src/os_cpu/solaris_x86/vm/os_solaris_x86.cpp

Thu, 20 Jun 2013 15:02:05 +0200

author
goetz
date
Thu, 20 Jun 2013 15:02:05 +0200
changeset 5400
980532a806a5
parent 5237
f2110083203d
child 5426
af21010d1062
permissions
-rw-r--r--

8016697: Use stubs to implement safefetch
Summary: Implement Safefetch as stub routines. This reduces compiler and os dependencies.
Reviewed-by: twisti, kvn

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "asm/macroAssembler.hpp"
    27 #include "classfile/classLoader.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_solaris.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "mutex_solaris.inline.hpp"
    36 #include "os_share_solaris.hpp"
    37 #include "prims/jniFastGetField.hpp"
    38 #include "prims/jvm.h"
    39 #include "prims/jvm_misc.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/extendedPC.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/java.hpp"
    45 #include "runtime/javaCalls.hpp"
    46 #include "runtime/mutexLocker.hpp"
    47 #include "runtime/osThread.hpp"
    48 #include "runtime/sharedRuntime.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "runtime/timer.hpp"
    52 #include "utilities/events.hpp"
    53 #include "utilities/vmError.hpp"
    55 // put OS-includes here
    56 # include <sys/types.h>
    57 # include <sys/mman.h>
    58 # include <pthread.h>
    59 # include <signal.h>
    60 # include <setjmp.h>
    61 # include <errno.h>
    62 # include <dlfcn.h>
    63 # include <stdio.h>
    64 # include <unistd.h>
    65 # include <sys/resource.h>
    66 # include <thread.h>
    67 # include <sys/stat.h>
    68 # include <sys/time.h>
    69 # include <sys/filio.h>
    70 # include <sys/utsname.h>
    71 # include <sys/systeminfo.h>
    72 # include <sys/socket.h>
    73 # include <sys/trap.h>
    74 # include <sys/lwp.h>
    75 # include <pwd.h>
    76 # include <poll.h>
    77 # include <sys/lwp.h>
    78 # include <procfs.h>     //  see comment in <sys/procfs.h>
    80 #ifndef AMD64
    81 // QQQ seems useless at this point
    82 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
    83 #endif // AMD64
    84 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
    87 #define MAX_PATH (2 * K)
    89 // Minimum stack size for the VM.  It's easier to document a constant value
    90 // but it's different for x86 and sparc because the page sizes are different.
    91 #ifdef AMD64
    92 size_t os::Solaris::min_stack_allowed = 224*K;
    93 #define REG_SP REG_RSP
    94 #define REG_PC REG_RIP
    95 #define REG_FP REG_RBP
    96 #else
    97 size_t os::Solaris::min_stack_allowed = 64*K;
    98 #define REG_SP UESP
    99 #define REG_PC EIP
   100 #define REG_FP EBP
   101 // 4900493 counter to prevent runaway LDTR refresh attempt
   103 static volatile int ldtr_refresh = 0;
   104 // the libthread instruction that faults because of the stale LDTR
   106 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
   107                        };
   108 #endif // AMD64
   110 char* os::non_memory_address_word() {
   111   // Must never look like an address returned by reserve_memory,
   112   // even in its subfields (as defined by the CPU immediate fields,
   113   // if the CPU splits constants across multiple instructions).
   114   return (char*) -1;
   115 }
   117 //
   118 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
   119 // There are issues with libthread giving out uc_links for different threads
   120 // on the same uc_link chain and bad or circular links.
   121 //
   122 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
   123   if (valid >= suspect ||
   124       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
   125       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
   126       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
   127     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
   128     return false;
   129   }
   131   if (thread->is_Java_thread()) {
   132     if (!valid_stack_address(thread, (address)suspect)) {
   133       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
   134       return false;
   135     }
   136     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
   137       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
   138       return false;
   139     }
   140   }
   141   return true;
   142 }
   144 // We will only follow one level of uc_link since there are libthread
   145 // issues with ucontext linking and it is better to be safe and just
   146 // let caller retry later.
