All info derived from executing cpuid with
   280   // various function numbers is stored here.  Intel and AMD info is
   281   // merged in this block: accessor methods disentangle it.
   282   //
   283   // The info block is laid out in subblocks of 4 dwords corresponding to
   284   // eax, ebx, ecx and edx, whether or not they contain anything useful.
   285   struct CpuidInfo {
   286     // cpuid function 0
   287     uint32_t std_max_function;
   288     uint32_t std_vendor_name_0;
   289     uint32_t std_vendor_name_1;
   290     uint32_t std_vendor_name_2;
   292     // cpuid function 1
   293     StdCpuid1Eax std_cpuid1_eax;
   294     StdCpuid1Ebx std_cpuid1_ebx;
   295     StdCpuid1Ecx std_cpuid1_ecx;
   296     StdCpuid1Edx std_cpuid1_edx;
   298     // cpuid function 4 (deterministic cache parameters)
   299     DcpCpuid4Eax dcp_cpuid4_eax;
   300     DcpCpuid4Ebx dcp_cpuid4_ebx;
   301     uint32_t     dcp_cpuid4_ecx; // unused currently
   302     uint32_t     dcp_cpuid4_edx; // unused currently
   304     // cpuid function 7 (structured extended features)
   305     SefCpuid7Eax sef_cpuid7_eax;
   306     SefCpuid7Ebx sef_cpuid7_ebx;
   307     uint32_t     sef_cpuid7_ecx; // unused currently
   308     uint32_t     sef_cpuid7_edx; // unused currently
   310     // cpuid function 0xB (processor topology)
   311     // ecx = 0
   312     uint32_t     tpl_cpuidB0_eax;
   313     TplCpuidBEbx tpl_cpuidB0_ebx;
   314     uint32_t     tpl_cpuidB0_ecx; // unused currently
   315     uint32_t     tpl_cpuidB0_edx; // unused currently
   317     // ecx = 1
   318     uint32_t     tpl_cpuidB1_eax;
   319     TplCpuidBEbx tpl_cpuidB1_ebx;
   320     uint32_t     tpl_cpuidB1_ecx; // unused currently
   321     uint32_t     tpl_cpuidB1_edx; // unused currently
   323     // ecx = 2
   324     uint32_t     tpl_cpuidB2_eax;
   325     TplCpuidBEbx tpl_cpuidB2_ebx;
   326     uint32_t     tpl_cpuidB2_ecx; // unused currently
   327     uint32_t     tpl_cpuidB2_edx; // unused currently
   329     // cpuid function 0x80000000 // example, unused
   330     uint32_t ext_max_function;
   331     uint32_t ext_vendor_name_0;
   332     uint32_t ext_vendor_name_1;
   333     uint32_t ext_vendor_name_2;
   335     // cpuid function 0x80000001
   336     uint32_t     ext_cpuid1_eax; // reserved
   337     uint32_t     ext_cpuid1_ebx; // reserved
   338     ExtCpuid1Ecx ext_cpuid1_ecx;
   339     ExtCpuid1Edx ext_cpuid1_edx;
   341     // cpuid functions 0x80000002 thru 0x80000004: example, unused
   342     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
   343     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
   344     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
   346     // cpuid function 0x80000005 // AMD L1, Intel reserved
   347     uint32_t     ext_cpuid5_eax; // unused currently
   348     uint32_t     ext_cpuid5_ebx; // reserved
   349     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
   350     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
   352     // cpuid function 0x80000007
   353     uint32_t     ext_cpuid7_eax; // reserved
   354     uint32_t     ext_cpuid7_ebx; // reserved
   355     uint32_t     ext_cpuid7_ecx; // reserved
   356     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
   358     // cpuid function 0x80000008
   359     uint32_t     ext_cpuid8_eax; // unused currently
   360     uint32_t     ext_cpuid8_ebx; // reserved
   361     ExtCpuid8Ecx ext_cpuid8_ecx;
   362     uint32_t     ext_cpuid8_edx; // reserved
   364     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
   365     XemXcr0Eax   xem_xcr0_eax;
   366     uint32_t     xem_xcr0_edx; // reserved
   368     // Space to save ymm registers after signal handle
   369     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
   370   };
   372   // The actual cpuid info block
   373   static CpuidInfo _cpuid_info;
   375   // Extractors and predicates
   376   static uint32_t extended_cpu_family() {
   377     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
   378     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
   379     return result;
   380   }
   382   static uint32_t extended_cpu_model() {
   383     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
   384     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
   385     return result;
   386   }
   388   static uint32_t cpu_stepping() {
   389     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
   390     return result;
   391   }
   393   static uint logical_processor_count() {
   394     uint result = threads_per_core();
   395     return result;
   396   }
   398   static uint32_t feature_flags() {
   399     uint32_t result = 0;
   400     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
   401       result |= CPU_CX8;
   402     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
   403       result |= CPU_CMOV;
   404     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
   405         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
   406       result |= CPU_FXSR;
   407     // HT flag is set for multi-core processors also.