   147 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
   148   ucontext_t *uc) {
   150   ucontext_t *retuc = NULL;
   152   if (uc != NULL) {
   153     if (uc->uc_link == NULL) {
   154       // cannot validate without uc_link so accept current ucontext
   155       retuc = uc;
   156     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   157       // first ucontext is valid so try the next one
   158       uc = uc->uc_link;
   159       if (uc->uc_link == NULL) {
   160         // cannot validate without uc_link so accept current ucontext
   161         retuc = uc;
   162       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
   163         // the ucontext one level down is also valid so return it
   164         retuc = uc;
   165       }
   166     }
   167   }
   168   return retuc;
   169 }
   171 // Assumes ucontext is valid
   172 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
   173   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
   174 }
   176 // Assumes ucontext is valid
   177 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
   178   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
   179 }
   181 // Assumes ucontext is valid
   182 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
   183   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
   184 }
   186 address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
   187   return (address) uc->uc_mcontext.gregs[REG_PC];
   188 }
   190 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   191 // is currently interrupted by SIGPROF.
   192 //
   193 // The difference between this and os::fetch_frame_from_context() is that
   194 // here we try to skip nested signal frames.
   195 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
   196   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   198   assert(thread != NULL, "just checking");
   199   assert(ret_sp != NULL, "just checking");
   200   assert(ret_fp != NULL, "just checking");
   202   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
   203   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
   204 }
   206 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   207                     intptr_t** ret_sp, intptr_t** ret_fp) {
   209   ExtendedPC  epc;
   210   ucontext_t *uc = (ucontext_t*)ucVoid;
   212   if (uc != NULL) {
   213     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   214     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
   215     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
   216   } else {
   217     // construct empty ExtendedPC for return value checking
   218     epc = ExtendedPC(NULL);
   219     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   220     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   221   }
   223   return epc;
   224 }
   226 frame os::fetch_frame_from_context(void* ucVoid) {
   227   intptr_t* sp;
   228   intptr_t* fp;
   229   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   230   return frame(sp, fp, epc.pc());
   231 }
   233 frame os::get_sender_for_C_frame(frame* fr) {
   234   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   235 }
   237 extern "C" intptr_t *_get_current_sp();  // in .il file
   239 address os::current_stack_pointer() {
   240   return (address)_get_current_sp();
   241 }
   243 extern "C" intptr_t *_get_current_fp();  // in .il file
   245 frame os::current_frame() {
   246   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
   247   frame myframe((intptr_t*)os::current_stack_pointer(),
   248                 (intptr_t*)fp,
   249                 CAST_FROM_FN_PTR(address, os::current_frame));
   250   if (os::is_first_C_frame(&myframe)) {
   251     // stack is not walkable
   252     frame ret; // This will be a null useless frame
   253     return ret;
   254   } else {
   255     return os::get_sender_for_C_frame(&myframe);
   256   }
   257 }
   259 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
   260   char lwpstatusfile[PROCFILE_LENGTH];
   261   int lwpfd, err;
   263   if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
   264     return (err);
   265   if (*flags == TRS_LWPID) {
   266     sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
   267             *lwp);
   268     if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
   269       perror("thr_mutator_status: open lwpstatus");
   270       return (EINVAL);
   271     }
   272     if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
   273         sizeof (lwpstatus_t)) {
   274       perror("thr_mutator_status: read lwpstatus");
   275       (void) close(lwpfd);
   276       return (EINVAL);
   277     }
   278     (void) close(lwpfd);
   279   }
   280   return (0);
   281 }
   283 #ifndef AMD64
   285 // Detecting SSE support by OS
   286 // From solaris_i486.s
   287 extern "C" bool sse_check();
   288 extern "C" bool sse_unavailable();
   290 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
   291 static int sse_status = SSE_UNKNOWN;
   294 static void  check_for_sse_support() {
   295   if (!VM_Version::supports_sse()) {
   296     sse_status = SSE_NOT_SUPPORTED;
   297     return;
   298   }
   299   // looking for _sse_hw in libc.so, if it does not exist or
   300   // the value (int) is 0, OS has no support for SSE
   301   int *sse_hwp;
   302   void *h;
   304   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
   305     //open failed, presume no support for SSE
   306     sse_status = SSE_NOT_SUPPORTED;
   307     return;
   308   }
   309   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
   310     sse_status = SSE_NOT_SUPPORTED;
   311   } else if (*sse_hwp == 0) {
   312     sse_status = SSE_NOT_SUPPORTED;
   313   }
   314   dlclose(h);
   316   if (sse_status == SSE_UNKNOWN) {
   317     bool (*try_sse)() = (bool (*)())sse_check;
   318     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
   319   }
   321 }
   323 #endif // AMD64
   325 bool os::supports_sse() {
   326 #ifdef AMD64
   327   return true;
   328 #else
   329   if (sse_status == SSE_UNKNOWN)
   330     check_for_sse_support();
   331   return sse_status == SSE_SUPPORTED;
   332 #endif // AMD64
   333 }
   335 bool os::is_allocatable(size_t bytes) {
   336 #ifdef AMD64
   337   return true;
   338 #else
   340   if (bytes < 2 * G) {
   341     return true;
   342   }
   344   char* addr = reserve_memory(bytes, NULL);
   346   if (addr != NULL) {
   347     release_memory(addr, bytes);
   348   }
   350   return addr != NULL;
   351 #endif // AMD64
   353 }
   355 extern "C" JNIEXPORT int
   356 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
   357                           int abort_if_unrecognized) {
   358   ucontext_t* uc = (ucontext_t*) ucVoid;
   360 #ifndef AMD64
   361   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
   362     // the SSE instruction faulted. supports_sse() need return false.
   363     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
   364     return true;
   365   }
   366 #endif // !AMD64
   368   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
   370   SignalHandlerMark shm(t);
   372   if(sig == SIGPIPE || sig == SIGXFSZ) {
   373     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   374       return true;
   375     } else {
   376       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   377         char buf[64];
   378         warning("Ignoring %s - see 4229104 or 6499219",
   379                 os::exception_name(sig, buf, sizeof(buf)));
   381       }
   382       return true;
   383     }
   384   }
   386   JavaThread* thread = NULL;
   387   VMThread* vmthread = NULL;
   389   if (os::Solaris::signal_handlers_are_installed) {
   390     if (t != NULL ){
   391       if(t->is_Java_thread()) {
   392         thread = (JavaThread*)t;
   393       }
   394       else if(t->is_VM_thread()){
   395         vmthread = (VMThread *)t;
   396       }
   397     }
   398   }
   400   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
   402   if (sig == os::Solaris::SIGasync()) {
   403     if(thread || vmthread){
   404       OSThread::SR_handler(t, uc);
   405       return true;
   406     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   407       return true;
   408     } else {
   409       // If os::Solaris::SIGasync not chained, and this is a non-vm and
   410       // non-java thread
   411       return true;
   412     }
   413   }
   415   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   416     // can't decode this kind of signal
   417     info = NULL;
   418   } else {
   419     assert(sig == info->si_signo, "bad siginfo");
   420   }
   422   // decide if this trap can be handled by a stub
   423   address stub = NULL;
   425   address pc          = NULL;
   427   //%note os_trap_1
   428   if (info != NULL && uc != NULL && thread != NULL) {
   429     // factor me: getPCfromContext
   430     pc = (address) uc->uc_mcontext.gregs[REG_PC];
   432     if (StubRoutines::is_safefetch_fault(pc)) {
   433       uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
   434       return true;
   435     }
   437     // Handle ALL stack overflow variations here
   438     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
   439       address addr = (address) info->si_addr;
   440       if (thread->in_stack_yellow_zone(addr)) {
   441         thread->disable_stack_yellow_zone();
   442         if (thread->thread_state() == _thread_in_Java) {
   443           // Throw a stack overflow exception.  Guard pages will be reenabled
   444           // while unwinding the stack.
   445           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   446         } else {
   447           // Thread was in the vm or native code.  Return and try to finish.
   448           return true;
   449         }
   450       } else if (thread->in_stack_red_zone(addr)) {
   451         // Fatal red zone violation.  Disable the guard pages and fall through
   452         // to handle_unexpected_exception way down below.
   453         thread->disable_stack_red_zone();
   454         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   455       }
   456     }
   458     if (thread->thread_state() == _thread_in_vm) {
   459       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
   460         stub = StubRoutines::handler_for_unsafe_access();
   461       }
   462     }
   464     if (thread->thread_state() == _thread_in_Java) {
   465       // Support Safepoint Polling
   466       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   467         stub = SharedRuntime::get_poll_stub(pc);
   468       }
   469       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
   470         // BugId 4454115: A read from a MappedByteBuffer can fault
   471         // here if the underlying file has been truncated.