   408     if (threads_per_core() > 1)
   409       result |= CPU_HT;
   410     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
   411         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
   412       result |= CPU_MMX;
   413     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
   414       result |= CPU_SSE;
   415     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
   416       result |= CPU_SSE2;
   417     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
   418       result |= CPU_SSE3;
   419     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
   420       result |= CPU_SSSE3;
   421     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
   422       result |= CPU_SSE4_1;
   423     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
   424       result |= CPU_SSE4_2;
   425     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
   426       result |= CPU_POPCNT;
   427     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
   428         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
   429         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
   430         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
   431       result |= CPU_AVX;
   432       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
   433         result |= CPU_AVX2;
   434     }
   435     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
   436       result |= CPU_BMI1;
   437     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
   438       result |= CPU_TSC;
   439     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
   440       result |= CPU_TSCINV;
   441     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
   442       result |= CPU_AES;
   443     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
   444       result |= CPU_ERMS;
   445     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
   446       result |= CPU_CLMUL;
   448     // AMD features.
   449     if (is_amd()) {
   450       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
   451           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
   452         result |= CPU_3DNOW_PREFETCH;
   453       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
   454         result |= CPU_LZCNT;
   455       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
   456         result |= CPU_SSE4A;
   457     }
   458     // Intel features.
   459     if(is_intel()) {
   460       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
   461         result |= CPU_BMI2;
   462       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
   463         result |= CPU_LZCNT;
   464     }
   466     return result;
   467   }
   469   static bool os_supports_avx_vectors() {
   470     if (!supports_avx()) {
   471       return false;
   472     }
   473     // Verify that OS save/restore all bits of AVX registers
   474     // during signal processing.
   475     int nreg = 2 LP64_ONLY(+2);
   476     for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
   477       if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
   478         return false;
   479       }
   480     }
   481     return true;
   482   }
   484   static void get_processor_features();
   486 public:
   487   // Offsets for cpuid asm stub
   488   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
   489   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
   490   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
   491   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
   492   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
   493   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
   494   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
   495   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
   496   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
   497   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
   498   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
   499   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
   500   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
   502   // The value used to check ymm register after signal handle
   503   static int ymm_test_value()    { return 0xCAFEBABE; }
   505   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
   506   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
   507   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
   508   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
   510   static void clean_cpuFeatures()   { _cpuFeatures = 0; }
   511   static void set_avx_cpuFeatures() { _cpuFeatures = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
   514   // Initialization
   515   static void initialize();
   517   // Asserts
   518   static void assert_is_initialized() {
   519     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
   520   }
   522   //
   523   // Processor family:
   524   //       3   -  386
   525   //       4   -  486
   526   //       5   -  Pentium
   527   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
   528   //              Pentium M, Core Solo, Core Duo, Core2 Duo
   529   //    family 6 model:   9,        13,       14,        15
   530   //    0x0f   -  Pentium 4, Opteron
   531   //
   532   // Note: The cpu family should be used to select between
   533   //       instruction sequences which are valid on all Intel
   534   //       processors.  Use the feature test functions below to
   535   //       determine whether a particular instruction is supported.
   536   //
   537   static int  cpu_family()        { return _cpu;}
   538   static bool is_P6()             { return cpu_family() >= 6; }
   539   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
   540   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
   542   static bool supports_processor_topology() {
   543     return (_cpuid_info.std_max_function >= 0xB) &&
   544            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
   545            // Some cpus have max cpuid >= 0xB but do not support processor topology.
   546            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
   547   }
   549   static uint cores_per_cpu()  {
   550     uint result = 1;
   551     if (is_intel()) {
   552       if (supports_processor_topology()) {
   553         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
   554                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   555       } else {
   556         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
   557       }
   558     } else if (is_amd()) {
   559       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
   560     }
   561     return result;
   562   }
   564   static uint threads_per_core()  {
   565     uint result = 1;
   566     if (is_intel() && supports_processor_topology()) {
   567       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
   568     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
   569       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
   570                cores_per_cpu();
   571     }
   572     return result;
   573   }
   575   static intx prefetch_data_size()  {
   576     intx result = 0;
   577     if (is_intel()) {
   578       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
   579     } else if (is_amd()) {
   580       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
   581     }
   582     if (result < 32) // not defined ?