   472         // Do not crash the VM in such a case.
   473         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   474         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   475         if (nm != NULL && nm->has_unsafe_access()) {
   476           stub = StubRoutines::handler_for_unsafe_access();
   477         }
   478       }
   479       else
   480       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
   481         // integer divide by zero
   482         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   483       }
   484 #ifndef AMD64
   485       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
   486         // floating-point divide by zero
   487         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   488       }
   489       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
   490         // The encoding of D2I in i486.ad can cause an exception prior
   491         // to the fist instruction if there was an invalid operation
   492         // pending. We want to dismiss that exception. From the win_32
   493         // side it also seems that if it really was the fist causing
   494         // the exception that we do the d2i by hand with different
   495         // rounding. Seems kind of weird. QQQ TODO
   496         // Note that we take the exception at the NEXT floating point instruction.
   497         if (pc[0] == 0xDB) {
   498             assert(pc[0] == 0xDB, "not a FIST opcode");
   499             assert(pc[1] == 0x14, "not a FIST opcode");
   500             assert(pc[2] == 0x24, "not a FIST opcode");
   501             return true;
   502         } else {
   503             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
   504             assert(pc[-2] == 0x14, "not an flt invalid opcode");
   505             assert(pc[-1] == 0x24, "not an flt invalid opcode");
   506         }
   507       }
   508       else if (sig == SIGFPE ) {
   509         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
   510       }
   511 #endif // !AMD64
   513         // QQQ It doesn't seem that we need to do this on x86 because we should be able
   514         // to return properly from the handler without this extra stuff on the back side.
   516       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   517         // Determination of interpreter/vtable stub/compiled code null exception
   518         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   519       }
   520     }
   522     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   523     // and the heap gets shrunk before the field access.
   524     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   525       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   526       if (addr != (address)-1) {
   527         stub = addr;
   528       }
   529     }
   531     // Check to see if we caught the safepoint code in the
   532     // process of write protecting the memory serialization page.
   533     // It write enables the page immediately after protecting it
   534     // so we can just return to retry the write.
   535     if ((sig == SIGSEGV) &&
   536         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
   537       // Block current thread until the memory serialize page permission restored.
   538       os::block_on_serialize_page_trap();
   539       return true;
   540     }
   541   }
   543   // Execution protection violation
   544   //
   545   // Preventative code for future versions of Solaris which may
   546   // enable execution protection when running the 32-bit VM on AMD64.
   547   //
   548   // This should be kept as the last step in the triage.  We don't
   549   // have a dedicated trap number for a no-execute fault, so be
   550   // conservative and allow other handlers the first shot.
   551   //
   552   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   553   // this si_code is so generic that it is almost meaningless; and
   554   // the si_code for this condition may change in the future.
   555   // Furthermore, a false-positive should be harmless.
   556   if (UnguardOnExecutionViolation > 0 &&
   557       (sig == SIGSEGV || sig == SIGBUS) &&
   558       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
   559     int page_size = os::vm_page_size();
   560     address addr = (address) info->si_addr;
   561     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
   562     // Make sure the pc and the faulting address are sane.
   563     //
   564     // If an instruction spans a page boundary, and the page containing
   565     // the beginning of the instruction is executable but the following
   566     // page is not, the pc and the faulting address might be slightly
   567     // different - we still want to unguard the 2nd page in this case.
   568     //
   569     // 15 bytes seems to be a (very) safe value for max instruction size.
   570     bool pc_is_near_addr =
   571       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   572     bool instr_spans_page_boundary =
   573       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   574                        (intptr_t) page_size) > 0);
   576     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   577       static volatile address last_addr =
   578         (address) os::non_memory_address_word();
   580       // In conservative mode, don't unguard unless the address is in the VM
   581       if (addr != last_addr &&
   582           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   584         // Make memory rwx and retry
   585         address page_start =
   586           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   587         bool res = os::protect_memory((char*) page_start, page_size,
   588                                       os::MEM_PROT_RWX);
   590         if (PrintMiscellaneous && Verbose) {
   591           char buf[256];
   592           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   593                        "at " INTPTR_FORMAT
   594                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   595                        page_start, (res ? "success" : "failed"), errno);
   596           tty->print_raw_cr(buf);
   597         }
   598         stub = pc;
   600         // Set last_addr so if we fault again at the same address, we don't end
   601         // up in an endless loop.