   583       result = 32;   // 32 bytes by default on x86 and other x64
   584     return result;
   585   }
   587   //
   588   // Feature identification
   589   //
   590   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
   591   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
   592   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
   593   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
   594   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
   595   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
   596   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
   597   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
   598   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
   599   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
   600   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
   601   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
   602   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
   603   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
   604   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
   605   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
   606   static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
   607   static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
   608   static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }
   609   static bool supports_bmi1()     { return (_cpuFeatures & CPU_BMI1) != 0; }
   610   static bool supports_bmi2()     { return (_cpuFeatures & CPU_BMI2) != 0; }
   611   // Intel features
   612   static bool is_intel_family_core() { return is_intel() &&
   613                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
   615   static bool is_intel_tsc_synched_at_init()  {
   616     if (is_intel_family_core()) {
   617       uint32_t ext_model = extended_cpu_model();
   618       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
   619           ext_model == CPU_MODEL_WESTMERE_EP    ||
   620           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
   621           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
   622         // <= 2-socket invariant tsc support. EX versions are usually used
   623         // in > 2-socket systems and likely don't synchronize tscs at
   624         // initialization.
   625         // Code that uses tsc values must be prepared for them to arbitrarily
   626         // jump forward or backward.
   627         return true;
   628       }
   629     }
   630     return false;
   631   }
   633   // AMD features
   634   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
   635   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
   636   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
   637   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
   639   static bool is_amd_Barcelona()  { return is_amd() &&
   640                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
   642   // Intel and AMD newer cores support fast timestamps well
   643   static bool supports_tscinv_bit() {
   644     return (_cpuFeatures & CPU_TSCINV) != 0;
   645   }
   646   static bool supports_tscinv() {
   647     return supports_tscinv_bit() &&
   648            ( (is_amd() && !is_amd_Barcelona()) ||
   649              is_intel_tsc_synched_at_init() );
   650   }
   652   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
   653   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
   654                                            supports_sse3() && _model != 0x1C; }
   656   static bool supports_compare_and_exchange() { return true; }
   658   static const char* cpu_features()           { return _features_str; }
   660   static intx allocate_prefetch_distance() {
   661     // This method should be called before allocate_prefetch_style().
   662     //
   663     // Hardware prefetching (distance/size in bytes):
   664     // Pentium 3 -  64 /  32
   665     // Pentium 4 - 256 / 128
   666     // Athlon    -  64 /  32 ????
   667     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
   668     // Core      - 128 /  64
   669     //
   670     // Software prefetching (distance in bytes / instruction with best score):
   671     // Pentium 3 - 128 / prefetchnta
   672     // Pentium 4 - 512 / prefetchnta
   673     // Athlon    - 128 / prefetchnta
   674     // Opteron   - 256 / prefetchnta
   675     // Core      - 256 / prefetchnta
   676     // It will be used only when AllocatePrefetchStyle > 0
   678     intx count = AllocatePrefetchDistance;
   679     if (count < 0) {   // default ?
   680       if (is_amd()) {  // AMD
   681         if (supports_sse2())
   682           count = 256; // Opteron
   683         else
   684           count = 128; // Athlon
   685       } else {         // Intel
   686         if (supports_sse2())
   687           if (cpu_family() == 6) {
   688             count = 256; // Pentium M, Core, Core2
   689           } else {
   690             count = 512; // Pentium 4
   691           }
   692         else
   693           count = 128; // Pentium 3 (and all other old CPUs)
   694       }
   695     }
   696     return count;
   697   }
   698   static intx allocate_prefetch_style() {
   699     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
   700     // Return 0 if AllocatePrefetchDistance was not defined.
   701     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
   702   }
   704   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
   705   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
   706   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
   707   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
   709   // gc copy/scan is disabled if prefetchw isn't supported, because
   710   // Prefetch::write emits an inlined prefetchw on Linux.
   711   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
   712   // The used prefetcht0 instruction works for both amd64 and em64t.
   713   static intx prefetch_copy_interval_in_bytes() {
   714     intx interval = PrefetchCopyIntervalInBytes;
   715     return interval >= 0 ? interval : 576;
   716   }
   717   static intx prefetch_scan_interval_in_bytes() {
   718     intx interval = PrefetchScanIntervalInBytes;
   719     return interval >= 0 ? interval : 576;
   720   }
   721   static intx prefetch_fields_ahead() {
   722     intx count = PrefetchFieldsAhead;
   723     return count >= 0 ? count : 1;
   724   }
   725 };
   727 #endif // CPU_X86_VM_VM_VERSION_X86_HPP

mercurial