   602         //
   603         // There are two potential complications here.  Two threads trapping at
   604         // the same address at the same time could cause one of the threads to
   605         // think it already unguarded, and abort the VM.  Likely very rare.
   606         //
   607         // The other race involves two threads alternately trapping at
   608         // different addresses and failing to unguard the page, resulting in
   609         // an endless loop.  This condition is probably even more unlikely than
   610         // the first.
   611         //
   612         // Although both cases could be avoided by using locks or thread local
   613         // last_addr, these solutions are unnecessary complication: this
   614         // handler is a best-effort safety net, not a complete solution.  It is
   615         // disabled by default and should only be used as a workaround in case
   616         // we missed any no-execute-unsafe VM code.
   618         last_addr = addr;
   619       }
   620     }
   621   }
   623   if (stub != NULL) {
   624     // save all thread context in case we need to restore it
   626     if (thread != NULL) thread->set_saved_exception_pc(pc);
   627     // 12/02/99: On Sparc it appears that the full context is also saved
   628     // but as yet, no one looks at or restores that saved context
   629     // factor me: setPC
   630     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   631     return true;
   632   }
   634   // signal-chaining
   635   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
   636     return true;
   637   }
   639 #ifndef AMD64
   640   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
   641   // Handle an undefined selector caused by an attempt to assign
   642   // fs in libthread getipriptr(). With the current libthread design every 512
   643   // thread creations the LDT for a private thread data structure is extended
   644   // and thre is a hazard that and another thread attempting a thread creation
   645   // will use a stale LDTR that doesn't reflect the structure's growth,
   646   // causing a GP fault.
   647   // Enforce the probable limit of passes through here to guard against an
   648   // infinite loop if some other move to fs caused the GP fault. Note that
   649   // this loop counter is ultimately a heuristic as it is possible for
   650   // more than one thread to generate this fault at a time in an MP system.
   651   // In the case of the loop count being exceeded or if the poll fails
   652   // just fall through to a fatal error.
   653   // If there is some other source of T_GPFLT traps and the text at EIP is
   654   // unreadable this code will loop infinitely until the stack is exausted.
   655   // The key to diagnosis in this case is to look for the bottom signal handler
   656   // frame.
   658   if(! IgnoreLibthreadGPFault) {
   659     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
   660       const unsigned char *p =
   661                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
   663       // Expected instruction?
   665       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
   667         Atomic::inc(&ldtr_refresh);
   669         // Infinite loop?
   671         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
   673           // No, force scheduling to get a fresh view of the LDTR
   675           if(poll(NULL, 0, 10) == 0) {
   677             // Retry the move
   679             return false;
   680           }
   681         }
   682       }
   683     }
   684   }
   685 #endif // !AMD64
   687   if (!abort_if_unrecognized) {
   688     // caller wants another chance, so give it to him
   689     return false;
   690   }
   692   if (!os::Solaris::libjsig_is_loaded) {
   693     struct sigaction oldAct;
   694     sigaction(sig, (struct sigaction *)0, &oldAct);
   695     if (oldAct.sa_sigaction != signalHandler) {
   696       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
   697                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
   698       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
   699     }
   700   }
   702   if (pc == NULL && uc != NULL) {
   703     pc = (address) uc->uc_mcontext.gregs[REG_PC];
   704   }
   706   // unmask current signal
   707   sigset_t newset;
   708   sigemptyset(&newset);
   709   sigaddset(&newset, sig);
   710   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   712   // Determine which sort of error to throw.  Out of swap may signal
   713   // on the thread stack, which could get a mapping error when touched.
   714   address addr = (address) info->si_addr;
   715   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
   716     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
   717   }
   719   VMError err(t, sig, pc, info, ucVoid);
   720   err.report_and_die();
   722   ShouldNotReachHere();
   723 }
   725 void os::print_context(outputStream *st, void *context) {
   726   if (context == NULL) return;
   728   ucontext_t *uc = (ucontext_t*)context;
   729   st->print_cr("Registers:");
   730 #ifdef AMD64
   731   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   732   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   733   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   734   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   735   st->cr();
   736   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   737   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   738   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   739   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   740   st->cr();
   741   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   742   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   743   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   744   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   745   st->cr();
   746   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   747   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   748   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   749   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   750   st->cr();
   751   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   752   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
   753 #else
   754   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
   755   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
   756   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
   757   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
   758   st->cr();
   759   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
   760   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
   761   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
   762   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
   763   st->cr();
   764   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
   765   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
   766 #endif // AMD64
   767   st->cr();
   768   st->cr();
   770   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
   771   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   772   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   773   st->cr();
   775   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   776   // point to garbage if entry point in an nmethod is corrupted. Leave
   777   // this at the end, and hope for the best.
   778   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
   779   address pc = epc.pc();
   780   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   781   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
   782 }
   784 void os::print_register_info(outputStream *st, void *context) {
   785   if (context == NULL) return;
   787   ucontext_t *uc = (ucontext_t*)context;
   789   st->print_cr("Register to memory mapping:");
   790   st->cr();
   792   // this is horrendously verbose but the layout of the registers in the
   793   // context does not match how we defined our abstract Register set, so
   794   // we can't just iterate through the gregs area
   796   // this is only for the "general purpose" registers
   798 #ifdef AMD64
   799   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
   800   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
   801   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
   802   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
   803   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
   804   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
   805   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
   806   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
   807   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
   808   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
   809   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
   810   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
   811   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
   812   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
   813   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
   814   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
   815 #else
   816   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
   817   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
   818   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
   819   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
   820   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
   821   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
   822   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
   823   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
   824 #endif
   826   st->cr();
   827 }
   830 #ifdef AMD64
   831 void os::Solaris::init_thread_fpu_state(void) {
   832   // Nothing to do
   833 }
   834 #else
   835 // From solaris_i486.s
   836 extern "C" void fixcw();
   838 void os::Solaris::init_thread_fpu_state(void) {
   839   // Set fpu to 53 bit precision. This happens too early to use a stub.
   840   fixcw();
   841 }
   843 // These routines are the initial value of atomic_xchg_entry(),
   844 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
   845 // until initialization is complete.
   846 // TODO - replace with .il implementation when compiler supports it.
   848 typedef jint  xchg_func_t        (jint,  volatile jint*);
   849 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
   850 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
   851 typedef jint  add_func_t         (jint,  volatile jint*);
   853 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
   854   // try to use the stub:
   855   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
   857   if (func != NULL) {
   858     os::atomic_xchg_func = func;
   859     return (*func)(exchange_value, dest);
   860   }
   861   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   863   jint old_value = *dest;
   864   *dest = exchange_value;
   865   return old_value;
   866 }
   868 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
   869   // try to use the stub:
   870   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
   872   if (func != NULL) {
   873     os::atomic_cmpxchg_func = func;
   874     return (*func)(exchange_value, dest, compare_value);
   875   }
   876   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   878   jint old_value = *dest;
   879   if (old_value == compare_value)
   880     *dest = exchange_value;
   881   return old_value;
   882 }
   884 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
   885   // try to use the stub:
   886   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
   888   if (func != NULL) {
   889     os::atomic_cmpxchg_long_func = func;
   890     return (*func)(exchange_value, dest, compare_value);
   891   }
   892   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   894   jlong old_value = *dest;
   895   if (old_value == compare_value)
   896     *dest = exchange_value;
   897   return old_value;
   898 }
   900 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
   901   // try to use the stub:
   902   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
   904   if (func != NULL) {
   905     os::atomic_add_func = func;
   906     return (*func)(add_value, dest);
   907   }
   908   assert(Threads::number_of_threads() == 0, "for bootstrap only");
   910   return (*dest) += add_value;
   911 }
   913 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
   914 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
   915 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
   916 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
   918 extern "C" void _solaris_raw_setup_fpu(address ptr);
   919 void os::setup_fpu() {
   920   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   921   _solaris_raw_setup_fpu(fpu_cntrl);
   922 }
   923 #endif // AMD64
   925 #ifndef PRODUCT
   926 void os::verify_stack_alignment() {
   927 #ifdef AMD64
   928   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
   929 #endif
   930 }
   931 #endif

mercurial